Freie Universitat Berlin

Toolkit for Reverse Engineering of
Molecular Pathways via Parameter
Identification

A Dissertation
Submitted in Partial Fulfilment of the Requirements for the Degree of
Doctor Rerum Naturalium (Dr. rer. nat.)

to the Department of Mathematics and Computer Science
of the Freie Universitat Berlin

ADAM STRECK

Berlin, 2015

Supervisor: Prof. Heike Siebert
Second examiner: Dr. David Safranek

Date of the defense: 14.3.2016

I would like to dedicate this thesis to Heike Siebert.
Were it not for you, I would not have chosen to become a scientist.

Thank you.

ii

Thanks

I would like to thank to my supervisors, Heike Siebert and Alexander Bock-
mayr, for their guidance in my post-graduate studies and for all the time
they gave me.

For all the help and work in our collaborations, I would like to thank
to Kirsten Thobe, Hannes Klarner, Therese Lorenz, David Safrének, Kaveh
Pouran Yousef, and Max von Kleist.

For the advices I received when writing this thesis I would like to thank
to Annika RoOhl, Hannes Klarner, Tereza Dédova, Stephen Lavelle, Felix
Mattes, and Christoffer Anselm.

To my mother, Sérka Streckové, I would like to thank for her unyielding
support in the years leading to the moment of writing this paragraph—my
whole life.

My gratitude also belongs to all those who made my life in Berlin such
a pleasant experience.

Last, but the warmest thank you is to my life companion, Tereza Dédov4,
who followed me to Berlin across country borders, and whom all love, with
my whole heart.

iii

Summary

This thesis is a contribution to the field of systems biology, which is con-
cerned with mathematical and computational modelling of biological sys-
tems. The aim of the field is to understand biological processes via holistic
computational methods.

One of the standing problems in systems biology is how to derive model
of a system, preferably one easily understandable by humans, from experi-
mental data and observations. Understandably, the structure of the problem
depends heavily on the system of interest and the available data, therefore
it is worthwhile to create new methods that utilize particular features, as
there can hardly be a universal solution.

Here we present an approach for modelling and analysis of complex bio-
logical networks that uses a high-level, abstract modelling framework—the
multi-valued logical networks. In this framework we employ an automated
method originating in the theoretical computer science, called model check-
ing, which allows for formal reasoning about dynamical systems. We can
then create a multitude of candidate models and use model checking method
to compare the behaviour of these to experimental data.

Our approach however produces high volumes of data. To be able to
work with the data we use basic statistical methods, which allow us to
summarize the dataset into a few key values. In addition, these values can be
subsequently compared between multiple datasets. For better understanding
we couple these methods with an interactive visualization software.

The whole framework is implemented in a tool called TREMPPI, which
is available under an open-source license and distributed together with this
thesis.

We illustrate the functions of TREMPPI on three biological studies—two
human signalling pathways, related to cancer, and a protection mechanism
of the bacteria E. Coli.

v

Zusammenfassung

Diese Dissertation ist ein Beitrag zur Systembiologie, welche sich mit der
mathematischen Modellierung biologischer Prozesse beschéftigt. Das Ziel
dieses Forschungsbereiches ist es biologische Vorgiange mit Hilfe von ganz-
heitlichen, computergestiitzten Methoden zu verstehen.

Eine aktuelle Herausforderung der Systembiologie ist die automatische
Herleitung von Modellen anhand von Beobachtungsdaten und Experimen-
ten, bestenfalls eines Modells, dessen Aufbau dem Nutzer leicht zugénglich
ist. Natiirlich hdngen die Schwierigkeiten dieses Problems von dem zu mod-
ellierenden System ab und da kaum zu erwarten ist, dass es eine universelle
Losung geben kann, lohnt es sich spezifische Methoden fiir spezielle Systeme
zu entwickeln.

Wir stellen hier einen Ansatz zur Modellierung and Analyse von kom-
plexen biologischen Netzwerken vor, der auf einer hohen Abstraktion der
Vorgénge basiert—den sogenannten Mehrwertigen logischen Netzwerken. In
diesem Zusammenhang verwenden wir eine Methode aus der theoretischen
Informatik, nédmlich die automatische Modellpriifung, welche uns erlaubt
formal begriindete Aussagen zur Dynamik der modellierten Systeme zu tr-
effen. Wir erzeugen eine Menge von Modellkandidaten und verwenden die
Modellpriifung um ihre Dynamiken mit den Beobachtungsdaten zu vergle-
ichen.

Unser Ansatz erzeugt grofie Mengen an Daten. Wir verwenden statistis-
che Methoden um wichtige Eigenschaften eines Datensatzes hervorzuheben.
Zusatzlich konnen aufgrund dieser Eigenschaften Vergleiche zwischen unter-
schiedlichen Datensétzen aufgestellt werden. Zum einfacheren Verstandnis
sind diese Methoden teil einer interaktiven Visualisierungssoftware.

Der gesamte Ansatz ist als Software implementiert, welche TREMPPI
heiflt und frei, unter einer Open-Source Lizenz, erhéltlich ist.

Wir veranschaulichen die Funktionen von TREMPPI an drei biologis-
chen Fallstudien—zwei Signalwege in menschlichen Zellen, welche im Zusam-
menhang von Krebs untersucht werden, und ein Modell zum Schutzmecha-
nismus von E. Coli.

vi

Contents

1 Introduction

2 Background

2.1 Logical Modelling
2.1.1 Regulatory Network
2.1.2 Regulatory Contexts
2.1.3 Parametrization
2.1.4 Transition System

2.2 Model Checking
2.2.1 Biichi Automata
2.2.2 Synchronous Product
2.2.3 Automata Hierarchy
2.2.4 Property Metrics

3 Methods

3.1 Enumeration
3.1.1 Regulation Constraints
3.1.2 Direct Constraints
3.1.3 Normalization Constraint

3.2 Data Encoding
3.2.1 Measurements
3.2.2 Delta Constraints
323 Ending
3.2.4 Experimental Setup

3.3 Labelso
331 Sign oL
3.3.2 Indegree
333 Cost
3.3.4 Robustness
3.3.5 Impact.................
336 Bias 0.
3.3.7 Regulatory Function

3.4 Selection and Analysis

3.4.1 Explicit Qualitative Report

vii

Contents

3.4.2 Explicit Quantitative Report 33
3.4.3 Inferred Regulation Graph 34
3.4.4 Correlation Graph 34
3.45 Witness Graph 35

3.5 TREMPPI 36
4 Applications 39
4.1 EGFR Signalling 39
4.1.1 Model Building 0L 39
4.1.2 Data Encoding L 40
413 Results o 43
4.1.4 Performance 44

4.2 HGF Signalling oo 44
4.2.1 Network and Properties 44
4.2.2 Selection and Analysis 46

4.3 E. Coli Biofilm Production 47
4.3.1 Curli Fimbriae Expression 47
4.3.2 Derivation of the Logical Model 50
4.3.3 Formalisation of the Experimental Data 51
4.3.4 Results of the MC Procedure 52
4.3.5 Translating Parameter Constraints 54

5 Algorithms and Proofs 57
5.1 Constructing a Parametrization Space 57
5.1.1 Computing Regulation Constraints 58
5.1.2 Computing Direct Constraints 60
5.1.3 Computing Normalization Constraints 60

5.2 Conservative Graph Manipulations 60
5.2.1 Canonical Parametrizations 60

5.2.2 Completion 63
5.2.3 Equivalence of Complete Networks 65

5.3 Network Minimization 65
5.3.1 Observability in Transition Systems 66
5.3.2 Monotone Target Value 67
5.3.3 Normalization Algorithm 69
5.3.4 Observability in Normalized Parametrization 72
5.3.5 Minimizing the Model 73
5.3.6 Complexity 75

54 Encoding 75
5.4.1 Basic Measurements Automaton 75
5.4.2 State-conditional Biichi Automata 76
5.4.3 Encoding Measurements 77
5.4.4 Encoding Deltas 79
54.5 OpenEnding 81

Contents

9.5

5.6

5.4.6
5.4.7
5.4.8

Stable Ending oo
CyclicEnding L.
Encoding Experiments

Model Checking with Parameter Uncertainty

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5

Property Checking
Trace o
Robustness
Extending to Deterministic BA
Extending to Non-deterministic BA

Labels and Reports

5.6.1

Conclusion

Storage

6.1 Related Work
6.2 Summary
6.3 Outlook

Nomenclature

B Supplementary Files

TREMPPI
Understanding Case Studies
Toy Network Data
EGFR Data
HGF Data
E.ColiData

B.1
B.2
B.3
BA4
B.5
B.6

ix

97
97
99
100

109

CHAPTER 1

Introduction

”Most of an organism, most of the time, is developing from one
pattern into another, rather than from homogeneity into a pat-
tern. One would like to be able to follow this more general
process mathematically also. The difficulties are, however, such
that one cannot hope to have any very embracing theory of such
processes, beyond the statement of the equations. It might be
possible, however, to treat a few particular cases in detail with
the aid of a digital computer.”

Alan Turing, The Chemical Basis of Morphogenesis [Tur52]

Systems biology [WVD12] is a research field, and a philosophical school,
that believes that to understand biological systems, it is necessary not only
to know what it is composed of, but also how its components interact and
to what end [Nob08]. This presents a herculean problem, as it is generally
accepted that living organism are among the most complex systems [RA09],
if with humans being possibly the most complex systems in existence, as
also illustrated in Figure 1.1. To understand the function of such a system,
one usually needs to understand the function of its components, then the
function of their components, and so on. This means that in the attempt
to understand the function of an organism, we descend through its organs,
tissue, cells, proteins, atoms, and possibly even sub-atomic particles, find-
ing that every single component somehow plays a role in the result [AJV09].
However, despite this complexity and all the chaos and uncertainty, the bi-
ological systems usually exhibit quite a robust and deterministic behaviour,
leading to a belief that in many cases it may be sufficient to focus only
on one layer of the system at a time, abstracting from the complexity of
the underlying layers [Wol01]. Following this line of thought, many mod-
elling formalisms [dJ02] have been developed in an attempt to foster our
understanding of life itself. Each of these has its strengths, weaknesses and
is suited to modelling only a particular subset of functions of a biological

BIOLOGY 15 (ARGELY SOLVED. | | BUT EVENF ITWERE, DNAISTHE | | OK, TRY OPENING GOOGLE.Cot)
DNA 15 THE SOURLE CODE. RESULT OF THE MOST AGERESSIVE | | AND CLICKING VIEL) SOURCE
FOR OURBODIES, NOWTHAT | | OPTIMIZATION PROCESS IN THE OK ... OH WY GO0
GENE SEQUENCING IS ERSY, | | UNIVERSE, RUNMNG IN PARALLEL v :
\E JUST HAVE.TO READ IT. | | AT EVERY LEVEL, IN EVERY LIVING | | THATS JUST A FiW YERRS OF
T Nor ust “Source. | | TANG, FOR FOUR BILLION YEARS. | | OPTHIZATION BY Go0GLE DEVS:
CODE" THERES A TON ITS $ALL JUST CODE. L%“N"égmwuﬁm wmmé?a
OF FEEDBACK AND AND LAY, LAY :
EXTERNAL PROCESSING. \ LoU, BIOLOGY
[1§ IMPOSSBLE.

Figure 1.1: Xked comic, Randal Munroe, 2015, http://xkcd.com/1605/.

system. None of these frameworks promises to capture a full-scale, realis-
tic snapshot of a living organism, however it may suffice the needs of the
modeller, who is usually focusing only on "making sense” of a particular
part [Ingl3].

Our primary interest in this work is self-regulation and decision making
of a single cell, either as an individual organism, or as a part of a multi-
cellular being. These functions are mediated mainly by two mechanisms:
the fast molecular signalling [AJL*08], where molecules interact by physical
contact with subsequent chemical reactions; and the slow gene regulation,
where molecules react with the DNA transcription machinery to affect the
construction of proteins [AJLT08]. Based on these mechanisms, a cell makes
decisions, such as whether to proliferate, differentiate, die, etc. In many as-
pects, both these mechanisms constitute a computational circuitry of a cell,
with the input-output behaviour being similar in design to the computa-
tional structure of digital circuits [Alo06].

One of the earliest frameworks that focused on modelling cells in terms
of logical circuits were the Boolean networks of Stuart Kauffman [Kau69).
In this framework each modelled gene is assigned to one Boolean compo-
nent, which can then be either logically true or logically false. These logical
values can then be interpreted as being expressed or silenced in the system,
active or inactive, etc. Each component is then assigned a rule determining
what its future state is going to be, based on the current state of other com-
ponents that influence it. These rules describe the effect the components
have on each other—their mutual regulations. These regulations can stem
from many mechanisms like phosphorylation, methylation, promotor bind-
ing, gene silencing, ubiquitylation, DNA cutting, etc. [AJLT08]. Using these
rules, a simulation of a network is possible, where all the components are at
the same time updated to their future state in each step of the simulation.

http://xkcd.com/1605/

This is an extremely high-level and abstract approach, nonetheless numerous
studies were conducted using this framework to this date [WSA12], reporting
novel findings. Still it is not hard to imagine that for many applications, this
framework is too simple. René Thomas therefore proposed a more realistic
framework [Tho91], often referred to as multi-valued networks or Thomas
networks. Understandably, in the multi-valued networks a component can
have more than two values for the representation of distinct qualitative fea-
tures. Onme particular example being the DNA damage response network
where the suppressor LexA can prevent expression of none, one, or two
protein complexes [Mic05]. Secondly, the expectation that all components
change their configuration at the same time is not only unrealistic, but has
also strong implications on what behaviour a network can exhibit [Thol3].

As in all mathematical modelling, the choice of framework and approach
depends also on what is the interest of the modeller—to create a visual
representation of the system, to obtain an executable model allowing for
computational simulations, something else entirely? Our goal was to design
a stand-alone toolkit that would support creation of models, based on exper-
imental data, with a two-fold purpose. The first goal is for the model to be
descriptive and to elucidate the biological mechanism being modelled. The
second goal is for the model to allow for evaluation of intervention strate-
gies, e.g. chemotherapy. Such models are crucial in understanding diseases,
as is for example cancer, where the standard function of a part of a cell is
suspended due to factors like mutation, viral hijack, etc. In such cases one
first needs to understand what is a difference between the damaged and a
healthy cell, usually with only sparse sets of data available. Knowing how
a system behaves makes it then easy to design a treatment and test its ef-
fect on the said model. The case of personal healthcare is however not the
limiting one. Many a biological system are still not well understood and
being able to extract executable models from data is persistently one of the
top tasks of systems biology [PSRA'11]. We have therefore chosen Thomas
networks as our framework, since from our perspective they are complex
enough to capture relevant information, however still easy enough to grasp
and also amenable to automated analysis.

The automation aspect is quite an important one, since the more precise
modelling schemes, like differential or stochastic equations are quite hard to
simulate [KSO08], let alone if some parameters of a model are uncertain (e.g.
in the case of mutation). Thomas networks, on the other hand, allow to
enumerate and evaluate all possible disruptions to the model, as the space
of different mutations and the space of possible states of a network are both
finite [Tho91]. In particular, there is an established approach for automated
analysis of dynamical systems, called model checking (MC) [CGP99], which
has become also a standard tool for analysing Thomas networks since its
first use [BCRGO4].

The principle of our model checking approach is to overlap all the pos-

3

sible simulations of a model (from different initial conditions, with different
choices being made) and analyse the whole resulting structure. Having this
structure means that we know, in full, the behaviour of a model. It is
therefore easy to evaluate whether it is in line with the experimental obser-
vations, or to see what effects would an intervention have (as could be for
example caused by administering a drug). In this work we use MC as our
main approach for analysis of models and develop methods for improving
its effectiveness and efficiency.

In addition, when dealing with an uncertainty or scarcity of data for a
particular model, which is often the case in the modelling process, we can
use the model checking procedure to enumerate all possible models that fit
the known boundaries and for each of them to state whether it measures
the constraints imposed by the model checker. Such a process is usually
referred to as parameter identification [CBBC11]. In this thesis we focus on
the parameter identification and describe novel extensions to this method.
We are also aiming to tackle two problems that arise from using MC for
parameter identification. Firstly, when evaluating one possible model of
a system, one is usually focusing again only on some abstract, qualitative
feature, e.g. whether the system stabilizes or not. While this is useful
information, its binary nature means that the set of all possible models is
simply split in two, one part having the feature, the other not. This poses a
problem if one is aiming to pick an optimal model. Even if multiple features
are used, there is likely still a big set of models that has all the features
and whose members are further indistinguishable. Secondly, considering all
the options leads to a rapid combinatorial explosion, and while quite huge
sets can still be easily manipulated and stored by the computer, it becomes
swiftly infeasible for the researcher to keep a mental insight into the structure
of the set of models. Similarly to recent works of other authors in the
field [ASRC'10, GVE'13] we propose to focus not only on the individual
models, but also on sets of models based on some selection criteria. Such a
set can then be further evaluated by data mining and statistical procedures
in order to gain further insights about the system.

In summary, we introduce a unified workflow for parameter identifica-
tion, illustrated in Figure 1.2, which combines formal and statistical methods
with the aim of maximizing the amount of knowledge obtained from data.
This workflow is supported by a software called TREMPPI—Toolkit for Re-
verse Engineering of Molecular Pathways via Parameter Identification. This
comprehensive toolkit implements all the methods described in this thesis
and was also used for all biological studies presented here. It provides a
visual interface for an easy use, data and project management, and a set of
highly optimized computational tools. TREMPPI is distributed as an at-
tachment to this thesis or is available on-line under an open-source licence,
for further details see Appendix B.1.

The thesis is structured as follows. In the next chapter we provide the

4

/\ ‘/\
1. ENUMERATE H 2. LABEL H 3. SELECT H 4. ANALYSE H 5. COMPARE

Figure 1.2: Our workflow starts with the enumeration (1) of all possible
models that fit the expectations of the modeller about the structure. Each of
the models is evaluated for certain properties (2) like dynamical behaviour,
and the result of the evaluation is stored with the model as its label. After
the models are labelled, the user can select (3) a subset of these that seem
of special interest. This selection can then be analysed using various tools
(4) and compared to other selections (5). The selection or analysis can then
be refined based on the newly gained knowledge.

definitions necessary for understanding the methods presented in this the-
sis, but are not part of the contributions of this thesis. In Chapter 3 we
present all our methods in a way that is sufficient for their understanding.
These are ordered such that the workflow given in Figure 1.2 is preserved.
The following chapter then applies the methods to three different biological
networks, each of the studies focusing primarily on one part of the workflow.
In Chapter 5 we present our methods again, however this time in a formal
fashion, together with the respective proofs and algorithms. Additionally,
computational aspects of our implementation are discussed. Finally, a com-
parison to other existing approaches is given in Chapter 6, together with an
overall conclusion.

CHAPTER 2

Background

In this section we provide a formal description of the framework of Thomas
networks and of the model checking method. The definitions provided here
are compatible with the definitions as given by other authors, see for exam-
ple [RCBO06] and [CGP99)].

We conclude this section with a description of methods that were co-
developed by the author before starting the research described in this thesis.
These methods have been described in [BBK*12, KSvt12].

Most of the mathematical notation used throughout the article is quite
straightforward. There are however a few more involved elements we review
here:

o substitution: we use the notation Vec;—, to state that in the vector
Vec the element with the index ¢ is replaced by the value n. Moreover,
unless stated otherwise, the elements are expected to be indexed by
natural numbers starting from 1. For example (a, b,)2 = (a,€,c).

e interval: we use the standard notation for intervals with parenthe-
sis denoting the endpoint exclusion and square brackets the endpoint
inclusion. However we extend the notation also to the intervals on
integers, for example [—1,2) = {—1,0,1}. The domain of the interval
is always apparent from the context.

e indexing: some of the sets we use in the thesis can be naturally ordered
in the lexicographical ordering. For convenience, we sometimes use
elements of such sets as indices for a vector of the same length. For
example have a set Set = {p,q,r} and a vector Vector = (U,V,W),
then Vectory, = V.

e sets: we use the symbols Ny and N; to denote the set of natural
numbers with and without zero, respectively. For a power set of a set
S, we use the notation P(S). For the size of a set S we use the symbol

[ST-

2.1 Logical Modelling

ec kE
(CompA, 1, CompB)
(CompB, 1, CompA)
(CompB, 2, CompB)

ueV | veV |0(u,v) | O(u,v)

veV | p) CompA | CompA 0 {0,2}
(b) CompA | 1 (d) CompA | CompB | {1} | {0,1,2}
CompB | 2 CompB | CompA | {1} | {0,1,2}

CompB | CompB | {2} | {0,2,3}

(wcompA, WCompB) € QCompa | Kcompa (w) (0,0) (1,0)
({0,13,{0}) 1
({0,1},{1,2}) 0

(wCompA7wCOn’lpB) S QCompB KCompB (w) 0.1 1.1

() ({0}, {0,1}) 0 (B LOD G
({0},{2}) 0
({1},{0,1}) 2

({1},{2}) 1 0 Sl

Figure 2.1: The running example. (a) The regulatory network, (b) its
components, and (c) regulations. (d) The threshold functions. (e) One
of the 324 possible parametrizations of the network. (f) The asynchronous
dynamics encoded by the parametrization.

e transition composition: we use the symbol — to denote the set of
transitions (edges) in some oriented graph. For S the states of the
graph, this is a relation on S, i.e. -=C .5 x S. To refer to a transition
we then usually use the infix notation, i.e. we write s — s’ instead of
(s,s") €. Lastly, we write (—)* for & > 1 to describe a path in the
system of length k + 1, i.e. (—)F = {(s',...,s"1) | Viec [1,k]:s —
s"t1}. As a special case we put (—)? = S.

2.1 Logical Modelling

In this section we define the notions related to the modelling framework.
Most of the terms are illustrated in Figure 2.1 on a toy example.

8

2.1 Logical Modelling

2.1.1 Regulatory Network

The topology of a biological system is encoded as a directed graph, called
regulatory network (RN) G = (V, E, p) where:

e 1/ is a set of named components,

e £ CV x Ny xV isa set of requlations s.t. for each (u,t,v) € E it
holds that t < p(u),

e p: V — N is the mazrimum activity label s.t. each component can
adopt an integer from [0, p(v)], denoting its current activity level.

An example of a simple regulatory network is in Figure 2.1a. We denote G
the set of all possible regulatory networks.

In modelling terms, each component is usually used to describe one func-
tional component of the system, e.g. protein, signalling molecule, receptor,
etc. The set of activity levels then describes qualitatively different configu-
rations for this component. A regulatory network whose components are all
two-valued is called Boolean network (BN).

A regulation then states that the source of the regulation has an effect
on its target. The effect could be for example that the source breaks down
the target. This effect is however dependent on the activity level of the
source. For a regulation (u,t,v) € E the value ¢t denotes a threshold. This
threshold is the lowest activity level of u at which the regulation starts to
affect v. The effect persists until the closest higher threshold is reached.

For syntactic purposes we introduce a threshold function 6 : V x V —
P(N) s.t. O(u,v) = {t | (u,t,v) € E} and its extended version © s.t.
O(u,v) = 0(u,v)U{0, p(u) + 1} for any pair u,v € V. The extended thresh-
old function of our example is given in Figure 2.1d. Moreover, if (u,t,v) € E
then t_,t; € ©(u,v) denote the closest element below and above ¢, i.e. have
=9 the ordinal successor function in ©, then =© (t_) =t and =© () = ;.

2.1.2 Regulatory Contexts

If there are multiple regulations of one component by another, a regula-
tion ceases its function once a higher threshold is reached. For example if
(u,t,v), (u,ty,v) € E, then the regulation (u,t,v) will be active only in the
interval [t, ¢4) of the activity levels of u. Consequently, the thresholds divide
the range of activity levels of a component into so-called activity intervals

It = {[t,=® (1)) | t € O(u,v) U {0}}. (2.1)
Note that if 0(u,v) = 0 then I} = [0, p(u) + 1).

For each component we can then create a set of configurations of com-
ponents of the system, called regqulatory contexts, where the behaviour of

9

2.1 Logical Modelling

a component v € V can qualitatively differ from the other contexts, de-
noted and defined €, =[],y I;/. All the regulatory contexts for the both
components of the toy example are given in the left column of the table in

Figure 2.1e.

2.1.3 Parametrization

Based on the regulatory contexts of a component, the qualitative behaviour
of the component is then fully described through a partial parametrization
K, : Q, = [0, p(v)].

The value of the function is called a logical parameter or a target value.
It describes, based on the configuration of regulators, what is the change
in the activity of their target. The logical parameters are useful once there
is more than one incoming regulation, as competing effects may take place
and it is necessary to resolve what is the resulting behaviour. For example,
if there is an activator and an inhibitor of a certain gene present at the same
time, there are two possible partial parametrizations, depending on whether
the inhibitor is stronger than the activator or not.

To describe the behaviour of a regulatory graph we therefore need to
assign a partial parametrization to each component, creating a full parame-
trization K = (K,)yev. One possible parametrization of the toy example is
given in Figure 2.1e.

Note that for each v € V' the domain of the partial parametrization K,
(the set €,) is sufficient to obtain the set of regulators of v. To do so we
only need to list the values of the regulatory intervals in all the possible
w € Q,, since for each v € V these form exactly the set I). From I} we
can in turn obtain the whole G. A parametrization therefore fully suffices
to derive both the behaviour and the topology of a network and we use the
notation for a representant of a class, G = [K], to describe the regulatory
graph G obtained from parametrization K. For illustration consider the
example in Figure 2.1e. From Q = (Qcompa, QcompB) We see that there are
components CompA, CompB. Then from Qcompa we see that CompA has
levels 0,1 and no self-regulation, while CompB has levels 0, 1, 2 and there is
a regulation with the threshold 1. Similarly for Qcomps-

In particular we use the upper index K to describe a feature relating to
the parametrization K only and [K] or G to describe a feature relating to
the graph G in total. E.g. V& = VIE] would be a set of components of a
network G. Also we further use K to describe a single model and K¢ to
denote the set of all possible parametrizations of a regulatory graph G. If
G can be arbitrary (but fixed) we use simply K.

