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CHAPTER 1
Introduction

What defines cellular identity? How are the morphology and the function of a cell main-
tained, while leaving flexibility to respond to environmental stimuli or to proceed through
the cell cycle? The necessary information is stored in the genome: the heritable molecular
entity that carries the complete building instructions for a whole organism. Every cell in
a multicellular organism contains an identical copy of the same genome. Yet, they show
striking differences in their characteristics. These differences are already manifested in
the differential usage of the available functional units called genes.
This being the case, a key cellular process is transcription, which is the complex process of
copying genes into RNA. The RNA molecules in turn function as blueprints for proteins,
which are the building blocks of the cell, or act as functional units themselves. With
such a profound role, it is clear that transcription has to be tightly regulated in time and
space. However, despite being the focus of current intense research, our understanding
of the various factors influencing the process and the regulation of transcription is still
incomplete.
Accumulating evidence identified chromatin as a central component in transcriptional
regulation. Chromatin refers to the packing of DNA together with proteins in the cell
nucleus. The role of chromatin is two-fold. First, the strength of the packing defines the
accessibility of the underlying genes. Second, the histone proteins, around which the DNA
is wrapped for packing, can be chemically modified. These histone modifications are medi-
ated and read by other proteins, referred to as chromatin modifiers in the remainder. The
chromatin modifiers in turn can communicate the signals to the transcriptional machin-
ery. This sequences of multiple specific interactions resemble signaling pathways playing
a role in transcriptional regulation. However, the individual interactions in the chromatin
signaling pathways are often unknown. Thus, identifying the interactions between the
histone modifications and chromatin modifiers would provide a basis for understanding
how the transcriptional status of a gene is regulated.
Systematic experimental endeavors allow for a global analysis of the interactions be-
tween histone modifications and chromatin modifiers. The experimental techniques be-
hind these endeavors allow to map the precise DNA-binding locations of proteins along
the whole genome. While histone modifications have been in the focus of many research
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projects, only recently the first systematic experiments detecting the genome-wide DNA-
binding events of chromatin modifiers were produced (e.g. in [4]). The availability of large
genome-wide DNA-protein binding data sets allows for the identification of co-localizing
proteins along the whole genome using computational means. Under the assumption that
co-localization shows common function, we can infer biological hypotheses on chromatin
signaling. However, in a typical genome-wide study only pair-wise, hypothesis-driven com-
parisons are performed. This approach has the disadvantage that intermediate interaction
partners are not taken into account. Without additional, often difficult experiments the
pairwise comparisons might lead to the inference of indirect interactions. By integrating
many genome-wide experiments and applying machine learning methods, we can account
for all proteins for which data is available. The inferred interactions are more likely to
correspond to true mechanistic interactions.

1.1. Research objective

The individual interactions between chromatin-related proteins can be reconstructed from
genome-wide DNA-protein binding data by applying network reconstruction methods.
The resulting network view on the chromatin signaling processes can aid in understand-
ing the complex behavior of the whole signaling system. Further, by taking into account
all available data during the reconstruction, these methods can discard potentially indirect
interactions. This drives the research focus towards data-driven hypotheses on the global,
molecular biological mechanisms. The aim of the present thesis is to apply these network
reconstruction methods to understand the regulation of transcription at the chromatin
level.
We address three main research objectives. First, we compare different network recon-
struction methods theoretically and experimentally to reveal the advantages and disadvan-
tages of each method when applied to genome-wide DNA-protein binding data. Second,
we apply network reconstruction methods to derive testable hypotheses about the reg-
ulatory role of chromatin signaling at human promoters. To the best of our knowledge
this is the first systematic computational study of chromatin signaling in human cells.
Finally, we compare the chromatin signaling interactions across various transcriptional
and regulatory states to provide further insight in the regulatory role of chromatin in
distinct genomic and regulatory contexts.

1.2. Thesis outline

Following the introduction, we introduce in more detail the biological background in Chap-
ter 2. We review the regulatory role of histone modifications and chromatin modifiers in
transcription. The final paragraphs outline the genome-wide experiments available to
study chromatin and transcription.
Chapter 3 presents the theoretical background on several network reconstruction meth-
ods. In Chapter 4, we motivate the use of the network reconstruction methods in the
context of reconstructing chromatin signaling. We compare the different approaches on
simulated data and genome-wide DNA-protein binding data in Chapter 5.
The first comprehensive set of ChIP-Seq data on chromatin modifier data in humans was
published in 2011 [4]. We analyzed this set of proteins together with data on histone mod-
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ifications. We provide hypotheses for mechanistic links between the histone modifications
and the chromatin modifiers in humans. This project is described in Chapter 6.
The transcriptional and regulatory status of a genomic regions is related to different
combinations of histone modifications. In Chapter 7, we investigate and compare the
interactions of the chromatin modifiers at regions with different histone modification sets.
We show that most interactions are context dependent. Further, individual members of
known protein complexes also show state-dependent interactions. We conclude the thesis
and discuss potential open questions and research directions in Chapter 8.
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CHAPTER 2
Biological background

The cell has to make a variety of regulatory decisions at different stages of the transcrip-
tional process. These include for example the choice of distinct regulatory or functional
elements in the DNA, making the DNA accessible to regulatory proteins or assembling the
necessary proteins for the initiation of transcription. The different regulatory decisions
are carried out in a tightly time and space restricted manner. The chromatin environ-
ment plays an essential role in these processes and a large part of the regulatory effort
is achieved through chromatin-associated proteins that transmit, memorize or interpret
the appropriate regulatory signals. Together the complex interplay between these factors
mediates the dynamic state of the genome that ultimately defines the cell’s identity.
The following chapter serves the purpose of introducing the biological background rele-
vant for understanding the scope and the remainder of the thesis. In Section 2.1, the
proteins involved in packing the DNA into chromatin and interacting with chromatin are
reviewed. Afterwards, Section 2.2 outlines the different levels at which the cell-specific
regulation and use of the genome can be observed with a focus towards the role of chro-
matin. Finally in Section 2.3, the experimental procedures and their rationale in studying
chromatin regulation on a genome-wide level are presented.

2.1. Chromatin components

As reviewed in [5], chromatin refers to the packing of the DNA along with proteins in
the eukaryotic nucleus. The basic repeating unit, called nucleosome, is built by wrapping
approximately 147 base pairs (bp) of naked DNA around an octameric protein complex
consisting of histone proteins. Consecutive nucleosomes are linked by short stretches of
linker DNA of varying length. The nucleosomes together with the linker DNA resemble
a beads-on-a-string structure that is further coiled into the 30 nanometer (nm) fiber in
vivo. Additional packing is achieved by looping of the 30nm fiber through scaffolding
proteins. During mitosis these structures are even further compacted and stabilized into
chromosomes. The different steps of packing are illustrated in Figure 2.1. The following
section reviews different biological entities that are part of, interact with and/or regulate
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Figure 2.1.: Illustration (adapted from [6]) of the different stages of DNA packing into
chromatin. The DNA is wrapped around the histone core into nucleosomes. Consecu-
tive nucleosomes are connected by the linker DNA forming the beads-on-a-string struc-
ture. Further compaction leads to the 30-nanometer fiber and finally to the characteristic
metaphase chromosomes.

chromatin. The main focus lies on histone proteins and chromatin modifiers.

2.1.1. Histones and histone modifications

The building blocks of chromatin are histones that together with DNA form the nucleo-
somes. Pairs of each of the four core histones H3, H4, H2A and H2B build an octameric
protein complex. The interactions of the histone complex with the DNA lead to a wrap-
ping of the DNA around the histone complex and thus to the formation of a nucleosome.
Besides the four canonical histones, different histone variants exist that can replace the
corresponding core histone. For example, histone H2A can be replaced by H2A.Z, H2A.X
and macroH2A. The histone H3 can be replaced by e.g. H3.3. Histone variants have high
similarity in their amino acid sequence to the corresponding core histone. However, they
differ mostly in their structural features and their function from the canonical histone.
The precise functional roles of these variants are still mostly unknown.
The unstructured aminoterminal parts of the histone proteins, called histone tails, stick
out of the core nucleosome. They are thus accessible to enzymes that are able to modify
specific residues within the histone tails. These post-translational, covalent modifications
are called histone modifications (HMs) or histone marks. They include among others
methylation (me), acetylation (ac), phosphorylation (p) and ubiquitinylation (ub) and af-
fect for example lysines (K) and arginines (A). Typically, a particular histone modification
is abbreviated by the histone name, the type and the position of the residue followed by
the modification and the quantity of the modification added to the residue. For example,
H3K4me3 states that there are three methylgroups attached to the lysine at position four
in the histone tail of histone H3.
The mere presence of a nucleosome affects the accessibility of a particular DNA region by
the transcriptional machinery or by regulatory proteins such that nucleosomes have been
initially thought to be general repressors of transcription. Acetylation of the histones
loosens the contact to DNA and thus opens up the chromatin to allow transcription (re-
viewed in [7]). For methylation such an effect on the strength of the nucleosome binding
is not known. However, the function of the different HMs seems to be more distinct.
For example, different HMs recruit specific chromatin-modifying proteins, and thus are
involved in specific signaling processes (see Section 2.2.3).
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2.1.2. Cytosine modifications

The DNA itself can also be chemically modified by the addition of a methyl group to
cytosines (5mC). In eukaryotes, DNA methyltransferases (DNMT) set and maintain the
5mC almost exclusively at CpG-dinucleotides. The TET proteins sequentially produce
several other cytosine modifications. Due to the enzymatic activity of the TETs, 5mC
can be oxidized into the 5-hydroxymethylation (5hmC) [8]. 5hmC can be catalyzed into
5-formylcytosine (5fC) which can then be turned into 5-carboxylcytosine (5caC) [9].
The different cytosine modifications have been implicated to function in various regulatory
processes. The classical role attributed to 5mC is the repression of transcription and
of repetitive elements (reviewed in [10]). 5hmC is present at repressed genes or genes
that become active in later cell differentiation stages [11]. In contrast, 5fC was found at
transcriptionally active genes [12]. Cytosine modifications can be recognized by distinct
sets of proteins, including chromatin modifiers [13]. Hence, these modifications might
function as signaling molecules analogous to histone modifications. However, the precise
function of the cytosine modifications is still unknown.

2.1.3. Chromatin-modifying proteins

In the present thesis, chromatin modifiers refer to proteins harboring the capability to
change the chromatin environment in proximity of their binding location. They can
be distinguished by their enzymatic activity. Adenosine triphosphate (ATP) dependent
chromatin remodelers are able to slide nucleosomes along the DNA and eject or exchange
histones under ATP-hydrolysis. Methyl- and acetyl-transferases place methyl- or acetyl-
groups, respectively, on specific amino acids on the histone tails. Demethylases and
deacetylases remove these modifications. Other proteins (e.g. HP1 [14–16]) can bind to
specific histone modifications and by, for example, complex formation compact chromatin.
Multiple mechanisms exist to target the chromatin modifiers to specific sites in the
genome. Inherent recruitment mechanisms are protein domains that recognize specific
modifications on the histone tails (see table 2.1). The protein-protein interactions with
sequence-specific DNA binding proteins, called transcription factors (see section 2.1.4),
form another recruitment mechanism (e.g. [17, 18]). Other recruitment mechanisms in-
clude chromatin structure [19], non-coding RNAs (e.g. [20]) or DNA sequence compo-
sition (e.g. [21, 22]). Once a chromatin modifier is recruited to its target it can fulfill
either its enzymatic activity or recruit other effector proteins, complex partners or the
transcriptional machinery.

Table 2.1.: Examples of typical protein domains that are able to recognize histone residues
or modifications (reviewed in articles as indicated in column ”Target”).

Domain Target Examples1

Bromo lysine acetylation [23] BRD4, ASH1L, KAT2A
Chromo lysine methylation [24] CBX2, CHD1, CBX3
PHD-type zinc finger mainly lysine methylation [25] PHF8, ASH1L, KDM2A

1Source: http://www.uniprot.org/
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2.1.4. Other chromatin-interacting factors

Other factors that interact with chromatin include, for example, regulatory non-coding
RNAs or transcription factors. Regulatory RNAs do not code for a protein but instead
have regulatory functions. Especially long non-coding RNAs are relevant in the chromatin
context as they for example recruit various proteins including chromatin modifiers [20].
Transcription factors (TF) are key regulatory proteins which usually function to promote
or to reduce transcription depending on the context. Through a DNA binding domain,
TFs can recognize particular small DNA sequences. TFs interact with chromatin in several
ways. Many transcription factors bind mostly in nucleosome free regions [26]. However,
pioneering factors (reviewed in [27]) bind to their DNA motif despite the presence of
nucleosomes. These factors recruit chromatin remodelers which then open the chromatin
for further regulation.

2.2. The regulatory role of chromatin

Chromatin has, apart from the mere packing of DNA in the nucleus, an essential function
in the regulation of transcription. Thereby its role is dual: First, the strength of the
packing directly influences the accessibility of the underlying DNA. This is important
since various biological processes and proteins can fulfill their function only in a certain
chromatin environment. Second, the histones, as part of the chromatin, can be read
by other proteins and mark regulatory or functional regions of the genome. Together
these aspects facilitate a cell-type specific, restricted use of the genome. The following
paragraphs review the relation between the state of the chromatin and the different levels
of transcriptional regulation.

2.2.1. Chromatin states

The local chromatin environment, called chromatin state, depends on the cell cycle stage
and the transcriptional state of a particular genomic region. Disregulation of the chro-
matin state due to mutations in a particular chromatin modifier is associated with, for
example, cancer [28]. Thus, it is critical for the cell to tightly regulate the particular
chromatin state at each genomic location.
The chromatin can be broadly classified into two states [5]: Euchromatin and heterochro-
matin. Euchromatin refers to regions of loose chromatin, where the DNA is accessible to
TFs and the transcriptional machinery, and is mostly associated with active transcription.
In contrast, heterochromatin refers to tightly packed and associated with transcription-
ally silent regions. In heterochromatin, much of the DNA is covered by dense nucleosome
clusters preventing access to the transcription machinery.
The broad classification of chromatin states into euchromatin and heterochromatin can be
further diversified by the presence of distinct sets of histone modifications [29, 30]. Each
of these sets of histone modifications is associated with a particular chromatin structure
and transcriptional or regulatory state. Further, these combinations distinguish different
regulatory and functional elements in the genome.
The particular packing state is highly flexible, such that if the appropriate signals and
proteins are present or absent a euchromatic region can turn into heterochromatin or vice
versa. Chromatin-modifying enzymes or ATP-dependent chromatin remodelers are able
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Figure 2.2.: An illustration of the genomic elements across the genome and their rela-
tionship to distinct combinations of histone marks. Regulatory elements in the genome
(sketched as a black line) are indicated as white boxes. Colored boxes indicate the dis-
tribution of a certain histone mark at the genomic region. The circle shows the protein
CTCF.

to switch the chromatin state of a particular region upon recruitment. These enzymes
are recruited to defined regions of the genome allowing for a cell-specific regulation of the
chromatin.

2.2.2. Regulatory elements

The combinatorial usage of regulatory elements is connected to the cell-type specific reg-
ulation of the transcriptional state of the associated gene [31, 32]. Examples of regulatory
elements and their distribution along the genome are sketched in Figure 2.2. Promoters
are regions where the transcriptional machinery is assembled. Promoter-proximal regions
are in the vicinity of transcriptional start sites (TSS) and harbor various TF binding sites.
Distant regulatory elements (enhancers, silencer and insulators) can be located up to sev-
eral kilo base pairs (kb) upstream or downstream of a gene. Under the current model
these elements function by building chromatin loops with other regulatory elements [33,
34]. Enhancers have an increasing and silencers have a decreasing effect on the transcrip-
tion of the associated gene. Insulators or boundary elements separate different chromatin
states and are also involved in long-range chromatin interactions [35].
Several genome-wide studies relate the different regulatory elements with unique chro-
matin states that even depend on the activity of the elements (reviewed in [36, 37]).
Figure 2.2 summarizes the knowledge on the connections between well-studied histone
marks and regulatory elements or their activity. Active Promoters are usually marked
by H3K4me3 and histone acetylation at the TSS. H3K79me2 marks initiation in the first
exon of the gene body. Actively transcribed regions are marked by H3K36me3. Poised or
bivalent promoters, which are promoters whose final transcriptional state are undefined,
are marked by H3K4me3 and H3K27me3. Repressed genes are usually marked only by
H3K27me3 or in heterochromatic regions by H3K9me3. Active enhancers are charac-

8



terized by H3K4me1 and H3K27ac, while inactive enhancers might harbor H3K4me1 or
H3K27me3. In summary, the different histone modifications clearly distinguish regula-
tory elements and thus might be seen as localized regulatory signals embedded in the
chromatin.

2.2.3. Chromatin signaling

The discovery of different combinations of histone marks that define various chromatin
states and proteins that can read off those combinations led to the histone code hypothe-
sis. The histone code hypothesis states that ”multiple histone modifications, acting in a
combinatorial or sequential fashion on one or multiple histone tails, specify unique down-
stream functions” [38]. The histones were thus not only recognized as packing elements to
build a particular chromatin structure but rather as signaling molecules. As such they re-
cruit particular chromatin-modifying enzymes and would trigger a particular down-stream
event. However, the statement that histone modifications act in combinatorial fashion to
define a particular outcome currently has little evidence [39]. Instead, the different chro-
matin modifiers interact with the different histone modifications sequentially or in parallel
and cross-talk with other cellular processes. The observations of combinatorial patterns
might thereby be a side effect of obtaining stability of the signal. This observation led
to a more dynamic view of the chromatin-related processes which now have to be em-
bedded into the whole cellular signaling. The complex interactions involving the different
chromatin components are called chromatin signaling interaction in the remainder of the
thesis.

2.3. Experimental methods to study gene regulation

Various experimental techniques are available to study the different aspects of transcrip-
tion and its regulation. A central part of these techniques is DNA sequencing which
refers to reading out the particular chain of nucleic acids in a DNA fragment of interest.
Each of these experimental techniques complements the sequencing step depending on
the particular question with enrichment or conversion steps (illustrated in Figure 2.3).
The following paragraphs describe the general principle of high-throughput sequencing
techniques and the applications of DNA sequencing within the different protocols.

