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Abstract 

Understanding the network of transcription factors, controlling pluripotency in 

human embryonic stem cells (ESCs) and human embryonal cancer cells (ECs), 

is essential for possible future therapies in medicine. Connecting the expression 

levels after ablation of OCT4 with potential binding sites allows a higher 

predictability of motif specific driven expression modules important for self-

renewal and differentiation. 

In this study several peak analysis programs have been used to access a 

refined list of OCT4 targets in human EC cells and this data was connected to 

ES cell specific OCT4 binding and expression. A highly enriched POU-motif 

could be verified, discovered by a de novo approach, thus enabling connections 

to the distribution of OCT4 connected motifs like for the dimerisation factor 

SOX2. Selected targets have been validated, containing an OCT4-SOX2 

binding site in their proximal promoter, and targets not connected to the 

classical HMG motif. Of those USP44 was further examined, containing a highly 

conserved POU-motif and GADD45G, having an impact on cell cycle regulation. 

The overexpression of GADD45G in EC cells resulted in an enrichment for 

upregulated genes, connected to differentiation pathways. Additionally preferred 

distances for the HMG and the POU motif could be observed, giving cause for 

additional binding modes than the classical HMG-POU consensus sequence. 

New OCT4 connected targets were discovered, and their importance in ESC 

differentiation and pluripotency was highlighted. Through a highly connected 

database, everyone can test now simple hypotheses based on their target 

genes. The use of NCCIT cells as a model to test pluripotency associated 

pathways in terms of potential functional binding sites has been demonstrated. 

 

Furthermore array based comparisons of gene expression levels between ES 

and EC cells have been conducted and new links have been established for 

further functional characterisation of these cells. 

Finally a ChIP-seq study revealed an unbiased genome wide view on putative 

OCT4 bound regions and suggested a genome wide binding pattern for OCT4 

which is not centered for five prime proximal promoters.  
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Abstract (german) 

Für die Entwicklung möglicher, zukünftiger Therapien in der Medizin ist das 

Verständnis jener Transkriptionsfaktoren, die die Pluripotenz kontrollieren und 

die Differenzierung blockieren, von entscheidender Bedeutung.  

Nach einer RNAi vermittelten Herunterregulierung von OCT4 wurde eine 

höhere Vorhersagbarkeit von Motiv spezifischen Expressionsmodulen, die 

wichtig für den Selbsterhalt und die Differenzierung der Zellen sind durch die 

Verknüpfung von differentiell regulierten Genen mit potentiellen Bindungsstellen 

ermöglicht.  

In dieser Arbeit wurden mehrere Programme für die Berechnung von 

Bindungsstellen verwendet und kombiniert, um eine Algorithmen 

unabhängigere Liste von potentiellen OCT4-Bindungsstellen in humanen 

embryonalen Karzinomzellen zu erhalten. Die daraus resultierenden Daten 

wurden mit spezifischen OCT4-Bindungsstellen und Expressionsmustern in 

embryonalen Stammzellen verknüpft. Durch den Einsatz von De Novo 

Motiverkennungsprogrammen konnte ein hoch angereichertes POU-Motiv 

verifiziert werden. Dadurch wurde wiederum die Analyse der Verteilungsmuster 

von OCT4 korrelierten Motiven ermöglicht, wie das HMG Motiv von SOX2, 

einem Heterodimerisierungspartners von OCT4. 

Es wurden Kandidaten validiert, die ein OCT4-SOX2 Bindungsmotiv im 

proximalen Promoterbereich enthielten, als auch solche, die nicht mit dem 

klassischen HMG Motiv verknüpft waren. Von diesen wurde USP44 

weitergehend untersucht. Dieses Gen enthält eine hoch konservierte OCT4 

Bindungsstelle. Des Weiteren wurde das Gen GADD45G untersucht, das einen 

Einfluss auf die Regulierung des Zellzyklus ausübt. Die Überexprimierung von 

GADD45G in EC Zellen führte zu einer Anreicherung von hochregulierten 

Genen, die mit Signalwegen der Differenzierung verknüpft sind.  

Zudem wurde ein Hinweis auf bevorzugte Entfernungsbeziehungen zwischen 

dem POU und dem HMG Motiv gefunden, die Grund zur Annahme geben, dass 

es neben dem klassischen HMG-POU Motiv zusätzliche Bindungsvarianten von 

OCT4 gibt. Auf der Grundlage Expressionsarray basierter Vergleiche zwischen 

zwei humanen Stammzellen- und zwei humanen embryonalen 

Karzinomzelllinien 
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wurden neue Verknüpfungen zu annotierten funktionalen Signalwegen etabliert, 

um eine weitere Charakterisierung dieser Zellen zu ermöglichen. 

 

Mit Hilfe der ChIP-seq Technik wurde die genomweite Bindungsverteilung von 

OCT4 in humanen EC Zellen analysiert um einen weniger verzehrten Blick zu 

ermöglichen. Diese weist darauf hin, dass OCT4-Bindungsstellen nicht 

abhängig von der Entfernung zum Transkriptionsstartpunkt sind. 

Es konnten neue Kandidatengene identifiziert werden, die mit OCT4 verknüpft 

sind, und ihre Bedeutung für Differenzierungsprozesse und Pluripotenz 

hervorgehoben. Durch die Einrichtung einer hochvernetzten Datenbank, die alle 

relevanten OCT4 verwandten Daten verknüpft, ist es nun möglich, einfache 

Hypothesen basierend auf spezifischen Genlisten zu testen. Der Einsatz der EC 

Zelllinie NCCIT als Modellsystem für die Untersuchung Pluripotenz-assoziierter 

Signalwege im Hinblick auf potentielle funktionelle Bindungsstellen wurde 

erfolgreich demonstriert. 
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1 Introduction 

 

1.1 OCT4 regulated networks in pluripotent cells 

 

1.1.1 Early Development – how a single cell develops to a complex 

organism 

It is still an unsolved question how the fertilized egg can give rise to a 

multicellular organism. Only very slowly the knowledge about the processes by 

which a fertilized egg divides (cleavage), forms a ball of cells (morula), develops 

a cavity (blastocyst stage), forms the three primary germ layers of cells that will 

ultimately give rise to all the cell types of the body (gastrula stage), and 

ultimately generates all the specialized tissues and organs of a mature 

organism is being deciphered. However, there is still little knowledge about the 

specific genes that regulate these early events or how interactions among cells 

or how cellular interactions with other molecules in the environment of the early 

embryo affect the early development stages. The process by which an egg 

develops into an embryo is called embryogenesis and includes coordinated cell 

division, cell migration, programmed cell death and cell specialization. In that 

process a so called totipotent cell, will lead to more committed pluripotent cells 

and finally to unipotent, differentiated cells.   

Pluripotency can be generally defined as having more than one potential 

outcome. In biology, cells which show this trait, have the potential to 

differentiate into any of the three germ layers including endoderm (interior 

stomach lining, gastrointestinal tract, the lungs), mesoderm (muscle, bone, 

blood, urogenital), or ectoderm (epidermal tissues and nervous system). 

Pluripotent stem cells can give rise to any fetal or adult cell type. However, 

alone they cannot give rise to all cell types because they lack the potential to 

contribute to extraembryonic tissue, such as the placenta. Before one can 

understand the network of transcription factors operating in these early steps 

one needs to understand the biology of the earliest steps after the fertilization of 

the egg [1,2]. 
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After the fertilization events, the zygote will locate to the uterus, a process which 

takes three to four days in mice and five to seven days in humans. During this 

time, the zygote will divide. After the first cleavage two identical cells are 

produced and then this process repeats to produce four cells. Separating these 

cells at this stage would result in genetically identical embryos which is the 

basis of identical twinning. If the cells remain together they divide 

asynchronously to produce 8 cells, 16 cells, and so on [3]. The early rounds of 

cell division take approximately 36 hours [4]. During the eight-cell stage, the 

embryo compacts, meaning that the cells come together in a tight array that is 

spaced by gap junctions. These trans-membrane proteins consist of an array of 

six protein molecules called connexins, which form a pore that allows the 

exchange of ions and small molecules between cells [5]. 

When the cells reach a compacted 16-cell stage, the embryo is termed a morula 

(see figure 1.1). During this stage, Gilbert and colleagues could show in mice 

that cells have become specialized. This process occurs when the outer cells of 

the 16-cell morula divide to produce an outer rim of cells—the trophectoderm—

and an inner core of cells, the inner cell mass [3]. The signals within the 16-cell 

morula that regulate the differentiation of the trophectoderm are largely 

unknown. It has been shown that the outer cells of the morula are polarized, 

meaning one side of the cell distinguish from the other side. Thus, in the first 

differentiation event of embryogenesis, the outer, polar cells give rise to 

trophectoderm and the inner, apolar cells will become the inner cell mass (ICM), 

meaning that a part of the cells of the morula show a specific intrinsic polarity 

[5].  Thus the morula will develop into a cavity like structure called the blastocyst 

by embryonic day 3 (E3.0) in the mouse and days 5 to 6 in human development 

[6], whereas the cavity is called the blastocoel which is filled by a watery fluid, 

where the outer cells of the cavity will form the trophectoderm and an attached 

mass of small round cells will form the ICM in the cavity [3,7]. 
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Figure 1.1 Human preimplantation development. After fertilization, the one-cell embryo 
undergoes a series of cleavage divisions and forms a blastocyst at about six days of 
development. The blastocyst is composed of an inner cell mass and a trophectoderm. (© 
2001 Terese Winslow) 

 
 

The trophectoderm will generate the trophoblast cells of the chorion, the 

embryo's contribution to the extraembryonic tissue which is known as the 

placenta [3,8]. 

During these stages, the cells of the ICM and trophectoderm will continue to 

divide. Previous studies of mouse embryos have shown that the two tissues 

need to interact; the ICM helps maintain the ability of trophectoderm cells to 

divide, and the trophectoderm supports the ongoing development of the ICM [9]. 

Secreted paracrine factors, which are molecular signals that affect other cell 

types, including fibroblast growth factor-4 (FGF-4), which is released from inner 

cell mass cells [10], help direct embryogenesis at this stage. FGF-4 signalling 

also helps regulate the division and differentiation of trophectoderm cells [11]. 

By day 4 in mice, and between 5 to 7 days post fertilization in humans, the 

blastocyst reaches the uterus. It has not yet implanted into the uterine wall and 

is therefore still a pre-implantation embryo. When this structure arrives in the 

uterus, the blastocyst moves out of the zona pellucida, the structure in which 

the oocyte was originally contained and that also prevented the implantation of 

the blastocyst into the wall of the oviduct [3]. As in humans, the access to the 

uterus is limited, it proved to be difficult to study human embryogenesis. 

Therefore other models were needed in order to study this process. In this 
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regard it turned out that by studying germ cell tumors, some insights into this 

process could be made. 

Thus, in order to study early development processes, several in vitro cell culture 

models have been developed in the last 30 years, starting with murine 

embryonic carcinoma cells. 

 

 

Murine and human embryonic carcinoma cells 

Germ cell tumours originate typically as benign tumours in the ovary, but also in 

the testis, where they are always malignant. These tumours are called teratoma 

if benign, or teratocarcinoma if malignant. Both tumour types are histological 

complex and contain a wide range of different tissues [12,13]. 

In contrast to the teratomas, the teratocarcinomas contain stem cells, the 

embryonic carcinoma (EC) cells, which are capable of differentiating into the 

various cell types found in these tumours and initiate malignancy [14]. 

EC cell lines were originally derived from a testicular germ cell tumour, which 

had been developed from premalignant and non-invasive intratubular germ cell 

neoplasia [15,16] (for comparison with normal development, see  figure 1.2). 

The differentiation potential of these cells has been already demonstrated in the 

mid seventies in mice, by injecting embryonal carcinoma cells derived from the 

central portions of mouse embryoid bodies into blastocysts. Mintz and 

colleagues demonstrated that EC cells can contribute to the development of 

most of the tissues and cell lineages in the newly formed mosaics [17,18]. 



Introduction 

 7  

 

 

Fig. 1.2: The histological development and gene-specific DNA promoter 
hypermethylation of testicular germ cell tumours (TGCTs). The precursor stage 
intratubular germ cell neoplasia (IGCN) is believed to be initiated already during fetal life 
from a primordial germ cell (PGC) and does not develop into invasive TGCT until after 
puberty. IGCN can develop into seminoma (Sem) or embryonal carcinoma (EC) cells. The 
latter cell type has pluripotent capabilities and may differentiate along an embryonal-like 
lineage into highly differentiated teratoma (Ter) or along extra-embryonal-like lineages 
into yolk sac tumour (YST) or choriocarcinoma (Cc). Adopted from Guro et al. 2007. 

 
 

Human embryonic development is not only limited because of the accessibility 

of the developing embryo, but also because of significant ethical issues. On the 

other hand, there exist significant differences between human embryos 

compared to murine embryos in various respects. A full understanding of the 

human embryonic development can not be achieved from the murine system 

alone. Human EC (hEC) cells, derived from human teratocarcinomas can 

narrow the gap and provide an useful model for learning about human 

embryogenesis [19]. Human EC cells were derived from teratocarcinomas, 

which are predominantly found as testicular cancers in young men. Many 

human teratocarcinoma cell lines were established in culture, but most 

appeared to be near nullipotent. One reason might be the typically high 

aneuploidy, commonly with about 60 chromosomes, including many 

rearrangements [20]. Given the high number of chromosomal aberrations, this 

long period of teratocarcinomas might have shifted selection for cell variants 
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that had lost the ability to differentiate [19,21,22]. However a few human EC cell 

lines retained the potential to differentiate. 

Human undifferentiated and pluripotent embryonal carcinoma cells have the 

capacity to differentiate into various lineages, where cell lines like NTERA2 and 

NCCIT cells differentiate extensively in culture in response to morphogens like 

retinoic acid (RA) [23,24]. In contrast, other established human embryonal 

carcinoma cell lines, such as the 2102Ep, are relatively nullipotent, meaning 

they remain in an undifferentiated state even after RA treatment. Furthermore, 

human EC cells typically express the glycolipid antigens SSEA3 (stage-specific 

embryonic antigen-3) and SSEA4, but not SSEA1, which are both present in 

human ES cells, the high molecular mass proteoglycan antigens TRA-1-60, 

TRA-1-81 and GCTM2 and the protein antigens Thy1 and MHC class 1. In 

contrast, murine EC and ES cells express SSEA1 but not the other markers 

[21]. Finally, strengthening the relationships between these cell types, 

concerning surface markers, human ICM cells from blastocysts also express 

similar patterns of surface antigen expression to both human EC and ES cells, 

emphasizing that the differences from the corresponding mouse cells most 

probably represent species differences in embryogenesis [25,26]. 

Most human EC cell lines do not require special culture conditions such as 

feeder layer support or the addition of extrinsic factors. This, however, may be 

due to their aneuploid nature resulting in part from an adaptation to the culture 

environment. In fact, hES cells tend to acquire similar chromosomal 

abnormalities as hEC cells do [27-29]. However, closer to the ICM are 

embryonic stem cells, which are directly derived from the ICM. 

 

 

 

 

 

 

 

Murine and human embryonic stem cells 

The techniques obtained while studying EC cells made it possible that in 1981 

Evans and Kaufmann and independently Martin derived murine ES cell lines 
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from the ICM of a blastocyst onto feeder cell layers [30,31]. The first 

characterisations of these cells unravelled the similarities with EC cells in terms 

of morphology, high level expression of cell surface antigens, including SSEA1 

and their differentiation potential when removed from the feeder cells or giving 

rise to teratomas, when injected into mice. More importantly, concerning the 

biological function, when implanted into blastocyst and allowed to develop to 

term, they gave rise to chimeras [32]. 

However, ES cells resembled more closely the pluripotent cells of the blastocyst 

than EC cells and the contribution to the whole embryo is more efficient, while 

frequently contributing to the germ line.  

Experiments for deriving ES cell lines were essential for designing “knock out” 

animal models, meaning experiments which made it possible to delete a 

functional gene and ultimately obtain a mouse line lacking this gene, due to the 

potential of ES cells to contribute to the germ line. Using this approach, the 

gene of interest is rendered non-functional by homologous recombination in ES 

cells. After selection of these cells, they are propagated and finally injected into 

a blastocyst to yield chimeras after transferring into the uterus of a pseudo 

pregnant mouse. 

It took 14 years, due to logistical and ethical problems,  until Thomson and 

colleagues could derive ES cells from rhesus monkeys in 1996 [33]. Afterwards, 

they derived the first human ES cells in 1998 [34]. Human ES cells (hES cells) 

were expected to reflect human embryogenesis more closer than the human EC 

cells and still offer an opportunity for regenerative medical therapies, moreover 

hES cells can form teratomas and give rise to all three germ layers [33-35]. 

Similar to EC cells and to murine ES cells, hES cells can be induced in vitro to 

differentiate. Concerning regenerative approaches it was very encouraging that 

these cells could be differentiated into a variety of lineages including neural, 

endothelial, pancreatic and haematopoietic [36]. New and more defined 

protocols for a directed differentiation are and will be established. 

Similar to cancer cells, the telomerase positive hES cells can be maintained 

indefinitely in vitro, meaning they do not undergo senescence like normal 

human telomerase negative somatic cells [34,37]. 

In summary ES as well as EC cells are excellent in vitro systems to study self-

renewal and early differentiation events. 
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Indispensably linked to this phenomenon is the transcription factor OCT4, as 

the expression of OCT4 is tightly linked to pluripotent cells as ES and EC cells 

and its ablation will always ultimately lead to differentiation events.  

  

 

 

1.1.2 The POU family transcription factor OCT4 

Early development of the mammalian embryo is controlled by regulatory genes, 

some of which regulate the transcription of other genes. These regulators 

encode so called transcription factors which activate or repress genes that 

mediate phenotypic changes during stem cell differentiation as well as 

embryonal carcinoma differentiation [38-40].  

 

The expression level of the transcription factor OCT4 is essential for defining 

the transition of totipotent OCT4 positive cells in the morula stage towards 

OCT4 negative trophectoderm cells and the still OCT4 positive inner cell mass 

cells (see figure 1.2). Targeted disruption of OCT4 in mice has produced 

embryos devoid of a pluripotent ICM [9] (see Figure 1.3). Additional support 

comes from a study by Adjaye et al., where differential microarray analysis 

established OCT4 as a marker gene for the ICM [41]. Furthermore, in the ES 

cell model it seems that OCT4 acts dose dependent to maintain pluripotency by 

fulfilling gene regulatory functions. Overexpression of OCT4 drives ES cells 

towards the extra-embryonic mesoderm or endoderm lineages, while knockouts 

or knockdowns of OCT4 differentiate into trophectodermal lineage expressing 

CDX2. ES cells with a normal level of OCT4 remain pluripotent [42,43]. Ryo 

Matoba et al. showed that that at least 418 genes, 30 of which are primary 

targets, are regulated in a peculiar manner: the same gene is activated or 

repressed depending on the amount of OCT4. The presence of these ‘‘bell-

shaped’’ and ‘‘inverse bell shaped’’ gene expression regulation relationships 

indicate that the maintenance of appropriate OCT4 levels is built into the gene 

regulatory network in mouse ES cells. 
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Figure 1.3 Events in the formation of the mouse blastocyst with respect to Oct-4 
expression levels. A) Prior to compaction, all the cells of the morula express similar 
amounts of Oct-4 protein (orange colour). B) The formation of the trophoblast tissue is 
accompanied by down regulation of Oct-4 in the outer cells (yellow). C) Differentiation of 
primitive endoderm cells is preceded by transient up regulation of Oct-4 and subsequent 
shutdown (red). Adopted from Pesce et al. [44] 

 

In contrast to the cell models, at maturity, long after the first differentiation 

events of the inner cell mass, OCT4 expression becomes confined exclusively 

to the developing germ cells [39,40]. In cell culture models, using hES cells, 

OCT4 knockdowns lead to the induction of differentiation, supposedly regulated 

by ACTIVIN, BMP, fibroblast growth factor, and WNT signaling pathways [45]. 

Concerning a pathological function of OCT4 expression, there is a correlation 

with some cancer types. The first cancer types, OCT4 was found expressed 

were germ cell cancers [46-52]. Based on the fact that the origin of germ cell 

development are  primordial germ cells, where OCT4 is a marker gene [53], it 

became apparent that these cells might be the cells of origin in certain cancers 

of the gonads. The importance of OCT4 in this cancer progression was 

underlined first by an aberrant expression of OCT4, contributing to PGCs’ 

malignant transformation [54] and second by over expressing  OCT4 in a 

mouse teratoma model causing a more malignant histological phenotype while 

forced down regulating prevented tumour growth [49]. Concerning a possible 

role in cancer formation of OCT4 in human cancer, OCT4 expression has been 

shown for different breast cancer cell lines [55] and a colon cancer cell line [56] 

in contrast to untransformed cell lines. Furthermore, the identification of the 

reoccurrence of OCT4 in diverse cancer types has led to the assumption that a 
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re-expression of OCT4 might be linked to the progeny of certain cancer stem 

cell types [57,58]. 

Finally there seems to be a correlation of OCT4 expressing human cancer types 

and an embryonic stem cell–like gene expression signature in poorly 

differentiated tumours, giving more support to the notion that OCT4 re-

expression might be an important event for certain cancer stem cell types [57]. 

In summary OCT4 expression is critical for forming of the ICM, for development 

of the later embryo and for the development of the gonads. Finally, there is a 

correlation to the occurrence of certain cancer types. However many of these 

functions can not be operated by OCT4 alone. 

 

OCT4 is known to interact with other transcription factors to activate and 

repress gene expression in mouse embryonic stem (ES) cells [44]. For 

example, OCT4, which is a member of the POU (PIT/OCT/UNC) class of 

homeodomain proteins, can heterodimerize with the high mobility group (HMG) 

box transcription factor, SOX2, to affect the expression of several genes in 

mouse ES cells as well as human ES cells [59,60]. The cooperative interaction 

of the POU homeodomain factor and the HMG factors is thought to be a 

fundamental mechanism for the developmental control of gene expression [61]. 

Like OCT4, if SOX2 expression is reduced in hES cells it results in the loss of 

the undifferentiated stem cell state. Again, similar to an OCT4 reduction, this 

can be indicated by a change in cell morphology, altered stem cell marker 

expression, and increased expression of trophectoderm markers [62]. These 

results were consistent with a dominant-negative form of mouse SOX2, which 

could induce trophectoderm differentiation and progressive polyploidy in mouse 

ES cells [63]. 

The importance of the OCT4-SOX2 complex can be demonstrated by reported 

biofeedback loops, which have been reported, meaning that the heterodimer will 

control the gene expression of its own transcription factors. In this regard Chew 

et al. showed by chromatin immunoprecipitation assay that both OCT4 and 

SOX2 bind directly to the promoters of POU5F1 and SOX2 in mouse and 

human ESCs, uncovering a positive regulatory loop for maintaining OCT4 and 

SOX2 expression [64].  
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These feedback loops extend to other important factors, required for 

maintaining the self renewal state of ES cells like the homeodomain-containing 

transcription factor NANOG. Rodda et al. could show that both OCT4 and SOX2 

are required for the expression of NANOG in F9 embryonal carcinoma cells, 

embryonic germ cells and mouse ES cells [65]. 

More recently both OCT4 and SOX2 binding to the target promoter have been 

shown to be required for the expression of a micro-RNA called miR-302a, which 

represses the translation of cyclin D1, an important G1 regulator [66]. This is 

consistent with the observation that the length of the G1 phase of the cell cycle 

in ES cells is significant shorter, compared to differentiated, somatic cells [67-

69].  

In summary, both the ability to form heterodimers and act by regulatory 

feedback loops are two reasons which lead to a complex pattern where this 

transcription factor exerts its function.  

 

1.1.3 The diversity of binding site recognition motifs of OCT4 

Each transcription factor can be characterised by its ability to bind to a certain 

cis-element, meaning a specific DNA sequence. For OCT4 several cis-elements 

could be characterised. 

One of these motifs is called the octamer motif and consists of 8 basepairs (the 

term “motif” refers in this study henceforth to a model of a transcription factor’s 

DNA binding specifity). It was first identified in the promoters of the histone H2B 

and the light and heavy chain immunoglobulin genes. The apparent paradox 

that the same element is required for both ubiquitous and B-cell-specific gene 

expression was resolved when two different proteins interacting with this 

sequence were characterised and cloned. OCT1 was present in all cell types 

tested, while OCT2 was detected only in B lymphocytes. Subsequently other 

POU class proteins have been discovered, including OCT4 [40].  

Besides the recognition of octamer motifs, POU-class proteins have the ability 

to bind to different sequence elements. This is possible due to their inherent 

versatility in how they regulate transcription. According to Alexey Tomilin this is 

due to four often interdependent, factors: The first one is flexible amino acid–

base interaction. A second reason are variable orientation, spacing, and 

positioning of DNA-tethered POU subdomains relative to each other [70]. Next, 
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there are posttranslational modifications, and finally possible interactions with 

heterologous proteins [71].  

POU domain proteins are able to bind to DNA cooperatively, thus conferring 

additional functional variability. The homo- and heterodimerization of OCT1 and 

OCT2 on immunoglobulin (Ig) heavy chain promoters (VH) provided evidence of 

cooperativity, with a dimer arrangement [72-74]. The cis-elements are 

considered to consist of low-affinity heptamer and high-affinity octamer sites 

separated by two nucleotides. 

Another mechanism outlining cooperative DNA binding by POU proteins was 

determined during the course of an OCT4 target gene characterization [59]. The 

Palindromic-Oct-factor-Recognition-Element (PORE) with the recognition 

sequence ATTTGAAATGCAAAT (15 bp), of the Osteopontin (OPN) enhancer 

interacts with an Oct-4 dimer, thereby mediating strong transcriptional activation 

in preimplantation mouse embryos. Homo- and hetero-dimerization of other Oct 

factors like Oct-1 and Oct-6 on the PORE has also been demonstrated. 

Yet there exists another palindromic DNA motif called MORE (More PORE) with 

the recognition sequence ATGCATATGCAT. This motif can assemble 

homodimers of OCT4 and heterodimers of OCT4/OCT6 and OCT4/OCT1, thus 

vastly expanding the diversity of OCT4 mediated direct DNA binding [70] (See 

Figure 1.4).  
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Figure 1.4 Different OCT4 binding modes 
A 3 dimensional structure of the OCT4 DNA complex, the POUH domain fits to the big 

groove and the POUS domain fits into the small groove of the DNA helix. 
B 2 dimensional model of how OCT4 dimers bind to the PORE and MORE sequences

   
 

Another known heterodimerization partner, mentioned above, is SOX2. The 

OCT4-SOX2 heterodimer will bind to a sox-oct element, in which the SOX2 

motif and the OCT4 motif need to be positioned in close proximity, as has been 

suggested by using experimental high-resolution structure determination [75]. 

Given that OCT4 proteins could bind to several recognition sites, an emerging 

question became apparent if certain OCT4 cis-elements have a distinct 

functional role. In this regard, Jonathan et al. suggested that  OCT4 binding to 

the PORE sequence could be a major mechanism of transcriptional control of 

stem cell self-renewal pathways using P19 mouse EC cells [76]. More 

specifically it has been demonstrated that OCT4  has the capacity along with 

OCT1 to respond to stress signals by selectively altering the affinity for complex 

binding sites in vitro, using mouse ES cells [77]. 
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Taken together, this illustrates the special characteristics of this transcription 

factor to form a multitude of different direct DNA binding complexes. Some of 

these complexes have been demonstrated to have a specific functional role. 

 

 

1.1.4 Transcriptional network for pluripotency 

Important for reconstructing transcriptional networks are studies in a broad 

range of eukaryotes, which have shown that transcriptional regulators have key 

roles in cellular processes and frequently regulate other regulators associated 

with that process [78,79]. 

 

Using ES cells as a model and based on their unique expression patterns and 

the fact, that their presence is essential for the early development, the 

transcription factors OCT4, SOX2, and NANOG are thought to be central to the 

transcriptional regulatory hierarchy that specifies ES cell identity. Furthermore, 

they are the earliest-expressed set of genes known to maintain pluripotency 

[9,40,80-82]. Boyer et al. mapped OCT4, SOX2, and NANOG to their binding 

sites within known promoters. One conclusion was the revelation that these 

regulators collaborate to form in hES cells regulatory circuitry consisting of 

specialized autoregulatory and feedforward loops, explaining in part their 

profound role in developmental processes [83,84]. 

A ChIP-PET (Paired-End diTagging procedure enables to obtain sequence 

information from both termini of any contiguous DNA fragment) study using 

antibodies against OCT4 and NANOG identified 32 genes that were bound by 

OCT4 and NANOG in both mouse and human ES cells. The small overlap was 

partly explained by the unbiased approach by detecting binding sites in the 

whole mouse genome through PET sequencing and different technology 

platforms and reagents. However, among this list 18 encode transcription 

regulators including key pluripotency markers like NANOG, SOX2 and RIF1. 

More recently, the lab of Stuart Orkin showed that in addition to the above 

mentioned transcription factors, other factors such as TCF3, DAX1, NAC1, 

KLF4, ZFP281, REX1 and MYC seem to be involved in a cooperative manner, 

meaning that at least 6 of these transcription factors are bound at the same 

promoter, especially in the putative regulation of genes related to 
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developmental processes [85]. Thus at least for mouse ES cells, an expanded 

network of transcription factors needs to be assembled at their target promoters 

for preventing the differentiation of these cells. 