10

2.1 Logical Modelling

2.1.4 Transition System

Having a parametrization we can describe, in total, the dynamic behaviour
of the network. This description is provided through a directed graph, called
transition system (TS), where each node describes one configuration of ac-
tivity levels of the components—a state. The set of all states is then called
the state space. Because the state space is not dependent on the parameters,
but only on the components of the RN, we denote and define it as:

S9 =11 [0.p(w)]-

veEVE

The edges (transitions) are then placed between pairs of states based on
the parametrization and also based on the update scheme we choose [Ger02].
The update scheme describes how many components can change their value
at a time, by how much, and in which order. We focus solely on the unitary
asynchronous update, meaning that only one component can change by the
value of one, but there are multiple transitions possible from one state. This
scheme is considered to be the most biologically realistic [TA90]. A transi-
tion system for the toy example is given in Figure 2.1f. In the following we
explain how the transitions were derived from the example parametrization.

First, K is converted into a so-called update function F¥ = (FK),cy
where FK : SIKI 5 [0, p(v)] for all v € V. Here we exploit the fact that
for each s € S and for each v € V there exists a context w € QLK]
such that s € J],cy wy. For brevity we will further write s € w instead of
5 € [[uey wu- For every v € VK] we obtain the function FX : SIK] — gIK]
from a parametrization K, as

sy+1, ifs, < Ky(w),s €w,
Ff(s) =< s0, if s, = Ky(w), s € w, (2.2)
sy — 1, if sy > Ky(w), s € w.

Note that we have only three options how the value of a component can
change, namely either increase by one, remain constant, or decrease by one.
This provides us with a certain notion of direction of a derivative (positive,
zero, or negative).

Having F, we now assign each model a TS TK = (SI¥], 7)) such that
s =T & for some s, s’ € S g.t. the following holds:

if s =5 then Yo € V : FX(s) = s,,
if s # s then v €V : FE(s) =nAs = syen. (2.3)

where s, is a state s where the value indexed by v was replaced by the
value n.

11

2.2 Model Checking

CompA # 0 CompB # 1

CompA =0 bR? CompB =1
_/
(a)

~
<
N
®

(0,2),6° = (1,2),5°

Figure 2.2: (a) A BA B¢ for the property P%: ”Is there a path where
first CompA = 0 and then CompB = 1?”, such that S® = {b', 2,03}, 1% =
{b'}, AB = {b?}. The initial node is on a gray background, the accepting
node has double border. (b) The synchronous product of the TS TX in
Figure 2.1e and the BA BY. In green is one possible run that is a witness
of satisfaction of P% in X® = TK x B%. In blue is a witness for the case
the property is encoded via a TBA.

Note that this definition poses two requirements on the structure of
the transitions. Either there is a loop exactly on the state where all the
parameter values are equal to the current state, or there is a change by
exactly one in exactly one component. These are the requirements of an
asynchronous transitions system and we denote 7] the set of asynchronous
transitions systems over the state space SI&1. This notion is particularly
important in Section 5.2.

2.2 Model Checking

In this section we will explain the details of the model checking (MC) method
we use for analysis of dynamical behaviour of models. In general, the model
checking method enables the user to form queries about a dynamical system
and obtain a yes/no answer to the query. More specifically, the user can ask
a question of the form ”does this property hold in the system”. We use the
term property for such a query and use the Bichi Automata [BKO8] (BA)
based model checking to decide whether a property holds in a model.

12

2.2 Model Checking

The Biichi Automata based model checking is in general used for model
checking of properties described using the Linear Temporal Logic (LTL).
We conduct our own encoding into BA, which is detailed in Section 5.4
and consequently do not use LTL at all. Therefore we will not provide any
formal description of LTL here. Additionally, the BA are actually strictly
more expressive than LTL [BKO08]|, providing a possible advantage over the
standard LTL model checking.

2.2.1 Biuchi Automata

At its core a Biichi automaton is a finite state automaton [Sip96], adapted
to words of infinite length (knowledge of automata theory is not necessary
for the purposes of this thesis). Formally we describe a BA associated with

L(G
G as a four-tuple BY = (S5, M, IB, AB), where:
e SB is a set of states,
L(G) . - . . o
e —— is a transition relation with propositions where L(K) = P({v*n |
veVhxe{<, 2, <> =}ne0.pw)]}),

o IB C SB AB C 8B aresets of initial and accepting states, respectively.

The purpose of the automaton is to work as a memory, based on the prepo-
sitions that are evaluated as true. In each state, the automaton can step
to a successor through a transition whose whole label evaluates to true. As
will be shown later, the automaton is combined with a TS to keep track
of which prepositions have been satisfied. Consider the automaton in Fig-
ure 2.2a; this automaton steps from b' to b?> whenever CompA = 0, as a
note that this condition has been satisfied.

Note that the labelling of transitions is defined based on the names and
activity levels of components. It is therefore necessary to know the respective
network when creating a property.

An automaton is then used to show that a property has been satisfied.
A BA accepts if and only if there is a path from an initial state that passes
infinitely many times through an accepting state. As we do not use BAs
individually, but in combination with some TS, we formalize the acceptance
notion in the following section.

2.2.2 Synchronous Product

To assure that a model satisfies a property, its respective T'S and the encod-
ing automaton for that property are combined into a synchronous product
(SP). Then the SP is traversed to establish whether a path that would con-
firm satisfaction of the property exists or not.

To construct the transition relation of an SP, the propositions on the
labels of a BA are then evaluated on the states of a TS. In particular, a

13

2.2 Model Checking

state can be interpreted in the terms of propositions valid in the state, e.g.
for a state s € S[K], 5CompA = 0, Scompp = 1 we can make statements such
as:

s E CompA = 0 A CompB =1,

s = CompA < 1 A CompB > 0 A CompB < 2,

s = CompA > 0
where |= denotes the standard logical validity [HR04]. The validity of the
labels of BA transitions is then evaluated on the states of T'S, so to find the

matching BA transition for each TS state. This is crucial to the construction
of the SP, which is constructed as:

XK — 7K o gIK] _ (S[K]’_>T) % (SB, L([K]) 7IB,AB) _ (SX’%X’IX,AX)

where

o 5X =5lKl x gB

o (5,0) X (8,V) == (s=T)ABDV)A(sE @),
o [X = SIKl « [B,

o AX = SIKI » AB,

An example of a SP is given in Figure 2.2a.

Then, a property P encoded by the automaton BIK] is satisfied in
T if and only if there is an accepting infinite path (usually called run)
wX € (=X)*1 A run is accepting if and only if it leads from an initial
state and then goes infinitely through an accepting state. Formally:

XK X e pEl —
(wi € IX)YA(Fi, 1 € [1,K] i < I AwS =wik Awit € AX). (2.4)

A run is said to be infinite, because it forms a so-called lasso, which is
composed of the path from w:X to wiX and a cycle on w;-X = ka , therefore
we can infinitely many times conduct a transitions. Note that it is required
that i # k.

This run w¥ then forms a witness of satisfaction of PI¢! by K in XX,

We also denote W the set of all witnesses in X%, i.e.:
WX = {w¥ | XX ¥ £ PIE].

For completeness we add that in the standard model checking the notion
of wvalidity, rather than satisfiability, is investigated. In such a case, the
property ¢ is said to be valid, written X = PIK1if there is no witness of
its negation, formally:

XK e PHl — —(3n e Ny, Jw e (=%)": XK w = -PIK]),

14

2.2 Model Checking

2.2.3 Automata Hierarchy

Throughout the article we distinguish between three sorts of BA: terminal
BA, deterministic BA, and non-deterministic BA.

First we introduce the notions of being deterministic and total. For a
TS TX and an automaton BX and a state b € BX denote:

val(h) = {{s € ST | b & ¥, s = ¢} |V € SB).

A BA B is deterministic and total iff for each b € SP, exactly one of the
labels valuates to true, i.e. VS, R € val(b) : SN R =) (deterministic) and
Uwal(b) = S¥ (total). The advantage is that the number of transitions
for each state in TX remains the same for each corresponding state in X%,
since we always couple them with exactly one transition from B, Such
an automaton is then called deterministic BA (DBA).

The terminal BA (TBA) allow for encoding of the so-called guarantee
properties [BKO08]|, effectively allowing to determine whether a sequence of
events is possible or not [eP03] and are strictly less expressive than DBA.
The great simplification of these is that every final state has a loop, formally

a BA B is a TBA iff for each a € AP it holds that a LT, 4. Since in the
TS each state has at least one transition under the condition true, the
acceptance condition (2.4) for the guarantee property Pl and the path
wX € (—=X)k=1 simplifies to:

XK wX = PR — wf e IX A wf € AX.

The normal LTL MC is actually done on the third sort—the non-deter-
ministic BA (NBA) [BKO08]—which are strictly more expressive than DBA.
Later we show that we do not need NBA for our encoding, reducing the com-
plexity of the procedure. However, NBA can still be employed, if necessary,
as detailed in Section 5.5.5.

In the following, for a property P“ we use the notation B® = TBA(P%)
for a terminal, B¢ = DBA(P®) for a deterministic, and B = NBA(PY)
for non-deterministic BA encoding. If the automaton type is irrelevant, we
write BY = *BA(P%).

2.2.4 Property Metrics

In addition to deciding whether a transition system satisfies a property or
not, we can also examine the structure of the respective SP to gain additional
knowledge. To this end we are using two values—the cost and the robustness.

The cost for a property X is the length, in the number of states of a
shortest witness, defined as:

0 otherwise.

X {mz’n{k | (s,...,s%) e WXL if WX £,

15

2.2 Model Checking

The value is of interest under the assumption that a shorter witness in
general means a lower number of qualitative changes and in turn a slower
energy consumption by the system. Even in the cases where the energy
assumption is not realistic (e.g. due to different time scales) the cost value
still reflects on how functionally complex the system is. Thus, one is usually
interested in minimizing it. However it is important to note that the value
is dependent on the encoding and automaton chosen, e.g. in Figure 2.2 the
cost® = 6 if interpreted as a normal BA (the witness in green) and cost* = 3
if interpreted as a TBA (the witness in blue). This issue is addressed further
in the thesis, but in general it signifies that the property metrics are mainly
useful when comparing multiple models combined with the same property.

Of special focus in our approach is the set of witnesses with the minimal
cost:

SWX = {(st,...,s") | cost® =k >0} c WX,

Consider the example in Figure 2.2—for the TBA encoding of the property
the set S holds the single path (((0,2),b'), ((0,1),5%),((0,0),b3)). While
it can be argued that a single witness path is sufficient, having the set SW¥
has additional advantages. First, it highlights the areas of the transition
system with a strong requirement for ordering of events. Second, we use the
set SWX to compute the robustness w.r.t. the property satisfaction.

The robustness is an illustrative measure that states how likely it is that
if we take a random walk of the length equal to the cost, we actually find
a witness. The term robustness is widely used in systems biology [Kit04]
to describe various features of a system, therefore our definition may not
relate to the various robustness definitions in other works. This particular
notion of robustness reflects on the ability of the model to keep the requested
behaviour even though uncertainty is introduced to the model through the
modelling framework. The non-determinism of the simulation arises in states
where the qualitative behaviour in reality depends on quantitative nuances
indistinguishable by our abstraction. The higher the robustness of the model
w.r.t. a property, the less sensitive the model is to these quantitative nu-
ances, respectively to perturbation in these. Note that there is no probability
assigned to any transition, we therefore assume a uniform distribution, i.e.
in a random walk the probability of taking any transition from a state s is
given as one over the out-degree of s. For a path w® = (s!,...,s%) € (S¥)¥
we get the probability as:

k—1

prob(w™) = H !

ey succX (st)’

1=
where succX : SX — P(SX) is a successor function in X, formally

succ™ (s) = {s' | s =% 5'}. (2.5)

16

2.2 Model Checking

Since the probability of starting in any state is also uniformly distributed,
the robustness is obtained as:

X _ LuwXeswx (prob(w™))
- [1¥]

robustness

For the TBA encoding in Figure 2.2 we have that robustness® = %, since

3
there is only one shortest witness w*X that has prob(w¥) = 1 and there are

3 states that match the initial measurement.

17

2.2 Model Checking

18

CHAPTER 3

Methods

In this Section we describe the new methods developed for the modelling
and analysis of RN. Most of the methods were introduced in our conference
publications [TSKS14, STS15a, STS15b]. The order of the section follows
the workflow as presented in Figure 1.2 and provides a formal description of
the methods in use. Technical details, algorithms, and proofs are omitted
from this chapter for brevity and are later presented in Chapter 5, keeping
the ordering of this chapter.

3.1 Enumeration

The first step of our workflow is the enumeration of all the feasible models.
These models are subsequently stored in a database, where they can be
further annotated or analysed.

In an unconstrained form, we consider every possible parametrization of
the network, i.e. for a network G = (V, E, p) we put:

K = [[{Kv: 2 — [0, p(0)]}.

veV

Note that for a network with Boolean components [K¢] € (9(22[[‘/]] S\4)F
as the number of possible boolean functions with n variables is 22" [HR04].
For non-Boolean components, this number is even higher.

Usually, the regulatory networks are sparse, and the size of the parame-
trization space is orders of magnitude smaller than the worst case. In most
cases, however, some reductions are necessary before the enumeration step.

3.1.1 Regulation Constraints

The most important pre-enumeration reduction tool are constraints on the
semantics of the regulations, often also referred to as edge labels. Biologically,
the nature of a regulation is quite often expected to follow certain rules, e.g.

19

3.1 Enumeration

to phosphorylate the target, meaning the target becomes active, therefore
the regulation is activating.

There are two common basic regulation constraints [WSA12]—activation
and inhibition— here denoted 1 and | respectively. These we formulate as
predicates over regulations s.t.:

T(K7 (u7t7 U)) — Jdwe Q’mwu - [t—7t) : KU(W) < Kv(wu%[t,t_;_))a
WK, (u,t,v)) <= Jw € Qy,wy = [t-,1) : Ky(w) > Ky(Wyejrr,))-

We can then place these predicates on the individual regulations and remove
those parametrizations for which the predicates do not evaluate to true. To
this end we use the edge-labelling A : E— L(1,]) where L(1,]) is the lan-
guage of propositional formulas with the predicates 1, |. For example in Fig-
ure 2.1 we have for K that { K, (CompB,1,CompA)) = false and we would
therefore remove it under the labelling A s.t. A\(CompB, 1, CompA) =1.

There are altogether 16 different logical functions over 2 predicates. We
use the following 12, which are also assigned names:

Name Label
Activating T
Activating Only TA-]
Not Inhibiting -]
Inhibiting {
Inhibiting Only AT
Not Activating -1
Observable TV
Not Observable ST A
Monotone (TA))
Not Monotone TAL
Monotone Observable | (J A= 1)V (T A=)
Free true

We do not use the remaining four possibilities, as they seem highly biologi-
cally irrelevant, or, in the case of false, directly infeasible.

Subsequently, we add the edge labelling as a constraint to the enumera-
tion procedure so that:

KO ={K ek |KkE N e}

e€EG

20

3.1 Enumeration

3.1.2 Direct Constraints

Even when using the edge constraints, the parametrization space will grow
very quickly w.r.t. the number of regulators of a single component. For a
Boolean component with 6 regulators one has already 22° ~ 1019 possible
Boolean functions. If 6 or more regulators are present, the parametrization
space needs to be reduced by the modeller explicitly.

In our framework, it is possible to specify the parameter values directly
by creating a set of constraints for each component such that:

vV 5 PUEK,(w) xn |we Q] x e {<,<,= #,> >}, ne0,p)]}).

As in the previous sections, we require these constraints to hold for a para-
metrization to be selected, i.e.:

KO ={K eK| K= [\ v(v)}.

veV

3.1.3 Normalization Constraint

The last reduction on the enumeration procedure comes from a subtle notion
of the dynamical equivalence in the multi-valued models, which is detailed in
Section 5.2. Here we limit ourselves to the statements that two parametriza-
tions are dynamically equivalent iff they produce an equivalent transition
system. Such an event is not likely to occur in general and it does not af-
fect any of the studies in Chapter 4, meaning we list this constraint here
only for completeness. Should there be some dynamically equivalent mod-
els, spurious behaviour may occur—as described in Section 5.2, where we
show that some regulations may become observable even though they have
no effect. To prevent such a behaviour, we remove all parametrizations that
are not normalized, as explained in Section 5.3. The resulting normalization
constraint is defined as

n(v) = /\w € Q, : Norm(K,v,w) = K, (w).

where Norm is the normalization algorithm described in Section 5.3. Under-
standably a parametrization then belongs to a normalized parametrization
space only if it satisfies the normalization constraint:

KO ={K e K ANK = /\ n(v)}.

veV

The normalization constraint is not used for the example in Figure 2.1,
which therefore has 324 parametrizations. If it was used, there would be
only 144. Both sets are available with the toy network data, as detailed in
Appendix B.3.

21

3.2 Data Encoding

3.2 Data Encoding

After constructing a formal description of the system, the second step is
usually encoding of experimental data and behavioural observations about
the system.

In our framework we encode each data set into a property that is com-
posed of up to four different constraints:

°]\—4> G is a sequence of measurements,

° BG is a sequence of delta constraints,
e End® is an ending,

e Exp© is an experiment.

Each of the elements we describe in detail in the following.

As suggested in Chapter 2 we use the model checking technique to anal-
yse the dynamics of each model and therefore it is necessary to encode the
data in a way suitable for the MC method. Here we focus on the seman-
tics of the encoding, the encoding itself with the related proofs is detailed
in Section 5.4. In particular we will be expressing the semantics of the
properties in terms of paths in TS, ignoring the MC procedure for the mo-
ment. For each constraint composing the property PX) we therefore de-
fined the meaning of the relation = and then ask if there exists a witness
wl = (s',...,s%) € (=T)1in TX, i.e. if it holds that T, wT = PIK],

In the following we will use the term witness only for a path that models
the property and is minimal w.r.t. the number of steps. In other words, we
focus only on the shortest paths in the cases where there are witnesses of
various lengths.

3.2.1 Measurements

A necessary step for formalization of data is to be able to express them in
the terms of the discrete activity levels. The usual problem is to decide for
a component, what is its threshold concentration, i.e. how many molecules
of a certain component there must be in the system for us to consider it
present.

Our framework does not promote or supplement any form of discretiza-
tion in particular and all the data are expected to be provided in an already
discretized form. In the studies in Chapter 4 we always describe how the
particular discretization was done. For more details about discretization we
refer to the review [GCCT15].

A single discretized measurement is described as M¢ = [1,eve Mo where
m, C [0, p(v)]. Note that in particular MUK C SIK therefore we express
about states of a TS in terms of belonging to a measurement.

22

3.2 Data Encoding

tt2 t3 t1 2 3 MY M2
CompA | 0.7 0.65 0.12 | CompA | 1 0
CompB | 0.15 0.21 094 | CompB | 0 2

(a) (b) (c)

MC = (M', M?), M = {(1,0)}, M” = {(0,2)} —
wT = ((170)7 (17 1)a (172)7 (072)) =

(d) wlTGMl,wZ{EMQ —
[T, M%) = (i1, 2,7) = (1,4,4) —

TK,wT):]_4>G

CompA

CompB

DE = (D', D?), D' = {(down, up)}, D* = {(none,none)} —
() wT = ((1,0), (1, 1), (1,2), (0,2)) A I(wT, M) = (1,4,4) —>

(wf)CompA > (wg)CompA > (wg)CompA > (wZ)CompA/\

(wf)CompB < (wg)CompB < (wg)CompB < (wZ)CompB —

T8 W | DX

End® = open, Exp® = ({0,1},{0,1,2})

(f)

TK (1,0, (1,1), (1,2), (0,2)) = P¢ = (MS, DE, End®, Exp®)

Figure 3.1: (a) An example of time-series measurements, where the bright-
ness of each patch corresponds to the strength of gene expression. (b)
Numerical values from the measurements. (c) Possible discretization of the
data. Since the timepoints t1 and t2 would discretize to the same measure-
ment, we merge them together. (d) Measurement sequence representation
of the data, which are satisfiable by the TX from Figure 2.1. The path w”
is the witness of satisfaction. Note that any path containing w’ would also
be a witness, but any path shorter than w? could not be. (e) Example delta
constraints. (f) A full property satisfied by T%. Also note that the system
could not have a stable ending and that none more restrictive experiment
would be allowed for these measurements.

23

3.2 Data Encoding

- A sequence of measurements is described via a measurements vector
MC = (M',...,M™) for some n € N;. For a path w” € (=T)F1 to
match the measurements there must be a sequence of states that match the
measurements in the given order. For such a path to exist there must be a
vector of indices

[T, MEY = (i1, ") e N7
where the following five conditions hold:

1. Vj e [1,n]: w;."; € MJ—each measurement has a state matching the
measurement.

2. Vj € [1,n],Vl € (j,n] : ¥/ < i'—the measurements are matched in
order. Note however that multiple indices in a sequence may be the
same.

3. i' = 1—the first measurement is matched immediately. This condi-
tion follows from the fact that we are focusing only on the shortest
witnesses.

4. Vj e (1,n],Vl € [i#71,i) : =w] € MJ—the state that is associated to
each measurement is the first one that matches the current measure-
ment after the previous one has been matched. This condition is used
for encoding of additional constraints.

5. i"t! = k—this is a trivial condition that is useful for encoding of
additional constraint and is utilized later in this chapter. In general,
the index n + 1 is not used for features related to measurements, but
for the behaviour after the last measurement.

Then we can express the satisfaction of the measurements as:

TK W = ME — 3rw”, MK,

3.2.2 Delta Constraints

Until now we were focusing on passing through measurement points, with-
out any specifications on the behaviour between them. There are multiple
related, biologically relevant constraints that can be implemented by fur-
ther reducing the product structure. In particular, we may want to require
a component not to change in between two measurements, or to change only
once prohibiting unobserved oscillations. We define an additional constraint
related to a measurement called component delta:

D¢ ¢ H {up, down, stay,none}.
veVE

The intuitive meaning for these constraints is:

24

3.2 Data Encoding

e up: the component can not decrease its activity level,

e down: the component can not increase its activity level,
e stay: the component can not change its activity level,

e none: the component is not constrained.

This puts additional requirements on the satisfaction of a property by
a TS. In particular a path w? = (s!,...,s*) € (=T)*! satisfies the delta
constraint D¢, written w? = D%, iff for each v € V& and all the pairs
(st s71) s.t. i € [1,k) we have that:

e if D, = up then s¢ < sit!
e if D, = down then s¢ > sit1

e if D, = stay then s/ = sit1,

For a sequence of measurements, the sequence of delta constraints is then
again a vector BG = (D',...,D"). We expect that the two sequences are
the same length, i.e. [DC] = [[]\70]] If there were more measurements
than deltas, we can add the none constraints and conversely, if there were
more delta constraints, we can add empty measurements to assure that
both have the same length. Then having the path w” € (—%)F1 and
I(wT,]_fG) = (i',...,i"!) we put:

TK wT = DK = vjel,n]: (s,...,s"") £ DI,

Due to the minimality criterion (4) on the indices we know that the sequence
between two indexed states is exactly from when the current measurement is
satisfied until the following measurement is satisfied. In our understanding
of monotonicity, that is the part of the transition system where the mono-
tonicity is intuitively expected. Note that the last constraint is required
after the last measurement and is practical only when used with the ending,
as described in the following section.

Note that the the notion of monotonicity as we define it here is only
one-sided. This means that we can either require for a component that it is
monotonously increasing (up) or monotonously decreasing (down), but we
can not say that it is only monotonous, without specifying the direction.
The general monotonicity is more complicated and we do not provide it in
our framework. For a possible implementation see [Klal5].

3.2.3 Ending

An ending is a logical variable End® € {open, stable, cyclic}.

25

3.2 Data Encoding

The above encoding is sufficient if we want to pass through a set of
measurements. We call this an open ending. For any k& € Ny and any path
wT e (=T)*=1 it holds that TK,w” = (End®] = open). When combined

. . G . %G . .
with a measurement series, M~ with [M®“] = n, we in general require that
the witness of a property is a shortest such path, therefore:

5wl = (M[K},Enduq = open) <=

3(wT, MY = (i1, ...ty A =

Sometimes it is however expected that the last measurement represents
a stable state of the system. Many a biological system are expected to be
in a stable configuration under standard circumstances [WVD12]. We call
this a stable ending. For a path w? € (=7T)*~! have that

TE wT = (End® = stable) <= wi -7 wl.

The last, and the most complicated option is to require that after match-
ing the last measurement, the system returns to the initial state, forming a
cycle. We call this a cyclic ending and for a path w” € (—7)¥~! we require

TE wT = (End® = eyclic) <= wl =w].

3.2.4 Experimental Setup

Lastly we focus on a configuration of an experiment. Experimentally, mea-
surements are conducted under specific conditions, e.g. presence of certain
nutrients in a medium, treatment with inhibitors, etc. Such conditions are
usually expected to stay constant for the duration of the experiment. If
they are explicitly modelled, e.g. with a component representing an in-
hibitor, we can enforce them by removing the states that do not match the
corresponding component value from the TS, together with the respective
transitions.

For a network G we denote ExpG € {[i,4] | 0 < i,p(v) > j}) the ex-
perimental setup for a component v € V& and Ezp® = (Expf)vev the
experimental setup of the whole network. We then restrict the state space
st. S = [Lev Equ[)K]. To make sure that the parametrizations are con-
sistent with the experiment, we also transform a parametrization to have
all target values in the reduced state space. For this we use the function
Reduce® : K& x P(SE) — K%, s.t. Reduce® (K, Expl®¥]l) = K’ where:

ma:U(E:EpLK}) if Ky(w) > max(E:an,K})
vo e VI vw e Qi1 K () = Ky(w) if K,(w) € ExpLK]
min(E:(:pq[,K}) if Ky(w) < min(Ea:pq[)K})

26

3.3 Labels

Structural Labels Regulatory Functions
sign®(CompA, 1, CompB) + RFggmpA 1&CompB{0}
sz"gni(CompB, 1,CompA) - 18 CompA{1}&
sign™ (CompB, 2, CompB) - « CompB{2}|

indegree’ (CompA) 1 RECompn 2&CompA{1}
indegree’ (CompB) 2 &CompB{0,1}
indegree™ (SUM) 3
bias® (CompA) 1 (b)
bias™ (CompB) 2
impact™ (CompA, 1, CompB) | 0.905 Property Labels
impact® (CompB, 1, CompA) -1 costK(P[K]) 4
impact™ (CompB, 2, CompB) | —0.302 robustness™ (PX1) | 0.25

(a) (c)

Figure 3.2: Tllustrative labels for the toy example from Figure 2.1. a) All the
possible structural labels. For clarity we use the symbol SUM to denote the
sum of the indegree values. b) The regulatory function labels corresponding
to the given parametrization. ¢) The dynamic labels for the property PIK] =
PY as given in the figure 3.1f.