2.3.1. High-throughput DNA Sequencing

The basic principle behind all DNA sequencing techniques is the copying of a single-
stranded DNA template into a double stranded fragment. Thereby the techniques exploit
the principle of base complementarity such that in the newly synthesized strand a certain
nucleotide is preferentially added depending on the template. Once a new nucleotide is
added, a specific signal (e.g. a fluorescence light or the stop of the copying process) is
read off by the sequencing machines allowing the reconstruction of the initial sequence.
The DNA sequencing techniques have been rigorously improved for speed, cost and base
coverage over the last decades. Thus, apart from their original application of sequencing
the genome, DNA sequencing techniques are now also widely applied to study genome-
wide transcriptional regulation.
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2.3.2. RNA abundance

High-throughput sequencing-based protocols for measuring RNA abundance characterize
and measure the steady state level of transcripts in the cells. The detected abundance
levels thereby reflect transcription as well as degradation of the transcripts in a cell pop-
ulation. These sequencing-based techniques have almost completely replaced traditional
Microarray studies which are by design limited, for example, in the detection of unknown
transcripts and small regulatory RNAs or in the ability to distinguish particular transcript
isoforms (reviewed in [40]).
The different protocols can be generalized to the following common steps: First, the se-
quencing library is prepared by enriching for the transcripts of interest. Next, the selected
transcripts are reverse transcribed into cDNA which is then passed on to the sequencing
machines. The resulting sequence reads can be mapped to a reference genome using com-
putational tools.
The Cap Analysis Gene Expression (CAGE) technique is an example of such an high-
throughput sequencing-based protocol [41, 42]. In the CAGE protocol only full length
transcripts with a 5’-cap are selected for library preparation and the cDNA is produced
only from short regions at the 5’end of these transcripts. From CAGE data one can thus,
in contrast to other protocols (e.g. RNA-Seq), reliably identify the precise position of the
transcriptional start site.

2.3.3. Protein-DNA binding events

Chromatin-immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) can
be used to detect protein-DNA binding events [43–45]. The protocol starts with cross-
linking the proteins to the DNA by exposing the cells to UV-light or formaldehyde. Af-
terwards, the DNA is fragmented and then incubated with antibodies against the proteins
of interest. This marking is then used to enrich for DNA fragments that are bound to the
proteins of interest. Finally, the proteins are washed off and the resulting DNA fragments
are sequenced.
Another protocol to detect protein-DNA binding events is DamID [46]. Here, instead of
a protein-specific antibody, an artificial fusion protein built from the protein of interest
and an adenine specific methyltransferase is used. This protein introduces an artificial
adenine methylation in the proximity of the DNA binding regions of the protein of inter-
est. After sequencing the genome and comparing it to the reference genome, the regions
of harboring artificial adenine methylation are identified.

2.3.4. Cytosine modifications

Several techniques (reviewed in [47]) are available to detect methylated cytosines in the
genome. Probably, the most popular one is Bisulfite-Sequencing, where due to bisulfite
treatment modified cytosines are converted into tymines and identified after sequencing
by comparing to a reference genome. However, this technique does not distinguish be-
tween the classical 5mC-modification and 5hmC, 5caC or 5fC. Another technique based
on methylated DNA immunoprecipitation (MeDIP) circumvents this problem. A anti-
body against the specific cytosine modification is used to enrich for fragments containing
modified cytosines and to discriminate between the different cytosine modifications. The
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remainder of the protocol is very similar to ChIP-Seq. However, the usage of an anti-
body also leads to a disadvantage of MeDIP in comparison to Bisulfite-Sequencing. The
resolution depends on the fragment size and as such is much lower than with Bisulfite-
Sequencing.

2.3.5. DNA-DNA contacts

The genome-wide 3-dimensional organization of DNA can be measured by a plethora of
different high-throughput methods (reviewed in [48]). In principle, DNA regions that are
close in space are ligated to each other, making it possible to sequence pairs of interacting
DNA regions. The difference in the various methods lies in the amount of pairs that can
be analyzed at once. With a technique called Chromatin Interaction Analysis with Paired-
End-Tag sequencing (ChIA-Pet) only interactions where a specific protein of interest is
involved are sequenced [49]. The selection is again achieved by applying a specific antibody
against the protein of interest after ligation. This technique reduces the noise resulting
from non-functional or non-specific contacts by restricting the discovered interactions to
regions where a protein is bound.
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CHAPTER 3
Computational methods for
reconstructing interaction networks

The task of reconstructing an interaction network, also called reverse engineering or net-
work inference, aims at identifying the specific, statistically relevant associations between
the components of a complex system from observed data. Network reconstruction meth-
ods have been applied to various problems, e.g. the reconstruction of protein-protein
interaction [50], gene regulatory [51] or co-evolution networks [52]. Recently [53–55], dif-
ferent network reconstruction methods have been used to reconstruct chromatin-related
signaling networks from DNA-protein binding data.
In the following chapter we review the task of reconstructing interaction networks. We
introduce the notation used throughout this chapter in Section 3.1 and formulate the task
of reconstructing interaction networks mathematically in Section 3.2. Section 3.3 sum-
marizes the mathematical background of relevance networks. In Section 3.4 we introduce
the concept of conditional independence and review different methods that build upon
this concept and have been applied in the context of reconstructing chromatin-related
interaction networks in Section 3.5-3.7.

3.1. Notation

Interaction networks are usually represented by a graph G = (V,E) that summarizes the
topology of the network. Here, V is a set of nodes and E ⊆ V × V is a set of edges
connecting these nodes. Each node vi in the set V represents a network component (e.g.
a gene or a protein). An edge (vi, vj) ∈ E denotes an interaction between the two nodes vi
and vj (e.g. gene regulatory interactions or protein-protein interactions). These edges can
be either directed or undirected, which means that (vi, vj) 6= (vj, vi) or (vi, vj) = (vj, vi),
respectively. Depending on the type of edges, the interpretation of the edges changes (as
discussed in section 4.4).
In the remainder of this thesis we will adopt a probabilistic framework where we associate
a random variable Xi to each node vi. The set of nodes can then be modeled as a
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multivariate random variable X = (X1, ..., XN). Given some data D on the network, each
measurement or observation of the nodes in the network in this framework constitutes a
realization (x1, ..., xN) of the random variable X.

3.2. Objective

Given the data D, the goal of reconstructing interaction networks is to find a model M
that describes the relationships between the Xi’s such that it best explains the observed
data D. The network reconstruction process can be separated into structure learning and
parameter estimation of model M . Structure learning in this context refers to selecting
relevant edges between the nodes and is a combinatorial optimization problem: if there
are N nodes there are

(
N
2

)
possible edges. The various combinations of these edges lead to

an exponential number of possible networks. The methods thus need to efficiently decide
where an interaction is reasonable given the data. The parameter estimation learns the
parameters of the interactions in the network model from the data. This is either done
concurrently with the structure learning or done after a structure is fixed.

3.3. Relevance networks

One of the most intuitive ways of defining interactions between variables is to measure
the pairwise association or similarity between two random variables. These pairwise
association measures used in this context include, for example, the Pearson correlation
coefficient [56] or the mutual information [57]. Given all empirical pairwise measurements
of association, to construct the interaction network a threshold is applied to the association
measures. The assumption behind this is that high-scoring interactions show relevant
edges in the network.

3.3.1. Pairwise Pearson correlation

The intuition underlying the use of the pairwise Pearson correlation for network recon-
struction is based on properties of the Pearson correlation coefficient. Under a multivariate
Gaussian distribution we can assume that, if the Pearson-correlation coefficient

ρXi,Xj
=

cov(Xi, Xj)√
var(Xi)var(Xj)

(3.1)

between two Gaussian random variables Xi and Xj is zero, these two variables are inde-
pendent. Thus, two nodes get connected in the network only if the empirical correlation
coefficient between them is non-zero. Due to the properties of the Pearson-correlation
coefficient this approach is most appropriate for detecting linear dependencies. The
Spearman’s correlation coefficient can identify monotonic relationships by computing the
correlation coefficient on ranked data.

3.3.2. Pairwise mutual information

Similar to pairwise correlation, mutual information can detect pairwise associations in the
case of discrete random variables. The mutual information between two discrete random

14



variables Xi and Xj each having possible outcomes x and y, respectively, is defined as

MI(Xi, Xj) =
∑
x

∑
y

PXi,Xj
(x, y)log

(
PXi,Xj

(x, y)

PXi
(x)PXj

(y)

)
. (3.2)

This measure obtains a value of zero if Xi and Xj are independent, i.e. only if the
joint probability distribution P (Xi, Xj) equals the product of the marginal distribu-
tions P (Xi) and P (Xj).

3.4. Conditional Independence

Using the pairwise association measures described in section 3.3 it is difficult to distin-
guish between different network structures underlying the observed data. For example,
the situation where a variable X1 interacts with X2 that in turn interacts with X3 is
indistinguishable by simply measuring the pairwise association from the situation where
X1 interacts with both, X2 and X3. However, if data on X1 is given, we can account for
this information using the concept of conditional independence. In the following, we re-
view conditional independence and its relation to the partial correlation coefficient based
on [58].
Conditional independence for two random variables Xi and Xj given the set of remaining
random variables Z = X \ {Xi, Xj} holds, if and only if

P (Xi, Xj|Z) = P (Xi|Z)P (Xj|Z) (3.3)

where P (Xi|Z) refers to the conditional probability of Xi given Z. This means that,
knowing Z, Xj does not contribute any new knowledge about Xi and vice versa. Intu-
itively this states that Z can explain the association between Xi and Xj.
Note, that if the random variable X follows a multivariate Gaussian distribution, condi-
tional independence holds if and only if the partial correlation coefficient ρXi,Xj |Z equals
zero. The partial correlation coefficient is thereby defined similarly to the Pearson corre-
lation between Xi and Xj conditioned on Z

ρXi,Xj |Z =
cov(Xi, Xj|Z)√

var(Xi|Z)var(Xj|Z)
(3.4)

For an interpretation, we can think of the partial correlation coefficient as the Pearson
correlation coefficient between the residuals of Xi and Xj after regressing each of them
on Z (see also section 3.5.2).

3.5. Gaussian graphical models

In the multivariate Gaussian setting, the concept of conditional independence is used
to construct the graph structure of undirected Gaussian graphical models. A Gaussian
graphical model consists of a graph G = (E, V ) and a probability distribution P . The
edges in E represent the relationships among a set of random variables {Xi, ..., Xn} of
which each is associated to a node in V . Together with the associated probability distri-
bution P , the graph G defines the full joint distribution of the variables. Thereby, missing
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edges (Xi, Xj) /∈ E represent conditional independence between the two corresponding
variables given all other variables in the graph (Markov property). These independence
assumptions restrict the possible probability distributions associated to the graph. Hence,
this representation not only gives a direct translation to interaction networks but also sim-
plifies the computation of the parameters of the distribution and increases the robustness
of the inference from data. The following section describes multiple ways to calculate the
graph structure from observed data.

3.5.1. Covariance selection

Efficient ways of inferring the conditional independence restrictions from observed data
exist for graphical models representing a multivariate Gaussian distribution. These ap-
proaches are called covariance selection. They build upon the definition of conditional
independence in the multivariate Gaussian setting (see section 3.4). Computing the partial
correlation coefficient (see equation 3.4) can be done efficiently by inverting the covariance
matrix as sketched in the following. The details of the proof can be found in [58, 59].
Assume a multivariate Gaussian distribution N (0,Σ) with invertible covariance matrix Σ
that can be partitioned as follows

Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
(3.5)

where A and B partition the set of variables X into distinct subsets XA and XB, i.e.
A ∪ B = {1...n} and A ∩ B = ∅. For example, let A = {Xi, Xj} and B = Z =
X \ {Xi, Xj} as above. The conditional distribution of XA given XB = xB follows a
Gaussian distribution with parameters as follows:

N
(
ΣABΣ−1BBxB,ΣAA − ΣABΣ−1BBΣBA

)
(3.6)

From this we can observe that A and B are independent if and only if ΣAB = 0, since
it then holds that the mean µA|B and the covariance matrix ΣA|B of the conditional
distribution are not influenced by the variables in B. Further, defining the concentration
matrix as K = Σ−1 and partitioning it as follows

K =

[
KAA KAB

KBA KBB

]
(3.7)

we find that
ΣAA − ΣABΣ−1BBΣBA = K−1AA. (3.8)

This identifies KAA as the concentration matrix of the conditional distribution of XA given
XB = xB. By observing similarly to the derivation of equation 3.8 that −ΣABΣ−1BB =
K−1AAKAB, it follows that A and B are independent if only if KAB = 0
Since the concentration matrix of the conditional distribution is

KAA =

[
kii kij

kji kjj

]
(3.9)

and it holds that

ΣA|B = K−1AA =
1

det(KAA)

[
kjj −kij
−kji kii

]
(3.10)
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the conditional covariance cov(Xi, Xj|XB) =
−kij

det(KAA)
= 0 if and only if kij = 0. Thus,

a direct connection of the concentration matrix K to the partial correlation coefficients
arises when scaling K to have all diagonal elements equal to one. Then it follows for all
off-diagonal elements that

− kij√
kjjkii

=
cov(Xi, Xj|XB)√

var(Xi|XB)var(Xj|XB)
= ρij|B (3.11)

giving the partial correlation coefficient ρij|B for two variables Xi and Xj. Hence, equa-
tion 3.11 tells us that these scaled entries of the concentration matrix, i.e. the inverse of
the covariance matrix, are the partial correlation coefficient between two variables condi-
tioned on all the remaining variables.
In summary, equation 3.8 states that the concentration matrix of the conditional distribu-
tion can be obtained by simply deleting the rows and columns corresponding to variables
in B from the full concentration matrix of the joint distribution of X. And further, that we
can define Gaussian graphical models by appropriately restricting elements in the concen-
tration matrix to zero. To infer the conditional independence restrictions from observed
data, least-square or maximum-likelihood approaches are employed. Further, for compu-
tational reasons and because it is convenient for the interpretation most recent methods
assume sparsity and directly incorporate this assumption in the model fitting (e.g. [60,
61]).

3.5.2. Neighborhood selection

Meinhausen and Bühlmann [60] put forward an approximation approach called neighbor-
hood selection. Here, the covariance selection problem is reduced to the problem of finding
the smallest subset of nodes XA, called neighborhood, such that a node Xi is condition-
ally independent from the remaining variables given the neighborhood. Defining XB as
X \ {Xi} we get from equation 3.6 that the conditional expectation of Xi given XB = xB
is a univariate Gaussian distribution with:

E(Xi|XB = xB) = ΣiBΣ−1BBxB (3.12)

=
∑

j∈B βijxj (3.13)

This resembles a regression of Xi on all remaining variables with partial regression coef-
ficients βij = −Kij/Kii. It follows that the zero partial regression coefficients correspond
to all Kij = 0. The neighborhood XA of node Xi is then given by all Xj with βij 6= 0, i.e.
XA = {Xj|βij 6= 0, j 6= i}.
Thus, the task of covariance selection is divided into finding the neighborhood for each
node individually given the data. The coefficients in the fitted regression model are then
interpreted as the rows in the concentration matrix. In [60] the neighborhood is esti-
mated from the data by performing a Lasso regression for which the objective function is
formulated as follows

β̂i = argminβ||xi − βxA||22 + λ||β||1 (3.14)

where || · ||1 is the L1-norm, also called Lasso penalty, and || · ||2 is the L2-norm. The
regularization parameter λ penalizes the deviation of the coefficients from zero. As a
consequence, large λ shrink non-informative coefficients towards zero.
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The estimates of the entries in the covariance matrix do not necessarily result in a sym-
metric matrix. To make the matrix symmetric, the authors in [60] define the entry Kij to
be zero if either Xi is not in the neighborhood of Xj or vice versa, or alternatively only
if both is true.

3.5.3. Graphical lasso

Several other approaches, including Graphical lasso [61], try to estimate the exact solution
to the maximum likelihood fit of the covariance matrix. The key observation is that the
covariance sub-matrix Σ̂BB estimated by the neighborhood selection approach needs to be
equal to the observed covariance sub-matrix to result in the maximum likelihood estimator
by the neighborhood selection, which is not the case in general (as reviewed in [61]). The
Graphical lasso now approaches this problem by iteratively solving the Lasso problem for
each variable and updating the estimated covariance matrix until convergence. Thereby,
at each step the procedure takes into account the current estimate of the covariance sub-
matrix Σ̂BB. This leads to sharing information between the different regression problems.
Together with a fast gradient descent method for solving the individual Lasso problems the
outlined procedure results in the maximum likelihood estimator in moderate computation
time.

3.5.4. Sparse partial correlation networks

Sparse partial correlation networks [54] build upon covariance selection but modify it in
several ways. The overall goal of these modifications is to make the selection of the edges
as precise and robust as possible. Here we only describe these modifications and refer to
the original publication [54] for details.
The first modification is the application of the rank transformation to the data. This is
intended to make the method less sensitive to the distribution of the data, which is in many
applications non-Gaussian. Ranked data is uniformly distributed in the interval [0, N ],
where N is the number of samples, and, as argued in [54], can be approximated by a flat
Gaussian distribution making the data suitable for covariance selection. Additionally, by
ranking the data robustness to technical variation and outliers is increased. However, the
quantitative information in the data is partially lost and the results have to be interpreted
differently, because the method now detects associations between ranks.
Further, in the sparse partial correlation network method a cross-validation scheme, in
which only edges with strong support in the data are called, enforces sparseness on the
recovered network. This is done by masking entries in the partial correlation matrix
based on the following approach. In each cross-fold, a partial correlation matrix P is
constructed on the training data. For each variable Xi, all variables having a non-zero
partial correlation with Xi are selected from the matrix P and used for predicting Xi.
Based on the prediction error averaged over all variables a global cutoff on the partial
correlation coefficients is determined and all interactions above this cutoff will be set to
zero. Finally, all interactions that are zero in a certain number of cross-folds are masked
in the final partial correlation matrix.
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3.6. Bayesian networks

In the following section, we review the use of Bayesian networks to infer interactions
between variables from observed data (based on [62]). Bayesian networks encode the
relationships between the variables as a directed, acyclic graph G = (V,E). As before (see
section 3.5), the graph illustrates the conditional independence structure between the
variables and defines the full joint probability distribution. The parents Pa(Xi) of a
variable Xi are those variables with (vj, vi) ∈ E that make Xi conditionally independent
of all remaining variables that are non-descendants of Xi, i.e. all Xk with (vi, vk) /∈ E.
Thus, it is sufficient to look at the conditional distributions of Xi on its parents P (Xi),
called local probability distribution, to obtain the full joint probability distribution. Using
this property and the probability chain rule, the joint probability can be computed by
factorizing it according to the graph structure as follows:

P (X1, ...XN) =
n∏
i=1

P (Xi|Pa(Xi)) (3.15)

From equation 3.15 we can observe that Bayesian networks allow the implementation of
conditional independencies of all orders. This is in contrast to the Gaussian graphical
models described in section 3.5 that assume full conditional independence. And further,
we can observe that the joint distribution is defined only by the local probability distri-
butions that in turn are defined only through a parent-child specific parameter set θi. For
reasons of computational efficiency one usually assumes a Gaussian distribution in the
case of continuous data or a multinomial distribution in the case of discrete data for the
local probability distributions. The following section describes how to efficiently infer the
parent-child relationships from observed data using a Bayesian approach.

