Vergleich verschiedener rechnergestützter Nystagmusanalyse-Methoden
anhand unterschiedlicher Nystagmusauslöser

Inaugural-Dissertation
zur Erlangung der zahnmedizinischen Doktorwürde
Carité – Universitätsmedizin Berlin
Campus Benjamin Franklin

vorgelegt von
Klaudia Brauner
aus Leipzig
Referent: Prof. Dr. med. H. Scherer

Korreferent: Priv.-Doz. Dr. med. M. Jungehülseing

Gedruckt mit der Genehmigung der Charité – Universitätsmedizin Berlin
Campus Benjamin Franklin

Promoviert am: 22.02.2008
meiner Familie gewidmet
INHALTSVERZEICHNIS

1 EINLEITUNG .. 7

1.1 DAS GLEICHGEWICHTSORGAN .. 7

1.1.1 Die Bogengänge ... 7

1.1.2 Die Otolithenapparate ... 8

1.2 DIE ZENTRALE Gleichgewichtsbahn UND DER VESTIBULOOKULÄRE REFLEX (VOR) 9

1.3 DER NYSTAGMUS ... 10

1.3.1 Spontannystagmus ... 11

1.3.2 Akuter einseitiger Funktionsverlust des Gleichgewichtsorgans 12

1.3.3 Kompensationssysteme ... 13

1.3.4 Therapie akuter peripher-vestibulärer Funktionsstörungen 13

1.3.5 Definition des Nystagmus als Meßgröße ..(... 14

1.3.6 Diagnostische Untersuchungsmethoden ... 14

1.3.7 Thermische Untersuchungen des Gleichgewichtsorgans .. 15

1.3.8 Okulomotorische Untersuchungen ... 16

1.3.9 Drehprüfungen ... 17

1.4 REGISTRIERMETHODEN VON AUGENBEWEGUNGEN ... 18

1.5 NYSTAGMUSANALYSEMETHODEN ... 19

1.5.1 Geschwindigkeit der langsamen Nystagmusphase ... 19

1.5.2 Manuelle Nystagmusanalyse .. 20

1.5.3 Halbautomatische Nystagmusanalyse ... 21

1.5.4 Vollautomatische Nystagmusanalyse ... 21

2 FRAGESTELLUNG .. 24

3 PROBANDEN ... 25

4 MATERIAL UND METHODEN .. 26

4.1 METHODEN ... 26

4.2 VIDEOOKULOGRAPHIE .. 27

4.2.1 Apparative Voraussetzung ... 27

4.2.2 Durchführung .. 27

4.3 THERMISCHE REIZUNG .. 28

4.3.1 Apparative Voraussetzung ... 28

4.3.2 Durchführung .. 29
Inhaltsverzeichnis

4.4 OPTOKINETISCHE NYSTAGMUSPRÜFUNG.. 31
 4.4.1 Apparative Voraussetzung ... 31
 4.4.2 Durchführung ... 31
4.5 DREHPRÜFUNG .. 32
 4.5.1 Apparative Voraussetzungen ... 32
4.6 BERECHNUNG DER AUFGEZEICHNETEN DATEN 33
 4.6.1 Geschwindigkeit der langsamen Nystagmusphase 33
 4.6.2 Handauswertung .. 33
 4.6.3 Vollautomatische Nystagmusanalyse .. 34
 4.6.3.1 Diskrete Nystagmusanalyse ... 34
 4.6.3.2 Kontinuierliche Nystagmusanalyse ... 35
4.7 STATISTIK ... 36
 4.7.1 Einfache lineare Regression .. 36
 4.7.2 Betrachtung der Differenzen ... 36
 4.7.3 t-Test .. 37
 4.7.4 Bestimmung der Korrelation ... 37
5 ERGEBNISSE .. 38
 5.1 NYSTAGMUSAUSWERTUNG KALORIK .. 38
 5.1.1 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung ... 38
 5.1.2 Manuelle versus computergestützte diskrete Nystagmus-Auswertung 41
 5.2 NYSTAGMUSAUSWERTUNG OPTOKINETIK ... 44
 5.2.1 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 15°/sec .. 44
 5.2.2 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 30°/sec .. 47
 5.2.3 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 45°/sec .. 50
 5.2.4 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 15°/sec 53
 5.2.5 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 30°/sec 56
 5.2.6 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 45°/sec 59
 5.2.7 Zusammenfassende Darstellung der Ergebnisse 62
Inhaltsverzeichnis

6 DISKUSSION ... 63

7 ZUSAMMENFASSUNG ... 66

8 LITERATURVERZEICHNIS .. 67

ANHANG ... 73

I. ABBILDUNGSVERZEICHNIS ... 73
II. TABellenVERZEICHNIS .. 76
III. DIAGRAMMVERZEICHNIS ... 76
IV. ABKÜRZUNGEN .. 76
V. LEBENSLAUF ... 77
VI. DANKSAGUNG ... 79
VII. ERKLÄRUNG AN EIDES STATT 80
1 Einleitung

1.1 Das Gleichgewichtsorgan

1.1.1 Die Bogengänge

Entsteht durch eine Bewegung des Kopfes eine Strömungssänderung der Endolymphe in dem Bogengang, der in der Ebene der Bewegung liegt, wird die Cupula schamierartig über die Crista Ampullaris bewegt. Die Abscherung der Sinneshärchen ist der adäquate Reiz für die primären Sinneszellen und führt zu einer Drehempfindung. Somit enthält die Ampulle des Bogenganges das Drehbeschleunigungsmessgerät des Gleichgewichtsorgans.

Abb. 1 : Die Kupula ist ein Beschleunigungsmessgerät. Das elektrische Resultat der Messung entspricht der Geschwindigkeit des Kopfes. (Abb. mit freundlicher Genehmigung von Hennig Arzneimittel)

Jeder Bogengang ist über das Axon des primären vestibulären Neurons und die vestibulären Kerne im Hirnstamm mit den Augenmuskelnkernen so verbunden, dass die Reizung eines Bogenganges zu einer kompensatorischen Augenbewegung in derselben Ebene der Stimulierung führt. Die Augenmuskeln liegen ungefähr in derselben Ebene der Bogengänge, so
dass zum Beispiel die Richtung eines Spontannystagmus auf den betroffenen Bogengang Hinweis gibt (1). Zugleich existieren efferente Fasern, deren genaue Bedeutung noch nicht geklärt ist. Es wird eine Empfindlichkeitsänderung der Rezeptoren angenommen.

1.1.2 Die Otolithenapparate

1.2 **Die zentrale Gleichgewichtsbahn und der vestibulookuläre Reflex (VOR)**

Umwelt fixieren. Je besser die sensomotorische Leistung des VOR ist, desto geringer ist die retinale Bildverschiebung während einer Kopfbewegung.

Theoretische Modelle des vestibulookulären Systems helfen, die komplexen Bogengangs-Otolithen-Interaktionen bei willkürlichen Kopfbewegungen im Raum vorherzusagen und diese anhand experimenteller Untersuchungen zu prüfen (3).

1.3 Der Nystagmus

a) eine langsame, von der Kopfbewegung ausgelöste und ihrem Tempo entsprechende, aber entgegengerichtete Komponente mit Geschwindigkeiten bis ca. 100°/s, und

b) eine schnelle Komponente, d.h. eine der Kopfbewegung gleichgerichtete, reflektorische Rückstellbewegung mit Geschwindigkeiten bis ca. 700°/s.

Diese Art der Augenbewegung wird Nystagmus genannt. Er entsteht durch einen reflektorischen Vorgang und ist somit unwillkürlich. Seine Richtung wird durch die Richtung der schnellen Komponente bestimmt. Das Erscheinungsbild des Nystagmus kann man als Sägezahnform beschreiben. Ungefähr 50 verschiedene Nystagmusarten wurden bisher

Die Bedeutung des vestibulären Nystagmus für das tägliche Leben erkennt man am besten an Patienten, denen dieser Reflex durch Erkrankungen ihrer Gleichgewichtsorgane verloren gegangen ist. Bei diesen Patienten führen die Mikrobewegungen des Herzens dazu, dass ein stabiles Abbild der Umwelt auf der Retina nicht zustande kommt.

1.3.1 Spontannystagmus

Ein weiteres zu beurteilendes Kriterium ist die Richtung des Nystagmus. Wegen der besseren Erkennbarkeit wird diese nach der Richtung der schnellen Phase bezeichnet. Ein Nystagmus
Einleitung

Als signifikant wird ein Spontannystagmus dann betrachtet, wenn aufeinander folgende Nystagmen für die Dauer von mindestens 30 sec aufgezeichnet oder beobachtet werden können (8) (9) (10) (11).