Note that changing the parametrization does not affect the transition
system as such, since it only removes the transitions leading from the re-
duced state space, which change is already implied by the removal of the
states outside the reduced state space. However it affects whether a state is
considered stable. In particular a component that is reduced to one activity
level is automatically stable, no matter what was its original parametriza-
tion. As an example, consider our toy network and its parametrization from
Figure 2.1, which normally never stabilizes, however the following holds:

]\7G = ({(0,0)}), End® = stable, Exp® = ({0,1},{0}) =
7K' ((0,0), (1,0)) = (MS, End®, Exp®)

as for each w € Qcompp We have K’CompB(w) = 0 and thus the state (1,0) is
then rendered stable by the experiment.

3.3 Labels

Having a model, one is usually interested in what its properties are, e.g.
which of the regulations are effective, how it behaves dynamically etc. We
call functions that provide such information labels, and discern these into

27

3.3 Labels

two classes: static and dynamic labels. The static labels are derived from
the model itself and are usually quite straightforward. The dynamic labels
require construction of transition systems for their computation and there-
fore are exponentially harder to compute. To alleviate this difficulty we
have devised optimized methods of their computation, which are presented
in Section 5.5 and published in [SS15]. In Section 5.6 we then provide some
additional details on the label computation in general.

Notation-wise, the domain of a label usually depends on the respective
regulatory graph, we use the symbol [for a label in general, and [¥ to denote
that the label depends on the graph encoded by K and is evaluated under
K.

All the labels are illustrated in Figure 3.2 on the toy example from
Figure 2.1.

3.3.1 Sign

The sign label complements the regulation constraints and provides the
actual regulation semantics for each model. We derive the label sign’
Kl {0,4, —, 1} where:

0 if = Me) A= 15 (e),
+ if 15(e) A= 1K),
— if = tK(e)A [Ke),

1 if 15(e)A 15 (e).

sign® (e) =

Note that the 0 value means that the regulation has no effect on its target
and could be removed without affecting the dynamics, which is utilized in
the following label indegree. The value 1 describes the situation where a
regulation has ambiguous semantics, not meeting the monotionicity condi-
tion, which is usually contrary to the expectation of the modeller about the
system [Sno89.

3.3.2 Indegree

This is a simple label that counts the number of effective incoming regula-
tions. Formally we denote indegree™ : VKl — Ny the number incoming
regulations with a non-zero sign, defined as:

indegree’ (v) = [{(u,t,v) € E | u e VIE] Sign(u,t,v) # 0}].

Additionally, the function is extended to capture the sum of the indegree val-
ues of all the components, such that indegree™ (V) = 3 o1k indegree™ (v).
The sum of indegree values is of a special interest, as quite often one is in-
terested in structures that are minimal w.r.t. number of regulations.

28

3.3 Labels

3.3.3 Cost

The cost label is drawn directly from the definition in Section 2.2.4. In
Section 5.4 we show that for the properties specified in Section 5.4 it holds
that a cost of a witness in a TS is equal to the cost of a witness in the
respective SP. Formally, for XX = TK x PIK] we have cost™ = cost™. This
is because the structure of the product guarantees that there are no spurious
steps conducted, as we explain in section 5.4.

3.3.4 Robustness

The robustness is again drawn from definition in Section 2.2.4. Note that if
a measurement is not satisfiable, then there are no witnesses, therefore by
definition in Section 2.2.4 we have that costX =0 <= robustness® = 0.
As it was with the cost, it is possible to guarantee that robustness® =
robustness’ . However, satisfying the equation would compromise the per-
formance improvements achieved by the delta constraints and the experi-
mental setup, as we will explain in Sections 5.4.4, 5.4.8. Since we use robust-
ness as a comparison value, and relative differences between parametriza-
tions are much more relevant than the individual absolute values, we relax
this requirement. Thus, in the case that delta constraints or experimental
setup are used, the following inequality holds robustness® < robustness’.
In informal terms, this inequality stems from the fact that disabled tran-
sitions (those that break the monotonicity or experiments) are not counted
in the computation of robustness, which can however also be perceived as

the expected behaviour.

3.3.5 Impact

The impact label represents the relation between a regulator and its target
via the function impact’ : EW] — [~1,1]. For a regulation (u,t,v) €
EX] we obtain the impact of w on v by computing the correlation of the
activity level of the regulator and the respective parameter value. As we are
interested only in parameters that are directly affected by this regulation,
we take a subset of regulatory contexts on the border of the threshold value
t. These we list as a vector

') = (w e T [w, € {[t_, 1), [t t4)}).

To indicate presence or absence of the said regulation, we use the function
presy : olfl [0, p(u)] that projects the activity interval of u on its lower
boundary, i.e. if w, = [t_,t) then pres,(w) = t_. The impact of (u,t,v) is
then equal to the Pearson correlation coefficient between the image of QLK], t

29

3.3 Labels

under Pres, and K,:

cov(presy (w)weﬂﬁfﬁ , Ky (W)weﬂyftl)

mpac (u7 ’ U) std(pTeSu(W)weQ[K]) . Std(Kv (w)
v,t

)

weQEﬁ])

where cov is the covariance and std is the standard deviation. This value is
quite helpful when one is searching for the key regulators of a certain com-
ponent. The further the value is from 0, the more prominent the regulation
is.

3.3.6 Bias

By the term bias we here mean the general tendency of a parametrization
to push a component towards higher or lower activity levels. The label
bias™ : VIE] - [0,1] is obtained simply as

bias" (v) = 3 K,w) - [plo)

wEQEJK]

For a Boolean component this coincides with the notion as defined by other
authors, e.g. [SK04].

As a component has in general more effect on the other components at
higher activity levels, the bias label allows to distinguish the components
whose presence seems to be crucial for the activity of the network.

3.3.7 Regulatory Function

While not being a label per se we also assign a logical regulatory func-
tion, providing a more human-readable description of a parametrization.
In particular, we describe each partial parametrization as a Post Alge-
bra [MTO7] expression in a disjunctive normal form (DNF) of cardinality
n = max{p(v) | v e VFY} for a RN G.

A Post Algebra expression RFE] in DNF of cardinality n is in our case
described using the grammar:

RFEl s MM | M
M— V&A |V
V=0|---|n
A 5 A&A | 0{L}
L LL|V
where v € VIEL | &, {,},0,...,n are terminals, and RFIX], M, V, A, L are

non-terminals. The semantics are such that an atom, i.e. an expression
of the form v{L}, evaluates to n if the variable v is at a level listed in L

30

3.4 Selection and Analysis

and to 0 otherwise. The binary operator & evaluates to the smaller of its
operands and the binary operator | evaluates to the bigger of its operands.
E.g. consider the function in Figure 3.2b and an interpretation CompA =
1, CompB = 1. Then we can do the following valuation:

1&CompA{1}|2&CompB{0, 2} —
1&2[2&CompB{0, 2} —

1&2|2&0

112&0 —

110 —

1.

Note that in the Boolean case the operator & corresponds to the logical
conjunction, the operator | to the disjunction, v{1} to the simple v, and
v{0} to —w.

3.4 Selection and Analysis

While the individual parametrizations can be at least partially ordered by
the values of their labels, it is only seldom that a single parametrization
would appear as the optimal one. Moreover, even if one aims to find a pa-
rametrization that scores the best in all the metrics, i.e. minimum cost,
maximum robustness, minimum indegree etc., usually there are multiple
parametrizations with the best score or those that are pairwise incompara-
ble. We therefore focus on so-called selections, i.e. sets of parametrizations
that fit certain criteria on the labels and analyse the whole selection. The
computation of the analyses is mostly straightforward. For the few cases
where it is not, we provide necessary details in Section 5.6.

Have a parametrization space K and a sequence of predicates & =
®y,..., P, where ®; : K — B for each i € [1,n]. A selection by P we
call the set of parametrizations denoted K® s.t. for each K € K we have
that K € K? if and only if A}, ®;(K) holds true. As the selections may
contain millions, or even more parametrizations, approaches that allow to
evaluate the whole selection at once are necessary to gain understanding of
the nature of the selection. We present five different methods, each used
to depict some of the labels in a manner that generalizes the values of the
labels from members of the selection to the whole selection. A visual rep-
resentation of such data is then called a report. Additionally, each of the
reports features an individual method of comparison—having two different
selections K?, KY we create a third report which illustrates the difference
between the two selections. This we denote using the minus (—) symbol,
illustrating the fact that it is a non-commutative difference operation. All

31

3.4 Selection and Analysis

all parametrizations - Cost(p) = 4, Robustness(p) = 1, Sign(B,2,B) = 0
Label # Elements Label # Elements Label # Elements
Cost(M) 2 0:66.67, 4:33.33, Cost(M) 2 0:66.67, 4:-66.67, Cost(M) 1 4:100,
Fa 4 0:25,1:25, B{0}:25, B{12}:25, Fa 4 0:-35,1:25, B{0}:-15, B{12}:25, [Fa 2 0:60, B{0}:40,
Fg 81 0:1.23, 1:1.23, 181A:1.23, 18JA&B{{Fs 81 0:1.23, 1:1.23, 1&JA:1.23, 181A&B{|Fs 3 18A|28&IA:40, 2:40, 28IA:20,
Indigree(A) 2 0:50,1:50, Indigree(A) 2 0:-10,1:10, Indigree(A) 2 0:60, 1:40,
Indigree(B) 3 0:3.7,1:14.81, 2:81.48, Indigree(B) 3 0:-36.3, 1:-45.19, 2:81.48, Indigree(B) 2 0:40, 1:60,
Indigree(SUM) 4 0:1.85,1:9.26, 2:48.15, 3:40.74, | Indigree(sum) 4 0:-18.15, 1:-50.74, 2:28.15, 3:40.74) Indigree(SUM) 3
Ka(B{0}) 2 0:50,1:50, Ka(B{0}) 2 0:-10, 1:10, Ka(B{0}) 2
a Ka(B{1}) 2 0:50, 1:50, Ka(B{1}) 2 0:-50, 1:50, Ka(B{1}) 1
Kg(A{0},8{0,1}) 3 0:33.33, 1:33.33, 2:33.33, Kg(A{0},8{0,1}) 3 0:33.33, 1:33.33, 2:-66.67, Kg(A{0},8{0,1}) 1
Ke(A{0},B{2}) 3 0:33.33,1:33.33, 2:33.33, Ka(A{0},B{2}) 3 0:33.33, 1:33.33, 2:-66.67, Kg(A{0},B{2}) 1 2:100,
Ke(A{1,2},B{0,1}) 3 0:33.33,1:33.33, 2:33.33, Ka(A{1,2},B{0,1}) 3 0:13.33, 1:-6.67, 2:-6.67, Kg(A{1,2},B{0,1}) 3 0:20, 1:40, 2:40,
Ka(A{1,2},B{2}) 3 0:33.33,1:33.33, 2:33.33, Kg(A{1,2},B{2}) 3 0:13.33, 1:-6.67, 2:-6.67, Ks(A{1,2},B{2}) 3 0:20, 1:40, 2:40,
Sign(A,1,B) 4 +:33.33,-:33.33, 0:11.11, 1:22.22, |Sian(A,1,B) 4 +:33.33, -1-26.67, 0:-28.89, 1:22.22 | Sign(A,1,8) 2 -:60, 0:40,
Sign(8,1,A) 3 +:25,-:25,0:50, Sign(B,1,A) 3 +:25 Sign(B,1,A) 2 -:40, 0:60,
Sign(B,2,B) 4 +:33.33,-:33.33, 0:11.11, 1:22.22, |sian(8,2,8) 4 +:33.33,-:33.33, 0:-88.89, 1:22.22, | Sign(B,2,8) 1 0:100,
Label Count Min Max Mean |Label Count Min Max Mean |Label Count Min Max Mean
Ka(B{0}) 162 0 1 0.5 Ka(B{0}) 160 0 0 0.099... [Ka(B{0}) 2 0 1 04
Ka(B{1}) 162 0 1 0.5 Ka(B{1}) 162 0 1 0.5 Ka(B{1}) 0 0 0 o
Kg(A{0},B{0,1}) 216 0 2 1 Kg(A{0},B{0,1}) 211 -2 0 -1 Kg(A{0},8{0,1}) 5 2 2 2
Kg(A{0},B{2}) 216 0 2 1 Kg(A{0},B{2}) 211 £2) 0 -1 Kg(A{0},B{2}) 5 2 2 2
Kg(A{1,2},8{0,1}) 216 0 2 1 Kg(A{1,2},8{0,1}) 212 0 0 -0.19... |Ka(A{1,2},8{0,1}) 4 0 2 1.2
Kg(A{1,2},B{2}) 216 0 2 1 Kp(A{1,2},B{2}) 212 o 0 -0.19... Ka(A{1,2},B{2}) 4 0 2 12
Indigree(A) 62 0 1 0.5 Indigree(A) 160 0 0 0.099... |Indigree(A) 2 0 1 0.4
Indigree(B) 312 0 2 1.777... |indigree(B) 300 0 1 1.177... |Indigree(8) 3 0 1 0.6
Indigree(SUM) 318 0 3 2.277.. UM) 314 0 1 1.277.. M) a 0 2 1
Bias(A) 243 0 1 0.5 Bias(A) 241 0 0.5 0.3 Bias(A) 2 0 0.5 0.2
b Bias(B) 30 0 1 0.5 Bias(B) 315 05 0 -0.30... |Bias(B) 5 0.5 1 0.8
Impact(B,1,A) 162 -1 1 0 Impact(B, 1,A) 160 0 1 0.4 Impact(B, 1,A) 2 -1 0 0.4
Impact(A,1,8) 248 -1 1 4.386... [Impact(A,1,8) 245 0 1 0.6 Impact(A,1,8) 3 -1 0 0.6
Impact(B,2,8) 248 -1 1 1.370... |1mpact(B,2,8) 248 -1 1 1.370... |Impact(8,2,8) 0 0 0 0
Cost(M) 108 0 a 1.333... |cost(m) 103 -4 0 -2.66... |Cost(M) 5 a a a
Robustness(M) 108 0 1 0.1875 |Robustness(M) 103 -1 0 -0.8125 |Robustness(M) 5 1 1 1
C
d
o [1 0 [T 1 (2
e 0 : o[% 2
- - o [N o |4

Figure 3.3: Reports produced by TREMPPI for the toy network G from
Figure 2.1 and the property P¢ from Figure 3.1. For the interactive version,
please refer to Appendix B.3. Left: Reports for K. Right: Reports for
KEY with U = cost (PY) = 4Arobustness™ (PY) = 1Asign® (B, 2, B) = 0.
Middle: A comparison left - right. a) A qualitative report. The label Fg
is not fully listed. b) A quantitative report. ¢) A regulation graph. d) A
correlation graph. (e) A witness graph for the property P%.

the reports are illustrated in Figure 3.3 on the example network from Fig-
ure 2.1. Fach report provides a comparison between the set of all 324
parametrizations, i.e. a selection by ® = true and a selection where the
M¥ from Figure 3.2 has minimal cost and maximal robustness and where
the self-regulation of the component B is not present, i.e. a selection by
U = (cost® (series) = 4 A robustenss’ (series) = 1 A sign’ (B, 2, B) = 0).

32

3.4 Selection and Analysis

3.4.1 Explicit Qualitative Report

The first tool we employ is a qualitative summary, which describes an image
of a label in the selection, i.e. all the distinct label values that appear in
the selection and their frequency in percent. Have a label [: Y — Z, where
Y, Z are some sets and a selection X®. For example in the case | = sign, we
have Y = F and Z = {0,+, —, 1}. For each value y € Y we then set:

qual (K% 1,y) = (size(K®,1,y), elems(K®, 1, y)),
size(K®,1,y) = [elems(K®,1,9)],
elems(K®,1,y) = {(2,q) | ¢ = [{K € K¥ | I (y) = 2}] - 100 - [K*] 1.
A comparison of two qualitative summaries that are based on the selections

K?®,KY¥, is obtained by subtracting the two pairs, where elems(K?®,1,z) —
elems(KCY,1,) is computed as:

{(2,4" = q") | (2,4®) € elems(K®.1,y), (2,¢") € elems(K",1,y)}.

Note that it some feature z is not present in both the sets, the resulting
subtraction will have less elements than the original qualitative summaries.
Since the set of parametrizations is finite, all values have finite domain and
are thus suitable to this form of presentation. However, in the case of labels
that project to rational numbers, i.e. robustness, bias, and impact values,
the size of the image quite often threatens to be almost as big as the selection
itself, therefore we chose not to include them in the qualitative report.

3.4.2 Explicit Quantitative Report

Similarly to the previous, we summarize the overall nature of quantitative
labels, i.e. those whose image is a subset of rational numbers, using the
quadruple:

quan(K®,1,y) = (count(K®,1,y), min(K*,1,y),
maz(K®,1,y), mean(K®,1,y)),

count(/Cq’,l,y) =[{K e K® | lK(y) # 0},
mz’n(qu’,l,y) = mz’n{lK(y) | K € ICq)},
maz(K®,1,y) = maz{I¥(y) | K € K*},

mean(K®,1,y) = Z M) - K]

The difference between the quantitative reports of two selections K, IC¥
is then set simply as the subtraction of the two quadruples.

Note that the count has a somewhat special meaning, as the 0 value is of
particular interest for some of the labels. In the case of cost for example, it
denotes that the respective measurement series is not satisfiable or for sign
it states that the edge is absent.

33

3.4 Selection and Analysis

3.4.3 Inferred Regulation Graph

Based on impact and sign, we can summarize the average effect of regulations
of a sample. The impact can be easily extended from a parametrization to
a sample for each e € E as

impact’cq)(e) = Z impact’ (e) - [K*) L.
Kek?®

For the sign we take a supremum under the partial ordering 0 < — < 1
and 0 < + < 1, i.e. for any e € F we set:

sign’cq)(e) = sup{sign®(e) | K € K*}.
Lastly we depict the frequency of a regulation, which states how often a
regulation is functional, i.e. has a non-zero sign, formally:

frequency’cé(e) = [{K € K?® | sign(e) # 0}].

Visually, the impact value is mapped to a color gradient of the regulation
edge with the color red representing the value —1, yellow representing 0,
and green representing 1. The frequency is mapped to the width of an edge.
When the frequency is equal to 0, the edge is then displayed as dotted.
Lastly, the sign is reflected in the shape of the head of the edge. The + sign
is mapped to a pointed arrow shape, the — to a rectangle shape (also known
as blunt arrow), the 1 to a combination of both and the 0 to a circle.

To create a comparison, the impact and frequency values are directly
subtracted. The sign can not be clearly interpreted in the comparison and
for simplicity it is kept from the minuend. Note that the subtraction means
that the result lies behind the original boundaries of a value. The color
gradient is therefore stretched to the range [—2,2] and a negative frequency
value is depicted by a dashed edge.

3.4.4 Correlation Graph

Similarly to the regulation graph we also create a correlation graph, based
on the bias label. The label extended similarly to the impact label, i.e.:

bias<" (v) = Z bias™ (v) - [K2] L.
Kek?

Additionally, one is usually interested in whether there is a relation be-
tween activities of multiple components, e.g. if one component seems to be
taking over if another is missing. This is obtained as the correlation between
the bias of individual components in a sample, i.e. for u,v € VIEI:

cov(bias® (v) gexca, bias™ (u) gexca)

’C<I>
(std(bias® (v) gexa) - std(bias™ (u) gexa)’

correlation”™ (v,u) =

34

3.4 Selection and Analysis

The correlation value is mapped to a color gradient in the same manner as
the impact value in the regulation graph. The bias value is mapped to the
width of the border of the respective component in a manner similar to the
edge width in the case of the frequency value.

To create a comparison both values are simply subtracted.

3.4.5 Witness Graph

Lastly, we provide a tool for displaying the witnesses of the individual prop-
erties. In Section 3.2 we explain how a property is tied to a path in a TS:
its witness. Subsequently, in order to explain how a property is satisfied, we
alm to present the user with a witness in form of an ordered graph. In Sec-
tion 2.2.4 we defined the set SW of all the shortest witnesses, that serves
as the basis for this tool. However, in practice we are not interested in the
configuration of the controlling BA, but rather about how the witness passes
through a TS, therefore we display each state together with its index in a
witness. We use the term trace to describe a set of transitions belonging to
some set SWX. For a property P¥J encoded by the SP XX = TK x B,

trace’ (PIF]) =

{((5,4,5)) | 3w € SWX, 3,0 € SB :w; = (5,0) Awj1 = (s',0)}.

For a witness we allow to combine multiple properties, as the individual
automata states are removed from the traces and therefore states from mul-
tiple properties can be overlapped. For a sequence of properties ?[K] =
(Pl,..., P") we create the witness:

L
witness® (B = {((s,,5),0) € 511 x Ny x 58 x @ | o= L 5),
n
L={l](s,j,s) € SWX XK =TK x *BA(P")},
where the value o states the occurrence of the transition, i.e. how many
properties have this transition. Note that we take into account only edges

with the occurrence higher than 0. The witness can be then easily extended
to a selection of parametrizations by taking the mean, with:

witness®" (PIE]y = Z witness™ (PI1) . [K®]L,
KeK?®
where

((s,4,5'),0) + ((s,4.5),0") = ((s,4,5), 0+ 0),
((87j73/)70 - q ((37j75/)a0'Q>'

The witness report is then created by plotting the witness set as a graph
with the occurrence being mapped to a width of a transition. Unfortunately

35

3.5 TREMPPI

the transition-based representation does not allow for properties with cost
equal to 1 to have a witness displayed, more precisely the witness is an
empty graph. However since we are generally interested in paths, it is of a
little consequence.

3.5 TREMPPI

We conclude this chapter with a short description of the TREMPPI tool.
For details on its usage see Appendix B.1.

TREMPPI combines in itself all the methods presented in this and the
previous chapter. The main aim is to provide a modelling support together
with a model checker and analytical features in a single platform.

The core of TREMPPI is a multitude of optimized C'++ [Str97] programs
that separately conduct the individual steps of our workflow. We split these
into 5 classes, roughly corresponding to the organization of Chapter 3:

1. The tool for construction of the model space.

2. Labelling tools for those labels that do not relate to any dynamical
properties (static labels).

3. Labelling tools for model checking related (dynamic) labels.
4. Reporting tools. These mostly only gather data for a selection.
5. Maintenance tools.

Tools of each class have, in general, similar requirements on running time
and storage space, which we will discuss in more detail in Section 5.6.

Each of the programs can be execute via a unified binary, which outputs
to a terminal and reports the progress of the tool in percent. The data for
both input are required to be in a data folder, which is also used for the
output. The individual models, together with their labels, are stored in a
single SQlite3 [OA10] database, where each label value occupies a single
column. The data from the reports are stored in JSON [Bral4] files in
sub-folders named in correspondence to these reports.

However, we do not expect the user to execute the commands from a
terminal or access the files on the file system, or only in exceptional cases.
Instead we provide a visual interface capable of executing the individual tools
and of execution management. The main advantage of the visual interface is
that both the data input and the output can be represented in an intuitive,
comprehensible way, rather than in extensive text files. Examples of the
visual output for the reports are shown in Figure 3.3.

From the technical perspective the interface of TREMPPI is provided
as a HTML [Fla06] page that uses the JavaScript [Fla06] language for cre-
ation of dynamic features. Due to security limitation, JavaScript code is not

36

3.5 TREMPPI

allowed to access the local files [Fla06]. To overcome this limitation, TRE-
MPPI has a third component that connects the computational tools and the
visual interface: a Python [van95] server. This server is started by execution
of the TREMPPI binary and exists until TREMPPI is exited. The visual
interface is then sending asynchronous requests to the server, which in turn
either executes local sub-programs or communicates with the file systems
and the sends a response back.

While having the computational tools separately from the visual inter-
face certainly brings some technical difficulties, there are also considerable
advantages, of which we point two. First and foremost, after a project is
finished, it can be easily distributed as a plain HTML page, without the
necessity for the recipient to have TREMPPI installed. This is also uti-
lized for all the applications in this thesis. Second, in the future we plan
to make TREPPI available as a public server, as we have already proposed
in [SKSv13]. We therefore already have most of the components necessary
for the task and only a few features, like multi-user management, need to
be added.

37

3.5 TREMPPI

38

CHAPTER 4

Applications

In this section we present three case studies that have been co-developed by
the author and demonstrate different aspects of TREMPPI. Understand-
ably, each of these studies was conducted with the aim of drawing relevant
biological information. However, the focus of this thesis is on the mathe-
matical and software side of the problem, hence we limited the biology only
to the parts which are necessary for understanding each of the studies.

4.1 EGFR Signalling

The first study we present is on the EGFR signalling network, which was
done in cooperation with Kirsten Thobe and published in [STS15a]. The
main focus of this study is application of the efficient encoding of experi-
mental data, as presented in Section 3.2.

For this study we utilize a comprehensive data set provided by Klinger
et al. in [KSFGT13]. In the study, human colorectal cancer cell lines were
treated with stimuli and inhibitors in order to elucidate the underlying net-
work structure of the pathway using a semi-quantitative modelling approach.
Here, we generate and analyse comprehensive model pools for the different
cell lines and evaluate the performance of the tool. For the details on the bi-
ological part of the study, please refer to the original publication [STS15a].
All the data of this study are available as attachment to this thesis, see
Appendix B.4.

4.1.1 Model Building

Based on the model of [KSFGT13] we constructed a Boolean network, de-
picted in Fig. 4.1. We kept the original components and regulations, with
a few exceptions. As the IGF1 stimulus is the only regulator of IGFIR we
know that IGFIR copies its value and therefore we modelled the stimula-
tion directly on IGFIR, removing IGF1 completely. Additionally, p70S6K
is depicted as activator of IRS1, however based on [TJ09] we modelled it

39

4.1 EGFR Signalling

as an inhibition. The same for AKT which is known to repress IRS1 indi-
rectly through mTorC1 [TJ09]. Note that these changes are to regulations
of IRS1 only, which is an output component and therefore can not affect the
upstream feedback loops. Any resulting inconsistencies with [KSFG13]
should therefore be localised to IRS1. Since the data originates from cancer
cells, we accounted for possible disruptions in the network due to mutations
by not requiring regulations to be functional. However, stimuli and inhibi-
tions as well as components with a single regulator (MEK, AKT) were set as
always functional. In the data there are two stimuli, TGFa and IGF1, and
two effective inhibitors, MEK inhibitor AZD6244 and the PI3K inhibitor
LY294002. There are two more inhibitors in the original data set on GSK3
and IKK, which were found to be non-effective and therefore neglected here.
In our model, we set the stimuli as Ezpi&ER = {1} if TGFa is stimulated in
an experiment and E:rp%ggg = {0} otherwise, and the same for IGFIR. The
inhibitors do not remove the targets from the system, only prohibit their ef-
fect on the down-stream components. We therefore added them as extra
components LY and AZD, and modelled them analogously to stimuli. Ad-
ditionally we set the regulatory functions Kgrx <= SmeEk = 1 Asazp =0
and Kakr(s) <= spik = 1 A sy = 0 to enforce the correct inhibition
semantics. After having resolved all the edge constraints, we obtained a
model pool KEGFR with 259200 models. Note that the inhibitors and stim-
uli are fixed components, they do not contribute to the size of the state
space, which then only has 2° = 512 states instead of 2'3.

