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Abstract

The focus of this work is controlling orientation and bond-selective dissociation of
hydrogen-bonded anions of the type XHY™ using ultrashort, “few-cycle” laser pulses.
For these quantum dynamical simulations, two triatomic hydrogen-bonded anions and
their neutral counterparts, FHF~/FHF and OHF~/OHF, are chosen as model systems.

Geometry optimizations of FHF~ and OHF~ are performed at QCISD and UMP4
levels of theory, respectively, to obtain equilibrium bond lengths and rotational constants.
For the triatomic molecules, two-dimensional (2D) potential energy surfaces (PES) and
dipole surfaces are constructed in bond coordinates, R; and Ry. The molecules are
assumed to retain a collinear geometry with Cy., symmetry throughout all simulations.
From the PES, 2D vibrational wave functions are calculated, as well as anharmonic
symmetric and asymmetric vibrational stretching frequencies. Isotope effects are studied
for the deuterated species, FDF~ and ODF~. Absorption spectra are simulated and the
frequencies and intensities of the resulting peaks are analyzed and compared with exper-

imental data, as well as with vibrational frequencies obtained from the 2D wave functions.

The challenge of controlling molecular orientation prior to bond-selective dissocia-
tion is treated explicitly for OHF~ with rotational wave packet simulations. A single
half-cycle IR pulse of nearly one field polarity is applied to orient the molecule in the
direction of the laser field. Resulting rotational wave packet dynamics are analyzed to
measure the degree of molecular orientation. Even after the field is removed, moderate
molecular orientation is periodically obtained for several picoseconds. These rotational
revivals appear on the time scale of the rotational period, and they recur as long as

coherence in the wave packet is maintained.

To control bond-selective dissociation of the pre-oriented FHF~ and OHF~ anions,
few-cycle infrared (IR) pulses are designed to induce bond compressions and extensions
in the anion species. In this context, isotope effects are also examined for the heavier
isotopomer FDF~. These pulses are constructed out of several half-cycle IR pulses, such
that each half-cycle drives the oscillatory motion of the center hydrogen atom between the

heavy end atoms. For FHF™ and FDF~, this IR pulse gives rise to dynamical symmetry



breaking. When the resulting wave packet has reached the turning point of its oscillation,
a well-timed, ultrashort UV pulse is applied to the anion. The UV pulse detaches
an electron from the anion and vertically excites the wave packet to a bond-selective

region of the neutral PES. Branching ratios of the resulting dissociation can be calculated.

For FHF~, this few-cycle IR 4+ UV pulse scheme enhances the natural branching ratio of
(FH + F):(F 4+ HF) from 0.50:0.50 to 0.75:0.25. For the heavier isotopomer FDF~, the
adjusted pulse parameters give rise to an even larger (FD + F):(F + DF) branching ratio
of 0.80:0.20. In OHF~, a natural branching ratio of (O + HF):(OH + F)=0.84:0.16 is
enhanced to 0.95:0.5. Breaking the strong HF bond is challenging, and with re-optimized
IR + UV pulses, the branching ratio can only be enhanced marginally in favor of the
products OH + F to 0.80:0.20.

The spatial separation of dissociation products for FHF™ is also investigated for a
range of molecular orientations in the space-fixed laboratory frame. For molecular
orientations in the +Z or —Z laboratory directions, one obtains an optimal yield of

spatially separated molecular (FH) and atomic (F) products.

To summarize, this thesis investigates the orientation and bond-selective dissocia-
tion of the model systems FHF~ and OHF~ with a control scheme based on ultrashort,
few-cycle IR and UV laser pulses.
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