Some of these targets are involved in signalling pathways, which are then again 

regulating the core circuitry factors for maintaining pluripotency. For example, it 

was shown that both TGFbeta and FGF signals synergize to inhibit BMP 

signalling; sustain expression of pluripotency-associated genes such as 

NANOG, POU5F1, and SOX2, and promote long-term undifferentiated 

proliferation of human ESCs. Furthermore it was shown that both TGFbeta- and 

BMP-responsive SMADs could bind to the NANOG proximal promoter. The 

conclusion was that NANOG promoter activity is enhanced by TGFbeta/Activin 

and FGF signalling and is decreased by BMP signalling [86,87] (see Figure 

1.4). In mouse ES cells, Suzuki and colleagues showed that NANOG physically 

interacts with SMAD1 in mouse ESCs, thus interfering with the recruitment of 

coactivators to active Smad transcriptional complexes, and repressing the 

expression of BMP-responsive genes [88].  

 

 
Figure 1.4 Model of SMAD Regulation of NANOG Transcription in Human ESCs. Arrows 
represent induction, and hammer-ended lines represent inhibition (Adapted from Xu et 
al., 2008) 
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It should be noted at this point, that there are striking differences between 

human and mouse ES cells in the way signalling pathways support their self 

renewal. An example is a member of the interleukin-6 related family of 

cytokines, so called leukaemia inhibitory factor (LIF), which is essential for 

mouse self-renewal and dispensable for human ES cell culture [34,89]. 

Furthermore, most of what is known of OCT4 related protein interactions and 

DNA binding motifs has been discovered in the mouse. The mouse and human 

OCT4 orthologs have a highly conserved nucleotide sequence and genomic 

organization [90,91].  

In summary, there is a tight link between the key factors for pluripotency, OCT4, 

SOX2 and NANOG and signalling pathways which need to be activated or 

suppressed for the pluripotent capability of the cell.
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1.2 Analysis of transcription factor binding sites 

For the aim of studying transcription factor binding sites on a genomic scale two 

techniques need to be combined. One is called Chromatin-Immunoprecipitation 

followed by hybridization on arrays or mass sequencing, the other is referred as 

RNA-interference induced knockdown of target genes. 

 

 

1.2.1 RNA interference 

The expression status of the genes in the vicinity of the binding sites can give 

information on the overall association between the investigated factor and 

transcription. However, in case of transcription factors the effect on each target 

gene may be different. The method of choice is to compare the expression 

status of cells depleted of the transcription factor (TF) with that of normal cells. 

Thereby information can be gained on all genes influenced by the presence of 

the TF. In combination with ChIP-chip, direct targets can be separated from 

downstream pathways and the influence on each target gene can be 

determined. Common methods to achieve such a depletion are: knockdown by 

RNA interference (RNAi) or antisense methods (e.g. phosphorothioate-linked 

DNA [92], morpholinos [93] or genetic knockouts [94]. RNA interference (RNAi) 

is an intrinsic cellular mechanism which is conserved in most eukaryotic 

species. It plays a role in the regulation of gene expression, differentiation and 

defense against viral infections. RNA interference plays an important role in 

determining cell fate and survival. The relevance of the field has recently been 

acknowledged by the Nobel prize in Physiology or Medicine 2006 to Andrew Z. 

Fire [95] and Craig C. Mellow [96] for the first description of the phenomenon 

[97,98]. The natural mechanism has been utilized to artificially silence particular 

genes and thereby to gain insight into their functions [99]. 

 

RNA-Interference is a mechanism of eukaryotic cells, in which the expression of 

a target gene is suppressed by small interfering RNA (siRNA) [97,100-102].  

Evolutionarily this mechanism was thought to develop as a protection strategy 

of the immune system against viruses or transposons. If a long double stranded 
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RNA (dsRNA) passes into a eukaryotic cell, this dsRNA will be degraded to 

small RNA-duplexes between 21 and 23 bp long, by an enzyme called RNase 

III Dicer [103-105]. Afterwards the Dicer-siRNA complex will be recruited by the 

protein transactivating response RNA-binding protein (TRBP) and transported 

to the RNA-induced silencing complex (RISC) [106,107]. This will be followed 

by the incorporation of the 5 prime end of that siRNA strand with the lower 

binding energy into the RISC complex, which contains a helicase activity. This 

is the antisense strand of the siRNA, which will be recognized by the RISC 

complex and will lead to the recruitment of a complementary target messenger-

RNA (mRNA). The target mRNA will be cut by a catalytic subunit of RISC, 

called Argonaut 2 (AGO2). For this reaction the piwi domain of AGO2 is 

essential, containing a RNase H like endonuclease activity, which will cut the 

single phosphodiester bonds in the backbone of the target mRNA [108-110] (A 

scheme of the whole process can be seen in Figure 1.5). 

This mechanism can be exploited as binding of a transcription factor (TF) to a 

given promoter, discovered by an ChIP-chip approach is insufficient in showing 

a putative regulatory effect e.g. activation or repression in vivo. However, such 

a function can be analyzed by coupling RNA interference with the analysis of 

the transcriptome. 

 

 

 
Figure 1.5: Mechanism of gene silencing in eukaryotic cells. 
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1.2.2 Chromatin Immunoprecipitation 

Traditional methods for analyzing protein-DNA interactions include in vivo 

footprinting and chromatin immunoprecipitation (ChIP). 

One method is called bandshift assay, also called gel shift or electrophoretic 

mobility shift. A band shift is observed when a protein forms a complex with a 

DNA fragment, because complexes of protein and DNA migrate through a non-

denaturing polyacrylamide gel more slowly than free DNA fragments or double-

stranded oligonucleotides.  

Another method is called DNase footprinting [66], which allows one to compare 

the cleavage pattern of isolated DNA against that of the DNA in the presence of 

proteins. If the protein binds the DNA, the corresponding stretch is protected 

against DNase I cleavage and therefore fewer cleavage sites are found. In 

combination with gel-shift assays, the protected sites can be separated from the 

cleaved sites. This method allows the determination of the precise location of 

the protein binding sites. 

In comparison, ChIP has the advantage of detecting the binding site on DNA in 

the natural genomic state and as such combined by Polymerase Chain 

Reaction could be used for the detection of binding sites in the whole genome. 

The basic principle of a ChIP is that the proteins are cross linked to the DNA 

double helix by using crosslinking agents like formaldehyde. Formaldehyde is a 

tight (2 Å) crosslinking agent that efficiently produces both protein–nucleic acid 

and protein–protein crosslinks in vivo. Formaldehyde is a very reactive dipolar 

compound in which the carbon atom acts as a nucleophilic centre. Amino and 

imino groups of amino acids (lysines, arginines and histidines) and of DNA 

(primarily adenines and cytosines) readily react with formaldehyde leading to 

the formation of a Schiff´sche base. This intermediate can further react with a 

second amino group and condense to give the final crosslink. These reactions 

take place in vivo within minutes after addition of formaldehyde to living cells or 

embryos [111]. Although other crosslinking reagents have been employed [112], 

formaldehyde remains the most widely used as the reaction can be reversed by 

heat. This is achieved primarily by protonation of imino-groups at low pH in 

aqueous solution. After cross-linking the chromatin, the cells are either directly 
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lysed or the nuclei are extracted. The chromatin is sheared into fragments of the 

desired size by sonication or through micrococcal nuclease digest to a size of 

usually 0.2-1.0 kb. For ChIP-chip applications, a smaller size is essential if a 

higher resolution of the subsequent analysis is desired. The fragments bound to 

the protein of interest are usually enriched by immunoprecipitation with an 

antibody against the respective protein. Protein-specific antibodies require 

optimizing immunoprecipitation (IP) conditions of each individual antibody 

necessary and often these may show unwanted cross-reactivity. Additionally, 

using different polyclonal antibodies for the same protein may show a different 

preference for epitopes, resulting in a possible different selection of cross-linked 

loci. Monoclonal antibodies would be preferable due to their specific epitope 

selection, but it is more difficult to obtain functional ChIP grade antibodies by 

this approach. As a control one sample is processed with the pre-immune 

serum from the host organism of the specific antibody used for the IP. This 

control identifies unspecific fragments enriched e.g. by adhesion to the samples 

tubes. The formaldehyde cross-links are then reversed and the precipitated 

DNA fragments are purified. Yields from ChIP are usually low but sufficient for 

subsequent PCR or qPCR analysis. 

 

 

 

1.2.3 Chromatin Immunoprecipitation followed by microarray 

hybridization (ChIP-chip) 

As the traditional methods had failed to create high-resolution, genome-wide 

maps of the interaction between a DNA-binding protein and DNA, the 

combination of chromatin immunoprecipitation (ChIP) and whole-genome DNA 

microarrays (ChIP-chip) circumvented these limitations by creating high-

resolution genome-wide maps of the in vivo interactions between DNA-

associated proteins and DNA. 

The ChIP-chip technique was first used to identify binding sites for individual 

transcription factors in Saccharomyces cerevisiae [78,111,113]. More recently a 

c-Myc epitope protein tagging system was used to map the genome-wide 

positions of 106 transcription factors in yeast [114]. 
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For microarray-based detection of immunoprecipitated DNA, amplification of the 

DNA is generally necessary, as the DNA yield, obtained after the pulldown is 

not sufficient for hybridization. Ideally the ChIP reactions are scaled up and 

amplifications are avoided. Three amplification methods have so far been 

widely used: randomly primed [115], ligation-mediated PCR [116] as well as 

amplification on the basis of T7 DNA polymerase [117]. Before adding the 

antibodies for the pulldown reaction, a part of the fragmented chromatin will be 

retained as total genomic reference DNA. Although these samples usually give 

enough material for microarray hybridization they should also be amplified to 

avoid any amplification bias. The enriched and the reference DNA are then 

fluorescently labeled. Although one color platforms, where both samples have 

the same label e.g. Cy3 are hybridized on separate arrays the use of two color 

platforms is often preferred, as this minimizes the influence of microarray batch 

effects on the experimental results. In this case the ChIP DNA is labeled with 

different fluorescent dyes and the samples are combined and hybridized to a 

single DNA microarray. The relative intensities of the two dyes allow the 

detection of the fragments that are enriched in the immunoprecipitation, thereby 

enabling the identification of protein-DNA interaction sites (see figure 1.6). For a 

comprehensive analysis, microarrays used in ChIP-chip applications represent 

ideally the entire genome of the organism in form of overlapping fragments. In 

this case the limitation will be the obligatory selection of preferred probe 

sequences for optimal hybridization, which in turn defines the maximal 

resolution of the tiling array. Furthermore, for larger genomes such as for higher 

eukaryotes these are not available or only at very high monetary cost. Therefore 

arrays are often custom designed for specific applications. The resolution of the 

identified binding sites depends on the size of the sheared DNA and the size 

and spacing of the probes on the arrays. For example, typical yeast 

experiments achieve a resolution of about 1 kb, which is sufficient to assign 

binding to the regulation of a single gene. Once the bound regulatory region is 

identified, the exact binding site can often be inferred by computational 

methods. 
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Figure 1.6 Principle of a ChIP-on-Chip experiment (Adapted from Peter White, PhD) 

 

1.2.4 ChIP followed by sequencing (ChIP-seq) 

One obvious disadvantage of the ChIP- chip application is the unavoidable bias, 

obtained when using arrays designed for selected promoter regions. The 

variation of binding sites is huge; the size of the region where cis-regulatory 

elements are found can vary by nearly three orders of magnitude from a few 

hundred bp to more than 100 kb. Regulatory regions have also been found 

downstream, in introns and even in exons of genes. The actual transcriptional 

regulation is achieved through a complex, combinatorial set of interactions 

between transcription factors at their binding sites [118]. 

ChIP-seq, in comparison to ChIP-chip offers a genome wide view of potential 

binding sites for a given transcription factor. Robertson et al. showed that the 

Solexa sequencing technology provides short read length sequences of ~30 

base pairs that are optimized for characterizing ChIP-derived fragments [119]. 

Resulting sequences were mapped back to the reference genome, whereby the 
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most frequently sequenced fragments formed peaks at specific genomic 

regions. ChIP-seq offers important advantages over ChIP-chip, including lower 

cost, minimal hands-on processing and a requirement for fewer replicate 

experiments as well as less input material. Furthermore, ChIP-seq offers a rapid 

analysis pipeline, as long as a high-quality genome sequence is available for 

read mapping. ChIP-seq also provides the potential to detect mutations in 

binding-site sequences, which may directly support any observed changes in 

protein binding and gene regulation.  

By using the Solexa system, single molecules are covalently attached to a 

planar surface and amplified in situ. Sequencing by synthesis is carried out by 

adding a mixture of four fluorescently labeled reversible chain terminators and 

DNA polymerase to the template. This results in addition of a single reversible 

terminator to each template. The fluorescent signal is detected for each 

template, and the fluorophore and the reversible block are removed. The 

terminator–enzyme mix is then added to start the next cycle, and the process is 

reiterated until the end of the run. Given that all four nucleotides are present in 

the reaction, the risk of mis-incorporation is minimized, increasing sequencing 

accuracy. Accuracy is also independent of sequence context, and a discrete 

signal is generated for every base [120]. 

As mentioned above, the Solexa sequencing technology [120] provided short 

read length sequences of approx 30 base pairs that were ideal for 

characterizing ChIP-derived fragments. Robertson et al. mapped the resulting 

sequences back to the reference genome, whereby the most frequently 

sequenced fragments formed peaks at specific genomic regions. They then 

analyzed sequences under these peaks by comparison known STAT1 binding 

site sequences and locations, and for their proximity to genes. They also 

compared the results to previous STAT1 ChIP-chip data. Their comparison of 

STAT1 binding locations in human HeLa S3 cells stimulated by interferon 

gamma versus unstimulated cells showed that stimulated cells provided 

evidence of 4-fold more STAT1-bound sites, and that specific sites bound in 

these interferon gamma–stimulated cells correlated well with expectations from 

previous studies [121,122]. Peaks for both unstimulated and stimulated cells 

showed the highest density at approximately 100 base pairs upstream of the 

transcriptional start sites of nearby genes. a similar study by Johnson and 
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colleagues [123] that defined genome-wide binding sites of the neuron-

restrictive silencer factor (NRSF), provide initial evidence that next-generation 

sequencing platforms like Solexa are being coupled with previously applied 

techniques to generate genome-wide views of protein-binding phenomena.  

 

 

1.2.5 Identification of enriched sequences in ChIP-chip experiments as a 

way to access potential binding sites 

With the advent of detecting enrichment signals in a global scale it became 

imminent to develop algorithms, called peak finding algorithms, which would 

assist in the screening of genomic loci, which were correlated to a putative 

transcription factor binding site. In recent years, several methods have been 

developed to detect peak regions [85,124-126]. Cawley et al. [125] and Keles et 

al. [127] applied the Wilcoxon rank sum test and t-test, respectively, to generate 

test-statistics for sliding windows. Cawley et al. used a fixed p-value cutoff to 

select peak regions. Whereas Keles et al. employed the Benjamini and 

Hochberg step-up procedure [128] to control false discovery rate (FDR). In 

addition to the requirement for experimental replicates, Gottardo et al. [126] 

identified the absence of powerful multiple testing adjustment methods as a 

limitation of these methods. Li et al. [129] proposed a hidden Markov model 

(HMM) approach to identify peak regions, assuming model parameters could be 

estimated from previous experiments. Ji et al. [130] used a modified t-statistic 

with a more robust estimate of variance to measure probe-level binding signal, 

then used either moving window averaging or HMM to estimate window-level 

binding signal, and finally estimated local false discovery rate (LFDR) of each 

peak region [131]. Estimation of LFDR requires dissection of the mixture 

distribution of ChIP-chip signals, which includes the distribution of ChIP 

enriched signals (or peak signals) and the background (null) distribution. Ji et al. 

[130] estimated the mixture distribution by unbalanced mixture subtraction, 

which requires additional information to construct the unbalanced mixtures. 

Instead of concentrating exclusively on the strengths of binding signals, Zheng 

et al. [132] identified peaks using both signal strength and signal pattern. 

Specifically, they modeled the DNA fragmentation process with a Poisson point 

process and concluded that if the binding signal is transformed to log scale, 
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isolated "peaks" should exhibit a triangular shape allowing development of a 

double regression method, Mpeak, to identify triangular patterns from ChIP-chip 

data [133] (See Fig 1.7 for some peak examples).  

 

 
Figure 1.7 Peak profiles of two different algorithms  
A Two MA2C detected peaks  
B TAMALPAIS detected peaks for different threshold levels (L1 –L4) for a     
specific region of chromosome 9. 

 

The computational challenge of applying such algorithms is to normalize the 

data properly and to detect confident enriched regions by filtering out false 

peaks. One of these programs which is capable of doing that step, developed in 

2007 is MA2C [134]. The normalization method of MA2C was more effectively 

than median scaling and removes much of the GC-effect, as two-color arrays 

exhibited a sequence bias, particularly dependent upon the GC content of 

probes. More precisely, probes with high GC counts tended to have a high 

intensity. Incorporating these effects improved the detection of true positive 

peaks. Another algorithm, which was developed to screen peak regions was 

first used in a study of Peggy J. Farnham and colleagues in 2006, which has 

become available as a web service meanwhile [135]. They sought an approach 

to peak detection that made minimal assumptions about the shape and 

amplitude of peaks representing true binding sites. The binding sites should 

appear in the data as runs of consecutive points (each point representing a 50-

mer) with enhanced amplitude. Compared to previously used algorithms, [85], 

this left open the question of setting an appropriate combination of threshold 

and width for each array. Clearly, a threshold requirement for an array that 

shows strong signals should be very different than for an array that shows 
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weaker signals. Therefore, for a threshold they used a percentile for each array 

(95th and 98th percentile) of log2 oligomer ratios. Use of this percentile 

“normalizes” the threshold values for each array to reflect both the amplitudes 

and distribution of signal in the arrays and, furthermore, presented a consistent, 

nonarbitrary way to set thresholds for different arrays.  

 

1.2.6 Motif analysis and modules 

One of the major challenges in molecular biology is the unravelling of the 

complex system that regulates the expression of genes. Essential for this aim is 

the ability to identify regulatory elements, specifically the binding sites of 

transcription factors. 

Gene expression is regulated by transcription factors binding to specific 

transcription factor binding sites in regulatory regions associated with genes or 

gene clusters. Identification of regulatory regions and binding sites (called 

motifs) is a prerequisite for understanding gene regulation, and as experimental 

identification and verification of such elements is challenging, much effort has 

been put into the development of computational approaches. However, the 

recently tremendous increase of the diversity of motif discovery programs, each 

of them having its own advantages and disadvantages, makes it especially 

difficult to find the best solution for a given task, e.g. the discovery of motifs 

linked to enriched sequences of a ChIP-chip or ChIP-seq experiment [136].  

Modules are often referred as clusters of binding sites for cooperating TFs. One 

part of describing a module can be achieved by defining the distance between 

single motifs and the occurrence a set of motifs will appear in a given context, 

e.g. correlating with peak sequences. This theory has been applied successfully 

to human EC cells in finding a new cooperation partner of OCT4. The principle 

was to screen OCT4 associated peak sequences for the enrichment of other 

transcription factor binding sites, resulting in the identification of an OCT4 and 

SRY regulatory module [137]. New software tools, freely accessible, such as 

Cisgenome are recently becoming more available, allowing experimental 

biologists to ask questions how peak sequences are related to a potential 

pattern of motif inherent to a specific Chip on chip or ChIP-seq study [138]. 
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1.3 Aim of this work 

The aim of this work was to gain more detailed insights into the understanding 

of the OCT4 dependent transcriptional network in pluripotent cell lines by 

detecting new putative targets of OCT4, which function as hubs. Hubs are on 

top of a functional or regulatory hierarchy and were to be identified by 

combining all detected binding sites in OCT4 knockdown experiments. The 

second aim was to draw differences between human EC and ES cells and to 

investigate in more detail the role of key factors that are needed for maintaining 

the pluripotent state using knockdown or overexpression, coupled with 

subsequent microarray analysis. Preferred were factors with functions in 

apoptosis and cell cycle pathways as recent studies have discussed links to the 

core factors, regulating pluripotency [67,68,139]. Furthermore, the differentially 

regulated genes were to be functionally characterized and screened for links to 

self-renewal pathways. Finally, the distribution and prevalence of the OCT4 

binding patterns in terms of different binding modes should be analyzed. 

 

The rationale to use specifically NCCIT cells came from a study, which 

demonstrated the differentiation potential by using esiRNA against OCT4, 

SOX2 and NANOG [38]. This study had supported the idea that hECC and 

hESC share a number of characteristics in the context of maintaining their 

cellular identity. 

 

A technical focus of this work was to choose and define algorithms or programs 

that could predict with high sensitivity and specificity the occurrence of potential 

binding sites in a more unbiased way, concerning the applied algorithms. Some 

of these binding sites were to be confirmed by using in vitro methods such as 

band shift assays.  

 

Furthermore, the data obtained from these large scale experiments were to be 

connected to published datasets and possible differences between the cell lines 

were to be characterized. 
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2 Material and Methods 

 

2.1 Molecular biology  

 

2.1.1 Polymerase Chain Reaction 

PCR-Reactions for the specific amplification of DNA-fragments were done in the 

following order: 

 
add 25 µl bi-dest water 
2,5 µl 10X-buffer (see below) 
0-2,5 µl 25mM MgCl2 

1
 

0,2 µl dNTP-Mix (dATP, dCTP, dGTP, dTTP at each 25mM) 
every 0,25µl 100µM primer 
1,25 µl DMSO 2 

0,5 µl 10U/µl Taq/Pfu-Polymerase-Mixture 3 

0,5-5 µl DNA-Templat 4 
 
1

 0 µl only if the chosen PCR buffer already contained MgCl2  
2

 optional 
3

 Pfu-part varies between 0 and 100% 
4

 genomic DNA (≈50ng), cDNA (≈50ng-RNA-equivalent) or diluted PCR-Product (5-10ng) 
 

 
The choice of suitable primer sequences were done in the way that the 

hybridization temperature calculated by the program NetPrimer 

(http://www.premierbiosoft.com/netprimer/) for oligo lengths between 22-28 bp 

was between 60 °C and 66 °C and the primers were cross and self dimerized 

only in an acceptable way for ∆G: >-5 kcal/mol for 3’ end self-dimer and ∆G >-6 

kcal/mol for internal dimmers. Using genomic DNA as a template, repetitive 

parts of the sequence of aim were excluded by using the program 

RepeatMasker (http://www.repeatmasker.org/). The mainly used 10X buffer 

contained: 

 
500 mM Tris-Cl pH 8,8 
200 mM (NH4)2SO4 

15 mM MgCl2 

0,1% (v/v) Tween 20 
 
PCR reactions were performed as touchdowns PCR, meaning the annealing 

temperature was decreased step wise to a given value. Reactions were started 
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“hot”, meaning the starting temperature was already 95°C when the samples 

were inserted. 

Here is a depicted a typical program: 

 
 
94°C 2'30'' 
94°C 30'' 
68°C 45'' 12 repititions, Tann 

* -1°C/cycle 
72°C 1'/kb product length 
94°C 30'' 
56°C 45'' 15-19 repititions 
72°C 1'/kb 
72°C 5' 
7°C ∞ *annealing-temperature 
 
 
2.1.2 Isolation of plasmid DNA 

3ml LB media supplemented with appropriate selection antibiotics were 

inoculated with a single colony and grown overnight at 37°C on a shaker. Cells 

were centrifuged at 3,000 rpm for 10 min. Plasmid DNA was isolated using the 

QIAGEN Plasmid Mini Kit, which is based on a modified alkaline lysis 

procedure, followed by binding of plasmid DNA to an anion-exchange resin 

under appropriate low salt and pH conditions, according to the manufacturer’s 

protocol. The DNA pellet was washed two times with 70% ethanol and 

dissolved in 30µl 1x TE buffer. For Maxipreps, Plasmid DNA was isolated using 

the NucleoBond Xtra Maxi Plus EF Kit, according to the manufacturer’s 

protocol. For this purpose, 3ml LB media supplemented with appropriate 

selection antibiotics were inoculated with a single colony and grown for 8 h at 

37°C on a shaker. The volume was then transferred to 300ml LB media and 

grown overnight at 37°C on a shaker. Finally, the precipitated Plasmid DNA in 

the filter was eluted with 1ml TE buffer, passing 2 times through the filter. For 

mammalian cell transfections, plasmids with an OD 260/280 > 1.9 were used. 

 
2.1.3 Gel extraction and PCR purification 

The gel extraction kit from Qiagen was used according to the manufacturer’s 

instructions for PCR product purification and to extract DNA fragments from 

agarose gels. 
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2.1.4 Cloning and Sequencing of PCR-Products 

PCR products were cloned by using primers containing given restriction sites for 

the target construct. For the sequencing of PCR products, they were isolated by 

running on an agarose gel, cutting the desired region out and cleaning by the 

use of the MinElute PCR Purification Kit (QIAGEN). The sequencing reaction 

and analysis was done by providing the vector construct to the service group of 

the MPI for Molecular Genetic.   

 

2.1.5 Ligation 

The final reaction volume for ligation was 20µl. 100ng of vector was used with 

the molar ratio of vector to insert being set at 1: 3 to 1:5. 

Vector 100ng 

3 x insert 1µl 

10 x buffers 1µl 

T4-DNA-ligase 1µl 

H2O to 20µl 

The reaction mixture was incubated at 24 °C for 1h. 10µl of ligated mixture was 

used for transformation into competent bacteria. 

 

2.2 RNA analyses 

 

2.2.1 Total RNA isolation using RNeasy® Mini Kit 

Using the RNeasy® Mini Kit 

To adherent cell lines like the NCCIT cells 350µl of RLT buffer (Qiagen) with 1% 

ß-mercapto-ethanol were added. The cell lysate was homogenised by passing 

through a 19G gauge needle 5 times. RNA isolation from the homogenates was 

performed using the RNeasy® Mini Kit (Qiagen) including DNase I on column 

treatment to get rid of trace amounts of genomic DNA following the 

manufacturer’s protocol. 

 

2.2.2 RNA and cDNA quantification 

The quantity of RNA and DNA was determined using the NanoDrop (NanoDrop 

Technologies, Wilmington, DE, USA). 1–2µl of sample was applied to the 
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NanoDrop and measured. If the concentrations exceeded measurable values 

the samples were either concentrated by speed vac centrifugation or diluted by 

adding dH2O, respectively. 

 

2.2.3 Agarose gel electrophoresis 

Agarose gel electrophoresis and ethidium bromide staining enabled the 

visualizing of RNA and DNA for quality control. By mixing 0.5-1.5g of agarose 

(Life Technologies, Paisley, Scotland) and 50ml of 1x TAE, gels of 1-3% were 

obtained. 1µl of ethidium bromide (10mg/ml; Invitrogen) was added directly to 

the gel and mixed before solidifying. To assign the length of the amplicons the 

GeneRulerTM 1kb DNA ladder (Fermentas, St. Leon-Rot, Germany) was used. 

Prior to loading of samples, a third of the volume of 6x loading buffer 

(Fermentas) was added to the samples. Gels were run in an electrophoresis 

chamber with 50V for 30 to 60min. Nucleotides were visualized with UV light 

using the AlphaImagerTM (Alpha Innotech, San Leandro, CA, USA). 

 

2.2.4 Reverse transcription 

 

Using Superscript II 

For reverse transcription using Superscript II (Invitrogen), 1.0µl (1µg/µl) RNA 

was added to 1.0µl of50 µM Oligo-dT primer plus 8.0µl of dH2O. The mixture 

was spun briefly, heated to 70°C for 5min and cooled on ice. 10.0µl of master 

mix were added including the following components per reaction: 4.0µl of 5x RT 

buffer, 2.0µl of 0.1M DTT, 2.0µl of (10mM) dNTP, 1.0µl (200U/µl) Superscript II 

and 1.0µl of dH2O. After pulse spinning, incubation was carried out at 42°C for 

1.5hrs. 

 

 

 

 

 

Using M-MLV reverse transcriptase 

For reverse transcription using M-MLV reverse transcriptase (Promega, 

Madison, WI, USA), 2.0µl (1µg/µl) RNA was added to 0.5µl of Oligo-dT primer 
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(1µg/µl; Invitek, Berlin, Germany) plus 7.0µl of dH2O. The mixture was spun 

briefly, heated to 70°C for 3 min and cooled on ice. 15.0µl of master mix were 

added including the following components per reaction: 5.0µl of 5x reaction 

buffer (Promega), 0.5µl of (25 mM) dNTP, 0.1µl of M-MLV reverse transcriptase 

(200U/µl; Promega) and 9.4µl of dH2O. After pulse spinning, incubation was 

carried out at 42°C for 1.0hrs and then stopped at 65°C for 10min. 

 

2.2.5 Real-time polymerase chain reaction (Real-Time PCR) 

Real-Time PCR was performed in 96-Well Optical Reaction Plates (Applied 

Biosystems, Foster City, CA, United States). The PCR mix in each well included 

10µl of SYBR®Green PCR Master Mix (Applied Biosystems), 5µl dH2O, 1.5µl 

each of the forward and reverse primers (5ng/µl; Invitek) and 2 µl of single 

strand cDNA (2.5ng/µl) in a final reaction volume of 20µl. Triplicate 

amplifications were carried out per gene with three wells as negative controls 

without template. GAPDH and ACTB were amplified along with the target genes 

as endogenous controls for normalization. The PCR reaction was carried out on 

the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) 

using the following program, stage 1: 50°C for 2min, stage 2: 95°C for 10min, 

stage 3: 95°C for 15s and 60°C for 1min, for 40 cycles and, stage 4: 95°C for 

15s, 60°C for 15s and 95°C for 15s. The last heating step in stage 4 was 

performed with a ramp rate of 2% in order to enable the generation of a 

dissociation curve of the product. 

