5 ERGEBNISSE

5.1 PSYCHOPATHOLOGISCHE UND NEUROPSYCHOLOGISCHE PARAMETER

Psychopathologische Parameter. Zwischen t_1 (1h nach EKT) und t_2 (24h nach EKT) verringerten sich die Mittelwerte in der DRS von $8,58 \pm 1,68$ auf $6,50 \pm 1,83$ (p<0,01), die Mittelwerte der Awareness Scale sanken von $4,17 \pm 1,85$ auf $1,04 \pm 1,30$ (p<0,01). Die mittleren Werte der Kontrollgruppe liegen bei $0,38 \pm 0,75$ in der DRS bzw. bei $0,31 \pm 0,46$ in der Awareness Scale (s. Tab. 2). Diese genannten Veränderungen lassen eine beginnende Rückbildung der deliranten Symptomatik innerhalb von 24 h erkennen. Die einzelnen Items der Skalen wurden separat aufgeführt, um einen Vergleich hinsichtlich der Sensitivität der beiden Skalen für das Delir zu ermöglichen (s. Tab. 2). Eine Fall-Übersicht der Ergebnisse der Ratings ist dem Anhang A zu entnehmen.

Die DRS zeigt lediglich in den Dimensionen hyper- oder hypoaktives Verhalten und Störung kognitiver Leistungen (Items 5 und 6) eine signifikante Veränderung von t₁ nach t₂. Perzeptuelle Störungen, Halluzinationen oder Wahn (Items 2 bis 4) waren zu keinem Zeitpunkt nachweisbar. Ein abrupter Verhaltenswandel (Item 1) konnte hingegen bei allen Patienten beobachtet werden, da das Delir durch die Behandlung mit EKT perakut ausgelöst wird. Auch 24 h nach EKT war bei den meisten Patienten eine kognitive Störung (Item 6) feststellbar. Die Fluktuation der Symptomatik (Item 10) konnte nicht beurteilt werden, da eine durchgehende Beobachtung der Patienten über 24 h nicht möglich war.

In der Awareness Scale zeigen die Items 1 und 2 (Verringerung der Reagibilität und allgemeine mentale Verlangsamung) in dem genannten Zeitraum auf dem 1%-Niveau signifikante Besserungen des psychopathologischen Zustandes. Die Beurteilung der für das Delir spezifischen Verminderung der Aufmerksamkeitszuwendung zur Umgebung (Item 4) zeigt ebenfalls eine auf dem 1%-Niveau signifikante Symptomrückbildung. Die Veränderung der übrigen Items dieser Skala erreichen ein Signifikanzniveau von p<0,05. Insgesamt erreichten die Patienten 24h nach EKT Werte, die über denen der Probanden (vergleichbar mit t₀ vor EKT) lagen.

Neuropsychologische Parameter. Die Gegenüberstellung der von den Patienten erzielten Scores im Delir und 24h später lassen in fast allen getesteten Parametern eine Verbesserung

der mittleren Leistung erkennen und sind zumeist auf dem 5%-Niveau signifikant. Die Scores, die zu t₁ und t₂ erzielt wurden, waren jeweils niedriger als die Leistung der Kontrollgruppe (s. Tab. 3).

Tab. 2: Psychopathologisches Rating der Patienten und der Probanden

	Depressive Patiente		enten	Signifikanz ^a
	Probanden	t ₁	\mathbf{t}_2	t_1 vs. t_2
DRS (max. 32)	0,38 (0,75)	8,58 (1,68)	6,50 (1,83)	p<0,01
1: Akuität (max. 3)	0,00 (0,00)	3,00 (0,00)	2,75 (0,87)	n.s.
2: Perzeptuelle Störung (max. 3)	0,00 (0,00)	0,00 (0,00)	0,00 (0,00)	n.s.
3: Halluzinationen (max. 3)	0,00 (0,00)	0,00 (0,00)	0,00 (0,00)	n.s.
4: Wahn (max. 3)	0,00 (0,00)	0,00 (0,00)	0,00 (0,00)	n.s.
5: Hyper-, Hypoaktivität(max. 3)	0,13 (0,35)	1,17 (0,58)	0,58 (0,51)	p<0,01
6: Kognitive Störung (max. 4)	0,25 (0,46)	1,92 (0,67)	1,17 (1,03)	p<0,05
7: ZNS-Störung (max. 2)	0,00 (0,00)	2,00 (0,00)	1,18 (0,58)	n.s.
8: Störungen des Schlaf-Wach-				
Rhythmus (max. 4)	0,00 (0,00)	0,42 (0,90)	0,00 (0,00)	n.s.
9: Emotionale Störung (max. 3)	0,00 (0,00)	0,08 (0,29)	0,33 (0,65)	n.s.
10: Fluktuation (max. 3)	entfällt	entfällt	entfällt	entfällt
Awareness Scale (max. 12)	0,31 (0,46)	4,17 (1,85)	1,04 (1,30)	p<0,01
1: Minderung der Reagibilität(max. 2)	0,00 (0,00)	0,79 (0,45)	0,21 (0,33)	p<0,01
2: Mentale Verlangsamung (max. 2)	0,25 (0,38)	0,96 (0,40)	0,38 (0,43)	p<0,01
3: Minderung der Aufmerksamkeits-				
wendung zu Personen (max. 2)	0,00 (0,00)	0,33 (0,33)	0,00 (0,00)	p<0,05
4: Minderung der Aufmerksamkeits-				
wendung zur Umgebung (max. 2)	0,00 (0,00)	0,96 (0,54)	0,08 (0,20)	p<0,01
5: Verlangsamte Vergegenwärtigung				
der Interviewthematik (max. 2)	0,00 (0,00)	0,63 (0,43)	0,21 (0,40)	p<0,05
6: Verminderte Vergegenwärtigung				
der Interviewthematik (max. 2)	0,07 (0,18)	0,50 (0,43)	0,13 (0,31)	p<0,05

 $[\]overline{n.s.}$ = nicht signifikant; a = nach Wilcoxon-Test für 2 verbundene Stichproben (t_1 und t_2).

