
Terawatt-Femtosekunden-Laserpulse in der Atmosphäre: Phänomene und Anwendungen

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation

vorgelegt von **Miguel RODRÍGUEZ LANGLOTZ**aus Hamburg

Berlin, Februar 2004

Die vorliegende Arbeit entstand in Rahmen des deutsch-französischen Projekts

gefördert durch die Deutsche Forschungsgemeinschaft und das Centre National de la Recherche Scientifique.

1. Gutachter: Prof. Dr. Ludger Wöste

2. Gutachter: Prof. Dr. Roland Sauerbrey

Datum der Disputation: 19. Mai 2004

Inhalt

Einleitung		1
Kapitel 1 Teramobile		5
1.1 Das Terawatt-Lasersystem		5
1.1.1 Die Erzeugung hochintensiver Fo	emtosekundenpulse (CPA)	6
1.1.2 Eigenschaften des Teramobile-L	asers	9
1.1.3 Einstellbare Parameter des ausge	sandten Laserstrahls	11
1.2 Das mobile Labor		14
1.2.1 Betriebs- und Versorgungsfunkti	onen	16
1.3 Das Detektionssystem		18
Kapitel 2 Messkampagnen		21
2.1 Messungen an der Thüringer L	andessternwarte	22
•	/-Pulsen in der Atmosphäre – Abbildung und Spektrosk	
,		
	fbau	
2.1.3 Bildaufnahmen im Schmidt-Mod	lus	27
2.1.4 Hochauflösende Weißlichtspektr	oskopie im Coudé-Modus	36
2.1.5 Breitbandige IR-Lidar-Messunge	en im Coudé-Modus	41
2.2 UV-Lidar-Experiment in Lyon		44
•	nabsorption mittels wellenlängenabhängiger Lidar-Sigr	
2.2.1 Motivation		44
2.2.2 Durchführung und Ergebnisse		45
2.3 Hochspannungsexperimente ar	der TU Berlin	51
	-Blitzentladungen mittels fs-Filamenten)	
2.3.1 Motivation	·······	52
2.3.2 Durchführung und Ergebnisse		55
2.3.3 Diskussion.		62
2.4 Laborexperimente und sonstige	e Messungen	65
•	ichtspektrums	
_	sen auf einer Strecke von 90 m	
2.4.3 Dritte Harmonische und UV-Lic	ht in Terawattfilamenten	75

Kapite	el 3 Aspekte der nichtlinearen Optik	83
3.1 G1	rundlagen der nichtlinearen Optik	
3.1.1	Polarisation und nichtlineare optische Suszeptibilität	
3.1.2 3.1.3	Der intensitätsabhängige Brechungsindex	
	lamentierung kurzer Laserpulse	
3.2.1 3.2.2	Erklärungsmodelle	
3.3 Fi	lamentierung von Terawattpulsen in Luft – Eigenschaften und Steuer	barkeit 101
3.3.1	Multifilamentierung	102
3.3.2	Startpunkt der Filamentierung	
3.3.3 3.3.4	Länge der Filamente. Divergenz nach der Filamentierung.	
3.4 W	eißlichterzeugung (SCG)	118
3.4.1	Selbstphasenmodulation	119
3.4.2	Form und Steuerbarkeit des Terawatt-Weißlichtspektrums	121
3.5 Ko	onische Emission und dritte Harmonische	130
3.5.1	Konische Emission von Filamenten.	131
3.5.2	Erzeugung der dritten Harmonischen (THG) in Luft.	136
Kapite	el 4 Untersuchung der Atmosphäre	143
4.1 Di	e Messtechnik Lidar	144
4.1.1	Grundlagen.	
4.1.2	Differentielles Absorptions-Lidar (DIAL)	147
4.1.3	Terawatt-Femtosekunden-Lidar – eine neue Dimension	149
4.2 Al	osorption durch Gase – fs-Weißlicht-Lidar	150
4.2.1	Hochaufgelöstes Absorptions-Lidar	151
4.2.2	Breitbandabsorptions-Lidar	161
4.3 A	erosole	166
4.3.1	Multispektrale Messung von Mehrfachstreuung	167
4.3.2	Nichtlineares Aerosol-Lidar	173
Zusamı	menfassung und Ausblick	177
Anhäng	ge	181
A Ausv	vertung von Bilddaten der Sternwarte	181

B Auswertung von line-by-line-Absorptionsspektren	186
Literatur	189
Liste eigener Publikationen	199

Englischsprachige Begriffe und Abkürzungen

In der Regel werden in dieser Arbeit deutschsprachige Begriffe für physikalische Phänomene und technische Ausdrücke verwendet. Wenn ein international gebrauchter englischsprachiger Begriff dem Verständnis dienen kann oder keine gebräuchliche Übersetzung für ihn existiert, wird dieser in kursiver Schrift und in der originalen Schreibweise (z.B. mit kleinem Anfangsbuchstaben) eingeführt und dann gegebenenfalls wie ein deutsches Wort weiterverwendet. In Einzelfällen können von diesen Begriffen auch in deutschsprachiger Weise andere Wörter abgeleitet werden, wenn es sich dabei um gängige Ausdrücke handelt. Beispiel: *chirp*, der Chirp, ein gechirpter Puls.

Bei Begriffen englischer Herkunft, die in den allgemeinen physikalisch-technischen Wortschatz Einzug gehalten haben, wird die Einführung übergangen. Beispiele: der Trigger, triggern; der Fit, fitten.

Um dem Leser das Wiedererkennen bekannter Abkürzungen zu ermöglichen, werden diese in ihrer allgemein üblichen, aus der englischen Sprache stammenden Form verwendet. Beispiel: Erzeugung der dritten Harmonischen (THG). In vielen Fällen funktioniert die Abkürzung für beide Sprachen. Beispiel: Selbstphasenmodulation (SPM).

Abbildungen

Die Urheberrechte aller Abbildungen liegen beim Autor bzw. dem Teramobile-Projekt. Ausnahmen sind durch Angabe der Referenz oder des Rechteinhabers gekennzeichnet.