The output data generated by the Sequence Detection System 2 software were 

transferred to Excel (Microsoft, Redmond, WA, USA) for analysis. The 

differential mRNA expression of each gene was calculated with the comparative 

Ct (threshold cycle) method recommended by the manufacturer. 

 

 

2.2.6 Illumina bead chip hybridisation 

Biotin-labeled cRNA was produced by means of a linear amplification kit 

(Ambion, Austin, TX, USA) using 300ng of quality-checked total RNA as input. 

Chip hybridisations, washing, Cy3-streptavidin staining, and scanning were 

performed on an Illumina BeadStation 500 platform (Illumina, San Diego, CA, 

USA) using reagents and following protocols supplied by the manufacturer. 



Results 

 35  

cRNA samples were hybridised on Illumina human-8 BeadChips. We hybridised 

the samples in biological triplicates, and in biological duplicates.  

 
 
 
2.3 Protein analyses 

 

2.3.1 Protein isolation 

NCCIT Cells were homogenized in 500µl lysis buffer (25% glycerol, 0.42M 

NaCl, 1.5mM MgCl2, 0.2mM EDTA, 20mM HEPES) and with addition of 5µl 

protease inhibitor  

 

2.3.2 Protein quantification (Bradford) 

Protein samples were quantified using the Bradford method. 10x bovine serum 

albumin (BSA, 1µg/µl; Sigma-Aldrich, Munich, Germany) was used as a 

standard and the samples were diluted 1:5 in 1x PBS before use in the assay. 

Standards and samples were brought to 50µl by adding dH2O. For the samples 

1µl of sample was mixed with 49µl of dH2O. The standards were mixed in 7 

different dilutions to enable a standard curve. The volume of 10x BSA was 0, 2, 

4, 6, 8, 10 and 12µl mixed with the needed volume of dH2O to get the final 

volume of 50µl. Bradford solution (Bio-Rad Protein Assay; Bio-Rad, Hercules, 

CA, USA) was diluted 1:5 with 1x PBS and 950µl of the diluted Bradford 

solution were added to each standard and sample. The mixtures were 

incubated on the bench for 5min at RT. Afterwards they were transferred to 1ml 

cuvettes (Sarstedt, Nümbrecht, Germany) and measured using the Ultrospec 

3100 pro (GE Healthcare, Munich, Germany) and the provided Bradford 

programme of the photometer. 

 

2.3.3 SDS-PAGE gel electrophoresis 

Protein gels were poured in Bio-Rad protein chambers. To get good separation 

for the target protein a 10% gel was used. A 10% resolving gel was prepared by 

sequentially adding 2.45ml of dH2O, 1.25ml of resolving buffer (see appendix I), 

50µl of 10% SDS, 1.25ml of 40% acrylamid (Rotiphorese® Gel 40; Carl Roth, 

Karlsruhe, Germany), 25µl APS (Ammoniumperoxodisulfate; Carl Roth) and 
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2.5µl TEMED (Carl Roth) followed by well mixing and transfer to the chamber. 

For the time of solidifying the gel was covered with isopropanol to get an even 

edge. After setting the isopropanol was discarded and a 5% stacking gel was 

prepared by sequentially adding 1.5ml of dH2O, 0.6ml of stacking buffer (see 

appendix I), 25µl of 10% SDS, 0.3ml of 40% acrylamid, 25µl APS and 5µl 

TEMED followed by well mixing, transfer to the chamber and applying a comb. 

21µg of protein were loaded by mixing 7µl of protein (~3µg/µl) with 3.5µl of 3x 

loading buffer (see appendix I). Prior use genomic DNA in the protein samples 

was disrupted by pipetting up and down 5 times with a BD MicrolanceTM 3 

injection needle (Becton Dickinson, Madrid, Spain). The samples and 10µl 

prestained protein marker (New England Biolabs, Beverly, MA, USA) were 

heated to 95°C for 5min and afterwards cooled on ice for 1min before loading. 

The gel was run in 1x running buffer (see appendix I) with 110V until the loading 

buffer front did pass the whole gel. Gels were then used for western blotting. 

 

2.3.4 Western blotting 

Proteins were transferred from the gel to an Amersham HybondTM ECLTM 

nitrocellulose membrane (GE Healthcare) by building up a blot in the following 

order; filter paper, membrane, gel, filter paper. The blot was then covered with 

cellular material from both sides and placed in the transfer chamber (Bio-Rad). 

The blot was run in ice cooled 1x transfer buffer (see appendix II) with a 

constant 350mA for 1 h. After blotting the protein quality was checked by 

Ponceau Red staining of the membrane using Ponceau S Solution (Sigma-

Aldrich). The membrane was shortly washed with dH2O and then blocked with 

blocking solution (see appendix II) by shaking for 5 min at RT and then over 

night at 4°C. 

After short washing with 1xTBST primary antibody was applied to the 

membrane by shaking 1hrs at RT in 0.5g BSA dissolved in 10ml 1x TBST plus 

2µl primary antibody. Afterwards the membrane was again shortly washed with 

1x TBST and then extensively washed by shaking 4 times for 5min in 1x TBST. 

The secondary antibody was then applied by shaking 1h at RT in 10ml blocking 

solution plus 2µl secondary antibody. Afterwards the membrane was again 

shortly washed with 1x TBST and then extensively washed by shaking 4 times 

for 5 min in 1x TBST. 
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250µl of detection reagent 1 and 250µl of detection reagent 2 (GE Healthcare) 

were mixed in a tube and kept in the dark until use. The membrane was placed 

on foil and the mixture was dispensed on the membrane. The membrane was 

directly covered with foil by avoiding air bubbles and incubated for 1 min. The 

liquid was then disposed from the membrane and the membrane was placed in 

a HypercassetteTM (Amersham). In a dark room BioMAx XAR film (Kodak, 

Stuttgart, Germany) was exposed for 20-60s to the membrane and directly 

developed using the Curix 60 develop machine (Agfa, Cologne, Germany). 

 

2.3.5 Chromatin Immunoprecipitation (ChIP) 

Human NCCIT cells were grown to a final count of 5 ×107–1 ×108 cells for each 

location analysis reaction. Cells were chemically crosslinked by the addition of 

one-tenth volume of fresh 11% formaldehyde solution for 10 min at room 

temperature. Cells were rinsed twice with 1 × PBS and harvested using a silicon 

scraper and flash frozen in liquid nitrogen and stored at -80°C prior to use. Cells 

were resuspended, lysed in lysis buffers, and sonicated to solubilize and shear 

crosslinked DNA. Sonication conditions vary depending on cells, culture 

conditions, crosslinking, and equipment. We used a BRANSON 250 and 

sonicated at power 3 for 11:00 min with 30% Duty Cycle at 4°C while samples 

were immersed in an ice bath. The resulting whole cell extract (WCE) was 

incubated overnight at 4°C with 100µl of Dynal Protein G magnetic beads that 

had been preincubated with 10µg of OCT4 antibody (insert). Beads were 

washed five times with RIPA buffer and once with TE containing 50mM NaCl. 

Bound complexes were eluted from the beads by heating at 65°C with 

occasional vortexing, and crosslinking was reversed by overnight incubation at 

65°C. Whole-cell extract DNA (reserved from the sonication step) was also 

treated for crosslink reversal. Immunoprecipitated DNA and whole-cell extract 

DNA were then purified by treatment with RNaseA, proteinase K, multiple 

phenol:chloroform:isoamyl alcohol extractions and precipitation with ethanol. 

Purified DNA was amplified using a one-stage random PCR protocol. For ChIP-

on-chip assay three biological replicate ChIP experiments were performed. 

Labelling and hybridisation of ChIP-DNA was done by NimbleGen. Using the 

NimbleGen human promoter tiling arrays (HG18) we screened 6517 putative 

promoter regions more, with a median probe spacing of 100bp, compared to the 
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OCT4 ChIP-on-Chip done by Boyer et al. Though the chip was covering only 

4250bp, these probes were within the most abundant TF binding sites, using 

TRANSFAC [3]. 

 

2.3.6 Amplification of ChIP and Input DNA 

Linear amplification of ChIPed DNA and input control was carried out on the 

basis of random primer amplification developed by Bohlander et al. [115] and 

which was subsequently modified for ChIP applications [114] except only one 

round of amplification with 20 cycles was performed. Amplified samples were 

purified using Wizard SV PCR purification kits according to the manufacturer’s 

instructions. DNA quality was confirmed by real time analysis of 4 downstream 

targets of OCT4 and 5 OCT4 independent targets. Samples were labeled and 

hybridized according to NimbleGen standard procedure. 

 
2.3.7 Band shift assays (EMSA) 

For the Bandshift, nuclear extracts were prepared from NCCIT cells, using the 

method of Dignam et al., with the modifications of Rodda et al. dsDNA 

oligonucleotides (INVITEK) labeled with cy5 at the 5´termini of both strands. 

Sense strand sequences are provided in supplementary: 

For DNA binding reactions 4µl (40µg) of nuclear extract was added to a 40µl 

reaction (final) containing 50nM cy5 oligonucleotide and 5µg poly-dGdC 

(Amersham). The final binding buffer composition was 60% with 1 µg/µl BSA. 

Where specified 1µM unlabeled ds competitor was also included prior to the 

addition of nuclear extracts. Where specified 2µl anti-Oct4 (sc-9081x, Santa 

Cruz) antibody were added. Binding reactions were resolved on pre-run 6% 

native PAGE gels in 0.5X TBE for overnight at 50V. Gels were imaged directly 

using a Fuji film FLA-5100-R radioluminographic scanner. 

 
2.3.8 Pulldown assays using biotinylated DNA 

50µl streptavidin conjugated Dynabeads (Dynal) were washed with PBS-BSA 

(PBS, pH 7.4, 0.1% BSA) for each sample. Biotinylated USP44 promoter 

fragment DNA (100 pmol) was incubated with the streptavidin beads for 4h at 4 

°C with rotation. Dynabead-DNA complexes were extensively washed with 

PBS-BSA to remove unbound DNA. Beads were added to 1000µg Nuclear 
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Extract of NCCIT cells (in Buffer D: 20mM Hepes, pH 7.9, 20% glycerol, 100mM 

KCl, 0.83mM EDTA, 1.66 mM Dithiothreitol, 1% protease inhibitor mixture, 50µl 

polyGdC and 300X scrambled oligo). Samples were incubated for 8h at 4°C 

with rotation. Dynabead-DNA-protein complexes were magnet separated and 

washed three times with ice cold Buffer D, adding 300X scrambled oligos each 

time. Samples were transferred to fresh microfuge tubes prior to final wash to 

avoid eluting plastic bound proteins. Dynabead-DNA-protein complexes were 

eluted in SDS-reducing sample buffer by heating at 95°C. Duplicate samples 

were pooled and equal volumes loaded onto 10% polyacrylamide gels for SDS-

PAGE. Samples were transferred to nitrocellulose membranes and subjected to 

Western blot analysis. Western blotting was performed according to standard 

procedures and using chemiluminescence detection (ECL – Amersham). 

Antibodies used were Santa Cruz sc-8629 (OCT4) and PARP1 (sc-7150). 

 

2.3.9 Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) 

For ChIP-seq analysis, the three biological replicates used for ChIP-chip 

analysis were pooled for each the OCT4 enriched and for the control DNA, and 

prepared for the sequencing reactions according to the manufacturing manual 

(Illumina).   

 

2.4 Cell culture 

 

2.4.1 Embryonal carcinoma cells, NCCIT cells 

hEC cells were grown in high-glucose DMEM supplemented with 10% FCS 

(Biochrom, Berlin/Germany), 2 mM glutamine, and penicillin/streptomycin on 

conventional tissue culture plastic surfaces. Different lines were compared with 

regards to their growth properties. 

 

2.4.2 Transient Transfections 

For transient transfection, ExGen 500 was used, according to the 

manufacturer’s instructions. ExGen 500 is a sterile solution of linear 

polyethylenimine molecules in water. For transfecting NCCIT cells, 2µg of 

vector DNA were mixed with 6,6µl of ExGen 500 in 100µl OptiMem and 
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incubated for 10 minutes at room temperature. 50µl were applied to 20-30% 

subconfluent cells in a 12-well plate. Transfection efficiency was checked by 

use of a reporter plasmid, expressing GFP. 
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2.5 Data analysis 

 

2.5.1 OCT4 ChIP array analysis 

 

Peak finding algorithms 
 
Brute force  

Based on the quantile normalized data, for each oligonucleotide a fold-

enrichment was calculated by dividing the signal intensity from the 

immunoprecipitated sample by the signal intensity of the whole-genome 

sample. For each array, the total ChIP/IP ratio distribution was examined in 

order to obtain array specific threshold values for the upper 0.01 and for the 

upper 0.05 quantile. A potential binding event is defined with respect to the 

estimated average fragment size of the sonicated DNA (550bp) in relation to the 

distance of oligonucleotides relative to the promoter regions of the examined 

TSSs (distances between oligonucleotides is 100bp). Therefore, a potential 

binding event is defined as at least three oligonucleotides that fulfil the following 

criteria: a centre oligonucleotide has a ChIP/IP ratio within the upper 0.01 

quantile of the total ratio distribution and one upstream and one downstream 

neighbour each within a distance of max. 1000bp have a ChIP/IP ratio within 

the upper 0.05 quantile. All identified peaks are connected to the closest 

transcription start site (TSS), if one exists within a distance of 8kb. Genomic 

positions of transcription start sites are based on Ensembl4 and were 

downloaded via biomart5.  

 
MA2C 

MA2C was used with standard settings for first normalizing our PairData files for 

each of the five experiments and thereafter searched for peaks [134]. 

Promoter1 3 replicates had 269, 504, 460 peaks. Promoter2 two replicates had 

1366 and 915 peaks. When providing MA2C with all three replicates 

simultaneously and using replicate function the program identified 830 peaks for 

promoter1 and 1208 for promoter2. When all three programs identify a peak 

close to a gene then the peaks found by MA2C tend to have the highest motif 

scores for OCT4 associated to it. 
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TAMALPAIS 

We used a web version of the Tamalpais program for analysing already 

normalized files provided by NimbleGen [135]. Tamalpais searches for peaks in 

each array separately and lists as an output all peaks and their occurrences in 

different replicates.  We chose the lowest stringency set of L4 for further 

analysis. We had for promoter1 1036 peaks in total, 54 that were found in all 

three replicates (max gap allowed between peaks is 50bp), 93 that were found 

in two and 889 identified in only one replicate. For promoter two we had only 

two biological replicates and for these we found 505 peaks, 32 of which were 

found in both and 419 that were found only in one replicate. 

 

De Novo Motif Search 

The new OCT4 seqlogo was made by mapping the motifs that had levenshtein 

distance which measures the changes that have to be made (insertions, 

deletions, substitutions) to make two sequences equal to the ACGTAAAT OCT4 

consensus sequences, allowing a maximum of 2 mismatches. We mapped all 

those motifs back to all the peak regions, took the longest matches allowing at 

most 1 bp gap between two motifs from the input set. We then aligned these 

motifs and produced a pwm and a sequence logo. 

 

 

2.5.2 Microarray expression analysis 

All basic expression data analysis was carried out using the manufacturer's 

software BeadStudio 3.1.3.0 (Illumina). Raw data were background-subtracted 

and normalised using the "rank invariant" algorithm, by which negative intensity 

values may arise. Normalized data were then filtered for significant expression 

on the basis of negative control beads. Selection for differentially expressed 

genes was performed on the basis of arbitrary thresholds for fold changes plus 

statistical significance according to an Illumina custom model [140]. 

Differentially expressed genes were further filtered according to Gene Ontology 

terms or mapped to KEGG pathways using DAVID 2006 
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(http://david.abcc.ncifcrf.gov). For analysis, we used GenBank accession 

numbers represented by the corresponding chip oligonucleotides as input. 

 

2.5.3 ChIP-seq in silico methods 

 
Mapping of reads 
 
In total, 38512647 Mio Solexa 36mer single-end reads from three lanes of the 

OCT4 ChIP samples and 25263427 Mio Solexa 36mer single-end reads from 

two lanes of the Input samples were obtained. 18734743 Mio ChIP reads could 

be mapped to the human genome (hg18 [141] downloaded from UCSC [142]) 

using MAQ [143] with default parameter settings. Analogous, 12559090 Mio 

Input reads were mapped. These reads were further filtered by selecting only 

those that have a MAQ single-end quality score ≥10 ending up with 11739324 

Mio ChIP and 7957923 Mio Input reads. Moreover, all reads that were aligned 

at exactly the same position and represented such positions with only one read 

were removed. Finally, 11194815 Mio high-quality reads from the OCT4 ChIP 

samples and 7435342 high-quality reads from the Input samples were received. 

 

Data quality control 
 
Reads were extended to a length of 500bp (250bp bandwidth). The human 

genome was divided into windows of 50bp length and for each window the 

number of overlapping reads was counted. Chromosomes were concatenated 

and the resulting vectors were compared via scatter plots and Pearson 

correlation coefficients using the R environment.  

 

Saturation analysis 
 
The total set of high quality mapped ChIP reads was divided into two distinct 

random sets. From both sets, 100000 reads were randomly selected, extended 

(250bp bandwidth), distributed over genome wide 50bp windows, chromosomes 

were concatenated and the resulting vectors were compared via Pearson 

correlation. This process was iteratively repeated by adding 100000 random 

selected additional reads from the according distinct sets at each step. Input 

reads were processed analogously. 
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The available set of high quality mapped ChIP reads was doubled and 

afterwards divided into to distinct random sets. Based on these artificially 

increased set, the saturation analysis was performed as previously described. 

Because reads are considered twice, a higher correlation of the compared 

randomly selected subsets is expected. In order to test the scale of this effect, 

we randomly selected 2.8 Mio unique reads (and 5.6 Mio unique reads, 

respectively) from the original set of ChIP reads. The selected subset was 

artificially doubled and the estimated saturation analysis was performed as 

previously described.  

 

Peak identification 
 
The total set of high-quality mapped ChIP and Input reads were used as input 

for CisGenome [138], an integrated software system for analyzing ChIP-Seq 

data. The provided hg18 genome database was selected as reference genome. 

First, the exploration step was performed with default parameter settings. Peak 

detection was performed with the Sequencing Two Sample Analysis module 

based on the results of the exploration step. Parameters were set as follows: 

dP0_hat=0.599875, W=100, M=5, S=100, Max Gap=0, Min Peak Length=0, 

FDR≤0.9. 

 

Motif mapping 
 
Position-specific count matrices were retrieved from TRANSFAC [144] for the 

octamer (M00795) and the SOX-OCT joint (M01124 and M01125) motifs. 

Matrices were transformed into the pseudo-count format required for 

CisGenome [138]. Motifs were mapped to the peak regions using CisGenome’s 

Known Motif Mapping Single Matrix->cod module with default parameter 

settings.  

 

 

 

 

 

 

 



Results 

 45  

Conservation analysis 
 
Conservation analysis was performed by the Get Conservation Summary 

module of CisGenome with default parameter settings. The total set of received 

peaks was analyzed and the mean conservation score for conserved non-

repeat positions was used for the following analyses. 

 

Peak Annotation 
 
In order to connect each peak to its closest TSS, the gene file (refGene.txt) 

provided by CisGenome was accessed. For each peak, the distance to the 

closest (downstream or upstream) TSS and the according gene name were 

stored.  

 

Enrichment analysis 
 
Enrichment analysis was conducted with the DAVID platform [145]. Official 

gene symbols were used as input, the Homo sapiens species was selected as 

background and DAVID was executed with default parameter settings.  
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3 Results 

 

3.1 ChIP-Chip data analysis 

The first aim of the study was to establish a ChIP-Chip with NCCIT cells, to 

discover OCT4 related binding sites. Therefore in a first step anti-OCT4 

antibodies had to be tested for efficient chromatin immunoprecipitation. 

 

3.1.1 Specifity of the OCT4 antibody and the impact amplification bias 

has on site specific enrichment 

Antibody specificity is essential for chromatin immunoprecipitation experiments. 

Although the antibodies used in this study were previously described to be 

specific in the same application [83] the quality may be lot-dependent. 

Therefore, Western blot analysis using two polyclonal antibodies against OCT4, 

one termed N19, the other H-134, was carried out. Figure 3.1 shows that each 

antibody only gives one band corresponding to the expected size. However 

antibody N19 shows a better signal and was thus chosen for subsequent 

immunoprecipitation reactions. 

 

 
Figure 3.1 Control of antibody specificity by Western blot analysis of OCT4. Lane 1 and 2: 

polyclonal antibody against OCT4, type N19 (Santa Cruz), lane 3 and 4: polyclonal 

antibody against OCT4, type H134). 

 

 

For efficient hybridization onto a promoter array, approximately 5 µg DNA is 

required. Therefore amplification of the enriched DNA samples is unavoidable. 

This was accomplished by a random PCR approach. Comparing the 
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distributions of non-amplified with amplified DNA an enrichment of fragments in 

the size range as seen in Figure 3.2 was noted.   

 

 

 

 
Figure 3.2 DNA-fragment distributions before and after amplification employing Random-

PCR. 

Loaded with 300 ng per lane. 

Lane 1 and 2 are DNA from whole cell extracts (WCE).  

Lane 3: INPUT – Antibody control 

Lane 4: ENRICHMENT –Antibody control 

Lane 5: INPUT Oct4-N19 

Lane 6: ENRICHMENT Oct4-N19 

Lane 7: INPUT Oct4-H134 

Lane 8: ENRICHMENT Oct4-H134 

Lane 9: Fermentas 1 Kbp Marker 

Lane 0: Fermentas 100 bp Marker  

 

The Amplification step does not introduce a significant bias 

 

To test for a bias, which might occur after the randomized amplification we 

compared non-amplified with amplified DNA samples by qPCR for a selection of 

previously reported OCT4 binding sites and negative control loci. The Ct-

difference was in all cases below 2,5 (see Figure 3.3). An enrichment of 

selected regions could not be found, meaning none of the sequences was 

preferred during the PCR-amplification. As the random PCR is an exponential 
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based amplification, a delta Ct of 2,5 can still be considered valid for further 

succeeding applications i.e. hybridization on arrays. 

 

 

 

Figure 3.3 Comparison of 5 chosen regions with nonamplified and amplified DNA 

fragments with the Random-PCR method. Delta Ct was ranging between 0,1 and 2,4. The 

amplified DNA had in all cases a higher Ct-value NANOG and SOX2 promoters contained 

a binding motif for OCT4. PHF and HBB primers were located in the  5´prime promoter 

region. 

 

 
3.1.2 Real time validation of known and putative OCT4 targets 

To test if previously reported potential OCT4 binding sites in human ES cells 

could be also verified in NCCIT cells, potential binding sites related to the genes 

NANOG, SOX2, LEFTY2, FGF2, HISTH2AM and GAP43 were chosen. As a 

control a number of regions in Exons and proximal promoters not reported to be 

correlated with OCT4 binding were added for real time validation (see Figure 

3.4).  
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Figure 3.4 qPCR confirmation of known target sites of OCT4 with 3 biological replicates, 

containing a SOXOCT motif, compared to other genomic regions. Note the strong 

enrichment for NANOG. 

 

In none of the controls a significant enrichment in all three biological replicates 

could be observed. In comparison, apart from GAP43, at least 4 fold enrichment 

could be detected in at least two biological replicates for 5´proximal promoter 

regions of the genes NANOG, SOX2, LEFTY2, FGF2 and HISTH2AM, which 

were confirmed to be OCT4 target genes in human ES cells in a study by Boyer 

et al. [83]. Thus a global scale analysis of binding sites, using these samples 

was justified.  

 
 

3.1.3 ChIP-chip raw data normalization and quality control 

For array hybridization, a commercial 2-array set from NimbleGen was chosen. 

The set consisted of 59357 represented transcripts (using the HG18 version) 

with an average region size of 50 bp every 100 bp for an average region size of 

4700 bp relative to the transcription start site (TSS) and for most sites starting at  

4000 bp upstream of the TSS. As three biological replicates were taken, this 

resulted in a total of 12 arrays for both Cy3 and Cy5 labeled samples (see table 

3.1). 
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CHIP_ID DYE DESIGN_NAME SAMPLE_DESCRIPTION 

87866 Cy3 HG18_promoter_1of2 total III 

87866 Cy5 HG18_promoter_1of2 experimental III 

89715 Cy3 HG18_promoter_2of2 total II 

89715 Cy5 HG18_promoter_2of2 experimental II 

95313 Cy3 HG18_promoter_1of2 total I 

95313 Cy5 HG18_promoter_1of2 experimental I 

95758 Cy3 HG18_promoter_2of2 total I 

95758 Cy5 HG18_promoter_2of2 experimental I 

95760 Cy3 HG18_promoter_1of2 total II 

95760 Cy5 HG18_promoter_1of2 experimental II 

95935 Cy3 HG18_promoter_2of2 total III 

95935 Cy5 HG18_promoter_2of2 experimental III 

 
Table 3.1 Number and name of arrays used for hybridisation. total: randomised DNA, 

taken before Immunoprecipitation for each replicate (I – III). experimental: enriched DNA 

fraction after immunoprecipitation for each replicate (I – III). 

 

After hybridization and scanning of the arrays, the first aim was to evaluate the 

quality of the raw data and chose a suitable normalization method. For this 

reason Pearson correlations of the scatter plots for the enriched fraction (Cy5 

labeled) against the control (Cy3 labeled, see Figure 3.5) as well as for the 

different biological replicates (see Figure 3.6) were calculated.  
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Figure 3.5 Scatter plots of all array experiments, showing the Pearson correlations. Blue 
line represents theoretical mean, middle red line is measured mean. The flanking red 
lines represents the 2-fold changes between Cy3 (532) and Cy5 (635), represented for 
each array (87866 – 95935). 

 

This resulted in scores between 0.90 and 0.94. One array showed a Pearson 

score of 0.15 and a reconstruction of the TIF image showed a gradient of the 

intensities from the upper right to the lower left corner, which argued for errors 

during the hybridization process. Conclusively this array was excluded for 

further array analysis.  
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Figure 3.6 Scatter Plots showing the variance between the single biological replicates 

 

Furthermore quantile based normalisation showed the best performance when 

compared to three other, already established methods, Median, VA and Lowess 

normalisation, and was conclusively chosen for further peak analysis (see 
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Figure 3.7). In summary, five of the six arrays used showed raw correlation 

coefficients (Cy3 vs. Cy5) in the range of 0.91-0.94 with correlation coefficients 

always slightly higher after applying quantile normalization. 

 

 

 
Figure 3.7 Example of MA-Plots of different normalization methods (MEDIAN, VSN, 
LOWESS and QUANTIL) used. 

 

In order to get an overview of the overall probe intensity score distribution and 

the extend of  background noise effects, random probes were compared with 

the total probe set in a scatter plot, showing the Cy5 labeled probes on the Y-

axis and the Cy3 labeled ones on the X-axis  (see Figure 3.8).  
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Figure 3.8 The left scatter plot shows the distribution of the enriched probes (Y-axis) 

against the INPUT probes (X-axis) for Chip ID 95313. The red to dark blue dots represent 

the top 1% to top 5% quantiles based on the absolute intensities of the array. The black 

dots represent random probes, used as an internal control of the array. The right scatter 

plot shows the overlap of the three different biological replicates. 

 

Most of the random oligos were scattered between an intensity score of 0 and 

5000. The overlap in the first quantile was high; indicating that enrichment 

correlated with these probes was consistent.  

 

     

3.1.4 Impact of different peak detection strategies on peal quality 

Pure ratio based algorithms are insufficient for reliable peak prediction 

 

One of the simplest algorithms for detecting peak scores is to compare the ratio 

of the intensities for each probe for a given sequence length and obtain a true 

value for peak identification once a number of n probe ratios are above a certain 

threshold. For the ChIP-chip analysis the first applied algorithm had the 

following condition for a potential binding event: For a window of 350 bp at least 

3 probes had to have a threshold of at least 1.5 for at least 2 biological 

replicates. Such an approach identified known binding sites such as the 

5´proximal promoter region of the NANOG gene, which had high intensity 

scores for the enriched probes. In general, peaks, which contained probes in 

the top 1% quantile (see Figure 3.8), showed high ratios between the enriched 

and the control samples (see NANOG, YAF2 and PHC1 in Figure 3.9). However 
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this approach had the flaw of peak detections for regions, which could not be 

distinguished from the background noise, thus resulting in a high number of 

false positives (see ESX1, PAK1 and SLCO1A2 in Figure 3.9). Furthermore for 

low threshold levels, overlapping peak windows could occur easily, resulting in 

wrong, artificially long peak length (see ESX1 in Figure 3.9). 
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Figure 3.9 Tiling maps of identified peak regions, showing the intensities of the control 
sample (input) and the enriched DNA fraction (ChIP). The upper 3 examples included 
probe intensities in the upper 1% quantile. The lower 3 examples illustrate the 
disadvantage of the algorithm used as no real shoulder-head-shoulder formations could 
be detected and the intensities of the enriched fraction is not significant higher (for 
example at least two standard derivations) than the average signal of the random probes 
as seen in Figure 3.8. 
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In conclusion, for further downstream analysis, this algorithm was prone to 

generate false positive detected regions and thus needed to be replaced by 

more enhanced algorithms. 