Die Veränderungen der Performance bei der Testung der freien Wiedergabe (Free Recall) sind insgesamt und in jedem einzelnen der drei Durchgänge signifikant auf einem Niveau von 5%, bei Einschluß der Delay-Testung auf einem Niveau von 1%. Die Testdimensionen Orientierung zur Zeit, serielle Addition und Digit Span weisen eine Tendenz zur Besserung kognitiver Leistungen auf, die Veränderungen sind auf dem 5%-Niveau signifikant. Die Testung der verbalen Fluency ergab keine signifikanten Verbesserungen von t₁ nach t₂. Eine fallweise Übersicht der Ergebnisse der Testung ist dem Anhang A zu entnehmen.

Tab. 3: Neuropsychologische Testung der Patienten und der Probanden

	Depressive	Patie	enten	Signifikanza
	Probanden	t ₁	t ₂	t_1 vs. t_2
Free Recall (max. 30)	23,25 (2,19)	14,67 (5,28)	18,33 (6,14)	p<0,05
Recall 1 (max. 10)	6,38 (0,52)	3,83 (1,47)	4,92 (2,15)	p<0,05
Recall 2 (max. 10)	8,00 (0,93)	5,25 (2,05)	6,33 (1,97)	p<0,05
Recall 3 (max. 10)	8,88 (1,00)	5,58 (1,98)	7,08 (2,50)	p<0,05
Free Recall + Delay (max. 40)	30,75 (3,15)	18,58 (7,75)	23,58 (8,94)	p<0,01
Delay (max. 10)	7,50 (1,31)	3,92 (2,57)	5,25 (3,02)	p<0,05
Orientierung zur Zeit (max. 5)	4,25 (1,04)	2,50 (1,57)	3,75 (1,22)	p<0,05
Serielle Addition (max. 10)	8,50 (2,14)	3,25 (3,19)	6,42 (3,63)	p<0,05
Verbale Fluency	7,88 (2,23)	5,33 (3,01)	5,42 (3,00)	n.s.
Digit Span (max. 8)	6,13 (1,13)	4,50 (1,78)	5,25 (1,06)	p<0,05

n.s.= nicht signifikant; a = nach Wilcoxon-Test für 2 verbundene Stichproben (t_1 und t_2).

5.2 FREQUENZANALYSE

Die Frequenzanalyse zeigt Veränderungen der hirnelektrischen Aktivität der Patienten im Verlauf des Beobachtungszeitraums, die überwiegend in den langsamen Frequenzen signifikant sind (s. Tab. 4). Die Veränderungen der Power sind zu t₁ maximal und zu t₂ rückläufig, erreichen jedoch nicht das Baseline-Niveau. Langsame Aktivität ist demnach 24h nach EKT als globaler Anstieg der Power im Delta- und Theta-Band mit frontaler Betonung sowie als Verminderung der okzipitalen Alpha-Aktivität persistent.

Der postiktale Anstieg der langsamen Aktivität ist an den frontalen Elektroden F7 und F8 sowie an den Mittellinienelektroden Fz, Cz und Pz besonders ausgeprägt. Veränderungen sowohl der Delta- als auch der Theta-Frequenz sind an der Elektrode Fz maximal und erreichen in beiden Frequenzbändern ein Signifikanzniveau von bis zu 0,1%. Die Veränderungen der Power der Alpha-Frequenz finden sich vorwiegend im Alpha1-Band und sind an posterioren Elektroden betont. Die Veränderungen der Alpha2-Power ist an O1 signifikant. Signifikante Veränderungen der Power im Beta-Band wurden für keine Elektrodenposition gefunden.

Tab. 4: EEG-Frequenzanalyse der Patienten und der Probanden

		Depressive		Patienten		Signifikanza
		Probanden	t _o	$\mathbf{t_1}$	t_2	t_0 , t_1 und t_2
Power im	Fz	2,55 (1,00)	3,09 (1,19)	35,50 (28,41)	18,21 (18,22)	p<0,001
Delta-Band	Cz	2,37 (0,83)	4,76 (3,57)	16,40 (13,87)	13,21 (14,65)	p<0,005
(1-4Hz)	Pz	2,68 (0,46)	5,11 (4,62)	25,46 (27,65)	17,21 (24,17)	p<0,05
$[V^2/Hz]$	F7	4,19 (1,37)	5,27 (2,16)	34,36 (31,38)	29,49 (26,15)	p<0,005
	F8	3,93 (1,90)	5,27 (2,33)	37,41 (35,23)	29,35 (30,83)	p<0,001
	Т3	1,72 (0,74)	4,23 (2,31)	29,70 (32,82)	27,03 (27,40)	p<0,01
	T4	2,41 (0,75)	4,31 (2,86)	26,02 (29,74)	24,61 (32,39)	p<0,01
	T5	2,53 (0,43)	5,72 (3,37)	27,81 (27,45)	19,39 (18,65)	p<0,005
	T6	3,13 (1,17)	5,75 (3,75)	24,69 (21,86)	21,72 (25,32)	p<0,01
	01	3,55 (1,59)	6,50 (5,20)	30,99 (23,76)	20,48 (21,66)	p<0,005
	O2	3,39 (1,14)	7,29 (5,54)	27,71 (22,23)	20,38 (22,82)	p<0,05
Power im	Fz	12,92 (10,60)	16,91 (18,22)	96,53 (87,48)	66,58 (48,32)	p<0,001
Theta-Band	Cz	10,46 (8,13)	15,03 (16,72)	50,37 (49,85)	42,81 (42,01)	p<0,005
(4-7,5Hz)	Pz	17,01 (16,21)	16,28 (14,62)	45,44 (49,47)	47,92 (56,28)	p<0,001
$[V^2/Hz]$	F7	9,07 (6,68)	13,65 (10,42)	34,55 (24,02)	42,57 (29,03)	p<0,001
	F8	9,13 (6,18)	13,44 (9,83)	38,89 (32,41)	44,57 (38,70)	p<0,001
	Т3	5,63 (4,95)	13,10 (11,61)	45,23 (47,83)	47,37 (32,53)	p<0,05
	T4	8,19 (8,17)	12,02 (8,37)	37,57 (39,21)	44,15 (45,14)	p<0,001
	T5	14,47 (12,77)	35,59 (49,23)	60,08 (45,77)	57,42 (34,55)	p<0,05
	T6	20,96 (22,41)	31,86 (32,31)	61,48 (53,96)	56,63 (41,68)	p<0,05
	O1	26,23 (32,64)	31,52 (37,03)	64,07 (48,13)	55,58 (42,05)	p<0,005
	O2	21,97 (25,05)	29,77 (35,14)	60,24 (48,58)	50,01 (36,47)	p<0,01