1.3.2 Akuter einseitiger Funktionsverlust des Gleichgewichtsorgans

Eine Seitendifferenz der neuronalen Aktivität, wie sie bei physiologischen Drehbeschleunigungen auftritt, findet dadurch statt. Diese Seitendifferenz setzt sich bis zu den Augenmuskelkernen fort und es kommt zu einem ipsilateralen Augenmuskeltonus. Die Augen werden synchron aus der Mittelstellung langsam zur kranken Seite gezogen (langsamer Phase des Nystagmus) und stellen sich dann ruckartig zurück (schnelle Phase des Nystagmus). Die schnelle Phase des Nystagmus ist immer zur gesunden Seite gerichtet.

1.3.3 Kompensationssysteme

Wenn die Störung ausschließlich peripher ist, kann der Körper eine Kompensation von Symptomen und Beschwerden zentral durchführen (13). Hierbei wirken verschiedene Systeme zusammen.

1. Das efferente vestibuläre System scheint die Empfindlichkeit der primären vestibulären Sinneszellen im Innenohr zu verändern. Im Verlauf der Kompensation tritt aller Wahrscheinlichkeit nach eine Drosselung der Erregbarkeit der primären vestibulären Sinneszellen der Gegenseite ein. Eine Verminderung der Seitendifferenz ist die Folge und die Beschwerden nehmen ab.

2. Das okulomotorische System speist seine Informationen im Rahmen der zentralen Kompensation vermehrt in die Haltungsregulation der Körpermuskulatur ein. Weiterhin kann das okulomotorische System dahingehend trainiert werden, dass ein auftretender Spontannystagmus durch Fixationsübungen unterdrückt wird.

<table>
<thead>
<tr>
<th>STADIUM</th>
<th>DEFINITION</th>
<th>CHARAKTERISIERENDES SYMPTOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad 0</td>
<td>keine Kompensation</td>
<td>Keine Änderung der Symptome</td>
</tr>
<tr>
<td>Grad I</td>
<td>Kompensation ist mangelhaft</td>
<td>Spontannystagmus unter Leuchtbrille</td>
</tr>
<tr>
<td>Grad II</td>
<td>Kompensation ist fortgeschritten</td>
<td>Spontannystagmus nur im ENG sichtbar</td>
</tr>
<tr>
<td>Grad III</td>
<td>Kompensation ist befriedigend</td>
<td>Kopfschüttelnystagmus</td>
</tr>
<tr>
<td>Grad IV</td>
<td>Kompensation ist komplett</td>
<td>Kein Symptom außer Seitendiff. der kalorischen Erregbarkeit</td>
</tr>
</tbody>
</table>

Tab. 1: Einteilung der Nystagmusstadien

1.3.4 Therapie akuter peripher-vestibulärer Funktionsstörungen

Eine akute peripher-vestibuläre Funktionsstörung wird in mehreren Stufen behandelt. Symptomatisch wird ein starker Schwindel medikamentös behandelt bis er keine Übelkeit mehr
Einleitung

1.3.5 Definition des Nystagmus als Meßgröße

1.3.6 Diagnostische Untersuchungsmethoden

Einleitung

bedeutende Prüfungsmethoden für die klinischen Untersuchungen stellen die thermische Untersuchung des Gleichgewichtsorgans (22), die okulomotorische Untersuchung (Optokinetik) und die Drehprüfung (Pendelstuhl) dar. Die oft schwierigen Untersuchungen, mangelhafte Reproduzierbarkeit von Untersuchungsergebnissen, Probleme bei der Bewertung der Befunde und die subjektiven Empfindungen der Patienten machen die Begutachtung äußerst schwierig. Es gilt technische Möglichkeiten zu entwickeln und auf ihre Praxistauglichkeit zu untersuchen, die dem HNO-Arzt eine Vereinfachung des Untersuchungsganges, eine verlässliche Reproduzierbarkeit und Bearbeitung von Untersuchungen erlauben.

1.3.7 Thermische Untersuchungen des Gleichgewichtsorgans

Einleitung

besonders seitdem bekannt ist, dass vestibuläre Sinneszellen unter veränderten Temperaturbedingungen ihre Lage ändern können (32).

Die thermische Prüfung dient, bedingt durch die räumliche Anordnung, in erster Linie der Funktionstestung der horizontalen Bogengänge. Die Untersuchung erfolgt mit warmem Wasser (44°C) oder kaltem Wasser (30°C), wobei der Patient sich in sitzender Position befindet. Bei Trommelfelldefekten kann auch auf ein geschlossenes System in Form eines in den Gehörgang eingeführten Latexballons zurückgegriffen werden (6) (33).

Die Augen bewegen sich nach der Spülung mit heißer Luft schnell zur gereizten Seite und bei Reizung mit kalter Luft zur kontralateralen Seite und stellen sich dann mit einer langsamen Bewegung zurück.

1.3.8 Okulomotorische Untersuchungen

Durch die Prüfung der Okulomotorik können die zentral verarbeitenden vestibulären Zentren, die mit dem visuellen System in Verbindung stehen, beurteilt werden (34).

Reizung der peripheren Retina mit bewegten Objekten bis zu 40°/s führen zu einer langsamen Blickfolge ohne Sakkadierung. Beim Gesunden ist der Quotient aus Augenbewegung und Objektbewegung bis zu einer Geschwindigkeit von etwa 40-60°/s und einer Frequenz von etwa 1Hz gleich 1. Ist die Geschwindigkeit größer, entstehen Auffangsakkaden. Diese treten im pathologischen Fall schon ab 35°/s auf (6).

Ein Nystagmus kann also auch dann provoziert werden, wenn sich Kopf und Körper in Ruhe befinden und die Augen bewegte Bilder verfolgen. Dem Probanden wird ein bewegtes Umfeld simuliert. Der Reiz besteht aus sich bewegenden schwarzen und weißen Streifen, welche reflektorisch eine Folgebewegung der Augen bewirken, die wiederum von einer schnellen Rückstellbewegung gefolgt sind. Es entsteht also unwillkürlich ein so genannter optokinetischer Nystagmus. Diese Art des Nystagmus kann beispielsweise ausgelöst werden, indem ein Proband vor einer mit vertikalen Streifen versehenen rotierenden Trommel sitzt (36).

Im Gegensatz zum vestibulären Nystagmus, welcher nur durch Beschleunigung oder experimentelle Reizung des Gleichgewichtsorgans ausgelöst werden kann, reagiert das optokinetische System auch auf Bewegungen mit konstanter Geschwindigkeit. Es adaptiert und
habituiert nicht. Die Testung des optokinetischen Nystagmus wird traditionell zur Diagnostik von Erkrankungen des zentralen Nervensystems genutzt (37-41).

1.3.9 Drehprüfungen

Die Drehstuhl-Prüfung ist ein physiologischer Test der Funktionsfähigkeit des horizontalen VOR. Sie ermöglicht zusammen mit der thermischen Prüfung eine detaillierte Aussage über die Bogengangsfunktion.

1.4 **Registriermethoden von Augenbewegungen**

So ist es durch die Videookulographie unter anderem möglich geworden, torsionale Augenbewegungen zu registrieren. Eine Untersuchung der Oolithenapparate, die für diese Art der Augenbewegungen mitverantwortlich sind und auf die schon Bárány und Frenzel hingewiesen haben, ist mit der Videookulographie ebenfalls möglich geworden.

Bei der Videookulographie kommen Helme oder Masken zum Einsatz, welche mit Sensoren zur Messung der Kopfbeschleunigung in allen drei Ebenen des Raumes ausgestattet sind. Gleichzeitig werden die Augenbewegungen durch Infrarotleuchtdioden einer Videokamera registriert. Aus diesen Daten werden die Augenbewegungen in den Ebenen horizontal und vertikal errechnet, woraus sich die Qualität des vestibulären Reflexes bestimmen lässt. Die Signale können zur Dokumentation durch einen Videorekorder aufgenommen oder in digitaler Form auf einem Rechner abgespeichert werden.