 

Algorithms including quantile percentage of the probe scores 

 

As for a more reliable peak detection the upper quantile percentages clearly 

need to be included, a more advanced algorithm was formulated. For this case 

a peak is defined as a triple of oligonucleotides, where the ratio of the centre 

oligonucleotide must be in the upper 0.01 quantile of all ratios and the two 

flanking oligonucleotides must each have a ratio within the upper 0.05 quantile 

of all ratios, thus including shoulder-head-shoulder patterns and probe 

intensities significantly beyond the background. Centre and flanking oligos had 

to be within a window of 550 bp, reflecting the fragment distribution after the 

amplification (see Figure 3.2). If a peak was detected within –8000 bp to +2000 

bp relating to the transcription start site of an annotated gene, following the 

NCBI36 build, this gene was associated with the peak. A final target was 

defined, when the peak was assigned at least to two replicates, respectively 

one replicate for the promoter array 2, due to the one bad hybridized array. For 

this approach 473 genes could be detected. Compared to the previously 

mentioned algorithm (529 targets) the overlap was only 160 genes.  

 

 

3.1.5 Comparison of different peak algorithms and rank based peak 

detection 

In order to evaluate the performance of the algorithm mentioned above, which 

was an in-house developed peak analysis tool for ratio distribution dependent 

interval analysis, referred to as brute-force, it was compared with two 

independent peak analyses programs, including MA2C [134] and TAMALPAIS 

[135] which are publicly available. Comparing the three different peak analysis 

programs, a significant number of targets in NCCIT cells were identified 

exclusively by one program, for peaks detected in up to 3 biological replicates 
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(Fig. 3.9 A-C). This was in accordance to a previous study performed by 

Johnson et al. showing that variation in performance between labs, protocols, 

and algorithms within the same array platform was greater than the variation in 

performance between array platforms [146]. In conclusion, in order to evade a 

potential bias due to specialized peak finding algorithms a peak finding program 

was devised, which was including the information of each detected peak, 

whereas a given algorithm was  not preferred. Each program was considered 

equally for the purpose of peak finding and reasoned that a peak identified by 

three separate programs in each replicate was equivalent to a peak identified by 

one program in three biological replicates.  

 
Figure 3.9 Venn diagrams, illustrating the overlaps between different peak analysis 
programs according to refseq IDs.  
A-C: sorted replicate-wise  
D: showing the overlap between different cell lines- NCCIT, this study, H9 and NTERA2. 
 
 

The key pluripotency factors OCT4, NANOG and SOX2 contained an identified 

binding site with a score higher than 0,5. For a peak score of 0.33 and above, 

15 OCT4 target genes of our CHIP-chip with NCCIT cells out of 16 genes, 
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which were reported before to have a critical role downstream of OCT4 were 

the same, compared with mouse and human ES cells [84]. 

 

SYMBOL 87866 95313 95760 89715 95758 Score 

POU5F1 3 LMT 3 LMT 3 LMT     1.00 
NANOG       3 LMT 3 LMT 1.00 
EOMES 3 LMT 3 LMT 3 LMT     1.00 
GBX2 3 LMT 3 LMT 3 LMT     1.00 
REST 2 MT 2 MT 2 MT     1.00 
CDYL 3 LMT 2 LM 3 LMT     0.88 
RIF1 2 LMT 3 LMT 2 LMT     0.78 
SOX2 3 LMT 1 M 2 LT     0.66 
FOXC1   3 LMT 3 LMT     0.66 
RFX4       1 M 2 LM 0.50 
HOXB1         2 LM 0.33 
LHX5         2 LM 0.33 
ISL1 3 LMT         0.33 
JARID2   2 LM 1 L     0.33 
REST 1 L 1 L 1 L     0.33 
MYF5     3 LMT   1 L 0.16 

Table 3.2 Chosen examples of potential binding sites and the number of detected peaks 

in biological replicates and peak analysis programs. The 5 numbers of the header 

represent the corresponding arrays. 1 – 3 indicates how many programs identified a 

peak. L: brute-force M: MA2C T : TAMALPAIS. 

 
 
3.1.6 Functional analysis and comparison with literature 

Using a threshold of 0.33 resulted in 927 Refseq DNA IDs, which is close to the 

number of OCT4 targets found in the H9 cell line (729) and almost twice as 

much as detected with the NTERA2 cell line (548). Comparing the Refseq DNA 

identifiers from the OCT4 ChIP-on-chip targets with another EC cell line 

NTERA2 [137] and with a human ES cell line H9 [83] uncovered a set of 31 

targets amongst which are both positively regulated (including OCT4, SOX2 

and NANOG) and negatively regulated genes (see Figure 3.9 D and Table 3.3). 

Notably, this list contains a significant enrichment of developmental factors 

(4,4E-8 for multicellular organism development, using DAVID, see supplemental 

material). 
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HGNC 
symbol 

RefSeq DNA ID Description 

GCNT2 NM_001491 N-acetyllactosaminide beta-1,6-N-acetylglucosaminyl-transferase (EC 
2.4.1.150) (N-acetylglucosaminyltransferase) (I-branching enzyme) (IGNT). 

CTGF NM_001901 Connective tissue growth factor precursor (Hypertrophic chondrocyte- 
specific protein 24). 

DUSP6 NM_001946 Dual specificity protein phosphatase 6 (EC 3.1.3.48) (EC 3.1.3.16) (Mitogen-
activated protein kinase phosphatase 3) (MAP kinase phosphatase 3) 

GAP43 NM_002045 Neuromodulin (Axonal membrane protein GAP-43) (Growth-associated 
protein 43) (PP46) (Neural phosphoprotein B-50). 

TNC NM_002160 Tenascin precursor (TN) (Tenascin-C) (TN-C) (Hexabrachion) 
NKX2-2 NM_002509 Homeobox protein Nkx-2.2 (Homeobox protein NK-2 homolog B). 
POU5F1 NM_002701 POU domain, class 5, transcription factor 1 (Octamer-binding transcription 

factor 3) (Oct-3) (Oct-4). 
PPP2R3A NM_002718 Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit 

alpha (Serine/threonine-protein phosphatase 2A 72/130 kDa regulatory 
subunit B) 

CCL2 NM_002982 C-C motif chemokine 2 precursor (Small-inducible cytokine A2) 
SOX2 NM_003106 Transcription factor SOX-2. 
TAL1 NM_003189 T-cell acute lymphocytic leukemia protein 1 (TAL-1) (Stem cell protein) (T-cell 

leukemia/lymphoma protein 5). 
HESX1 NM_003865 Homeobox expressed in ES cells 1 (Homeobox protein ANF) (hAnf). 
EPHA1 NM_005232 Ephrin type-A receptor 1 precursor (EC 2.7.10.1) (Tyrosine-protein kinase 

receptor EPH). 
EOMES NM_005442 Eomesodermin homolog. 
SIX1 NM_005982 Homeobox protein SIX1 (Sine oculis homeobox homolog 1). 
MAN2C1 NM_006715 Alpha-mannosidase 2C1 (EC 3.2.1.24) (Alpha-D-mannoside mannohydrolase) 

(Mannosidase alpha class 2C member 1) (Alpha mannosidase 6A8B). 
PIP5K1C NM_012398 Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma (EC 2.7.1.68) 

(Phosphatidylinositol-4-phosphate 5-kinase type I gamma) 
ATAD2 NM_014109 ATPase family AAA domain-containing protein 2. 
IL1RAPL1 NM_014271 X-linked interleukin-1 receptor accessory protein-like 1 precursor (IL1RAPL-

1) (Oligophrenin-4) (Three immunoglobulin domain-containing IL-1 receptor-
related 2) 

CXorf26 NM_016500 UPF0368 protein Cxorf26. 
SHC3 NM_016848 SHC-transforming protein 3 (SH2 domain protein C3) (Src homology 2 

domain-containing-transforming protein C3) (Neuronal Shc) (N-Shc) (Protein 
Rai). 

GALNT8 NM_017417 Probable polypeptide N-acetylgalactosaminyltransferase 8 (EC 2.4.1.41) 
LHX5 NM_022363 LIM/homeobox protein Lhx5 (LIM homeobox protein 5). 
HOXB4 NM_024015 Homeobox protein Hox-B4 (Hox-2F) (Hox-2.6). 
NANOG NM_024865 Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog). 
ZIC4 NM_032153 Zinc finger protein ZIC 4 (Zinc finger protein of the cerebellum 4). 
SPRED1 NM_152594 Sprouty-related, EVH1 domain-containing protein 1 (Spred-1) (hSpred1). 
OLIG3 NM_175747 Oligodendrocyte transcription factor 3 (Oligo3) (Class B basic helix- loop-

helix protein 7) (bHLHB7). 
LRRTM3 NM_178011 Leucine-rich repeat transmembrane neuronal protein 3 precursor. 
CSMD3 NM_198123 CUB and sushi domain-containing protein 3 precursor (CUB and sushi 

multiple domains protein 3). 
SP8 NM_198956 Transcription factor Sp8 (Specificity protein 8). 

 
Table 3.3 list of core genes common between OCT4 ChIP-chip experiments performed in 
this study with NCCIT cells compared with H9 human ES cells and Ntera2 human EC 
cells. 

 

A functional annotation of  genes for which peaks have been identified only in 

H9 as well as in NCCIT cells using g:profiler [147], identified genes contributing 

to neural crest cell development, developmental processes, with an enrichment 

of genes involved in DNA dependent regulation of transcription. The functional 

term “DNA dependent regulation of transcription“ was also enriched for OCT4 

putative target genes for only H9 hES cells. Neural crest cell development might 

reflect the propensity of EC cells to differentiate to the neuronal lineage upon 

stimulation with retinoid acid [148].  
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Additionally, performing a functional annotation with genes correlating with 

identified peaks in their promoter region for NCCIT cells, the most stringent 

annotations (p-value < 0.01) were homeobox, transcriptional repressors and 

activators, neuronal differentiation and segmentation. For homeobox-containing 

proteins (see Table 3.4), 17 out of the 31 specific targets identified in NCCIT 

cells, were detected as OCT4 targets in the human ES cell line- H9 as well. 
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HGNC 

symbol 

Description Occupied 

by OCT4 in 

H9 

TPRX1 Tetra-peptide repeat homeobox protein 1  

HOXB4 Homeobox protein Hox-B4 + 

HOXC10 Homeobox protein Hox-C10   

TGIF2LX Homeobox protein TGIF2LX (TGFB-induced factor 2-like protein, X-linked) 

(TGF(beta)induced transcription factor 2-like protein) (TGIF-like on the X)  

 

ADNP Activity-dependent neuroprotector homeobox protein (Activity-dependent 

neuroprotective protein) 

 

SIX1 Homeobox protein SIX1 (Sine oculis homeobox homolog 1)  + 

OTX2 orthodenticle homeobox 2   

MEIS2 Homeobox protein Meis2 (Meis1-related protein 1)   

MEIS1 Homeobox protein Meis1  + 

ISL1 Insulin gene enhancer protein ISL-1 (Islet-1) + 

LHX5 LIM/homeobox protein Lhx5 (LIM homeobox protein 5)  + 

PITX3 Pituitary homeobox 3 (Homeobox protein PITX3)  

HOXB6 Homeobox protein Hox-B6 (Hox-2B) (Hox-2.2) (HU-2) + 

HOXB1 Homeobox protein Hox-B1 (Hox-2I)  + 

PHOX2A Paired mesoderm homeobox protein 2A (Paired-like homeobox 2A) (Aristaless 

homeobox protein homolog) (ARIX1 homeodomain protein)  

 

PITX2 Pituitary homeobox 2 (RIEG bicoid-related homeobox transcription factor) (Solurshin) 

(ALL1-responsive protein ARP1) 

 

HESX1 Homeobox expressed in ES cells 1 (Homeobox protein ANF) (hAnf)  + 

GSC Homeobox protein goosecoid  + 

HOXA3 Homeobox protein Hox-A3 (Hox-1E) + 

POU5F1 POU domain, class 5, transcription factor 1 (Octamer-binding transcription factor 3) (Oct-

3) (Oct-4)  

+ 

ZHX3 Zinc fingers and homeoboxes protein 3 (Zinc finger and homeodomain protein 3) (Triple 

homeobox protein 1) 

 

MEOX2 Homeobox protein MOX-2 (Mesenchyme homeobox 2) (Growth arrest-specific 

homeobox)  

 

TGIF2 Homeobox protein TGIF2 (5'-TG-3'-interacting factor 2) (TGF(beta)-induced transcription 

factor 2) (TGFB-induced factor 2) 

+ 

NANOG Homeobox protein NANOG (Homeobox transcription factor Nanog) (hNanog)  + 

TSHZ1 Teashirt homolog 1 (Serologically defined colon cancer antigen 33) (Antigen NY-CO-33)  

NKX2-2 Homeobox protein Nkx-2.2 (Homeobox protein NK-2 homolog B) + 

BARX2 Homeobox protein BarH-like 2   

HOXD13 Homeobox protein Hox-D13 (Hox-4I)  

HOXD11 Homeobox protein Hox-D11 (Hox-4F) + 

HOXD8 Homeobox protein Hox-D8 (Hox-4E) (Hox-5.4)  

HIPK1 Homeodomain-interacting protein kinase 1 (EC 2.7.11.1)  

GBX2 Homeobox protein GBX-2 (Gastrulation and brain-specific homeobox protein 2)  + 

PROX1 Prospero homeobox protein 1 (Homeobox prospero-like protein PROX1) (PROX-1) + 

Table 3.4: Examples of Homeobox-domain containing genes bound by OCT4 in NCCIT 

and H9 cells. 
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To determine if these genes potentially exist as an OCT4-gene regulatory 

network, this list of genes was submitted to the STRINGS network analysis tool 

[149]. The resulting network (Fig. 3.10) consisted of a distinct self-renewal 

cluster composed of NANOG, SOX2, FOXD3, OCT4 (OTF3C) and 

differentiation-inducing network clusters regulated by transcription factors such 

as NKX2-2, OLIG3, LHX5, HOXB4 and GATA1, which are themselves 

negatively regulated by OCT4 [8]. 
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Figure 3.10 A gene regulatory network based on the 31 genes (coloured) common in 

OCT4 ChIP-Chip targets derived from NCCIT, NTERA2 and H9 cells. GADD45G was also 

included in this analysis. The network was generated using the web-based program 

STRINGS. 

Pink lines: connectivity based on experimental evidence. 

Green lines: connectivity based on text mining. 

 

 

 
 

 

3.1.7 Six distinct OCT4 binding modules 

To investigate if most of the targets obtained in this study contain an octamer 

motif, all the peak regions of 497 target genes for OCT4 motifs were screened, 

using a peak-score of at least 0.5 to ensure that peaks were detected at least 

for two biological replicates and ranked them based on a significance score.  

Early studies in mouse showed that a strong enhancer element for OCT4 

binding is the octamer motif [9]. Thus, based on the algorithm applied for peak 

detection (see 3.1.6), the correlation of octamer motifs and the peak score value 

were investigated. For this reason, indeed, the octamer motif could be 

reconstructed, using the sequences of the detected potential binding sites for 

peak-scores of 0,5 and  furthermore for peaks falling in the first 5% quantile and 

using the de novo motif discovery program MEME, the OCT4 motif  for the 

OCT4  and SOX2 heterodimer (referred to as oct-sox motif) was detected and 

showed a good correlation with the published oct-sox motif discovered by a 

ChIP-PET study, performed in mouse [150] (see Figure 3.11).  
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Figure 3.11 Detected OCT4 motifs in NCCIT cells, compared with mouse ES cells 

A: reconstructed octamer motif in NCCIT cells 

B: detected oct-sox motif in NCCIT cells 

C: detected oct-sox motif in mouse ES cells [150] 

 

 

 

As seen in Figure 3.12, 50% of all potential octamer motifs fall within peak 

scores starting at 0.5. The median for the motif scores was 7.3 and was used as 

a threshold for subsequent motif analysis. 

 

 
Figure 3.12 Box plot, showing the distribution of the quality of octamer motifs in relation 

to our defined peak score. For a peak-score of 0.5, half of the motifs will have a motif-
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score of 7.3 and above. The average motif score will decrease slightly for a peak score of 

0.33 and a significant drop in the motif score can be perceived for a peak score of 0.11. 

 

 

Thus, genes with motif scores of 7.3 and above were defined as potential direct 

targets of OCT4. We then sorted all targets with an OCT4 and a SOX2 motif 

above the threshold level, resulting in a list of 372 genes. The comparison of 

this list with the target list from Boyer et al [3] that had a SOX2 and an OCT4 

peak region (332 targets), resulted in an overlap of 293 targets. 

 

 

Additionally in order to investigate if those target genes containing a motif score 

below 7.3 could be regulated by another transcription factor, these regions were 

scanned with a de novo motif discovery program [23-25], which resulted in the 

discovery of several known transcription factors which could potentially bind to 

the de novo discovered motifs (see below for module 4). In addition to OCT4 

motifs, peak regions were screened for the presence of SOX2 motifs, as it is 

known to form a heterodimer with OCT4. This analysis led to the identification of 

6 distinct putative modules of OCT4-binding and transcriptional regulation (Fig. 

3.13).  
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Figure 3.13 Six distinct OCT4 binding modules. Shown are the peak scores, relative to 

the overlap between MAC2, TAMALPAIS, the in-house developed algorithm - brute-force 
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and the biological replicates. Peak profiles could be screened for the octamer and SOX2 

motifs. 

 

In all of these modules the corresponding genes with their significant 2-fold up- 

or down-regulated expression upon OCT4 knockdown in NCCIT cells were 

correlated [5] (supplemental material). 

  

Module 1: OCT4-SOX2 binding motif 

This group consisted of 39 genes in total. Within this module, CTGF and 

TXNRD1 were up-regulated whilst TPST2, PAK1 and NANOG were down-

regulated in OCT4 depleted NCCIT cells [5]. The binding of OCT4 to the OCT4-

SOX2 motif within the proximal promoter of the NANOG gene were confirmed in 

NCCIT cells using a bandshift assay (see 3.1.10 for details).  

 

Module 2: OCT4 binding motif but lacking a SOX2 binding motif 

This module consisted of 122 genes in total, of these FOXC1, RUNX1, 

LGALS3, NR2F2, CRABP1, CAMK2D, GFOD1 and HN1 were up-regulated 

whilst GAGE7, GAGE8, ZNF398, USP44 and DPPA4 were down-regulated in 

OCT4 depleted NCCIT cells. Another gene harbouring this module in its 

promoter was GADD45G (see 3.1.11 for details). 

 

Module 3: SOX2 binding motif but lacking an OCT4 motif. 

This set consisted of 65 genes in total, of these EMP1, RIN2, TNC, KLHL5, 

FOXB1, PKD1L2, GPC6 and CBR3 were up-regulated whilst GSPT2, HESX1, 

RHCE, RHD, SFRP2 and GDF3 were down-regulated in OCT4 depleted NCCIT 

cells. 

 

Module 4: SOX2 and OCT4 binding motif not present 

This is a very interesting module suggesting that within 3,5 kb upstream and 

750 bp downstream of the TSS of the 271 genes identified, OCT4 might be part 

of a protein complex with yet unknown transcription factor(s) physically 

contacting the promoter regions of these target genes. Of these genes, IL1, 

COL4A1, PLAU, TPM1, SYTL2, CDC42EP1, KDELR3, KLNK10, H2AFY, 

SLC7A7, LGI1, BAG3, PACS1, MAP3K8, TOM1L2, LBR, KCTD10, ZFP90, 
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EPHB3, and WDR1 were up-regulated whilst, SCGB2A2, GABRA5, FRAT2, 

RAB25, CSPG5, MAD2L2, SPTBN2, C20orf12, PHC1, MYCN, TUB, GPR3 and 

TIMP4 were down-regulated in OCT4 depleted NCCIT cells. For these 

regulated genes, it was investigated if within the respective promoter regions 

where OCT4 binding sites could be confirmed, an enrichment of known 

transcription factor binding sites could also been detected by adopting a de 

novo motif discovery approach. The hypothesis was that some of these sites 

might recruit OCT4 into a complex, which is not dependent on direct OCT4-

DNA interaction for activating or repressing downstream target genes. Using 

this strategy, four significant motifs were predicted to be the binding sites for 

transcription factors such as REST, TCF3, NR2F1, TP53, NFKB1, LF-A1, 

RUNX1 and PAX5 were identified (Fig. 3.14). 

 

 
Figure 3.14 De novo motif discovery for genes identified as OCT4 indirect targets and 

differentially regulated (2-fold and above) in NCCIT cells but lacking the OCT4 and SOX2 

motif within the promoter region analysed. The 4 most significant motifs identified and 

the related potential transcription factor binding sites related to these motifs are 

displayed. In addition, putative regulated genes harbouring these motifs in their 

promoter regions shown. Red depicts up-regulated and green down-regulated in 

response to the ablation of OCT4 activity in ES and EC cells. 
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Module 5: PORE motif 

The PORE sequence (Palindromic Oct factor Recognition Element 

ATTTGAAATGCAAAT) shown to co-operatively bind two OCT4 molecules was 

first identified within the first intron of the Osteopontin gene [35]. In this study 4 

PORE target genes were identified: ATXN3, CIR, FLJ16611 and SPIC. 

However, none of these genes were significantly regulated upon knockdown of 

OCT4 in NCCIT cells.  

 

Module 6: MORE motif 

This motif (More PORE- ATGCATATGCAT) was discovered after the PORE 

sequence was identified. Like the PORE motif, two OCT4 molecules  co-

operatively bind to the MORE sequence [36]. OCT4 targets bearing this motif 

include ATPBD4, C14orf94, CLLU1, DHDDS, SNX20, ORFA17, REM2, 

SERPINB7, UBE2C and GSPT2. Interestingly GSPT2, which encodes a GTP-

binding protein that plays an essential role at the G1 to S-phase transition in 

human cells is also regulated by OCT4 under module 3 (conserved SOX2 

binding motif but lacking OCT4). Furthermore, knockdown of OCT4 in NCCIT 

resulted in a down-regulated expression of GSPT2 and UBE2C. 

To further analyse these modules in silico the sequences under the respective 

OCT4 binding peak regions of selected genes within each module were aligned 

(Fig. 3.15).  

 
Figure 3.15 Sequence alignments of selected OCT4-regulated genes under the distinct 

modules. The OCT4 motif is represented in red and the SOX2 motif in green. 
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A summary of genes contained in the 6 modules and at least 2 fold differentially 

expressed upon OCT4 knockdown can be found in the supplemental material. 

 
 
3.1.8 Validation of selected conserved OCT4 binding sites 

 

3.1.8.1 Validation of selected conserved OCT4 binding sites in the 

NANOG 5 prime proximal promoter 

To test if indeed, OCT4 would bind to the oct-sox motif of the NANOG promoter 

in NCCIT cells as has been demonstrated before with mouse [65], a bandshift 

was performed using the human homologue sequence for the region, spanning 

the classical HMG-POU consensus sequence (oct-sox motif, see Figure 3.16). 

 

 
Figure 3.16 The NANOG promoter harbours an evolutionary conserved binding sites for 

OCT4 (red) and a SOX2 (bold).  

A: Bandshift showing a supershift with OCT4 antibody, using NCCIT-derived nuclear 

extracts and a Cy5 labelled probe in the 5´region of the NANOG promoter bearing the oct-

sox motif.  

Binding specificity was tested using oligonucleotide competitors.  

1) 20-fold excess of unlabelled competitor 

2) Supershift with OCT4 (sc9081) antibody 

3) Nuclear extract with Cy5-labelled probe 

B: Alignment of the OCT4-SOX2 binding sequence in multiple species 
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OCT4 binding to the NANOG promoter was specific in NCCIT cell extracts.  

 
3.1.8.2 in the USP44 5 prime proximal promoter 

 

The binding site for OCT4 and SOX2 of the NANOG promoter was conserved. 

To test if there were octamer motifs with higher conservation scores, peak 

regions with a peak score of at least 0.5 were screened for their  

phyloP44wayPrimate C-scores. Using this approach, 43 octamer motifs were 

detected with higher conservation scores (See Table 3.5). 

 
Symbol Position of octamer motif C-score 

LRRTM3 chr10:68355702-68355709 0.86498425 
RAD54B chr8:95518105-95518112 0.86250875 
SOX6 chr11:16381290-16381297 0.8602815 
CIR_HUMAN chr2:174912215-174912222 0.860212375 
CDH10 chr5:24680835-24680842 0.859212625 
SLC12A8 chr3:126482634-126482641 0.856962625 
SOX6 chr11:16381288-16381295 0.8555375 
TRAF3IP2 chr6:112033803-112033810 0.849153375 
RASSF8 chr12:26001587-26001594 0.84653525 
TXNRD1 chr12:103221204-103221211 0.84404925 
SPIC chr12:100392157-100392164 0.825083875 
IL1RAPL1 chrX:28516103-28516110 0.82115575 
HSA-LET-7A-2 chr11:121491534-121491541 0.799249125 
LMO4 chr1:87568720-87568727 0.798337625 
EBF3 chr10:131654436-131654443 0.796267625 
DHDDS chr1:26629016-26629023 0.794768625 
BARX2 chr11:128660123-128660130 0.79452175 
BARX2 chr11:128660123-128660130 0.79452175 
PIPOX chr17:24394074-24394081 0.7826555 
ST8SIA4 chr5:100266434-100266441 0.7811125 
AEBP2 chr12:19482320-19482327 0.777708875 
C2ORF61 chr2:47259102-47259109 0.7687855 
SLC10A2 chr13:102517242-102517249 0.760951 
ID3 chr1:23759265-23759272 0.755868 
NR2F2 chr15:94669982-94669989 0.753581625 
BLMH chr17:25644530-25644537 0.751254 
HN1 chr17:70663100-70663107 0.745100125 
Q5T4H8_HUMAN chr10:21857392-21857399 0.744831625 
SFRS18 chr6:99981065-99981072 0.741701625 
TXNRD1 chr12:103221206-103221213 0.739501 
PAK1 chr11:76859464-76859471 0.7369025 
CLEC4A chr12:8178050-8178057 0.723058875 
USP44 chr12:94469489-94469496 0.719515625 
ID2 chr2:8738877-8738884 0.701818875 
FOXC1 chr6:1552720-1552727 0.697346625 
FIGN chr2:164300383-164300390 0.694212875 
C11ORF63 chr11:122255608-122255615 0.69246575 
DYM chr18:45161281-45161288 0.687757125 
CCDC102A chr16:56129004-56129011 0.6869625 
RBM32B chrX:72137577-72137584 0.684763875 
OR52E4 chr11:5877570-5877577 0.677344625 
PPP2R3A chr3:137165924-137165931 0.675052 
NP_775824.1 chr4:189266437-189266444 0.674706875 
NANOG chr12:7833144-7833151 0.67239675 

 

Table 3.5 OCT4 octamer correlated peak regions and conservation using 

phyloP44wayPrimate C-scores 
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The binding of OCT4 to such another evolutionary conserved OCT4 motif  was 

found in the proximal promoter region of the USP44 gene, an ubiquitin specific 

protease. Interestingly, the octamer motif was contained here in a 54 bp long 

conserved contig (See Figure 3.17).  

 

 
Figure 3.17 In silico mapping of the conserved octamer in the 5´promoter region of 

Usp44. Shown are the ratios of enrichment for all three experiments. Below is a graph, 

showing the C-scores. The black boxes below indicate detected octamer motifs. The 

sequence of the conserved contig of the most conserved octamer motif is shown below. 

 

A recent publication by Stegmeier reinforced the role of USP44 as an essential 

enzyme involved in the control of the anaphase promoting complex [151]. 

Furthermore, the transcriptional level of USP44 decreases significantly upon 

OCT4 knockdown in hECs (NCCIT) and hES cells [45]. Additional evidence for 

a functional role of USP44 in pluripotent cells was revealed by comparing 

published microarrays, comparing EC cells, undifferentiated human ES cells, 

embryoid body (EB) formation of these cells and somatic tissues like testis. The 

gene seems to be specific for several human ES cells like HUES8, hHES-3, H1 

and H9. H1 and H9 EB differentiation leads to a significant down regulation of 

USP44 (Fig. 3.17). Concerning somatic tissues, transcription seems to be 
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limited to oocytes and testis, transcription in other somatic cells could not been 

detected. In summary there seems to be a correlation between OCT4 

expressing cells and the transcriptional level of USP44. 

 

 
Figure 3.17 Comparison of different microarray experiments, related to the relative 

transcriptional level of USP44. The gene is transcribed in human ES and EC cells and 

furthermore in oocytes and testis. After EB differentiation, the transcriptional level goes 

down significantly (Picture adapted from Amazonia database, 

http://amazonia.transcriptome.eu/). 

 

Therefore, it was aimed at investigating a possible correlation between OCT4, 

USP44 and cell cycle control with respect to maintaining self-renewal in these 

cells. Using the conserved fragment as bait, the enrichment of OCT4 in a pull-

down assay was demonstrated (Fig. 3.18 D). Furthermore, the signal obtained 

by ChIP-real-time-PCR could also been confirmed (Fig. 3.18 B).  

 

 
Figure 3.18 The USP44 promoter harbours the evolutionary conserved OCT4 binding site 

but lacks the SOX2 motif 
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A: Sequence containing the conserved POU site as displayed by the UCSC genome 

browser  

B: Real time PCR confirmation of the presence of the OCT4 binding site.  

Position 0 indicates the conserved region seen in (A) 

C: Western blot analysis of proteins bound to biotinylated oligos representing the 

promoter fragment shown in (A). The OCT4 antibody shows higher binding intensity to 

the USP44- specific probe compared to the corresponding scrambled oligo.  

D: Multiple alignments showing evolutionary conservation of the OCT4-bound region  

The sequences depicted in blue and green to date uncharacterised with respect to 

transcription factor recognition and binding. 

 

 

Notably within the same conserved region a potential binding site for TCF11 

could be detected, which has been implicated in the regulation of the 

antioxidant response [26] and its function is vital during embryonic development 

[27]. Concerning a potential functional role of USP44 in NCCIT a knockdown, 

using esiRNA, which reduced the level of USP44 mRNA to 40% did not change 

the levels of OCT4, NANOG and SOX2 (See Figure 3.19). 