Fortsetzung auf der nächsten Seite

		Depressive		Patienten		Signifikanz ^a
		Probanden	t _o	t_1	t ₂	t_0 , t_1 und t_2
Power im	Fz	16,81 (13,37)	7,44 (6,90)	8,15 (4,92)	11,39 (10,88)	p<0,1
Alpha1-Band	Cz	10,15 (9,09)	7,88 (6,10)	6,70 (4,82)	8,96 (8,55)	n.s.
(7,5-10Hz)	Pz	29,07 (25,06)	21,59 (20,78)	13,11 (12,40)	17,36 (16,74)	n.s.
$[V^2/Hz]$	F7	12,34 (9,04)	6,51 (3,90)	6,93 (4,01)	9,26 (7,51)	n.s.
	F8	11,72 (9,81)	6,93 (3,88)	6,67 (3,98)	9,07 (7,97)	n.s.
	Т3	7,65 (6,09)	7,26 (4,61)	7,03 (5,37)	9,96 (8,73)	n.s.
	T4	6,24 (5,63)	8,61 (6,56)	6,72 (5,08)	9,77 (8,76)	n.s.
	T5	19,51 (20,50)	19,58 (14,80)	12,04 (9,66)	22,07 (27,74)	p<0,05
	T6	35,31 (23,20)	23,64 (16,59)	12,38 (8,57)	23,19 (24,19)	p<0,05
	O1	60,52 (80,55)	38,68 (41,05)	19,61 (20,42)	32,35 (41,63)	p<0,05
	O2	48,94 (49,64)	40,27 (43,82)	19,48 (19,80)	26,55 (31,34)	p<0,01
Power im	Fz	10,26 (19,29)	2,87 (2,20)	4,71 (2,80)	3,96 (2,75)	p<0,05
Alpha2-Band	Cz	10,42 (14,38)	3,77 (2,38)	4,92 (4,19)	3,61 (2,83)	p<0,1
(10-12,5Hz)	Pz	56,20 (108,43)	12,92 (14,34)	5,58 (4,82)	23,80 (20,76)	n.s.
$[V^2/Hz]$	F7	8,03 (9,70)	3,20 (2,07)	3,47 (2,01)	3,52 (2,46)	n.s.
	F8	7,52 (8,02)	3,77 (2,70)	3,47 (1,97)	3,68 (2,48)	n.s.
	Т3	4,92 (4,88)	3,58 (2,06)	3,37 (3,00)	4,09 (3,99)	n.s.
	T4	4,80 (3,47)	4,63 (5,15)	3,45 (2,64)	3,92 (3,28)	n.s.
	T5	9,96 (7,97)	6,87 (6,66)	4,61 (3,41)	6,07 (4,44)	n.s.
	T6	13,39 (10,00)	10,33 (15,14)	4,93 (3,51)	11,04 (5,58)	n.s.
	O1	24,75 (20,25)	13,53 (14,05)	5,89 (4,30)	40,42 (46,96)	p<0,05
	O2	20,89 (15,18)	12,25 (11,02)	6,00 (4,50)	7,65 (7,15)	n.s.
Power im	Fz	8,95 (5,97)	13,29 (11,81)	9,83 (4,86)	9,45 (5,99)	n.s.
Beta-Band	Cz	12,33 (10,13)	16,98 (13,63)	11,84 (7,30)	10,51 (7,12)	n.s.
(12,5-30 Hz)	Pz	16,80 (13,23)	14,81 (13,47)	9,09 (5,15)	9,61 (6,01)	n.s.
$[V^2/Hz]$	F7	7,28 (2,77)	12,13 (10,13)	10,60 (7,41)	17,88 (21,10)	n.s.
	F8	7,16 (3,51)	37,41 (35,23)	12,15 (7,46)	13,91 (11,65)	n.s.
	Т3	9,60 (9,13)	15,32 (15,02)	7,25 (3,84)	11,51 (9,18)	n.s.
	T4	9,95 (5,00)	18,87 (19,77)	11,08 (11,27)	10,76 (6,71)	n.s.
	T5	12,19 (4,63)	18,71 (20,26)	9,09 (4,47)	11,92 (6,62)	n.s.
	T6	14,10 (5,80)	23,70 (34,26)	8,81 (3,95)	11,04 (5,58)	n.s.
	O1	15,44 (6,11)	22,82 (30,76)	10,07 (5,29)	13,41 (10,72)	n.s.
	O2	14,41 (6,03)	18,55 (18,92)	9,29 (4,68)	11,46 (7,28)	n.s.
D. E	1	hagiart ouf ainar	A D C	z oug 20 Vanälan		r1 . 9 . 1