Eine dritte Ableitungsmöglichkeit liefert die Infrarotokulographie. Sie erfolgt mit einem kontaktlosen Array von lichtempfindlichen Dioden, die die Position der Grenze zwischen der
Einleitung

dunklen Pupille und der helleren Iris des Auges ableitet (47). Die Differenz des Ausgangs
dieses Arrays wird benutzt, um eine Differenzspannung zu bilden, die der Drehung des Auges
entspricht. Wegen technischer Begrenzung ist dieses Ableitungssystem auf eine
Augenbewegungsamplitude von 20 Grad in der horizontalen und 15 Grad in der vertikalen
Richtung limitiert.

Im Jahr 2002 stellten Clarke, Ditterich und Drue ne et al. einen CMOS-Sensor zur so genannten
3-Dimensionalen Erfassung von Augenbewegungen vor (48). Dabei wird die Rotation des
Auges aufgezeichnet. Genau genommen handelt es sich somit nicht um die 3. Dimension.

1.5 Nystagmusanalysemethoden

1.5.1 Geschwindigkeit der langsamen Nystagmusphase

Seit Anfang des 19. Jahrhunderts ist bekannt, dass die Geschwindigkeit der langsamen
Nystagmusphase (GLP) eng mit der Auslenkung der Kupula und damit direkt mit dem
vestibulären Reiz korreliert. Außerdem steht die GLP in Abhängigkeit zur Nystagmusamplitude
(49). Die GLP ist somit der Standardparameter in der Nystagmographie. Er kann nur bei der
Registrierung des Nystagmus bestimmt werden.

Kommen keine halb- oder vollautomatischen Nystagmusanalysen zum Einsatz, die die gesamte
vestibuläre Reaktion auswerten, empfiehlt es sich, festgelegte Zeiträume zur Auswertung heran
zu ziehen (15). Diese variieren je nach Art der Reizung. Für die Kalorik empfiehlt sich die 60.-
70. Sekunde nach Spülbeginn oder noch genauer der Zeitraum von 10 s am Maximum der
Reaktion. Bei der optokinetischen Reaktion genügen bei Reizung mit konstanter
Geschwindigkeit 3 Nystagmusschläge.

Für die Drehpendelprüfung empfiehlt sich ein Zeitraum von 10s in der 2.Hälfte der
Beschleunigungsphase. Sollten benachbarte Nystagmusschläge eine sehr unterschiedliche
GLP aufweisen, müssen entsprechend mehr Schläge ausgewertet und daraus der Mittelwert
gebildet werden. Grundvoraussetzung für die Berechnung ist eine horizontale Grundlinie der
Ableitung. Eine ansteigende Linie, auch als Drift bezeichnet, verstärkt die GLP, wo hingegen
eine fallende sie verringert. Da die GLP stark mit dem vestibulären Reiz korreliert und leicht zu
bestimmen ist, stellt sie einen beliebten Parameter der Nystagmographie dar. Trotzdem gelten
hier einige Einschränkungen. So ist zum Beispiel die GLP in starkem Maße vom Wachheitsgrad
des zu testenden Patienten abhängig. Bei Müdigkeit sinkt die GLP weit ab. Auch bei einem sich
Einleitung

schnell ändernden Reiz, wie z.Bsp. der Stopp aus einer Drehung oder ein schneller Pendelreiz, stellt die GLP allein nicht den geeigneten Parameter dar. Hier ist ein Hinzuziehen der Amplitude notwendig, um die maximale Kupula-Auslenkung wiedergeben zu können.

1.5.2 Manuelle Nystagmusanalyse

Bei der manuellen Nystagmusanalyse werden die Amplitude, die Frequenz, die Dauer und die Geschwindigkeit der Nystagmusphasen zur Befundung erhoben (50).

\[
GLP = \frac{\text{Strecke (B-C)}}{\text{Strecke (A-C)}}
\]

Abb. 4: Berechnung der GLP (Abb. aus Scherer Das Gleichgewicht 1997)
1.5.3 Halbautomatische Nystagmusanalyse

1.5.4 Vollautomatische Nystagmusanalyse

beschrieben. Mit der rechnergestützten Analyse können die Nystagmusparameter umfassend analysiert und bei bestimmten Untersuchungen in Beziehung zu den Reizparametern gesetzt werden (61).

1988 stellen Juhola und Pyykö (63) ein Programm vor mit dem sich eine Glättung und Analyse der Augengeschwindigkeit durchführen lassen. Die eingegebenen Signale werden dabei in 20ms lange Abschnitte aufgeteilt und die Augengeschwindigkeit wird innerhalb dieser Intervalle nach der Methode der kleinsten Quadrate bestimmt.

Allum et al. stellten 1989 eine weiterentwickelte Version des Programms MITNYS II von 1975 (61), das Analysesystem TENA IV (64), vor. Die Datenerfassung ist mit einer Abtastfrequenz von 100 Hz vorgegeben. Das Programm versucht, schnelle Nystagmusphasen mit Hilfe von 3 berechneten Schätzwerten (α, β, ψ) für die Augengeschwindigkeit zu erkennen.

Wie auch dieses Analyseprogramm arbeiten die anderen Programme ebenfalls mit fest vorgegeben Abtastfrequenzen von 100 Hz. Im Wesentlichen sind sie für die Echtzeitanalyse im Routinebetrieb der Gleichgewichtsdiagnostik entwickelt worden. Für die Analyse von Daten aus Videobildern der Augenbewegung und auch für wissenschaftliche Zwecke benötigt man allerdings eine jeweils angepasste Abtastrate (65).

Umkehrphase, die minimale Amplitude, die maximale Geschwindigkeit und die maximale Dauer der langsamen Phase zur Erkennung eines gültigen Nystagmus genutzt.
Es ist bisher unklar, welche der beiden Analyse-Methoden in ihrer Genauigkeit dem Goldstandard, der Handauswertung, am nächsten kommt.
2 Fragestellung

In dieser Arbeit sollen zwei Nystagmusanalysemethoden, die im 2D-VOG-System der Firma SMI integriert sind, mit der Handauswertung der provozierten Nystagmen verglichen werden. Bei diesen zwei Methoden handelt es sich um von einander unabhängige Verfahren, die kontinuierliche Nystagmusanalyse und die diskrete Nystagmusanalyse.

Folgende Fragen möchte diese Arbeit beantworten:
- Wie stark weichen die durch die kontinuierliche Nystagmusanalyse ermittelten GLP-Werte von denen durch die Handauswertung ermittelten ab?
- Wie stark weichen die durch die diskrete Nystagmusanalyse ermittelten GLP-Werte von denen durch die Handauswertung ermittelten ab?
- Weichen die beiden automatischen Analysemethoden in ihrer Genauigkeit voneinander ab?
- Sind die Analysemethoden in ihrer Genauigkeit abhängig von der Art der Reizauslösung?
- Stellen die verglichenen Analysemethoden für die Praxis eine Alternative zur Handauswertung dar?

Gemäß des ethischen Standards der Helsinki-Deklaration 1964 wurden alle Probanden um ihre Einwilligung gebeten, an der Studie teilzunehmen.

Es wurden ausschließlich gesunde Personen zu dieser Studie zugelassen. Keiner der Probanden wies anamnestisch und bei der Spontannystagmusprüfung oder der Nystagmusanalyse der verschiedenen Prüfungen Hinweise auf eine zentrale, periphere oder vestibulocochleäre Erkrankung auf.

Die Probanden nahmen im Zeitraum der Versuchsdurchführung keine Medikamente ein und waren 2 Tage vor den Prüfungen alkoholabstinent und ausgeschlafen. Mit diesen Maßnahmen sollte eine höchst mögliche Vigilanz erreicht werden (66-69).

Zusammenfassung der Probanden

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>N</th>
<th>Mittelwert / Alter</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>männlich</td>
<td>17</td>
<td>33,18</td>
<td>13,422</td>
</tr>
<tr>
<td>weiblich</td>
<td>13</td>
<td>33,54</td>
<td>14,004</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>30</td>
<td>33,33</td>
<td>13,438</td>
</tr>
</tbody>
</table>

Tab. 2: Aufstellung der Probanden nach Alter und Geschlecht
4 Material und Methoden

4.1 Methoden

Im Rahmen der Untersuchungen wurden an jedem Probanden eine thermische Vestibularorganreizung, eine optokinetische Prüfung und eine automatische Drehpendelprüfung durchgeführt. Vor der Durchführung der Tests erfolgte eine Kontrolle auf einen Spontannystagmus bei den Probanden. Dazu wurden die Teilnehmer aufgefordert, die abgedunkelte Brille aufzusetzen, beide Augen offen zu halten, und ohne die Augen zu schließen oder zu blinzeln 60 sec gerade aus zu schauen. Die etwaigen Bewegungen der Pupille wurden aufgezeichnet. Ein Spontannystagmus, der ein Ausschlusskriterium dargestellt hätte, konnte bei keinem Teilnehmer registriert werden.