In their experiments, Klinger et al. used a high-throughput immunoblot-
ting method, called Luminex assay, which measures intensities of labelled
antibodies that bind the phosphorylated components, showing their activity
(for a detailed description see [KSFGT13]). Here, we used a reduced data set
containing experiments on 5 human colorectal cancer cell lines. Each of the
cell lines was treated with each pairwise combination of one stimuli (TGFa,
IRS1, no stimulus) and one inhibitor (AZD, LY, no inhibitor), which were
then compared to the measurements before treatment. Since the configura-
tion without stimulus and inhibitor is not expected to change, we did not
include it.

4.1.2 Data Encoding

Having the regulatory network, the next task is to encode the data for each
experiment. In our data set, there were multiple measurements available for
some of the experiments. To be able to use the data further, we have taken
the mean of all measurements for each of the experiments.

The next step is then to discretize the data. As we suggested in Sec-
tion 3.2.1, one usually uses a software which creates a threshold value that
separates the range of measured values for each component. In our data set
some of the values however almost do not change between measurements

40

4.1 EGFR Signalling

QFa —| EGFR IGD
’¢’ T,—:'f’\”
’A——”’r ~‘ :
RAF PI3K

TV 53
(\ / \\\ \:"’ ’:
AZD " A 2
X
[GSKs_][pmssK}f RS1)
cell line TGFa IGFIR AZD LY
LIM1215 1 0 1 0
LIM1215 0 1 0 1
(b) | HCT116 | 0 1 0o 1
SW403 0 1 0 1
SW480 0 1 0 1
HT29 1 0 1 0
cell line | transient partially stable stable
LIM1215 | 180000 6100 40
(C) HCT116 | 129600 59580 2
SW403 180000 111000 840
SW480 136800 74670 36
HT29 163800 101010 216

Figure 4.1: (a)

EGFR signalling Boolean network. The full green edges
are constrained as activating only, the dashed green as not inhibiting, the
full red as inhibiting only, and the dashed red as not activating. Stimuli
are on the green fields, inhibitors on the yellow ones. The measured nodes
are semi-oval. (b) Experimental set up causing logical inconsistencies after
discretization. (c) Sizes of a parametrization sets matching the data from
all the consistent experiments for each cell. Monotone property sets are not
listed as monotonicity did not cause any reduction.

41

4.1 EGFR Signalling

being e.g. at a plateau and therefore should not be assigned with different
states. To avoid this separation, we focused on a fold change, which shows
the measured activity of the treated sample relative to the measurement
before the treatment. Here, we rely on an assumption that a fold change of
two or more is significant, which is to the best of our knowledge a common
practice and in our case seems to produce a good separation.

Since the focus of this study is on evaluating the effect of regulatory influ-
ences, we assigned Boolean values to the component measurements consis-
tent with the nature of the fold changes found in the data. If we observed an
increase by a factor of at least two, we assigned the value 0 to the measure-
ment before and 1 after the treatment. Analogously, we encoded a decrease
by a factor of at least two. If the change factor is less than two, we did not
specify the value, but required the component to be stable, as explained in
Section 3.2.2. In this approach, interpretation of the qualitative dynamics
heavily focuses on the component changes indicating actively regulated be-
haviour, as is our intention. Note that it therefore differs from the often
employed interpretation of the Boolean component values as an abstraction
for ranges of quantitative values. In our approach the same quantitative
value might be assigned different Boolean counterparts depending on the
observed component behaviour in the respective experiments. In our opin-
ion, this does not pose a problem, since we are focusing on the qualitative
dynamics and thus the values 0 and 1 can be viewed as labels of quali-
tative change, rather than ranges of quantitative values. Presumably, if a
component can undergo both a significant increase and a decrease in its
concentration, such mechanics should be allowed by the network without
contradicting the effects of the regulations.

As we considered 8 treatments for 5 cell lines, we obtained altogether
40 measurement pairs. In [KSFG13] the authors argue that at the time of
the measurements the system is expected to reach a stable plateau. How-
ever, Figure S1 therein shows that the kinetics of some components have an
unstable behaviour after the time point of measurement. To investigate the
impact of the steady state assumption, we created a stable and transient
(i.e. not required to be stable) version of each time series, as explained in
Section 3.2.3. Additionally, we were interested in what effects the mono-
tonicity constraints have on the results. We therefore also considered for
each property a version where all the components that are measured and
not stable are required to be monotonous in their behaviour. By combining
the treatments, cell lines and constraints we obtained 160 properties. The
properties are listed in the supplementary files.

From the optimization perspective, we can reduce the encoding TBA
just to 1 state, as will be explained in Section 5.4.5, keeping the size of the
product at the 512 states.

42

4.1 EGFR Signalling

4.1.3 Results

Initially we found that each of the cell lines shows inconsistencies in at least
one measurement pair. In each of these, the experimental setup, listed in
Figure 4.1b, requires that a component whose activator was inhibited under-
goes itself an activation, which is logically inconsistent. For example cell line
SW403 shows with IGF1 stimulus an over 4-fold increase in concentration of
AKT under inhibition of PI3K, its only activator. This is still comparably
lower than the about 12-fold increase without the inhibition, showing that
the inhibitor is working, but the dose is not sufficient to lower the activity
of AKT to the threshold of being inactive after discretizing. Since dose-
dependent processes are not considered in this formalism, we removed the
respective experiments from the testing set. After the removal we have sets
of 7 measurement pairs for each cell line except LIM1215 where there are
only 6. We therefore further used only 34 measurement pairs, yielding 136
properties when combined with different path constraints. In Figure 4.1c,
column transient, which represents the weakest assumption concerning the
stability of the system, shows how many members of KPGFR fit all the mea-
surements for each respective time series. Note that each set remains more
than one half in size compared to the set of models consistent with the con-
straints derived from the network structure, suggesting that the topology
itself already strongly determines the dynamics.

In [KSFG*13] the modular response analysis (MRA) method was used to
identify non-functional connections in the network for the different cell lines.
Here, we aimed to compare the topologies of their resulting networks with
the topologies that occur in our model pools. To improve comparability, we
used a stability requirement for the measurements in each cell line to account
for the steady-state assumption necessary for the MRA approach. The sizes
of the parametrization sets are listed in Figure 4.1c-stable. Note that there
is a much stronger reduction than in the transient case, suggesting that the
stability requirement is indeed very strong for this network, presumably due
to the negative feedback mediated by ERK.

As our method allows for testing transient states, and the time series
measurement in Figure S1 of [KSFGT13] illustrates that AKT and ERK may
not be in steady state at the time point of measurement, we also created a
partially stable selection. Here, those components which are not stimulated
are assumed to be in steady-state. Stimulated samples are allowed to be in a
transient state, since their last treatment was shortly before sampling. In our
opinion, this scenario accounts for the most biologically realistic assumptions
and we used it as the basis for the subsequent analysis (see Figure 4.1c-
partially stable).

43

4.2 HGF Signalling

4.1.4 Performance

Aside from the biologically motivated analysis, we also used the case study
to evaluate performance of our constraint encodings. We have executed
the validation in batches for each set of 40 properties with different path
constraints. The execution time for the transient properties was 9330s, for
the monotone 9080s, for the stable 10646s, and for the stable monotone
10027s. The program did not use more than 7TMB of memory at any time.
The program was executed as a single-threaded instance on a Debian 3.2.65
workstation with a processor 15-2400S, 2.5GHz, and 4GB RAM.

To compare with existing methods, we have also tested execution with a
script [Klal5] that called the NuSMV model checker using a respective LTL
formula for only one of the 160 properties and the computation took roughly
a week, illustrating that customization was necessary for the problem to be
solvable in a reasonable time.

4.2 HGF Signalling

The second case study is aimed at providing a demonstration of the ana-
lytical methods like labels and reports. For this study we have utilized the
data provided by D’Allesandro et al. in their study of hepatocyte growth
factor (HGF) signalling [DSM*15]. The model was prepared in cooperation
with Kirsten Thobe and published in [STS15b]. All the produced data are
again available in the attachment, for details please see Appendix B.5.

4.2.1 Network and Properties

In the original article the authors constructed a core network, illustrated in
Figure 4.2, with a set of regulations that are with high certainty present.
Afterwards, a qualitative method is used to find an optimal structure that
combines the core network with a subset of possible edges. To this end the
authors obtained a rich set of experimental data, which they later discretized
to meet the needs of their qualitative framework. The discretized data
features measurements of 6 components in 6 different experimental setups.
In each of the experiments one or two of the components of the network
are inhibited and later the HGF stimuli is added. Additionally the authors
provide a control measurement where no inhibition is present.

In the study, the data are present as fold-change comparisons between
some of the experiments. For each component there are 9 time-points mea-
sured, however in the discretized form these are divided at the time of 30
minutes into an early and late response, as it is expected that around that
time feedback effects start to play a role in the behaviour of the system.
As the fold-change scheme is not suitable for encoding as a time-series, we
reinterpreted the data into a measurement scheme, where the fold change

44

4.2 HGF Signalling

S0S1:1 < Met: 1
—
: A4
' Ras:1 Rac:1 < Gab1:1
1
1 -."'"'-... l‘
: LT T
: PAK:1 . \)
1 - b =
! PI3K:1
1 ..""--...____ -
: [AR
H -7 Akt:1
i P A
:
' PDK1:1
1
1

Figure 4.2: The structure of the model that was identified as optimal
in [DSM*15]. The regulations denoted by a full line constitute the core
network, whereas those that are dashed are added from the pool of optional
regulations. Again the green edges represent activation and the red ones
inhibition.

translates to a difference between two measurements. This means that from
two fold-changes we obtain three measurements. The particular values for
the measurements were determined in the following manner:

e In the experiment a Met inhibitor was used that blocks the receptor of
the pathway and thereby downregulates all signalling processes even
under stimulation. The fold-change comparison to the control shows a
significant downregulation in all read-outs therefore we conclude that
the control state has active read-outs.

e For other setups, if there is a significant decrease [DSM*15] in the
fold change, the component is expected to be at the level 0 after the
change.

o Likewise, if there is a significant increase, the component is expected
to be at the level 1.

e If there is no significant change, no requirement is placed on the value.

45

4.2 HGF Signalling

e We require the full monotonicity in the behaviour, i.e. if a value of a
component does not change between two timepoints, we require that
it cannot change in the simulation either. If the value differs between
two measurements, we require that there is exactly one change of that
value. For details please refer to [STS15a].

Altogether we have obtained 5 properties, which are detailed in the supple-
ment B.5. Even though this interpretation of the data is quite strict, we
obtained that even the core network is capable of satisfying all the experi-
ments for each of the possible parametrizations. We have therefore focused
instead on the structure identified as optimal by the authors to see whether
the addition of some of the optional edges can disrupt the expected function
of the network. This optimal network is depicted in Figure 4.2. This is a
slightly simplified version of the original, which features two components for
RSK in an activation cascade. We joined this cascade into a single node,
which is a preserving operation in our framework [SAR13].

4.2.2 Selection and Analysis

For the purposes of the analysis we have created three selections:
1. ALL is the set of all 223776 possible parametrizations.

2. VALID is the set of 149184 parametrizations that satisfy all the mea-
surement series.

3. MINCOST is the set of 135072 parametrizations that have the min-
imal cost for all the measurement series.

As can be immediately seen, there exist parametrizations over the optional
edges that render one or more of the measurement series not satisfiable.
Data of all the reports are in an interactive form available in the Ap-
pendix B.5. Here we provide some of the possible observations about the
data. Firstly we analyse the comparison VALID—ALL. In the quantitative
report we see that Kypk(w) with wppki = {0},wrar = {1} is for the
VALID set bound to the value 1, meaning it is necessary that Rafl alone
can activate MEK. We also see that three out of the five measurement series
are satisfied by all parametrizations, whereas the remaining two are sat-
isfied exactly by those in the VALID selection, meaning that both place
the same requirement on the behaviour of the network. In the qualitative
report we can see that the function RFI\I/I(EK = Rafl&PDK1 is completely
missing, in accordance with the quantitative observation, and the functions
RFfoi = Rafl and RFf; = Rafl|PDK1 are now present with the same
frequency, suggesting that the (PDKI1,1, MEK) regulation is superfluous
and should probably be removed. In the regulation graph we then see that

46

4.3 E. Coli Biofilm Production

both the frequency and the impact of PDK1 on MEK decreases and lastly
in the correlations report we see an increase in the bias of MEK.

Secondly we analyse the comparison MINCOST — VALID. From the
quantitative report we see that there is a slight increase in bias of Rafl.
In the qualitative report we can see that 14 regulatory functions for Rafl
disappear completely, however as there are still 134 remaining, this does
not provide too much information. A much cleaner picture can be gained
from the regulation graph where we can see a decrease in the impact and the
frequency of ERK on Rafl in favour of both inhibition by Akt and activation
by PAK.

4.3 E. Coli Biofilm Production

In this section we present a study of bistability in the production of protec-
tive biofilm (composed of curli fibrae) in the bacteria E. Coli. The original
study [YSST15] was conducted in cooperation with Kaveh Pouran Yousef,
who designed Figure 4.3 and is the author of Section 4.3.1.

The purpose of the study was to examine the conditions under which
the bacteria makes a decision whether to start producing biofilm or not.
To examine the behaviour of the system deemed to be responsible for this
decision, we have first constructed a multi-valued model and analysed its in-
dividual parametrizations. The knowledge obtained from this analysis was
then forwarded to our colleagues who subsequently built a continuous and
stochastic model, which are not presented in this thesis. This application
demonstrates how TREMPPI can be used to complement other modelling
frameworks, and charts some possible options for how to transfer the knowl-
edge obtained from it.

All the data relating to the logical model are available in the attachment,
see Appendix B.6.

In the following we use lower case first letter for a name of a gene and
an upper case for its respective protein.

4.3.1 Curli Fimbriae Expression

By Kaveh Pouran Yousef [YSST15]

The second messenger molecule bis-(3’-5’)-cyclic dimeric guanosine mono-
phosphate (c-di-GMP) is the central component within the regulatory sig-
nalling network of curli fimbriae during the stationary phase of the bacterial
population growth cycle and upon induction of various stress conditions.
C-di-GMP positively contributes to the expression of CsgD, the key biofilm
regulator, activating the expression of the curli regulon (csgBAC), with CsgB
and CsgA proteins constituting the curli fiber [Hen09, WPPT06]. As shown
in Figure 4.3B, the synthesis and degradation of ¢-di-GMP within this net-

47

4.3 E. Coli Biofilm Production

A Biology B
P e e o e em En e Em e em En En Gm S e e Em e e RTEn S o En S S G o En S S G S e = e e al
I Knockout data Putative network topology !
| |
| hyperrepressed basal intermediate (bistable) hyperactivated |
| |
| .
1 i ﬁ YCiR I: PDE activity 1
| h‘Hyqu —= 1
I iyt [cdiowp }—s I
iR, yegE
i,
I y};uﬁyy;agl‘i — YciR II: YdaM/MIrA-inhibitor |
daM, yegE
U et e '
I YhjH, yegE, yciR I
I ;cl:,ydaé%ieij — active YdaM > inactiveYdaMl |
 yegE, ydal
1 yh/H,yyégE,yygaﬁ;,y iR l 1
1 2 3 4 5 6
| Specific f—galactosidase activity [mol/min/mg protein] [—— |
| 1
| |
, ,
| 1
I I
b o o o oo o o e e e o o e — o
C Logical modelling step D Continuous modelling step _

_____ —_————m [- —— -

Continuous reaction-rate model

| |
I |
I I
I I
| V. 1
I vy 2 ﬁ’ YCiR I: PDE-activity I
| C-di-GMP Vs Ve |
1 1
1 1
1 1
1 1
| 1

YciR II: YdaM/MIrA-inhibitor
Vs
active YdaM

YdaM/MIrA-
inhibitor

YdaM/MIrA-
inhibitor

-
|
|
:
|
|
|
|
|
|
|

Figure 4.3: Logical-continuous modelling pipeline for the bistability anal-
ysis of curli regulation in E. coli.
By Kaveh Pouran Yousef [YSST15]

(A) Expression of the curli gene csgB in mutants with single or multiple knockout
mutations in YegE/YhjH and YdaM/YciR ¢-di-GMP control modules. Derivatives
of E. coli K-12 W3110 carrying a single copy csgB::lacZ reporter fusion were grown
in LB at 28°C for 24 hours and [-galactosidase activities were determined. Figure
reproduced from [LKPH13]. (B) Signalling network regulating the expression of
curli fibers, as suggested in [LKPH13]. (C) Logical formulation of the network
topology. The two different functional states of YciR are modelled by two types of
interactions, only the inhibitory effects exerted by YciR are represented by edges
in the figure. Full details on the regulatory activity of YciR and the dependence of
the two functional states on the activity of ¢-di-GMP is formalised in the SI sec-
tion. (D) Continuous model incorporating kinetic reaction rates with the validated
network topology.

48

4.3 E. Coli Biofilm Production

work is maintained by two diguanylate cyclase (DGC)/phosphodiesterase
(PDE) pairs: YegE/YhjH (module I) and YdaM/YciR (module II). While
DGC-type enzymes synthesise c-di-GMP from two GTP substrates, PDE-
type enzymes are responsible for the degradation of c-di-GMP. As shown in
Figure 4.3B, besides the degradation function of c-di-GMP, YciR exhibits
a second activity: the inhibition of YdaM and MIrA. Importantly, YdaM is
the key activator of the transcription factor MlrA, which directly activates
transcription at the csgD promoter region. A sufficiently high amount of c-
di-GMP prevents YciR from inhibiting YdaM, since YciR binds c-di-GMP
and starts to degrade it, acting as a trigger enzyme [LKPH13]. In turn,
unbound (active) YdaM activates MIrA and induces the signalling cascade
leading to the expression of the curli operon csgBAC.

Previously, the activity of the csgB promoter was measured in all possi-
ble single, double, triple and quadruple knockout strains of the set of genes
yegE, yhjH, ydaM and yciR [LKPH13|. As depicted in Figure 4.3A, despite
15 different genetic backgrounds, only four main expression levels of the csgB
gene were observed. E. coli strains containing a ydaM-knockout exhibit a
completely absent expression of the curli gene csgB (hyperrepressed) or a
very low (basal) level expression, as compared to wild type (Figure 4.3A).
Furthermore, strains containing a yciR-knockout reveal an increased (hyper-
activated) expression of csgB if ydaM is present. This knockout background
is “blind” with respect to knockouts of module I genes (yegE and yhjH).
Genetic and biochemical analyses allowed Lindenberg et al. [LKPH13] to
derive a model of the regulatory network, which is depicted in Figure 4.3B.
In this model different functional states are assigned to YciR (I/II) and
YdaM (active/inactive).

In order to find evidence for the bistability of the curli signalling sys-
tem we assigned each of the four different expression levels observed in the
genetic knockout experiments at population level (Figure 4.3A) a certain
single-cell phenotype. To this end, we used the complementary single-cell
measurements of the wild type expression of the CsgB protein in Serra et
al. [SRK*13]. These single-cell data suggest that the intermediate expres-
sion level of the csgB gene at population level corresponds to a heterogeneous
mix of curli-on and curli-off cells in the bacterial population. This indicates
that the basal and the hyperrepressed level of csgB reflects a mixture of
cellular phenotypes where the fraction of curli-on cells is significantly lower
as compared to the wild type, or it becomes undetectable. In contrast,
the hyperactivated phenotype may be due to two different types of single-
cell expression levels. Either all cells in the population are in the curli-on
mode, or there is a subset of cells in the curli-off mode but their frequency
is significantly lower than the frequency of curli-off cells in the wild type
population.

49

4.3 E. Coli Biofilm Production

4.3.2 Derivation of the Logical Model

For deriving the model we applied a time-scale separation. Thus we as-
sumed that the total levels of involved proteins do not significantly change
in contrast to their activity states. We based our assumption on results
indicating that protein transcription and translation are significantly slower
than post-translational interaction dynamics [Alo06].

Having described the components by means of logical states, logical rules
were added to characterise the principles of mutual regulation by the com-
ponents. In particular, all activating or inhibitory effects indicated by ex-
perimental data were incorporated, resulting in the logical model depicted
in Figure 4.3C. Most of the components were interpreted as Boolean. An
exception was made for the protein YciR, which was assigned a knockout
state (O-state) and two different observable activities that are mutually ex-
clusive (PDE activity and YdaM /MIrA-inhibition activity) [LKPH13]. Note
that YdaM has also two different activity levels. However, since one of them
does not have any observable effect, we identified it with the O-state.

In the model we require all the regulations to be observable. In the
case of YciR we distinguished between alternative regulations depending
on their corresponding effect. A regulation is observable only when YciR
occurs in the respective state, including the positive and negative effects
(Figure 4.3C). Most of the included regulations correspond to the experi-
mentally derived network topology in Figure 4.3B, with a few exceptions.
The first difference is given by the negative feedback induced by the al-
losteric product inhibition of ¢-di-GMP on the catalytic activity of YegE.
When molecular numbers are considered, product inhibition gives rise to an
upper limit on the synthesis rate and thus contributes to setting up a home-
ostatic steady-state level of c-di-GMP [CCP106]. However the semantics
of this negative feedback loop do not transfer to the discrete logical model
i.e. it is not possible for ¢-di-GMP to completely inhibit YegE. Since in
the logical model, only one discrete value is used as an abstraction for the
concentrations of ¢-di-GMP that are considered as the 1-state, this negative
feedback inhibition has no observable logical effect. Therefore we eliminated
the corresponding edge from the logical interaction graph (see Figure 4.3C).

Furthermore, the DGC/PDE-pair YhjH and YegE constitute the inputs
of the network, which means that they maintain the values that they were
initially set to. Finally, we used the system property that the expression
of csgB is induced if its transcription factor CsgD is expressed. This is the
case if MIrA is at the level 1, since it is in turn the functional activator of
csgD transcription (Figure 4.3B). Therefore, in order to reduce the model,
we removed csgD and used the Boolean component MIrA as the output com-
ponent of the network. Thus, the 1-state of MIrA represents the induction
of curli expression in the logical model.

At this point we incorporated a sufficient amount of information into

50

4.3 E. Coli Biofilm Production

the model for deriving all regulatory functions except the functions of c-
di-GMP and MIrA. These two components are influenced by multiple reg-
ulators, giving rise to a set of alternative logical functions describing their
effect on ¢-di-GMP or MIrA, full list of which is in the respective qualitative
report. After resolving the constraints derived from the interaction effects,
we identified 114 possible regulatory functions for c¢-di-GMP and 2 for MIrA.
Finally, by generating all possible combinations of the functions of the two
components, we obtained 228 alternative models for the whole network.

4.3.3 Formalisation of the Experimental Data

After specifying all 228 possible alternative logical models, we assessed for
each model whether it fulfils all constraints given by the observations of
the 15 genetic knockout experiments (depicted in Figure 4.3A, the 16*" is
without any knockout). We modelled a genetic knockout by forcing the
respective component to remain in the O-state for the whole course of the
simulation. Our main focus was on stabilising behaviour, thus we assessed
the reachability of stable states with a particular model configuration. A
system state is considered as stable if it is not possible to leave it during
simulation. As shown in Figure 4.3A, there are four distinctive phenotypes,
each of which we addressed individually:

e The intermediate (bistable) phenotype was related to the ability to
reach a stable state with MIrA = 1 and a stable state with MIrA = 0
in the logical modelling framework.

e In the hyperrepressed phenotype no curli is being expressed, therefore
we required that the stable state with MIrA = 0 is reachable, while
the MIrA = 1 state is not.

e The hyperactivated phenotype exhibits strong expression of curli and
therefore we stated that the stable state with MIrA = 1 must be
reachable. However, unlike the hyperrepressed phenotype, we did not
prohibit the inactive stable state, since we could not rule out that this
phenotype is generated by a mix cell that do produce the curli fimbrae
and those that do not.

e Lastly, the basal phenotype exhibits only little, but still measurable
expression of curli. However, very weak expression of curli was also
observed in the hyperrepressed phenotype (see Figure 4.3A). It would
therefore be possible to identify the basal with the hyperrepressed
phenotype, but this constraint could be spurious. We have therefore
decided not to include the basal phenotype in the main analysis.

Since the measurements were conducted in the early stationary phase of the
growth cycle (see Figure 4.3A), we expected that YegE = 1 and YhjH = 1

o1

4.3 E. Coli Biofilm Production

C) C)

c-di-GMP | YciR | YdaM | MlIrA ¢-di-GMP | YciR | YdaM | MirA
0 1 0 | oo 1 2 | 1 |
SCC
c-di-GMP | YciR | YdaM | MlIrA ¢-di-GMP | YciR | YdaM | MirA
0 \ 1 \ 0 \ 1 1 \ 2 \ 1 \ 0

Figure 4.4: A reduced graph of behaviour of the 10 parametrizations that
satisfy the relazed set of properties. Each of these has a strongly connected
component (SCC) allowing to oscillate indefinitelly. However once it leaves
the SCC, it stabilizes on one of the two stable states, either with all the core
compoenents active, or with all the core components inactive.

unless they are knocked out. Using the stability constraints resulting from
experimental data (the knockout data), we formulated 15 properties, which
are listed in the relazed selection, as referred in Appendix B.6.

In addition, the observations from the knock-out experiments can also
be interpreted in a less conservative sense i.e. interpreting the data such
that no curli is expressed in both the basal- and hyperrepressed phenotype
(the stable state MIrA = 0 is reachable, while the MIrA = 1 state is not)
and that the hyperactivated phenotype corresponds to the scenario where
all cells express curli (the stable state MIrA = 1 is reachable, but not the
MIrA = 0 state). Such interpretation yields 17 additional properties, making
it 32 in total. We call the selection that matches all the 32 properties strict.