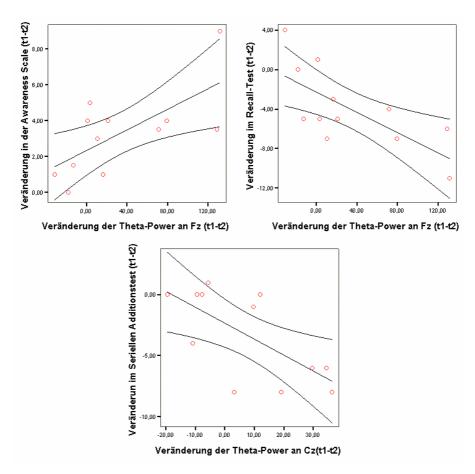
Die Frequenzanalyse basiert auf einer Average-Referenz aus 29 Kanälen. n.s.= nicht signifikant; a = nach Friedmann-Test für k verbundene Stichproben (t_0 , t_1 , t_2).

5.3 KORRELATIONEN

Korrelationen zwischen signifikanten Veränderungen des quantitativen EEG und denen der psychopathologischen bzw. neuropsychologischen Parameter von t₁ nach t₂ wurden für die Delta- und Theta-Frequenz an den Mittellinienelektroden Fz, Cz und Pz berechnet (s. Tab. 5). Der Rückgang der Delta-Power an den frontozentralen Elektroden Fz und Cz wies keinen statistisch signifikanten Zusammenhang mit dem Rückgang der klinischen Symptome auf. Jedoch wurden statistische Trends gefunden, die Zusammenhänge des Delta-Rückganges an Fz mit der Verbesserung im Free Recall Test und an Cz mit der Verbesserung der Performance im Free Recall Test sowie einem dem Rückgang psychopathologischer Symptome anhand der Awareness Scale vermuten lassen.

Der Rückgang der Theta-Aktivität an Fz weist Korrelationen mit der Besserung der klinischen Symptomatik hinsichtlich der mit der Awareness Scale getesteten Funktionen und der Wiedergabe aus dem episodischen Gedächtnis auf, die auf dem 5%- bzw. auf dem 1%-Niveau signifikant sind. Eine weitere signifikante Korrelation wurde zwischen dem Rückgang der Theta-Power an Cz und der Steigerung der Performance im seriellen Additionstest gefunden (p<0,05). Eine Bonferroni-Korrektur wurde nicht durchgeführt, da die Korrelationen aus deskriptiven Gründen berechnet wurden.

Tab. 5: Korrelationen der Mittellinienelektroden mit psychopathologischen und neuropsychologischen Daten (t_1-t_2) nach Spearman (zweiseitig)


	Delta-Power			Theta-Power		
	Fz	Cz	Pz	Fz	Cz	Pz
DRS	r=-0,17	r= 0,01	r= 0,32	r= 0,10	r=-0,30	r= 0,06
Awareness Scale	r= 0,48	r= 0,55°	r= 0,47	r= 0,59*	r=0,30	r= 0,34
Free Recall	r=-0,53°	r=-0,63°	r=-0,46	r=-0,71**	r=0.06	r=-0,28
Orientierung zur Zeit	r= 0,12	r= 0,26	r=-0,36	r= 0,09	r=0.05	r=-0,13
Serielle Addition	r=-0,02	r=-0,20	r= 0,18	r=-0,08	r=-0,61*	r= 0,33
Digit Span	r=-0,22	r=-0,38	r= 0,33	r=-0,25	r=-0,25	r= 0,02

Korreliert wurden Veränderungen der Scores in den verschiedenen Skalen und Tests mit den Veränderungen der EEG-Leistung. ° p<0,1; * p<0,05; ** p<0,01; n.s.= nicht signifikant.

5.3.1 Darstellung der linearen Regression

Aufgrund der Korrelationskoeffizienten wurde ein linearer Zusammenhang zwischen der Veränderung der Theta-Power an den medianen Elektroden Fz und Cz einerseits und der Veränderung der klinischen Parameter andererseits vermutet. Ein Hinweis auf einen nichtlinearen Zusammenhang findet sich nicht. Daher wurde die lineare Regression für Korrelationen ab einem Signifikanzniveau von 5% (p<0,05) dargestellt (s. Abb. 1).

Abb. 1: Darstellung des Zusammenhanges zwischen psychopathologischen und neuropsychologischen Störungen und postiktalen Veränderungen der Theta-Power

Regressionsgeraden mit 95% Vorhersageintervallen für Mittelwerte. X-Achse: Veränderung der Theta-Power (t_1-t_2) in $[V^2/Hz]$; Y-Achse: Veränderung des Gesamtscores in Punkten.

5.4 QUELLENANALYSE

5.4.1 Verlaufsuntersuchung im Breitband-Spektrum

Die EEG-Daten wurden mit einer Breitbandanalyse (1-30Hz) auf absolute Maxima der Stromdichte zu den einzelnen Zeitpunkten untersucht (s. Tab. 6 und Abb. 2). Die Foci entstehen durch Oszillationen in verschiedenen Frequenzen, sodaß einzelne Frequenzanteile in unterschiedlichem Maße beteiligt sind. Den Foci wurden maximale Frequenzanteile sowie korrespondierende Lokalisationen im Talairach-Raum zugeordnet.

