Appendix A

Moment of inertia for a linear triatomic molecule

The inertia tensor \mathbf{I} is a second-rank Cartesian tensor [142],

$$
\mathbf{I}=\left(\begin{array}{lll}
I_{x x} & I_{x y} & I_{x z} \tag{A.1}\\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right)
$$

The diagonal elements $I_{j j}$ are called the moments of inertia, and the off-diagonal elements $I_{j k}$ are referred to as the products of inertia. A particular set of Cartesian coordinates x, y, and z can be chosen such that the axes pass through the center of mass of the body and the products of inertia vanish [162]. The moments of inertia about the principle x, y, and z axes are the principle moments of inertia, $I_{x x}, I_{y y}$, and $I_{z z}$, respectively, and are given as:

$$
\begin{align*}
& I_{x x}=\sum_{i=1}^{n} m_{i}\left[\left(y_{i}-y_{\text {c.o.m. }}\right)^{2}+\left(z_{i}-z_{\text {c.o.m. }}\right)^{2}\right] \tag{A.2}\\
& I_{y y}=\sum_{i=1}^{n} m_{i}\left[\left(x_{i}-x_{\text {c.o.m. }}\right)^{2}+\left(z_{i}-z_{\text {c.o.m. }}\right)^{2}\right] \tag{A.3}\\
& I_{z z}=\sum_{i=1}^{n} m_{i}\left[\left(x_{i}-x_{\text {c.o.m. }}\right)^{2}+\left(y_{i}-y_{\text {c.o.m. }}\right)^{2}\right] \tag{A.4}
\end{align*}
$$

where n is the number of atoms and e.g. $x_{i}-x_{\text {c.o.m. }}$ is the x component of the vector \vec{r}_{i} to the i th mass from the center of mass. The total mass of the system, M, is given as the sum over n masses,

$$
\begin{equation*}
M=\sum_{i=1}^{n} m_{i} \tag{A.5}
\end{equation*}
$$

The three principle moments of inertia are labelled $I_{a a}, I_{b b}$, and $I_{c c}$, where by convention, $I_{c c}$ is the largest and $I_{a a}$ is smallest [142]:

$$
\begin{equation*}
I_{c c} \geq I_{b b} \geq I_{a a} \tag{A.6}
\end{equation*}
$$

Next, we consider the specific case of a triatomic linear molecule, ABC , whose masses

Figure A.1: A linear triatomic molecule ABC with bond lengths R_{AB} and R_{BC} and masses $m_{\mathrm{A}}, m_{\mathrm{B}}$, and m_{C}, rotates around an axis $Z_{\text {c.o.m }}$ which passes through the center of mass of the molecule.
$m_{\mathrm{A}}, m_{\mathrm{B}}$, and m_{C} lie along the molecular axis that rotates about a space-fixed Z axis through the molecule's center of mass, labelled $Z_{\text {c.o.m. }}$ (see Figure A.1). Since the masses of the nuclei lie on the a axis, the distance from the i th mass to the a axis is zero, and

$$
\begin{equation*}
I_{c c}=I_{b b}>I_{a a}=0 \tag{A.7}
\end{equation*}
$$

The moment of inertia about the axis through the center of mass is then

$$
\begin{equation*}
I_{Z_{\text {c.o. } m .}}=m_{\mathrm{A}} R_{\mathrm{A}}^{2}+m_{\mathrm{A}} R_{\mathrm{B}}^{2}+m_{\mathrm{A}} R_{\mathrm{C}}^{2} . \tag{A.8}
\end{equation*}
$$

Here, R_{A}, etc. are distances from the masses to the center of mass. With help of the Parallel Axes Thereom, a transformation can be made to recast Eq. (A.8) in terms of its bond lengths [144]:

Parallel Axes Thereom: Let the c.o.m. be the center of mass of a rigid body. Let $Z_{\text {c.o.m. }}$ be an axis through the c.o.m.. Let Z be another axis parallel to $Z_{\text {c.o.m. }}$. Then

$$
\begin{equation*}
I_{Z}=I_{Z_{\text {c.o. } . \mathrm{m}}}+M d^{2} \tag{A.9}
\end{equation*}
$$

where M is the mass of the body and d is the perpendicular distance between the two axes.

Applying the Parallel Axes Thereom, one obtains

$$
\begin{equation*}
I_{Z_{\text {c.o. } . \mathrm{m}}}=\underbrace{m_{\mathrm{A}} R_{\mathrm{AB}}^{2}+m_{\mathrm{C}} R_{\mathrm{BC}}^{2}}_{I_{Z}}-M d^{2} \tag{A.10}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\left(\frac{m_{\mathrm{A}} R_{\mathrm{AB}}-m_{\mathrm{C}} R_{\mathrm{BC}}}{M}\right) \tag{A.11}
\end{equation*}
$$

and

$$
\begin{equation*}
M=m_{\mathrm{A}}+m_{\mathrm{B}}+m_{\mathrm{C}} . \tag{A.12}
\end{equation*}
$$

Simplifying Eq. (A.10), one obtains,

$$
\begin{equation*}
I_{Z_{\text {c.o. } m .}}=m_{\mathrm{A}} R_{\mathrm{AB}}^{2}+m_{\mathrm{C}} R_{\mathrm{BC}}{ }^{2}-\frac{1}{M}\left(m_{\mathrm{A}} R_{\mathrm{AB}}-m_{\mathrm{C}} R_{\mathrm{BC}}\right)^{2} . \tag{A.13}
\end{equation*}
$$

blachh

