List of Figures

1.1	Selective bond breaking mediated by few-cycle $IR + UV$ laser pulses. The IR pulse creates a wave packet whose motion corresponds to the extension and compression of					
	the bonds. When the bond of interest has been maximally extended, the wave packet is					
	located at the turning point of the oscillation. At this time, an ultrashort UV pulse is					
	applied that excites the wave packet vertically to a bond-selective region of the upper					
	state. The pre-excited bond proceeds to break, resulting in the formation of one set of					
	products	4				
1.2	A half-cycle pulse orients an ensemble of molecules.	7				
2.1	Oscillating convergence behavior of energy results obtained with the MPn method. The true energy is the exact non-relativistic electronic energy in the Born-Oppenheimer					
	approximation	28				
2.2	Vector representation of the total angular momentum \vec{J} , whose magnitude is given by					
	$[J(J+1)]^{1/2}\hbar$, and whose projection onto a space-fixed Z axis is given by $M\hbar$	50				
2.3	Vector representation of the total angular momentum vector \vec{J} , and its projections $M\hbar$					
	and $K\hbar$ onto the space-fixed Z and body-fixed z axes, respectively	51				
2.4	Vector representation of the <i>coupled</i> state $ JM\rangle$, where J is given as the vector sum					
	of J_1 and J_2 . The vectors J_1 and J_2 precess in phase about J (lower dashed circle),					
	while the vector J precesses about the space-fixed Z axis (upper dashed circle). The					
	projection (up to a factor \hbar) M is at any instant given as $M = M_1 + M_2$, although an	50				
	indeterminancy in the individual components M_1 and M_2 exists (adapted from [142]).	53				
2.5	Vector representation of the <i>uncoupled</i> state $ JM\rangle$, where J_1 and J_2 precess indepen-					
	dently about the space-fixed Z axis, making projections M_1 and M_2 (up to a factor b). At any instant, the uncoupled state $ I, M = I_1 M$ couples to form the state $ I, M $					
	n). At any instant, the uncoupled state $ J_1 M_1, J_2 M_2\rangle$ couples to form the state $ J M\rangle$, with length $[I(I+1)]^{1/2}$ (adapted from $[142]$)	۲ <i>۱</i>				
	with length $[J(J+1)]$ (adapted from [142])	54				

2.6	Sketch of spherical coordinates. The angle ϕ is the azimuthal angle in the x, y -plane from the x axis, with $0 \le \phi \le 2\pi$, θ is the polar angle from the z axis, with $0 \le \theta \le \pi$, and r is the distance from the point (x, y, z) to the origin.	56
2.7	A rigid rotor model for a linear triatomic molecule consisting of masses m_A , m_B , and m_C , and bond lengths R_{AB} and R_{BC} . The rotation is about the axis that passes through the center of mass of the molecule, which for an asymmetric molecule, is not the geometric center.	59
2.8	Vector representation of the components of rigid rotor angular momentum. $\hat{\mathbf{J}}$ is the total angular momentum, composed of orbital angular momentum due to the orbiting rigid body R , electronic angular momentum L , and spin angular momentum S . The projection of $\hat{\mathbf{J}}$ onto the space-fixed Z axis is M (up to a factor of \hbar), and the projection of $\hat{\mathbf{J}}$ onto the body-fixed z axis is Ω (up to a factor of \hbar), where Λ and Σ are the projections of L and S , respectively (adapted from [142]).	59
2.9	Rotation through the Euler angles (ϕ, θ, χ) transforms the space-fixed frame (X, Y, Z) into the molecule-fixed frame (x, y, z) (adapted from [142]). The transformation is ac- complished with a rotation ϕ about the space-fixed Z axis, a rotation θ about the line of nodes N, and finally a rotation χ about the z axis	60
2.10	An experimentally reproducible HCP (solid line) and a sine-square function (dashed line) that is a good approximation of the HCP, adapted from Refs. [59] and [60]. The tail area of the experimental pulse, integrated up to $t=4$ ps, represents 15% of the main peak area. The inset (adapted from Ref. [60]) shows the Fourier transform of the HCP in the frequency (cm ⁻¹) domain.	65
3.1	2D potential energy surfaces for FHF ⁻ (left) and FHF (right). A local minimum in the anionic PES and a transition state in the neutral PES (both marked with \bullet) are located at $R_1 = R_2 = 1.141$ Å. Equidistant contours ($\Delta E = 1.0 \text{ eV}$) of the energies are relative to the global FHF ⁻ minimum energy.	75
3.2	Schematic FHF ⁻ and FHF potential energy (eV) profile along the reaction coordinate F +HF \leftrightarrow FH + F. The minimum energy of FHF ⁻ and the transition state of FHF are located at R ₁ =R ₂ =1.141 Å	75
3.3	2D permanent dipole moment surface for FHF ⁻ . Solid vs. dashed lines correspond to values of opposite sign. Equidistant contours ($\Delta \mu_0 = 1.0$ Debye) of the dipole values are relative to the value $\mu_0 = 0$ Debye at the line $R_1 = R_2$.	76