Tab. 6: Lokale Maxima (1-30Hz) für Patienten und für Probanden (t₀, t₁, t₂)

Lokalisation Talairach X, Y, Z (Brodmann Area) Stromdichte [mA/cm³], dominierender Frequenzanteil

Depressive Probanden	n Patienten			
	t ₀	\mathbf{t}_1	t_2	
Präcuneus l.	Cuneus r.	Gyrus frontalis sup. l.	Gyrus temporalis sup. l.	
-3, -46, 50 (BA 7)	4, -74, 8 (BA 23)	-3, -11, 64 (BA 6)	-59, -32, 22 (BA 42)	
0,00153, Alpha	0,00090, Alpha	0,00136, Delta	0,19008, Delta	
Cuneus r.	Gyrus temporalis inf. r.	Cuneus r.	Gyrus temporalis inf. 1.	
4, -67, 15 (BA 23)	53, -53, -13 (BA 20)	4, -81, 8 (BA 17)	-59, -39, -20 (BA 20)	
0,00149, Alpha	0,00085, Alpha	0,00119, Delta	0,05963, Delta	
Gyrus frontalis sup. l.	Lobulus parietalis inf. l.	Gyrus temporalis med. l.	Präcuneus 1.	
-3, -11, 64 (BA 6)	-45, -46, 50 (BA 40)	-59, -32, -6 (BA 21)	-3, -53, 57 (BA 7)	
0,00120, Alpha	0,00076, Alpha	0,00116, Delta	0,02981, Delta	
Gyrus temporalis sup. r.	Gyrus temporalis sup. r.	Lobulus paracentralis l.	Gyrus frontalis med. l.	
53, -53, 22 (BA 39)	53, -53, 15 (BA 39)	-3, -39, 50 (BA 5)	-45, 3, 43 (BA 6)	
0,00099, Alpha	0,00074, Alpha	0,00098, Delta	0,02311, Delta	
Gyrus temporalis med. l.	Präcuneus l.	Lobulus parietalis inf. l.	Gyrus lingualis l.	
-45, -67, 15 (BA 39)	-3, -46, 50 (BA 7)	-45, -46, 50 (BA 40)	-3, -81, 1 (BA 18)	
0,00094, Alpha	0,00073, Alpha	0,00097, Delta	0,01714, Delta	
Lobulus parietalis inf. l.	Gyrus frontalis sup. l.	Gyrus frontalis sup. l.	Gyrus frontalis sup. l.	
-45, -46, 50 (BA 40)	-3, -11, 64 (BA 6)	-3, 52, 1 (BA 10)	-3, -11, -64 (BA 6)	
0,00093, Alpha	0,00073, Alpha	0,00091, Delta	0,00969, Delta	

r.= rechts, l.= links, inf.= inferior, med.= medius, sup.= superior. Für Probanden und Patienten zu t₀ identische oder ähnliche Lokalisationen der Stromdichtemaxima sind kursiv dargestellt.

Die Hauptergebnisse dieser Analyse sind (1) eine dominierende, okzipitale Alpha-Aktivität vor EKT, entsprechend der Lokalisation des Ruherhythmus, (2) eine EEG-Verlangsamung ca. 1h nach EKT mit einem Maximum im supplementär-motorischen Kortex und (3) eine weitere Zunahme der langsamen Aktivität 24h nach EKT mit linkstemporaler Betonung. Die Maxima nach EKT entstehen dabei in höherem Maße durch Delta- als durch Theta-Oszillationen.

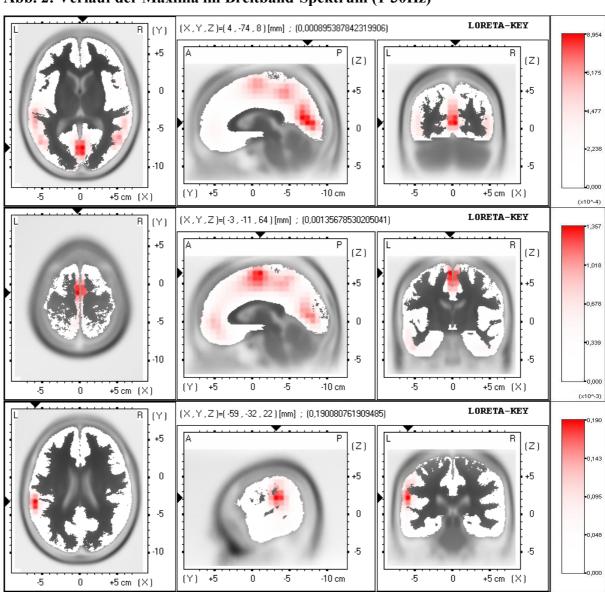


Abb. 2: Verlauf der Maxima im Breitband-Spektrum (1-30Hz)

Zeitpunkte: t₀ (oben), t₁ (Mitte), t₂ (unten). Die Lokalisation des Maximum wird durch die Talairach Koordinaten (X, Y, Z) definiert und durch Pfeile entlang der Achsen markiert. Der Stromdichtewert ist in Klammern angegeben [mA/cm³]. Die Stromdichte ist rot kodiert. Die Linearität (Beziehung zwischen Stromdichte und Farbintensität) wurde konstant gehalten.

Im postiktalen Delir wurde das absolute Stromdichtemaximum im linken medialen Gyrus frontalis sup. (BA 6, Talairach X, Y, Z: -3, -11, 64; s. Abb. 2, Mitte) gefunden. Bei 9 von 12 Patienten konnte dieser Fokus nachgewiesen werden (s. Abb. 3), die übrigen Patienten zeigten insgesamt nur geringe Ausprägungen von Maxima. Im Vergleich zu t₀ ist die maximale Stromdichte angestiegen und liegt über der okzipitalen Ruheaktivität (s. Abb. 2).