 

 
Figure 3.19 Real time analysis after knockdown of USP44. A knockdown of 40% did not 
show any significant alterations in the expression of OCT4, NANOG and SOX2. As proof 
of principles knockdown efficiencies are shown for GAPDH and OCT4. 
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3.1.9 Validation of an octamer site in the 5 prime proximal promoter of 

GADD45G 

Another gene harbouring an octamer motif in its 5 prime proximal promoter is 

GADD45G, a regulator of the cell cycle at the G2/M transition [28] and also 

recently identified as a putative OCT4/PORE target gene [29]. However this 

octamer motif was not conserved (Fig. 3.20B). GADD45G was not discovered 

as a potential OCT4 target gene in NCCIT cells but was detected in the Boyer 

dataset [3]. Furthermore, it has been shown to be one of the earliest OCT4-

responsive target genes [30] and was significantly up regulated in OCT4 

knockdown experiments [38]. To confirm GADD45G as a bona fide direct target 

of OCT4, a ChIP-real-time-PCR reaction was performed, and the fold 

enrichment immediately flanking the OCT4 motif compared to neighbouring 

sites was confirmed. Fold changes of above 2 for 2 replicates with a peak 

approximately 1 kb upstream of the OCT4 motif (Fig. 3.20) were obtained. For 

additional confirmation of binding, a bandshift assay using 2 oligos flanking the 

core OCT4 motif was performed (Fig. 3.20A).  
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Figure 3.20 The GADD45G promoter harbours the evolutionary conserved OCT4 binding 

sites. 

A: Bandshifts showing supershifts with Oct4 antibody using NCCIT cells derived- nuclear 

extracts using two probes in the 5´region of the GADD45G promoter containing an OCT4 

motif at positions 9 -15 (lane 1–3) and 17-23 (lane 4-6) of 31 nucleotides. 

Lane 3,6: Nuclear extract plus labelled probe 

Lane 2,5: same as lanes 3 and 6 but with the addition of OCT4 antibody (sc-9081). Lane 

1,4: same as lanes 3 and 6 but with the addition of a 20-fold increase in unlabelled 

competitor oligo. 

B: Multi-species alignment of the selected region chosen for the bandshift assay, the 

conserved OCT4 binding site is highlighted in red. 

C: Real time PCR confirmation of the presence of the OCT4 binding site. 

Position 0 indicates the relative position of the octamer motif. 

 

 

 

A supershift with OCT4 antibody for both sets of oligos was obtained, thus 

supporting specific binding of OCT4 to this locus.  
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3.2 Induction of GADD45G expression in NCCIT cells by 

Genistein 

As shown before, GADD45G is a potential target gene of OCT4. To get an idea 

of the functional implication of GADD45G in NCCIT cells, the ability of Genistein 

to upregulate GADD45 gene expression was used in a first approach. Genistein 

is an isoflavonoid present in soybeans that exhibits anti-carcinogenic properties. 

GADD45G and GADD45A are regulators of the cell-cycle at the G2/M transition 

[152] and act as tumour suppressors [153]. The direct effect of Genistein on 

GADD45A and GADD45G gene expression has been shown before [153]. A 

direct effect for NCCIT cells should be demonstrated. Thus, human embryonic 

carcinoma (NCCIT) cells were treated with 50 µM, 100 µM Genistein and 

DMSO as control. Further growth was carried out for 48 h and as morphological 

changes were already visible, RNA isolated and the expression of GADD45A 

and GADD45G analysed by Real-Time PCR. As shown in Figure 3.22A, 

Genistein induces transcription of these genes as well as down regulation of 

NANOG. Furthermore a flattened morphological phenotype of the NCCIT cells 

treated with Genistein could be observed (Fig. 3.21). 

 

 
Figure 3.21 NCCIT cells, mock treated 48h with DMSO (A) and with 50µM Genistein 

 

 

 

To test, if Genistein treatment also alters the protein-levels of known markers of 

pluripotency, western-blot analysis of OCT4, SOX2 and NANOG in treated and 

untreated NCCIT cells were performed. As shown in Figure 3.22B, decreased 

protein levels of NANOG correlate with the results from RT-PCR analysis, 

however OCT4 protein level was decreased significantly compared to the mock 

control in contrast to an only slight decrease in the real time (Figure 3.22A). 
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Figure 3.22 Expression of key pluripotency associated genes after induction with 

Genistein. (A) Real-Time PCR showing upregulated expression of GADD45A and G, and a 

drastic down-regulation of NANOG. (B) Western-blot showing down regulation of 

NANOG. (-) non-treated DMSO control, (+) Genistein treated NCCIT cells. 

 

3.3 Transient overexpression of GADD45G in NCCIT cells 

As the transcriptional level of GADD45G increases significantly (more than 2-

fold) upon differentiation of ESC and EC cells as a result of ablating OCT4 

function [5,8], the hypothesis was that activation of GADD45G activity would 

induce loss of self-renewal and hence differentiation of the cells with a 

concomitant decrease in the expression of OCT4. As Genistein induced 

upregulation of GADD45G was not specific enough and to test this hypothesis, 

the GADD45G coding sequence was cloned into the pIRES2-eGFP vector and 

used for transfection for NCCIT cells. The relative amount of eGFP positive 

cells was used as a control for transfection efficiency as good quality antibodies 

are currently unavailable and showed approximately 70% of transfected cells 

after 48 h (Fig. 3.23A). RNA was isolated two days post-transfection, and 

microarray based gene expression analysis carried out (Fig. 3.23B). 

Though morphological changes could not be observed, transcriptional analysis 

revealed 531 genes with induced expression of 2-fold and higher. Functional 

annotation analysis revealed a significant enrichment for genes involved in 

developmental and differentiation processes (Fig. 3.23B, C, D), especially for 
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the neuronal lineage. An established differentiation method for EC cells is the 

addition of retinoic acid to the cells. In this case,  the observation that EC cells 

can be driven to the neuronal lineage was supported by the observed 

transcriptional changes [31,32]. A selection of genes was chosen for 

independent confirmation of expression levels using real-time-PCR. An up-

regulation of differentiation associated marker genes was noted, BMP4, 

HAND1, EOMES, ID2, GATA4, GATA5, ISL1 and MSX1 (Fig. 3.23D). 

Interestingly, MSX1 and MSX2 are known BMP4 downstream target genes [33]. 

Both genes were highly up-regulated upon OCT4 knockdown in ES and EC 

cells [5,8]. ISL1 is a LIM-homeobox containing gene important for 

developmental and regulatory function in islet, neural, and cardiac tissue [34].  

Although over-expressing GADD45G in NCCIT cells induced up-regulated 

expression of genes associated with differentiation processes, this was not 

accompanied by a change in the mRNA or protein levels of OCT4, NANOG and 

SOX2 at the time point analyzed. However, down-regulation of pluripotency 

associated genes such as ZEB2, GDF3 and DPPA4 was observed (Fig. 3.23D). 
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Figure 3.23 Over-expressing GADD45G in NCCIT cells  

A: Presence of GFP expression 48h post-transfection (left) compared to the phase-

contrast image of the cells. The map of the vector used is presented below.  

B: Scatter plot comparing the transcriptomes of GADD45G transfected cells against cells 

transfected with the wild-type vector. GADD45G-mediated induction of transcription 

factors such as HAND1 (purple), GATA4 (green), and ID2 (brown) depicted in boxes. 

C: Table listing the most significant GO:biological processes related to the up-regulated 

(>2-fold) genes. 

D: Real time PCR validation of a selection target genes (NANOG, SOX2 and BMP4 were 

below detection score 0.01)  

 

This result raises the possibility that GADD45G activates transcription of 

differentiation inducing transcription factors independent of the OCT4, SOX2 

and NANOG circuitry. Alternatively, it could be that the increased activity of 
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GADD45G induces rapid suppression of OCT4, SOX2 and NANOG function via 

disrupting posttranslational modifications or protein-protein interaction required 

for sustaining the self-renewal circuitry. This action probably takes place long 

before the reduction of the mRNA and protein levels of OCT4, SOX2 and 

NANOG at least at the time point analyzed. 

 

In summary, the indirect induction of GADD45G leads to an altered 

morphological phenotype which is likely to be based on the knockdown of OCT4 

and NANOG at the protein level. This doesn’t seem to be the direct effect of the 

GADD45G upregulation as the overexpression of GADD45G could not show 

these effects. However, analyzing the upregulated genes clearly show a link to 

differentiation inducing processes, which are independent from OCT4 and not 

associated with morphological changes up to five days posttransfection. 

 

3.4 Differences in the transcriptional levels between human 

embryonal stem cells and human embryonal cancer cells 

The aim was to get an indication if significant transcriptional differences related 

to functional annotation classes like Kegg or GO exist between the two cell 

culture systems. To exclude platform independent differences, this comparison 

was exclusively based on Illumina arrays. Thus, four RNA samples from 

undifferentiated H1 cells transfected with mock siRNA against GFP and four 

RNA samples from H1 cells, 72h after siRNA induced OCT4 knockdown 

(obtained from Babaie) were hybridized on the Illumina V2 arrays, which cover 

22177 genes. Data reproducibility was verified by applying sample correlation 

analysis and clustering analysis for the different samples. As expected the 

clustering between the mock controls and the knockdown samples showed a 

better correlation for the biological replicates (0.98-0.99) than the comparison of 

the knockdown with the mock treated cells (0.87-0.89). The samples 

1674277144_C and G (OCT4 siRNA I and eGFP siRNA III) did not cluster with 

their corresponding biological replicates and were thus excluded for further 

analysis (Figure 3.24). 
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Figure 3.24 Clustering of samples and correlation factors for mouse and human in vivo 

experiments. The figure shows the sample clustering and the corresponding correlation 

coefficients derived from whole genome gene expression analyses for OCT4 

knockdowns in human H1 ES cells. 

 

Normalized data were analyzed for significant (Illumina: detection >0.99 for at 

least one group and p-value <0.05) changes in gene expression. The total 

number of target genes for all experiments are shown in Table 3.6. 

 
total genes on chip 22177 
genes with pval < 0.01 and diffscore < 0.05 4843 
upregulated > 2.0 1101 
upregulated > 1.5 2030 
downregulated < 0.66 1592 

downregulated < 0.5 549 
not expressed in eGFP control (pval > 0.2) 126 
not expressed in siRNA OCT4 (pval > 0.2) 31 

Table 3.6 Summary of differential expressed genes in OCT4 knockdowns compared to 

siRNA GFP mock controls. 

 
In total 22% of all genes on the Illumina chip were differential expressed based 

on the specifics of the Illumina software. On average more genes were 

upregulated. The genes obtained from this analysis were subsequently used as 

one data set for the construction of an interactive database (discussed in 4.3) 

and those genes expressed in the eGFP control were used to define the genes 

expressed in H1 cells. 
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3.4.1 Comparison with other published datasets 

As expression (defined here as the difference in transcriptional levels) 

comparison of only two cell lines would introduce cell specific artefacts, the 

Illumina microarray data for the ES cell line H1 (see above) and the EC cell line 

NCCIT [38] were combined with Illumina microarray data from Josephson and 

colleagues, who compared the expression profiles between the human EC cell 

line 2102Ep and the human ES cell line BG03 [154]. The EC cell lines show 

significant functional differences as the 2102Ep is nullipotent and the NCCIT 

cells still have the capacity for differentiation into different lineages. 

To get an idea if there exists a general difference between the two cell systems, 

the H1 and the BG03 were grouped and the 2102Ep and Ntera2 were grouped. 

As the data from Josephson was based on the older Illumina V1 version, 

instead of comparing the signal intensities, the detection scores were 

compared, thus including the background effects of the different arrays. In this 

case differential expression was defined as: 

 

- Detection p-values <0.05 for NCCIT and 2102EP and detection p-values 

> 0.20 for H1 and BG03 for genes expressed exclusively in EC cells. 

- There are no other transcription variants which are expressed in both 

hES and hEC cells. 

 

This still arbitrary threshold for the p-values enabled the comparison on highly 

expressed genes and genes only slightly or none expressed (based on 

previously conducted real time experiments). These conditions led to the 

discovery of 25 unique expressed genes in EC cells but not expressed in ES 

cells and 111 unique expressed genes in ES cells but none in EC cells (see 

supplemental material).  
 
 

3.4.2 Functional annotation analysis of differential expressed genes 

The annotated gene symbols for each set of differentially expressed genes 

were used for functional annotation analysis, using DAVID and g:Profiler for 

acquiring REACTOME entries. Table 3.7 lists the most significant hits for genes 

expressed only in ES cells, based on a p-value of 0.01 and a benjamini p-value 

of 0.05. No REACTOME hits were detected with this query. 
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Term pValue Benjamini 

GO:0032501~multicellular organismal process 5.40E-07 1.14E-05 
GO:0048731~system development 4.76E-08 4.02E-05 
GO:0048731~system development 1.74E-08 9.13E-05 
GO:0032502~developmental process 1.66E-05 1.74E-04 
GO:0048856~anatomical structure development 1.46E-06 2.38E-04 
GO:0048513~organ development 8.54E-07 3.60E-04 
GO:0022610~biological adhesion 7.38E-05 5.17E-04 
GO:0007275~multicellular organismal development 7.94E-06 6.47E-04 
GO:0032501~multicellular organismal process 5.40E-07 9.46E-04 
GO:0048513~organ development 3.91E-07 0.001 
GO:0048856~anatomical structure development 1.12E-06 0.001 
GO:0048513~organ development 1.45E-06 0.002 
signal 7.65E-06 0.004 
BP00102:Signal transduction 1.97E-05 0.004 
GO:0007155~cell adhesion 8.44E-05 0.004 
GO:0007275~multicellular organismal development 6.16E-06 0.006 
glycoprotein 6.41E-06 0.006 
BP00124:Cell adhesion 6.75E-05 0.007 
GO:0032502~developmental process 1.66E-05 0.014 
GO:0044421~extracellular region part 5.39E-05 0.023 
MF00016:Signaling molecule 1.12E-04 0.026 
GO:0005576~extracellular region 3.13E-05 0.026 
GO:0043062~extracellular structure organization and biogenesis 1.42E-04 0.039 
GO:0009605~response to external stimulus 0.0011 0.044 
GO:0022610~biological adhesion 7.38E-05 0.047 
GO:0007155~cell adhesion 7.38E-05 0.047 
cell adhesion 1.45E-04 0.050 

 

Table 3.7 List of significant SP, PANTHER and GOTERMS for genes expressed in H1 and 
BG03 and not expressed in NCCIT and 2102Ep based on p-values by Student-T test and 
Benjamini. 

 

Generally, genes involved in developmental processes were significantly 

expressed in ES cells, compared to EC cells.  

Interestingly, PANTHER, as well as GO and SP detected an enrichment of cell 

adhesion associated genes, which are shown in Table 3.8.  

 
 
 
SYMBOL Gene Name 

NRP2 NEUROPILIN 2 
PCDHB13 PROTOCADHERIN BETA 13 
SNAI1 SNAIL HOMOLOG 1 (DROSOPHILA) 
COL8A2 COLLAGEN, TYPE VIII, ALPHA 2 
JAM2 JUNCTIONAL ADHESION MOLECULE 2 
TNFAIP6 TUMOR NECROSIS FACTOR, ALPHA-INDUCED PROTEIN 6 
NRXN1 NEUREXIN 1 
CNTN1 CONTACTIN 1 
ALCAM ACTIVATED LEUKOCYTE CELL ADHESION MOLECULE 
NCAM1 NEURAL CELL ADHESION MOLECULE 1 
COL6A3 COLLAGEN, TYPE VI, ALPHA 3 
CYR61 CYSTEINE-RICH, ANGIOGENIC INDUCER, 61 
COL12A1 COLLAGEN, TYPE XII, ALPHA 1 
EGFR EPIDERMAL GROWTH FACTOR RECEPTOR (ERYTHROBLASTIC LEUKEMIA VIRAL (V-ERB-

B) ONCOGENE HOMOLOG, AVIAN) 

 
Table 3.8 Genes involved in cell adhesion processes according to  GOTERM BP 
GO:0007155 

 

These genes might contribute in explaining the morphological differences 

between the colony forming ES cells, who need to be seeded on mouse 
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embryonic fibroblast feeder layers or matrigel compared to human EC cells, 

who will remain in an undifferentiated state without feeder layers or matrigel and 

will not grow in a colony like fashion. 

 

 

For the 25 unique expressed genes in EC cells, no specific enrichments could 

be detected, by GO, SP, PANTHER, Kegg and REACTOME annotations, 

negating a relationship between specifically expressed genes and known 

functional categories. 

 

 

3.5 ChIP-seq data analysis of OCT4 targets in NCCIT cells 

ChIP-chip studies are limited in their design as they can only detect 

enrichments depending on the tiling array. To detect OCT4 binding sites in a 

more unbiased way and to get the first indications of OCT4 binding sites in non 

five prime proximal regions, a ChIP-seq was performed with three biological 

replicates of NCCIT cells, which were merged for each the control DNA (Input) 

and the OCT4-enriched DNA (ChIP). Before sequencing, enrichment was 

quality tested for the Nanog and Sox2 promoters. 

 

 

 

3.5.1 Data quality control 

As a quality control for data consistency, Pearson correlation coefficients 

comparing individual ChIP lanes were calculated (0.61-0.75), the two input 

lanes (0.60), and the total ChIP reads against the total Input reads (0.76). 

Figure 3.25 A shows a scatter plot comparing genome-wide sequence coverage 

of two individual ChIP lanes (lane 081212_s2 with 4170527 Mio, and lane 

081212_s1 with 4179779 Mio reads). The corresponding Pearson correlation 

coefficient is 0.75. Figure 3.25 B shows the same data in log2 scale. Figure 

3.25 C shows an analogous scatter plot comparing the total sets of ChIP and 

Input reads (Pearson correlation coefficient 0.76). An enrichment of ChIP reads 

(x-axis) can be observed by visual inspection of the scatter plot in log2 scale 

(Figure 3.25 D).  
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Figure 3.25  Quality control 

A Comparison of genome-wide sequence coverage of two individual ChIP lanes 

(081212_s2 with 4170527 Mio, and 081212_s1 with 4,179,779 Mio distinct high-quality 

reads). The reads were extended to a length of 500bp (250bp bandwidth) and the genome 

was divided into windows of size 50bp. Each data point belongs to a window and the x 

axis show the number of reads that overlap the window. B log2 representation of A. C 

Comparison of genome-wide sequence coverage of the total ChIP reads against the total 

Input reads. D log2 representation of C. 
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3.5.2 Saturation analysis 

Figure 3.26 shows the results of a saturation analysis performed to estimate the 

required number of ChIP reads necessary for obtaining an adequate and 

reproducible coverage of immunoprecipitated DNA fragments within the ChIP 

samples. The red line in Figure 3.26 A shows a successively increase of data 

accordance with increasing number of added ChIP reads. Comparing two 

distinct random sets of 5.6 Mio extended reads assembled from the total 

available set of ChIP reads a Pearson correlation coefficient of 0.77 is reached. 

In comparison to the saturation of ChIP reads, the blue line in Figure 3.26 A 

shows the results of an analogous saturation analysis for Input reads. With two 

distinct sets of 3.7 Mio Input reads, relatively lower data accordance is achieved 

(Pearson correlation coefficient of 0.62) compared to the same number of ChIP 

reads (0.7). One explanation  that the comparable higher number of Input reads 

required for obtaining a similar reproducible coverage of DNA fragments is due 

to the enrichment of OCT4 binding site containing DNA fragments within the 

ChIP sample. 
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Figure 3.26 – Saturation analysis 

A Saturation analysis of genome wide ChIP (red line) and Input (blue line) reads. Starting 

with two distinct sets of 100000 random selected and extended ChIP reads (250bp 

bandwidth) distributed over genome wide 50bp windows, a successively increase of data 

accordance can be observed in both cases. Comparing two distinct random sets of 5.6 

Mio extended ChIP reads, a Pearson correlation coefficient of 0.77 is reached. B 

Estimated saturation for the total set of ChIP reads. The light red line represents the 

original saturation as given in a. The dark red line represents the estimated curve as 

deduced by the doubled random intermixed ChIP set. The yellow and the green lines 

represent simulations based on only subsets of the original set of ChIP reads.  
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Because the saturation analysis can be performed in an unbiased way on 

independent sets only, the total number of reads that can be utilized for this 

analysis is half of the original set. In order to estimate the correlation coefficient 

for our total ChIP data, the saturation analysis on an artificially duplicated set of 

the available total ChIP reads were performed. Figure 3.26 B shows the results 

of the original simulation study (“Total distinct ChIP sets”) and of the simulation 

analysis based on the artificially doubled set of ChIP reads (“Doubled random 

intermixed ChIP reads”). Additionally, the saturation behaviour of artificially 

doubled read sets was tested by doubling only subsets of the available ChIP 

reads. Figure 3.26 B shows that the resulting correlations are overestimated for 

artificially doubled sub sets (see “2.8 Mio random intermixed ChIP sets” and 

“5.6 Mio random intermixed ChIP sets”) compared to the original study. 

Nevertheless, a similar behaviour of the curve shapes can be observed and 

therefore, a correlation of 0.88 is estimated as an upper border for the total set 

of ChIP reads. In conclusion,  the total set of available ChIP reads (~11.20 Mio) 

covers the existing immunoprecipitated DNA fragments in a reliable depth so 

that an experimental repetition with the same number of reads will give 

adequate similar results.  

 

 

 

3.5.3 Genome wide distribution of sequencing reads 

Table 3.9 summarizes the distribution of ChIP and Input reads in percentages 

over several gene associated regions as reported by CisGenome. In both 

cases, ~62% of all reads fall into intergenic and ~37% of all reads fall into 

intragenic regions.  
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Region ChIP reads (%) Input reads (%) 

intergenic 62,87 62,41 

intragenic 37,12 37,58 

exon 1,77 1,89 

intron 35,43 35,79 

CDS 1,08 1,16 

UTR 0,70 0,74 

5'UTR 0,08 0,07 

3'UTR 0,62 0,66 

intergenic(<=1kb-from-gene) 1,07 1,08 

TSSup1k 0,49 0,46 

TESdown1k 0,58 0,62 

intergenic(<=10kb-from-gene) 11,46 11,73 

TSSup10k 6,38 6,47 

TESdown10k 6,14 6,37 

intergenic(<=100kb-from-gene) 54,94 55,62 

TSSup100k 39,34 39,93 

TESdown100k 38,95 39,57 

Table 3.9 Location summary for ChIP and Input reads 

 

In general, no obvious differences in occupancy of the examined regions like 

exons (1,77% ChIP and 1,89% Input reads),  introns (35,43% ChIP and 35,79% 

Input reads), and -10kb promoters (6,38% ChIP and 6,47% Input reads) can be 

observed when considering the total distributions of ChIP and Input reads.   

 

 

 

 

3.5.4 Genome wide distribution of binding regions 

Genome wide enrichment analysis was performed using the two sample 

analysis module of CisGenome with varying parameters for the false discovery 

rate. Table 3.9 summarizes the location distribution of peaks identified by a 

varying FDR (see also Figure 3.27 B), arguing for a more scattered distribution 

of OCT4 binding sites rather than an accumulation in the five prime proximal 

promoter region.  

 

 

 

 

 

 



Results 

 92  

 

 

 
Region FDR 0.1 (%) FDR 0.5 (%) FDR 0.9 (%) 

intergenic 69.13 64.00 61.57 

intragenic 30.87 35.99 38.42 

Exon 0.83 1.21 1.60 

Intron 30.13 34.86 36.91 

CDS 0.41 0.74 1.06 

UTR 0.41 0.48 0.55 

5'UTR 0.15 0.13 0.09 

3'UTR 0.26 0.34 0.45 

intergenic(<=1kb-from-gene) 1.10 1.00 0.97 

TSSup1k 0.83 0.63 0.46 

TESdown1k 0.26 0.37 0.52 

intergenic(<=10kb-from-gene) 12.31 12.23 12.45 

TSSup10k 6.86 7.22 7.07 

TESdown10k 6.49 6.20 6.56 

intergenic(<=100kb-from-gene) 58.17 60.12 59.28 

TSSup100k 39.41 42.60 42.52 

TESdown100k 45.44 44.35 42.88 

Table 3.9  Location summary for peak regions identified by a varying FDR 

 

 

Although the majority of peaks are located within genome wide intergenic 

regions in all three tested cases, its relative proportion decreases (69.13%, 

64.00%, and 61.57%) with an increasing FDR (0.1, 0.5, and 0.9). Accordingly, 

the relative proportion of peaks located within intragenic regions increases 

(30.87%, 35.99%, and 38.42%). The largest fractions of intragenic peaks are 

located in introns (30.13%, 34.86%, and 36.91%) and the fraction of peaks 

located in conventionally analysed promoter regions (-10kb from the TSS) stays 

stable with varying FDR (6.86%, 7.22%, and 7.07%).  Thus there seems to be a 

correlation between the decrease of false positives and an accumulation in 

intergenic regions.   

 

3.5.5 Comparative analysis of gene associated binding regions  

In order to compare the presented OCT4 ChIP-Seq data to previously published 

work, here a gene was considered as a putative direct target, if a peak exists 

within the -10kb to +2kb region around its TSS. This definition corresponds to 

promoter regions covered in a related study that analysed OCT4 binding sites in 

hESCs using tilling arrays [83]. As a high FDR means a high number of false 
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positive detected peaks, for an FDR of 0.1, the closest genes correlating to the 

peaks were compared to the OCT4 targets, obtained by the ChIP-chip analysis 

with OCT4 explained above with a peak score of 0.5. Thus, comparing 1908 

peaks with 497 peaks derived from the ChIP-chip, only 60 common genes could 

be identified. To evaluate the effect of the presence of octamer motifs within the 

peak sequences, only those peaks containing an octamer motif were compared. 

Comparing 161 ChIP-chip peaks, containing an octamer sequence and 228 

ChIP-seq peaks containing an octamer site, revealed common peaks referring 

to 9 common genes, thus not increasing the percentage of overlapping genes. 

When comparing only those ChIP-seq peaks which were in the same region as 

used for the NimbleGen tiling array (96 genes) and comparing them to the 497 

ChIP-chip targets, common peaks referred to 18 genes including DPPA4, GDF3 

and PHC1 (see supplemental material). 

 

 

 

 

 

Comparison with other published datasets 

 

Table 3.10 shows the total number of identified peaks with respect to a varying 

false discovery rate (0.1, 0.5 and 0.9), putative OCT4 target genes, as well as 

overlaps to previously published OCT4 target genes [83] [137].  

 

 

     Integration of motif mapping 

FDR Peaks Annotated  
Genes 

Overlap  
Boyer et al. 

Overlap  
Jin et al. 

Peaks with motif Annotated 
Genes 

Overlap 
Boyer et al. 

Overlap 
Jin et al. 

FDR 
0.1 

1908 148 12 16 366 30 10 8 

FDR 
0.5 

16591 1152 67 85 1881 139 29 21 

FDR 
0.9 

93965 4987 179 267 6490 537 67 60 

 

Table 3.10  Comparative analysis of identified peaks and putative OCT4 target genes 
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Considering a false discovery rate of 0.1, there are 1908 potential genome wide 

binding regions and 148 putative OCT4 target genes. From these target genes, 

12 (8.11%) were also identified by Boyer et al. and the NCCIT derived OCT4 

targets and 16 (10.81%) by Jin et al.. Setting the FDR to 0.5, there are 16591 

potential genome wide binding regions that can be associated with 1152 genes. 

According to a higher number of putative OCT4 target genes, the total overlap 

to the two reference OCT4 target genes increases to 67 genes (5,82% Boyer et 

al.) and to 85 genes (7,38% Jin et al. ). The overlap to the two reference OCT4 

target genes increases to 179 (Boyer et al. ) and to 267 genes (Jin et al.) when 

allowing a FDR of 0.9 at the expense of an increasing total number of genome 

wide peaks (93065) associated to 4987 putative OCT4 target genes (see target 

genes with motif sites in supplementary material). Peaks associated with a very 

high FDR (0.8-0.9) show a fold enrichment of 1.57-6 when the number of ChIP 

reads is compared against the number of Input reads that fall into the detected 

peak regions.  

Thus, in total only very small overlaps could be observed when comparing 

peaks detected by the ChIP-seq approach with peaks detected in ChIP-chip 

approaches.  

 

3.5.6 Motif mapping to binding regions 

Table 3.10 also includes the results of mapping known OCT4 related motifs to 

the identified binding regions. Considering a FDR of 0.1, 366 (19.18%) of the 

original 1908 peaks contain a known OCT4 related motif. These 366 peaks can 

be associated with 30 putative OCT4 target genes (peak are located within the 

 -10kb to +2kb range around a TSS). Although the total number of putative 

OCT4 target genes decreases by integrating the results of the motif mapping, 

the fraction of these target genes that were also identified by Boyer et al.  

increases to 33,33% (10 genes) and to 26.67% compared to the results from Jin 

et al.  (8 genes). Lowering the stringency for the FDR results in a higher number 

of false positives and therefore, additional evidence for true binding sites is 

even more required: from the 16591 peaks identified by a FDR of 0.5, there are 

1881 (11,34%) that contain an OCT4 related motif and subsequently there 

remain 139 sequence based confirmed putative OCT4 target genes. Allowing a 
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FDR of 0.9, there remain 6490 genome wide enriched regions (6,97% of all 

detected peaks) that can be associated with known OCT4 related motifs.  