4.2 Videookulographie

4.2.1 Apparative Voraussetzung

Für die Videookulographie (VOG) wurde das 2D-VOG-System der Firma SMI-Sensomotoric Instruments GmbH Teltow, Deutschland, sowie die Software 2D-VOG-Videookulographie TM Version 3.02 verwendet. Es besteht aus einer lichtdichten taucherbrillenähnlichen Maske, mit integrierter CCD-Miniaturkamera für das linke Auge und einem abnehmbaren Verschluss für das rechte Auge.

Abb. 5: Brille mit Infrarotkameraeinsatz (links) und Bewegungssensoreinsatz (rechts)

4.2.2 Durchführung

wird durch die Software als dunkelste Fläche im Videobild erkannt. Augenbewegungen in zweidimensionaler Richtung (2D-) können somit durch fortlaufende Bestimmung von Ortsveränderungen des Pupillenmittelpunktes in jedem Bild zeitgerecht bestimmt werden (46).

4.3 Thermische Reizung

4.3.1 Apparative Voraussetzung

![Abb. 6: Spüleinheit der Firma Otopront](image)
4.3.2 Durchführung

Für die thermische Spülung des Ohres wurde eine Spülpistole in den knöchernen Anteil des äußeren Gehörganges eingeführt. Ein sehr vorsichtiges Vorgehen war dabei angezeigt, da der Gehörgang nur mit einer zarten Haut ausgekleidet ist. Um Verletzungen des Trommelfells zu vermeiden, darf eine Spülpistole nur 1,5cm in den Gehörgang eingeführt werden. An ihr befindet sich zu Kontrollzwecken eine entsprechende Markierung. Liegt diese Markierung auf Höhe des Tragus, ist die Pistolen spitze noch ca. 8-10mm vom Trommelfell entfernt, liegt aber trotzdem weit genug im Gehörgang um eine adäquate Spülung durchführen zu können.

Es wurde sich in dieser Studie für die, den stärkeren Reiz hervorruflende Warmspülung entschieden. Nach jeder Spülung folgte eine kurze Pause von 30s (22) innerhalb derer die Brille aufgesetzt werden musste. Hierbei wurde auf einen korrekten Sitz der Brille besonderer Wert gelegt, da mögliche Lichteinbrüche in die Maske zum Außerkraftsetzen des vestibulären Nystagmus führen können. Nach der Pause von 30s begann eine nystagmographische Aufzeichnung über 60s (Abb. 7). Danach wurde die Brille sofort abgesetzt und vor der Spülung des Ohres der anderen Seite eine Pause von 15min eingehalten.

Nach 15min schloss sich die Spülung und Registrierung der Gegenseite in gleicher Weise an.
Abb. 7: Screenshot der Testaufzeichnungen während der kalorischen Reizung
4.4 Optokinetische Nystagmusprüfung

4.4.1 Apparative Voraussetzung

Abb. 8: Bildschirm für die optokinetische Prüfung

4.4.2 Durchführung

Die Probanden nahmen ca. 90 cm vor dem Bildschirm Platz. Die Brille wurde aufgesetzt, wobei das rechte Auge freie Sicht auf den Bildschirm hatte. Der Sitz der Brille wurde über den Monitor geprüft und es fand eine Kalibrierung statt. Das Programm zur Generierung der Streifen, sowie das Aufzeichnungsprogramm wurden gestartet (Abb. 9). Die Streifen bewegten sich mit konstanter Geschwindigkeit 20s lang. Danach wurde eine Pause von 10s eingehalten, um einen physiologischen Nachnystagmus abklingen
zu lassen. Im Anschluss an die Pause erfolgte die Reizung in entgegengesetzter Richtung. Insgesamt wurden nacheinander 3 verschiedene Reizstärken, 15°/s, 30°/s und 45°/s verwendet. Der auftretende optokinetische Nystagmus wurde über die gesamte Testdauer auf dem Monitor beobachtet.

Abb. 9: Screenshot der Testaufzeichnungen während der optokinetischen Reizung

4.5 Drehprüfung

4.5.1 Apparative Voraussetzungen

Die automatische Drehpendelbewegung konnte in dieser Studie nicht herangezogen werden, da die Software hier nur die maximale GLP errechnet und nicht die durchschnittliche GLP, wie bei der Kalorik oder der Optokinetik. Ein statistischer Vergleich zwischen Handauswertung und den durch die automatische Auswertung gewonnenen Ergebnisse war somit nicht möglich.
4.6 Berechnung der aufgezeichneten Daten

4.6.1 Geschwindigkeit der langsamen Nystagmusphase

4.6.2 Handauswertung

Die GLP wird gemessen, indem man die langsame Nystagmusphase auf dem Registrierpapier verlängert und durch ihre Schnittpunkte A und B jeweils ein Lot a und b fällt. Durch Punkt A legt man eine Horizontale und markiert deren Schnittpunkt C mit dem Lot b. Die Strecke zwischen den Punkten C-B gibt an, um wieviel sich das korneoretinale Potential in 1s verändert hat. Diese Veränderung muss dann anhand der Eichung in Winkelgrad Augenbewegung umgerechnet werden. Scherer empfiehlt die so genannte biologische Eichung mit 1mm gleich 1 Winkelgrad. Somit entspricht die Strecke C-B in Millimetern dem Winkel der Augenbewegung pro Sekunde (15).

Es müssen mindestens 3 oder mehr Nystagmuschläge ausgewertet und daraus ein Mittelwert gebildet werden, wenn benachbarte Nystagmuschläge stark voneinander abweichen.

Eine wichtige Voraussetzung zur Berechnung der GLP ist eine horizontale Grundlinie der Ableitung. Eine fallende verringert die GLP und eine ansteigende Grundlinie verstärkt sie. Gründe für ein Absinken der GLP kann z.B. ein geringer Wachheitsgrad sein. Durch die Handauswertung der vestibulären Reaktion wurde für die unterschiedlichen Testungen folgendes ausgewertet:

a) Bei der optokinetischen Nystagmusanalyse erfolgte die Auswertung der Reaktion durch die Bestimmung der durchschnittlichen GLP anhand aller Nystagmuschläge in einem Zeitraum von 5s.

b) Bei der thermischen Reizung erfolgte die Auswertung in einem Zeitraum von 20s ebenfalls anhand aller Nystagmuschläge, aber frühestens 70s nach Spülbeginn. Auch hier wurde die durchschnittliche GLP bestimmt.
4.6.3 Vollautomatische Nystagmusanalyse

4.6.3.1 Diskrete Nystagmusanalyse

Bei dieser Art der Analyse wird nach „sägezahn-ähnlichen“ Nystagmus-Bewegungsformen der Augen gesucht. Diese sind daran zu erkennen, dass einer schnellen Bewegung eine langsamere in die entgegengesetzte Richtung voraus geht.

Dazu werden die Augenpositionsdaten kontinuierlich analysiert und festgestellt, ob

a) die berechnete Geschwindigkeit größer ist als die minimale Geschwindigkeit der schnellen Phase

b) die Amplitude der schnellen Phase größer ist als die minimale Amplitude der schnellen Phase

c) seit der letzten schnellen Phase wenigstens die minimale Zeitdauer der langsamten Phase vergangen ist.

Ist dies der Fall, werden weitere Formkriterien untersucht, um einen Nystagmusschlag gültig zu erkennen. Diese sind die minimale Beschleunigung während der Umkehrphase (wie spitz ist der Umkehrpunkt), die minimale Amplitude der langsamten Phase, die maximale Geschwindigkeit der langsamten Phase und die maximale Dauer der langsamten Phase.

Die hier genannten Parameter konnten durch den Dialog konfiguriert werden (Abb. 10).