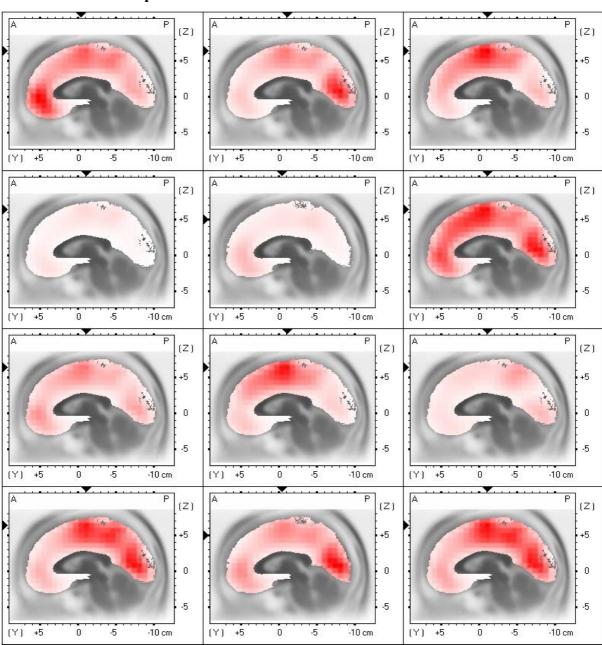


Abb. 3: Maxima der postiktalen Breitband-Aktivität der einzelnen Patienten

Patienten 01-12 von links nach rechts, oben beginnend. Die Stromdichte ist rot kodiert. Die Linearität (Beziehung zwischen Stromdichte und Farbintensität) wurde konstant gehalten.

5.4.2 Verlaufsuntersuchung im Theta-Spektrum

Eine gesonderte Untersuchung der EEG-Daten wurde für die Maxima des Theta-Frequenzbandes (4-7,5Hz) zu den drei Untersuchungszeitpunkten vorgenommen (s. Tab. 7 und Abb. 4). Dieses Frequenzband weist in der Analyse signifikante Änderungen der Power auf (s. Tab. 4). Zudem korrelieren die Veränderungen der Theta-Power an Fz und Cz mit klinischen Daten (s. Tab. 5).

Tab. 7: Lokale Maxima (4-7,5Hz) für Patienten und für Probanden (t₀, t₁, t₂)

Lokalisation Talairach X, Y, Z (Brodmann Area) Stromdichte [mA/cm³]

Depressive Probanden	Patienten				
	t ₀	t ₁	t ₂		
Cuneus r.	Cuneus r.	Gyrus frontalis sup.	Gyrus temporalis sup. 1.		
4, -74, 8 (BA 23)	4, -74, 8 (BA 23)	-3, -11, 64 (BA 6)	-59, -32, 22 (BA 42)		
0,00016	0,00014	0,00038	0,01005		
Gyrus temporalis sup. r.	Gyrus temporalis inf. r.	Gyrus temporalis med. l.	Präcuneus 1.		
53, -60, 15 (BA 22)	53, -53, -13 (BA 20)	-59, -32, 1 (BA 21)	-3, -53, 57 (BA 7)		
0,00013	0,00013	0,00024	0,00177		
Präcuneus l.	Gyrus frontalis sup. l.	Cuneus r.	Gyrus frontalis med. l.		
-3, -46, 50 (BA 7)	-3, -11, 64 (BA 6)	4, -74, 8 (BA 23)	-45, 3, 43 (BA 6)		
0,00011	0,00011	0,00021	0,00142		
Gyrus frontalis sup. l.	Gyrus temporalis med. l.	Lobulus parietalis inf. l.	Gyrus lingualis l.		
-3, -11, 64 (BA 6)	-59, -39, 1 (BA 21)	-45, -39, 50 (BA 40)	-3, -81, 1 (BA 18)		
0,00010	0,00010	0,00018	0,00102		
Lobulus parietalis inf. l.	Präcuneus l.	Gyrus temporalis inf. r.	Gyrus frontalis sup.		
-45, -46, 50 (BA 40)	-3, -46, 50 (BA 7)	53, -53, -13 (BA 20)	-3, -11, 64 (BA 6)		
0,00009	0,00009	0,00017	0,00083		
Lobulus parietalis inf. r.	Lobulus parietalis inf. l.	Gyrus frontalis med. r.	Gyrus fusiformis r.		
39, -46, 50 (BA 40)	-45, -46, 50 (BA 40)	46, 10, 36 (BA 9)	53, -60, -13 (BA 37)		
0,00007	0,00009	0,00016	0,00059		

r.= rechts, l.= links, inf.= inferior, med.= medius, sup.= superior. Für Probanden und Patienten zu t_0 identische oder ähnliche Lokalisationen der Stromdichtemaxima sind kursiv dargestellt.

Die dargestellten Foci sind mit den Maxima, die in der Breitband-Analyse gefunden wurden, vergleichbar (vgl. Tab. 6 und Abb. 2). Das Theta-Maximum vor EKT liegt okzipital, zwei weitere lokale Maxima konnten rostralwärts lokalisiert werden. Das absolute Maximum zu t₁ ist identisch mit dem in der Breitbandanalyse gefundenen Maximum und wird nach zentral in den supplementär-motorischen Kortex (BA 6) lokalisiert. Das lokale Maximum zu t₂ liegt linkstemporal und stimmt ebenso mit dem Maximum der Breitbandanalyse überein.