 

 

 

Conservation of OCT4 binding regions 

The total set of identified putative OCT4 binding sites (FDR<=0.9) where 

analyzed for their conservation scores using the CisGenome software. The 

histograms in Figure 3.28 visualize the distributions of mean conservation 

scores for all peak regions with a conservation score>0 distinguishing between 

peaks associated with different FDRs (0.1, 0.5, and 0.9). It can be observed, 

that the frequency of peak regions is scattered over the full bandwidth of 

conservation scores when considering only peaks with a FDR<=0.1 (see Figure 

3.28 A). By increasing the FDR, the majority of peak regions tend to assemble 

in the lower range of conservation scores (see Figure 3.28 C and 3.28 E).  
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Figure 3.28 Conservation of peak regions  

Histograms of mean conservation scores for A) all peak regions associated with a 

FDR≤0.1, B) all peak regions associated with a FDR≤0.1 that contain a known OCT4 

related motif. C) all peak regions associated with a FDR≤0.5, D) all peak regions 

associated with a FDR≤0.5 that contain a known OCT4 related motif, E) all peak regions 
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associated with a FDR≤0.9, and F) all peak regions associated with a FDR≤0.5 that 

contain a known OCT4 related motif. Histograms include all peak regions that have a 

mean conservations score >0. 

 

 

By selecting only OCT4 related motif containing peak regions, the majority of 

peaks assemble in a high range of conservation scores (see Figure 3.28 B). 

Although this effect is most clear for peaks associated with a FDR<=0.1, an 

analogous trend was observed when including peaks with higher FDRs (see 

Figure 3.28 D and 3.28 F).    

 

 

Distribution of distances between OCT4 binding regions and TSSs 

In order to identify direct target genes of a transcription factor, it is necessary to 

associate ChIP-Seq derived peaks and genes. For this, each peak is connected 

to the closest TSS (Transcription start site). The histograms in Figure 3.29 show 

frequencies of distances for the peak sets obtained by varying FDR (0.1, 0.5, 

and 0.9) and varying maximal distance (10kb, 100kb, and 1000kb) between 

peaks and TSSs.  
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Figure 3.29  Distances between peaks and closest transcription start sites  

Histograms of distances between peaks and transcription start sites with respect to a 

varying maximal distance (+/-10kb, +/-100kb, and +/-1000kb). a) Peaks associated with a 

FDR≤0.1. b) Peaks associated with a FDR≤0.5. c) Peaks associated with a FDR≤0.9. 

 

At distance 0 the TSS is located and the positive regions (to the right) 

correspond to peaks located downstream of the TSS. Figure 3.29 A shows that 

the frequencies of distances vary over the range of -10kb to +10kb around the 

TSSs with no obvious main center. By including less-stringent peaks 

(FDR<=0.5 and FDR<=0.9), it can be seen that peaks located very close to 

TSSs (≤|1000bp|) become more underrepresented. The shape of frequencies of 

peak distances become more normally distributed when allowing for distances 
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up to 100kb (see Figures 3.29 B and 3.29 C). By considering only highly 

specific peaks (FDR<=0.1) with a maximal distance of +/-100kb or +/-1000kb to 

the closest TSS respectively, it can be seen that distances are not totally 

symmetric distributed around the TSSs but there may be an enrichment of 

peaks in the  range of up to 250kb downstream (see Figures 3.29 B and 3.29 

C). Transcripts have a length of up to 2304kb, and 95.6% of all transcripts are 

shorter than 250kb. Therefore, an enrichment of peaks downstream of the TSS 

may originate from direct binding at gene associated introns or exons. 

Considering a FDR≤0.1 and a maximal distance of +/-250kb between peaks 

and TSSs, there are 1106 putative OCT4 target genes (6079 for a FDR≤0.5, 

and 13145 for a FDR≤0.9).   

 

3.5.7 Functional regulation of OCT4 target genes  

Although ChIP-Seq analysis allows for detecting putative direct target genes, no 

statement about transcriptional dependencies influencing gene expression can 

be deduced. Based on an RNAi mediated depletion of OCT4 function in hECCs 

followed by microarray analysis, 1946 genes were identified which show 

significantly altered expression 96h after the RNAi treatment. Of these, 528 

genes were down and 1418 genes were up regulated. The overlap between 

functional regulation and direct TF binding can be tested with respect to a 

varying FDR and to a varying maximal distance between peaks and TSS. As an 

example, there are 134 genes showing altered expression after the RNAi 

mediated OCT4 knock down (42 down and 92 up regulated) and have an OCT4 

binding site identified by a peak associated to a FDR≤0.1 within a range of +/-

250kb around their TSS. Analogous, there are 589 functional regulated direct 

OCT4 target genes when setting the FDR to 0.5. 

 

3.5.8 Functional enrichment analysis  

 

 

For genes containing a peak with an FDR < 0.1 

 

As the overlap of OCT4 target genes of the ChIP-seq approach presented here 

to previously performed ChIP-chip experiments was only 5 - 10%, it was tested 
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if on a functional level, comparing the biological processes would reveal some 

similarities. For this reason, only those genes associated with an enriched 

region with an FDR<0.1 were considered. Thus 829 annotated genes were 

used as a query for the functional annotation software DAVID [145]. Table 3.11 

shows the top ranked results, with a p-value as well as a benjamini p-value < 

0.01 

 
Term PValue Benjamini 

GO:0032501~multicellular organismal process 2.42E-18 6.35E-15 
GO:0007275~multicellular organismal development 1.31E-18 6.91E-15 
GO:0032502~developmental process 1.70E-17 2.97E-14 
GO:0048731~system development 2.99E-14 3.92E-11 
GO:0048856~anatomical structure development 1.98E-13 2.08E-10 
GO:0050789~regulation of biological process 9.71E-12 8.50E-09 
GO:0065007~biological regulation 3.48E-11 2.61E-08 
GO:0048513~organ development 1.21E-10 7.94E-08 
GO:0009653~anatomical structure morphogenesis 2.82E-09 1.64E-06 
GO:0009887~organ morphogenesis 1.14E-08 5.97E-06 
GO:0030154~cell differentiation 1.34E-08 6.39E-06 
GO:0048869~cellular developmental process 1.34E-08 6.39E-06 
GO:0007399~nervous system development 3.70E-08 1.49E-05 
GO:0048518~positive regulation of biological process 4.58E-08 1.72E-05 
GO:0007154~cell communication 6.27E-08 2.20E-05 
GO:0050794~regulation of cellular process 7.33E-08 2.41E-05 
GO:0007267~cell-cell signalling 4.17E-07 1.29E-04 
GO:0048468~cell development 7.07E-07 2.06E-04 
GO:0048522~positive regulation of cellular process 4.54E-06 0.001 
GO:0007165~signal transduction 5.97E-06 0.001 
GO:0007167~enzyme linked receptor protein signalling pathway 1.16E-05 0.002 
GO:0035295~tube development 1.27E-05 0.003 
GO:0045165~cell fate commitment 1.91E-05 0.004 
GO:0001505~regulation of neurotransmitter levels 2.06E-05 0.004 
GO:0048519~negative regulation of biological process 2.78E-05 0.005 

 
Table 3.11 Functional enrichment analysis of potential OCT4 target genes with peaks 
containing a FDR <0.1. Only those functional annotation terms having a P value below 
0.01 (for both Student t test and Benjamini) are shown. 

 

 

 

The main cluster of enriched ontologies contained developmental processes 

with a focus of nervous system development. When compared to the finally 497 

OCT4 binding sites, obtained by the ChIP-chip analysis, developmental 

processes were a minor cluster with transcriptional regulation, homeobox genes 

and specific embryonal development being the main clusters. Thus it seems 

that the target sites obtained by ChIP-seq reveal more general developmental 

and differentiation inducing pathways, whereas the OCT4 ChIP-chip target sites 

are more specifically related to processes involved in transcriptional regulation. 
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For OCT4 target genes, showing significant altered expression after OCT4 

RNAi knockdown. 

 

Functionally regulated direct OCT4 target genes can be selected with respect to 

a variety of parameters based on the results of the presented study. In order to 

select a highly confirmed set of putative targets, the total set of identified peaks 

(FDR≤0.9) was chosen to exclude as many false negatives as possible and 

further selected those that have a mean conservation score ≥ 50, and contain a 

known OCT4 related binding site. The remaining 2667 peaks can be associated 

to 1737 genes by allowing a maximal distance of +/- 250kb between peak and 

TSS. Filtering this gene set further by selecting only those that showed 

significant altered expression after the RNAi knockdown. The final set of 203 

highly confirmed functional direct OCT4 target genes were tested for enriched 

gene ontology’s and pathways. Table 3.12 lists all pathways and gene 

ontologies enriched with a both a pValue and a Benjamini pvalue≤0.01.  

 
Term PValue Benjamini 

GO:0007275~multicellular organismal development 2.05E-20 1.08E-16 
GO:0032502~developmental process 2.67E-19 7.02E-16 
GO:0048731~system development 6.20E-17 1.94E-13 
GO:0048856~anatomical structure development 3.94E-16 5.83E-13 
GO:0032501~multicellular organismal process 1.68E-14 1.76E-11 
GO:0048513~organ development 5.74E-12 5.03E-09 
GO:0009653~anatomical structure morphogenesis 3.72E-10 2.79E-07 
GO:0050794~regulation of cellular process 2.07E-09 1.36E-06 
GO:0007399~nervous system development 4.62E-09 2.70E-06 
GO:0050789~regulation of biological process 7.22E-09 3.79E-06 
GO:0065007~biological regulation 1.80E-08 8.61E-06 
GO:0048519~negative regulation of biological process 4.84E-08 2.12E-05 
GO:0048523~negative regulation of cellular process 5.45E-08 2.20E-05 
GO:0030154~cell differentiation 1.70E-07 5.97E-05 
GO:0048869~cellular developmental process 1.70E-07 5.97E-05 
hsa04510:Focal adhesion 8.38E-07 1.68E-04 
GO:0009887~organ morphogenesis 1.36E-06 4.46E-04 
GO:0006357~regulation of transcription from RNA polymerase II promoter 9.20E-06 0.002 
GO:0048468~cell development 1.18E-05 0.003 
GO:0022008~neurogenesis 1.46E-05 0.004 
GO:0007507~heart development 1.64E-05 0.004 
GO:0006366~transcription from RNA polymerase II promoter 2.72E-05 0.006 
GO:0008283~cell proliferation 4.04E-05 0.009 
 
Table 3.12 Functional enrichment analysis of highly confirmed OCT4 target genes. Only 
those functional annotation terms having a P value below 0.01 (for both Student t test 
and Benjamini) are shown. 

 

A main cluster of enriched gene ontology’s is connected to development 

especially, nervous system and heart development. For lower Benjamini P-

values, OCT4 regulated direct target genes are enriched for functions 

connected to neuronal differentiation and development, heart, cartilage, skeletal 
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development, and embryonic limb morphogenesis. Similar to the Boyer data of 

OCT4 bound regions in human ES cells, another cluster consists of 

transcriptional regulation. Interestingly, the KEGG pathway Focal Adhesion is 

enriched in this dataset. But unlike the comparison between EC and ES cells, 

where genes involved in cell adhesion were enriched (seen above) not 

collagens, tight junction adhesion molecules or EGFR were detected but genes 

involved in the signalling process like PI3K and Akt/PKB (See Figure 3.30). 

 

 
Figure 3.30 KEGG Pathway Focal Adhesion, showing genes (marked by red >) contained 
in highly confirmed functional direct OCT4 target genes. 

 

Another  minor cluster of enriched gene ontology’s consisted of cell proliferation 

processes, reflecting possible changes in proliferation pathways after the 

induction of OCT4 ablated differentiation. 

 

3.5.9 Summary 

For the ChIP-seq analysis the three biological replicates, used for the ChIP-

Chip hybridization were pooled for the control and the enriched DNA. The first 

steps in the analysis showed that the 11.2 Mio ChIP reads obtained, covered 

the existing immunoprecipitated DNA fragments in a reliable depth. The 

distribution of peaks was surprisingly not enriched in the proximal promoter 

regions but rather distributed to intergenic regions. When comparing the ChIP-
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seq peak regions with identified peak regions of ChIP-chip experiments, the 

overlap was only very small. Nonetheless, when performing a functional 

annotation, genes involved in diverse developmental processes were highly 

enriched, speaking against a randomized enrichment due to an amplification 

bias. Highly enriched regions in the ChIP-chip experiment like the OCT4 binding 

site for NANOG were correlated with an FDR of only 0.5 (See Figure 3.31). 

However, using the CisGenome intrinsic model for FDR calculation, this binding 

site was related to 21 reads in the IP channel compared to 0 reads in the Input 

channel, so obviously those peaks, correlated with a low amount of reads in the 

Input channel were associated with high FDR values.  

 
Figure 3.31 Genome browser view of the OCT4 binding site in the 5 prime proximal 
promoter of NANOG. Shown are the affinity values for one OCT4 motif, identified by 
PASTA [155], related to the oct-sox motif, validated by Rodda et al. [65]. Furthermore the 
number of ChIP-seq reads for the Input and the IP channel are shown.  
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For subsequent analysis steps, these cases need to be included for a more 

refined statistical model. 

On the other hand, a plethora of new OCT4 binding regions could be 

discovered in intragenic, intergenic and 3 prime regions. However, further 

functional confirmation of these putative binding sites by band shift assays and 

luciferase reporter assays were beyond the scope of this study and are needed 

to obtain a functionally validated target set. 
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4 Discussion 

 

4.1 General considerations regarding the ChIP technique 

Combining siRNA or esiRNA induced knockdowns of the gene of interest with 

the potential binding sites of the gene products is a powerful method for 

deciphering gene regulatory networks.  

With regards to deepening the understanding of ES cell specific pathways, such 

an approach has been applied using a genome-wide RNAi screen which leads 

to the identification of a new transcriptional module required for self-renewal. 

This module implicates over 100 genes in ES cell self-renewal, and illustrates 

the power of RNAi and forward genetics for the systematic study of self-renewal 

in mouse ES cells [76]. Since such an approach is still missing for human ES 

cell models, the basis of this work was to detect OCT4 specific regulatory nodes 

in human EC cell models, similar to human ES cells. Thus an OCT4 specific 

polyclonal antibody has been used. It would have been also possible to 

overexpress the protein with a tag (e.g. biotin tag [156], FLAG tag [157] or TAP 

tag [158]) and to enrich via the tag. These approaches, however, are not 

recommended, as the necessary over-expression leads to a disturbance of the 

normal physiological protein concentration. Therefore the results obtained using 

tagged proteins may not reflect accurately the normal binding behavior, even 

more true for transcription factors, which can form multimeric complexes. 

 

 

4.2 ChIP-chip results compared to literature 

ChIP based studies on the transcription factor OCT4 have been carried out by 

others [83,137]. However, none of these studies compared the peak regions 

identified using different detection programs. As been demonstrated in this 

work, using the online available programs MAC2 [134] and TAMALPAIS [135] 

and an in-house developed algorithm for peak discovery, the overlap between 

the single programs is below 50%, meaning that a substantial proportion of 

potential binding sites would be lost if one depends on one algorithm. Given that 

a lowered specificity and sensitivity after a random based PCR amplification 

have to be taken into account, TAMALPAIS and MAC2 are still the best 
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algorithms for true positive prediction, although they would not achieve AUC 

(Area Under rock Curve) values beyond 0.7, using ROC-like curves (receiver 

operating characteristic curves) for diluted spike ins [146]. ROC-like curves plot 

sensitivity vs. filtering fraction at every threshold. On ROC curve True Positive 

Rate is plotted against False Positive Rate  calculated at each cut-off [159]. To 

compare two different methods usually area under these curves is computed. A 

random method would have an area equal to 0.5 and a perfect method would 

have and area equal to 1. True positive peaks might be represented by different 

complex peak shapes, which one algorithm alone would not detect and thus the 

approach presented here, combining different programs in a rank based score, 

potentially leads to a more complete target list. 

As shown before, NCCIT cells are a useful tool for investigating pathways 

involved in stemness and differentiation [38]. One question of this work was in 

how far NCCIT specific OCT4 enriched regions could be compared to human 

ES specific binding sites, identified by Boyer et al. [83] and in other human EC 

cell lines such as NTERA2 [137]. The overlap reported here is below 10%. This 

is based on different platforms and different peak finding programs used. This 

study shows that different programs can lead to a different set of target genes. 

Additionally, specific differences based on a different binding pattern for each 

specific cell line cannot be ruled out. Finally, the comparisons are obtained only 

for a selected promoter region, for which there is evidence that most binding 

events occur [83] but nonetheless reveal potential functional binding events 

associated to non-proximal promoter specific regions. Indeed cell-type specific 

pathways correlated to OCT4 binding sites between EC and ES cells could not 

been detected. To shed light on these questions, a comparison based on ChIP-

seq, using the same tools for the data analysis would be needed.  

Nonetheless, with regards to the common targets identified in this work, key 

stem cell markers like NANOG, OCT4, SOX2, HESX1, other homeodomain 

containing proteins like NKX2-2, SIX1, HOXB4, LHX5, transcription factors like 

ZIC4, SP8 and enzymes like DUSP6, PPP2R3A, which are potential candidates 

for either retaining pluripotency or inducing differentiation pathways not only in 

an ES cell specific model, were discovered as potential binding sites of OCT4. 

Performing a functional annotation with genes correlating with identified peaks 

in their promoter region for NCCIT cells, within the most stringent clusters were 
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genes, containing homeodomains (See Table 3.14). With regards to the 

upregulated homeodomain containing proteins it is noteworthy to mention those 

genes which were also upregulated upon OCT4 ablation - MSX1/2 and ISL1. 

MSX1 and 2 are known BMP4 downstream targets [160]. An upregulation of 

BMP4 could be confirmed and both genes were strongly upregulated upon 

BMP4 stimulation in hES cells. In our case the upregulation also seemed to be 

independent of the overexpression of PHOX2B, formerly reported to upregulate 

MSX1 gene expression [161]. 

ISL1 is a LIM-homeobox gene important for developmental and regulatory 

function in islet, neural, and cardiac tissue [162].  

 

 

 

4.3 Data integration in the form of an Embryonic Stem Cell 

database 

We are in an era of high-throughput functional genomics and systems biology-

driven research where large datasets are usually needed and provided as 

supplementary tables in most publications. Though useful, such tables in 

isolation are of limited use for making cross-references across other related 

datasets. Furthermore, as similar approaches have recently been adopted in 

constructing the HaemAtlas which serves as a reference library for gene 

expression in human blood cells and as a resource for identifying key genes 

with roles in blood cell function [163], a specialized database  has been 

developed, which enables rapid and convenient access and comparisons 

between published datasets related to embryonic stem cell biology to help 

overcome this shortfall. In order to facilitate the construction of this database, 

previously published datasets were gathered together with ChIP-on-chip using 

OCT4 and the NCCIT cell line to establish the Embryonic Stem Cell Database 

(http://biit.cs.ut.ee/escd/, see Fig. 4.1 for an example).  
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Figure 4.1 Example of the user interface for the constructed integrated database, three 

queries have been added (OCT4, SOX2 and NANOG). Potential binding sites for several 

transcription factors and expression changes induced by different perturbation changes 

can be seen at one glance. 

 

 

The new database provides easy access to transcription factor binding data 

together with various perturbation experiments. ESCDb gathers mainly two 

types of data – chromatin immunoprecipitation array-based data on transcription 

factor targets and gene specific knockdown of pluripotency associated factors 

(OCT4, SOX2 and NANOG) as well as growth factor (FGF2) withdrawal and 

cytokine (BMB4 and ACTIVIN A) stimulation of human ES cells. Data for mouse 

and human embryonal stem cells have been collected, and complemented with 

data from embryonic stem cell experiments data from human embryonal 

carcinoma cells (NCCIT and NTERA2). 

ESCDb offers a summarized view of multiple pluripotency related datasets. 

Individual genes are described as a row in the output table. A colour-scheme 

helps to illustrate the potential regulatory relations between genes. In the gene-

expression datasets often more than one probe-set represent a gene and we 

treat each individual probe-set individually. The same order of probe-sets in the 

output table was kept for easier comparisons between probe-sets in all 
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available datasets. Further details are given in numerical form when a given cell 

of the table is pointed with a cursor. The database can be queried with any 

widely used gene or protein identifier or Gene Ontology terms. 

The current version of the database comprises gene expression data from 18 

mouse transcription factor-targeting experiments for 14 known factors 

[83,164,165] (OCT4, SOX2, NANOG, N-MYC, C-MYC, STAT3, SUZ12, KLF4, 

ZFX, TCFCP2L1, SMAD1, CTCF, E2F1, ESRRB), 5 human transcription factor 

binding experiments [83,137] for the 3 main pluripotency regulators (OCT4, 

SOX2, NANOG), 2 mouse ES cell knock-down experiments for Oct4 and Nanog 

[150] and 8 perturbation experiments (including knockdowns of OCT4, SOX2 

and NANOG in EC cells and overexpression of GADD45G in EC cells), BMP4 

and ACTIVIN A stimulated hES cells and FGF2 withdrawal from hES cells 

during culture [38,86].  

 

4.4 Different modules of OCT4 binding 

Particularly in the case of OCT4, where a transcription factor could be part of 

several complexes with different factors interacting directly with DNA as 

proposed by Stuart Orkin [166], these sequences enriched in a ChIP-chip 

experiment could be a complex mixture of sequences which contain motifs for 

the profiled transcription factor and/or various interacting proteins. 

 

In the following, six different modes of OCT4 binding (termed modules) will be 

discussed (see Figure 4.2): 

 

Module 1: OCT4 and SOX2 will bind as a heterodimer co-operatively to their 

cis-elements in the respective promoter regions. 

 

Module 2: Only OCT4 will bind to its cis-elements in the respective promoter 

regions. 

 

Module 3: Only SOX2 will bind to its cis-elements in the respective promoter 

regions. 
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Module 4: Neither OCT4 nor SOX2 will bind to its cis-elements in the 

respective promoter regions. 

 

Module 5: OCT4 will bind specifically to a PORE motif, forming a dimer. 

 

Module 6: OCT4 will bind specifically to a MORE motif, forming a dimer. 
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Figure 4.2 Six different modules of OCT4 binding modes, which are specific for the five 
prime proximal promoter regions. (Adopted from M. W. King) 
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The HMG containing transcription factor SOX2, is known to form a heterodimer 

with OCT4 which results in a protein-protein-DNA complex required for 

transcriptional regulation of genes such as UTF1, FBX15, SOX2 and NANOG 

[60,82,167-169]. Based on the plurality of interactions between HMG and POU 

class proteins and the co-evolution of HMG/POU DNA target sequences, this 

interaction is thought to be a fundamental mechanism for the control of gene 

expression involved in developmental processes [61]. Furthermore, as shown 

for the FGF4 promoter, the distance between the binding recognition sites of 

SOX2 and OCT4 seem to be crucial for synergistic activation. For enriched 

regions in NCCIT cells that contain both motifs the tendency to have a closer 

distance between each other is independent of strand orientation (Fig 4.3).  

 

 
Fig. 4.3 OCT4 and SOX2 distances are depicted on the histogram. First row shows each 
strand configuration separately (e.g. pX100bf means motifs were chosen from only the 
highest scoring part of the peak, max window 100bp and OCT4 motif was found on 
backward strand while SOX2 motif was found on forward strand. 

 

Another question is if the close proximity of the binding recognition sites of 

SOX2 and OCT4 is a pre-requisite for the proper assembly of functional 

activation complexes. The results suggest that there is no such correlation. This 
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is based on the unveiling of 6 distinct modules of OCT4-regulated gene 

regulatory networks with genes within or between each module having distinct 

distances between the SOX2 and OCT4 binding motifs or even not having a 

SOX2 motif adjacent to that of OCT4.  

Based on these results, it seems that the SOX2-OCT4 motif or the close 

proximity of both motifs is not required for the majority of OCT4 regulated target 

genes. For these genes, octamer motifs might be more displaced from our peak 

regions and hint at protein-chromatin interactions, bringing different chromatin 

regions into close proximity.  

Boyer and colleagues have shown that approximately half of the promoter 

regions discovered by ChIP-chip analysis [83], occupied by OCT4 were also 

bound by SOX2 in human ES cells. In the analysis with human EC cells using 

the in silico-derived SOX2 motif for target identification instead of peak regions 

unveiled 108 SOX2-motif related putative binding sites out of 497 total binding 

sites and 161 binding sites linked to an OCT4 motif. However, this is only a 

fraction of the putative SOX2 binding sites identified in hES cells, thus 

suggesting distance related effects and/or other SOX2 motifs not discovered 

with our analysis. Additionally, one has to bear in mind that all thresholds 

defined for the OCT4 and SOX2 Poly Weight Matrices (PWMs) are arbitrarily 

set and therefore can only provide a prediction for a bona fide functional binding 

event, hence further experimental validation will be needed. 

To identify binding modules, where the octamer element is not present, the 497 

target genes for the presence of PORE or MORE motifs as an addition to target 

genes defined by module 4 were also screened. Four putative target genes 

harbouring a PORE motif (module 5) and 10 target genes, which contained a 

MORE motif (module 6) were identified. 

Using a previously identified MORE (CTGCATATGCAT) motif within the BMP4 

promoter, Kang et al. [77] verified an interaction between Oct4 and this genomic 

region and showed using mouse ES cells subjected to ionizing radiation that 

Oct4 occupancy was induced by stress. Based on these observations, it is 

tempting to speculate that a subset of OCT4 targets harbouring the MORE motif 

might be associated with the modulation of stress responses. 

Taken together, a concept of different direct and indirect OCT4 binding patterns 

is provided, depending on associated OCT4 related transcription factor binding 
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sites. A similar approach applied by Segal and colleagues has been applied, to 

identify regulatory modules and their condition-specific regulators in yeast [170]. 

However, there was a difference in that the screen was started with potential 

transcription factor occupancy in relation to the presence of their specific 

binding sites.  

There are many questions, which still remain unanswered. Which cellular 

constraints will lead to OCT4 differential regulated subsets of genes, which 

might belong to one of the 6 modules? As a provocative thought, is there an 

OCT4 regulatory module specific for maintaining the self-renewal circuitry, or 

specific for suppression of the induction of differentiation to distinct cell lineages 

by the recruitment of co-activators or repressors to the OCT4 transcriptional 

complex. In response to these questions, hypothetical schemes (Fig. 4.4) which 

are based on the de novo motif discovery analysis performed on the OCT4 

indirect target genes were presented, postulated to be regulated under module 

4. 

As illustrated in Fig. 4.4 A and B, OCT4 might form a distinct or even the same 

complex with TCF3 and REST to maintain positive-gene regulatory networks 

supporting self-renewal. Interestingly both genes are highly expressed in 

undifferentiated ES and EC cells and their expression declines upon 

differentiation. Furthermore, TCF3 has been assigned as an integral component 

of an interconnected autoregulatory loop, where OCT4, SOX2, NANOG and 

TCF3 occupy each and their own promoters in maintaining the self-renewal 

circuitry in embryonic stem cells [171]. REST, a transcriptional co-repressor has 

been shown in mouse ES cells to selectively repress transcription of a subset of 

neuronal genes [172]. 
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Figure 4.4 Hypothetical model based on module 4 of how OCT4 could be involved in 
regulating its target genes via non-direct DNA binding. OCT4 might be recruited by a 
mediator complex (X), which has additional affinity for the discussed transcription 
factors (A – H). Alternatively, there might be a direct interaction between OCT4 and the 
transcription factor(s) (indicated by '?'), which might then potentially bind to the 
identified in silico cis elements. Arrows: Red- induction and green- repression of 
transcription of the respective target genes. 
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Another protein complex that might promote self-renewal is composed of OCT4 

and NFKB1 (Fig. 4.4 C) in positively regulating gene networks in response to 

stress signals to activate cell survival and proliferation pathways [173]. 

Furthermore, the regulatory schemes depicted in Fig. 4.4 D-G, represents 

scenarios where the OCT4-bound complex might sustain self-renewal by 

inhibiting the differentiation inducing activities of transcription factors such as 

TP53 [174], LF-A1 [175], EBF [176], PAX5 [177] and NR2F1 [178]. 

Unfortunately, experiments to test and confirm these hypotheses are beyond 

the scope of this study. However, evidence of indirect binding has been 

supported by an independent study by Gordan et al. [179]. They applied the 

hypothesis of indirect binding to yeast ChIP-chip data of 139 transcription 

factors (TFs). Their method revealed that only 48% of the data could be 

explained by direct binding of the profiled TFs, while 16% could be explained by 

indirect binding. In addition to the approach presented here, Gordan used in 

vivo nucleosome positioning. However they reported only a slight improve in the 

detection of indirect TFs and nucleosome data are not yet available for human 

EC or human ES cells. In addition, they suggested indirect TF-DNA interaction 

when the motif of the profiled TF was not significantly enriched in the ChIP-chip 

data. This was not the case for the motif we recovered for OCT4, but still 

around 66% of the enriched sequences did not contain OCT4 motifs, and one of 

the hypothesis of this study is that these sequences might still be valid 

candidates for a profiling of indirect TFs. 