<table>
<thead>
<tr>
<th>Konfiguration der Nystagmusanalyse - Kalonikttest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwendete Analyse</td>
</tr>
<tr>
<td>kontinuierlich</td>
</tr>
<tr>
<td>Parameter der diskreten Nystagmusanalyse</td>
</tr>
<tr>
<td>Meßwerte pro Sekunde :</td>
</tr>
<tr>
<td>min. Beschleunigung :</td>
</tr>
<tr>
<td>min Geschw. der schnellen Phase :</td>
</tr>
<tr>
<td>min. Amplitude der schnellen Phase :</td>
</tr>
<tr>
<td>min. Amplitude der langsamten Phase :</td>
</tr>
<tr>
<td>max. Geschw. der langsamten Phase :</td>
</tr>
<tr>
<td>min. Dauer der langsamten Phase :</td>
</tr>
<tr>
<td>max. Dauer der langsamten Phase :</td>
</tr>
</tbody>
</table>

Abb. 10 : Dialog der voreingestellten Parameter für die Nystagmuserkennung
Diese Parameter erlauben eine Mustererkennung von einzelnen Nystagmusschlägen, welche jeweils zu Beginn und am Ende einer langsamen Nystagmusphase markiert werden. Zu der Analyse unserer Ergebnisse haben wir die voreingestellten Standardwerte herangezogen, die erfahrungsgemäß ein Maximum an Nystagmuserkennung bieten.

4.6.3.2 **Kontinuierliche Nystagmusanalyse**

Bei dieser Nystagmusanalyse wird zu jedem Zeitpunkt einer Messung, d.h. 50(PAL)/ 60(NTSC) Mal pro Sekunde, die derzeitige Geschwindigkeit der Augen berechnet. Sobald die Geschwindigkeit des Auges einen maximalen Geschwindigkeitswert übersteigt, wird der Beginn einer schnellen Phase erkannt. Nach Ermittlung des Beginns einer schnellen Phase wird auf das Unterschreiten eines Geschwindigkeitswertes gewartet und damit das Ende einer schnellen Phase erkannt.

Die Schwellwerte für die Erkennung von Anfang und Ende einer schnellen Phase werden automatisch angepasst und die erkannten Zeitpunkte graphisch dargestellt.

Bei dieser Art der Nystagmusanalyse wird die Geschwindigkeit des Auges zu jedem Zeitpunkt ermittelt und somit eine kontinuierliche, vestibulär-okulomotorische Reaktion untersucht. Bei Tests, die eine geringe Nystagmusaktivität erzeugen, wird die Geschwindigkeit zwar zu jedem Zeitpunkt ermittelt, jedoch kein separater Messwert für einen einzelnen sägezähnähnlichen Nystagmusschlag erzeugt.

Für die optokinetische Testung wurde die gesamte Testdauer herangezogen, um die durchschnittliche GLP zu bestimmen. Nur bei der Auswertung des kalorischen Tests konnte zur Bestimmung der durchschnittlichen GLP ein Zeitfenster eingegeben werden, das auch für die Handauswertung vollständig genutzt wurde. Dies gilt sowohl für die diskrete als auch für die kontinuierliche Nystagmusanalyse.
4.7 Statistik

Bei der hier erhobenen Statistik handelt es sich um eine Methodenevaluierung. Dabei bieten sich verschiedene statistische Verfahren an.

4.7.1 Einfache lineare Regression

Hier werden zur grafischen Veranschaulichung die Messwerte der diskreten bzw. der kontinuierlichen Nystagmusanalyse auf der X-Achse eines Koordinatensystems abgetragen und die zugehörigen handausgewerteten „Goldstandard“ - Werte auf der Y-Achse. Durch die so entstehende Punktewolke wird die nach der Methode der kleinsten Quadrate berechnete Regressionsgerade $\text{Y}=a+b\text{X}$ gelegt. Im Optimalfall hat diese Gerade die Form $\text{Y}=\text{X}$, also eine Gerade mit dem Achsenabschnitt 0 und der Steigung 1 und alle Punkte (Messwertpaare) liegen auf dieser Geraden. In diesem Fall ist auch der Korrelationskoeffizient $r=1$. Hier bieten sich Vergleichsmöglichkeiten zwischen den beiden Messmethoden an. Je größer der Achsenabschnitt und je weiter von 1 entfernt die Steigung und je kleiner r, desto schlechter ist das Ergebnis des Programms.

4.7.2 Betrachtung der Differenzen

Es werden die Differenzen zwischen den Werten Handauswertung und den Messwerten der diskreten bzw. der kontinuierlichen Nystagmusanalyse berechnet und zur grafischen Veranschaulichung gegen die Goldstandard- Werte aufgetragen. Hier lassen sich Ausreißer (besonders starke Abweichungen) erkennen und man sieht, ob überwiegend positive oder negative Abweichungen auftreten.
4.7.3 t-Test

Mit Hilfe des t-Tests lässt sich ferner prüfen, ob die Differenzen den Erwartungswert 0 haben, d.h., dass keine systematische Über- oder Unterschätzung des richtigen Wertes (Goldstandard) auftritt.

4.7.4 Bestimmung der Korrelation

Eine Korrelation, auch Produkt/Moment Korrelation oder Pearson Korrelation genannt, misst, wie stark der lineare Zusammenhang, die lineare Übereinstimmung zwischen der manuellen und der automatischen Auswertung ist.

Die Korrelation \(r \) wird durch diese Normierung mit den Standardabweichungen von den Masseneinheiten unabhängig und ist damit besser interpretierbar.

Eigenschaften:

\[-1 \leq r \leq 1\]

- \(r = 1 \) = deterministisch positiver linearer Zusammenhang zwischen manueller und automatischer Auswertung
- \(r = -1 \) = deterministisch negativer linearer Zusammenhang zwischen manueller und automatischer Auswertung
- \(r = 0 \) = kein linearer Zusammenhang

Allgemein gibt das Vorzeichen die Richtung des Zusammenhangs an und die Größe gibt die Intensität des Zusammenhangs wieder.
5 Ergebnisse

5.1 Nystagmusauswertung Kalorik

5.1.1 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung

Die manuell bzw. computergestützt nach der kontinuierlichen Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der kalorisch provozierten Nystagmen kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,95 und für die rechte Seite 0,92 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.).

Abb.11: Kalmanli = manuelle Auswertungsdaten des kalorischen Tests links und Kalkonli = kontinuierliche Auswertungsdaten des kalorischen Tests links (mittlere GLP in °/s)
Regressionsgerade: Y=1.36+1.09*X ; Korrelationkoeffizient: r=0.95 (p=0.000)

Abb.12: Kalmanre = manuelle Auswertungsdaten des kalorischen Tests rechts und Kalkonre = kontinuierliche Auswertungsdaten des kalorischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: Y=1.77+0.95*X ; Korrelationkoeffizient: r=0.92 (p=0.000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied (p<0,05) zwischen der manuellen und kontinuierlichen Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuelle Auswertung Kalorik links – kontinuierliche Auswertung links</td>
<td>1,99</td>
<td>2,23</td>
<td>,38</td>
<td>1,21 – 2,77</td>
<td>,0000</td>
</tr>
<tr>
<td>Manuelle Auswertung Kalorik rechts – kontinuierliche Auswertung Kalorik rechts</td>
<td>1,45</td>
<td>1,62</td>
<td>,27</td>
<td>,89 – 2,00</td>
<td>,0000</td>
</tr>
</tbody>
</table>

Tab. 3: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die kalorische Reizung

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, [1,21 – 2,77] und [0,89 – 2,00], den Nullpunkt nicht enthalten. Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und kontinuierliche Auswertung links, mit einer Wahrscheinlichkeit von 95% zwischen 1,21 und 2,77 liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der kontinuierlichen Auswertung Kalorik links, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 2,77 ist.

Für das rechte Gleichgewichtsorgan ist die Stichprobenstreuung etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt wiederum eine präzisere Aussage.
Hier kann man folgern, dass der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 2,00 ist.
5.1.2 Manuelle versus computergestützte diskrete Nystagmus-Auswertung

Die manuell bzw. computergestützt nach der diskreten Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der kalorisch provozierten Nystagmen kommen nachfolgend in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,97 und für die rechte Seite 0,97 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant).