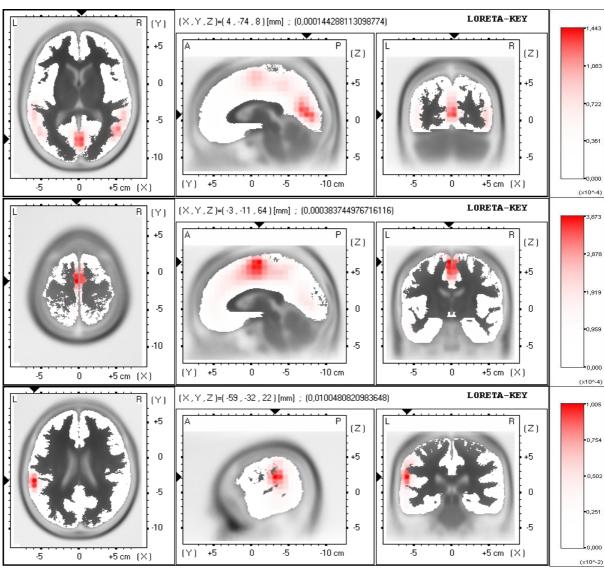


Abb. 4: Verlauf der Maxima im Theta-Spektrum (4-7,5Hz)

Zeitpunkte: t₀ (oben), t₁ (Mitte), t₂ (unten). Die Lokalisation des Maximums wird durch die Talairach Koordinaten (X, Y, Z) definiert und durch Pfeile entlang der Achsen markiert. Der Stromdichtewert ist in Klammern angegeben [mA/cm³]. Die Stromdichte ist rot kodiert. Die Linearität (Beziehung zwischen Stromdichte und Farbintensität) wurde konstant gehalten.

5.4.2.1 Gruppenvergleiche

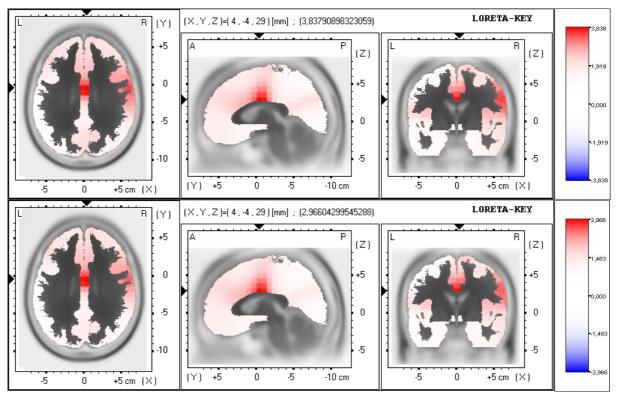
Ein Vergleich der Stromdichten der einzelnen Voxel vor und nach EKT wurde anhand einer nicht-parametrischen t-Statistik durch LORETA für das Theta-Band vorgenommen. Dieses Frequenzband weist in der Analyse signifikante Änderungen der Power auf (s. Tab. 4), die zudem an Fz und Cz mit klinischen Daten signifikant korrelieren (s. Tab. 5). Ein Gruppenvergleich innerhalb des Breitbandes (1-30Hz) wurde nicht durchgeführt, da Veränderungen in diesem Spektrum hauptsächlich auf einer Zunahme der Leistung langsamer Frequenzen zurückzuführen sind (s. Tab. 6).

Anhand einer verbundenen t-Statistik konnten signifikante Unterschiede zwischen den Messungen vor und direkt nach EKT (t₁ vs. t₀) gefunden werden. Ein deutlicher postiktaler Fokus wurde im dorsalen Teil des anterioren Gyrus cinguli lokalisiert (Brodmann Area 24). Weitere signifikante Foci finden sich rechtstemporal und bifrontal mit linksseitiger Betonung (s. Tab. 8 und Abb. 5).

Die identifizierten Regionen mit postiktal signifikant veränderter Stromdichte sind in Tab. 8 im Intra-Gruppen-Vergleich (t₁ vs. t₀) und im Inter-Gruppen-Vergleich (t₁ vs. Kontrolle) angegeben. Die aufgeführten Koordinaten entsprechen dem jeweiligen Voxel maximaler Stromdichteveränderung nach EKT innerhalb eines Fokus. Innerhalb desselben Fokus auftretende Submaxima wurden nicht berücksichtigt.

Ein verbundener t-Test zwischen der interiktalen (t_2) und der postiktalen Messung (t_1) konnte keine signifikanten Stromdichteunterschiede aufzeigen.

Mit einer unverbundenen t-Statistik wurden signifikante Stromdichteunterschiede zwischen t₂ und t₀ gefunden, ebenso waren die Stromdichtedifferenzen zwischen der interiktalen Meßreihe und der Kontrollmeßreihe signifikant (s. Tab. 9 und Abb. 6)

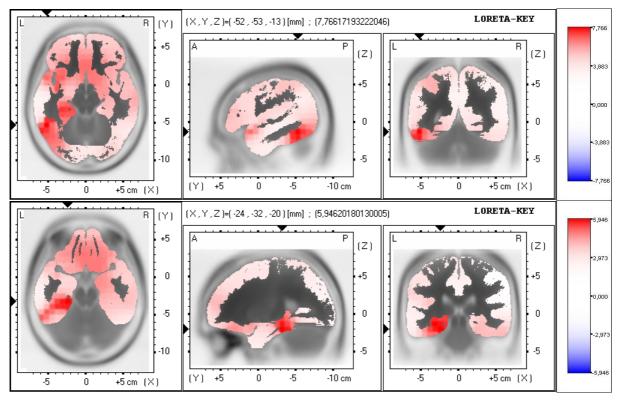

Der Befund zeigt eine erhebliche Erhöhung der Stromdichtewerte von t₀ nach t₂ mit einer ausgeprägten linkstemporalen Betonung einschließlich des medialen Temporallappens. Zudem findet sich zu t₂ eine bifrontale Aktivierung, die auch orbitofrontale Kortexareale umfaßt. Die Stromdichtewerte im dorsalen Kompartiment des anterioren Gyrus einguli sind zu t₂ erhöht, bilden im Gruppenvergleich jedoch kein signifikantes lokales Maximum. Ein ähnliches Aktivierungsmuster findet sich bei einem Vergleich des interiktalen EEG mit dem EEG der Kontrollgruppe.