As a precautionary note, the possibility that the OCT4-regulatory modules 

described here are just the tip of the iceberg  cannot be excluded and that with 

the adoption of an unbiased screen of OCT4 targets using ChIP-seq will reveal 

the complex nature of the self-renewal-gene regulatory network under the 

control of OCT4. A precedent for this is the identification in mouse ES cells of 

an extended network for pluripotency [167] and also indications that OCT4 can 

also bind to chimeric combinations of OCT4 half sites [180].  
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4.5 USP44 is a potential cell cycle regulator, controlled by 

OCT4 

In this study, a highly conserved binding site for OCT4 was discovered in the 

proximal promoter region of the ubiquitin specific protease USP44. With respect 

to characterised potential downstream targets of OCT4, it was intriguing to 

speculate a possible direct regulation of USP44, an important regulator of the 

spindle checkpoint. A highly conserved OCT4 binding site was uncovered within 

its proximal promoter and a significant decrease of the transcript level in OCT4 

knockdown experiments [38,45]. Furthermore, screening the online hESC 

expression atlas Amazonia [16], a significant decrease of this transcript upon 

embryoid body-based differentiation was uncovered, and the level remain low in 

various somatic tissues. Based on these findings it can be proposed that 

USP44 is a positive regulator of self-renewal in EC as well as ES cells and that 

this regulation is mediated by its prominent role in regulating the spindle 

checkpoint during the cell cycle [151]. Further experiments, like luciferase 

assays need to be performed to further validate USP44 as a direct OCT4 target. 

Concerning a functional role of USP44, no direct change of the key pluripotency 

factors OCT4, SOX2 and NANOG, arguing for a positive feed forward loop, and 

no morphological differences could be observed after partial ablation. Either 

way the knockdown was not efficient enough or a phenotype might be only 

observed after perturbations, e.g. differentiation of the cells with retinoic acid. 

  

4.6 Genistein induces the upregulation of GADD45G and has 

an effect on the expression of key pluripotency markers 

Previous experimental work addressing the effects of Genistein on cell 

proliferation and differentiation were performed using prolonged-cultured, 

transformed cell lines. These earlier findings, though informative, have short 

comings with respect to the genomic integrity of the cells used for these 

analyses. Genistein applied to low passage cultured cells has a noticeable 

effect on the transcription of common key regulators of cell-cycle progression. In 

terms of the mechanism(s) of action of Genistein, NFkB-mediated repression of 

GADD45A and GADD45G expression has been shown to be essential for 

cancer cell survival [181]. Furthermore, GADD45A expression has been shown 
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to be induced by Genistein treatment of human prostate cancer cell lines [182]. 

To test if Genistein also imparts similar effects in other cancer cells, the 

embryonal carcinoma cell line (NCCIT) has been used, which has properties of 

cancer cells as well as pluripotent cells [26,38]. GADD45G and GADD45A are 

regulators of the cell-cycle at the G2/M transition [152] and act as tumor 

suppressors [153]. In this study, the direct effect on the gene expression of 

GADD45G and GADD45A could be shown. This result was confirmed by Oki et 

al. [182]. Furthermore, GADD45G has been shown to be a negatively regulated, 

direct downstream target of OCT4 [38,45,83]. Indeed, Genistein treatment of 

NCCIT cells led to the induction of GADD45A and GADD45G expression. 

Additionally, a reduction in NANOG transcription was noticed but not that of 

POU5F1 and SOX2. A reduced level of NANOG could not be linked to a 

differentiation phenotype, but rather to reduced proliferation in NCCIT cells [38]. 

As shown before, down-regulation of OCT4 leads to the down-regulation of 

NANOG. The observed decrease in the transcript level of NANOG might be a 

downstream effect of Genistein-induced depletion of OCT4 protein [65].  

Furthermore, a decrease in OCT4 and NANOG protein was detected. A 

speculation is that Genistein treatment might indirectly down-regulate POU5F1 

expression, possibly mediated by the up-regulated expression of GADD45G. 

One mechanism  to reduce OCT4 levels is the Ubiquitination of OCT4 by  the 

HECT domain E3 ubiquitin ligase WWP2, thereby promoting its subsequent 

degradation by the 26S proteasome [183]. However by microarray analysis with 

Genistein treated cells against DMSO mock treated cells, instead of an 

upregulation of WWP2, a nearly 2 fold downregulation was observed. 

 

 

 

4.7 GADD45G induces the upregulation of differentiation 

related genes 

GADD45G is a potential tumour suppressor protein involved in cell cycle 

control. A functional octamer site for OCT4 could be identified and the array 

data indicates the upregulation of this gene upon siRNA induced OCT4 

knockdown [45]. Furthermore, there are indications in mouse ES cells that the 
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transcription level of GADD45G increases significantly upon differentiation 

stimuli [184]. It is tempting to speculate that OCT4 could have an impact on cell 

cycle regulation via GADD45G downstream cascades as it has been shown 

before that it is essential for the G2/M arrest and induction of apoptosis 

signalling, through the dissociation of the cyclinB/Cdc2 complex [185,186]. The 

influence of octamer sites in GADD45G expression have been explored 

recently, showing the functional importance along with NF-Y sites. In these 

cases OCT1 has bee shown to bind to the octamer site [187]. Since both OCT1 

and OCT4 recognise the same binding site it would be interesting to 

hypothesize that the upregulation of GADD45G by OCT4 downregulation is 

promoted by a competitive effect in that OCT4 is replaced by OCT1, thus 

recruiting HAT-containing co-activator complexes as Oct-1 and NF-Y can 

interact with them. Since the focus of our study was the pattern of OCT4 linked 

motifs, competition events by OCT1 cannot ruled out as has been proposed 

before as an alternative model for regulation [188]. Furthermore there is 

indication that inhibition of NF-Y function leads to defects in ES cell proliferation 

correlating with accumulated cells at the G1/S transition of the cell cycle [189]. 

Further validation would be needed to support this theory. 

Interesting to note was the correlation of a transient GADD45G upregulation in 

NCCIT cells with the upregulation of many specific differentiation associated 

genes according to GO terms. Among differentiation pathways was the 

development of the neuronal lineage dominant, consistent with the observation 

that hEC and mEC cells could be driven to the neuronal pathway upon the 

differentiation stimuli retinoic acid [190,191]. 

 

Finally, the role of GADD45G in cell cycle could be strengthened as cell cycle 

related genes were significantly enriched in all upregulated genes (p-value of 

6.28e-07 by using g:Profiler), more precisely those genes connected to the 

negative regulation or arrest of cell cycle. Additionally interesting to note is the 

fact that within this group only genes involved in the progression from G1 to the 

S-phase could be found. A limited G1 phase is characteristic for undifferentiated 

ESCs, as could be supported before with OCT4 knockdowns in H1 cells [45]. 
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4.8 Differences between human EC and human ES cells 

There are still many problems associated with the culture of human ES cells, 

starting from a time consuming and challenging cell culture, further implying 

patent problems for some established cell lines and finally encompassing 

tedious governmental regulations. Human EC cells, on the other hand have 

none of these disadvantages. Nonetheless they share a number of similarities 

with hES cells, including a common set of cell surface proteins and a similarity 

in the global expression profile and are thus in principle useful as reference 

material for the hESC research [38,154].   

However, yet there are obvious differences, as hEC cells are not needed to be 

grown with the addition of FGF2 on feeder cells. Furthermore they are not 

growing in colonies like hES cells but more homogenously. These differences 

might be partly explained by chromosomal aberrations, much more dominant in 

hEC cells compared to hES cells. And, contributing to their heritage, they 

express germ cell markers and possess a certain resistance to spontaneous 

differentiation, compared to hES cells. 

In this study, two human EC cell lines, NCCIT and 2102Ep were compared with 

two human ES cell lines, BG03 and H1. The aim was to identify differentially 

expressed genes and describe them functionally. Thus, cell adhesion specific 

genes, enriched significantly and specifically in the hES cell lines investigated 

were detected. The following genes, identified by this approach, show an 

important role in development: 

 

SNAI1 

COL8A2 

CNTN1 

ALCAM 

NCAM 

 

For example SNAI1 deletion results in embryonic lethality due to multiple 

vascular defects [192]. Targeted disruption of the COL8A2 gene in mice can  

lead to anterior segment abnormalities in the eye [193]. Compton et al. reported 

that loss of contactin-1 from the neuromuscular junction where CNTN1 is 
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expressed, impairs communication or adhesion between nerve and muscle 

which results in the severe myopathic phenotype. ALCAM expression has been 

identified as a marker for isolating cardiomyocytes from differentiating cultures 

of hESCs [194].  NCAM is a cell adhesion macromolecule, which is  known to 

play a critical role in development of the nervous system [195]. It is tempting to 

speculate that some of these genes might be important for developmental 

patterns, missing in EC cells. Moreover specific differences in adhesion genes 

might be a partial explanation for the different morphological phenotypes 

between hES and hEC cells. Further validation e.g. by immunofluorescence, 

showing the knockdown on protein levels are needed to confirm this hypothesis. 

 

 

4.9 ChIP-seq discovered OCT4 binding sites 

For the ChIP-seq the three biological samples used for the ChIP-chip were 

pooled for each the immunoprecipitated and the control DNA fraction. In total 

more than 11 million reads were obtained. For peak discovery, the CisGenome 

software was used, which applies a conditional binomial model to identify 

enriched regions [138]. Thus, 1908 unique mapped peaks were identified with 

an FDR of 0.1. Compared to a similar study which used a ChIP-seq approach 

with the transcription factor STAT1, this was a small amount as they discovered 

41,582 peaks for an FDR of 0.001, starting from 15.1 million uniquely mapped 

reads in interferon-gamma stimulated HeLa S3 cells [119].  

Furthermore, concerning the global peak distribution,  surprisingly a focus of the 

discovered peaks around 1 Kbp from the transcription start site (TSS), as had 

been reported before by using ChIP-chip with OCT4, SOX2 and NANOG [83] 

could not been confirmed. Only at a resolution of 100 Kbp, the shape of 

frequencies of peak distances becomes more normally distributed around the 

TSS. This result is also in contrast to the study of Robertson et al. [119] as they 

could show that the majority of the peaks were detected from –500 bp to 500 bp 

in relation to the transcription start site. In contrast, another study investigating 

the genomic distribution of OCT4 in mouse for the chromosome 19, using 

CHIP-chip assays reported that most of the binding sites obtained were 

discovered in intragenic regions (38,9%) but still 7,20% could be mapped to the 
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5´proximal region ( -10000 bp – 0 bp relative to the TSS) [165]. This result could 

be verified by this study (6,38% mapped to the 5´proximal region and 37,37% 

mapped to the intragenic region), arguing for a broader genomic location of 

OCT4 in relation to the TSS, compared to STAT1. 

Nonetheless, the functional annotation analysis of peak regions for an FDR of 

0.1 contained still main clusters of different development categories, also 

discovered by ChIP-chip analysis. Additionally cell communication and signaling 

pathways were significantly enriched, arguing against a randomized, biased 

peak selection, potentially introduced by amplification cycles. Only Transcription 

factor regulation groups, detected by the ChIP-chip OCT4 targets, could not be 

detected in the ChIP-seq targets. 
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5 Conclusion 

In the present study, new binding modes of the transcription factor OCT4 have 

been postulated and new links to the cell cycle have been established. 

Relations with cell differentiation processes were uncovered by the putative 

direct OCT4 target GADD45G. Furthermore, OCT4 binding sites were studied 

on a global, unbiased level, using ChIP-seq analysis. The studies were done in 

human embryonal carcinoma (EC) cells (NCCIT) and compared with human 

embryonal stem (ES) cells (H1 and H9).  A common set of OCT4 binding sites 

between these cell lines has been uncovered, using ChIP-Chip experiments 

and expression arrays. For the purpose of revealing enriched binding sites, new 

techniques have been established for a more unbiased target screen.  

 

Furthermore, all published OCT4 ChIP large scale experiments have been used 

and been connected to microarray datasets, obtained from NCCIT cells and H9 

cells. Giving the scientific community access to an online accessible graphical 

interface, which is updated constantly. The information in this database is 

related to OCT4 connected and regulated networks increasing the meager 

understanding of pluripotency in embryonic stem cells and embryonal 

carcinoma cells, but also differentiation processes operative in different cell 

systems. 

In this era of high-throughput functional genomics and systems biology-driven 

research, which necessitates large datasets, there is a dire need for data 

integration platforms. To facilitate this, the datasets, presented in this work have 

been integrated along with existing related datasets from both human and 

mouse ES and EC cells to generate an Embryonic Stem Cell Data Base 

(ESCDb) that allows rapid and convenient access and comparisons between 

published datasets related to embryonic stem cell biology. This study will aid in 

increasing the meager understanding of pluripotency in ES, EC, iPS and cancer 

cells. In this context some indications have been found that hES cells seem to 

express a different set of cell attachment genes compared to hEC cells. Further 

validation experiments on protein level would be needed to validate this finding. 
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Applying OCT4 ChIP-seq, for the first time a global view of OCT4 binding sites 

was obtained. In this study we noticed that the majority of OCT4 binding sites 

were scattered in the intergenic region rather than focusing at the TSS. This 

might be one reason why the overlap to existing ChIP-chip studies was 

relatively small.  

Finally, this study focused on the DNA level of the transcriptional regulation. 

Further studies on the protein level, which include possible post-translational 

mechanisms and determine in more detail the relationship between the protein 

levels of OCT4, SOX2 and other possible direct interacting factors of OCT4 and 

the variability of binding modes are required for a more accurate prediction by 

which mechanisms OCT4 regulates the cell fate of an undifferentiated 

pluripotent cell.  
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5.1.1 Solutions, Buffers and Media 

Antibiotics (1000x)   50 mg/ml Ampicillin; 30 mg/ml Kanamycin 

34 mg/ml Chloramphenicol 

LB medium    Bacto-tryptone 10 g 

Bacto-yeast extract 5g 

NaCl 10 g 

pH adjusted to 7.2; autoclaved 

 

LB agar 

LB medium    15 g/l Bacto agar 

2x YT 

16 g Bacto-tryptone 

10 g Bacto-yeast extract 

5 g NaCl 

H2O added to 1 l; autoclaved 

 

6x DNA loading buffer  0.2% Bromophenol blue 

60% Glycerol 

60 mM EDTA 

 

TE buffer    10 mM Tris-HCl 

1 mM EDTA; pH 8.0 

 

PBS     instamed PBS Dulbecco w/o Mg2+ , Ca2+ 

 

Blocking buffer 

 

1x TBS 

 

3% BSA 
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4x Laemmli buffer 100ml  8g SDS 

40 ml Glycerin 

40 ml 0.6M Tris pH 6.8 

80 mg Bromophenol blue 

H2O added to 80ml 

20 ml β-Mercapto ethanol 

 

Ponceau-S staining solution 0.2% Ponceau 

3% Trichloroacetic acid 

 

Glycerol stocks plasmids clones were prepared in 25% glycerol and stored at –

80°C. 

 
 
5.1.2 Buffers for SDS-PAGE gel electrophoresis 

 

Resolving Buffer 

1.5M Tris-HCl pH8.8: 180g Tris base (121g/mol) 

    ad 900ml dH2O 

    adjust pH8.8 with 37% HCl (approx. 26ml) 

    ad 1000ml dH2O 

 

Stacking Buffer 

0.5M Tris-HCl pH6.8: 60g Tris base (121g/mol) 

    ad 900ml dH2O 

    adjust pH6.8 with 37% HCl (approx. 47ml) 

    ad 1000ml dH2O 

 

3x Loading Buffer (Sample Buffer) 

3x SDS-PAGE SB:  9.375ml Stacking Buffer 

    17.2ml 87% glycerol 

    15ml 10% SDS 

    some grains Bromophenol blue 

    ad 47.5ml dH2O 
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    store at RT 

working solution:  950µl (47.5ml) 3x Loading Buffer 

    50µl (2.5ml) beta-Mercapto-ethanol 

     store at –20°C 

 

10x Running Buffer 

10x SDS-PAGE RB: 250mM Tris base (121g/mol) � 30.3g 

    1.92M Glycine (75g/mol)  � 144.1g 

    100ml 10% SDS 

    ad 1000ml dH2O 

 

5.1.3 Buffers for western blotting 

 

10x Transfer buffer:  250mM Tris base (121g/mol) � 30.3g 

    1.92M Glycine (75g/mol)  � 144.1g 

    ad 1000ml dH2O 

 

 

1x Transfer buffer:  100ml 10x Transfer buffer 

    200ml Methanol 

    ad 1000ml dH2O 

 

 

1M Tris-HCl pH7.6:  120g Tris base (121g/mol) 

    ad 900ml dH2O 

    adjust pH7.6 with 37% HCl 

    ad 1000ml dH2O 

 

 

1x TBS:   8g Sodium Chloride 

    20ml 1M Tris-Hcl pH7.6 

    ad 1000ml dH2O 
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1x TBST:   1000 ml 1x TBS 

    1 ml Tween 20 

 

 

Blocking solution:  3% milk powder � 1.5g 

    ad 50ml 1x TBST 

 

5.1.4 Cells, Vectors and antibodies 

NCCIT       ATCC 
HEK293T      MPI, Berlin 
 
pIRES2-IRES-GFP     INVITROGEN, Germany 
pLKO.1-puro      SIGMA, Germany 
 
Anti-Oct3/4 (N-19), sc-8628-x    Santa Cruz, USA   
Anti-Oct3/4 (H134), sc-9081-x    Santa Cruz, USA 
Anti-Sox2 (Y17), sc-17320    Santa Cruz, USA   
Anti hNanog, AF1997     R&D SYSTEMS, USA 
Rabbit Anti-Goat IgG, 401504    CALBIOCHEM, USA 
ECLTM Anti-mouse IgG, NA9310V   GE Healthcare, USA 
 
 
 
 
 
 
5.1.5 Equipment and Reagents 

5.1.5.1 Equipment 

Phase lock Gel (Heavy) 1.5/2ml tubes   Eppendorf, Germany 

Neubauer Counting Chamber      Carl Roth, Germany 

Dounce homogenizer      Dounce, USA 

Branson 250       Branson Ultrasonics, USA 

Branson Tip       Branson Ultrasonics, USA 

Agarose gel electrophoresis equipment    Amersham, UK 

SDS-PAGE gel electrophoresis equipment   Eppendorf, Germany 

Nanodrop Spectrophotometer     Nanodrop, USA 

Thermocycler PTC100,      MJ Research Inc, USA 

Thermomixer       Eppendorf, Germany 

ABI Prism 7700      Applied Biosystems, USA 

Microscopes       Carl Zeiss AG, Germany 

 

5.1.5.2 Reagents used in Chromatin immunoprecipitation 

37% Formaldehyde, mol. biol. grade    Sigma, USA 
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Glycogen mol. biol. grade     Roche, Germany 

Dynabeads Protein G      Invitrogen, USA 

Dynabeads Protein A      Invitrogen, USA 

PMSF        Sigma, USA 

Protease Inhibitor Cocktail, Complete mini EDTA free  Roche, Germany 

Proteinase K       Sigma, USA 

Triton X-100       Sigma, USA 

Glycine       Merck, Germany 

DTT        Sigma-Aldrich, USA 

PBS        Sigma-Aldrich, USA 

Na-desoxycholate      Merck, Germany 

NaCl        Merck, Germany 

SDS        Sigma-Aldrich, USA 

Tris        Sigma-Aldrich, USA 

EDTA        Sigma-Aldrich, USA 

LiCl        Merck, Germany 

RNase        Sigma-Aldrich, USA 

Glycogen       Roche, Germany 

Proteinase K       Sigma-Aldrich, USA 

Chromatography Water      Merck, Germany 

Phenol/Chloroform/Isoamylalcohol (25:24:1)   Roth, Germany 

Chloroform       Merck, Germany 

Ethanol p.a.       Merck, Germany 

PMSF        Sigma-Aldrich, USA 

HEPES       Sigma-Aldrich, USA 

MgCl2        Merck, Germany 

KCl        Merck, Germany 

NaN3        Merck, Germany 

EDTA        Merck, Germany 

EGTA        Merck, Germany 

Nonidet P-40 IGEPAL      Sigma-Aldrich, USA 

 

5.1.5.3 Reagents for linear DNA amplification 

 
Sequenase buffer      Amersham, UK 

BSA mol. boil grade 500µg/ml     Biolabs 

DTT 0.1M, RNase free      Promega, USA 

dNTPs        MPI Berlin 

Taq polymerase      MPI Berlin 

Sequenase T7 DNA Polymerase Version 2.0, 13U/µl Amersham, UK 
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Wizard SV Gel and PCR clean-up System   Promega, USA 

Trishydrochlorid      Merck, Germany 

KCl        Merck, Germany 

Tween20, nuclease free     Sigma-Aldrich, USA 

MgCl2        Merck, Germany 

 

5.1.5.4 Software 

 

ABI PRISM 7900HT Sequence detection System  Applied Biosystems, USA 

Primer Express       Applied Biosystems, USA 

SDS 2.1 software      Applied Biosystems, USA 

BeadStudio 1.0       Illumina, USA 

AxioVision 6.4      Zeiss, Germany 

 

5.1.5.5 Other Reagents 

 

1 kb marker DNA Ladder     New England BioLabs, USA 

100 bp marker DNA Ladder     New England BioLabs, USA 

30% Hydrogen Peroxyde     Sigma, USA 

384 clear well optical reaction plates    Applied Biosystems 

Agarose       Bio&Sell, Germany 

M-MLV reverse transcriptase    Promega, USA 

Benzonase       Roche, Germany 

DNase        Promega, USA 

dNTPs        Amersham, UK 

DTT 0.1M, RNase free      Promega, USA 

ECL Advance detection      Amersham, UK 

Ethidiumbromide solution     Sigma, USA 

Optical adhesive covers     Applied Biosystems 

Protein Marker: Precision Plus Protein Standard   Biorad, USA 

RNase Away       Roth, Germany 

RNasin Ribonuclease inhibitor     Promega, USA 

RQ1 RNase-free DNase     Promega, USA 

SybrGreen Master Mix      ABgene 

Transfer Membrane for Western Blots    Millipore 

Trizol        Invitrogen, USA 

Vectashield DAPI mounting     Vector Labs, USA 

BioMAx XAR film     Kodak, Germany 
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5.1.6 Supplemental material 

 

Term PValue Benjamini 

GO:0007275~multicellular organismal development 4.38E-08 2.30E-04 
GO:0032502~developmental process 6.43E-07 0.001688603 
GO:0048856~anatomical structure development 7.75E-06 0.013486922 
GO:0032501~multicellular organismal process 3.19E-05 0.041059899 
GO:0030154~cell differentiation 3.45E-04 0.202840828 
GO:0048869~cellular developmental process 3.45E-04 0.202840828 
GO:0045165~cell fate commitment 3.94E-04 0.205685528 
GO:0048731~system development 2.44E-04 0.226516822 
GO:0009653~anatomical structure morphogenesis 2.97E-04 0.229176342 
GO:0003677~DNA binding 3.77E-04 0.237825024 
GO:0043565~sequence-specific DNA binding 3.37E-04 0.276469364 
GO:0003700~transcription factor activity 2.51E-04 0.303519215 
GO:0043283~biopolymer metabolic process 7.57E-04 0.328183354 
GO:0030528~transcription regulator activity 1.42E-04 0.336335082 
GO:0050794~regulation of cellular process 0.0011072 0.410897733 
GO:0009790~embryonic development 0.001289 0.431483768 
GO:0050789~regulation of biological process 0.0025237 0.639849939 
GO:0032774~RNA biosynthetic process 0.0038292 0.694470743 
GO:0006355~regulation of transcription, DNA-dependent 0.0032066 0.70040288 
GO:0048513~organ development 0.0034894 0.706050388 
GO:0006351~transcription, DNA-dependent 0.0037947 0.713053688 
GO:0016070~RNA metabolic process 0.0048135 0.755463947 
GO:0045449~regulation of transcription 0.0052502 0.766747244 
GO:0019219~regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic 
process 

0.0062074 0.805196738 

GO:0065007~biological regulation 0.0070742 0.816485677 
GO:0006350~transcription 0.0068645 0.821533564 
GO:0007399~nervous system development 0.0075844 0.824329006 
GO:0010468~regulation of gene expression 0.0081532 0.833403711 

 

Table X.0.1 Functional characterization of the core 31 target genes common between 
NCCIT, H9 and NTERA2 cells, according to GO terms. 
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Table X.0.2 List of differential expressed genes in NCCIT cells upon OCT4 ablation 
combined with ChIP-chip OCT4 targets in relative to different binding modules  

 

 
 

HGNC 
symbol Description 
GATA6 Transcription factor GATA-6 (GATA-binding factor 6) [Source:UniProtKB/Swiss-Prot;Acc:Q92908] 

JAM2 

Junctional adhesion molecule B Precursor (JAM-B)(Junctional adhesion molecule 2)(Vascular 
endothelial junction-associated molecule)(VE-JAM)(CD322 antigen) [Source:UniProtKB/Swiss-
Prot;Acc:P57087] 

C6orf25 Protein G6b Precursor  [Source:UniProtKB/Swiss-Prot;Acc:O95866] 
KIAA1328 Uncharacterised protein KIAA1328  [Source:UniProtKB/Swiss-Prot;Acc:Q86T90] 
SCT Secretin Precursor  [Source:UniProtKB/Swiss-Prot;Acc:P09683] 

IFNAR1 
Interferon-alpha/beta receptor alpha chain Precursor (IFN-alpha-REC) [Source:UniProtKB/Swiss-
Prot;Acc:P17181] 

DOCK5 Dedicator of cytokinesis protein 5  [Source:UniProtKB/Swiss-Prot;Acc:Q9H7D0] 
BCL2 Apoptosis regulator Bcl-2  [Source:UniProtKB/Swiss-Prot;Acc:P10415] 
SERPINB4 Serpin B4 (Squamous cell carcinoma antigen 2)(SCCA-2)(Leupin) [Source:UniProtKB/Swiss-



Appendix 

V 

Prot;Acc:P48594] 

BCL2L14 
Apoptosis facilitator Bcl-2-like protein 14 (Bcl2-L-14)(Apoptosis regulator Bcl-G) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9BZR8] 

C21orf88 Putative uncharacterised protein C21orf88  [Source:UniProtKB/Swiss-Prot;Acc:P59052] 

TNFSF11 

Tumour necrosis factor ligand superfamily member 11 (Receptor activator of nuclear factor kappa B 
ligand)(RANKL)(TNF-related activation-induced cytokine)(TRANCE)(Osteoprotegerin 
ligand)(OPGL)(Osteoclast differentiation factor)(ODF)(CD254 antigen) [Contains Tumour necrosis 
factor ligand superfamily member 11, membrane form;Tumor necrosis factor ligand superfamily 
member 11, soluble form] [Source:UniProtKB/Swiss-Prot;Acc:O14788] 

CCKBR 
Gastrin/cholecystokinin type B receptor (CCK-B receptor)(CCK-BR)(Cholecystokinin-2 
receptor)(CCK2-R) [Source:UniProtKB/Swiss-Prot;Acc:P32239] 

SLC1A1 

Excitatory amino acid transporter 3 (Sodium-dependent glutamate/aspartate transporter 3)(Excitatory 
amino-acid carrier 1)(Neuronal and epithelial glutamate transporter)(Solute carrier family 1 member 
1) [Source:UniProtKB/Swiss-Prot;Acc:P43005] 

FOXQ1 
Forkhead box protein Q1 (Hepatocyte nuclear factor 3 forkhead homolog 1)(HNF-3/forkhead-like 
protein 1)(HFH-1) [Source:UniProtKB/Swiss-Prot;Acc:Q9C009] 

SQRDL 
Sulfide:quinone oxidoreductase, mitochondrial Precursor (EC 1.-.-.-) [Source:UniProtKB/Swiss-
Prot;Acc:Q9Y6N5] 

LMO7 
LIM domain only protein 7 (LOMP)(F-box only protein 20) [Source:UniProtKB/Swiss-
Prot;Acc:Q8WWI1] 

AFP 
Alpha-fetoprotein Precursor (Alpha-1-fetoprotein)(Alpha-fetoglobulin) [Source:UniProtKB/Swiss-
Prot;Acc:P02771] 

DUSP18 
Dual specificity protein phosphatase 18 (EC 3.1.3.48)(EC 3.1.3.16)(Low molecular weight dual 
specificity phosphatase 20) [Source:UniProtKB/Swiss-Prot;Acc:Q8NEJ0] 

FOXA2 
Hepatocyte nuclear factor 3-beta (HNF-3-beta)(HNF-3B)(Forkhead box protein A2) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9Y261] 

EDN1 
Endothelin-1 Precursor (Preproendothelin-1)(PPET1) [Contains Endothelin-1(ET-1);Big endothelin-1] 
[Source:UniProtKB/Swiss-Prot;Acc:P05305] 

CNTN1 
Contactin-1 Precursor (Neural cell surface protein F3)(Glycoprotein gp135) 
[Source:UniProtKB/Swiss-Prot;Acc:Q12860] 

TIMP3 
Metalloproteinase inhibitor 3 Precursor (Tissue inhibitor of metalloproteinases 3)(TIMP-3)(Protein 
MIG-5) [Source:UniProtKB/Swiss-Prot;Acc:P35625] 

SPARCL1 
SPARC-like protein 1 Precursor (High endothelial venule protein)(Hevin)(MAST 9) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14515] 

HIST1H3G 
Histone H3.1 (H3/a)(H3/b)(H3/c)(H3/d)(H3/f)(H3/h)(H3/i)(H3/j)(H3/k)(H3/l) [Source:UniProtKB/Swiss-
Prot;Acc:P68431] 

LOX 
Protein-lysine 6-oxidase Precursor (EC 1.4.3.13)(Lysyl oxidase) [Source:UniProtKB/Swiss-
Prot;Acc:P28300] 

BTN2A2 Butyrophilin subfamily 2 member A2 Precursor  [Source:UniProtKB/Swiss-Prot;Acc:Q8WVV5] 

LMO2 
Rhombotin-2 (LIM domain only protein 2)(Cysteine-rich protein TTG-2)(T-cell translocation protein 2) 
[Source:UniProtKB/Swiss-Prot;Acc:P25791] 