4.3.4 Results of the MC Procedure

As a first analysis step, we tested the consistency of the candidate models
with the 15 relazed constraints. As a result, we found that 10 out of 228 pos-
sible models were in agreement with all constraints. These are represented
by the relazed selection in the attached data (Appendix B.6). Looking into
the 10 models we see that for MIrA there are two possible regulatory func-
tions, and 5 possible functions for c-di-GMP. The 10 valid models are then
obtained as all combinations of these.

Since our focus is on stabilizing behaviour, we distinguish parametriza-
tions according to the stable states that they generate. If the network is
to stabilize in a state where YciR exhibits its inhibiting effect on YdaM
then YdaM needs to be 0, since there are no other regulators influencing

52

4.3 E. Coli Biofilm Production

its activity. For the same reason, YciR switching to PDE activity must
result in a change of activity level for YdaM, namely YdaM must become
active. Consequently, in a stable state we either observe that YciR acts
as an inhibitor and ¢-di-GMP = 0, or YciR exhibits its PDE activity and
YdaM = 1. Since MIrA is only regulated by YdaM and YciR, we know that
in the first scenario MIrA needs to be 0, since its inhibitor is active and its
activator is inactive, and in the second, opposing scenario MIrA = 1. That
is, in a stable state the values of YdaM and MIrA always coincide and we
can use YdaM as a marker for the curli production.

In Figure 4.4 we illustrate the dynamical behaviour that is shared by
all 10 models. As ensured by the constraints, all models support bistability
given that both inputs (YegE and YhjH) are active. This means that the
model behaviour is non-deterministic and can asymptotically end in either
one of the two stable states distinguished by the presence of MIrA. Inter-
estingly, for all models these stable states do not only coincide in that they
represent expression or no expression of curli, but also in the activity of all
other model components. That is, we can completely characterise the two
possible equilibrium states when the input components are activating, i.e.
at the level 1. Furthermore, an inspection of the regulatory functions of the
10 remaining models indicates that there are five possible regulation mech-
anisms for ¢-di-GMP, which exhibit noteworthy commonalities. The most
prominent pattern is that c-di-GMP is in most cases adopting the value of
YdaM, whereas the value of YciR is almost uncorrelated with the update
of ¢-di-GMP. This observation allowed us to identify YdaM as the most
influential regulator of c-di-GMP.

In the strict scenario, there is exactly one parameterization that satisfies
all the 32 properties. Thus, irrespective of the elaborated interpretation
of the experimental observations, there exists at least one logical model
that is consistent with all the properties. Furthermore, note that only one
function for MIrA is possible if we consider the constraint set relating to
the strict interpretation of the knock-out experiments. This is due to the
interpretation of the basal phenotype as a biological state with no curli
production, which is also the case when YdaM and YciR are both knocked
out. In particular, this means that the absence of an inhibitory effect of
YciR is not sufficient to initiate curli production and therefore eliminates
one of the two previously valid MIrA regulatory functions. Since the logical
framework is too coarse-grained to distinguish between differences in data
that are of rather quantitative nature (as might be the case when considering
the basal and the hyperrepressed phenotype), the underlying assumptions
and consequently the result of this analysis have to be carefully evaluated
in the biological context.

53

4.3 E. Coli Biofilm Production

4.3.5 Translating Parameter Constraints

Above we have stated that YdaM is the most prominent regulator of c-di-
GMP. We show this statement formally and translate it into a constraint on
the sampling space of an continuous model in the form of ordinary differen-
tial equations (ODE). The aim of this section is to serve as a demonstration
of how the logical modelling can be coupled with other frameworks.

Let us recall the assumption that the pool of c-di-GMP is shared between
YegE, YciR, YdaM, and YhjH. We assume that there are no competitive
reactions between the above listed four proteins on any single molecule of
¢-di-GMP, meaning that c-di-GMP is active in the system if and only if
the production/degradation ratio stabilizes in a state with a sufficiently
high concentration of c-di-GMP. From the final parametrization set, we can
see that the conditions for c-di-GMP = 1 are either that the activating
effect exhibited by YdaM is already sufficient on its own , or only one other
activating influence (YegE = 1, YhjH = 0 or YciR being at its MIrA /YdaM
inhibitor activity) is needed. Conversely, if the activating influence of YdaM
is absent, this cannot be compensated or only if one activating influence is
combined with the absence of at least one inhibiting influence on c-di-GMP.

Under the standing assumption that the regulators of c-di-GMP do not
regulate each other, we can qualitatively compare the pairwise effects of
competitive regulators of c-di-GMP. Two observations appear:

1. YdaM is stronger than YciR: in all parametrizations we observe that
when YdaM = 1, YciR is at its PDE activity, YhjH = 0, and YegE = 0,
then c-di-GMP = 1.

2. YhjH is stronger than YegE: in all parametrizations we observe that
when only YhjH = 1 and YegE = 1, and the remaining regulators of
c-di-GMP are 0, then c-di-GMP = 0.

Such observations can now be exploited to derive constraints for the param-
eter sampling for the ODE model.

In the following, we will only focus on the observation 1). As a first
step we translate the logical scenario for our observation concerning c-di-
GMP regulation into the continuous setting. In the ODE model the pool of
¢-di-GMP is described by the equation:

d - Vinax1 Vinax 271
— = — -
dt 142 /KF 2+ Kyt
, ky ciRact®1 k xh
— (YCZRtOt - xQ)ZE i};(éCYCiR yfj/adl\c/LIMac; 3 n’
! m (deolymer) + 3:3

where zo is the amount of YciR, x3 is the amount of YdaM and the
remaining values are either parameters or constants. For the whole model
with details on the parameters and constants please refer to [YSST15].

54

4.3 E. Coli Biofilm Production

Since in the observation 1) it is said that YegE = 0 and YhjH = 0, we
can drop the first two terms in the ODE describing ¢-di-GMP behaviour,
meaning that the above equation simplifies to:

d . kyciRact®1 kydaMact Ty
—x1 = —(YciRtot — x2) . .
dt x1 + KYAR (Kggj;/r[ner)” + 2%

Much of the difficulty in relating a logical to an ODE model comes
from the necessity to put real-valued and discretized values into relation,
implying that we need to decide which ranges of real values correspond to
the logical states of YdaM = 1 and ¢-di-GMP = 1 and YciR being in its
PDE configuration. A variety of discretization methods are available, but
the results often need to be carefully evaluated w.r.t. the application, see
e.g. [DLML10]. However, for our purposes we do not need to know the
exact discretization thresholds, we just need to make sure that we evaluate
the ODE at values for x1,z2 and x3 that represent the logical values of
c-di-GMP = 1, YciR being in its PDE configuration (interpreted as YciR not
acting as YdaM inhibitor) and YdaM = 1. We achieve this by considering
the limits 1 — 0o, z9 — 0, and x3 — oo, which ensures that we crossed the
respective discretization thresholds regardless of their actual value. Note
that these limits can be interpreted as YciR being fully committed to PDE
activity and YdaM and c-di-GMP fully saturating the corresponding rate

functions. This results in the terms x1 /(x + KY9R) and xé‘/((KﬁSﬁM)"+
olymer

x%) tending to the limit value 1. We obtain:

lim M — kv
z1—00 11 + KgciR YciRact s

lim (YciRtot — x2) = YciRtot,

1‘24)0

li deaMact-rg k
1m ydaM - YdaMact»

dpolymer

which we apply to our simplified ODE, obtaining the limit form:

£$1 = —YciRtot - kyciRact + FydaMact-

The target parameter for c-di-GMP in the corresponding logical states
indicates that c-di-GMP remains active in this scenario. We now make the
assumption that we can translate this into a constraint saying that the value
of z1 should not decrease (represented by %xl > 0) whenever the system is
in a biological state corresponding to the state of our logical scenario. In par-
ticular, this holds for our limit considerations. In general, this assumption
will not always be true, since it is feasible that for large values inhibiting
effects come into play that are again counteracted when approaching the
discretization threshold. However, the logical model is set up in such a way

95

4.3 E. Coli Biofilm Production

that all qualitative regulation effects that could lead to such a behaviour
are captured and represented by the different activity levels, so that we ex-
clude the possibility of the observations not holding asymptotically. This
is also in agreement with the biological interpretation of those limits men-
tioned above. Inserting the condition for %331 into the ODE then yields the
inequality

0 < —YciRtot - kyciRact + FvdaMact,

giving us the constraint:
YciRtot - kYCiRact < deaMact'

To further ensure that our assumptions are proper, we relax this con-
straint based on the following observation. Y ciRtot represents the total
number of YciR molecules in the system. We know that YciR is present,
therefore YciRtot > 1 and from there:

kyciRact < YciRtot - kyciRact < FydaMact-

Since the value for YciRtot is expected to be much larger than 1, we can
utilize the much weaker constraint:

chiRact < deaMact

with high confidence.

In the original study, this assumption is then translated into a constraint
for the sampling of the parameters for the ODE equations, which however
no longer relates to the topic of this thesis. From the logical perspective, we
have contributed to this study in three main points:

e Confirming that the network satisfies the experimental data (model
validation).

e Identification of the optimal logical parameters for the network.

e Derivation of regulatory semantics from the resulting model pool for
the purposes of quantitative modelling.

The network in this study is quite small, so the performance improvements
from adding sample constraints to the ODE model are not so significant. In
general we however believe that the fast, abstract logical modelling can be
very well coupled with the more precise but slower quantitative methods, as
illustrated also for example in the article pair [AJOK09, OAJK10].

56

CHAPTER D

Algorithms and Proofs

In this section we provide detailed description of the algorithms and mathe-
matical constructs that constitute the methodology of this contribution and
that are utilized in TREMPPI. The contents of this chapter foster a deeper
understanding of the methods presented in Chapter 3, however it is not nec-
essary for their comprehension. The two chapters are ordered in the same
fashion.

All the computationl methods are evaluated in terms of their compu-
tational complexity. As TREMPPI in general produces large quantities of
data, we discuss not only the usual TIME and SPACE complexity [Sip96],
but also take into account the size of the ouput. In computer terms, we
discern the requirements for secondary and tertiary storage [PH13]. For an
algorithm Algo we denote:

e TIME(Algo(n)) the usual time complexity of Algo on the input n,
e SPACE(Algo(n)) the computational memory complexity of Algo,
e [Algo(n)] the amount of space taken by the output of Algo.

All the algorithms have their names in italics with the first letter being
upper-case.

For each of the statements we provide the relevant proofs. However,
only the purely mathematical statements are proven in a rigorous way. For
the computational methods, which have been implemented and tested in
practice, we provide only a structure or a summary for how a rigorous proof
would be done.

5.1 Constructing a Parametrization Space

In this section we describe the methods that are involved in the initial step of
the framework—enumeration of the feasible parametrizations. To describe
the complexity of the algorithms for constructing the parametrization space

o7

5.1 Constructing a Parametrization Space

we first need to establish bounds on its size in general. To this end we

establish several variables denoting the boundaries of size for a graph G as:

o size(p®) = max{p®(v) | v € VE}4+1—the maximal number of activity
levels of any component.

o s5ize(QC) = (size(pG))ﬂVGﬂ—the maximal number of regulatory con-
texts of any component and therefore also for any partial parametri-
zation. Note that this term stems form the fact that there are at most
size(p) regulatory intervals for each of the up to [V] regulators. This
is also the maximal size of a partial parametrization.

o size(K) = size(QE]) . [VIKI]—the maximal size of a single parame-
trization.

o size(KY) = size(p®)*#(K) —the maximal size of the parametrization
space in the number of different parametrizations.

We then use the enumeration algorithm Enumerate(G) € K&. If no
constraints are used, the time complexity is equal to the time it takes to
write out all the parametrizations, i.e.:

TIME(Enumerate(G)) = [Enumerate(G)] € O(size(KY) - size(K))

as we simply enumerate and write all the possible values. For evaluation of a
single parametrization we need only SPACE(Enumerate(G)) € O(size(K)).

5.1.1 Computing Regulation Constraints

To evaluate the regulation constraints over a parametrization, we must com-
pare for each regulation the parameters for the regulatory context that dif-
fer in the presence of the said regulation. To improve performance, we
do not evaluate the full parametrizations, but only the partial ones. We
then construct the full parametrization space as the product of those par-
tial parametrizations that satisfy the regulation constraints for each of the
components.

For a single partial parametrization the evaluation of one regulation con-
straint requires size(Q2¢) time (compare all the values). There are only two
such constraints for every regulation, which is a constant factor, and there
are at most [V (all other components) times size(p®) (all possible thresh-
olds) regulations for a single component. In summary, evaluation of a single
partial parametrization is bounded by O(size(p®) - [V9] - size(QY)).

The size of a partial parametrization space (the maximal number of
possible partial parametrizations) is equal to size(pG)Size(QG) for each of the
[VE] components. We now show that the time complexity of evaluating all
the constraints belongs to the same class as the unconstrained enumeration,
which was bound by size(K). This subsequently means that adding the
constraints does not add on complexity of the procedure.

58

5.1 Constructing a Parametrization Space

Lemma 5.1.1. It holds that for any network G s.t. [VE] > 4 we have that
size(K%) > (size(pG)Size(QG) VD - (size(p®) - [VE] - size(QY)).

Proof. We do so by giving the target inequality and replacing each side by
equal or stronger inequality until we reach a set of terms whose validity
is apparent. We start by expanding the left side and then considering the
logarithm of both:

Size(pG)size(QG)~[[VG]] > size<pG)size(QG)+l . [[VG]]Q . size(QG)
log size(p®) - size(QC) - [VE] > log size(p®) - (size(QF) + 1)
+2-1log[VY]
+ log size(Q%)

This inequality can be split into three sub-inequality s.t. if each of them
holds, then the inequality also holds:

log size(p®) - size(QF) - [VE] > log size(p®) - (size(QF) +1)

log size(p?) - size(QY) - [VE] > 2 - log [VY]

[R W~k W

3 -log size(p?) - size(QY) - [VY] > log size(QY)

We now simplify each sub-inequality. Note that each size term is a non-
zero integer, and that size(p®) > 2 which implies that log size(p®) > 1 and
size(pG)[[VGﬂ > 2Vl We start with the first sub-inequality:

1
3 log size(p?) - size(QY) - [VY] > log size(p®) - (size(QF) + 1)

% - 5i2e(Q) - [VO] > (size(QF) + 1)
size(QC) - [VY] > 3 - size(Q9) + 3
size(QF) - (VO] — 1) + 2V > size(Q%) -3+ 3

which apparently holds for [VE] > 4, as given in the assumptions. Also for
the second sub-inequality we get that:

% log size(p?) - size(QY) - [VE] > 2 - log [VY]
log size(p®) - size(QF) - [VE] > 6 - log [VE]
log size(p™) - 2lvel. [VE] > 6-log [VE]

which is again apparent, since for [V“] > 4 it holds that 2l > 6 and that
[VE] > log [VE]. The last inequality:

1
3 log size(p?) - size(QY) - [VY] > log size(QF)
is quite clear directly. O

59

5.2 Conservative Graph Manipulations

As each partial parametrization is evaluated individually, no additional
space is necessary. The size of the result is understandably at most as big
as the unconstrained space.

However, rather than evaluating the individual constraints, we are using
a constraint solver Gecode [STL10], which usually provides for much better
practical performance.

5.1.2 Computing Direct Constraints

Using direct constraints means all-round performance improvement by re-

ducing the size of the space of partial parametrizations. Let k be the number

of parameters that are set to a fixed value by some direct constraints, then:
size(KY) = size(p®)s#eFK)=F

meaning that both the computation time and the output size are reduced

by some exponential factor.

5.1.3 Computing Normalization Constraints

Like the regulations constraints, the normalization constraints can be eval-
uated on the space of the partial parametrizations. As we show in The-
orem 5.3.9, evaluation of the normalization constraints on a single partial
parametrization is bounded by O(size(Q%)), which is strictly smaller than
the complexity of the regulation constraint, therefore the overall complexity
again remains unchanged.

The recipe for normalization is given in Algorithm 1, and the following
two sections iteratively build the mathematical theory necessary for deriving
the algorithm.

5.2 Conservative Graph Manipulations

This section will provide an introduction into the mathematical nature of
dynamical behaviour and its conservation in the multi-valued networks.

5.2.1 Canonical Parametrizations

First, we focus on the notion of dynamical equivalence, i.e. the case where
different parametrizations of a single graph generate the same TS. From
(2.3) it is clear that two functions FX # F&' will lead to distinct TSs, while
coinciding functions FX, FE' lead to the same dynamics. We therefore focus
on describing the situations where for K # K’ we still have FX = FK’
Consider the simple example in Figure 5.1. We see that having the
parameter value K ([0,1),[1,2)) = 1 instead K,([0,1),[1,2)) = 2 still yields
FE'(0,1) = FX(0,1) = 1 and therefore the TS remains the same. This

60

5.2 Conservative Graph Manipulations

1 1

OO OO

V ={u,v} V ={u,v} 1
B ={(wLu)(wlw} E={(01u), (1 u)} 050

p(u) =2,p(v) =1 p(u) =2,p(v) =1 V = {u,v}

(W, wy) € Q| Kl (w) (Wa, wy) € Qy | Ky(w) E' ={(v,1,u)}
([0,1),[0,1)) 0 ([0,1),[0,1)) 0 plu) =2, p(v) =1
(11,3),10,1)) 0 ([1,3),10,1)) 0 (wu, wo) €, | K (w)
([0,1),[1,2)) 1 ([0,1),[1,2)) 2 ([0,3),[0,1)) 0
([1,3), 11,)) 2 2] (L3), [,)) 2 |24 (0.3),[1,2) 2
(wys wo) € K (w) (wu, wo) € Ky(w) (wu, wy) € 2, | K (w)
(0,3), 0,)) 0 ([0,3), [0, 2)) 0 (9,3),10,2)) 0

(a) (b) (c)

Figure 5.1: An example of an uncertain reduction. The network (b) is in a
non-canonical form. The canonization (a) however makes the edge (u, 1, u)
observable, even though it is superfluous as illustrated by (c).

illustrates that, other than in the Boolean case, information on parameter
values may get lost when deriving the update function. In Figure 5.1b we
have a case where the parameter value lies two steps outside its context and
by incremental change we leave the context even before the value can be
attained.

We now define the notion of a canonical parametrization that prohibits
such effects. Observe that a value change in v can cause the change of
context only if v regulates itself. Therefore we say that K € K¢ is canonical
if and only if

Yo e VVw e Q8 w, = [, k) : (Ky(w) > 5 —1) A (Ky(w) <k). (5.1)

We also denote C& C K& the subset of canonical parametrizations in KC.

We can obtain a clear correspondence between K and FX if all the
contexts contain just a single state, so that no ambiguities are introduced in
(2.2). This partition is achieved when only considering complete graphs. For
clarity we add that (V, E, p) € G is complete if and only if for all u,v € V
and every n € [1, p(u)] the edge (u,n,v) is in E. This gives us the following
theorem:

Theorem 5.2.1. For each G = (V,E,p) € G and S = [, /[0, p(v)] it
holds that if G is complete then (2.3) defines a bijection between C& and
TE.

Proof. Let T = (SIK1, 5T for some complete G = (V, E,p) € G such
that K € C%. The one-to-one correspondence between FX and (S5, —7)

61

5.2 Conservative Graph Manipulations

immediately follows from (2.3). We therefore need to show that there is also
such a correspondence between K and FX.

First, it is important to note that if the graph is complete, each regu-
latory context depicts only a single configuration. This is because if G is
complete then by (2.1) we have:

Vo eV :Qf = [[{0,1),[1,2),..., [p(w), p(u) + 1)}.
ueV

Since each context is a singleton, each component has its value fixed. In
that case, canonicity requires that the parameter in the context differs from
the value only by 1. Therefore we have only three options for the parameter
value. More precisely, by substituting (5.1) we have

VoeV,¥se S s, —1 < K,({s}) <s,+ 1
Then in such a case, (2.2) can be written as

sy +1 if s, +1=K,({s}),
FE(s)={s, if sy = Ky({s}),
sy — 1 if s, =1 = Ky({s}),

from which we immediately get F(s) = K,({s}). Thus (2.3) corresponds
to:

Vo e V,Vs € S (K,({s}) = n) A (Ko({s}) # su) < s — Spen.
L]

Based on this theorem, we can consider a complete graph with canoni-
cal parametrization as a representative of a class of models with the same
behaviour. Now we show that it is possible to convert any graph with some
parametrization into a complete graph with canonical parametrization, while
keeping the dynamics unchanged.

First, we focus on the canonization function Can : K& — C%. For each
component v € V and for each regulatory context w € Qg with w, = [j,k)
we construct C' as follows:

-1 i Kyw) <j—1,
Co(w) =<k if Ky(w) >k,

K,(w) otherwise.

The goal is to avoid that the parameter value cannot be reached in one
transition from any state in the context. The procedure is illustrated in the
conversion from the parametrization K in Figure 5.1b to the parametriza-
tion K’ in Figure 5.1a. We now prove that this procedure indeed yields a
canonical parametrization for any RN that shares the TS with the original
one.

62

5.2 Conservative Graph Manipulations

Lemma 5.2.2. Canonization is correct. For all G € G and all K € K€ it
holds that Can(K) = C' is canonical.

Proof. There are two options for K not to be canonical. The first option is
that
FveV,qwe 0 w, =, k) : Ky(w) <j—1

but then Cy,(w) =35 — 1, so C' is canonical. The second case
e V,3we S w, =[jk): K,(w) >k

can be treated analogously.
O

Lemma 5.2.3. Canonization is conservative. For allG € G and all K € K&
it holds that if Can(K) = C then T = T,

Proof. Recall that the TSs TX and TC are fully defined by FX and F¢,
respectively. We therefore need to show that FX = FC.

For all v € V and for all w € QF the value C,(w) is set based on one of
the three following cases.

First consider the case that K,(w) < w,. Denote w, = [j,k). For all
s € w it holds that s, > j — 1 and then Cy,(w) = j — 1. This means that for
all s € w both K,(w) and C,(w) are smaller than s, and therefore for each
s € w we have [(s) =5, — 1= F(s).

The case that K,(w,) > w, can be treated analogously.

The third case is that we have K,(w,) = Cy(w,) and thus by definition
FE(s) = FY(s) for any s € w, .

O

Corollary 5.2.4. For any K holds: If j = K,(w) < wy (resp. j = Ky(w) >
wy) then replacing j with j', 0 < j' < w, (resp. wy, < j' < p(v)) is conserva-
tive.

5.2.2 Completion

To compare two networks, we want them to be isomorphic, which we achieve
by making both into complete graphs. To this end we extend the structure
of a graph using the completion function Comp : K¢ — K¢ If [K] is
complete, then we map K to itself. For an incomplete [K] = (V, E,p) we
consider the non-empty set of missing edges E = {(u,m,v) | u,v € V,n €
[1, p(u)], (u,n,v) ¢ E}. Assume that the set of all possible edges has some
ordering. We extend a K to K such that G = [K] = (V, E U {min(E)}, p).
As an example you can see that the RNs in Figure 5.2a, 5.2¢ differ from
each other only by the presence of a non-observable edge. Likewise for the
GRs in Figure 5.1b, 5.1c.

63

5.2 Conservative Graph Manipulations

To obtain the new parametrization K we first observe that [K | gives
rise to new contexts that were obtained by partitioning some context of the
component regulated by {min(E)} into two. To preserve the dynamical
behaviour we simply assign the parameter value ofAthe original context to

both resulting new contexts. Have (u,n,v) = min(FE). For each v' € V and
for each & € QF we then create K as:

: Ko@) i/ £ 0V (@ = [k AG £ VE£ny)),
Ky (@yefn_n,)) otherwise.

We now prove that for an incomplete RN we can use the completion proce-
dure to add a new edge while retaining the dynamics.

Lemma 5.2.5. Completion is sound. For all G € G and Aall K e K& it
holds that if Comp(K) = K then there is G € G s.t. K € KC.

Proof. We have u,v € V and n € p(u), therefore by definition of G we have
that if (V, E, p) € G then (V,E U {(u,n,v)},p) € G.

The variables n_,ny exist since 0 is always a possible choice for n_ and
p(u) + 1 for ny. For any m € 6(u,v) we know that (0 < m < p(u) + 1).

From (2.1) we know that the only change occurs in the interval I'*. We
therefore only need to show that K, is extended to the affected contexts.
Since n_,n, exist, we have that w, € {i1,...,[n—,n4),..., i} for any w €
QF. Thus for any & € QF we also have Wuefn_ny) € Q. Therefore K, is

defined on the whole Qf for each v € V.
O

Lemma 5.2.6. Completion is conservative. For eaci} G € G and for each
K € K€ it holds that if Comp(K) = K then TK =TK.

Proof. We have that K differs from K only in a context w € QvG with
w = [j, k) where either j =n_ or k =n.

Assume there is some s € @ for which FX(s) # F,UK(S) But we know
that [j,k) C [n—,ny) and therefore s € Wy [_p,). This would however
imply that also Ky (@) # Ku(@yefn_n,)), Which contradicts the definition

of K. We therefore have that FK(s) = FX(s).
O

Since the completion procedure adds only one edge at a time, we need
to repeat the procedure. This is captured in the following Lemma.

Lemma 5.2.7. For G € G, K € K, there is n € Ny s.t. Comp™(K) =
Comp" T (K) and [Comp™(K)] is complete.

64

5.3 Network Minimization

Proof. The set E of missing edges in G is finite as V is finite. For each v € V
also [1, p(v)] is finite. In each iterative application of Comp the size of E is
decremented by one. The recursive sequence becomes constant when E is
empty, indicating a fixpoint Comp™(K) of Comp. By definition, Comp™(K)
is complete.

O

5.2.3 Equivalence of Complete Networks
Combining all the statements above, we arrive at our final theorem:

Theorem 5.2.8. Let G,G' € G, K € K¢, K’ € K¢ and denote Comp* the
fizpoint of Comp. Then T® = TK" iff Can(Comp*(K)) = Can(Comp*(K")).

Proof. We now know that Can(Comp*(K)) and Can(Comp*(K')) are canon-
ical and complete. The equivalence follows from the bijection in Theo-
rem 5.2.1.

