Appendix A

Moment of inertia for a linear triatomic molecule

The inertia tensor \(\mathbf{I} \) is a second-rank Cartesian tensor \([142]\),

\[
\mathbf{I} = \begin{pmatrix}
I_{xx} & I_{xy} & I_{xz} \\
I_{yx} & I_{yy} & I_{yz} \\
I_{zx} & I_{zy} & I_{zz}
\end{pmatrix}.
\] (A.1)

The diagonal elements \(I_{jj} \) are called the \textit{moments of inertia}, and the off-diagonal elements \(I_{jk} \) are referred to as the \textit{products of inertia}. A particular set of Cartesian coordinates \(x, y, \) and \(z \) can be chosen such that the axes pass through the center of mass of the body and the \textit{products of inertia} vanish \([162]\). The moments of inertia about the principle \(x, y, \) and \(z \) axes are the \textit{principle moments of inertia}, \(I_{xx}, I_{yy}, \) and \(I_{zz} \), respectively, and are given as:

\[
I_{xx} = \sum_{i=1}^{n} m_i \left[(y_i - y_{c.o.m.})^2 + (z_i - z_{c.o.m.})^2 \right] \quad \text{(A.2)}
\]

\[
I_{yy} = \sum_{i=1}^{n} m_i \left[(x_i - x_{c.o.m.})^2 + (z_i - z_{c.o.m.})^2 \right] \quad \text{(A.3)}
\]

\[
I_{zz} = \sum_{i=1}^{n} m_i \left[(x_i - x_{c.o.m.})^2 + (y_i - y_{c.o.m.})^2 \right] \quad \text{(A.4)}
\]

where \(n \) is the number of atoms and \(e.g. x_i - x_{c.o.m.} \) is the \(x \) component of the vector \(\vec{r}_i \) to the \(i \)th mass from the center of mass. The total mass of the system, \(M \), is given as the sum over \(n \) masses,

\[
M = \sum_{i=1}^{n} m_i. \quad \text{(A.5)}
\]
The three principle moments of inertia are labelled I_{aa}, I_{bb}, and I_{cc}, where by convention, I_{cc} is the largest and I_{aa} is smallest [142]:

$$I_{cc} \geq I_{bb} \geq I_{aa} \quad (A.6)$$

Next, we consider the specific case of a triatomic linear molecule, ABC, whose masses m_A, m_B, and m_C lie along the molecular axis that rotates about a space-fixed Z axis through the molecule’s center of mass, labelled $Z_{c.o.m.}$ (see Figure A.1). Since the masses of the nuclei lie on the a axis, the distance from the ith mass to the a axis is zero, and

$$I_{cc} = I_{bb} > I_{aa} = 0. \quad (A.7)$$

The moment of inertia about the axis through the center of mass is then

$$I_{Z_{c.o.m.}} = m_A R_A^2 + m_B R_B^2 + m_C R_C^2. \quad (A.8)$$

Here, R_A, etc. are distances from the masses to the center of mass. With help of the Parallel Axes Thereom, a transformation can be made to recast Eq. (A.8) in terms of its bond lengths [144]:

Parallel Axes Thereom: Let the c.o.m. be the center of mass of a rigid body. Let $Z_{c.o.m.}$ be an axis through the c.o.m.. Let Z be another axis parallel to $Z_{c.o.m.}$. Then

$$I_Z = I_{Z_{c.o.m.}} + M d^2 \quad (A.9)$$

where M is the mass of the body and d is the perpendicular distance between the two axes.

Applying the Parallel Axes Thereom, one obtains

$$I_{Z_{c.o.m.}} = \frac{m_A R_{AB}^2 + m_C R_{BC}^2}{I_Z} - M d^2 \quad (A.10)$$
where
\[d = \left(\frac{m_A R_{AB} - m_C R_{BC}}{M} \right) \] \hspace{1cm} (A.11)

and
\[M = m_A + m_B + m_C. \] \hspace{1cm} (A.12)

Simplifying Eq. (A.10), one obtains,
\[I_{Z.c.o.m.} = m_A R_{AB}^2 + m_C R_{BC}^2 - \frac{1}{M} (m_A R_{AB} - m_C R_{BC})^2. \] \hspace{1cm} (A.13)
Moment of inertia for a linear triatomic molecule