HS3ST2 

Heparan sulfate glucosamine 3-O-sulfotransferase 2 (EC 2.8.2.29)(Heparan sulfate D-glucosaminyl 
3-O-sulfotransferase 2)(Heparan sulfate 3-O-sulfotransferase 2)(h3-OST-2) 
[Source:UniProtKB/Swiss-Prot;Acc:Q9Y278] 

UGT8 

2-hydroxyacylsphingosine 1-beta-galactosyltransferase Precursor (EC 2.4.1.45)(UDP-galactose-
ceramide galactosyltransferase)(Ceramide UDP-galactosyltransferase)(Cerebroside synthase) 
[Source:UniProtKB/Swiss-Prot;Acc:Q16880] 

AMPH Amphiphysin  [Source:UniProtKB/Swiss-Prot;Acc:P49418] 

KCNH8 

Potassium voltage-gated channel subfamily H member 8 (Voltage-gated potassium channel subunit 
Kv12.1)(Ether-a-go-go-like potassium channel 3)(ELK channel 3)(ELK3)(ELK1)(hElk1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q96L42] 

MYL7 
Myosin regulatory light chain 2, atrial isoform (Myosin light chain 2a)(MLC-2a)(MLC2a)(Myosin 
regulatory light chain 7) [Source:UniProtKB/Swiss-Prot;Acc:Q01449] 

PCDHB13 Protocadherin beta-13 Precursor (PCDH-beta-13) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y5F0] 

EGFR 
Epidermal growth factor receptor Precursor (EC 2.7.10.1)(Receptor tyrosine-protein kinase ErbB-1) 
[Source:UniProtKB/Swiss-Prot;Acc:P00533] 

SLC15A3 
Solute carrier family 15 member 3 (Peptide transporter 3)(Peptide/histidine transporter 2)(Osteoclast 
transporter) [Source:UniProtKB/Swiss-Prot;Acc:Q8IY34] 

STAC 
SH3 and cysteine-rich domain-containing protein (SRC homology 3 and cysteine-rich domain 
protein) [Source:UniProtKB/Swiss-Prot;Acc:Q99469] 

NPPB 

Natriuretic peptides B Precursor (Gamma-brain natriuretic peptide) [Contains Brain natriuretic 
peptide 32(BNP-32)(BNP(1-32));BNP(1-30);BNP(1-29);BNP(1-28);BNP(2-31);BNP(3-32);BNP(3-
30);BNP(3-29);BNP(4-32);BNP(4-31);BNP(4-30);BNP(4-29);BNP(4-27);BNP(5-32);BNP(5-
31);BNP(5-29)] [Source:UniProtKB/Swiss-Prot;Acc:P16860] 

CALN1 Calneuron-1 (Calcium-binding protein CaBP8) [Source:UniProtKB/Swiss-Prot;Acc:Q9BXU9] 

PTGIS 
Prostacyclin synthase (EC 5.3.99.4)(Prostaglandin I2 synthase) [Source:UniProtKB/Swiss-
Prot;Acc:Q16647] 

SNAI1 
Zinc finger protein SNAI1 (Protein snail homolog 1)(Protein sna) [Source:UniProtKB/Swiss-
Prot;Acc:O95863] 

DOK5 
Docking protein 5 (Downstream of tyrosine kinase 5)(Protein dok-5)(IRS6) [Source:UniProtKB/Swiss-
Prot;Acc:Q9P104] 

RNF128 
E3 ubiquitin-protein ligase RNF128 Precursor (EC 6.3.2.-)(RING finger protein 128)(Gene related to 
anergy in lymphocytes protein) [Source:UniProtKB/Swiss-Prot;Acc:Q8TEB7] 

GTPBP5 GTP-binding protein 5 (Protein obg homolog 1)(ObgH1) [Source:UniProtKB/Swiss-Prot;Acc:Q9H4K7] 
LIN7A Lin-7 homolog A (Lin-7A)(hLin-7)(Mammalian lin-seven protein 1)(MALS-1)(Vertebrate lin-7 homolog 
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1)(Veli-1 protein)(Tax interaction protein 33)(TIP-33) [Source:UniProtKB/Swiss-Prot;Acc:O14910] 

KCNK17 

Potassium channel subfamily K member 17 (TWIK-related alkaline pH-activated K(+) channel 2)(2P 
domain potassium channel Talk-2)(TWIK-related acid-sensitive K(+) channel 4)(TASK-4) 
[Source:UniProtKB/Swiss-Prot;Acc:Q96T54] 

C5 

Complement C5 Precursor (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 4) 
[Contains Complement C5 beta chain;Complement C5 alpha chain;C5a anaphylatoxin;Complement 
C5 alpha' chain] [Source:UniProtKB/Swiss-Prot;Acc:P01031] 

MYL4 
Myosin light chain 4 (Myosin light chain 1, embryonic muscle/atrial isoform)(Myosin light chain alkali, 
GT-1 isoform) [Source:UniProtKB/Swiss-Prot;Acc:P12829] 

NRXN1 Neurexin-1-alpha Precursor (Neurexin I-alpha) [Source:UniProtKB/Swiss-Prot;Acc:Q9ULB1] 

ANKRD1 
Ankyrin repeat domain-containing protein 1 (Cardiac ankyrin repeat protein)(Cytokine-inducible 
nuclear protein)(C-193) [Source:UniProtKB/Swiss-Prot;Acc:Q15327] 

COL1A1 
Collagen alpha-1(I) chain Precursor (Alpha-1 type I collagen) [Source:UniProtKB/Swiss-
Prot;Acc:P02452] 

MCF2 
Proto-oncogene DBL (Proto-oncogene MCF-2) [Contains MCF2-transforming protein;DBL-
transforming protein] [Source:UniProtKB/Swiss-Prot;Acc:P10911] 

MYEOV 
Myeloma-overexpressed gene protein (Oncogene in multiple myeloma) [Source:UniProtKB/Swiss-
Prot;Acc:Q96EZ4] 

ZCWPW1 Zinc finger CW-type PWWP domain protein 1  [Source:UniProtKB/Swiss-Prot;Acc:Q9H0M4] 

PLA2G7 

Platelet-activating factor acetylhydrolase Precursor (PAF acetylhydrolase)(EC 3.1.1.47)(PAF 2-
acylhydrolase)(LDL-associated phospholipase A2)(LDL-PLA(2))(2-acetyl-1-
alkylglycerophosphocholine esterase)(1-alkyl-2-acetylglycerophosphocholine esterase) 
[Source:UniProtKB/Swiss-Prot;Acc:Q13093] 

EPO Erythropoietin Precursor (Epoetin) [Source:UniProtKB/Swiss-Prot;Acc:P01588] 

PIP5KL1 
Phosphatidylinositol-4-phosphate 5-kinase-like protein 1 (PtdIns(4)P-5-kinase-like protein 1)(PI(4)P 
5-kinase-like protein 1)(EC 2.7.1.68) [Source:UniProtKB/Swiss-Prot;Acc:Q5T9C9] 

TMLHE 

Trimethyllysine dioxygenase, mitochondrial Precursor (EC 1.14.11.8)(Epsilon-trimethyllysine 2-
oxoglutarate dioxygenase)(TML-alpha-ketoglutarate dioxygenase)(TML dioxygenase)(TMLD)(TML 
hydroxylase) [Source:UniProtKB/Swiss-Prot;Acc:Q9NVH6] 

COL12A1 Collagen alpha-1(XII) chain Precursor  [Source:UniProtKB/Swiss-Prot;Acc:Q99715] 

SLMAP 
Sarcolemmal membrane-associated protein (Sarcolemmal-associated protein) 
[Source:UniProtKB/Swiss-Prot;Acc:Q14BN4] 

HPD 
4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27)(4-hydroxyphenylpyruvic acid 
oxidase)(HPPDase)(4HPPD)(HPD) [Source:UniProtKB/Swiss-Prot;Acc:P32754] 

COL8A2 
Collagen alpha-2(VIII) chain Precursor (Endothelial collagen) [Source:UniProtKB/Swiss-
Prot;Acc:P25067] 

PLA2G4C 
Cytosolic phospholipase A2 gamma Precursor (cPLA2-gamma)(EC 3.1.1.4)(Phospholipase A2 group 
IVC) [Source:UniProtKB/Swiss-Prot;Acc:Q9UP65] 

C6orf163 Uncharacterised protein C6orf163  [Source:UniProtKB/Swiss-Prot;Acc:Q5TEZ5] 

GUCY1A2 
Guanylate cyclase soluble subunit alpha-2 (GCS-alpha-2)(EC 4.6.1.2) [Source:UniProtKB/Swiss-
Prot;Acc:P33402] 

MANEA 

Glycoprotein endo-alpha-1,2-mannosidase (Endo-alpha 
mannosidase)(Endomannosidase)(hEndo)(EC 3.2.1.130)(Mandaselin) [Source:UniProtKB/Swiss-
Prot;Acc:Q5SRI9] 

HACE1 
E3 ubiquitin-protein ligase HACE1 (EC 6.3.2.-)(HECT domain and ankyrin repeat-containing E3 
ubiquitin-protein ligase 1) [Source:UniProtKB/Swiss-Prot;Acc:Q8IYU2] 

BVES 
Blood vessel epicardial substance (hBVES)(Popeye domain-containing protein 1)(Popeye protein 1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q8NE79] 

NCAM1 
Neural cell adhesion molecule 1 Precursor (NCAM-1)(N-CAM-1)(CD56 antigen) 
[Source:UniProtKB/Swiss-Prot;Acc:P13591] 

ALCAM 
CD166 antigen Precursor (Activated leukocyte cell adhesion molecule)(CD166 antigen) 
[Source:UniProtKB/Swiss-Prot;Acc:Q13740] 

MOXD1 
DBH-like monooxygenase protein 1 Precursor (EC 1.14.17.-)(Monooxygenase X) 
[Source:UniProtKB/Swiss-Prot;Acc:Q6UVY6] 

MAP3K5 

Mitogen-activated protein kinase kinase kinase 5 (EC 2.7.11.25)(MAPK/ERK kinase kinase 5)(MEK 
kinase 5)(MEKK 5)(Apoptosis signal-regulating kinase 1)(ASK-1) [Source:UniProtKB/Swiss-
Prot;Acc:Q99683] 

MGLL 
Monoglyceride lipase (MGL)(EC 3.1.1.23)(Lysophospholipase homolog)(Lysophospholipase-
like)(HU-K5) [Source:UniProtKB/Swiss-Prot;Acc:Q99685] 

CPNE4 Copine-4 (Copine IV)(Copine-8) [Source:UniProtKB/Swiss-Prot;Acc:Q96A23] 

SLCO2A1 
Solute carrier organic anion transporter family member 2A1 (Solute carrier family 21 member 
2)(Prostaglandin transporter)(PGT) [Source:UniProtKB/Swiss-Prot;Acc:Q92959] 

EPHB1 
Ephrin type-B receptor 1 Precursor (EC 2.7.10.1)(Tyrosine-protein kinase receptor EPH-
2)(NET)(HEK6)(ELK) [Source:UniProtKB/Swiss-Prot;Acc:P54762] 

SYNJ2 
Synaptojanin-2 (EC 3.1.3.36)(Synaptic inositol-1,4,5-trisphosphate 5-phosphatase 2) 
[Source:UniProtKB/Swiss-Prot;Acc:O15056] 

UNC93A 
Protein unc-93 homolog A (Protein UNC-93A)(HmUNC-93A) [Source:UniProtKB/Swiss-
Prot;Acc:Q86WB7] 

MCOLN2 Mucolipin-2  [Source:UniProtKB/Swiss-Prot;Acc:Q8IZK6] 

CYR61 
Protein CYR61 Precursor (Cysteine-rich angiogenic inducer 61)(Insulin-like growth factor-binding 
protein 10)(Protein GIG1) [Source:UniProtKB/Swiss-Prot;Acc:O00622] 

TNFAIP6 

Tumor necrosis factor-inducible gene 6 protein Precursor (TNF-stimulated gene 6 protein)(TSG-
6)(Tumor necrosis factor, alpha-induced protein 6)(Hyaluronate-binding protein) 
[Source:UniProtKB/Swiss-Prot;Acc:P98066] 

CYBRD1 Cytochrome b reductase 1 (EC 1.-.-.-)(Duodenal cytochrome b)(Ferric-chelate reductase 3) 
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[Source:UniProtKB/Swiss-Prot;Acc:Q53TN4] 

MAN1A2 

Mannosyl-oligosaccharide 1,2-alpha-mannosidase IB (EC 3.2.1.113)(Processing alpha-1,2-
mannosidase IB)(Alpha-1,2-mannosidase IB)(Mannosidase alpha class 1A member 2) 
[Source:UniProtKB/Swiss-Prot;Acc:O60476] 

PGAP1 
GPI inositol-deacylase (EC 3.1.-.-)(Post-GPI attachment to proteins factor 1)(hPGAP1) 
[Source:UniProtKB/Swiss-Prot;Acc:Q75T13] 

AOX1 Aldehyde oxidase (EC 1.2.3.1) [Source:UniProtKB/Swiss-Prot;Acc:Q06278] 

NRP2 
Neuropilin-2 Precursor (Vascular endothelial cell growth factor 165 receptor 2) 
[Source:UniProtKB/Swiss-Prot;Acc:O60462] 

DNER 
Delta and Notch-like epidermal growth factor-related receptor Precursor  [Source:UniProtKB/Swiss-
Prot;Acc:Q8NFT8] 

LHX4 LIM/homeobox protein Lhx4 (LIM homeobox protein 4) [Source:UniProtKB/Swiss-Prot;Acc:Q969G2] 

NPL 

N-acetylneuraminate lyase (NALase)(EC 4.1.3.3)(N-acetylneuraminic acid aldolase)(N-
acetylneuraminate pyruvate-lyase)(Sialic acid lyase)(Sialate lyase)(Sialate-pyruvate lyase)(Sialic acid 
aldolase) [Source:UniProtKB/Swiss-Prot;Acc:Q9BXD5] 

COL6A3 Collagen alpha-3(VI) chain Precursor  [Source:UniProtKB/Swiss-Prot;Acc:P12111] 

APOBEC3B 
Probable DNA dC->dU-editing enzyme APOBEC-3B (EC 3.5.4.-)(Phorbolin-1-related 
protein)(Phorbolin-2/3) [Source:UniProtKB/Swiss-Prot;Acc:Q9UH17] 

ELF3 

ETS-related transcription factor Elf-3 (E74-like factor 3)(Epithelium-specific Ets transcription factor 
1)(ESE-1)(Epithelium-restricted Ets protein ESX)(Epithelial-restricted with serine box) 
[Source:UniProtKB/Swiss-Prot;Acc:P78545] 

 
Table X.0.3 Annotated genes based on HUGO symbols, which are expressed only in H1 
and BG03 hES cells compared to NCCIT and 2102Ep hEC cells. 

 
HGNC 
symbol 

Description 

DAZ4 Putative uncharacterised protein DKFZp666C074  [Source:UniProtKB/TrEMBL;Acc:Q658T2] 
TPTE Putative tyrosine-protein phosphatase TPTE (EC 3.1.3.48)(Transmembrane phosphatase with tensin 

homology)(Tumor antigen BJ-HCC-5)(Cancer/testis antigen 44)(CT44) [Source:UniProtKB/Swiss-
Prot;Acc:P56180] 

GRK4 G protein-coupled receptor kinase 4 (EC 2.7.11.16)(G protein-coupled receptor kinase GRK4)(ITI1) 
[Source:UniProtKB/Swiss-Prot;Acc:P32298] 

HMX1 Homeobox protein HMX1 (Homeobox protein H6) [Source:UniProtKB/Swiss-Prot;Acc:Q9NP08] 
HLA-DQB1 HLA class II histocompatibility antigen, DQ(3) beta chain Precursor (Clone II-102) 

[Source:UniProtKB/Swiss-Prot;Acc:P01920] 
USP6 Ubiquitin carboxyl-terminal hydrolase 6 (EC 3.1.2.15)(Ubiquitin thioesterase 6)(Ubiquitin-specific-

processing protease 6)(Deubiquitinating enzyme 6)(Proto-oncogene TRE-2) 
[Source:UniProtKB/Swiss-Prot;Acc:P35125] 

LMO1 Rhombotin-1 (LIM domain only protein 1)(Cysteine-rich protein TTG-1)(T-cell translocation protein 1) 
[Source:UniProtKB/Swiss-Prot;Acc:P25800] 

EMR1 EGF-like module-containing mucin-like hormone receptor-like 1 Precursor (Cell surface glycoprotein 
EMR1)(EMR1 hormone receptor) [Source:UniProtKB/Swiss-Prot;Acc:Q14246] 

FOLH1 Glutamate carboxypeptidase 2 (EC 3.4.17.21)(Glutamate carboxypeptidase II)(Membrane glutamate 
carboxypeptidase)(mGCP)(N-acetylated-alpha-linked acidic dipeptidase I)(NAALADase 
I)(Pteroylpoly-gamma-glutamate carboxypeptidase)(Folylpoly-gamma-glutamate 
carboxypeptidase)(FGCP)(Folate hydrolase 1)(Prostate-specific membrane antigen)(PSMA)(PSM) 
[Source:UniProtKB/Swiss-Prot;Acc:Q04609] 

PCDHB12 Protocadherin beta-12 Precursor (PCDH-beta-12) [Source:UniProtKB/Swiss-Prot;Acc:Q9Y5F1] 
WFDC3 WAP four-disulfide core domain protein 3 Precursor (Putative protease inhibitor WAP14) 

[Source:UniProtKB/Swiss-Prot;Acc:Q8IUB2] 
TP53TG3 TP53-target gene 3 protein (TP53-inducible gene 3 protein) [Source:UniProtKB/Swiss-

Prot;Acc:Q9ULZ0] 
NKX2-5 Homeobox protein Nkx-2.5 (Homeobox protein NK-2 homolog E)(Cardiac-specific 

homeobox)(Homeobox protein CSX) [Source:UniProtKB/Swiss-Prot;Acc:P52952] 
MLN Promotilin Precursor [Contains Motilin;Motilin-associated peptide(MAP)] [Source:UniProtKB/Swiss-

Prot;Acc:P12872] 
HTR2C 5-hydroxytryptamine receptor 2C (5-HTR2C)(5-HT-2C)(5-HT2C)(5HT-1C)(Serotonin receptor 2C) 

[Source:UniProtKB/Swiss-Prot;Acc:P28335] 
IL13RA2 Interleukin-13 receptor alpha-2 Precursor (IL-13 receptor alpha-2)(IL-13R-alpha-2)(IL-13RA-

2)(Interleukin-13-binding protein)(CD213a2 antigen) [Source:UniProtKB/Swiss-Prot;Acc:Q14627] 
PLA2G2A Phospholipase A2, membrane associated Precursor (EC 3.1.1.4)(Phosphatidylcholine 2-

acylhydrolase)(Group IIA phospholipase A2)(GIIC sPLA2)(Non-pancreatic secretory phospholipase 
A2)(NPS-PLA2) [Source:UniProtKB/Swiss-Prot;Acc:P14555] 

ZNF229 Zinc finger protein 229  [Source:UniProtKB/Swiss-Prot;Acc:Q9UJW7] 
LIM2 lens intrinsic membrane protein 2, 19kDa isoform 1  [Source:RefSeq peptide;Acc:NP_085915] 
ACRV1 Acrosomal protein SP-10 Precursor (Acrosomal vesicle protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P26436] 
XCL1 Lymphotactin Precursor (C motif chemokine 1)(Cytokine SCM-1)(ATAC)(Lymphotaxin)(SCM-1-

alpha)(Small-inducible cytokine C1)(XC chemokine ligand 1) [Source:UniProtKB/Swiss-
Prot;Acc:P47992] 
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Table X.0.4 Annotated genes based on HUGO symbols, which are expressed only in 
NCCIT and 2102Ep hEC cells compared to H1 and BG03 hES cells. 
 
HGNC 
symbol 

Description 

SNRPN Small nuclear ribonucleoprotein-associated protein N (snRNP-N)(Sm protein N)(Sm-N)(SmN)(Sm-
D)(Tissue-specific-splicing protein) [Source:UniProtKB/Swiss-Prot;Acc:P63162] 

GALNT8 Probable polypeptide N-acetylgalactosaminyltransferase 8 (EC 2.4.1.41)(Polypeptide GalNAc transferase 
8)(pp-GaNTase 8)(GalNAc-T8)(Protein-UDP acetylgalactosaminyltransferase 8)(UDP-GalNAc:polypeptide 
N-acetylgalactosaminyltransferase 8) [Source:UniProtKB/Swiss-Prot;Acc:Q9NY28] 

ATPBD4 ATP-binding domain-containing protein 4  [Source:UniProtKB/Swiss-Prot;Acc:Q7L8W6] 
GDF3 Growth/differentiation factor 3 Precursor (GDF-3) [Source:UniProtKB/Swiss-Prot;Acc:Q9NR23] 
PHC1 Polyhomeotic-like protein 1 (hPH1)(Early development regulatory protein 1) [Source:UniProtKB/Swiss-

Prot;Acc:P78364] 
PCSK1 Neuroendocrine convertase 1 Precursor (NEC 1)(EC 3.4.21.93)(Prohormone convertase 1)(Proprotein 

convertase 1)(PC1) [Source:UniProtKB/Swiss-Prot;Acc:P29120] 
CSF2RB Cytokine receptor common subunit beta Precursor (GM-CSF/IL-3/IL-5 receptor common beta-

chain)(CDw131)(CD131 antigen) [Source:UniProtKB/Swiss-Prot;Acc:P32927] 
CYP4F2 Leukotriene-B(4) omega-hydroxylase 1 (EC 1.14.13.30)(Cytochrome P450 4F2)(CYPIVF2)(Leukotriene-

B(4) 20-monooxygenase 1)(Cytochrome P450-LTB-omega) [Source:UniProtKB/Swiss-Prot;Acc:P78329] 
MAN2C1 Alpha-mannosidase 2C1 (EC 3.2.1.24)(Alpha-D-mannoside mannohydrolase)(Mannosidase alpha class 

2C member 1)(Alpha mannosidase 6A8B) [Source:UniProtKB/Swiss-Prot;Acc:Q9NTJ4] 
AMN Protein amnionless Precursor  [Source:UniProtKB/Swiss-Prot;Acc:Q9BXJ7] 
EBF1 Transcription factor COE1 (O/E-1)(OE-1)(Early B-cell factor) [Source:UniProtKB/Swiss-Prot;Acc:Q9UH73] 
FLRT1 Leucine-rich repeat transmembrane protein FLRT1 Precursor (Fibronectin-like domain-containing leucine-

rich transmembrane protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q9NZU1] 
FRS2 Fibroblast growth factor receptor substrate 2 (FGFR substrate 2)(Suc1-associated neurotrophic factor 

target 1)(SNT-1)(FGFR-signaling adaptor SNT) [Source:UniProtKB/Swiss-Prot;Acc:Q8WU20] 
CLLU1 Chronic lymphocytic leukemia up-regulated protein 1  [Source:UniProtKB/Swiss-Prot;Acc:Q5K131] 
ANKRD40 Ankyrin repeat domain-containing protein 40  [Source:UniProtKB/Swiss-Prot;Acc:Q6AI12] 
DPPA4 Developmental pluripotency-associated protein 4  [Source:UniProtKB/Swiss-Prot;Acc:Q7L190] 
GIMAP5 GTPase IMAP family member 5 (Immunity-associated nucleotide 4-like 1 protein)(Immunity-associated 

protein 3)(IAN-5) [Source:UniProtKB/Swiss-Prot;Acc:Q96F15] 
FLAD1 FAD synthetase (EC 2.7.7.2)(FMN adenylyltransferase)(FAD pyrophosphorylase)(Flavin adenine 

dinucleotide synthetase) [Includes Molybdenum cofactor biosynthesis protein-like region;FAD synthetase 
region] [Source:UniProtKB/Swiss-Prot;Acc:Q8NFF5] 

 
Table X.0.5 Common target sites of OCT4, comparing ChIP-Chip and ChIP-seq. 

 
HGNC 
symbol 

Description 

SNRPN Small nuclear ribonucleoprotein-associated protein N (snRNP-N)(Sm protein N)(Sm-N)(SmN)(Sm-D)(Tissue-
specific-splicing protein) [Source:UniProtKB/Swiss-Prot;Acc:P63162] 

GALNT8 Probable polypeptide N-acetylgalactosaminyltransferase 8 (EC 2.4.1.41)(Polypeptide GalNAc transferase 
8)(pp-GaNTase 8)(GalNAc-T8)(Protein-UDP acetylgalactosaminyltransferase 8)(UDP-GalNAc:polypeptide 
N-acetylgalactosaminyltransferase 8) [Source:UniProtKB/Swiss-Prot;Acc:Q9NY28] 

C1R Complement C1r subcomponent Precursor (EC 3.4.21.41)(Complement component 1, r subcomponent) 
[Contains Complement C1r subcomponent heavy chain;Complement C1r subcomponent light chain] 
[Source:UniProtKB/Swiss-Prot;Acc:P00736] 

MYST3 Histone acetyltransferase MYST3 (MYST protein 3)(EC 2.3.1.48)(EC 2.3.1.-)(MOZ, YBF2/SAS3, SAS2 and 
TIP60 protein 3)(Runt-related transcription factor-binding protein 2)(Monocytic leukemia zinc finger 
protein)(Zinc finger protein 220) [Source:UniProtKB/Swiss-Prot;Acc:Q92794] 

YAF2 YY1-associated factor 2  [Source:UniProtKB/Swiss-Prot;Acc:Q8IY57] 
FUS RNA-binding protein FUS (Oncogene FUS)(Oncogene TLS)(Translocated in liposarcoma 

protein)(POMp75)(75 kDa DNA-pairing protein) [Source:UniProtKB/Swiss-Prot;Acc:P35637] 
MAN2C1 Alpha-mannosidase 2C1 (EC 3.2.1.24)(Alpha-D-mannoside mannohydrolase)(Mannosidase alpha class 2C 

member 1)(Alpha mannosidase 6A8B) [Source:UniProtKB/Swiss-Prot;Acc:Q9NTJ4] 
SIN3A Paired amphipathic helix protein Sin3a (Transcriptional corepressor Sin3a)(Histone deacetylase complex 

subunit Sin3a) [Source:UniProtKB/Swiss-Prot;Acc:Q96ST3] 
HMG20A High mobility group protein 20A (HMG box-containing protein 20A)(HMG domain-containing protein 

HMGX1)(HMG domain-containing protein 1) [Source:UniProtKB/Swiss-Prot;Acc:Q9NP66] 
HOXB13 Homeobox protein Hox-B13  [Source:UniProtKB/Swiss-Prot;Acc:Q92826] 
KIAA1919 Sodium-dependent glucose transporter 1  [Source:UniProtKB/Swiss-Prot;Acc:Q5TF39] 
OLFML3 Olfactomedin-like protein 3 Precursor (HNOEL-iso)(hOLF44) [Source:UniProtKB/Swiss-Prot;Acc:Q9NRN5] 

 
Table X.0.6 Common putative OCT4 target genes between the ChIP-seq experiment and 
H9 ChIP-Chip targets [83], containing an OCT4 motif. 
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HGNC 
symbol 

Description 

SNRPN Small nuclear ribonucleoprotein-associated protein N (snRNP-N)(Sm protein N)(Sm-N)(SmN)(Sm-
D)(Tissue-specific-splicing protein) [Source:UniProtKB/Swiss-Prot;Acc:P63162] 

GALNT8 Probable polypeptide N-acetylgalactosaminyltransferase 8 (EC 2.4.1.41)(Polypeptide GalNAc transferase 
8)(pp-GaNTase 8)(GalNAc-T8)(Protein-UDP acetylgalactosaminyltransferase 8)(UDP-GalNAc:polypeptide 
N-acetylgalactosaminyltransferase 8) [Source:UniProtKB/Swiss-Prot;Acc:Q9NY28] 

C1R Complement C1r subcomponent Precursor (EC 3.4.21.41)(Complement component 1, r subcomponent) 
[Contains Complement C1r subcomponent heavy chain;Complement C1r subcomponent light chain] 
[Source:UniProtKB/Swiss-Prot;Acc:P00736] 

PHC1 Polyhomeotic-like protein 1 (hPH1)(Early development regulatory protein 1) [Source:UniProtKB/Swiss-
Prot;Acc:P78364] 

MAN2C1 Alpha-mannosidase 2C1 (EC 3.2.1.24)(Alpha-D-mannoside mannohydrolase)(Mannosidase alpha class 2C 
member 1)(Alpha mannosidase 6A8B) [Source:UniProtKB/Swiss-Prot;Acc:Q9NTJ4] 

FBXO40 F-box only protein 40 (Muscle disease-related protein) [Source:UniProtKB/Swiss-Prot;Acc:Q9UH90] 
FLAD1 FAD synthetase (EC 2.7.7.2)(FMN adenylyltransferase)(FAD pyrophosphorylase)(Flavin adenine 

dinucleotide synthetase) [Includes Molybdenum cofactor biosynthesis protein-like region;FAD synthetase 
region] [Source:UniProtKB/Swiss-Prot;Acc:Q8NFF5] 

ZNF238 Zinc finger protein 238 (Transcriptional repressor RP58)(58 kDa repressor protein)(Zinc finger protein C2H2-
171)(Translin-associated zinc finger protein 1)(TAZ-1)(Zinc finger and BTB domain-containing protein 18) 
[Source:UniProtKB/Swiss-Prot;Acc:Q99592] 

 
Table X.0.7 Common putative OCT4 target genes between the ChIP-seq experiment and 
NTERA2 ChIP-Chip targets [137], containing an OCT4 motif. 

 

 
 