3.4	2D anharmonic vibrational eigenfunctions for FHF^- , labelled v_{sas} . The symmetric functions (v_{s0}) contain nodes perpendicular to the line of symmetry, $R_1 = R_2$, whereas the asymmetric (v_{0as}) functions contain nodal planes parallel to the line $R_1 = R_2$. Mixed-mode functions (v_{sas}) contain nodes both parallel and perpendicular to the line $R_1 = R_2$. Contours correspond to wave packet density.	79
3.5	2D anharmonic vibrational eigenfunctions for FDF ⁻ , labelled v_{sas} . The symmetric functions (v_{s0}) contain nodes perpendicular to the line of symmetry, $R_1 = R_2$, whereas the asymmetric (v_{0as}) functions contain nodal planes parallel to the line $R_1 = R_2$. Mixed-mode functions (v_{sas}) contain nodes both parallel and perpendicular to the line $R_1 = R_2$. Contours correspond to wave packet density.	84
3.6	Absorption spectra of FHF ⁻ (solid lines) and FDF ⁻ (dashed lines). Vibrational tran- sitions are indicated. Separations between peaks corresponding to the two isotopomers are labelled (1), (2), (3), and (4)	86
3.7	Potential energy surfaces for OHF ⁻ (left) and OHF (right). A minimum in the anionic PES (marked with •) is located at $R_{OH} = 1.07$ and $R_{HF} = 1.38$ Å. The neutral PES contains a transition state (marked with •) at $R_{OH} = 1.10$ Å and $R_{HF} = 1.45$ Å. Equidistant energy contours ($\Delta E = 0.5$ eV) are relative to the global OHF ⁻ minimum energy	90
3.8	Schematic OHF ⁻ and OHF potential energy (eV) profile along reaction coordinate O +HF \leftrightarrow OH + F. The minimum energy of OHF ⁻ is located at $R_{OH} = 1.07$ Å and $R_{HF} = 1.38$ Å, and the transition state of OHF is located at $R_{OH} = 1.10$ Å and $R_{HF} = 1.45$ Å.	91
3.9	2D permanent dipole moment surface for OHF ⁻ . Equidistant contours ($\Delta \mu_0 = 0.5$ De- bye) of the dipole values are relative to the value $\mu_0 = 0.01$ Debye at the equilibrium geometry, $R_{OH} = 1.07$ and $R_{HF} = 1.38$ Å	92
3.10	2D anharmonic vibrational eigenfunctions for OHF ⁻ , labelled v_{sas} . The symmetric functions (v_{s0}) contain nodes perpendicular to the line $R_1 = R_2$, whereas the asymmetric (v_{0as}) functions contain nodal planes parallel to the line $R_1 = R_2$. Mixed-mode functions (v_{sas}) contain nodes both parallel and perpendicular to the line $R_1 = R_2$. Contours correspond to wave packet density.	95
3.11	2D anharmonic vibrational eigenfunctions for ODF ⁻ , labelled v_{sas} . The symmetric functions (v_{s0}) contain nodes perpendicular to the line $R_1 = R_2$, whereas the asymmetric (v_{0as}) functions contain nodal planes parallel to the line $R_1 = R_2$. Mixed-mode functions (v_{sas}) contain nodes both parallel and perpendicular to the line $R_1 = R_2$. Contours	
	correspond to wave packet density.	98