Abb. 14: Klamanli = manuelle Auswertungsdaten des kalorischen Tests links und Kaldisli = diskrete Auswertungsdaten des kalorischen Tests links (mittlere GLP in °/s)
Regressionsgerade: $Y=0.35+1.10 \times X$; Korrelationkoeffizient: $r=0.97$ (p=0.000)

Abb. 15: Klamanre = manuelle Auswertungsdaten des kalorischen Tests rechts und Kaldisre = diskrete Auswertungsdaten des kalorischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: $Y=0.43+0.98 \times X$; Korrelationkoeffizient: $r=0.97$ (p=0.000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Abb. 16: Darstellung der Differenzen der Ergebnisse des diskreten Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.
Der Student’s t-Test zeigt hierbei keinen signifikanten Unterschied ($p>0,05$) zwischen der manuellen und diskreten Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>manuelle Auswertung Kalorik links – diskrete Auswertung Kalorik links</td>
<td>,52</td>
<td>1,73</td>
<td>,30</td>
<td>-0,08 – 1,13</td>
<td>.0870</td>
</tr>
<tr>
<td>manuelle Auswertung Kalorik rechts – diskrete Auswertung Kalorik rechts</td>
<td>,30</td>
<td>1,02</td>
<td>,17</td>
<td>-0,05 – 0,65</td>
<td>.0881</td>
</tr>
</tbody>
</table>

Tab. 4 : Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die kalorische Reizung

Das 95%-Konfidenzintervall, [0,08 – 1,13] und [0,05 – 0,65], enthält für beide Seiten den Nullpunkt. Es ist somit kein signifikanter Unterschied zwischen der manuellen und der diskreten Auswertung gegeben.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der Absolutwert des „wahren Mittelwertes“, des unbekannten Erwartungswertes der Differenz manuelle und kontinuierliche Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% kleiner als 1,13 rechts bzw. 0,65 links ist.

Die Stichprobenstreueung für das rechte Gleichgewichtsorgan ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt wiederum eine präzisere Aussage.
5.2 Nystagmusauswertung Optokinetik

5.2.1 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 15°/sec

Die manuell bzw. computergestützt nach der kontinuierlichen Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen kommen in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,84 und für die rechte Seite 0,92 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.).

Abb. 17: Omanli 15 = manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 15 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: Y = +*X ; Korrelationkoeffizient r=0,84 (p=0,000)

Abb. 18: Omanre 15 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 15 = kontinuierliche Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: Y = -5,4+1,48*X ; Korrelationkoeffizient r=0,92 (p=0,000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied ($p<0,05$) zwischen der manuellen und kontinuierlichen Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>gepaarte Differenzen</th>
<th>95% Konfidenzintervall der Differenz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 15°/s rechts- kontinuierliche Auswertung Optokinetik 15°/s rechts</td>
<td>1,56</td>
<td>1,68</td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 15°/s links – kontinuierliche Auswertung Optokinetik 15°/s links</td>
<td>1,83</td>
<td>1,84</td>
</tr>
</tbody>
</table>

Tab. 5: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die optokinetische Reizung mit 15°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, $[0,97 – 2,15]$ und $[1,20 – 2,46]$, den Nullpunkt nicht enthalten.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und kontinuierliche Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 0,97 und 2,15 rechts und 1,20 und 2,46 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der kontinuierlichen Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 2,15 für die GLP bei der Streifenbewegung nach rechts und als 2,46 nach links ist. Die Stichprobenstreung für die GLP bei der Streifenbewegung nach rechts ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt wiederum eine präzisere Aussage.
5.2.2 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 30°/sec

Die manuell bzw. computergestützt nach der kontinuierlichen Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen bei 30°/sec kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,95 und für die rechte Seite 0,96 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant).

Abb. 20: Omanli 30 = manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 30 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: Y = -7,41 + 0,86 * X; Korrelationkoeffizient: r = 0,95 (p = 0,000)

Abb. 21: Omanre 30 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 30 = kontinuierliche Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: Y = -4,37 + 0,94 * X; Korrelationkoeffizient: r = 0,96 (p = 0,000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied (p<0,05) zwischen der manuellen und kontinuierlichen Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>gepaarte Differenzen</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 30°/s rechts- kontinuierliche Auswertung Optokinetik 30°/s rechts</td>
<td>2,54</td>
<td>2,32</td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 30°/s links – kontinuierliche Auswertung Optokinetik 30°/s links</td>
<td>3,31</td>
<td>2,57</td>
</tr>
</tbody>
</table>

Tab. 6: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die optokinetische Reizung mit 30°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, [1,75 – 3,33] und [2,44 – 4,18], den Nullpunkt nicht enthalten.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und kontinuierliche Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 1,75 und 3,33 rechts und 2,44 und 4,18 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der kontinuierlichen Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 3,33 für die GLP der Streifenbewegung nach rechts und 4,18 nach links ist.

Die Stichprobenstreung für die GLP bei der Streifenbewegung nach rechts ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt eine präzisere Aussage für die rechte Seite.
5.2.3 Manuelle versus computergestützte kontinuierliche Nystagmus-Auswertung für 45°/sec

Die manuell bzw. computergestützt nach der kontinuierlichen Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen bei 45°/sec kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,92 und für die rechte Seite 0,63 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.).

Abb. 23: Omanli 45 = manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 45 = kontinuierliche Auswertungs-daten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: $Y = 7,46 + 0,99 \cdot X$; Korrelationkoeffizient: $r=0.92$ (p=0.000)

Abb. 24: Omanre 45 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 45 = kontinuierliche Auswertungs-daten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: $Y = 19,57 + 0,74 \cdot X$; Korrelationkoeffizient: $r=0.63$ (p=0.000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied (p<0,05) zwischen der manuellen und kontinuierlichen Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>gepaarte Differenzen</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>untere</td>
<td>obere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 45°/s rechts- kontinuierliche Auswertung Optokinetik 45°/s rechts</td>
<td>11,14</td>
<td>14,52</td>
<td>2,42</td>
<td>6,23</td>
<td>16,05</td>
<td>.0001</td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 45°/s links – kontinuierliche Auswertung Optokinetik 45°/s links</td>
<td>6,71</td>
<td>12,01</td>
<td>2,00</td>
<td>2,64</td>
<td>10,77</td>
<td>.0019</td>
</tr>
</tbody>
</table>

Tab. 7 : Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die optokinetische Reizung mit 45°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, [6,23 – 16,05] und [2,64 – 10,77], den Nullpunkt nicht enthalten.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und kontinuierliche Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 6,23 und 16,05 rechts und 2,64 und 10,77 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der kontinuierlichen Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 16,05 für die GLP bei der Streifenbewegung nach rechts und 10,77 nach links ist.

Die Stichprobenstreuung für die GLP der Streifenbewegung nach links ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt eine präzisere Aussage.
5.2.4 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 15°/sec

Die manuell bzw. computergestützt nach der diskreten Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen bei 15°/sec kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,85 und für die rechte Seite 0,94 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.).

Abb. 26: Omanli 15 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 15 = diskrete Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: \(Y = 3,2 + 0,98 \times X \); Korrelationkoeffizient: \(r = 0,85 \) (\(p = 0,000 \))

Abb. 27: Omanre 15 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 15 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: \(Y = -5,3 + 1,48 \times X \); Korrelationkoeffizient: \(r = 0,94 \) (\(p = 0,000 \))
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied (p<0,05) zwischen der manuellen und diskreten Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>manuelle Auswertung Optokinetik 15°/s rechts - diskrete Auswertung</td>
<td>1,53</td>
<td>1,45</td>
<td>,25</td>
<td>1,02 2,04</td>
<td>.0000</td>
</tr>
<tr>
<td>Optokinetik 15°/s rechts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manuelle Auswertung Optokinetik 15°/s links – diskrete Auswertung</td>
<td>1,19</td>
<td>1,84</td>
<td>,31</td>
<td>,56 1,82</td>
<td>.0005</td>
</tr>
<tr>
<td>Optokinetik 15°/s links</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 15°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, [1,02 – 2,04] und [0,56 – 1,82], den Nullpunkt nicht enthalten.
Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und diskrete Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 1,02 und 2,04 rechts und 0,56 und 1,82 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der diskreten Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 2,04 für die GLP der Streifenbewegung nach rechts und 1,82 nach links ist.
Die Stichprobenstreuung für die GLP der Streifenbewegung nach rechts ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt wiederum eine präzisere Aussage.
5.2.5 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 30°/sec

Die manuell bzw. computergestützt nach der diskreten Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen bei 30°/sec kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,96 und für die rechte Seite 0,98 (Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.).