3.6.1. Bayesian Score

To infer the structure of the Bayesian network given some data D several candidate
graph structures are usually compared based on a score that indicates how well a graph
models the observed data. The Bayesian score, for example, evaluates the posterior
probability P (G|D) of a candidate graph G. This probability can be approximated using
Bayes’ theorem

P (G|D) =
P (D|G)P (G)

P (D)
(3.16)

where P (D|G) is the likelihood of the data given a proposed graph and P (G) is the
prior probability of the graph. The probability P (D) is usually omitted since it does not
influence the comparison of different graphs. If prior information on the graph structure
is available it is possible to incorporate that prior knowledge through P (G). Using a
uniform prior P (G) the score only depends on the likelihood P (D|G).
The likelihood P (D|G) is defined by the specific parameter sets θi for each local probability
distribution i. Thus the maximal score that can be achieved for a given graph G is found
by optimizing all parameter sets θ. In the Bayesian setting one does not compute the score
on a single set of parameters, but instead marginalizes the likelihood over all parameter
sets:

P (D|G) =

∫
θ

P (D|θ,G)P (θ|G)dθ (3.17)
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As a result the influence of a particular choice of θ on the posterior probability vanishes.
This step is intended to prevent over-fitting, which would otherwise cause complex models
to have a better score than simpler ones only due to the larger number of parameters
available for modeling the data. Under certain circumstance (as reviewed in [62]), it is
possible to compute the marginal likelihood analytically. The marginal likelihood can
then be decomposed into variable-wise contributions that depend on the corresponding
local probability distributions.

3.6.2. Graph structure selection

Since Bayesian networks allow to model any order of conditional independence it is com-
putationally infeasible to evaluate all possible graph structures. To propose candidate
graphs most learning algorithms make use of heuristic search algorithms, e.g. simulated
annealing or greedy hill-climbing, that make elaborate choices of iteratively chosen candi-
date graphs. Thereby in each iteration a slightly modified version from the current graph
is proposed and accepted under certain conditions. These candidate structures are scored
against each other using, for example, the criterion in equation 3.16 and after the stopping
criterion is fulfilled the highest scoring graph is returned. Finally, since it is often the case
that several high scoring graphs exists, sampling techniques, e.g. Bootstrapping [53], are
employed to retrieve confidence scores for the edges.

3.7. Maximum-entropy approach

Another approach for reconstructing interaction networks is based on the principle of
maximum entropy, which we will explain in the following chapter based on [55, 63]. In con-
trast to the sections 3.5 and 3.6, we assume a discrete multivariate random variable X =
(X1, ..., XN). But again we model the full joint probability distribution P (X1, ..., XN) to
then infer the interactions among the variables.
In the maximum entropy approach the objective is to learn the probabilities pm for each
possible observation xm with m ∈ {1, ...,M} from some summary of the observed data.
In the following chapter, we will see that this task can be formulated as an optimization
problem and can be used to reconstruct interaction networks from observed data.

3.7.1. Entropy

Entropy measures the uncertainty represented in a probability distribution. Assuming a
discrete multivariate random variable X = (X1, ..., XN) with possible events xm and as-
sociated probabilities pm (m ∈ {1, ...,M}) , the Entropy H of the probability distribution
according to Shannon is given by

H = −
M∑
m=1

pmlog(pm) (3.18)
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3.7.2. Entropy maximization

We can use the Entropy measure to estimate the probabilities pm under the constraint
that all pm sum up to 1 by formulating the following optimization problem:

max
pm

−
M∑
m=1

pmlog(pm)

s.t.
M∑
m=1

pm = 1

(3.19)

The solution to this constrained optimization problem is given when all pm are equal.
Hence, the Entropy measure is such that, when no additional information is given, max-
imizing the entropy with respect to the probability distribution leads to the uniform
distribution.
The estimate of the probability distribution in equation 3.19 can be extended to require
agreement of the distribution with the observed data. In more detail, assume we are
given some values Fk with k ∈ {1, ..., K} that are the observed outcome of the following
function:

Fk =
M∑
m=1

pmfk(xm) (3.20)

where fk is some function of the possible observations xm. The equations in 3.20 can be
used directly as constraints in the optimization problem. Using Lagrange multipliers λk,
it can be shown that the optimization problem in 3.19 under the constraints in 3.20 results
in the following probability distributions:

pm =
1

Z(λ1, ..., λK)
exp(

K∑
k=1

M∑
m=1

λkfk(xm)) (3.21)

where Z(λ1, ..., λK) is a normalization factor, called partition function, that ensures the
proper normalization of the probability distribution. The parameters λk depend on the
constraints in equation 3.20 and can be computed by plugging equation 3.21 into the
constraints 3.20. For simple applications the λk are easy to compute, but with more
constraints this task is not feasible analytically.

3.7.3. Network inference

We can use the maximum entropy solution given in equation 3.21 to infer interactions
between the variables Xi by choosing appropriate constraints. For example, we can require
that the expected value of a random variable Xi in our model should agree with the
observed expected value µi. This is achieved by formulating the following constraints for
each random variable Xi:

µi =
M∑
m=1

pmxmi (3.22)

where xmi indicates the outcome for Xi in the event xm. Similarly, we can model asso-
ciations between two variables Xi and Xj with the following constraints for each pair of
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random variables Xi and Xj:

µij =
M∑
m=1

pmxmixmj (3.23)

Using the same approach as in section 3.7.2, these constraints then lead to the following
maximum entropy solution:

pm =
1

Z
exp(

N∑
i=1

M∑
m=1

λixmi +
N∑
i=1

N∑
j=i

M∑
m=1

λijxmixmj)) (3.24)

where Z is the partition function depending on the λi and λij. The solution to the
maximum entropy problem leads to an interpretation of the λi as the preference for a
particular outcome of Xi. Similarly, the λij can be interpreted as the strength of the
interaction between the two variables Xi and Xj.
In principle one could also take into account higher order interactions between the random
variables. But the more constraints there are the more parameters have to be estimated.
Already in the case of modeling pairwise interactions in many applications heuristics have
to be applied [55, 63]. These heuristics are used to solve the optimization problem and
compute the parameters λi and λij.
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CHAPTER 4
Network reconstruction for
chromatin signaling

In Section 2 we have summarized the role of histone modifications and chromatin modi-
fiers in transcriptional regulation. HMs and CMs seem to be part of a chromatin signal-
ing network, but the precise interactions are usually unknown. Recently more and more
genome-wide DNA-protein binding data of HMs and CMs was produced [4, 26] allowing
the systematic inference of potential signaling interactions. The huge amount of data
generated by these experiments calls for computational and visualization techniques that
allow to represent the resulting interactions in a comprehensive way.
In the following chapter we motivate the use of the network reconstruction methods
described in Section 3 to reconstruct chromatin signaling interactions. We give the gen-
eral assumption underlying the detection of interactions from genome-wide DNA-protein
binding data in Section 4.1. In Section 4.2 we summarize how the experimental data is
pre-processed towards a data matrix suitable for the computational methods. We moti-
vate the use of network reconstruction methods in the context of chromatin-signaling in
Section 4.3. Finally, in Section 4.4 we discuss the interpretation of the resulting networks.

4.1. Central assumption

Genome-wide DNA-protein binding data (see Section 2.3.3) refers to a collection of se-
quences of reads, i.e. small segments of DNA sequences, from genomic locations that were
bound by the protein of interest. These reads are mapped computationally to a reference
genome and thus the exact binding location of a protein can be determined. The more
reads are detected at a specific location, the more cells had a protein bound in this region.
The genome-wide distribution of reads gives a binding profile that is very specific to the
protein of interest (see Figure 4.1.
Under the assumption that two proteins act in the same pathway or even interact phys-
ically we would expect to see similar binding profiles. Thus, a central assumption in
reconstructing chromatin-related signaling from genome-wide DNA-protein binding data
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Figure 4.1.: Genome browser screenshot of the binding profiles of several ChIP-Seq ex-
periments in a 50kb-long genomic segment. Top row gives the position in the hg19 genome.
The next row shows an annotated gene. The following rows summarize the reads mapped
to a particular position for each experiment. The red square highlights co-localization of
several histone modifications.

is that co-location suggests functional similarity. To infer interactions we thus need to
measure the similarity between the binding profiles of two protein.

4.2. Data representation

An intuitive way of summarizing genome-wide DNA-protein binding data is to build a data
matrix D where each row corresponds to a genomic region and each column corresponds
to an experiment for a particular protein. All the different network reconstruction meth-
ods described in Section 3 build upon such a matrix. In this framework, each row in the
data matrix D gives a measurement of the multivariate random variable X = (X1, ..., Xn)
where each Xi represents a particular protein.
There are different ways to build the data matrix D that also depend on which method
is going to be used. First, one could count the number of reads that fall into a particular
set of regions, e.g. promoter regions. Second, these counts could be binarized using a
cutoff to obtain a binary data matrix. Alternatively, one could for example identify peaks
within the genomic regions (e.g. [53]).
There are advantages and disadvantages to each choice of the pre-processing method.
Discretization is thought to make the assignments more stable and simplifies the compu-
tational steps in, for example, the Bayesian network and the Maximum-Entropy approach
(see Section 3). However, the quantitative information is lost through this procedure. Fur-
ther, the data is usually discretized into two states that are interpreted as protein-bound
and protein-unbound. This does not necessarily reflect what is measured by, for example,
ChIP-Seq data as these experiments measure the presence of a protein over a whole cell
population. The count data preserves this quantitative information and can be used di-
rectly for inference with graphical models without loss of computational speed. However,
these methods usually assume that the data follows a Gaussian distribution, which might
not be fulfilled by the data. To circumvent this problem, it was suggested in [54] to use
the rank of the binding scores for inferring the network because ranked data resembles a
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flat Gaussian distribution.

4.3. From co-localization to interaction networks

Given the data matrix D summarizing the binding profiles of HMs and CMs, we would
like to infer the interactions between the HMs and the CMs. These interaction are usu-
ally represented as a graph (see Section 3.1). In the application of chromatin-signaling,
each node in the graph represents an HM or a CM and each edge indicates a statistically
significant co-location.
The interaction networks can be inferred by computing a score, which indicates the re-
lationships between two variables, for each possible edge in the graph. The network
reconstruction methods described in Section 3 all automatically deliver such a score from
their model parameters. Depending on the network reconstruction methods used this edge
score is quantitative or qualitative. For example, in the case of the pairwise association-
based approaches the edge score is simply the correlation or the mutual information in
the observed measurements D between any pair of variables.

4.4. Interpretation of the network

Some care has to be taken when interpreting the interaction networks derived from
genome-wide binding data. The nature of the experiments limits the biological knowledge
that can be derived from the detected interactions. We explain potential pitfalls in the
following section.
Since the genome-wide DNA-protein binding data describes the presence of a protein at
a given point in time, it has no direct information about the causes or the consequences
of a binding event. The information captured by these experiments in a specific cell type
thus only allows for the inference of co-locations. The resulting graphs is undirected. In
contrast, directed graphs assign a direction to the edges that is usually used to reflect
causal relationships. For the inference of causal relationships we would need to measure
the dynamic properties of the system by, for example, perturbation experiments. How-
ever, these experiments are usually not available for HMs and CMs.
In the remainder of the thesis, with an interaction in the context of chromatin-signaling we
refer to a statistically significant co-location of two proteins detected in the DNA-protein
binding data. However, as indicated above the detected interactions do not necessarily
imply physical contact, but result in data-driven starting points for deriving hypotheses
about biologically relevant interaction partners. Additionally, the resulting networks can
be used to get an overview of the interactions within a complex system of interest. From
this overview it is possible to identify potential modules and pathways that can be used
to understand the complex behavior of the system.
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CHAPTER 5
Experimental comparison of network
reconstruction methods

Each of the network reconstruction methods described in Section 3 makes different as-
sumptions on the data and has a slightly different objective. In the following chapter,
we are going to compare the different methods under various aspects that occur when
working with ChIP-Seq data, e.g. noisy measurements. In Section 5.1, we measure the
performance of the methods on simulated data. In this way, we obtain a controlled
setting for which we know the true interactions and that the data on the nodes in the
networks is complete. Next, we test the methods on a large publicly available data set
from Drosophila that has been generated and processed by a single lab in Section 5.2.
This offers the opportunity to deal with real biological data and study the effect of tech-
nical and biological noise on the methods. We conclude the chapter with a summary and
discussion in Section 5.3.

5.1. A method comparison on simulated data

Properly evaluating the accuracy of the different methods is only possible if we know the
true underlying network of the observed data. However, to the best of our knowledge
there is no gold standard chromatin-signaling network available where the complete set
of interactions is known. A possible data source for validation are protein-protein inter-
action (PPI) databases. However, for reasons explained in more detail in Section 5.2.5,
PPIs are not a good gold-standard set, mostly because PPIs are incomplete and noisy
themselves.
Additionally, to extract a network containing only true direct interactions it is necessary
to observe all the proteins that are involved in the networks. In more detail, if the pro-
tein A that mediates an interaction between two others (B and C) is not observed, we
are not able to infer that the interaction between B and C is indirect. Thus, the result
largely depends on the completeness of the data set. Most available experimental data
sets of CMs and HMs are not complete, rendering the distinction between indirect and
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direct interaction difficult. To remedy this situation, we study and compare the different
methods on simulated data in the following section.

5.1.1. Simulated networks

As explained in Section 3, the available network reconstruction methods either assume a
multivariate Gaussian distribution or use binarized data. Thus, we simulate multivariate
Gaussian networks, which can be used directly by the methods that assume continuous
data. For the remaining methods, we then binarize each sample in the simulated data
into two groups by applying a cutoff defined as the average signal per sample.
The simulated networks are generated using the qpgraph-package [64] in R. In short, we
define a random graph structure between n nodes with maximum number of edges smax.
The structure is created under the Erdös-Rényi graph model, in which the smax edges
are uniformly distributed between the nodes. From this, we define the covariance matrix
such that an entry in the inverse of the covariance matrix is 0 if the corresponding pair of
nodes is not connected by an edge in the simulated graph. Finally, we create m random
observations from the simulated covariance matrix, which are normalized to have mean 0
and standard deviation 1. The standardization step serves to make the predicted weights
in the different methods comparable.

5.1.2. Methods

We compare the different methods discussed in Section 3 by using the software or R pack-
ages as indicated in Table 5.1. As baseline methods we use simple empirical pair-wise
Pearson correlation (Cor) for continuous and Mutual Information (MI) for binary data.
The implementation of the other approaches are described in detail in the following.
The Partial Correlation (PC) and the Sparse Partial Correlation Networks (SPCN) are
computed as described in Section 3.5. We use the same cutoff for masking entries in the
SPCN as described in the original paper [54], i.e. in each cross-validation (CV) fold start-
ing from the smallest partial correlation entry the entries are set to zero until a maximum
decrease of 10% in the total prediction accuracy is observed. For retrieving the SPCN,
an interaction in the partial correlation matrix is masked if 7 out of 10 CV-folds resulted
in a zero entry.
Similar to the neighborhood selection method described in Section 3.5, we apply Elastic
Nets (ENet) to reconstruct networks. Elastic Nets extends the Lasso regularization term
on the regression coefficients by the L2-norm on the coefficients. As a consequence, simi-
larly good predictors achieve similar weights [65]. In the context of chromatin signaling,
where we assume that protein complex formation is reflected in the data, this seems more
reasonable than choosing one complex member over the other.
Further, we apply the Graphical lasso (GL) approach. For both, Graphical lasso and
Elastic Nets, we choose the penalty parameter for the regularization in a 10-fold CV. We
choose the most stringent regularization parameter for which the mean prediction error
is within one standard deviation of the parameter with minimal prediction error.
Similarly to the observations in [54] on partial correlations, we expect Elastic Nets and
Graphical lasso to obtain mostly non-zero scores for potential edges in the case of a large
number of observations. For this reason we also implement a sparse version of Elastic
Nets (SENet) and Graphical Lasso (SGL). For SENet, we retain only those regression
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coefficients that exceed a threshold of one standard deviation from the mean of all re-
gression coefficients in the prediction of each node. The rest of the scores is set to zero.
Thus, the threshold can vary for each variable which is different from SPCN, where a
global threshold is chosen. For SGL, we apply the same CV-based masking technique as
in SPCN.
Finally, as an example for a Bayesian method, we apply Banjo as described in [53] to
the binarized data. We draw 500 bootstrapping samples on which we run Banjo and
count how often a certain edge (independent of the inferred direction) is recovered. The
interaction score is then given by the fraction of bootstrapping samples in which the edge
was detected.
The Maximum-Entropy approach (ME) is also applied to binary data as described in the
original publication [55]. The regularization parameters are fitted as in [55] and we allow
for pair-wise but no higher order interactions in the model. We additionally perform a
10-fold CV and the final score is given as the average score over the 10 CV-folds.