3.12	Absorption spectra of OHF^-	(solid	lines) a	and ODF ⁻	(dashed lines).	Vibrational tran-	
	sitions are indicated						100

4.1	An optimized $IR + IR + UV$ laser pulse sequence achieves bond-selective dissociation.	
	A half-cycle IR pulse orients the molecule in the space-fixed (laboratory) frame. A	
	second, few-cycle IR pulse drives the asymmetric stretching vibration of the triatomic	
	molecule, equivalent to pushing the center hydrogen away from its equilibrium position.	
	When displacement of the hydrogen is at a maximum, an ultrashort ($t_p \approx 5$ fs) UV	
	pulse is applied, whose frequency is sufficient to detach an electron from the anion.	
	The neutral species is now located primarily in a dissociation channel that corresponds	
	to the breaking of the already extended bond. Due to the orientation of the anionic	
	species—and therefore of its neutral counterpart—the dissociation products will have a	
	well-defined spatial separation	105
4.2	A Gaussian-shaped HCP, given in Eq. (4.4), with pulse parameters $\omega = 23.4 \text{ cm}^{-1}$, $\varphi = 0$,	
	$t_0 = 4.6$ ps, and $\sigma = 2$ ps (FWHM)	107
4.9		
4.3	A half-cycle sin-pulse, given in Eq. (4.7), with pulse parameters $E_0 = 3.0 \text{ GV/m}$, $t_0 = 0$ is,	100
	and $t_p = 10$ fs	108
44	An IB laser pulse consisting of three 10 fs half-cycles. The laser field is given in Eq. (4.7)	
1.1	The laser parameters for each HCP are	
	$F_{0,1} = \pm 3.0 \text{ GV/m}$ $t_{0,1} = 0 \text{ fs}$ and $t_{-1} = 10 \text{ fs}$	
	$E_{0,1} = -30 \text{ GV/m}, t_{0,1} = 0 \text{ is, and } t_{0,1} = 10 \text{ fs}.$	
	$E_{0,2} = -\pm 3.0 \text{ GV/m}, t_{0,2} = 10 \text{ is, and } t_{p2} = 10 \text{ is,}$	100
	$L_{0,3} = +0.0 \text{ GeV}/\text{m}, v_{0,3} = 20 \text{ is, and } v_{p3} = 10 \text{ is.} \dots \dots$	100

- 4.8 Excitation of the vibrational ground state of the 2D model FHF⁻. (a) Electric field vs. time. Left panel: Three HCPs, electric field for each HCP given in Eq. (4.7) with following pulse parameters:

 $E_{0,1} = 3.0 \text{ GV/m}, t_{0,1} = 0 \text{ fs}, \text{ and } t_{p1} = 12 \text{ fs};$

 $E_{0,2} = -3.0 \text{ GV/m}, t_{0,2} = 12 \text{ fs, and } t_{p2} = 11 \text{ fs;}$

 $E_{0,3} = 3.0 \text{ GV/m}, t_{0,3} = 23 \text{ fs}, \text{ and } t_{p3} = 11 \text{ fs}.$

4.9 Excitation of the vibrational ground state of the 2D model FHF⁻, using a few-cycle \sin^2 -shaped IR pulse (solid), followed by an ultrashort \sin^2 -shaped UV pulse (dotted). (a) Electric field vs. time. IR and UV electric fields given by Eq. (4.8). IR pulse parameters: $E_{0,\text{IR}} = -4.0 \text{ GV/m}$, $\omega_{\text{IR}} = 1516 \text{ cm}^{-1}$, $\varphi_{\text{IR}} = 0$, $t_{0,\text{IR}} = 0$ fs, and $t_{p,\text{IR}} = 55 \text{ fs}$. UV pulse parameters: $E_{0,\text{UV}} = 5.0 \text{ GV/m}$, $\omega_{\text{UV}} = 43548 \text{ cm}^{-1}$, $\varphi_{\text{UV}} = 0$, $t_{0,\text{UV}} = 38 \text{ fs}$, and $t_{p,\text{UV}} = 5 \text{ fs}$. (b) Population of the vibrational ground state of the anion, given by the modulus of the autocorrelation function, $P_a(v_{00}) = |\langle v_{00} | \Psi_a(t > 0) \rangle|^2$ (solid), and population of the neutral state, P_n (dotted). (c) Time evolution of the expectation value of the mean position of the H atom in the anion (solid) and neutral (dotted) driven by the laser field shown in (a). (d) Branching ratio of species for which $R_1 > R_2$ vs. time. (e) Wave functions evolving on V_n at time t = 42 fs and for later times t > 42 fs. 119