Tab. 8: Signifikante Stromdichtedifferenzen t₁ vs. t₀ und t₁ vs. Kontrolle

t-Test für verbundene Stichproben:		t-Test für unverbundene Stichproben:		
t_1 vs. t_0		t ₁ vs. Kontrolle		
Lokalisation : Talairach X, Y, Z (BA)	t-Wert	Lokalisation : Talairach X, Y, Z (BA)	t-Wert	
Gyrus cinguli r.: 4, -4, 29 (24)	3,838	Gyrus cinguli r.: 4, -4, 29 (24)	2,966	
Gyrus temp. sup. r.: 46, -25, 8 (41)	3,596	Insula r.: 39, -18, 15 (13)	2,569	
Insula r.: 39, -38, 22 (13)	3,596	Gyrus praecentralis r.: 60, -4, 29 (6)	2,569	
Gyrus praecentralis r.: 60, -4, 29 (6)	3,505	Gyrus temp. med. r.: 60, -25, -13 (20)	2,429	
Gyrus frontalis inf. 1.: -52, 38, 8 (46)	2,901	Gyrus frontalis inf. 1.: -52, 38, 8 (46)	2,055	
Gyrus frontalis sup. r.: 25, 45, -13 (11)	2,629	Insula l.: -38, -4, 15 (13)	1,938	
Insula 1.: -38, -4, 15 (13)	2,538	Gyrus frontalis med. r.: 25, 45, -13 (11)	1,938	

Auswahl: lokale Submaxima wurden nicht berücksichtigt. 5%-Signifikanz-Schwelle: t_1 vs. t_0 bei t-Wert $\geq 2,212$; t_1 vs. Kontrolle bei t-Wert $\geq 1,913$. BA= Brodmann Area, r.= rechts, l.= links, temp.= temporalis, inf.= inferior, med.= medius, sup.= superior.

Abb. 5: t-Test-Darstellung des postiktalen cingulären Fokus


Oben: t_1 vs. t_0 , 5%-Signifikanz bei t-Wert \geq 2,212. Unten: t_1 vs. Kontrolle, 5%-Signifikanz bei t-Wert \geq 1,913. Die Lokalisation des Voxels wird durch die Talairach Koordinaten (X, Y, Z) definiert und durch Pfeile entlang der Achsen markiert. Der Wert in Klammern entspricht dem t-Wert. Postiktale Anstiege der Stromdichte sind rot, postiktale Abnahmen der Stromdichte blau kodiert. Die Beziehung zwischen Signifikanz und Farbintensität wurde konstant gehalten. Die Skalierung der t-Werte ist jeweils rechts ablesbar.

Tab. 9: Signifikante Stromdichtedifferenzen t2 vs. t0 und t2 vs. Kontrolle

t-Test für unverbundene Stichproben:		t-Test für unverbundene Stichproben:		
t_2 vs. t_0		t ₂ vs. Kontrolle		
Lokalisation : Talairach X, Y, Z (BA)	t-Wert	Lokalisation: Talairach X, Y, Z (BA)	t-Wert	
Gyrus fusiformis 1.: -52, -53, -13 (37)	7,766	Gyrus parahip. l.: -24, -32, -20 (36)	5,946	
Gyrus parahip. 1.: -24, -32, -20 (36)	7,338	Gyrus cinguli (rostral): 4, 24, -6 (32)	5,103	
Gyrus cinguli (rostral): -3, 24, -6 (32)	6,604	Gyrus frontalis inf. r.: 18, 10, -13 (47)	4,916	
Gyrus temporalis sup. 1.: -52, 10, -13 (38)	6,604	Gyrus temporalis sup. 1.: -52, 10, -13 (38)	4,869	
Gyrus rectus 1.: -10, 31, -20 (11)	6,543	Uncus r.: 18, 3, -34 (38)	4,776	
Gyrus frontalis inf. r.: 18, 24, -20 (11)	6,482	Gyrus frontalis. inf. 1.: -24, 31, -20 (11)	4,682	
Cuneus 1.: -31, -88, 36 (19)	6,360	Gyrus frontalis. sup. 1.: -24, 52, 15 (10)	4,073	
Gyrus frontalis inf. r.: 18, 24, -20 (11)	6,482	Gyrus frontalis. inf. 1.: -24, 31, -20 (11)	4,682	

Auswahl: lokale Submaxima wurden nicht berücksichtigt. 5%-Signifikanz-Schwelle: t₂ vs. t₀ bei t-Wert≥ 2,842; t₂ vs. Kontrolle bei t-Wert≥ 2,695. BA= Brodmann Area, r.= rechts, l.= links, parahip.= parahippocampalis, occ.= occipitotemporalis, inf.= inferior, med.= medius, sup.= superior.

Abb. 6: t-Test-Darstellung des interiktalen linkstemporalen Fokus

Oben: t_2 vs. t_0 , 5%-Signifikanz bei t-Wert \geq 2,842. Unten: t_2 vs. Kontrolle, 5%-Signifikanz bei t-Wert \geq 2,695. Die Lokalisation des Voxels wird durch die Talairach Koordinaten (X, Y, Z) definiert und durch Pfeile entlang der Achsen markiert. Der Wert in Klammern entspricht dem t-Wert. Postiktale Anstiege der Stromdichte sind rot, postiktale Abnahmen der Stromdichte blau kodiert. Die Beziehung zwischen Signifikanz und Farbintensität wurde konstant gehalten. Die Skalierung der t-Werte ist jeweils rechts ablesbar.