Table 5.1.: Overview of the implementations of the network reconstruction methods stud-
ied in the method comparison. The first and second column summarize the methods and
the abbreviations used throughout the chapter. The final column gives the main software
or R package used throughout the thesis.

Method Abbreviation Software/R package

Pearson correlation Cor R: stats
Mutual Information MI R
(Sparse) Partial Correlation PC/SPCN R: SPCNs1

(Sparse) Elastic Nets ENet/SENet R: glmnet
(Sparse) Graphical Lasso GL/SGL R: glasso
Bayesian network Banjo Banjo2

Maximum-Entropy ME matlab code3

5.1.3. Comparison on simulated data

We first discuss the general behavior and the different objectives of the methods on a
single exemplary network with simulated data. For visualization purpose, we simulate
a network with n = 20 nodes, smax = 40 edges and m = 5.000 observations. The true
network and the graphs resulting from the different methods are shown in Figure 5.1,
where the scores of the interactions are indicated by the color intensity. Overall, all ap-
proaches show good results in recovering the true interactions. However, also some small
differences become apparent as explained in the following.
Figure 5.1 indicates that, as expected, the Cor and MI approach recover many false
positive interactions. Even though these interactions are false positives, the correlation
coefficient or the mutual information are high rendering the identification of the true edges
difficult. Mutual information, however, results in a wider distribution of scores compared
to Cor, which results mostly in scores larger than 0.2. This might indicate a slightly

1http://spcn.molgen.mpg.de/
2http://www.cs.duke.edu/~amink/software/banjo/
3Kindly provided by Jian Zhou [55]
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Figure 5.1.: Heatmaps of the true simulated interaction network (TP) and the interaction
scores for each possible edge obtained from the different network reconstruction methods
on 5000 observations. The color indicates the magnitude of the interaction scores as
indicated by the color key on the right of each heatmap.
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better performance of MI since the contrast between high and low scoring interactions
is higher. A possible explanation might be the binarization of the data. The PC, GL,
ME and ENet approaches show a high contrast between high and low scores. However,
there are many scores close to zero. In the case of GL, ENet and ME, this might be
improved by optimizing the penalization parameters. Comparing GL and PC, due to the
Lasso regularization GL shrinks some of the low scores to zero but only in a few cases.
The small scores might result from a large number of observations, giving support to the
low scoring interactions. The results from Banjo also have a good contrast between the
low- and high-scoring interactions. Banjo results in many high scoring interactions from
which many are true interactions but some are also high-scoring false positives. This
could potentially be improved by allowing more bootstrapping samples. When applying
the cutoffs in SENet and SPCN as explained before, we recover much fewer interactions
but only true ones. This reflects the objective of these two methods. Instead of delivering
all possible interactions, they recover a few interactions that, however, have most support
in data.
As an objective measure of the performance of the methods, we also compute the precision-
recall (PR) and the receiver operating characteristics (ROC) curves. In the PR curves in
Figure 5.2 the fraction of true positive predictions among all gold-standard positives (Re-
call) is compared to the fraction of true positive predictions among all positive predic-
tions (Precision). The fractions are calculated along a sequence of cutoffs on the absolute
interaction scores. An optimal method would quickly achieve a recall of one while keeping
a high precision when lowering the cutoff. In the present example, this is achieved by GL
and PC. The sparse methods SPCN and SENet detect around 50% and 75% of the true
positives, respectively. The remaining interactions have a score of zero leading to a drop
in the precision to the minimal precision as indicated by the straight lines. In contrast to
mutual information and correlation these methods do not loose precision already at high
cutoffs and thus increase the confidence in the detected interactions. ME, ENet, SGL
and Banjo achieve a recall similar to SENet but then start loosing precision at low edge
scores.
Figure 5.2 also shows the receiver operating characteristic curves and the corresponding
area under the ROC curves, abbreviated by AUC. The ROC curves compare the recall,
also called sensitivity, to the fraction of false positive predictions among all gold-standard
negatives (false positive rate or 1-specificity). Hence, the higher the AUC the better the
method performs. Again, SPCN has a low AUC that is explained by the same argument
as described above: while lowering the cutoff many true positive predictions are added
while not making any false positive predictions until none of the non-zero interaction
scores is left. Note, that although MI and Cor achieve high AUCs (around 0.87), their
performance in the precision-recall curves is low. Thus, while yielding relatively few false
positive predictions out of all gold-standard negatives, MI and Cor have false positive
predictions already at high cutoffs. The remaining methods have almost perfect AUC
between 0.90− 0.98.
Since the analysis above might depend on the small exemplary network, we perform the
analysis again on 25 networks with 50 nodes, 100 edges and 10.000 observations. The
results averaged over the 25 networks are very similar to the results obtained in the small
network (compare Figure 5.2 to Figure A.1 and A.2). Again, MI and Cor already loose
precision at high cutoffs on the edge scores and but show AUCs similar to the other meth-
ods. SGL and SPCN have lower AUCs as compared to the other methods but all edges
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Figure 5.2.: Precision-recall curves, receiver operating characteristics curves and the
corresponding area under the curves (AUC) for a simulated network with 20 nodes and
40 interactions. The methods were run on 5000 observations. Solid and dashed lines
indicate methods that are run on continuous data and their corresponding sparse version,
respectively. Dotted-dashed lines indicate methods run on discrete data.
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having non-zero edge score are true positive predictions. There is almost no difference in
the performance visible between the remaining methods.

5.1.4. Noisy data

There are different types of noise in the data possibly affecting the reconstruction of the
networks, e.g. random noise affecting single observations in a sample or technical biases
affecting certain observations over all samples. We check the robustness of the network
reconstruction to these types of noise in the following section. we performed the analysis
again on 25 networks with 50 nodes, 100 edges and 10.000 observations.
First, we add random Gaussian white noise, which is drawn independently for each ob-
servation in each sample, to a percentage of observations. This noise is simulated by a
univariate Gaussian with a mean of 0 and a standard deviation of 1. Figure 5.3 shows the
AUC over an increasing fraction of noise. All methods have relatively constant AUC over
the different percentages of noise. SPCN and SGL perform worse than the other methods
in the absence of noise. Upon increasing univariate noise these methods approach the
AUC of the other methods. This is also visible in the PR curves (see Figure A.3). Since
we observe this effect only for SGL and SPCN but not for PC or GL, it could result
from the cross-validation scheme. The remaining methods, except MI and Cor, decrease
slightly in their performance as indicated by the PR curves (see Figure A.3).
Next, we model biases affecting the whole observation vector. We use a multivariate
Gaussian distribution with an arbitrarily chosen covariance matrix and a mean of 0 to
model mutivariate Gaussian noise. The noise is added to a percentage of randomly chosen
observations. This type of noise introduces a different covariance structure, which might
affect the network reconstruction. The effect on the AUC of the multivariate noise is
more pronounced compared to the univariate noise (Figure 5.3 and A.4). All methods
except SGL loose AUC the more percent of noise is added to the data. Banjo and MI are
most affected by increasing percentage of noise. This could be a result of the binarization,
however ME is not affected.

5.1.5. Sample and network size

The network and the sample size can affect the robustness of the different network re-
construction methods. We thus compare the performance of the different methods with
a variable number of nodes while keeping the sample size constant and vice versa. First,
we generate 25 networks each consisting of 50 nodes and 100 edges. For each network
we generate from 60 to 10.000 corresponding observations. Figure A.5 shows the aver-
age AUC for each number of simulated observations. As indicated by the average AUC,
the performance improves with the number of observations available. The performance
of the ME method with less than 1.000 observations might be improved by optimizing
the regularization parameter for these settings. Figure 5.4 shows two exemplary plots of
the PR curves at two different numbers of samples (100 and 10.000). Although, based
on the AUC most methods perform better than random with only 60 observations, the
PR curves indicate that the performance measured by the AUC is mostly boosted by the
gold-standard negatives. In contrast, in the PR curves the improvement in the perfor-
mance of the methods with more and more observations is much more pronounced (see
examples in Figure 5.4 and Figure A.6).

32



0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Univariate noise

Percent of noise

A
U

C
● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

●

●

●

Cor
PC
SPCN
ENet
SENet
GL
SGL
Banjo
MI
ME

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Multivariate noise

Percent of noise

A
U

C

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●

●

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.3.: Average AUCs of the different methods over 25 simulated networks each
having 50 nodes and 100 edges. Networks where inferred from 10.000 observations with
an increasing percent of univariate and multivariate random noise.
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Figure 5.4.: Two exemplary average precision recall plots for 100 and 10.000 observa-
tions, respectively. The performance of the different network reconstruction methods is
averaged over 25 simulated networks each having 50 nodes and 100 edges. Solid and
dashed lines indicate methods that are run on continuous data and their corresponding
sparse version, respectively. Dotted-dashed lines indicate methods run on discrete data.
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Next, we investigate the behavior with an increasing number of variables while keeping
the sample size constant at 10.000 observations. We increase the number of edges propor-
tional to the number of variables, i.e. we keep the average node degree constant at 2. Some
methods did not terminate within the time frame given when being tested with more than
500 variables, which is why we restricted the comparison to between 10 and 100 variables.
As shown in Figure A.7, the PR curves improve for most methods (except SGL) with an
increasing number of variables when the number of edges is kept constant. The average
AUC stays more or less constant for all methods over for a increasing number of variables
(see Figure A.8).

5.1.6. Graph density

The network reconstruction methods enforce sparseness on the edges. In very dense
graphs this might lead to high false negative rates. However, in sparse networks this
should help recover the true interactions. Here, we investigate the performance of the
different methods with respect to the graph density. We use a simulated graph with
50 variables and vary the number of edges in the true network between 100 and 900. The
number of observations is kept constant at 10.000.
Most methods perform best for 100 edges based on the average AUC over 25 networks (see
Figure A.9). The AUCs for PC, GL and ENet stay more or less constant at a high level
over the various numbers of edges. Also the AUCs for SPCN and the SGL do not change
over the different number of edges. However, their performance is around 0.7 and 0.5,
respectively. The remaining methods including ME, SENet, Banjo, MI and Cor drop
slightly in their performance the more edges are present. This can also be observed in
the two exemplary plots of the PR curves (Figure 5.5, see also Figure A.10) for 100 and
900 edges, respectively. While for the low number of edges Banjo performs similarly to
the other methods, its performance drops to similar levels as the Cor and MI approach.
The same but less pronounced can be observed for ME, whose performance is similar to
SPCN in the case of very dense graphs.

5.1.7. Conclusion

In summary, based on our analysis there are only slight differences between the perfor-
mance of the different methods under the scenarios tested on simulated data. The biggest
difference in performance is observed by comparing Cor and MI to the remaining methods.
As expected, Cor and MI detect many false positive edges and result in high edge scores
for these edges. In contrast, the remaining methods result in good performances when
tested on simulated data with varying number of variables and number of observations.
Also with small percentages of noise, as simulated by random univariate Gaussian noise,
all methods perform equally well.
Most pronounced are the conceptual differences between the sparse methods and the re-
maining methods. Under all conditions tested the sparse methods, especially SPCN, are
very robust. Only, when increasing the graph density the performance of SENet drops.
However, by adjusting the cutoff this issue might be resolved. On the other hand, in ben-
eficial settings, e.g. when a large number of observations is available, the sparse methods
might be more conservative than the other methods.
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Figure 5.5.: Two average precision recall plots for 100 (node degree 2) and 900 (node de-
gree 18) edges, respectively. The performance of the different network reconstruction meth-
ods is averaged over 25 simulated networks each having 50 nodes and based on 10.000 ob-
servations. Solid and dashed lines indicate methods that are run on continuous data and
their corresponding sparse version, respectively. Dotted-dashed lines indicate methods run
on discrete data.
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5.2. A method comparison on experimental data

In a recent study [53] the authors used the DamID technique to produce a comprehensive
data set of known and unknown chromatin-binding proteins. This data set comprises
179.548 genomic locations and 112 samples. The set of samples contains 37 proteins that
were previously unknown for binding chromatin, 70 known chromatin-binding proteins
and ChIP-Chip data for 5 histone marks. To the best of our knowledge this is the largest
uniformly processed data set publicly available. In the following section, we use this
data to compare the results of the different network reconstruction approaches on real
biological data.

5.2.1. DamID data for Drosophila

In [53] the authors performed DamID experiments (see Section 2.3.3) followed by a ge-
nomic tiling array analysis to identify novel chromatin-binding proteins in Drosophila.
We downloaded 1 the fully pre-processed, loess-normalized and median-centered data set
and the discretized data set for the Kc167 cell line. As explained in [53], the authors
discretized each sample into enriched, intermediate and depleted domains using a 3-state
Hidden Markov Model (HMM). Only the enriched state was called as target while the rest
was defined as non-targets. In general, most of the samples show little or no enrichment
in most of the regions and for the discrete data on average 10% of the regions are called
as target sites (see Figure A.11).

5.2.2. Methods

For the method comparison on the Drosophila data set we run the following methods. We
use the correlation-based, the (Sparse) Elastic Nets and the (Sparse) Graphical lasso ap-
proach on the continuous data. The partial correlation and SPCN are computed on ranked
data. We use the discretized data to run the mutual information and the maximum-
entropy approach. The results for Banjo are obtained from [53].

5.2.3. Edge Rankings

Most of the methods, except SPCN, SENet and Banjo, return a low percentage of edges
with scores equal to zero (see Table 5.2 column “%E(w=0)”). Usually a cutoff is chosen
to retain the most important interactions for visualization. However, as the choice of the
cutoff is more or less arbitrary, we first compare the correlation computed between the
ranked absolute edge scores per method.
The rank correlations between the edge scores of the different methods range from around
0.08 to 0.97 (see Figure 5.6). The highest correlation is obtained between the ENet
and GL, which is expected since the underlying mathematical principles are very similar
(see Section 3). Further, also the other covariance selection methods, except SGL, yield
relatively similar results. SGL gives very few non-zero edges and thus is not correlated
with any of the other methods. This is most probably due to the masking applied to
unstable edges (see Section 5.1.2) suggesting that the results obtained by GL are not

1GEO database accession number GSE36175 ; June 25th, 2013
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robust. Interestingly, Banjo is more correlated with MI and Cor, while ME is correlated
with Banjo and additionally with the group of covariance selection methods.

5.2.4. Network features

Since many methods have a high percentage of non-zero scores (see Table 5.2), we need to
apply a cutoff on the edge scores to compare different features of the resulting networks.
For the remainder of this section, we call an interaction between two nodes if the scores
returned by each method exceeds a certain threshold (see column “Cutoff” in Table 5.2).
We choose the cutoffs arbitrarily by looking at the distribution of edge scores (see Fig-
ure A.12). For the SPCN and the sparse Elastic Nets approach we require a non-zero
score allowing about 25% of the possible edges. For the Banjo approach we use the cutoff
given in the original publication [53] resulting in a very low number of interactions. As
seen in Section 5.1.3, PC, ENet and GL have many edge scores that only slightly deviate
from zero. The same is true for the edge scores on the Drosophila data set, which is why
we choose a cutoff on the absolute edge scores slightly above zero.
Applying the cutoffs to the networks yields very different numbers of edges and nodes.
which take part in at least one edge, for the different network reconstruction methods.
The highest numbers of interactions are achieved by Cor, SPCN and SENet. This includes
two sparse networks for which we only required an edges score different from zero. Banjo
has the lowest number of edges due to the stringent choice of the cutoff. PC, GL and
ME have similar numbers of edges around 800. The resulting networks connect (almost)
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all nodes for the following methods: PC, SPCN, SENet and ME. SGL connects less than
half of the nodes. The global cutoff choice leads to several unconnected nodes for Cor,
ENet, SGL, Banjo and MI. Further, for most methods, except SGL, Banjo and ENet, the
average node degree lies between 14 and 31.

Table 5.2.: The table compares different network features of the reconstructed Drosophila
network for each of the network reconstruction method. The first column indicates the
percent of edges with a edge scores of zero. The second column gives the arbitrarily chosen
cutoff on the edge scores to obtain the top-scoring interactions. The following two columns
give the resulting numbers of edges and of connected nodes, respectively. Lastly, the re-
maining columns show the average, maximum and minimum node degree, respectively.

% E(w=0) Cutoff #Edges #Nodes Avg. ND Max. ND Min. ND

Cor 0.00 0.50 1529 102 27.30 64 0
PC 0.13 0.05 709 112 12.66 25 1

SPCN 75.71 0.00 1510 112 26.96 49 12
ENet 0.85 0.10 473 110 8.45 40 0

SENet 72.18 0.00 1729 112 30.88 61 11
GL 0.16 0.05 979 111 17.48 37 0

SGL 98.50 0.00 93 45 1.66 23 0
Banjo 44.48 0.70 141 98 2.52 8 0

MI 4.50 0.05 1095 89 19.55 57 0
ME 0.58 0.50 829 112 14.80 57 1

5.2.5. Known protein-protein interactions

Evaluating the performance on this biological data set is difficult because there is no
gold-standard set of interactions available. However, as the goal is to learn the biological
function of the proteins from co-localization, we hope to detect many known protein-
protein interactions (PPI). There are many aspects that have to be taken into account
when interpreting the comparison to PPIs. First, PPIs are conceptually different from
co-localization and hence we expect to detect many interactions that are not present in
the PPI database. Second, PPI databases are far from complete, e.g. most databases do
not contain information on interactions involving specific post-translational modifications
of the proteins. Third, the PPIs might contain false positives or indirect interactions,
rendering the interpretation of the performance measures difficult. Lastly, these databases
rarely contain information about true non-existing interactions, i.e. most interactions are
just not studied or it is hard to conclusively rule out that an interaction exists. Despite
these drawbacks, PPI databases are probably the most useful information resource that
can be obtained for evaluating the network reconstruction methods.
Here, we compare the resulting networks to known PPIs from the DroID-database [66]
and manually selected interactions from [55] that overlap with the data set. From the
DroID-database 2 we include the interactions from different high-throughput yeast-to-
hybrid and co-affinity-purification screens. Further, we include the physical interactions
retrieved from other databases such as BioGrid and MINT. Overall, we retrieved 74 known
interactions between the proteins in our network out of the 6.216 interactions from the
database.