- 4.14 Spatial localization of dissociation products after few-cycle IR + UV laser pulses, given by $E(t) \cos \theta$, where θ is the angle between the reactant FHF⁻ and the linearly polarized laser fields. E(t) for IR and UV electric fields given by Eq. (4.8). IR pulse parameters: $E_{0,\text{IR}} = -4.0 \text{ GV/m}, \ \omega_{\text{IR}} = 1516 \text{ cm}^{-1}, \ \varphi_{\text{IR}} = 0, \ t_{0,\text{IR}} = 0 \text{ fs}, \text{ and } t_{p,\text{IR}} = 55 \text{ fs}.$ UV pulse parameters: $E_{0,UV} = 5.0 \text{ GV/m}, \ \omega_{UV} = 43548 \text{ cm}^{-1}, \ \varphi_{UV} = 0, \ t_{0,UV} = 38 \text{ fs}, \text{ and}$ $t_{p,\mathrm{UV}} = 5 \mathrm{~fs.}$ (a) Probability P_n of observing the neutral system. (b) Probability $P(\Theta, \text{FH})$ of observing the molecular product HF dissociate in the direction Θ . (c) The product yield $Y(\text{FH}) = P_n \cdot P(\Theta, \text{FH})$ versus the orientation angle θ between the reactant FHF^- and the linearly (Z) polarized IR + UV laser pulses. An alternate representation of the yield 4.15 Polar diagram of the yield $Y(FH) = P_n \cdot P(\Theta, FH)$ of molecular products F_AH , scattered preferentially to $\Theta = \theta$ (big solid lobe in direction +Z), and atomic products F_B , scattered preferentially toward $\Theta = \theta + 180^{\circ}$ (small dashed lobe in direction -Z). . . . 127 4.16 Relative orientation of the body-fixed z axis of OHF⁻ with respect to the space-fixed 4.17 Change in population of rotational levels at T = 0 K, starting from $|C^{J=1 \Omega M}|^2 = 1$, in OHF⁻, with a HCP superimposed (dotted line) on rotational levels. Pulse parameters are $I = 4 \times 10^8 \text{ W/cm}^2$, $\omega = 36 \text{ cm}^{-1}$, $\varphi = 0$, $t_0 = 1.0 \text{ ps}$, and $\sigma = 279 \text{ fs.} \ldots \ldots \ldots 131$ 4.18 Orientation parameter $\langle \cos \theta \rangle_T(t)$ at T=0 K after a HCP $(I=4\times 10^8 \text{ W/cm}^2)$, starting from J=1, in OHF⁻. Pulse parameters are the same as those described in Figure 4.17. 1314.19 Depletion of the J = 1 rotational state, $|C^{J=1 \Omega M}|^2$ and population of higher-lying J states, for three different intensities, $I=2, 4, \text{ and } 8 \times 10^8 \text{ W/cm}^2$, at T=0 K. The pulse applied is the same as that described in Figure 4.17. \ldots \ldots \ldots \ldots \ldots 1324.20 Orientation of OHF⁻ at T=0 K, given by the orientation parameter $\langle \cos \theta \rangle_T(t)$, after application of a HCP with intensity I=2, 4, and 8×10^8 W/cm². The pulse applied is

. 133

the same as that described in Figure 4.17.

- 4.23 Attempt of selective breaking of the weak O–H bond (left panels, (a)-(e)) and strong H– F bond (right panels, (a')-(e')) of OHF, using few-cycle IR + UV laser pulses. In (a) and (a'), the vibrational ground state wave function superimposed on $V_a (\equiv V(OHF^-))$ is shown at t=0 fs; (b) and (b') show the wave function during the few-cycle IR pulse, just before firing the UV pulse. Snapshots (c)-(e) and (c')-(e') show the time evolution of the wavefunction on V_n after the UV excitation.

