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at R1 =R2 =1.141 Å. Equidistant contours (∆E =1.0 eV) of the energies are relative to

the global FHF− minimum energy. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Schematic FHF− and FHF potential energy (eV) profile along the reaction coordinate

F +HF ↔ FH + F. The minimum energy of FHF− and the transition state of FHF are
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tains a transition state (marked with •) at ROH =1.10 Å and RHF =1.45 Å. Equidistant
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4.22 Instantaneous excitation of the ground state vibrational wave function υ00 of OHF− to

the neutral PES Vn results in the wave function Ψn(t). Field-free propagation of Ψn(t)

on the PES of OHF results in a branching ratio of 0.84 : 0.16 at t = 50 fs for O + HF

products (solid) versus OH + F (dotted). . . . . . . . . . . . . . . . . . . . . . . 136

4.23 Attempt of selective breaking of the weak O–H bond (left panels, (a)-(e)) and strong H–

F bond (right panels, (a’)-(e’)) of OHF, using few-cycle IR + UV laser pulses. In (a)
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is shown at t=0 fs; (b) and (b’) show the wave function during the few-cycle IR pulse,

just before firing the UV pulse. Snapshots (c)-(e) and (c’)-(e’) show the time evolution

of the wavefunction on Vn after the UV excitation.

Breaking the O–H bond

IR pulse parameters: E0,IR = 3.2 GV/m, ωIR = 1565 cm−1, ϕIR = 0, t0,IR = 0 fs, and

tp,IR = 50 fs.

UV pulse parameters: E0,UV =5.0 GV/m, ωUV =28 228 cm−1, ϕUV =0, t0,UV = 19 fs,

and tp,UV = 5 fs.

Breaking the H–F bond

IR pulse parameters: E0,IR = 5.0 GV/m, ωIR = 1565 cm−1, ϕIR = 0, t0,IR = 0 fs,

tp,IR = 50 fs.

UV pulse parameters: E0,UV = 8.0 GV/m, ωUV = 52 423 cm−1, ϕUV = 0, t0,UV = 29 fs

and tp,UV = 5 fs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.24

Breaking the O–H bond:

(a) Few-cycle IR + UV laser pulses achieve maximum O + HF fragmentation.

IR pulse parameters: E0,IR = 3.2 GV/m, ωIR = 1565 cm−1, ϕIR = 0, t0,IR = 0 fs, and

tp,IR = 50 fs.

UV pulse parameters: E0,UV = 5.0 GV/m, ωUV = 28 228 cm−1, ϕUV = 0, t0,UV = 19 fs,

and tp,UV = 5 fs. (b) Time evolution of the branching ratio of the O + HF products

(solid) versus OH + F (dotted).

Breaking the H–F bond:

(c) Few-cycle IR + UV laser pulses achieve maximum OH + F fragmentation.

IR pulse parameters: E0,IR = 5.0 GV/m, ωIR = 1565 cm−1, ϕIR = 0, t0,IR = 0 fs,

tp,IR = 50 fs.

UV pulse parameters: E0,UV = 8.0 GV/m, ωUV = 52 423 cm−1, ϕUV = 0, t0,UV = 29 fs,

and tp,UV = 5 fs. (d) Time evolution of the branching ratio of the O + HF products

(solid) versus OH + F (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
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