O

5.3 Network Minimization

Canonization and completion provide mathematical insights into the prob-
lem of dynamical equivalence. However in application it is more useful to
have a minimal, rather than maximal structure. Also, while the canoniza-
tion provides a good intuition about what the actual behaviour for each
context is, it can have side-effects like converting a non-observable edge to
observable, as is illustrated in Figure 5.1. We therefore introduce another
form of parametrization, named normalized parametrization, which prevents
such effects but is more involved. Using a normalization procedure we then
obtain a parametrization which is amenable to minimization. This section
is divided into five consecutive steps:

1. We introduce a notion of observability in the TS which allows us to
see whether an edge is observable based on the transitions in the TS.

2. We introduce a notion of a monotone target value (MTV) of a com-
ponent. This value keeps the observability properties of TS, but is
shared for a whole context.

3. We show how to compute the MTV from a parametrization and con-
sequently how to compute a normalized parametrization.

4. We show that every edge that is not observable in the TS is not ob-
servable in the respective normalized parametrization.

5. We introduce the minimization function for RNs based on normalized
parametrization and explain how to test equivalence via minimization.

65

5.3 Network Minimization

2
050
V ={v,u} 2

E ={(u,1,v), 1
(v,2,v), (v,1,u)}

plu) =1,p(v) =2

V' ={v,u}
(o, wo) € Ly | Kufw) E = {(1,2,v), (v, 1,u)}
([O’ 2)a [07 1)) 0 p(u) = 1,p(1)) =2
(10,2),[1,3)) 1 (0’0) | (170) (Wu, wy) € Q; K{L(w)
(Wuvwv) € Q, Kv(w) 1 1 ([07 2)7 [07 1)) 0
(0,1),[0,2)) | 2 |= (Oil)) (1£1) ~| ([0,2),[1,3)) 1
([07 1)7 [27 3)) 1 (0,2) N (172) (wu’wv) € Q{u K’{J(w)
(11,2),[0,2)) 2 (10,2),[0,2)) 2
(11,2),[2,3)) 1 (10,2),[2,3)) 1
(a) (b) (c)

Figure 5.2: Reductions on the running example network. (a) The net-
work from Figure 2.1 and a reducible parametrization K € K% (c)
The reduced toy network G’ with the parametrization K’. Note that for
any = € [0,p(u)] and y € [0,p(v)] it holds that FK(z,y) = FK'(z,y)
and FX(z,y) = FX'(x,y). Therefore we have (b) the transition system
TK =TK.

5.3.1 Observability in Transition Systems

We have already defined the notion of observability in the parametrization.
However we are mostly interested in the observability since it has implica-
tions on the dynamics. We now show how it can be evaluated in the TS.
Intuitively, for an edge to be not observable there must be only a single
value towards which the component evolves, no matter whether the regulator
is above the thresholds of the said edge or below it. Formally for the RN
G = (V, E, p) the edge (u,n,v) € E is not observable in (S, =) = TX iff:

Vs € SGasu € [n_,n+),3k € [Ovp(U)ij € [n—vn-i-) :

S(FE) (sueg) = sk — (suei)o). 52)
where sgn : Z — {—1,0,+1} is the usual signum function and &(F[) :
SIK] 5 {—1,0,+1} is the partial derivative in s € S, in the dimension v,

1.e.:

S(FL)(s) = FX(s) = s

v

66

5.3 Network Minimization

Consider the example in Figure 5.2. It is easy to see that the regulation
(u,1,v) does not have any effect, since the left and right half of the TS are
identical. Take in particular the example of the state (u,v) = (0,0). We
choose k = 2. Then for j = 1 it holds that §(F/)(0,1) = +1 = sgn(2 — 0)
and for j = 0 it holds that §(F.X)(0,0) = +1 = sgn(2 — 0).

From the definition of the function F (2.2) and its derivative we easily
see that:

Vs e S% s, €we QF : 5(FF)(s) = sgn(Ky(w) — sp). (5.3)

This illustrates that the T'S non-observability is the kind that we are inter-
ested in, since it relies on the actual dynamics of the network as captured in
FK_ Tt is a stronger notion than the corresponding parametrization based
one, since observability in the TS implies observability in the parametriza-
tion. We show the contraposition of this statement in the following lemma:

Lemma 5.3.1. Have (u,n,v) € E not observable in K € K%. Then (u,n,v)
is not observable in TX

Proof. By definition of observability (Section 3.1.1) we have that for each
w € QF such that w, = [n,n4) it holds that K,(w) = Ky(Wyefn_n))- We
therefore can set k = K, (w) = Ky(Wye|n_n)) and from (5.3) we immediately

see that (5.2) is satisfied for the whole range [n_,n,).
O

5.3.2 Monotone Target Value

To relate the dynamics captured in a TS with a parametrization value, we
introduce the notion of monotone target value. Intuitively, for a state s € S
an MTV is a value towards which the component value s, evolves if we
traverse only in the dimension of v until s, either stabilizes or an opposing
effect takes place. This idea is strongly linked to the derivative of the update
function.

Consider the example in Figure 5.2b. Under the influence of the edge
(u,1,v) we see the trace (1,0) —7 (1,1) <7 (1,2). Here the MTV for
component v in the state (v,u) = (0,0) is 2 since §(FK)(1,0) = +1 =
S(FK(1,1)) # §(FK(1,2)) = —1, i.e., at the level s, = 2 an opposing effect
takes place.

For a T = (S =) v € V, w € QF and any s € w we denote the
MTYV by (EX)™mon(s) defined as:

Sy if 6(FX)(s) =0,
(B)™ (s) = § min{j > su | S(F)(s0y) # +1} 1 S(F)(s) = +1,
maz{j < su | 0(F)(svey) # —1} if 6(F,)(s)

Il
|
=

67

5.3 Network Minimization

Also note that:
Vs € SE wu e V : 6(FE) (s) = sgn((FE)Y™"(s) — s,,). (5.5)

The MTV can now be related to the observability in the TS. In particular,
we can rewrite (5.2) as:

vse SE s, e n_,ny),Vjen_,ny):
O(F)) (sueg) = sgn((Fy)™" (5) = (Suej)o)- (5.6)

Lemma 5.3.2. The non-observability conditions (5.2) and (5.6) are equiv-
alent.

Proof. Clearly, (5.6) implies (5.2) since we can set k = (FX)™"(s). For the
other direction we show that if (5.6) does not hold, then (5.2) cannot hold
either.

If (5.6) does not hold, then there is a state s € S| and some j €
[n_,ny) such that §(EX)(s") # sgn((FE)mo"(s) — s!) where s’ = s, j. We
distinguish three cases based on the value of §(FX)(s') and then again three
cases based on the difference between s, and s:

Case 0(FK)(s') = 0 and sgn((FX)™"(s) — s!) # 0:

o If 5, = s/, then for any k certainly sgn(k — s)) = sgn(k — s,). Also
since sgn((F)mon(s)—s) # 0 we get (FX)mo"(s) # s/, = s,, and thus
§(FX(s)) # 0 according to (5.5). Then if there is a k s.t. §(FX)(s') =
sgn(k — s.) then also sgn(k — s,) # 6(FX(s)) and therefore (5.2) does
not hold.

o If 5, > s it follows that u = v. From (5.4) we get (FX)™"(s) > s/,
since 6(FX)(s") = 0 indicating an effect change in the only problematic
case that §(FX)(s) = —1. Since sgn((FX)m"(s) — s!) # 0 we have
strict inequality ((F)™°"(s)) > s!. Subsequently by (5.4) there exists
[such that s, > [> s/ and 6(F/)(sy;) > 0. We have that s, €
[n_,ny) and §(FX)(s") = 0, so to fulfil (5.2) the k must be chosen as
k=s!. But §(FX)(syy) >0and ! € (s),s,] C [n_,n.) and therefore
k needs to satisfy k& > (syc)y = I. Together we get k = si, <1 < k
which is a contradiction.

e The case s, < s, can be treated analogously to s, > s..
Case 0(F[)(s') = +1 and sgn((FX)m"(s) — s!) < 0:

o If 5, = s, then from sgn((FX)™"(s) — s)) < 0 it follows that
(FEymon(s) < s/ = s, and therefore we have that 6(FX)(s) < 0. Then
k in (5.2) needs to satisfy k < s,. Also 6(FX)(s") = +1 = sgn(k — s,)

and thus k needs to satisfy k > s/ leading to a contradiction.

68

5.3 Network Minimization

e The case s, > s/ is impossible, since s, > s, > (FK)mon(s), so
§(FE)(s) = —1 and therefore by (5.4) also 6(FX)(s’) = —1 which

is a contradiction.

o If s, < s}, then by (5.4) there is ! such that s, < [< s and
S(FE)(sy1) <0. Asl € [n_,ny), a k satisfying condition (5.2) must
be such that sgn(k — (syc)y) < 0 and thus k < I. But §(FX)(s') = +1
and a suitable k must also satisfy s) < k. Together we again have the
contradiction k <1 < s} < k.

Case 0(FK)(s') = —1 and sgn((FX)m™"(s) — s!) > 0:

v
This case can be treated like the previous one.

5.3.3 Normalization Algorithm

We can see that the MTVs (FX)™"(s) allow for a straightforward test of
observability in the TS. Obtaining (FX)™°"(s) is however quite tedious.
The size of SIS is exponential w.r.t. the set V and we have to unfold the
TS to find the monotone paths characterizing the MTVs. In this section we
show that all states of a context share their MTV and additionally that we
can obtain the MTV from a context directly.

We introduce the normalization function, described in Algorithm 1, that
computes for each component and for each regulatory context of that com-
ponent the MTYV shared between the states of the context.

In the algorithm we traverse through the contexts, rather than through
states of a system, when looking for a monotone trace. As an example con-
sider the K], in Figure 5.1a and w = ([0, 1), [1,2)). Then Norm(K',v,w) =
Norm(K', v, Wy fn; 1 nis2) = Ko(@ocfnisriniss)) = 2. Note that this coin-
cides with the value in Figure 5.1b, which actually has a normalized para-
metrization.

The correctness of the approach is quite intuitive since a regulatory con-
text is a subspace of the state space with uniquely determined target value.
This means that either the behaviour is monotone or there is exactly one
stable state which breaks monotonicity in both directions. Considering the
definitions of (FX)™"(s) and the derivative. Easy calculations for the three
cases Ky(w) < wy, Ky(w) > wyy and Ky (w) € w, for a context w immediately
prove the following lemma.

Lemma 5.3.3. For any v € V, any w € QF and K € K¢ we have
(FEymon(s) = (EEYmon(s') for all 5,8 € w.

Due to this lemma we can extend the notion of MTV to regulatory
contexts w so that (FX)™"(w) = (FX)™"(s) for any s € w. Having this
extension, we now prove the correctness of Algorithm 1.

69

5.3 Network Minimization

Algorithm 1 Calculate Norm(K,v,w) where O(v,v) = {ng, ..., ng}.

1: [ni, ni+1) = Wy

2: if K(w) € w, then

3: Norm(K,v,w) = K,(w)

4: else if K,(w) < w, then

5: w' = Woe[ng—1,n)

6: if K,(W') > n; —1 then

7: Norm(K,v,w) =mn; — 1

8: else

9: Norm(K,v,w) = Norm(K,v,w")
10: end if

11: else

12: W= Wy [nip1,nite)

13: if K,(w') <mn;y1 then

14: Norm(K,v,w) = niy1

15: else

16: Norm(K,v,w) = Norm(K,v,w")
17: end if

18: end if

Theorem 5.3.4. For each v € VC, each w € QF it holds that (FX)mo"(w)
is equal to Norm(K,v,w).

Proof. Linking back to the importance of self-regulation already seen in the
canonization, we lead the proof by induction w.r.t. the distance in number
of activity intervals of self-regulation of v between the context and its target
value. We want to show that Norm(K,v,w) returns the correct value after
at most as many recursive calls as is the distance between the context and
its MTV. The notion of distance needed for this is defined as a function
dist : Q) 5 Ny with

distl (w) = maz([{A € I’ |wy < A< AN, [{A € I? | w, > A> AL}]),

where A,, € I? is the activity interval where it holds that (FX)™"(w) € A,,.

Now we prove the theorem by the means of induction. Note that the
proof does not constitute an invariant of the algorithm, as it proceeds in
the other direction than the algorithm itself. In particular, we start by
showing that for all the contexts that have their MTV within them or on
their boundaries, the algorithm ends immediately with the correct value.
Then we proceed to show that if the normalized parameter of any context
whose distance is m is correct and known, then the normalized parameter
of a context whose distance is m + 1 can be correctly determined by calling
Algorithm 1 once.

70

5.3 Network Minimization

Base of induction (distance 0 and 1):
If dist (w) = 0 then we know that (FX)™"(w) € w,. This implies that
there is a state s € w such that K,(w) = s, and §(FX)(s) = 0 according to
(2.2) and (5.4). Therefore (FX)m"(w) = K,(w) = Norm(K,v,w), as set on
the lines 2, 3. The recursion depth is 0.

If dist’ (w) = 1, denote w’ = wy 4 such that (FX)™o"(w) € A. It follows
from dist® (w) = 1 that dist’ (w') < 1. We distinguish the two options:

e dist(w') = 0: Then the above argument repeats and there is s € w
such that K,(w') = s, = (FX)™"(w'). By the definition of the MTV
we get (FE)mon (') = (FE)mon(w). Based on the ordering of w,w’ we
arrive either on the line 9 or 16 of the algorithm and state correctly that
(FEymon(w) = Norm(K,v,w) = Norm(K,v,w') = s,. The recursion
depth is 1.

o dist(w') = 1: Since dist’(w) = 1 it follows that (FX)mon (W) e
wy. In this case the respective MTVs take the adjacent values of the
boundary between w,, and w/,. In the case that w > w’ we arrive on line
7 in the algorithm and assign Norm(K,v,w) = n; — 1. This is correct
as in any state of w we monotonously update towards w’ and as we
enter w’ by crossing the boundary value n, we change the direction
back towards w, breaking the monotonicity. Analogously the correct
value is assigned for the case w < w’. The recursion depth is 0.

Induction step (distance over 1):

The induction assumption is that in at most recursion depth m > 1 the
value of any w’ € QF such that dist’ (w') < m is correctly set and consider
now distl (w) =m + 1.

In case w, > (EX)m"(w), since dists (w) > 1, we have an ' such that
distf (W) = m > 1 and w, > W), > (FK)™"(w). From the definition of
the MTV it follows that all states in both w and w’ monotonously decrease
under FX . therefore also w!, > (FX)™m"(w') which gives us (F)mon(w) =
(FEymon(y'), In the algorithm this is assured on line 9 and by induction
hypothesis (F5)™"(w') is correctly determined by the algorithm in at most
m recursions, giving us the desired result for (FX)™"(w). The case that
wy < (FEYmon(w) is again analogous, leading to line 14 instead of 9. The
recursion depth is now m + 1.

Since the set of intervals is finite and the recursion traverses monoto-
nously, we terminate in the recursion depth of at most max({p(v) | v € V'}).

O

Using the normalization function we can, similarly to canonization, cre-
ate a conservative and sound transformer on parametrizations. We extend
Norm to a function Norm : K& — NG where N¢ C K¢ is the set of nor-
malized parametrizations of G = (V, E, p) and Norm(K) = N where N is

71

5.3 Network Minimization

defined by
Yo € V,Yw € QY : N,(w) = Norm(K,v,w).

We have proven correctness of normalization already in Theorem 5.3.4, so
it only remains to prove that normalization is conservative.

Lemma 5.3.5. Normalization is conservative. For all G € G and every
K € K€ it holds that if Norm(K) = N then TK =TV,

Proof. Observe that if K,(w) € w, then Norm(K,v,w) = K,(w). In Corol-
lary 5.2.4 we have shown that if K,(w) < w,, then it is conservative to
replace K, (w) with any | € Ny such that [< w,, which is also the case in
Algorithm 1. The same holds for the case that K,(w) > wy. O

5.3.4 Observability in Normalized Parametrization

We have seen now that observability in the sense of an actual dynamical
effect should not be evaluated based on the parametrization but rather on
the TS. All information needed to construct a TS is captured in the MTVs
due to its relation to the derivative and thus the update function. At the
same time, an important aspect of parametrizations is shared, namely that
the MTV stays fixed within a context. This allows us to link observabil-
ity in parametrization and TS, as is shown in the following theorem that
complements Lemma 5.3.1.

Theorem 5.3.6. For every G € G and every K € K it holds that if
Norm(K) = N then every edge that is not observable in TX is not observable
mn N.

Proof. Assume that the above does not hold, i.e. there exists an edge
(u,n,v) € E s.t. (5.6) holds, but also it holds that:

Jw € Q% wy = [n,ng), wh = Wufn_n) * No(w) # Ny(wh). (5.7)

Case u # v:
Note that in this case we have w, = wi .

We have 6(FN)(s) = 6(FX)(s) for all states s € w as can be easily
deduced from Lemma 5.3.5. For all s € w,s’ € wt we have (FX)™"(s) =
Ny(w) # Ny(w¥) = (FK)Ymon(s). Tt follows that we can only meet the
condition sgn((FX)mo"(s) — s,) = sgn((FX)™"(s) — s') = §(FK)(s') for
all s € w,s’ = sy, € w' as demanded in (5.6) if and only if either
Ny(w) < wy A Ny(wh) < wi or Ny(w) > wy A Ny(wh) > wi.

First consider that (N, (w) < wy) A(Ny(w¥) < wi) If the condition on the
line 7 is satisfied for both w and w we immediately see that N,(w) = N, (w*).
If it is satisfied for exactly one, then apparently we break the requirement
(5.6) as for s € w!, we have (syen_)y = 5y but 6(FX)(syen_) # 6(FE)(s).

72

5.3 Network Minimization

We therefore meet the condition on the line 8 and from the line 9 we
know that for w’ as defined there N,(w') = Ny(w) # Ny(wh) = N,((wh)’).
Since N,(w') # N,((w')’) we have again that N,(w') € w! and the same for
(w%)'. Therefore it again must hold that N,(w') < w! and N, ((w¥)") < (w)’.
Apparently, the argument is recursive, requiring that for each w’ € QF such
that w), < w, it holds that N,(w') < w). But then ultimately N,(w) < 0
which contradicts the definition of K.

For the case that N,(w) > w, a similar argument holds using the upper
boundary N,(w) < p(v).

Case u = v:

First note that in this case we have w’ = w* for w’ as defined in the algorithm.
In case that k = (FX)™"(s) < n for any s € w we execute Norm(K,v,w)
in the algorithm and the condition on the line 4 is met. Then depending on
the value K (w'):

e K(w') >n—1: then k =n — 1, meaning that for any s’ € w’ we have
(FEymon(gh), = n — 1, otherwise the edge would be observable. But
then also N,(w) = N, (w") which contradicts (5.7).

e K(w') <mn—1: then according to the line 9 we have Norm(K,v,w) =
Norm(K,v,w"), again contradicting (5.7).

The case that k£ > n can be treated similarly.

5.3.5 Minimizing the Model

Since we know that after normalization, all non-observable edges can be
directly detected, constructing a reduction algorithm is rather straight-
forward. Our minimization process is closely related to the completion
process in Section 5.2. .

We use the minimization function Minim : N¢ — NC to eliminate the
non-observable edges. If [N] is minimal, i.e. there are no non-observable
edges, then we map N to itself. Otherwise denote F the set of non-observable
edges in [N] = (V, E, p) and an arbitrary total ordering on E and (u,n,v) =
min(E), then:

L [N =G = (V.E\{(un,v)},p),
2. Nv(wue[n_,nﬁ_)) = Nv(wue[n_,n)) = Nv(wu%[n,nﬁ.))'

The nature of MT'Vs ensures that N is again in A° G Asan example consider
the network in Figure 5.1b. The edge (v, 1,v) is apparently not observable.
We therefore remove it from E and with that we set

Nv<[073>7 [07 1)) = Nv([()? 1)7 [07 1)) - Nv([173)7 [07 1))
Nv([073)3 [1’ 2)) = Nv([()? 1)7 [1’ 2)) = Nv([173)7 [17 2))

0
2

73

5.3 Network Minimization

Note that this coincides with the network in Figure 5.1c, which is in fact
minimized and normalized.

This procedure can be seen as an inversion to the completion as defined
in Section 5.2, where we created two new contexts by splitting one, keeping
the values, whereas here we merge two contexts with the same value into one.
Note that the fixpoints of Comp and Minim are not dependent on the order
on V xNj x V. We can therefore take arbitrary, but fixed, order and execute
both Comp and Minim according to this order. Then for Minim(N) = N
with N € N and G # G we have Comp(N) = N. This can be easily verified
by applying the two operations successively. Since completion is sound and
conservative, minimization in such corresponding cases is also sound and
conservative. The only remaining case is that Minim(NN) = N, but this is
obviously sound and conservative too.

Iteration of the Minim function will then lead to a minimal structure
w.r.t. the number of regulations, as demonstrated by the following lemma:

Lemma 5.3.7. For G € G, K € K¢ and Norm(K) = N exists n € Ny s.t.
Minim™(N) = Minim™ " (N). Then Minim™(N) is minimal, i.e. there are
no other K' s.t. TK = TX' and [K'] has less edges than [Minim"(N)].

Proof. Since we change N only if we remove an edge and the edge set is
finite, the existence of a fixpoint is trivial. If [Minim"(N)] was not minimal,
then inevitably there would have to be an edge which is not observable in
TX but observable in N which contradicts Theorem 5.3.6.

O

Now we can conclude the section with a theorem about equivalence
checking through minimization, complementing the result of Section 5.2 and
showing that the set of dynamically equivalent RNs has both maximal and
minimal elements w.r.t. set inclusion on the regulators.

Theorem 5.3.8. Let G,G' € G, K € K¢, K' € K& and denote Minim*
the fizpoint of Minim. Then TX = TX' if and only if Minim*(Norm(K)) =
Minim*(Norm(K')).

Proof. Similarly to the proof of Theorem 5.2.8, we now know that both
Minim*(Norm(K)) and Minim*(Norm(K')) are normalized and minimal.
Due to Theorem 5.3.6 we know that in the minimization exactly the non-
observable edges in the TS are removed. So if the two TSs are equivalent,
the set of remaining edges is the same in both G and G’.

Additionally we know that the parameter values are not changed during
the minimization, only in the normalization where the value is set to the
MTYV of the states covered by the context. The only way how we could have a
difference between Minim*(Norm(K)) and Minim*(Norm(K')) is that there
is a state s € T and a component v such that (FK)™o(s) £ (FK ymon(s).

74

5.4 Encoding

But then by (5.4) we have some r € TX such that 6(FF)(r) # 6(FK)(r)
and TK #£ TK'
O

5.3.6 Complexity

It has been shown that testing equivalence for two expressions over n vari-
ables is co-NP complete [BHR84|. Since in a Boolean network a component
v € V can be regulated by up to [V] nodes, the update function can be an
expression over [V] variables and deciding whether two parametrizations
are equivalent is therefore necessarily exponential w.r.t. the number of com-
ponents. However as already stated in Section 5.1.3, the complexity is still
favourable. In particular:

Theorem 5.3.9. TIME(Minim*(Norm(K))) € O([VIK]] - size(QIK])).

Proof. As we call Norm(K,v,w) for each w € 2, no recursion is needed—
either we set the value directly or we set it equal to some other value that will
eventually be known. We therefore call Norm(K,v,w) at most size(QU])
times for each v € V.

In the minimization part we need to obtain the set E. For an edge
(u,n,v) € E to detect whether (u,n,v) € E we need to consider all w € QLK]
with w, = [n,n4) and compare them to the respective wy,,_ n). At most
we need to do (size(Q)/2) € O(size(QE])) pair-wise comparisons. Since
we have to consider at most k regulators of [V] components, we obtain in
total O([VIE]] - size(QIX))). To remove the edge we remove the set of tested
contexts, which again leads to O([VIK]] - size(QlK))).

O]

Intuitively, since we only change the values in place or remove them, no
additional space is needed. The spatial complexity is thus equal to the size
of the input.

5.4 Encoding

In this section we focus on encoding the properties and their features as
described in Section 3.2 into BA in order to be able to conduct the model
checking procedure.

5.4.1 Basic Measurements Automaton

As the knowledge about a system is usually obtained by measuring concen-
tration or activity of a component, we use measurements as a basic unit of
our encoding of data. Intuitively, a measurement describes the activity of
some of the components at one time point.

75

5.4 Encoding

Formally we describe a measurement M in a TS TK = (SIK], 5T) as
predicate over S i.e. M : SIKl - {true, false}. Interpreted as a set, we
also intuitively have that M C § [K], meaning that a measurement is the set
of states that match the data.

A sequence of measurements M = (M!,...,M™),n € N; can be en-
coded via an automaton that loops in its current state until its respective
measurement is matched and then it proceeds to a next state. After the
last measurement, an accepting state with a loop is added. However note
that reaching the accepting state already proves that there is a path that
matches the sequence of measurement, therefore using a TBA is sufficient.

Formally we use a TBA B% = (S5, ﬂ, IB, AB) where:

SB = (bt ... b1y,

2O, Y 2wy M ity et e ey,
JE[Ln]
% = {p'},
AB — {bn—i-l}'

An example of such an automaton is the one in Figure 2.2a with]\7 G —
(MY, M?), M' = (CompA = 0), M? = (CompB = 1). Clearly the size of
an automaton encoding a measurement series is linear w.r.t. to the number
of measurements. This is advantageous as for an arbitrary property the
resulting automaton can be exponential in the worst case [BK08]. However
the automaton there also shows that there is a slight inconsistency w.r.t.
the definition in Section 3.2.1. In particular, while there is a single state
st = (1,0) s.t. s7,TK = (M, M?), there must be at least three steps in
the product for the automaton to be traversed, therefore the witness is at
least three states long, even though one should be sufficient. To tackle the
problem, we are introducing a new version of Biichi automata.

5.4.2 State-conditional Biichi Automata

To improve the performance of the methods, we create a class of automata
that have condition on whether a state is initial or accepting. As this is
a strict superset of the standard BA, we keep the notation, meaning that

(

v 1. . L(G
Biichi automata are from now on given as B = (S5, —)>, IB, AP), where:

e SB is a set of states,

£(G)

e — is a transition relation with propositions where £(G) = P({vxn |
ve Ve xe{<, >, <> =}nel0,p0)}),

e [B: 588 5 L(@G) is an initial condition function,

76

5.4 Encoding
CompB # 1 true IP(b') = CompA = 0 A CompB # 1
CompB = 1 6 A7 (b*) = CompB =
bt b? IP(v?) = CompA = 0 A CompB = 1
(%)
(b)

-
. T

(c)

Figure 5.3: (a) A new encoding of the property in Figure 2.2, ie. a
TBA(]\?[G) with M! = CompA = 0 and M? = CompB = 1. (b) The respec-
tive accepting conditions. Note that a conjunction over an empty set is equal
to true.(c) A product with the 75 from Figure 2.1. Note that the product
accepts immediately in the state ((0,1),b?), meaning that cost™ = 1.

e AB: 8B — L(G) is an accepting condition function.