Breaking the O–H bond

IR pulse parameters: $E_{0,\text{IR}} = 3.2 \text{ GV/m}$, $\omega_{\text{IR}} = 1565 \text{ cm}^{-1}$, $\varphi_{\text{IR}} = 0$, $t_{0,\text{IR}} = 0$ fs, and $t_{p,\text{IR}} = 50$ fs.

UV pulse parameters: $E_{0,UV} = 5.0 \text{ GV/m}$, $\omega_{UV} = 28\,228 \text{ cm}^{-1}$, $\varphi_{UV} = 0$, $t_{0,UV} = 19 \text{ fs}$, and $t_{p,UV} = 5 \text{ fs}$.

Breaking the H–F bond

IR pulse parameters: $E_{0,\text{IR}} = 5.0 \text{ GV/m}, \ \omega_{\text{IR}} = 1565 \text{ cm}^{-1}, \ \varphi_{\text{IR}} = 0, \ t_{0,\text{IR}} = 0 \text{ fs},$ $t_{p,\text{IR}} = 50 \text{ fs}.$ UV pulse parameters: $E_{0,\text{UV}} = 8.0 \text{ GV/m}, \ \omega_{\text{UV}} = 52\,423 \text{ cm}^{-1}, \ \varphi_{\text{UV}} = 0, \ t_{0,\text{UV}} = 29 \text{ fs}$

4.24

Breaking the O–H bond:

(a) Few-cycle IR + UV laser pulses achieve maximum O + HF fragmentation.

IR pulse parameters: $E_{0,\text{IR}} = 3.2 \text{ GV/m}$, $\omega_{\text{IR}} = 1565 \text{ cm}^{-1}$, $\varphi_{\text{IR}} = 0$, $t_{0,\text{IR}} = 0$ fs, and $t_{p,\text{IR}} = 50$ fs.

UV pulse parameters: $E_{0,UV} = 5.0 \text{ GV/m}$, $\omega_{UV} = 28\,228 \text{ cm}^{-1}$, $\varphi_{UV} = 0$, $t_{0,UV} = 19$ fs, and $t_{p,UV} = 5$ fs. (b) Time evolution of the branching ratio of the O + HF products (solid) versus OH + F (dotted).

Breaking the H–F bond:

(c) Few-cycle IR + UV laser pulses achieve maximum OH + F fragmentation.

IR pulse parameters: $E_{0,\text{IR}} = 5.0 \text{ GV/m}, \ \omega_{\text{IR}} = 1565 \text{ cm}^{-1}, \ \varphi_{\text{IR}} = 0, \ t_{0,\text{IR}} = 0 \text{ fs}, t_{p,\text{IR}} = 50 \text{ fs}.$

- 4.25 Generation of a vibrational wave packet from the few-cycle IR pulse shown in Figure 4.24(a). IR pulse parameters are: $E_{0,\text{IR}} = 3.2 \text{ GV/m}$, $\omega_{\text{IR}} = 1565 \text{ cm}^{-1}$, $\varphi_{\text{IR}} = 0$, $t_{0,\text{IR}} = 0$ fs, and $t_{p,\text{IR}} = 50$ fs. Dominant contributions are from vibrational eigenstates v_{00} , v_{01} (asymmetric stretch), v_{02} (first excited asymmetric stretch), and v_{11} (symmetric + asymmetric). Depletion of population in the anion (OHF⁻) ground state begins shortly after t=19 fs, when the UV pulse is fired. The UV pulse parameters are $E_{0,\text{UV}} = 5.0 \text{ GV/m}$, $\omega_{\text{UV}} = 28228 \text{ cm}^{-1}$, $\varphi_{\text{UV}} = 0$, $t_{0,\text{UV}} = 19$ fs, and $t_{p,\text{UV}} = 5$ fs. After vertical excitation of population to V_n , anion population (norm) drops to ~0.98. . . . 140
- 4.27 The electric field profile of the laser pulses consisting of very few optical cycles depends on the phase φ of the carrier frequency with respect to the pulse's envelope; the maximum of the electric field points in opposite directions at t=10 fs for $\varphi=0$ and $\varphi=\pi$ 144