Abb. 29: Omani 30 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 30 = diskrete Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: \(Y = -6,04 + 0,85 \cdot X \); Korrelationkoeffizient: \(r = 0,96 \) (p=0.000)

Abb. 30: Omanre 30 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 30 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: \(Y = 0,51 + 1,02 \cdot X \); Korrelationkoeffizient: \(r = 0,98 \) (p=0.000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Abb. 31: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungs-Programms und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.
Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied (p<0,05) zwischen der manuellen und diskreten Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>Mittelwert</th>
<th>Standardabweichung</th>
<th>Standardfehler des Mittelwertes</th>
<th>95% Konfidenzintervall der Differenz</th>
<th>Sig. (2-seitig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>manuelle Auswertung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optokinetik 30°/s rechts – diskrete Auswertung Optokinetik 30°/s rechts</td>
<td>1,20</td>
<td>1,90</td>
<td>0,32</td>
<td>0,55 – 1,84</td>
<td>0,0006</td>
</tr>
<tr>
<td>manuelle Auswertung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optokinetik 30°/s links – diskrete Auswertung Optokinetik 30°/s links</td>
<td>1,48</td>
<td>2,32</td>
<td>0,39</td>
<td>0,69 – 2,26</td>
<td>0,0005</td>
</tr>
</tbody>
</table>

Tab. 9: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 30°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, [0,55 – 1,84] und [0,69 – 2,26], den Nullpunkt nicht enthalten.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und diskrete Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 0,55 und 1,84 rechts und 0,69 und 2,26 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der diskreten Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 1,84 für die GLP der Streifenbewegung nach rechts und 2,26 nach links ist.

Die Stichprobenstreuung für die GLP der Streifenbewegung nach rechts ist etwas geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall etwas kürzer ist. Dies bewirkt wiederum eine präzisere Aussage.
5.2.6 Manuelle versus computergestützte diskrete Nystagmus-Auswertung für 45°/sec

Die manuell bzw. computergestützt nach der diskreten Methode ausgewerteten Geschwindigkeiten der langsamen Phasen (°/s) der optokinetisch provozierten Nystagmen bei 45°/sec kommen unten in einem XY-Diagramm zur Darstellung. Der Korrelationskoeffizient beträgt für die linke Seite 0,91 und für die rechte Seite 0,74. Die Korrelationen sind auf dem Niveau von 0,001 (2-seitig) signifikant.

Abb. 32: Omanli 45 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 45 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s)
Regressionsgerade: Y=3,47+1,0*X ; Korrelationkoeffizient: r=0,91 (p=0,000)

Abb. 33: Omanre 45 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 45 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s)
Regressionsgerade: Y=4,85+1,05*X ; Korrelationkoeffizient: r=0,74 (p=0,000)
Zur besseren Übersicht wurden zusätzlich die Differenzen der GLP der kontinuierlichen und der manuellen Messung bestimmt und grafisch dargestellt. Falls die meisten Punkte oberhalb der Bezugslinie (Nulllinie) liegen, bedeutet dies einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.

Abb. 34: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen.
Der Student’s t-Test zeigt hierbei einen signifikanten Unterschied \((p<0,05)\) zwischen der manuellen und diskreten Auswertung für beide Seiten.

<table>
<thead>
<tr>
<th>Paare</th>
<th>gepaarte Differenzen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mittelwert</td>
<td>Standardabweichung</td>
<td>Standardfehler des Mittelwertes</td>
<td>95% Konfidenzintervall der Differenz</td>
<td>Sig. (2-seitig)</td>
</tr>
</tbody>
</table>
| manuelle Auswertung | Optokinetik 45°/s rechts-
diskrete Auswertung | 6,71 | 12,01 | 2,00 | 2,64 | 10,77 | .0019 |
| | Optokinetik 45°/s rechts | | | | | | |
| manuelle Auswertung | Optokinetik 45°/s links –
discrete Auswertung | 3,58 | 5,60 | .93 | 1,69 | 5,48 | .0005 |
| | Optokinetik 45°/s links | | | | | | |

Tab. 10: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 45°/s

Die Signifikanz des Unterschiedes zeigt sich auch darin, dass die 95%-Konfidenzintervalle, \([2,64 – 10,77]\) und \([1,69 – 5,48]\), den Nullpunkt nicht enthalten.

Man kann aus den 95%-Konfidenzintervallen schließen, dass der „wahre Mittelwert“, der unbekannte Erwartungswert der Differenz manuelle und kontinuierliche Auswertung rechts und links, mit einer Wahrscheinlichkeit von 95% zwischen 2,64 und 10,77 rechts und 1,69 und 5,48 links liegt, dass also die Werte der manuellen Auswertung systematisch höher sind als die der diskreten Auswertung Optokinetik, dass aber der Unterschied mit einer großen Wahrscheinlichkeit (95%) nicht höher als 10,77 für die GLP der Streifenbewegung nach rechts und 5,48 nach links ist.

Die Stichprobenstreuung für die GLP der Streifenbewegung nach links ist deutlich geringer, was zur Folge hat, dass das entsprechende 95%-Konfidenzintervall kürzer ist, somit eine präzisere Aussage getroffen werden kann.
5.2.7 Zusammenfassende Darstellung der Ergebnisse

Im Folgenden werden die Mittelwerte der Differenzen der manuellen und der computergestützten Auswertungen für die Kalorik und die Optokinetik dargestellt. Die diskrete Auswertung zeigt bei allen Tests eine deutlich kleinere Differenz zur manuellen Auswertung als die kontinuierliche Auswertung. Darüber hinaus besteht bei der kalorischen Prüfung kein signifikanter Unterschied zwischen der diskreten und der manuellen Auswertung.

Diag. 1: Säulendiagramm der Ergebnisse der kontinuierlichen und der diskreten Auswertung (mittlere GLP in °/s)
6 Diskussion

Es existiert eine Vielzahl von Nystagmusanalyseverfahren. Trotz dieser Tatsache sind Untersuchungen über deren Genauigkeit nur selten durchgeführt worden. Einige Autoren, wie Bergenius et al. (72) publizierten, dass ihrer Erfahrung nach eine große Übereinstimmung zwischen der manuellen und der von ihnen genutzten automatischen Auswertung besteht. Auch McClure et al. (73) führten eine gründliche Untersuchung der Genauigkeit ihrer Methode durch und fanden dabei einen Korrelationskoeffizienten von 0,85. Keck (62) testete das Programm NYSLYS und zeigte an Hand seiner Ergebnisse, mit einer Korrelation von 0,97 für die Geschwindigkeit der langsamen Phase und 0,95 bei der Schlagzahl/10 s, dass dieses Programm zur Auswertung des Elektronystagmogramms klinisch eingesetzt werden kann.

Um die Genauigkeit der automatischen Nystagmusanalyseprogramme der Firma SMI SensoMotoric Instruments GmbH zu überprüfen, wurde ein Vergleich der durchschnittlichen Geschwindigkeit der langsamen Phase durchgeführt. Anhand der erstellten Korrelationsstatistik kann man einen guten Zusammenhang der automatischen und der manuell ermittelten durchschnittlichen Geschwindigkeit der langsamen Phase erkennen. Die hier gefundenen
Ergebnisse zeigen in den meisten Fällen eine sehr enge Korrelation zwischen den manuellen und den diskreten als auch zwischen den manuellen und kontinuierlichen Analyseergebnissen. Dabei konnte die diskrete Nystagmusanalyse mit durchschnittlich 0,94 eine engere Korrelation als die kontinuierliche Nystagmusanalyse mit 0,92 erzielen. Für die kalorische Testung konnte sogar gezeigt werden, dass zwischen der manuellen Auswertung und der diskreten Nystagmusanalyse kein signifikanter Unterschied existiert. Die Korrelation lag hier bei 0,97. Bei der optokinetschen Testung konnten diese sehr guten Ergebnisse nicht ganz erzielt werden. Die durchschnittliche Korrelation für die optokinetschen Testungen liegt bei 0,93. Bei der optokinetschen Testung mit 30°/s wurden die besten Reizantworten innerhalb der verschiedenen optokinetschen Reizungen erzielt. Am wenigsten geeignet erscheint die Testung mit 45°/s. Hier kam es häufig zu unregelmäßigen Reaktionen, was die spätere Auswertung erheblich erschwerte.

lässt sich mit der Auswertung eines identischen Zeitabschnittes erklären. Die diskrete Nystagmusanalyse stellt die am besten geeignete Methode zur Auswertung des Nystagmus im Vergleich zur kontinuierlichen Nystagmusanalyse, unabhängig von der Art der Reizauslösung, dar. Selbst bei der ungenauerer Reizung bei der optokinetischen Prüfung mit 45°/s zeigt die diskrete Auswertungsmethode eine deutliche Überlegenheit gegenüber der kontinuierlichen Methode.

7 Zusammenfassung

In der vorliegenden Arbeit wurden 30 Probanden untersucht. Es handelte sich dabei um ausschließlich gesunde Personen mit einer guten Nystagmusantwort auf alle Reize der kalorischen und der optokinetischen Prüfung. Es wurde sowohl eine manuelle als auch eine computergestützte automatische Auswertung der Reaktionen mit Hilfe der Videookulographie durchgeführt.