2Downloaded August 11th, 2014
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Since there are only 74 known interactions the interpretation of the PR curves and the
ROC curves using these PPI-derived gold-standard set (Figure 5.7) is difficult. The best
performing methods based on the AUC are Banjo and ENet. However, the difference
between the various methods is not very pronounced with AUCs ranging from 0.53 to 0.67.
Judging by the PR curves, the best performing methods include GL, SGL, SENet and
ENet, as well as SPCN and Banjo. However, overall the performance of the methods is
rather similar.
We also investigate the overlap of the top-scoring edges, selected as in Section 5.2.4, to
the gold-standard positive interactions. The biggest overlap is achieved by SENet, SPCN
and Cor. The recall of the different methods are at comparable levels. However, based
on the precision, SENet, SPCN and Cor perform best.

Table 5.3.: Number of overlapping edges, Precision and Recall calculated by comparing the
gold-standard interactions with the top-scoring interactions, as selected in Section 5.2.4,
for each method.

Cor PC SPCN ENet SENet GL SGL Banjo MI ME

# Overlap 30.00 21.00 31.00 16.00 35.00 28.00 5.00 11.00 21.00 21.00
Precision 0.41 0.28 0.42 0.22 0.47 0.38 0.07 0.15 0.28 0.28

Recall 0.02 0.03 0.02 0.03 0.02 0.03 0.05 0.08 0.02 0.03

5.3. Summary and discussion

In summary, we have compared the different network reconstruction methods described
in Chapter 3 on simulated and biological data. With the simulated data, we could com-
pare the methods under different settings and calculate the performance based on the
true underlying network. The different settings studied here include increasing num-
bers of variables, edges and observations, as well as different percentage of univariate
and multivariate noise that are intended to simulate different sources of technical noise.
The resulting networks from biological data were compared to each other and to a PPI
database. From our analysis, we conclude that the different methods perform equally
good on the simulated and the biological data. Our analysis highlights the conceptual
differences between the sparse methods (SPCN, SENet and SGL), the pairwise association
methods (MI and Cor) and the remaining methods. With the edge scores of the pairwise
association methods it is very difficult to distinguish between true interactions and false
positives. The sparse methods tend to make very few false positive prediction but at the
same time sacrifice some true positive predictions.

40



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Recall

P
re

ci
si

on

Cor
PC
SPCN
ENet
SENet
GL
SGL
Banjo
MI
ME

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1−Specificity

S
en

si
tiv

ity

SGL

Cor

SPCN

MI

SENet

PC

GL

ME

ENet

Banjo

AUC

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.7.: Precision-recall, ROC curves and the corresponding AUCs of the different
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CHAPTER 6
The human chromatin signaling
network at promoters

Chromatin is regulated by a complex signaling network consisting of interactions between
histone modifications and chromatin modifiers. These interactions are often unknown,
based on the analysis of a single or a few genes, or studied in vitro. Several recent stud-
ies [53, 55] have used genome-wide DNA-protein binding data to reconstruct chromatin
signaling in Drosophila. We have compared the different approaches on Drosophila data
in the previous chapter. In the following chapter, we recover interactions between chro-
matin modifiers and histone modifications from genome-wide ChIP-Seq data at promoters
in human cells. To the best of our knowledge this is the first chromatin signaling network
in humans. Many of the interactions discovered from co-localization have biochemical
support in the literature but also unknown interactions are revealed. These novel interac-
tions can provide the basis for mechanistic hypotheses on chromatin signaling, of which we
discuss several examples in the light of existing literature. Parts of the following chapter
are published in [1].

6.1. Data preparation

Over the past years many large-scale projects performed experiments or computational
analyses to reveal the regulatory state of human cells. The ENCODE [26] and similar
consortia produced a large amount of ChIP-Seq data sets including data on HMs, CMs and
TFs. The coding regions of the genome are annotated and collected in, for example, the
RefSeq database [67]. We use these large collections of data and standardized annotations
to retrieve normalized ChIP-Seq levels, which are then used to explore the chromatin
signaling at human promoter regions. The following section describes the data retrieval
and normalization.
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6.1.1. Promoter annotation

A common practice in retrieving promoter annotations is to define a region around the
5’end of a known transcript as promoter. Here, we define the broad promoter region
as a 4.000bp-window centered at the TSS of each annotated RefSeq gene. We remove
redundant transcript annotations and obtain 26.893 promoter regions. Note, that these
broad promoter regions might also capture signals from the (transcribed) 5’-part of the
genes and enhancers located in proximity of the genes. However, this large region also
allows to detect relationships that appear between the core promoter and the promoter-
proximal region.

6.1.2. ChIP-Seq read counts in human cells

For the following analysis we use mostly data from the K562 cell line but also from the
H1 human embryonic stem cell (hESC) that is publicly available (summarized in Ta-
ble B.1). A convenient feature of this data set is that most of the experiments were per-
formed in the same laboratory and thus we are likely to circumvent technical laboratory-
dependent artifacts. Using Bowtie [68], we re-mapped the uniquely mapping reads to the
hg19 genome in a uniform way, to ensure that there is no bias resulting from different
mapping techniques. We counted for each sample the number of ChIP-Seq reads that fall
into the promoter regions using Rsamtools, thereby summing up replicates if available.

Read count normalization

ChIP-Seq experiments show technical artifacts resulting from the enrichment of DNA
regions that are easy to pull down in the experiment but not necessarily bound by the
protein of interest. Figure 6.1 shows the read counts of a sample plotted against the
input DNA, i.e. the DNA that can be pulled down without the use of a specific antibody.
A clear dependency of the sample reads on the input becomes apparent. The promoters
bound specifically by the protein of interest, are visible as a diffuse cloud in the upper part
of the plot. While the remaining promoters with no protein bound resolve as a compact
cloud of points showing strong correlation with the input signal.
A common practice to account for such technical artifacts is to normalize the data against
the input DNA. We apply a normalization technique that estimates the median increase
in the signal against the input by equation 6.1. This formula estimates the slope of
the correlation between the read counts of the sample S against the read counts of the
input C. For both S and C we add a pseudo-count of 1 to avoid zero counts.

m = median(
S + 1

C + 1
) (6.1)

We then define a normalized score Snorm by replacing S with the enrichment of the sample
over the median-amplified input:

Snorm =
S + 1

(C + 1) ∗m
(6.2)

A convenient feature of this normalization method is that it shrinks the read counts that
can be explained by the input towards zero but, in contrast to a linear regression of
the sample against the input, avoids non-negative values (see Figure 6.1). The latter is
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Figure 6.1.: Scatterplot of the ChIP-seq signal before and after normalization, respec-
tively, against the input signal. The dashed line indicates the median fold-change as
function of the input signal.

important since negative read counts are counter-intuitive and hard to interpret in the
context of ChIP-Seq experiments. However, it should be noted that this procedure relies
on the assumption that most of the regions are not bound by a protein. The normalization
depends on the clear enrichment of the sample over the input, i.e. the slope is hard to
estimate if there is no clear signal in the sample or if all regions show enrichment. Finally,
for technical reasons the normalized read counts were log-transformed and scaled to have
mean zero and standard deviation one. The final distributions of the read counts by
samples in K562 are shown in Figure A.13.

Gene expression data

To measure transcriptional initiation and gene expression we used CAGE data. This
data was downloaded fully preprocessed from the UCSC genome browser1. We counted
the reads in each promoter region and averaged replicates. The read counts were log-
transformed and scaled to have mean zero and standard deviation one.

6.2. Chromatin signaling and gene expression

The presence of certain HMs and CMs at the promoter or the gene body is linked to
the transcriptional state of the corresponding gene [36, 37]. Moreover, the HM levels at
promoters can even quantitatively predict the steady state levels of mRNAs [69–71]. In
the following section, we check how much information about gene expression is contained
in the available set of HMs and CMs. Furthermore, we investigate whether these HMs
and CMs are redundant predictors of gene expression and finally, whether this trend is
preserved across cell types.

1Sample names: K562CellPapAlnRep1/2.bam and H1hesc CellPapAlnRep1/2.bam (Nov. 2012)
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Figure 6.2.: Predicted expression levels plotted against the measured CAGE tag counts
in the K562 cell line. Expression was predicted using linear regression in a 10-fold CV
from three different sets of variables: only histone modifications, only chromatin modifiers
or both.

6.2.1. Predicting gene expression

HMs and CMs are part of a chromatin-signaling network connected to gene expression.
As such both, HMs and CMs, should contain information about and be predictive of gene
expression. We measure how informative the available HMs and CMs are by using linear
regression and predicting the gene expression values by the corresponding HM or CM
levels in the promoter of the genes. As shown in Figure 6.2, the HM levels explain about
77% and the CM levels explain 75% of the variance in gene expression. The results for
HMs are similar to previous work [69–71]. The good predictive performance confirms that
both HMs and CMs contain information about gene expression.

6.2.2. Predicting histone modifications and chromatin modifiers

Next, we test whether the HMs and the CMs are coupled in the same chromatin-signaling
network. If so, using both, HMs and CMs, as predictors in the linear regression should not
add more information on the expression values. By combining HMs and CMs we improve
the predictions only by 3% or 4% compared to using only HMs or CMs, respectively. This
rather small increase in the predictive power suggests that the available HMs and CMs
hold redundant information about gene expression and thus might be together involved
in the same chromatin-signaling network that regulates gene expression.
Further, we checked if the HMs and the CMs at hand interact in the same chromatin-
signaling pathway. If so, they should be predictive for each other. This hypothesis can be
tested by predicting HMs from CMs and vice versa. The resulting R2-values are shown in
Figure 6.3. For each HM, the CMs account for at least 50% of the variance. In predicting
the CM levels from HM levels, the models account for over 50% of the variance (see
Figure 6.3) for most of the CMs. Thus, for those well-predicted CMs the HMs in the
data set might cover most of the recruitment mechanisms or enzymatic targets. From the
high predictive power of the models we conclude that the set of HMs and CMs are both
involved in the same chromatin-signaling pathway affecting gene expression.
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Figure 6.3.: Predicting histone modifications from chromatin modifiers and vice versa
in the K562 cell line using linear regression in a 10-fold CV. Each box summarizes the
test-R2 distribution over the 10 CV-folds.
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Figure 6.4.: Predicting histone modifications from chromatin modifiers across cell types.
First, the models are trained in the human K562 cell line and then tested in the H1 ESCs.
Second, the models are trained in the H1 ESCs and tested in the K562 cell line. Light color
indicates the R2-values obtained on the CV-test set and dark color indicates the R2-values
in the other cell type.

6.2.3. Conservation across cell types

Under the assumption that the HM-CM-interactions reflect common functions of the
proteins in transcription and its regulation, we expect that the contribution of a CM to
the prediction of an HM in one cell type is similar in another cell type. Thus, given the
regression model trained on the data from the K562 cells we should be able to predict the
HM levels in another cell type. We tested this using ChIP-Seq data for the 14 CMs and the
11 HMs in hESCs that were also measured in the K562 cells. Indeed, the regression models
learned from the data available for both cell types show good agreement (Figure 6.4).
The lower performance of the models when tested on the data from a different cell type is
expected due to biological variation, e.g. different expression levels of the CMs. Overall,
the quantitative effects of the interactions within the chromatin-signaling network are
preserved suggesting cell-type independent interactions involved in transcription and its
regulation.
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6.3. Human chromatin-signaling networks

In the previous section we have shown that the HM and CM levels at the promoter regions
are predictive for gene expression of the associated gene. Further, we argued that HMs
and CMs are jointly involved in signaling-pathways affecting gene expression. In the
following section, we investigate the interactions between these CMs and HMs at different
levels of details: from correlated binding profiles to high-confidence pair-wise interactions.
We will focus on interactions between HMs and CMs, assuming that HMs and CMs act
on different layers in the signaling pathway. These interactions allow us to connect the
very localized, ’passive’ signal of the HMs with the CMs, that in turn are able to actively
remove, interpret and maintain the HMs. The analysis will shed light on the function of
individual HMs in the chromatin-signaling.

6.3.1. Co-localization patterns

We first investigate the global co-localization of the HMs and CMs at promoters. The
complete correlation matrix is shown in Figure A.14. However, comparing the correlations
between CMs to the original publication [4], we have similar results and thus do not dis-
cuss these correlations in more detail. Figure 6.5 shows the pairwise Pearson correlation
coefficients between each pair of HMs and CMs only. A clear separation between three
groups of CMs correlated with different sets of HMs become apparent suggesting differ-
ential function of these groups of CMs. The first group of CMs, including CBX8, CBX2,
SUZ12, EZH2, CREBBP and CBX3, is related to HMs that are known to be involved
in gene repression (i.e. H3K27me3, H3K9me3 and H3K9me1, as well as H4K20me1).
The second group has no apparent specificity for any HMs. Finally, the last group of
CMs (i.e. HDAC1, PHF8, RNAPIIS5P, PolII, CHD1, SAP30, KDM5B and RBBP5) is
highly correlated with HMs that are known to be present at active promoters (H3K4me3,
H3K4me2, H3K79me2, H3K9ac and H3K27ac). Indeed, the last group of CMs and HMs
achieves the highest correlation coefficients, however no individual interactions become
apparent. Overall, both correlation matrices (Figure 6.5 and A.14) show groups of highly
correlated HMs and CMs. The HMs and CMs within such a group are mostly strongly
anti-correlated with the HMs and CMs of another group. However, within the groups of
HMs and CMs the correlation coefficients are very high rendering the understanding of
the individual interactions difficult.

6.3.2. A coarse grained interaction network

After investigating the raw correlation signals between HMs and CMs, we next investigate
which interactions are most specific for each HM. The goal of this analysis is to get a
global overview of the interaction network that might already reveal pathways connecting
different HMs and chromatin states. For this we used the Sparse Elastic Net approach
described in section 5.1.2 to predict each HM by the CMs. The Elastic Net assigns high
coefficients to only those CMs that are most informative for the prediction of an HM.
Thereby similarly good predictors, which would allow for the detection of, for example,
protein complexes that interact with an HM, obtain similar weights. Note that due to
the separation of HMs and CMs this approach does only account for correlations within
the CMs but does not take into account correlations among the HMs. As a consequence
similar predictors might not only be protein complex members but also CMs connected
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Figure 6.5.: A heatmap of the Pearson correlation coefficient as indicated by the color
key between histone modifications and chromatin modifiers.

to a highly correlated HMs, leading to similar sets of CMs as predictors of these HMs.
However, as this approach is less stringent than the other sparse methods it might reveal
global patterns that help in understanding the complex behavior of the systems.
Figure 6.6 shows the resulting Sparse Elastic Net network. Each HM is linked to a different
set of CMs indicating the different specificities of the CMs towards the individual HMs. As
expected, we see a group of highly connected CMs and HMs involving the HMs H3K79me2,
H3K4me3, H3K9ac and H3K27ac, which are highly correlated (see Figure A.14). However,
we see also many interactions connecting the CMs to other HMs that are not directly
related with active transcription. This suggest that these CMs might also be involved
in pathways that communicate between different regulatory states of promoters. For
example, the mutually exclusivity of PHF8 and H4K20me1 or H3K9me1 reflected as a
negative interaction in the Figure 6.6 fits to the known function of PHF8 as a demethylase
of H4K20me1 and H3K9me1 and might be necessary to block a repressive chromatin state
at active promoters.

6.3.3. Deriving a high-confidence interaction network

We next turn from detecting pathways and groups to resolving the network structure
towards the most specific interactions of each HM. We apply SPCN to all available HMs
and CMs. As explained in section 5, SPCN is very conservative in detecting interactions.
However, the failure to recover an interaction should not be interpreted as the absence
of a biologically meaningful interaction. To increase our confidence in a recovered edge,
we intersect the edges from the Sparse Elastic Net approach as described in section 6.3.2
with the SPCN. Hence, we retrieve a network that consists only of interactions recovered
by both methods. With this methodology we first choose those CMs that are consistently
highly predictive for an HM and then disregard those interactions that may have been
induced by high correlations in the HMs by the SPCN.
Figure 6.7 shows the resulting interaction network between the HMs and the CMs. The
strict selection of the SPCN method becomes most apparent on the cluster of HMs de-
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Figure 6.6.: Interaction network between histone modifications (circles) and chromatin
modifiers (rectangles) based on Elastic Nets. Red edges indicate positive interactions and
blue edges indicate mutually exclusive interactions. The arrows do not indicate causation
but rather indicate the direction of the prediction in the Elastic nets.
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Figure 6.7.: Consensus network of histone modifications (circles) and chromatin modi-
fiers (rectangles) based on Elastic Nets and SPCN. Red edges indicate positive interactions
and blue edges indicate mutually exclusive interactions.

scribed in section 6.3.2 leading to a very sparse network. Many interactions (19 out of 33)
are supported by literature evidence where the link between an HM and a CM is validated
biochemically or via one protein that is not observed in our data set (Table 6.1). Our
interactions complement the experimental evidence that has been obtained either in vitro
or by using one or few genes as model system. Together, this large overlap with existing
data suggests that also the unknown interactions are biologically relevant and could be
the basis for new biological hypotheses. Indeed, based on our analysis the positive in-
teraction between H4K20me1 and the Polycomb repressive complex has been validated
experimentally2 using a Co-IP experiment [1].