The synchronous product is then constructed as X% = (§%, =X X AX)
where:

o 5X = SlK] x B,

o IX ={(s,b) € SX |sE=IB(b)},

o AX ={(s,b) € S¥ | s = AB(b)},

o (5.0) =X (8,0) = (s =T)ADSY)A(sE0).

Note that if we restrict the state conditions only to {true, false} we obtain
the normal BA.

5.4.3 Encoding Measurements

There are multiple changes we are applying to the basic encoding both to
accommodate the semantics and to optimize the size.

7

5.4 Encoding

First, as we are looking only for the shortest witnesses in general, we can
focus only on searching paths that start in a state that matches at least the
first measurement. This fully removes the first state of the automaton in
Section 5.4.1, since it is responsible for verifying exactly the first measure-
ment.

Second, if there is a state that matches multiple measurements at once,
we start even further in the automaton. Conversely, if the automaton has not
reached its final state, however the current state matches all the remaining
measurements, we can already accept.

At last, if we match multiple measurements while traversing the automa-
ton, we can potentially skip the states that would be responsible for verifying

the respective measurements.

. —
We therefore encode a measurements series M = (M*,..., M™),n >0

as an automaton BY = TBA(]\?G):
SB ={p, ... "},
£(G) B
——=U U ==,

j€[1,n] 1€]0,n—j]
o0 =([\ MYAEMITTY (41 =n)),

ke(4,5+1]

Vi€l I°0) = \ M'AMIT v =),
l€[1,4]

Vjeln]: APW)= N\ M.
le(dn]

To show that the encoding is correct, we need to show that there is an
equivalence between the existence of a set of indices that map measurements
to a path w” and the existence of a path from initial state to an accepting
state in the encoding automaton. We show a stronger statement, which also
states that the lengths of the path in the TS and in the product are the
same and, moreover, the sequence of states of the TS is preserved. Recall

that we use BA that is deterministic and total, therefore for each w? €
L(G

(—=T)*=1 there is exactly one w? € ((—)>)k*1 st. wX = wl x wB =

((wlT,wlB))le[Lk] € (=X)L For brevity, we will use w¥ to denote the

pre-image of w” in XX as suggested above.

Theorem 5.4.1. For B = TBAMIK)), XK = T x BIK], and w7 ¢
(_>T)k—1‘.

3 (wT, ME) = (¥ e I¥) A (w € 4%).

78

5.4 Encoding

Proof. First observe that the transition function of our encoding is total,
therefore any path in the BA combined with any path in the TS will result
in a path in the product and wvice versa. The proof is divided into three
parts, each showing a correspondence between w¥ and w’:

Part 1:

Vieln:i'=1Ai #£1 = wf = (w], wP).

Since we require in the definition of I(w’, J_4> (K1) that at least the first mea-
surement is matched, then this statement follows from the definition of the
initial condition—the index of the initial BA state is simply equal to the
number of measurements satisfied in the initial state.

Part 2:

Vie[l,n),il=7:i" £ — w])-i_l = (w]TH,wlB).

The initial state matches as many measurements as possible. Have M!*! the
first measurement not matched by w. Then always (w!,wP) — (wl, w?).
This serves as a base of induction.

When walking through the product, two possibilities can occur for each
state w]X = (ij,wlB):

e The measurement M'T! is not matched by w;; and therefore we have
that (ij,wlB) =X (w]TH,wlB), keeping [unchanged. From j > 1 is
therefore [always the index of the last measurement that has been
satisfied before the current state.

e There is a ¢ € Ny such that ij E MY Ao A M™4, meaning that

B X

B B T T . B
we move from w;” to s), therefore (wj,w;”) =% (wj;,w;,) and

for 1 4 ¢ it holds #'T9 = j,i"t9%1 £ j meaning the equivalence stands.

Part 3:
A RN =k = w = (wl,wP) € A¥.

From the previous part we have that [= i’ Since all the measurements with
index higher than [are satisfied by s* we exactly match the accepting con-
dition.

5.4.4 Encoding Deltas

Recall that the delta constraint states that for a path w? = (s',..., sk) €
(—=T)k=1 it holds that w” = D, iff for each v € V& and all the pairs
(s%,sT1) s.t. i € [1,k) we have that:

e if DY = up then 5! < sit1,

79

5.4 Encoding

-M?2 A DY M3 A D? D?

MQ/\ﬁM3/\D2/gb2)\ M3 A D3

_/

M?AM3AD3
IP(bY)y = MY A~ M2 AB (Y = M2 A M3
I2(b?) = MY A M2 A =M3 AB(?) = M3
IP(63) = MY A M2 A M3 AB () = true

Figure 5.4: A generic automaton for encoging a delta conﬁ)rained measure-
ment sequence of length 3, i.e. a TBA(MG,BG), s.t. [MY] = 3 for any
Geg.

e if DS = down then st > sitl,

e if DY = stay then s = siL.
To apply the delta constraints, the transition relation of the product X is
extended s.t.:

D
(5,0) =X (V) <= (s =T YA (b oD, VYA (s @) A((s,8) E D).
We then apply this constraint to the encoding of measurements. In par-

. . ryiel Ty el
ticular, consider a measurements vector M, [M“] = n and a path con-

s‘crain‘c_> vector BG, [[BG]] = n. Then the condition for the automaton
TBA(MS, BG) is created as :

o0 =([\ MF)YADTA (MY (+1=n)).
ke(5.j+1]

An example of such an automaton is in Figure 5.4. This slightly involved
encoding follows from the fact that for each j € [1,n) the state sf is left
only after M7 was satisfied, therefore we already require D’ when leaving
sf and the requirement is kept until M7*1! is satisfied.

In the first proof we depend on the transition function in the BA being
total. This is no longer true, since the transitions that do not match the
monotonicity constraints are removed, however for the purposes of the proof

we can fix it by adding a non-initial, non-accepting state sink s.t. {sink Lrue,

80

5.4 Encoding

sink} and for each j € [1,n] and [€ [0,n — j) adding a transition with the
condition:

(G0 =([\ MF)A-DITA (MY (+1=n)).
ke(4,j+]

Understandably, reaching the sink means the property can no longer be
satisfied, so in practice it is equivalent to not having it at all.

In addition note that removing transitions affects (increases) the robust-
ness value in general, since some of the transitions that would not lead to a
witness are removed. While it remains true to its definition, its interpreta-
tion may be less intuitive. If that would be a problem, it is again sufficient
to make the transition function total as described above. However we opted
not to do so for performance reasons.

To show correctness of the encoding, we follow on the assumptions in
Theorem 5.4.1, since for a witness with delta constraints to exists, there
must be a witness without the constraints in the first place. Therefore we
already have that 37 (w?,]\—4> [K1). What remains is to show that w” satisfies
the delta constraints if and only if the encoding automaton accepts.

Theorem 5.4.2. For BKl — TBAM), DIKl), XK — 7K » BIKl 4ng
wT c (_>T)k71'.

—
A (w?, MEY AV e [1,n]: (W), wl) E D! —
(wi € I*) A (wif € AX),
Proof. We follow from the proof of Theorem 5.4.1. In particular we know
that the state of the automaton does not change until a new measurement

is satisfied. Formally for each [€ [1,n] if 5! # i"*! then for each j € (i',i"*]
it holds that exists b € SP such that w]X = (w;‘r,b). That means that we

have to enforce D! in two positions:

e On b, which covers all the states form w;.‘f 4 to w;ﬂl, which is guaran-
teed by the self-loop condition of the automaton.

e On each predecessor of b, i.c. on each b s.t. (w),b) =~ (w;‘fﬂ,b).

This is guaranteed by the fact that each other transition in B entering
to b has also D' on its label.

O

5.4.5 Open Ending

First we focus on the open ending. Since there is no additional condition, we
can actually already use the automaton we have. However there is also space
for improvement. In particular we know that the automaton is terminal and

81

5.4 Encoding

—~M?* A D! —~M? A D?
IP(bY)y = MY A-M? AB(BY) = M2 A M3

C 3 - C)
IP?) = M AM? AB(B?) = M3

(a)

-M?2 A DY M3 A D? D?

M2/\ﬂM3/\D2/§b2)\ M3 A D?

N

M?AM3AD3
5t = MY A - M? AB(bY) = M? A M3 A Stable
I2(0?) = MY A M? A M AB(b?) = M3 A Stable
I3 = MY A M? A M3 AB(b3) = Stable

(b)

M3 AN-M'A D3

M?2AM3AMAD?

IB(bY) = AB(bY) = M A —-M2
B = MY A M2 A -MP
B3y = MY A M2 A M?

(c)

~ ~
T @
==
_BJ _/w
([
o

Figure 5.5: The autom_a}mton from Figure 5.4 exteg}ied with the ending
constra_i)nt. (a) TBA(MG,BG,OPGTL). (b) TBA(MG,BG,stable). (c)
DBA(MS, DY, eyclic).

82

5.4 Encoding

therefore we stop searching as soon as the accepting condition is reached.
This implies that the accepting state b can never be reached from any
other state, since the respective edges are labelled exactly with the accepting
condition. The only way how to reach the state b™ is if there exists a state
that matches all the measurements at once. In such an event, we know that
any state of the automaton is also accepting and we can add this condition
to the initial labelling of any of the automata states. We therefore add
it to the state b”~!. Note that this reduction is only possible if there are
at least two measurements, 0therw1se the automaton would be empty. For

[MG]] > 1 we then construct TBA(MG De ,open) as:

SB ={p', ... 0"},
= U U ey,

j€[l,n) le[0,n—7)
o, =(N\ MYADITA (MY (41 =n—1)),

ke(4,3+1]

Vieln) : I°W)= N\ M'AGEMTY(j=n-1)),
le[1,5]

Vjeln): AB@) = N\ M.
1€(jm]

An example of such an automaton is in Figure 5.5a.

Above we stated that the construction applies for at least 2 measure-
ments. If there is only one measurement, there would be no states. In such
a case we fall back on the construction from Section 5.4.4 and put

TBA((MY), (DY), 0pen) = ({b'}, {b" 25 b1}, (o' s M1}, (0! s true)).

However such situation is not expected, as such an automaton accepts iff
there is any initial state, i.e. only controls whether M?! # (.

We now show that due to the condition on the open ending that i" = i"*!
our reduction is correct.

Theorem 5.4.3. For BIX] = TBA B[K] ,open), XK = TK x BIK],
and wT € (=T)k=1;
(", ME) AYLE (L) : (Wl whi) | DUA (" = i) =
(wi' € I) A (wff € AY).

Proof. The requirement i" = i"*! means that we accept as soon as the last
measurement was matched and therefore do not undergo a transition that
would in the normal encoding lead to b”. 0™ still however remains reachable

83

5.4 Encoding

if there is s € Sl s.t. for each I € [1,7] it holds that s = M, i.e. if all the
measurements overlap. We add this condition to b"~!, which automatically
accepts under the M™, which is satisfied. All the other cases are covered by
Theorem 5.4.1. O

5.4.6 Stable Ending

The stable ending adds a simple condition that the accepting state must be
stable. We can not use the reduction from the open ending here, because
the state matching the last measurement does not have to be stable. For

1S D¢ ¢ D6
TBA(M®, D, stable) we use the same structure as for TBA(M®“, D),
only with the accepting condition:

Vje[l,n]: AB(p) = /\ M A Stable.
le(j,n]

where s |= Stable <= s — s. An example of such an automaton is in
Figure 5.5b. Note that this is the first time the last delta constraint actually
has any effect, since now we require the constraints to be applied between
the state matching the last measurement and the stable state.

Like in the case of the open ending, correctness quite directly follows
from the previous theorems.

Theorem 5.4.4. For BF] = TBA(ﬁ[K],B[K],stable), XK = 7K x BIK],
and wT € (=T)k=1;

HI(wT,M[K]) AVLE [L,n] s (W), ... ,whi) B DA (winer =7 wint) <>
(wi* € I*) A (wf € AX).

Proof. Since the stability requirement is directly placed on the accepting
states, the equivalence directly follows. O

5.4.7 Cyclic Ending

The cyclic ending implies that the model is able to return to its initial state
after the last measurement was matched. This means that there also has to
be a cycle on the verifying automaton. Such a behaviour can no longer be
verified by a TBA, since there is no way of making sure that the initial state
matches the accepting state and we need to employ a DBA. This means in
general a diversion from the structure of the automaton used up till now.
There are two major changes:

1. There must be a cycle in the controlling automaton, which moreover
must enforce satisfaction of all the measurements in a sequence.

84

5.4 Encoding

2. Because we want for each witness that the first state is the same as the
last one, we need to make the initial condition equal to the accepting
one.

To make sure that the automaton conducts a cycle, we need to construct
the accepting condition so that it is not possible to accept on a simple loop,
therefore the accepting condition must be a subset of the leaving condition
for each state. We therefore no longer put the initial condition as the longest
sequence of measurements that is satisfied by the state, but we also add the
measurement that is controlled by the given state, meaning that after the
initial step we leave immediately.

To achieve the cyclical behaviour, we construct the transitions roughly as
if we took an automaton for the measurements sequence, composed it so the
last state of the first one is the first state of the next one, and then merged
the states that control the same measurement. In the formal description we
achieve this meging by indexing the states that are in a distance of n. In
particular for [MY] = n we put for each I € (n,2n] that b = b=, M! =
M= D! = D" and D° = D".

Formally we use the automaton B¥ = DBA(]\?G, BG, cyclic):

SB={p, ... "},
== U (U e,

j€[1,n] l€[0,n]
oG,) =(N\ MYA(DTFIAMITY V= 1),
kE[j+0)
Vi€ [Ln: IP@W)= N\ M'AEMT YV =n),
S
Vjeln]: AP = N\ M'A@EMIT v j=n).
I€[L]

Example of such an automaton is in Figure 5.5c. To show the correctness
of this encoding, we have to show an equivalence between the existence of
a required cycle in a TS and in the respective SP. Since we are now using
a DBA, we have to show that the measurements are again matched in a
sequence.

Theorem 5.4.5. For BIKl = DBA(M[K],B[K],cyclz’c), XK = 7K « BIK],
and wT € (=T)k=1;

@I, M) A (Ve [Ln] s], wh) = D) A (] = wl) <=

(wit € I*) A (wik € AN A (wi = wy).

Proof. Part 1 of the proof of Theorem 5.4.1 remains unchanged, as the initial
condition is the same. Moreover, the initial condition implies the accept-

85

5.5 Model Checking with Parameter Uncertainty

ing condition, meaning that the first state of the witness is also accepting,
replacing Part 3 of the original proof.

We now present a modified version of Part 2 of the proof of Theo-
rem 5.4.1. This condition says that after reaching a state w]T that satisfies
q = p'(j) measurements, we move the BA by ¢ states. The p!(j) is used to
denote multiplicity of j in I(w” M). Formally:

Vi e[l,k],3l e [1,n],j:il:wX (w? wB)—>(ij,w

B
J J o Yq q+uf(G)/”

This statement can be easily drawn from the definition of the automaton,
as we move always by as many steps as there are satisfied measurements.
Also, we do not change the state unless a measurement is satisfied, and
conversely we move as soon as there is a satisfied measurement, meaning
that the assumption about the correctness of the delta constraints holds.
Lastly, from the above statement we have that after matching n mea-
surements, we move by n steps, but because for each | € [1,n] we have
b! = "™ this means we are in the original state, making a cycle. O

5.4.8 Encoding Experiments

For any type of automaton B = >kBA B[K] Endl¥] Exp[K]) and
a parametrization K, to encode the expenmental setup we have to do two
changes:

e alter its parametrization so that its target values are bounded by the
experiment, meaning that we use the reduced parametrization K’ =
Reduce® (K, Exp[m), as explained in Section 3.2.4,

e remove the states outside the experimental setup, i.e. put:

= {se S |we VIl s, e Baplily.

The reduced transition system is then TH = (ST/ /) where —7" is de-
rived from K’ as usual. A SP is then constructed as X = T x BIX],

Note that this is the only part of the property that technically changes
the original transition system instead of the BA and therefore there is no
need to show correspondence between the property in the TS and SP.

5.5 Model Checking with Parameter Uncertainty

In this section we detail the algorithms for model checking under parameter
uncertainty, meaning that for a set of parametrization K and a property
Pl K € K we decide for each K € K whether TK = P, Since this is a
computationally difficult procedure, we employ techniques that exploit the

86

5.5 Model Checking with Parameter Uncertainty

structure of the problem for performance gains. These techniques have been
published in [SS15].

The core of our approach is the succ® function (2.5). The successor
function, together with X itself, is constructed explicitly and provided to
each of our algorithms on the output. However we construct it only once for
the whole set of parametrizations. Once a product X has been checked for
some K we can proceed to check XX for some K’ # K usually by conduct-
ing just a few changes. In particular, the state space SU! understandably
remains always the same. This provides us with a particular advantage in
comparison to standard MC tools, which usually do not expect any struc-
tural similarity between individual MC instances.

In this section we present three algorithms for computation of cost, trace,
and robustness. At first we show how to employ each of these algorithms
with a property encoded by TBA. Later the extension to DBA is made.
Lastly, we argue that the same extension can also be used with NBA and
discuss the implications of non-determinism in terms of complexity and se-
mantics.

The main feature of our algorithms is that we exploit the cost value for
practical performance. First please note several aspects of the problem:

e For a network with [VIX]] components, the out-degree of any state in
TX is at most 2 - [VX]] since we can only increment or decrement by
one in each dimension.

e Each component has at least 2 values, so [SIK]] > 2V and [VIE] <
log,([S™]).

e The DBA guarantees that for each state of TX there is only one edge
allowed in the automaton, therefore for an X% = (8%, =X X AX)
we have [X] < 2-[SX] - logy([SX]). For brevity we will further use
size(X) = 2- [SX] - logo([SX]).

e The product is fully constructed, i.e. the time complexity of any
algorithm is at least O(size(X)). Also in practice we need O(size(X))
of memory to search through the graph.

e The transition system, if seen as a random process, has a Markov
property. If we simulate the model by taking a random walk in T
(or X)), the choice of the following state depends only on the current
state.

5.5.1 Property Checking

First we present the Algorithm 2 for model checking. Recall that we assume
that the property was encoded by TBA, i.e. for a product X¥ = ($X =X,
IX, AX) we only need to decide whether there is a path from IX to AX

87

5.5 Model Checking with Parameter Uncertainty

Algorithm 2 Calculate Cost(suce, I, A, full).

1: R« I,R < {),cost < 0,depth < 1
2: for s € S do

3: visit[s] < 0

4: end for

5. while R # 0 do

6: for r € R do

7: visit[r] = depth

8: if (r € A) A (cost =0) then
9: cost < depth

10: end if

11: R’ + R’ U suce(r)

12: end for
13: if (cost # 0) A (= full) then

14: R+
15: else

16: R < R' n{r | visitlr] = 0}
17: end if

18: R < 0, depth < depth + 1
19: end while
20: return (cost, visit)

using the product successor function, succ®. The algorithm is in its core a
simple breadth-first-search (BFS), however it is modified so we obtain the
cost value and also a labelling visit : S — Ny, that stores for each state
the depth at which we visited the state. If a state was not visited yet, the
cost is 0. Note that if the shortest path has length k£ then cost = k and for
any s € S we have either visit[s] € [1, k] or visit[s] = 0. Also note that we
use an additional input parameter, called full. Currently we set it to false,
however it will become useful in Section 5.5.4 for checking with a DBA.

Proposition 5.5.1. Algorithm 2 is correct. For X = TX x TBA(PX!) =
(S, =X 1%, AX) it holds that (Cost(succ™, %, AX | false)); # 0
—~(TX |= -PIK]).

Proof. The algorithm is very similar to other implementations of BFS, for
exampled the one of [Ski08], and consequently each state is visited at most
once. The correctness of the labelling is then trivial. O

Proposition 5.5.2. SPACE(Cost(succ®, X AX, false)) € O(size(X)),
TIME(Cost(succ™, IX, AX, false)) € O(size(X)).

Proof. For the space we only use the labelling visit for each state and store
of size at most [S¥], which can be done in log,([S*X]) space.

88

5.5 Model Checking with Parameter Uncertainty

The time is given by the fact that we search from each state only once,
looping through all the outgoing edges, so again at most size(X). Note
however that if the cost is low we can exit the procedure early, examining
only a subset of states, which is usually the case in practice. O

5.5.2 Trace

To obtain a witness, we use a recursive depth-first-search (DFS), again mod-
ified for our purposes. Recall from Section 2.2.4 that we are looking for all
the shortest paths. However, due to the strong non-determinism, the num-
ber of shortest paths grows exponentially w.r.t. the cost. To prevent the
exponential explosion in space and time complexity, we only store individ-
ual transitions that are on some w € SWX —the trace—as explained in
Section 3.4.5. For brevity we will use STX instead of trace™ (PX]) for the
respective PIX],

To keep the complexity low and avoid searching through the paths we
have already visited, we use altogether three distinct state labels. The visit
label is already provided by Algorithm 2. The found label notes if a state
lies on a known witness path and where. The used label marks states that we
already visited in DFS. Additionally we use the value branch which points
to the state where we branched from the last path that was found to be
a shortest witness path. When a state is known to be part of a shortest
witness, either by being a final state or by lying on some already known
shortest witness path, we just store the transitions from the last branch to
the current depth, avoiding duplicities.

Proposition 5.5.3. Algorithm j is correct. If (cost™, visit™) « Cost
(succ™, IX, AX false) then Trace(succ®, IX, AX visitX, cost™) = STX.

Proof. There are two parts to be proven. First, we need to show that the
algorithm traverses through all the acyclic paths of length up to cost. In
the algorithm we stop traversing in three cases. If the condition on Line 1 is
met, then we found the state in BFS sooner than now in DFS and therefore
there must exist a shorter path to that state. If the condition on Line 5 is
met, then we found a witness. Lastly, if the condition on Line 11 is met,
then we either are at maximal depth or we already traversed from the state.

Second, we need to show that each transition is stored exactly once.
When a new path is found we see that all transitions are stored on Lines
6-9. At this point we set branch to the current depth and only decrement
by one with each backtracking step. Therefore when storing transitions, we
know that those in between 1 and branch have been stored already. Also,
when we hit a found state, we know that all transitions up from that state
have been stored already. O

89

5.5 Model Checking with Parameter Uncertainty

Algorithm 3 Calculate DFS(r,depth,branch). The labellings visit,
found, used, the sets T'r, A, the sequence Path, and the function succ are
shared between the recursive calls.
. if visit[r] < depth then
return branch
end if
Path[depth] < r
if (r € A) V (found|r] < depth) then
for d € [branch,depth) do
Tr + Tr U (Pathld], Path[d + 1])
found|r] < depth
end for
10: branch < depth
11: else if (depth < cost) A (—used|r]) then

—_

12: for v’ € suce(r) do

13: branch < min(DFS(r’, depth + 1,branch), depth)
14: end for

15: end if

16: used[r] < true
17: return branch

Proposition 5.5.4. TIM E(Trace(succ®, IX, AX visitX, costX)) €
O(size(X)), SPACE(Trace(succ™, I, AX visitX, costX)) € O(size(X)).

Proof. The space is again simple—we only use space for states labelling,
this time twice. For time complexity we again know that we do traverse any
edge twice, since we label a state (used) after conducting a search from it
and never search from it again. O

Algorithm 4 Calculate Trace(succ, I, A, visit, cost).

for s € S do
found[s] < 0,used[s] < false
end for
Tr + 0, Path < (L)cost
for i€ I do
DFS(i,1,1)
end for
return Tr

90

5.5 Model Checking with Parameter Uncertainty

5.5.3 Robustness

Lastly we focus on the robustness metric. For computation of robustness
we utilize the set STX as we know that only the transitions from the set lie
on the shortest witness paths. Additionally we also know that since we use
the shortest paths, there is no state that would be repeated on any of those
paths. We can therefore simply descend through the set of shortest paths in
a BFS manner, as we are sure that each state appears in only one iteration
of the algorithm. Consequently the probability of reaching a state s € S in
any of the shortest paths is equal to the probability of reaching it in visit[s]
steps, which is the invariant of the algorithm.

Proposition 5.5.5. Algorithm 5 is correct. If (cost™,visit™) <— Cost
(succ®, 1%, AX | false) and TrX <« Trace(succ®, 1%, AX visit® cost™),
then Robustness(succ™, IX, AX costX, TrX) ~ robustness™.

Proof. The invariant of the proof is that after k iterations, all the states
up to the depth k are labelled with the reaching probability by any shortest
witness path. Thus, after cost steps we have a labelling for all the final states
at distance cost from IX. Note that we state that the values are possibly
only similar since we consider a possibility of having a slight rounding error
for fractions for the sake of storage space. O

Proposition 5.5.6. SPACE(Robustness(succX, X, AX costX, TrX)) €
O(size(X)) and TIM E(Robustness(succ™, I, AX costX Tr¥X)) €
O(size(X)).

Proof. Again we use just one label for all the states—in this case a fraction,
which we store in at most logy([SX]) space, having a possible rounding
error in practice. Since we have no loops in SWX, we certainly propagate
from each state at most once through each edge, providing the bound of
[STX] < SpaceX. O

5.5.4 Extending to Deterministic BA

Up till now we have discussed usage of the algorithm for properties encoded
by TBA. We can however extend the algorithms also to DBA, by stacking
multiple calls of each of the algorithms. As explained in Section 2.2, to
check for a property encoded by DBA, we are looking not only for a path
from some i € IX to some a € AX, but we also need a cycle containing a.
We therefore need to first obtain the set reach(AX) C AX of all reachable
final states and then we need to decide whether there is a cycle on any
a € reach(AX). Also, previously we indicated that some of the advantages
of the algorithm stem from the witnesses being acyclic, which does not hold
any more as we are looking for a cycle on a. However we can break this

91

5.5 Model Checking with Parameter Uncertainty

Algorithm 5 Calculate Robustness(suce, I, A, cost,Tr).