Voraussetzung für den klinischen Einsatz eines Programms für die automatische Nystagmusanalyse ist die Möglichkeit, einzelne Nystagmusparameter ähnlich exakt wie bei der manuellen Auswertung bestimmen zu können. Um diese Zuverlässigkeit und Anwendbarkeit der computergestützten automatischen Nystagmusanalyse im klinischen Alltag zu überprüfen, wurde für die manuellen und automatisch ermittelten Durchschnittswerte der Geschwindigkeit der langsamen Phase, mit Hilfe des Statistikprogramms SPSS 13.0, eine Korrelationsstatistik erstellt. Zusätzlich sollte geklärt werden, welcher der beiden automatischen Auswertungsmethoden der Vorrang zu geben ist.

8 Literaturverzeichnis

Hanson JM. Comparison of manual whole-body and passive and active head-on-body rotational testing with conventional rotary chair testing. Journal of Vestibular Research 1998; 8[3]: 273-282.

68 Scherer H. Side effects of drugs on the equilibrium. Laryngol Rhinol Otol (Stuttg) 1986; 65(9): 467-469.

71 Dohlman GF. Physikalische und physiologische Studien zur Theorie des kalorischen Nystagmus. Acta Otolaryngol (Stockh) 1925; Suppl 5.

Anhang

I. Abbildungsverzeichnis

Abb. 1: Die Kupula ist ein Beschleunigungsmessgerät. Das elektrische Resultat der Messung entspricht der Geschwindigkeit des Kopfes. (Abb. mit freundlicher Genehmigung von Hennig Arzneimittel) 7

Abb. 2: Lage und Anatomie von Macula Utriculi und sacculi mit spiegelsymmetrischer Anordnung der Haarzellen entlang der Lagena (Abb. aus Canalis und Lambert 2000) 8

Abb. 3: Rasterelektronenmikroskopische Aufnahme der Macula utriculi (links) und sacculi (rechts). Die Pfeile bezeichnen die Polarisierung der Kinozilien von der Striola weg (Abb. aus Scherer Das Gleichgewicht 1997) 9

Abb. 4: Berechnung der GLP (Abb. aus Scherer Das Gleichgewicht 1997) 20

Abb. 5: Brille mit Infrarotkameraeinsatz (links) und Bewegungssensoreinsatz (rechts) 27

Abb. 6: Spüleinheit der Firma Otopront 28

Abb. 7: Screenshot der Testaufzeichnungen während der kalorischen Reizung 30

Abb. 8: Bildschirm für die optokinetische Prüfung 31

Abb. 9: Screenshot der Testaufzeichnungen während der optokinetischen Reizung 32

Abb. 10: Dialog der voreingestellten Parameter für die Nystagmuserkennung 34

Abb. 11: Klamanli = manuelle Auswertungsdaten des kalorischen Tests links und Kalkonli = kontinuierliche Auswertungsdaten des kalorischen Tests links (mittlere GLP in °/s) 38

Abb. 12: Klamanre = manuelle Auswertungsdaten des kalorischen Tests rechts und Kalkonre = kontinuierliche Auswertungsdaten des kalorischen Tests rechts (mittlere GLP in °/s) 38

Abb. 13: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungs-Programms und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. 39

Abb. 14: Klamanli = manuelle Auswertungsdaten des kalorischen Tests links und Kaldisli = diskrete Auswertungsdaten des kalorischen Tests links (mittlere GLP in °/s) 41
Abb. 15: Klamanre = manuelle Auswertungsdaten des kalorischen Tests rechts und Kaldisre = diskrete Auswertungsdaten des kalorischen Tests rechts (mittlere GLP in °/s) __ 41

Abb. 16: Darstellung der Differenzen der Ergebnisse des diskreten Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. ________________________________ ______ 42

Abb. 17: Omanli 15 = manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 15 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) __________________________ 44

Abb. 18: Omanre 15 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 15 = kontinuierliche Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) __________________________ 44

Abb. 19: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. ________________________________ ______ 45

Abb. 20: Omanli 30= manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 30 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) __________________________ 47

Abb. 21: Omanre 30 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 30 = kontinuierliche Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) __________________________ 47

Abb. 22: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. ________________________________ ______ 48

Abb. 23: Omanli 45 = manuelle Auswertungsdaten des optokinetischen Tests links und Okonli 45 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) __________________________ 50

Abb. 24: Omanre 45 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Okonre 45 = kontinuierliche Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) __________________________ 50

oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. 51

Abb.26: Omanli 15 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 15 = diskrete Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) 53

Abb.27: Omanre 15 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 15 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) 53

Abb.28: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. 54

Abb.29: Omanli 30 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 30 = diskrete Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) 56

Abb.30: Omanre 30 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 30 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) 56

Abb.31: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungs-Programmes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. 57

Abb.32: Omanli 45 = manuelle Auswertungsdaten des optokinetischen Tests links und Odisli 45 = kontinuierliche Auswertungsdaten des optokinetischen Tests links (mittlere GLP in °/s) 59

Abb.33: Omanre 45 = manuelle Auswertungsdaten des optokinetischen Tests rechts und Odisre 45 = diskrete Auswertungsdaten des optokinetischen Tests rechts (mittlere GLP in °/s) 59

Abb.34: Darstellung der Differenzen der Ergebnisse des kontinuierlichen Auswertungsprogrammes und der manuellen Messung auf der Y-Achse und der manuellen Messung auf der X-Achse. Die meisten Punkte liegen oberhalb der Bezugslinie (Nulllinie), dies bedeutet einen positiven Bias, das heißt, die Werte des Programms fallen systematisch größer aus als die manuell gemessenen. 60
II. **Tabellenverzeichnis**

Tab. 1: Einteilung der Nystagmusstadien .. 13
Tab. 2: Aufstellung der Probanden nach Alter und Geschlecht 25
Tab. 3: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die kalorische Reizung 40
Tab. 4: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die kalorische Reizung 43
Tab. 6: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die optokinetische Reizung mit 30°/s 49
Tab. 7: Gegenüberstellung der statistischen Ergebnisse der manuellen und der kontinuierlichen Auswertung für die optokinetische Reizung mit 45°/s 52
Tab. 8: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 15°/s 55
Tab. 9: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 30°/s 58
Tab. 10: Gegenüberstellung der statistischen Ergebnisse der manuellen und der diskreten Auswertung für die optokinetische Reizung mit 45°/s 61

III. **Diagrammverzeichnis**

Diag. 1: Säulendiagramm der Ergebnisse der kontinuierlichen und der diskreten Auswertung (mittlere GLP in °/s) .. 62

IV. **Abkürzungen**

GLP Geschwindigkeit der langsamen Phase
HNO Hals-Nasen-Ohren
NTSC
PAL
VOG Videookulographie
VOR Vestibulookulärerreflex
V. Lebenslauf

VI. **Danksagung**

Herrn Prof. Dr. med. Hans Scherer danke ich für die Überlassung des Themas und die Arbeitsmöglichkeit in seiner Abteilung.

Besonderer Dank geht an Herrn Dr. Ilkay Kazak für die Anregungen und die kritische Beurteilung der praktischen Arbeit im Gleichgewichtslabor sowie der Diskussion der Ergebnisse und der Durchsicht der Arbeit.

Frau Monika Heinzel, Diplom Statistikerin, verdanke ich wertvolle Ratschläge in Fragen der Statistik.

Mein herzlicher Dank gilt auch meinem Freund Torsten Wegner für die gute Zusammenarbeit während der gemeinsamen Testungen der Probanden.

Ich danke allen meinen Freunden und Freiwilligen, die mich für die Testungen als Probanden tatkräftig unterstützt haben.

Auch meinen Eltern, Klaus und Karin Brauner, und meiner Schwester, Kerstin Brauner, möchte ich an dieser Stelle herzlich danken. Sie haben mich geduldig während der Entstehung dieser Arbeit unterstützt.
VII. Erklärung an Eides Statt

„Ich, Klaudia Brauner, erkläre, dass ich die vorgelegte Dissertationsschrift mit dem Thema:

Vergleich verschiedener rechnergestützter Nystagmusanalyse-Methoden
anhand unterschiedlicher Nystagmusauslöser

selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmitteln benutzt, ohne die (unzulässige) Hilfe Dritter verfasst und auch in Teilen keine Kopien anderer dargestellt habe.“

Datum Unterschrift