6.4. Discussion of novel interactions in the light of
existing literature

From the existing literature and the novel interactions predicted by our network we can
derive biological hypothesis about the function of HMs and CMs. Each edge has three
possible mechanistic interpretations: In case of a positive association between a CM and
an HM, the CM may be involved in (1) depositing the HM, (2) maintaining or interfer-
ing with the removal of the HM, or (3) it may be recruited by the HM. Similarly, for a
negative association, the CM may be involved in (1) removing the HM, (2) counteracting
the deposition of the HM, or (3) it may be repelled by the HM. Here, we will investigate
three novel interactions in the light of existing literature.
CHD1 is positively connected to H3K9ac and H3K27ac in the network indicating that
CHD1 tightly associates with H3K9ac/K27ac and that this association is independent
of the histone acetyltransferases (HATs) responsible for the acetylation. These HATs

2Experiments performed by Dr. Sarah Kinkley
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(KAT2A and EP300, respectively [94]) are also part of the set of CMs used in our anal-
ysis, but we do not detect an significant interaction. In line with this observations, the
HATs are released from their targets after autoacetlylation (reviewed in [95]). CHD1 is re-
cruited to chromatin by binding to H3K4me3 [96, 97]. A direct influence of H3K9ac/K27ac
on the binding of CHD1 to chromatin seems unlikely because e.g. H3K9ac has no effect on
the binding of CHD1 to H3K4me3 [97]. Thus, a possible hypothesis might be that CHD1
is involved in maintaining H3K9ac and H3K27ac at active promoters. That in turn could
be part of a mechanism to prevent the H3K9 methylation of these residues and hence
heterochromatin formation. This hypothesis is in line with several publication [96, 98].
In the network we find a positive association between RBBP5 or PHF8 and H2A.Z levels
and a negative association of CHD1 and H2A.Z. The knockdown of H2A.Z in mESCs
leads to reduced levels of RBBP5 concomitant with reduced levels of H3K4me3. Further,
reduced levels of H3K4me3 lead to a decrease of RBBP5 as well as H2A.Z levels [73]. An
appealing hypothesis would thus be that H2A.Z, RBBP5 and H3K4me3 form a positive
feedback loop, where H2A.Z acts upstream of RBBP5, RBBP5 upstream of H3K4me3
and H3K4me3 signals back to H2A.Z. In contrast, PHF8 can bind H3K4me3 [99–102] and
acts as a demethylase for H4K20me1, H3K9me1/2 and H3K27me2 [103]. An appealing
hypothesis might be that PHF8 acts downstream of H3K4me3 to either promote H2A.Z
deposition or repress H2A.Z removal. In line, PHF8 could indirectly promote H2A.Z posi-
tion through demethylating residues that are then available for acetylation. Acetylation,
in turn, is required for H2A.Z deposition [104]
We find a positive association between H4K20me1 and the Polycomb members CBX2 and
EZH2. H4K20me1 is known to be tightly regulated during cell cycle with highest lev-
els during mitosis [105]. A possible hypothesis would be that H4K20me1 and H3K27me3
guide the Polycomb repressive complex to their target sites throughout replication, which
poses major challenges to the maintenance of Polycomb-mediated repression. In line with
this hypothesis, H4K20me1-binding proteins that are able to interact with Polycomb
members (e.g. [106]), but for which no ChIP-seq data was available, could mediate this
interaction.

6.5. Summary

In summary, we have analyzed the most comprehensive set of genome-wide ChIP-Seq data
in human cells to explore the chromatin signaling at different levels of granularity. First,
we connected the set of available HMs and CMs to gene expression. Second, we have
detected modules of HMs and CMs connecting sets of CMs to sets of functionally related
HMs. Third, we have resolved these modules to highlight pathways connecting different
regulatory states of the chromatin. Finally, we have applied an approach based on Elastic
Nets and SPCN to identify specific co-localization pattern between HMs and CMs. This
approach identified many known but also unknown interactions. Taken together, start-
ing from co-localization patterns and applying methods that recover only high-confidence
interactions we are able to move closer towards a mechanistic understanding of the inter-
actions between HMs and CMs.
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Table 6.1.: A summary of the evidence in the literature for the links present in the
consensus network (Figure 6.7). The literature evidence (column “Reference”) can be
indirect via maximal one other protein for which ChIP-Seq data was not available.

HM CM Reference Comment

H2A.Z CHD1 [72] CHD1 is involved in the removal of H2A.Z in the gene
body

H2A.Z PHF8 - -
H2A.Z RBBP5 [73] H2A.Z recruits RBBP5

H3K27ac CHD1 - -
H3K27ac Pol2b [74, 75] Elongator complex carries HAT activity, Indicator of

active promoter
H3K27me3 CBX2 [76] CBX2 binds to H3K27me3
H3K27me3 CBX8 [76] CBX8 binds to H3K27me3
H3K27me3 EZH2 [76–79] EZH2 catalyzes H3K27me3
H3K27me3 SUZ12 [80, 81] SUZ12 binds H3K27me3 via EED
H3K27me3 RNAPIIS5P [82] High levels of RNAPIIS5P indicate elongation, which is

repressed by H3K27me3
H3K36me3 KDM5B - -
H3K36me3 RNAPIIS5P [83] Pol II carries SETD2 which methylates H3K36
H3K36me3 WHSC1 [84, 85] WHSC1 methylates H3K36
H3K4me1 CHD1 - -
H3K4me1 KDM1A [86, 87] KDM1A demethylates H3K4me1
H3K4me1 SETDB1 [88] SETDB1 binds less well to H3K4me1 substrates
H3K4me1 WHSC1 [89] WHSC1 binds to H3K4 unmodified
H3K79me2 CHD1 - -
H3K79me2 RBBP5 [90, 91] May reflect the effect of RBBP5-mediated H2BK120ub,

that boosts DOT1L activity
H3K79me2 RNAPIIS5P [90] Pol II carries DOT1L which methylates H3K79
H3K79me2 SETDB1 - -

H3K9ac CHD1 - -
H3K9ac Pol2b [74, 75] Elongator complex carries HAT activity, Indicator of

active promoter
H3K9me1 CREBBP - -
H3K9me1 WHSC1 - -
H3K9me3 CBX3 [14, 92] CBX3 binds to H3K9me3
H3K9me3 HDAC2 - -
H3K9me3 WHSC1 [89] WHSC1 binds less well to H3K9me3 substrates
H4K20me1 CBX2 - -
H4K20me1 CBX3 - -
H4K20me1 EZH2 - -
H4K20me1 KDM5C - -
H4K20me1 Pol2b [93] Pol II carries SETD8 which methylates H4K20
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CHAPTER 7
Comparing regulatory mechanisms
across chromatin states

The cell-type specific regulatory state of the genome can be observed by investigating
the local chromatin environment, also called chromatin state. Specific combinations of
histone modifications and cytosine modifications specify different chromatin states (see
Section 2.2). However, the functional impact of the different combinations is not yet clear.
Especially their implications on the recruitment of chromatin-related proteins to a specific
chromatin environment are mostly unknown.
In the following chapter, we integrate 139 experiments including ChIP-Seq and MeDIP
experiments from various sources to investigate the interactions between chromatin mod-
ifications and chromatin-binding proteins. In contrast to Section 6, where we investigated
only the promoter region, in the following section we focus on comparing the regulatory
mechanisms across chromatin states. We aim at identifying relevant interactions that
characterize a particular chromatin state and investigate commonalities in the different
chromatin states to infer possible signaling pathways that manifest a certain regulatory
and chromatin state.

7.1. Data collection

A plethora of genome-wide data sets from different laboratories is available in mouse
embryonic stem cells (mESC). These data sets comprise various ChIP-Seq data on HMs
and chromatin-binding proteins, as well as MeDIP data on three different cytosine
modifications, i.e. 5-hydroxymethylcytosine (5hmC), 5-methylcytosine (5mC) and 5-
formylcytosine (5fC). We collected a set of relevant experiments from the GEO database
(summarized in Table B.2). Our collaborators processed the experiments uniformly to
avoid technical biases from the computational pre-processing pipeline. In detail, the reads
are aligned to the mm9/NCBI37 reference genome with BWA allowing at maximum one
mismatches and retaining only uniquely mapping reads. The resulting set of samples
comprise 13 HMs, 3 cytosine modifications and 61 chromatin-binding proteins (see Ta-
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ble B.2).
Since we are mixing samples produced in different labs, we check the genome-wide con-
sistency of the available technical replicates and of proteins with known similar functions.
We segment the whole genome into non-overlapping 200bp bins and select all bins that
are classified as enriched after the binarization using the ChromHMM procedure (see
Section 7.2). We apply hierarchical clustering using the Pearson correlation coefficient
as a distance measure to the matrix consisting of read counts within the selected 200bp
bins across all available samples. Figure A.15 shows that the technical replicates mostly
cluster together or are at least in the same branch of the tree. Further, proteins with
known common function, e.g. the Polycomb repressive complex, cluster together in the
same branch. This suggests that the technical replicates and the different experiments
are consistent on a genome-wide scale.

7.2. Defining chromatin states

Since the chromatin state largely depends on the particular cell type and cellular state,
there is no gold-standard chromatin state annotation available. Functional classification
of genomic elements into various chromatin states is usually done by investigating com-
binatorial patterns of chromatin modifications. The ChromHMM software [107] learns
and detects different chromatin states from ChIP-seq experiments of HMs. The method
is based on a multivariate Hidden Markov Model (HMM) that describes a number of
chromatin states by the frequency of observing different combinations of chromatin mod-
ifications together and the frequency of transitions between chromatin states along the
genome. Using this HMM, the genome can be segmented into the previously defined
chromatin states.
Our collaborators applied the ChromHMM software to the set of 13 HMs, 3 cytosine mod-
ifications and CTCF in mESCs. The cytosine modifications were measured with MeDIP
experiments that are, similarly to ChIP-seq, also antibody-based and thus can be readily
integrated into the ChromHMM. For the learning, we integrate a core set of chromatin
features that define the chromatin itself. We do not include other proteins that interact
with this core set and thus would only indirectly define the chromatin state. In detail,
our collaborators segmented the genome into non-overlapping 200bp-bins. Each bin is
then binarized independently based on the number of reads mapping to the bin using the
standard procedure implemented in the ChromHMM software and a threshold of 10−4.
In the remainder of this section, we will refer to the bins that were called enriched by
this procedure as peaks. The training of the HMM model is done by using between 20
and 33 randomly initialized chromatin states. Following previously established selection
strategies [108], we settle on a model with 20 different chromatin states.
Using the resulting HMM, our collaborators compute the probability of each 200bp-bin to
belong to one of the chromatin states. For each segment, we then assign the most probable
chromatin state. For the following analysis, we require that each segment should contain
at least one peak of any sample (including HMs, cytosine modifications or CMs) and that
the posterior probability of the state should be larger than 0.95. This procedure reduces
the number of genomic regions to 840.793 segments, which consist of consecutive bins of
the same chromatin state, of varying size (with about 62% of the segments having length
200bp).
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Table 7.1.: Summary of known annotations or other cell-type specific data by chromatin
state (column ”Observations”). The column ”Classifications” associates the different chro-
matin states to transcriptional processes, states or regulatory elements. The association
is derived manually from literature knowledge about the combination of enrichments in
column ”Observations”.

State Classification Observations

1 initiation H3K79me2; gene body; RNA-Seq
2

elongation
H3K36me3; 5hmC; 5fC; exons; RNA-Seq

3
4

H3K36me3; gene body; RNA-Seq
5
6

heterochromatin

H3K9me3; H3K20me3; LaminB1
7 repeats; LaminB1
8 5fC; H3K20me3; H3K36m2; repeats
9 empty
10 5mC; 5hmC; repeats; LaminB1
11 inactive gene 5mC; 5hmC; H2AZ; gene body; DNase-tags
12 inactive promoter or

enhancer
5hmC; H3K4me1/2; H2AZ; TSS; DNase-tags;
ChIA-Pet interactions; CAGE-tags

13
enhancers

H3K4me1; intergenic; ChIA-Pet interactions
14 H3K4me1; H3K27ac; intergenic; DNase-tags;

ChIA-Pet interactions; CAGE-tags
15

active promoter

H3K4me1/2; H3K27ac; H3K79me2; upstream of
(active) TSS; RNA-Seq

16 H3K4me3; H3K27/K9ac; (active) TSSs;
DNase-tags; ChIA-pet interactions; CAGE-tags;
CpG-dense regions

17 H2AZ; H3K4me2; H3K27ac; precedes (active)
TSS; DNase-tags; ChIA-pet interactions;
CAGE-tags

18

Polycomb-repression

H3K27me3; H2Aub1; (repressed) TSSs;
ChIA-pet interactions; CAGE-tags; CpG-dense
regions

19 H3K27me3; precedes (inactive) TSS
20 CTCF CTCF

7.3. Characterization of the chromatin states

The ChromHMM method is unsupervised making the functional implications of the de-
tected states not directly apparent. Additionally, the core set of features that define our
chromatin states is different from those used in previous applications. This could poten-
tially lead to different chromatin state definitions compared to previous, well characterized
ones. In order to reveal possible functional differences between the chromatin states, we
compare the ChromHMM states to known annotation or other cell-type specific data in
the following section. For convenience we refer to the 20 different states as indicated in the
column ”Classification” in Table 7.1. These names are based on the evidence discussed
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in more detail in the following section.

7.3.1. Chromatin modifications

The enrichment for the core features among each state is shown in Figure 7.1(A). It is
calculated as the number of ChromHMM peaks of a certain feature in a particular state
divided by the number of all segments in that state. Since we will later work with the
normalized read counts instead of the peaks where information might be lost by the peak
calling, we also investigate the enrichments of the normalized read counts in Figure 7.1(B).
We scale the genome-wide distribution of the read counts to have mean zero and calculate
the mean signal value in each chromatin state. The enrichments are mostly consistent be-
tween the ChromHMM peaks and the normalized read counts, but, as expected, also show
slight differences, e.g. in the H3K27ac or the 5hmC. In the following, we interpret the
states based on the consensus between the chromHMM and the read level enrichments.
State 16 and, to a lesser extent, state 15 show enrichment in H3K4me3, H3K79me2,
H3K27ac and H3K9ac, a characteristic of active promoters and initialization. In con-
trast, state 17 shows only enrichment for H3K4me3 and H3K4me2 and, similarly to state
16, enrichment for the histone variant H2AZ. State 18 and 19 are mainly enriched for
H3K27me3 which is characteristic for Polycomb-mediated repression. However, state 18
is also enriched for H3K4me3 and for H2Aub1. States 12, 13 and 14 show enrichment
mostly for H3K4me1, a mark related to enhancers. Additionally, state 14 is enriched for
H3K27ac indicating that this state might mark active enhancers. State 1-5 are enriched
for H3K36me3, a sign for elongation. The cytosine modification 5fC is most prominent
in state 8, which is among other also characterized by H4K20me3 and H3K36me2. In
contrast, 5hmC is distributed among several states and mainly present in state 2, 11 and
12. The classical 5mC is most prominent in state 10 but also in state 11.

7.3.2. Known annotations

Since the chromatin states are solely based on ChIP-Seq data, we use known annotations
to characterize the states in more detail. We plotted the enrichment of the different
chromatin states along the RefSeq genes (Figure 7.2) using the EpiCSeg-package in R.
The genes are aligned at their TSS and the gene body is scaled to correct for different
gene lengths. For each position we then count how many genes have a certain chromatin
state at the corresponding position in the gene. Figure 7.2 thus summarizes the frequency
of a certain state along the gene body and the surrounding regions. We observe clearly
different patterns of enrichments for the different states. States 12, 16 and 18 are enriched
directly at the transcription start site (TSS). Additionally, state 16 and 18 are enriched
with CpG Islands (see Figure A.16) indicating that these states mark promoter regions.
State 17 and state 19 are enriched upstream of the TSS, i.e. in the promoter proximal
region. State 1 and 15 are enriched directly downstream of the TSS. State 2-5 are all
enriched in the gene body. They only differ by their annotation with exons that are
mostly enriched in state 2 and 3 (see Figure A.16). State 6, 9, 13, 14 and 20 are enriched
outside of the gene body. State 7, 8, 10 and 11 are slightly enriched in the gene body but
state 7, 8 and 10 also show enrichment for repeat regions (see Figure A.16).
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ChromHMM enrichments
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Figure 7.1.: Heatmaps of the enrichments of the core features used to train the chromatin
states. The enrichments were calculated based on (A) the chromHMM peaks and (B) the
average normalized read signals in the chromatin state segments, respectively, for each
chromatin state.
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Figure 7.2.: Distribution of the chromatin states across RefSeq genes. Genes are aligned
at the TSS (start). The gene body is scaled proportionally to the gene length, s.t. the
TES (end) of all genes are aligned too. For each position on the x-axis the number of bins
having a particular state over all genes is plotted.
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7.3.3. Other cell-type specific data

Other data that describe the cell-type specific state of the genome can be used to further
characterize the chromatin states. For example, state 1-5, as well as state 15 and 16
show signs of expression measured by RNA-seq (Figure A.16). DNase-hypersensitive
regions, which characterize enhancer and promoter regions, are prominent in states 2,
12 and 14-18. LaminB1, which can be found at genomic elements that are associated
with the nuclear lamina, is enriched in the states 6, 7 and 10 (Figure A.16). We observe
PolII-mediated ChIA-Pet interactions, which also characterize enhancer and promoter
regions, mostly in the states 16, 17 and 14 and slight enrichment in state 18, 12, 15 and
13. Finally, we investigate the enrichment for promoter and enhancer-specific CAGE-
tags (see Figure A.16). We see a clear enrichment of the enhancer-specific CAGE-tags in
state 14 and weaker enrichment in state 2, 12 and 15-18. In contrast, the promoter-specific
CAGE-tags are highly enriched in state 16 and weakly enriched in state 17-18.

7.3.4. Transitions between states

Next, we investigate how the different states are spatially related to each other, i.e.
whether certain states appear consecutively or independently of each other. We calcu-
lated the transition probabilities for all chromatin state segments. We make the transition
matrix symmetric by counting the predecessor and the successor for each segment. Due
to the filtering applied before (see section 7.2), the segments are not necessarily directly
adjacent to each other. For a transition we allow a maximum distance of 1200bp between
the start and the end of the consecutive segments. By this definition, on average 33% of
the bins per state lack adjacent segments. The states 10, 20, 8, 7, 11 and 9 are reduced
by at least 50%, while the promoter or Polycomb-repressed states 15, 18, 16, 1 and 19
retain most segments.
The matrix of transition probabilities is shown in Table B.3. We observe many off-diagonal
elements that show transitions between states. Among them a frequent transition between
the two initiation-related states 1 and 15, but while the more promoter-like state 15 also
frequently transitions to the active TSS state 16, state 1 does not. State 16 itself shows
frequent transitions to state 17, a promoter-like state. Together this suggest that there
is a pattern of state 17 following state 16, following state 15 to 1, showing a sequential
transition from an active promoter to initiation. Similarly, we find frequent transitions
from the initiation state 1, to the elongation states 2 to 3 to 5. The heterochromatic states
8 and state 11 transition most frequently to the empty state 9 and to a lesser extent to the
CTCF state 20. State 9 also transitions to state 13, marking inactive enhancers. Interest-
ingly, many other states are enriched in transitions to the empty state 9. These include
state 8, 11, 12, 13 and 20, which are all related to heterochromatic or inactive genomic
elements. Among them state 11, which is related to inactive genes, frequently transitions
to the inactive promoter or enhancer state 12 and state 12 transitions to inactive enhancer
state 13. Additionally the active enhancer state 14 transitions frequently to the inactive
enhancer state 13. In summary, this suggest patterns of transitions between states that
resemble related transcriptional and regulatory programs.

58



7.3.5. Summary

We have identified 20 chromatin states from 13 HMs, 3 cytosine modifications and CTCF.
By comparing them to known annotations and other cell-type specific chromatin-related
data, we can assign potential functions to the segments assigned with different states.
Since state 16 is most enriched in H3K4me3 and H3K27/K9ac, mostly found at (tran-
scribed) TSS, shows many ChIA-pet interactions and contains CpG dense regions, we
conclude that state 16 describes active TSS. State 15 is directly upstream of state 16,
characterized by enrichment for H3K79me2 and located in the region directly upstream
of the TSS. It might thus describe the first exon of actively transcribed genes. State
17 precedes state 16 and does not show acetylation. It thus might mark the promoter
proximal region of actively transcribed genes. In contrast, state 19 is also located directly
upstream of the TSS, but is mutual exclusive with state 17, shows signs of H3K27me3 and
is transcriptionally silent. State 19 might thus characterize the proximal promoter regions
of repressed genes. Further, segments of state 19 frequently follow segments of state 18,
a state that is characterized by H3K27me3, most frequently occurs at the repressed TSS
and contains many CpG islands. However, since we find also enrichment for H3K4me3,
ChIA-pet interactions and CAGE-tags in state 18, this state might also contain bivalent
promoters. Finally, state 13 and 14 are frequently observed outside of gene bodies and are
marked with H3K4me1 and ChIA-Pet interactions. Additionally, state 14 shows enhancer
associated CAGE-tags, as well as enrichment for H3K27ac, which together suggest that
state 14 marks active enhancers.

7.4. Chromatin state-specific signaling networks

So far we investigated only the core chromatin features including histone and cytosine
modifications to identify different chromatin states. These chromatin states are charac-
terized by distinct combinations of the chromatin features and show different characteris-
tics for known genome annotation, transcriptional profiles or cell-type specific chromatin
features. However, subgroups of states seem to have commonalities in their chromatin
regulatory program, as seen, for example, by shared enrichment for a particular chromatin
modification. To infer functionally relevant contributions of the chromatin modifications
in each of the states, we reconstruct chromatin-state specific interaction networks. As
motivated in Section 6, these networks reveal the most relevant interactions between the
chromatin modifications and the chromatin modifiers. Each network then connects the
different combinations of chromatin features to specific chromatin-related proteins allow-
ing to attribute potential chromatin state-specific functional roles to each component.

7.4.1. Data pre-processing

For the network reconstruction we count the reads falling within each chromatin segment.
Each segment is normalized by its length. If technical replicates exist, they are summed
up for both replicates of samples and input. The samples are normalized as described
before (see Chapter 6) based on all segments independent of the chromatin state. For each
state, we standardize the read counts to have a mean of zero and a standard deviation of
one.
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Figure 7.3.: The number of states in which each edge is found. The color of each cell
indicates the number of states the chromatin components indicated on the diagonal co-
localize. White cells indicate that the corresponding edge is never predicted.

7.4.2. Chromatin state-dependent network reconstruction

For each chromatin state, we reconstruct an interaction network with the same procedure
as explained in Chapter 6. We construct the SPCN on all available samples based on the
segments in each single state. For the Elastic Nets, we predict each HM, cytosine modifi-
cation or CM by the remaining CMs. We return only those edges where the median of the
coefficients in a 10-fold CV is larger than twice the standard deviation of the coefficients
for each sample. The final network is constructed by combining the SPCN and the Elas-
tic Nets for each state, leading to 20 different networks (summarized in Figure 7.3). The
networks consist of 62 to 95 edges and connect between 52 and 62 nodes. In total there
are 237 unique edges of which 193 edges reflect positive and 44 reflect mutual exclusive
interactions.
Figure 7.3 shows the frequency of the interactions in the different chromatin states. While
31% of the interactions are specific for a certain state, there are about 5.9% of the in-
teractions in common to all states and about 28.5% of the interactions shared by half or
more of the states. Such interactions are, for example, formed by the transcription fac-
tors STAT3, MYC and KLF4 or TCF3, SOX2, OCT4 and NANOG. Further, we find that
members of the mediator complex (MED1 and MED12) frequently co-localize with NIPBL
and members of the cohesin complex (SMC1 and SMC3). Also the various forms of PolII
phosphorylation frequently co-locate with each other, but only PolII-S2P frequently inter-
acts with H3K36me3. TET1 forms interactions with SIN3A and 5hmC independently of
the states. TAF1 co-occurs frequently with histone marks known to be present at active
promoters. The interactions between RYPB, CBX7 and H3K36me2 or H3K27me3 also
seem to be independent of the states.
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7.4.3. Comparing the chromatin state-specific signaling networks

The union of all chromatin state-dependent interactions identified in the previous sec-
tion results in a chromatin signaling network summarizing all specific interactions of each
chromatin modification and chromatin modifier. Due to the chromatin state-specific re-
construction, we expect that different parts of the network are used at different chromatin
states. In the following section, we focus on identifying commonalities in the usage of the
chromatin signaling network across chromatin states. This leads to a systems-level view
on the chromatin signaling network relating, for example, shared parts of the network to
similar chromatin states. Note that, instead of looking at all possible interactions, we
focus only on the interactions that were most specific to a certain chromatin modification
or modifier.
To quantify which chromatin-signaling interaction is used in which state, we compute for
each interaction the enrichment as the fraction of 200bp bins in a chromatin state showing
a peak for both interaction partners. Thus, for each chromatin state we obtain an en-
richment profile showing the enrichment of all interactions in this state. Figure 7.4 shows
the matrix of the Pearson correlation coefficients between the enrichment profiles ordered
by hierarchical clustering. By cutting the tree resulting from the hierarchical clustering
as indicated in Figure 7.4, we see 7 different groups of states that show highly correlated
enrichment profiles of the chromatin signaling interactions. As expected, the expression-
related states 1-5 show similar enrichment patterns. Further, the Polycomb-related states
18-19 are very correlated. However, while state 18 is also correlated with state 12 and
16, state 19 is anti-correlated with state 16. Interestingly, the active enhancer state 14
is grouped together with the active promoter states 15-17, while the inactive enhancer
state 13 clusters together with the states 6, 7 and 9. Another group of states is formed
by states 10-12.
Interestingly, state 8, which is characterized by strong enrichment for 5fC, is very differ-
ent from all other states and similarly to state 19 shows anti-correlation with the active
promoter states. In contrast, state 12, which is highly enriched with 5hmC, shows similar
interaction enrichment patterns as the Polycomb-states and the active promoter states.
The 5mC is mostly present in states 10 and 11 that show similar interactions as state 8
and 12 but neither correlate nor anti-correlate with the active promoter states.

7.4.4. Characteristic sub-networks define groups of chromatin states

In the previous section, we identified groups of related chromatin states based on the
enrichment profiles calculated from the co-occurrence of the two interaction partners that
participate in a chromatin-signaling interaction. In the following section, we investigate
which interactions contribute to the observed similarities within the groups of related
states. For each interaction, our collaborators calculate an enrichment profile within the
chromatin states as described in Section 7.4.3. The enrichment profile was scaled to have
a mean of zero and standard deviation of one. The resulting matrix was used to perform
hierarchical clustering on the interactions. Using this procedure we detect distinct groups
of interactions, called sub-networks in the remainder, that show similar enrichment pro-
files over the chromatin states. Note, that these sub-networks are more detailed than
clusters of proteins that show high pair-wise correlation, since we pre-selected the inter-
actions based on the global chromatin signaling network.
Our collaborators manually annotated 15 sub-networks (see Figure A.17) that contain
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Figure 7.4.: Heatmap of the Pearson correlation between the states based on the en-
richment of all interactions across the genome. The enrichment of each interaction was
calculated as the fraction of 200bp bins in a chromatin state showing a peak for both in-
teraction partners. We derive groups of similar states by cutting the tree resulting from
the hierarchical clustering of the correlation profiles at the dashed line. The colored bars
on the site indicate the resulting groups of states.

between 2 and 30 interactions and connect between 4 and 27 nodes. Some sub-networks
show interactions between known complex members. For example, sub-network 8 shows
interactions between Polycomb complex members and repressive histone marks. Sub-
network 3 shows interactions between the members of CTCF/cohesin and the Mediator
complex. Also sub-network 4 shows interactions between members of the mediator com-
plex, as well as the NuRD complex. Other sub-networks reflect interactions of known
chromatin states. For example, sub-network 2 and 11, as well as sub-network 15, show
signs of active promoters and initiation. Sub-network 5 shows elongation. Finally, sub-
network 7 connects the pluripotency transcription factors to the Co-/REST complex.
Interestingly, the two sub-networks 13 and 14 comprise interactions of which most involve
5fC and 5hmC, respectively.
The sub-networks are enriched in different chromatin states (see Figure 7.5). Some sub-
networks show strong enrichment in the groups of chromatin states identified in Figure 7.4.
The Polycomb-related sub-network is mostly present at state 18 and 19. The group of
chromatin states 10-12 is characterized by sub-network 14. The two sub-networks 4 and
7 characterize the group of states including state 6,7,9 and 13. The elongation-related
sub-network 5 is enriched at all states marking transcribed gene bodies. Finally, the
states involving active promoters and enhancers (states 14-17) are mainly characterized
by sub-network 4 and 15. Thus the main similarities between the states can be captured
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Figure 7.5.: Heatmap of the enrichments of the sub-networks across all chromatin states.
The enrichment indicates the average enrichment of the interactions in each sub-network.
For each interaction the enrichment across the chromatin states was z-transformed. Sub-
networks were reordered by hierarchical clustering on the average enrichment profiles.
Chromatin states were reordered to match the order in Figure 7.4 and the colored bars
indicate the groups of states as identified in Figure 7.4.

by a few sub-networks.
Individual states also show state-dependent enrichment for a particular additional sub-
network. For example, although the Polycomb-related states 18-19 are both characterized
by the Polycomb sub-networks, state 18 shows also enrichment for the promoter-related,
the 5hmC-related and mediator related sub-network 15, 14 and 4 respectively. In contrast,
state 19 only shows enrichment for the 5hmC-related sub-network 14. Also the group of
states including state 10-12, which are mostly characterized by the presence of sub-network
14, show differential enrichment for other sub-networks. While state 10 is only enriched
for sub-network 14, the other two show also enrichment for the mediator-related and the
H3K4me1-related sub-network 4 and 1. Additionally state 12 also shows enrichment for
the promoter-related sub-network. This indicates that although some states share a main
set of interactions between chromatin modification and chromatin-related proteins, the
individual states have additional regulatory programs. The promoter associated states 15-
17 show besides the common enrichment for the mediator sub-network 4 and the active
transcription-related sub-network 15 also enrichment for other sub-networks. For state
15, these are the sub-networks 5 and 2, which are related to elongation. For state 16, the
sub-network 6 related to MYC, E2F1 and KLF4, as well as the sub-network 2 related to
elongation are enriched. Finally, state 17 is also characterized by an enrichment for sub-
network 7 (pluripotency factors and NuRD-/REST complex members) and sub-network
12 (SETDB1).
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Figure 7.6.: Heatmap of the overlap between the proteins in the sub-networks. The
overlap is measured by the ratio between the cardinality of the intersection of proteins and
the cardinality of the union of proteins within two sub-networks.

7.5. Interactions within and between sub-networks

In section 7.4, we investigated similarities in the chromatin-related interactions among the
different chromatin states. We have seen that certain groups of chromatin states share
similar interaction patterns. Distinct sub-networks characterize these chromatin state
groups. However, individual chromatin states also show enrichment for additional sub-
networks. In the following section, we will characterize the different sub-networks in more
detail to gain a deeper understanding of the unique regulatory state of each chromatin
state.

7.5.1. Sub-networks share interaction partners

Although most sub-network contain distinct sets of interactions, many proteins are
shared across the sub-network. Only sub-network 3 (CTCF and RAD21), 8 (PHF19),
10 (H3K9me3, H4K20me3 and STAT3), 11 (H2AZ and TAF1), 13 (5fC, MAX and
H3K36me2) and 14 (5hmC and 5mC) contain unique proteins or chromatin modifica-
tions.
Figure 7.6 indicates the overlap in proteins calculated as the fraction between the number
of proteins shared among the sub-networks and the number of proteins in the union of the
sub-networks. We see that there are several sub-networks that share many proteins. For
example, sub-network 3, 4 and 12 share complex members of the mediator complex and
other scaffolding proteins. sub-network 9 and 7 share members of the REST complex and
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the pluripotency transcription factors. Also sub-network 11 and 7 share the pluripotency
transcription factors but also members of the NuRD complex. The sub-network 14 and
13 share proteins related to repression and oxidation of cytosine modifications.

7.5.2. Context-specific interactions of shared interaction partners

Many sub-networks share proteins or chromatin modifications but by definition the in-
teractions of these proteins within the sub-networks are different. Since there are sub-
networks that are very chromatin-state specific, we investigated the distribution of the
interactions of individual proteins across the sub-networks. We find that most proteins
are central to a specific sub-network but show a few interaction also in other sub-networks
(see Figure A.18). For example, ESRRB interacts most within sub-network 4 but has also
an interaction in sub-network 1 and 14. Similarly, H3K4me1 has most interaction part-
ners in sub-network 1 but also in sub-network 14, 11 and 8.
Further, although certain groups of proteins mostly interact within the same sub-network,
their individual interactions differ between sub-networks. For example, while LSD1 (also
known as KDM1A), NIPBL, MED1/12, SMC1 and ESRRB all have most of their inter-
actions within sub-network 4, each of these proteins shows interactions in distinct other
sub-networks. LSD1 also interact with proteins in sub-network 7, 14 and 15. The mediator
complex related proteins interact within sub-network 12 and 3.

7.6. Discussion

In summary, we have integrated public genome-wide DNA-binding data and applied net-
work reconstruction in order to detect chromatin state-specific interactions among histone
modifications, cytosine modifications and chromatin modifiers. We identified 20 chro-
matin states defined by unique patterns of histone modifications and cytosine modifica-
tions that correlate with various genomic and regulatory annotations. We connect the
different chromatin states to the relevant chromatin modifiers by reconstructing chro-
matin state-specific interaction networks. These networks summarize the most important
interactions between the chromatin modifications and chromatin modifiers. Further, the
networks show unique state-specific interactions but also share enrichment for other inter-
actions. In particular, a few distinct sub-networks, which summarize specific interactions
that have a similar enrichment profile over the different chromatin states, capture most of
the similarity between sub-groups of chromatin states. Depending on the chromatin state,
these sub-networks are complemented with other chromatin state-specific sub-networks
adding an additional regulatory unit which could potentially lead to the observed differ-
ences in the chromatin states. The identified sub-networks comprise interactions among
known complex members or interactions typical for a particular transcriptional state. In-
terestingly, individual sub-network members, which mainly interact within a certain sub-
network, also show interactions in other sub-networks. An appealing hypothesis would be
that such proteins act as communicators between the chromatin states. As such, these
proteins might recruit relevant complexes or regulatory programs that launch a transition
to another chromatin states. However, additional experiments and analysis is needed to
verify this hypothesis.
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CHAPTER 8
Conclusion and discussion

The present thesis dealt with reconstructing chromatin signaling interactions from
genome-wide DNA-protein binding data. We integrated several publicly available data
sets to infer specific co-localization patterns relevant for the regulation of transcription.
With the help of the detected interactions we derived testable biological hypothesis about
transcriptional regulation and the role of histone modifications, cytosine modifications
and chromatin modifiers within this process. We approached three main research ques-
tions which we will summarize and discuss in the following chapter.
A recurrent question in network reconstruction is which method performs best for a
specific research question. In chapter 5, we compared several network reconstruction
approaches that have been applied in the context of reconstructing chromatin signaling
from genome-wide DNA-binding data. The methods compared in the present thesis
include pairwise association-based approaches, several (sparse) Gaussian graphical, a
Bayesian network and Maximum entropy-based approaches. Our analysis on simulated
and on biological data did not reveal any specific advantage of any of the methods under
the settings tested. The main difference between the methods already becomes apparent
on the conceptual level. For example, the pairwise association-based approaches do not
take into account any other data that is available and thus lead to many high-scoring
false positive interactions. In contrast, the sparse methods, especially SPCN, are very
conservative in detecting edges.
Only recently more and more genome-wide DNA-protein binding data sets comprising
chromatin modifiers in human cell lines became available. In Chapter 6, we used the first
comprehensive data set on chromatin modifiers in human cells to investigate the interac-
tions between HMs and CMs at promoters and their role in transcriptional regulation. We
found that both the levels of HMs and CMs at the promoter region are equally predictive
for gene expression, suggesting that both act in the same chromatin signaling pathway
relevant for transcription. We investigated the chromatin signaling network connecting
HMs with CMs at different levels of detail. First, we detected different, functionally re-
lated modules of HMs and CMs. Then, we found that individual CMs show interactions
with distinct set of HMs, suggesting a role of individual CMs in defining and maintaining
a particular chromatin state. Finally, we detected, besides many interactions known in
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the literature, also new ones that could form the basis for biological and mechanistic
hypothesis on the role of particular HMs and CMs in chromatin signaling.
Individual research projects usually study a few genome-wide DNA-protein binding based
on a specific hypothesis. This data is available in public repositories allowing an integra-
tive analysis without being driven by a specific hypothesis. In chapter 7, we integrated
a large set of genome-wide DNA-binding data on HMs, cytosine modifications, TFs and
CMs in mESCs to investigate chromatin-state specific interactions among the different
components. The different chromatin states usually have state-specific interactions among
HMs, CMs and cytosine modifications, although groups of chromatin states show similar
enrichment patterns for different interaction sub-networks. Only a few proteins connect
the different sub-networks by an interaction, suggesting that these proteins might be
involved in communicating a certain chromatin state transition to other complexes.
Our understanding of the chromatin signaling pathways and their connection to transcrip-
tional regulation is still incomplete. With the present thesis, we addressed two different
aspects, as explained in the following, to improve the understanding of chromatin signal-
ing. First, we investigated the individual interactions by integrating various genome-wide
DNA-binding data and applying computational means to get as close as possible to the
underlying mechanistic interactions. This kind of analysis helps to derive novel biological
hypothesis about the genome-wide interactions of individual chromatin-related proteins.
Only recently (e.g.[13]), these endeavors have been complemented by high-throughput
proteomics approaches that identify interaction partners of specific chromatin modifica-
tions. However, with the data currently available these analyses cannot predict the cause
or consequence of a binding event or whether it results from physical contact of the two
chromatin components. The necessary global perturbation experiments to answer this
kind of question are currently hampered due to redundancy in the regulatory mechanisms
or lethality resulting from the perturbation. Nevertheless, in vitro or gene-based func-
tional studies could be used to investigate the mechanistic implications of the derived
interactions in more detail. Second, we analyzed large sets of publicly available data
for general genome-wide trends that shed light on the broader function of HMs or CMs
on the chromatin-signaling. This analysis shed light on the modular organization of the
HMs and CMs that are combined to achieve a certain chromatin state. Further, we
identified individual ”connector” proteins or modifications that seem to be involved in
the context-specific recruitment of the modules. This systems-level view of chromatin
signaling allows to understand the complex behavior of the chromatin signaling pathways.
This could be especially useful for the understanding of complex diseases evolving from
aberrant behavior of chromatin-related proteins.
In the present thesis, we focused only on interactions relevant to chromatin signaling.
In future research these signaling processes have to be integrated into the whole cellular
context. In particular, it would be interesting to investigate particular TFs that might
recruit specific chromatin signaling modules and pathways to specific sites in the genome
upon activation or in response to the cellular environments. Further, chromatin modifiers
themselves are exposed to different other cellular signaling pathways leading, for example,
to acetylation or phosphorylation of the protein. This ultimately would lead to enhanced
or decreased activity of the chromatin modifier and thus to modifications in the cell-type
specific, local chromatin states. Investigation of the response of the chromatin modifier to
such cellular signaling pathways would shed further light on how the dynamic, cell-type
specific state of the genome is regulated and manifested.
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Figure A.1.: The average precision-recall curves over 25 simulated networks with 50
nodes, 100 edges and 10.000 observations. Solid and dashed lines indicate methods that
are run on continuous data and their corresponding sparse version, respectively. Dotted-
dashed lines indicate methods run on discrete data.
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Figure A.2.: The average ROC curves (left plot) over 25 random networks with 50 nodes,
100 edges and 10.000 observations. The plot on the right indicates the corresponding
average AUC and the standard deviation over the 25 random networks. Solid and dashed
lines indicate methods that are run on continuous data and their corresponding sparse
version, respectively. Dotted-dashed lines indicate methods run on discrete data.
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Figure A.3.: Average precision recall curves for different percentages of univariate Gaus-
sian noise added to the data. Curves are averaged over 25 simulated networks. The
simulated networks have 50 nodes and 100 edges.
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Figure A.4.: Average precision recall curves for different percentages of multivariate
Gaussian noise added to the data. Curves are averaged over 25 simulated networks. The
simulated networks have 50 nodes and 100 edges.
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The performance of the different network reconstruction methods is averaged over 25 sim-
ulated networks each having 50 nodes and 100 edges.
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Figure A.6.: Average precision recall curves for different numbers of observations aver-
aged over 25 simulated networks. The simulated networks have 50 nodes and 100 edges.
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Figure A.7.: Average precision recall curves for different numbers of variables in the
simulated network averaged over 25 networks. The methods were trained on 10.000 obser-
vations
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Figure A.10.: Precision recall plots for each methods on simulated networks with between
100 (node degree 2) and 900 (node degree 18) edges. The performance of the different
network reconstruction methods is averaged over 25 simulated networks having 50 nodes
and based on 10.000 observations.
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Figure A.12.: Distribution of the absolute edge scores for each network reconstruction
method applied to Drosophila DamID data. The red dashed line indicates the arbitrarily
chosen cutoff to call edges in the network.
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Figure A.13.: Density curves of the normalized HM and CM signals in the human K562
cell line.
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Figure A.14.: Heatmap of the Pearson correlation coefficients as indicated by the color
key between HM and CM signals in the human K562 cell line.
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Figure A.15.: Hierarchical clustering of all available experiments including all replicates
on HMs, chromatin-binding proteins and cytosine modifications. The distance measure is
based on genome-wide correlation. The upper color label indicates groups of experiments
from the same study and the lower color label indicates groups of replicates. Studies or
replicates where only one experiment is available are indicated in grey.
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Figure A.16.: The heatmaps summarize the enrichment (indicated by color intensity
from white (no enrichment) to blue (high enrichment)) for known annotations including
CpG islands, RefSeq transcript annotations and repeat regions across the chromatin states.
Further, enrichment for other cell-type specific data (i.e. RNA-Seq, Dnase hypersensitiv-
ity, LaminB1) is shown. The figures were provided by our collaborators. Last plot shows
the percent of all regions participating in a ChIA-Pet pair coinciding with a particular
chromatin state.
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Figure A.17.: Hierarchical clustering of the chromatin state-specific interaction based
on their enrichment profiles across chromatin-states. Red boxes indicate detected sub-
networks with manual functional annotation based on the participating chromatin modifi-
cations and chromatin-related proteins. The figure was provided by our collaborators.
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Figure A.18.: Number of interaction that a protein takes part in split up across the
different subnetworks.
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Table B.1.: Accession numbers of the ChIP-Seq experiments of HMs and CMs used to
study the genome-wide interactions in humans.
HM/CM K562 - GEO accession ID H1 - GEO accession ID

WCE GSM733780, GSM831024, GSM831023,
GSM831022

GSM831043, GSM831044

RBBP5 GSM831014, GSM831013, GSM831012 GSM831039, GSM831038
SAP30 GSM831019, GSM831018 GSM831040
PHF8 GSM831009, GSM831008 GSM831037
HDAC6 GSM830998, GSM830997 GSM831030
HDAC2 GSM830996, GSM830995 GSM831029
CHD1 GSM830989, GSM830988 GSM831026, GSM831025
CTCF GSM733719 GSM646335, GSM646334
SUZ12 GSM831021 GSM831042
SIRT6 GSM831020 GSM831041
P300 GSM831006 GSM831036
JARID1C GSM831000 GSM831036
EZH2 GSM830992 GSM831028
CHD7 GSM830990 GSM831027
HDAC1 GSM830994, GSM830993
PLU1 GSM831011, GSM831010
POL2b GSM733643
RNF2 GSM831017
RNAPIIS5P GSM831016
REST GSM831015
PCAF GSM831007
NSD2 GSM831005
NCOR GSM831004
MI2 GSM831003
LSD1 GSM831002
CBP GSM831001
HP1G GSM830999
ESET GSM830991
CBX8 GSM830987
CBX2 GSM830986
H3K4me3 GSM733680 GSM409308, GSM469971, GSM433170,

GSM646346, GSM646345, GSM432392,
GSM410808, GSM605315, GSM593365

H3K4me1 GSM733692 GSM409307, GSM466739, GSM433177,
GSM646342, GSM646341, GSM605312,
GSM434762

H3K27me3 GSM733658 GSM434776, GSM466734, GSM433167,
GSM646338, GSM646337, GSM605308,
GSM428295

H3K9ac GSM733778 GSM434785, GSM433171, GSM646348,
GSM646347, GSM410807, GSM605323

H3K9me3 GSM733776 GSM433174, GSM605328, GSM605327,
GSM605325, GSM450266, GSM428291

H3K4me2 GSM733651 GSM646344, GSM646343, GSM602261,
GSM602260

H4K20me1 GSM733675 GSM646350, GSM646349, GSM605329
H3K27ac GSM733656 GSM663427, GSM466732, GSM646336
H3K79me2 GSM733653 GSM605322, GSM605321
H2A.Z GSM733786 GSM1003579
H3K9me1 GSM733777
H3K36me3 GSM733714
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Table B.2.: Accession numbers of the experiments used to study the genome-wide inter-
actions in mouse embryonic stem cells.

Data GEO accession ID

DNA control GSE11724, GSE12241, GSE14344, GSE18371, GSE18515, GSE22562, GSE24030, GSE24843,
GSE27841, GSE28247, GSE34518, GSE28682, GSE32218-ENCODE, GSE36030-ENCODE,
GSE36114, GSE39154, GSE39610, GSE40148, GSE40860, GSE41589, GSE41589, GSE41609,
GSE41903, GSE42466, GSE44242, GSE46536, GSE48172, GSE48175, GSE40810

H3K36me3 GSE11724, GSE12241, GSE31039-ENCODE, GSE34518, GSE36114, GSE41589
H3K4me3 GSE11724, GSE12241, GSE31039-ENCODE, GSE32218-ENCODE, GSE36114
H3K9me3 GSE12241, GSE18371, GSE32218-ENCODE
H3K4me1 GSE11172, GSE31039-ENCODE, GSE36114
H3K27me3 GSE12241, GSE36114, GSE41589
H3K27ac GSE31039-ENCODE, GSE36114
H3K4me2 GSE11172, GSE36114
H3K9ac GSE31039-ENCODE
H3K79me2 GSE11724
H4K20me3 GSE12241
H3K36me2 GSE41589
H2Aub1 GSE34518
H2AZ GSE36114
5hmC GSE28682, GSE40810
5mC GSE28682
5fC GSE40148
SUZ12 GSE11431, GSE11724, GSE41589, GSE42466
EP300 GSE11431, GSE28247
RING1B GSE34518, GSE42466
LSD1 GSE18515, GSE27841
PHF19 GSE41589, GSE41609
HCFC1 GSE36030-ENCODE
BRG1 GSE14344
SETDB1 GSE18371
MED12 GSE22562
MED1 GSE22562
NIPBL GSE22562
SMC1 GSE22562
SMC3 GSE22562
RAD21 GSE24030
SIN3A GSE24843
TET1 GSE24843
HDAC1 GSE27841
HDAC2 GSE27841
MI2B GSE27841
REST GSE27841
CoREST GSE27841
TAF1 GSE36114
OGT GSE39154
MBD2T GSE39610
KDM2A GSE40860
KDM2B GSE40860
KAP1 GSE41903
CBX7 GSE42466
RYBP GSE42466
CBX3 GSE44242
EZH2 GSE46536
G9A GSE46536
MLL2 GSE48172
TCF3 GSE11724
RPOLII GSE12241, GSE28247
RNAPII 8WG16 GSE34518
RNAPII S2P GSE34518
RNAPII S5P GSE34518
RNAPII S7P GSE34518
CTCF GSE11431, GSE24030, GSE28247
NANOG GSE11431, GSE11724
OCT4 GSE11431, GSE11724
SOX2 GSE11431, GSE11724
MAFK GSE36030-ENCODE
ZC3H11A GSE36030-ENCODE
ZNF384 GSE36030-ENCODE
E2F1 GSE11431
ESRRB GSE11431
KLF4 GSE11431
N MYC GSE11431
C MYC GSE11431
STAT3 GSE11431
TCFCP2L1 GSE11431
MAX GSE48175
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Table B.3.: Transition probabilities between chromatin states. Each entry gives the per-
cent of segments annotated with the chromatin state indicated in the row where a transition
to the chromatin state in the column follows or preceded. Only entries larger than 0.01
are shown.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.64 0.06 0.01 0.08 0.02 0.14 0.02 0.01
2 0.19 0.23 0.34 0.01 0.04 0.01 0.01 0.05 0.08
3 0.01 0.10 0.41 0.04 0.36 0.01 0.02
4 0.05 0.04 0.82 0.07
5 0.01 0.20 0.05 0.71
6 0.88 0.04 0.02 0.01 0.01
7 0.98 0.01
8 0.01 0.17 0.52 0.04 0.04 0.07 0.01 0.12
9 0.04 0.65 0.05 0.04 0.10 0.02 0.09
10 0.17 0.57 0.21 0.01 0.02
11 0.02 0.01 0.03 0.41 0.15 0.16 0.06 0.02 0.11
12 0.02 0.01 0.14 0.08 0.18 0.34 0.02 0.02 0.04 0.02 0.01 0.10
13 0.02 0.15 0.01 0.12 0.52 0.08 0.02 0.04
14 0.03 0.06 0.02 0.05 0.01 0.03 0.43 0.23 0.03 0.03 0.05 0.02
15 0.37 0.07 0.01 0.02 0.15 0.34 0.02
16 0.04 0.02 0.02 0.02 0.28 0.13 0.40 0.06
17 0.02 0.02 0.01 0.01 0.01 0.03 0.04 0.06 0.03 0.01 0.42 0.21 0.04 0.01 0.04
18 0.02 0.01 0.07 0.04 0.20 0.61
19 0.05 0.01 0.31 0.58 0.02
20 0.02 0.02 0.02 0.01 0.03 0.03 0.29 0.04 0.08 0.08 0.03 0.02 0.30
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List of Abbreviations

5caC 5-carboxylcytosine

5fC 5-formylcytosine

5hmC 5-hydroxymethylation

5mC 5-methylcytosine

A Argenine

ac Acetylation

ATP Adenosine triphosphate

AUC area under the receiver operating characteristic

bp base pair

CAGE Cap Analysis Gene Expression

DNMT DNA methyltransferase

ENet Elastic Net

hESC human embryonic stem cell

HM Histone modification

HMM Hidden Markov Model

HMM hidden markov model

K Lysine

kb kilo base pairs

ME Maximum-Entropy

me Methylation

meDIP methylated DNA immunoprecipitation
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mESC mouse embryonic stem cell

nm nanometer

PC Partial correlation

ph Phosporylation

PPI Protein-Protein interaction

ROC receiver operating characteristic curve

SENet Sparse Elastic Net

SGL Sparse Graphical Lasso

SPCN Sparse Partial Correlation Networks

TF Transcription factor

TSS transcriptional start site

ub Ubiquitinylation
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Abstract

Chromatin plays an essential role in transcriptional regulation and in defining cellular
identity. Histones, which are the building blocks of chromatin, can be chemically mod-
ified with a diverse set of histone modifications. The histone modifications are placed,
read or erased by proteins, called chromatin modifiers. Together, chromatin modifiers and
histone modifications are components of a chromatin-signaling network involved in tran-
scription and its regulation. The interactions between chromatin modifiers and histone
modifications are often unknown, are based on the analysis of few genes or are studied in
vitro. Further, the functional impact of each chromatin modifier or histone modifications
on the whole chromatin signaling network are poorly understood.
With the present thesis, we aim at improving our understanding of the interactions be-
tween chromatin modifiers and histone modifications and their function on a genome-wide
scale. To this end, we apply computational methods to large sets of genome-wide DNA-
protein binding data. From this data we reconstruct the interactions between chromatin
modifiers and histone modifications leading to a global chromatin signaling network. First,
we evaluate different network reconstruction methods that have been previously applied
to genome-wide DNA-protein data on simulated and Drosophila data. Second, we provide
a high-confidence backbone of the chromatin-signaling network at human promoters. We
evaluate the detected interactions in the light of literature knowledge and generate novel
biological hypotheses for unknown interactions. Finally, we investigate the differences and
commonalities between the chromatin-signaling networks at different chromatin environ-
ments in mouse. This analysis results in a systems-level view on the different chromatin
signaling interactions leading to novel hypotheses on the functional role of chromatin
modifiers and histone modifications in defining the chromatin landscape.
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Zusammenfassung

Chromatin spielt eine wichtige Rolle in der Transkriptionsregulation und der Definition
von Zelltypen. Die Bausteine des Chromatins, die Histonproteine, können chemisch, mit
sogenannten Histonmodifikationen, verändert werden. Die Histonmodifikationen selbst
werden von sogenannten Chromatin-modifizierenden Proteinen katalysiert, gelesen oder
entfernt. Beide Komponenten zusammen ergeben ein komplexes Chromatin-assoziiertes
Signalnetzwerk, das maßgeblich am Transkriptionsprozess und seiner Regulierung be-
teiligt ist. Die spezifischen Interaktionen zwischen den Histonmodifikationen und den
Chromatin-modifizierenden Proteinen sind jedoch meist unbekannt oder basieren auf
einer gen-spezifischen oder in vitro Analyse. Des Weiteren ist meist die funktionale
Bedeutung der einzelnen Interaktionen für das gesamte Chromatin-assoziierte Signalnetz-
werk unzureichend bekannt.
Die vorliegende Doktorarbeit hat als Zielsetzung die Interaktionen zwischen Chromatin-
modifizierenden Proteinen und Histonmodifikationen, sowie deren Funktion genomweit
zu charakterisieren. Mit Hilfe großer genomweiter DNA-Protein-Bindungsdatensätzen
und computergestützter Methoden lassen sich die Interaktionen zwischen Chromatin-
bindenden Proteinen rekonstruieren. Im ersten Teil der Arbeit werden verschiedene
Methoden zur Netzwerkrekonstruktion, die für diesen Zweck in frühreren Publikatio-
nen verwendet wurden, auf simulierten Daten und Drosophila-Daten verglichen. Im
zweiten Teil der Arbeit werden Interaktionen an humanen Promoteren rekonstruiert.
Diese werden mit Hilfe einer Literatursuche evaluiert und dienen als Basis für neue
biologische Hypothesen über bisher unbekannte Funktionen der Histonmodifikationen
und Chromatin-modifizierenden Proteine. Im letzten Teil der Arbeit werden Gemein-
samkeiten und Unterschiede zwischen den Chromatin-assoziierten Netzwerken, die für
unterschiedlichen Chromatinumgebungen rekonstruiert werden, untersucht. Aus dieser
system-orientierten Analyse der Interaktionen lassen sich neue Hypothesen über die
Funktion der Histonmodifikationen und den Chromatin-modifizierenden Proteinen bei
der Definition verschiedener Chromatinumgebungen ableiten.
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