1. R+ I,R + 0,rob <+ 0
2: for s € S do

3 if s € I then

4 prob[s] + [[—}]]

5: else
6
7
8
9

prob[s] < 0
end if
: end for
: for d € [0, cost] do
10: for r € R do

11: swlr] « {r" | (r,r") € Tr}
12: R + R' U swlr]

13: for ' € sw(r| do

14: prob[r'] < prob[r'] + gﬁﬂig%
15: end for

16: end for

17: R+ R

18: R 0

19: end for

20: for a € A do

21: rob < rob + prob[al

22: end for

23: return rob

cycle by creating a copy of a—a new state that has the same successors as
a, but does not share its labels:

Vs € §X - such(sCOPy) = such(s) N s°PY o SX.

Lastly, in Algorithm 6 we denote Trgcorv. o the set of transitions where a“P¥
was replaced by a.

Proposition 5.5.7. Algorithm 6 is correct. Analyze(X) = (costX,STX,
robustness™).

Proof. First note that we determine the cost already at Lines 3-6. Later we
therefore only search for paths that we already know are minimal. This is
then done by joining shortest paths from I¥ to a € AX and from a to itself.
Also for such a we know that its initial probability is given as probability of
reaching it from I¥. Since in Algorithm 5 we set on Line 4 the probability
probla] = m = 1, we gain the final probability by multiplying the two. O

Concerning the time complexity of the algorithm we can see that there
is a stark increase w.r.t. the size of the set reach(A). In the worst case

92

5.5 Model Checking with Parameter Uncertainty

Algorithm 6 Calculate Analyse(X) such that X = T5 x DBA(PK)).

1: (cost_reach, visit_reach) <+ Cost(succ™, IX, AX true)
2: cost < 0
3: for a € (AX N {s € S | visit_reach[s] # 0}) do

4: (cost_loop, visit_loop) < Cost(succ™,a®¥, a, false)

5: cost < min(cost,visit_reachla] + cost_loop)

6: end for

7: Tr < (), Rob < 0

8: for a € (AX N {s € S¥ | visit_reach[s] # 0}) do

9: (cost_loop, visit_loop) + Cost(succX,a®PY, a, false)
10: if visit_reachla] + cost_loop = cost then
11: Tr_reach < Wintess(succ, IX, a,visit_reach, cost_reach)
12: T'r_loop < Wintess(suce, a®P¥, a,visit_loop, cost_loop)

13: Rob_reach + Robustness(succ, IX, a, cost_reach, Tr_reach)
14: Rob_loop <+ Robustness(succ,a®PY, a, cost_loop, Tr_loop)
15: Tr + TrUTr_reach UTr_loopgcory: ¢

16: Rob <~ Rob + Rob_reach - Rob_loop

17: end if

18: end for

19: return (cost,Tr, Rob)

the time is a square of what we had for TBA. Therefore if we expect a big
reach(A) set, one may probably want to trade the results provided by our
analyses for performance gain of traditional model checking algorithms.

Proposition 5.5.8. SPACE(Analyse(X)) € O(size(X)) and TIME(A-
nalyze(X)) € O(size(X) - [AX])).

Proof. For the space we see that we keep results of at most two executions of
Cost, Trace, and Robustness which is only a constant increase. Concerning
the time we have two Cost executions for each of the reach(AX) members,
with two executions of Reach and T'race. These have again a time bound
of O(size(X)), together O(size(X) - [AX]). O

5.5.5 Extending to Non-deterministic BA

Lastly we give a short comment on usage of NBA. There are two main
practical differences between DBA and NBA. First, the complexity bound
of each algorithm in terms of both space and time is dependent on the term
size(X). However, for X¥ = TK x NBA(PX)) it no longer holds that
size(X) < 2 [S¥] - logy([SX]). Nevertheless, we can easily adjust the
complexity bounds by considering the maximal out-degree of any state in

the automaton. More precisely, have an NBA B¢ = (S5, %,IB,AB)

93

5.6 Labels and Reports

Table 5.1: The complexity of computing an individual label for a single
parametrization for a graph G. For a selection the TIME and the size of the
output is multiplied by the size of the selection. In the table we use X =T x
TBA(P%), X’ =T x DBA(P%), to denote property encoded by a terminal

and deterministic BA respectively, and size(PI®) = (size(p

explained in Section 5.6.1.

G))size(QG) ,

L(x) TIME(L(x) SPACE(L(x)) [L(z)]
Bias(V) [VE] - size(Q%) size(QY) Vel
Cost(X) size(X) size(X) 1
Cost(X") size(X') - AX' size(X") 1
RF(VY) [VE] -size(PI%) size(PI9) [VC]-size(PI%)
Impact(E) [EC] - size(Q9) size(QF) [EC]
Indgeree(VE) | [EY] - size(QF) size(QY) Ve
Robutness(X) size(X) size(X) 1
Robutness(X') | size(X') - AX' size(X") 1
Sign(EY) [EC] - size(Q9) size(QF) [EC]
Trace(X) size(X) size(X) size(X)
Trace(X') size(X') - AX' size(X") size(X")

and denote out(b) = {V/ | 3¢ € LVIE]) : b LA b'}. Then size(X) <
2-[SX] -logy ([SX]) - maz{[out(b)] | b € SB}, which we can readily use in all
the previous complexity statements. The second, more elusive, difference is
in the nature of witness and robustness analysis. While we still are correct
w.r.t. to the definitions of Section 2.2.4, we do not have any longer one-
to-one correspondence between transitions in S¥ and S, Consequently,
different encodings of one property can yield different robustness. Unlike
in the case of the encoding of the delta constraints, we can not place any
guarantees on the relation between robustness™ and robustness*, which
then fully depends on the structure on the automaton. For this problem we
do not have any formal solution, and it should be taken into consideration
by the user.

5.6 Labels and Reports

In this section we shortly discuss the computational aspects of the individual
tools that are available in TREMPPI.

94

5.6 Labels and Reports

5.6.1 Storage

All the data are stored in a single SQLite3 table [OA10], where each para-
metrization and its labels occupies a single row. Each of the algorithms, be
it for enumeration, labels, or reports is always manipulating only one row
of the database at a time to assure low memory requirements.

A size of a single row is then limited by the maximum possible size for
any label, as described by the Table 5.1.

A selection K¢ for some ¢ is then evaluated as an SQlite3 query. From
Section 3.4 we see that ¢ is only composed as a conjunction of linear con-
strains. Therefore for each parametrization we only have to evaluate as
many inequalities as there are constraints, which is bound by the num-
ber of labels present. The trace and regulatory function are not allowed
as constraints for a selection, therefore the TIME of evaluating a selection
depends on the remaining labels times the size of the pool, i.e. belongs to
O([K®] - label_count). The number of labels is either bound by the size
of the parametrization or by the number of properties, whichever is bigger,
therefore label_count € O(maz(size(Q) - [VY], [[?[K]]])).

Note that due to optimizations made by the database [Hip15], the process
of evaluating a selection is usually quite quick.

Computing Labels

The computation of the dynamic labels is evaluated in Section 5.5. For
the static ones, it is in almost all cases as straightforward as evaluating the
mathematical function they are expressing. The complexity of them then
in most cases stems from the fact that all the parameter values need to be
evaluated, and is therefore equal to the length of a partial parametrization.

The only exception to this is the regulatory function label. To obtain this
label we progress by the following recipe, which corresponds to enumeration
of prime implicants of the Quine-McCluskey algorithm [McC56]:

1. For v € V, and for each k € [1, p(v)] enumerate all the configuration
of regulators of v (states) that lead to the target value k.

2. For each k merge these configurations. A merge is possible if there
are two configuration that match in all but one component. Create all
possible merges.

3. Store those configurations that were not merged. For those that were
obtained by merging, repeat the step 2.

4. After [V] repetitions we have the prime implicants for each k. These
we write out in the Post Algebra form [MT07].

Note that a prime implicant is a combination of subsets of values for each
component, therefore their number is bound by (size(pG))S”e(QG). As this is

95

5.6 Labels and Reports

Table 5.2: The computational demands for each of the reports. As the re-
ports depend on the labels, some of the reports require computation of the
respective label prior to the computation (the Precondition column). Since
the reports mostly only read and store the respective labels, the TIME,
SPACE, and size of the result are equal to the size of the labels, as reflected
in the Complexity column. The complexity is again given for a single para-
metrization and must be multiplied by the size of the selection. The symbol
L is used to denote the set of all labels that can be read by the given report.

Report(x) Precondition Complexity

Quantitative(L) none, but all quantitative [L]
labels will be used if available

Qualitative(L) none, but all qualitative maz{[I5] | 1¥ €
labels will be used if available L} -[L]

Regulations(G) sign and impact [E“]

Correlations(G) bias [VE]?

Witness(ﬁG) trace for each P € PC maz{cost’ (P) |

P e PG} . §lKI

potentially a very big number, the functions should be in general computed
as the last step only for the selections that are of the real interest to the
user.

Computing Reports

The computation of the individual reports is in most cases quite straightfor-
ward, as it usually only requires to sum the values of the individual labels.

The only exception is the correlation report, where to compute the core-
lation beween the bias values, we must first computate the mean and the
standard deviation [Barl3] of bias of the individual components. For this
purpose we conduct three passes over a database, in which we compute in
succession:

1. the mean of the individual biases,

2. the standard deviation of the individual biases, using the obtained
mean,

3. the covariance and subsequently the correlation of all pairs of biases.

Thus, for all the reports, the TIME, SPACE and the output size is
therefore linear in the size of the input data, as shown in Table 5.2.

96

CHAPTER O

Conclusion

To conclude this thesis we provide a comparison of TREMPPI to the existing
tools, give a summary of the presented research, and finish with an informal
evaluation of this work and its possible future.

6.1 Related Work

There exist multiple other tools allowing for enumeration or evaluation of
parametrizations based on dynamical properties.

The most immediate comparison is to the LOGICMODELCLASSIFIER
tool [Klal5]. This is a Python based tool which uses the state-of-the-art
model checker NuSMV [CCGT02] to evaluate each parametrization sepa-
rately against an LTL or a computational tree logic (CTL) formula. These
can be derived from a discretized dataset, in a fashion similar to the mea-
surements encoding of TREMPPI. LOGICMODELCLASSIFIER offers a wider
spectrum of enumeration constraints than TREMPPI and also provides ac-
cess to a more extensive property descriptive language. Additionally, due
to symbolic manipulation with the state space, the memory usage scales in
the average case better with the size of a network. The most significant
drawback is lower performance—the LOGICMODELCLASSIFIER was used for
comparison in the EGFR study, exhibiting over a thousand times lower
performance—which stems from the fact NuSMV does not expect to check
many similar systems in a row and does not provide any ”warm-start” ca-
pabilities.

The probably oldest tool for evaluation of parameter families using CTL
is called SMBioNet [KCRB09]. Like LoGICMODELCLASSIFIER, SMBioNet
uses NuSMYV for the model checking procedure, therefore the advantages and
drawbacks are shared between the two. The tool is currently not available
for download and is most likely discontinued. In addition, the CTL language
is difficult to understand and use and the tool provides no visual interface,
causing it to have a high entry threshold.

97

6.1 Related Work

Antelope [AAAT11] is a web-based tool that uses its own hybrid CTL
model checker. This adds the capabilities to express features like stability or
oscillation directly as parts of the formula, rather than encoding it into the
CTL language using its operators. In a sense this is similar to the approach
taken in this work, where we also define dynamical behaviour in terms of
structure of a witness, rather than an encoding formula. In addition, this
is the only tool that provides a web access and a visual interface, making it
more accessible and being the only competitor of TREMPPI in this sense.
Additionally, Antelope has the option to consider multiple parametrizations,
but does so by overlaying the individual TS into a superstructure, without
the ability to discern between the individual parametrizations.

The last MC tool we examine is called SPUTNIk [GMLGB14]. Like
TREMPPI, SPUTNIK builds on LTL basics and deploys a custom model
checker, however SPUTNIK in addition utilizes symbolic representation for
performance gains. The method is quite promising, unfortunately the tool
is not yet available and the authors [GMLGB14] do not evaluate the perfor-
mance, therefore a comparison is unfortunately not possible.

All of the above are tools that depend on the model checking procedure,
which sets rather fixed boundaries on the number of components a network
can have due to both the time and the space complexity. A different pos-
sibility is to express the data in terms of formal constraints on a system.
One of the tools in this category is called GNBox [CFT10]. GNBox de-
pends on the constraint logical programming technique for expressing the
regulatory constraints. GNBox exhibits similar performance to TREMPPI
on the Bacteriophage Lambda model study [KSB12] and [CFT10]. GNBox
also allows to evaluate properties from their structural perspective, e.g. for
an unsatisfiable formula it is possible to ask, what is its maximal satisfiable
sub-formula. We see such capability as certainly beneficial and it consti-
tutes a possible path for future development of TREMPPI. GNBox itself is
however most likely discontinued.

A similar approach is taken by Caspo [GVET13]. This tool depends
on the answer set programming method which allows to enumerate mod-
els that fit certain dynamical constraints, like a time series. The fit here
is given by an error between the measured data and a synchronous simu-
lation of a model, which is simpler and less informative measure than the
dynamical behaviour guaranteed by model checking. Under this scenario
the tool however exhibits a better performance in terms of both the time
and the space required by the method than TREMPPI. Recently [VGE™115]
the authors also removed the original limitation of the tool, which could
only consider networks without feedback. With this improvement, Caspo
became the probably most promising tool from all those discussed in this
section.

From the above listed tools, Caspo and LOGICMODELCLASSIFIER are
the only existing tools that attempt any classification or analysis of the

98

6.2 Summary

parametrization pool after the model checking procedure. Caspo simply
groups the models by the fit error, which is roughly equal to creating a
selection for each qualitatively different value. LOGICMODELCLASSIFIER
allows to draw several features from a parametrization selection, e.g. a
parameter value or the most strict label for each regulation. To the best of
our knowledge, the visual representation of the statistical features, as well as
the report comparison workflow of TREMPPI are new features, previously
not available in the field.

6.2 Summary

The aim of this work was to develop a new methodology for analysis of
molecular pathways using top-down modelling approaches. To this end we
have created a software under the name TREMPPI—Toolkit for Reverse
Engineering of Molecular Pathways via Parameter Identification. This soft-
ware is tailored to help with the task of construction of holistic biological
models, and as we have demonstrated on distinct biological studies, it is
sufficiently well-equipped and powerful to handle real-world applications.
Throughout this thesis we have described numerous methods that consti-
tute the building blocks of TREMPPI. When these methods are collected
in a single tool, a modelling and evaluation workflow emerges, allowing for
TREMPPI to pose as a completely stand-alone and easy-to-use tool in the
field of systems biology, with no existing alternative. We therefore conclude
that the goal of this work was fulfilled.

Each of the methods is examined in all the possible aspects—we always
provide an intuitive description, formal formulation, an example, a demon-
stration on a real system, and an algorithm together with an evaluation of
its performance. In this sense this thesis serves as complete and compre-
hensive documentation of the theoretical side of TREMPPI. The practical
side—a usage manual—is present as an attachment to this work. The same
holds also for the technical side: the code.

The tool, its documentation, and multiple binary distributions for vari-
ous platforms are available under an open-source licence.

Apart from serving as a reference book for the TREMPPI tool, this
thesis also examines two formal aspects of the qualitative model checking:

e We showed that in the multi-valued networks there is an equivalence
relation on the dynamics of models. We showed that this is an issue
directly related to this framework and describe a procedure for efficient
evaluation of this equivalence.

e We showed that by changing the format of the BA-based model check-
ing to the state-conditional Bilichi automaton, we can achieve a direct

99

6.3 Outlook

correspondence between traces in a transition system and its product,
which feature is otherwise not present in the standard procedure.

6.3 Outlook

It is our belief that TREMPPI offers a unique and valuable service to the
researchers trying to untangle the immense complexity of biological systems.
The tool was designed to provide a low enough threshold for those who al-
ready have knowledge of the biological side of the problem to be able to
use it, however there is no doubt that further improvements can be made
to the user experience. The most important next step is to make TREM-
PPI available as a web service, allowing for even an easier access, without
a platform dependency, as we have already suggested in [SKSv13]. Since
TREMPPI provides an HTML interface, this goal is already half achieved,
however tasks like user and data management still need to be tackled.

From the perspective of scale, TREMPPI has only very limited appli-
cation. As we have discussed, the problem at hand is double-exponential,
making it very difficult to move beyond the simplest instances. Using TR-
EMPPI for analysis of comprehensive models, e.g. modelling all genes of a
single organism, or all the signalling molecules that can potentially interact,
is far beyond its capabilities. Arguably though, models over a hundred of
components are no longer human-readable and thus suggest that the interest
of the modeller is in executing the model with a computer, rather than in
making the model in order to understand the modelled system. TREMPPI
still does not even reach the hundred component boundary with the limit
being realistically around thirty-forty components. There are however many
pressing problems in biology requesting attention of researchers, in systems
with up to forty components, sometimes even with just a handful.

In short, TREMPPI does not promise to be the ” Swiss knife” for reverse
engineering of molecular pathways, but offers unparalleled features in many
practical scenarios. It is our hope that it will establish itself as one of the
tools in the toolbox of systems biologist, tackling many of the biological
problems, both those that exist now and those to come.

100

Bibliography

[AAA*11]

[AJL*08]

[AJOKO09)

[AJV09]

[Alo06]

[ASRC*10]

[Bar13]

[BBK*12]

Gustavo Arellano, Julidn Argil, Eugenio Azpeitia, Mariana
Benitez, Miguel A Carrillo, Pedro Arturo Géngora, David A
Rosenblueth, Elena R Alvarez-Buylla, et al. ”Antelope”: a
hybrid-logic model checker for branching-time Boolean GRN
analysis. BMC' Bioinformatics, 12(1):490, 2011.

Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff,
Keith Roberts, and Peter Walter. Molecular Biology of the
Cell. Garland Science, 5th edition, November 2008.

Wassim Abou-Jaoudé, Djomangan A Ouattara, and Marcelle
Kaufman. From structure to dynamics: frequency tuning in
the p53-Mdm2 network: I. logical approach. Journal of theo-
retical biology, 258(4):561-577, 20009.

Markus Arndt, Thomas Juffmann, and Vlatko Vedral. Quan-
tum physics meets biology. HESP journal, 3(6):386-400, 2009.

Uri Alon. An Introduction to Systems Biology: Design Princi-
ples of Biological Circuits (Chapman & Hall/CRC Mathemat-
ical and Computational Biology). Chapman and Hall/CRC, 1
edition, July 2006.

Leonidas G Alexopoulos, Julio Saez-Rodriguez, Benjamin D
Cosgrove, Douglas A Lauffenburger, and Peter K Sorger. Net-
works inferred from biochemical data reveal profound differ-
ences in toll-like receptor and inflammatory signaling between
normal and transformed hepatocytes. Molecular & Cellular
Proteomics, 9(9):1849-1865, 2010.

Michael Baron. Probability and statistics for computer scien-
tists. CRC Press, 2013.

J. Barnat, L. Brim, A. Krejéi, A. Streck, D. Safrdnek,
M. Vejnar, and T. Vejpustek. On Parameter Synthesis by
Parallel Model Checking. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics, 9(3):693-705, 2012.

101

Bibliography

[BCRGO04]

[BHRS4]

[BKOS]

[Bral4]

[CBBC11]

[CCGT02)

[CCP+06]

[CFT10]

[CGPYY)

[dJ02]

[DLML10]

[DSM*15]

Gilles Bernot, Jean-Paul Comet, Adrien Richard, and Janine
Guespin. Application of formal methods to biological regu-
latory networks: extending Thomas’ asynchronous logical ap-
proach with temporal logic. Journal of Theoretical Biology,
229(3):339-347, August 2004.

P. A. Bloniarz, H. B. Hunt, III, and D. J. Rosenkrantz. Alge-
braic structures with hard equivalence and minimization prob-
lems. Journal of the ACM, 31(4):879-904, September 1984.

Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. The MIT Press, 2008.

Tim Bray. The javascript object notation (json) data in-
terchange format. http://tools.ietf.org/html/rfc7159.
html, 2014. Accessed: 15/12/2015.

Oana-Teodora Chis, Julio R. Banga, and Eva Balsa-Canto.
Structural identifiability of systems biology models: A critical
comparison of methods. PLoS ONE, 6(11), 11 2011.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2:
An opensource tool for symbolic model checking. In Computer
Aided Verification, pages 241-268. Springer, 2002.

B. Christen, M. Christen, R. Paul, F. Schmid, M. Folcher,
P. Jenoe, M. Meuwly, and U. Jenal. Allosteric Control of
Cyclic di-GMP Signaling. Journal of Biological Chemistry,
281(42):32015-32024, October 2006.

Fabien Corblin, Eric Fanchon, and Laurent Trilling. Appli-
cations of a formal approach to decipher discrete genetic net-
works. BMC' Bioinformatics, 11(1):385, 2010.

Edmund Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

H. de Jong. Modeling and Simulation of Genetic Regulatory
Systems: A Literature Review. Journal of Computational Bi-
ology, 9(1):67-103, 2002.

Elena S Dimitrova, M Paola Vera Licona, John McGee, and
Reinhard Laubenbacher. Discretization of time series data.
Journal of Computational Biology, 17(6):853-868, 2010.

Lorenza A. D’Alessandro, Regina Samaga, Tim Maiwald,
Seong-Hwan Rho, Sandra Bonefas, Andreas Raue, Nao

102

http://tools.ietf.org/html/rfc7159.html
http://tools.ietf.org/html/rfc7159.html

Bibliography

[eP03]

[Fla06]

[GCCT15)

[Ger02]

[GMLGB14]

[GVET13]

[Hen09)]

[Hip15]

[HR04]

[Ing13]

Iwamoto, Alexandra Kienast, Katharina Waldow, Rene Meyer,
Marcel Schilling, Jens Timmer, Steffen Klamt, and Ursula
Klingmiiller. Disentangling the complexity of HGF signaling
by combining qualitative and quantitative modeling. PLoS
Comput Biology, 11(4):€1004192, 04 2015.

Ivana Cerna and Radek Peldnek. Relating hierarchy of tem-
poral properties to model checking. In Branislav Rovan and
Peter Vojtas, editors, Mathematical Foundations of Computer
Science 2003, volume 2747 of Lecture Notes in Computer Sci-
ence, pages 318-327. Springer Berlin Heidelberg, 2003.

David Flanagan. JavaScript: the definitive guide. O’Reilly
Media, Inc., 2006.

Cristian A. Gallo, Rocio L. Cecchini, Jessica A. Carballido,
Sandra Micheletto, and Ignacio Ponzoni. Discretization of gene
expression data revised. Briefings in Bioinformatics, 2015.

Carlos Gershenson. Classification of random boolean networks.
CoRR, cs.CC/0208001, 2002.

Emmanuelle Gallet, Matthieu Manceny, Pascale Le Gall, and
Paolo Ballarini. An LTL model checking approach for bio-
logical parameter inference. In Formal Methods and Software
Engineering, pages 155-170. Springer, 2014.

Carito Guziolowski, Santiago Videla, Federica Eduati, Sven
Thiele, Thomas Cokelaer, Anne Siegel, and Julio Saez-
Rodriguez. Exhaustively characterizing feasible logic models
of a signaling network using answer set programming. Bioin-
formatics, 2013.

Regine Hengge. Principles of c-di-gmp signalling in bacteria.
Nature Reviews Microbiology, 7(4):263-273, April 20009.

Dwayne Richard Hipp. The SQLite query planner. https://
www.sqlite.org/optoverview.html, 2015. Accessed: 2015-
11-05.

Michael Huth and Mark Ryan. Logic in Computer Science:
Modelling and reasoning about systems. Cambridge University
Press, 2004.

Brian Ingalls. Mathematical Modelling in Systems Biology: An
Introduction. MIT press, 2013.

103

https://www.sqlite.org/optoverview.html
https://www.sqlite.org/optoverview.html

Bibliography

[Kau69] S.A. Kauffman. Metabolic stability and epigenesis in ran-
domly constructed genetic nets. Journal of Theoretical Biology,
22(3):437-467, 1969.

[KCRB09] Zohra Khalis, Jean-Paul Comet, Adrien Richard, and Gilles
Bernot. The SMBioNet method for discovering models of gene
regulatory networks. Genes, Genomes and Genomics, 3(1):15—
22, 2009.

[Kit04] Hiroaki Kitano. Biological robustness. Nature Reviews Genet-
ics, 5(11):826-837, 2004.

[Klal5] Hannes Klarner. Contributions to the Analysis of Qualitative
Models of Regulatory Networks. PhD thesis, Freie Universitat
Berlin, Germany, 2015.

[KS08] Guy Karlebach and Ron Shamir. Modelling and analysis of
gene regulatory networks. Nature Reviews Molecular Cell Bi-
ology, 9(10):770-780, 2008.

[KSB12] Hannes Klarner, Heike Siebert, and Alexander Bockmayr.
Time series dependent analysis of unparametrized Thomas net-
works. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 99, 2012.

[KSFGT13] Bertram Klinger, Anja Sieber, Raphaela Fritsche-Guenther,
Franziska Witzel, Leanne Berry, Dirk Schumacher, Yibing
Yan, Pawel Durek, Mark Merchant, Reinhold Schéfer, et al.
Network quantification of egfr signaling unveils potential for
targeted combination therapy. Molecular systems biology, 9(1),
2013.

[KSvT12] Hannes Klarner, Adam Streck, David Safranek, Juraj Kol¢ék,
and Heike Siebert. Parameter identification and model ranking
of Thomas networks. In CMSB, pages 207-226, 2012.

[LKPH13] Sandra Lindenberg, Gisela Klauck, Eberhard Pesavento,
Christina andKlauck, and Regine Hengge. The EAL domain
protein YciR acts as a trigger enzyme in a c-di-G signalling cas-
cade in E. coli biofilm control. The EMBO Journal, advance
online publication, May 2013.

[McC56] Edward J McCluskey. Minimization of Boolean functions*.
Bell system technical Journal, 35(6):1417-1444, 1956.

[Mic05] Bénédicte Michel. After 30 years of study, the bacterial sos
response still surprises us. PLoS Biol, 3(7):€255, 07 2005.

104

Bibliography

[MTO7]

[Nob08]

[0A10]

[OAJK10]

[PH13]

[PSRA*11]

[RAQY]

[RCBOG]

[SAR13]

[Sip96]

[SKO04]

[Ski08]

D Michael Miller and Mitchell A Thornton. Multiple valued
logic: concepts and representations, volume 2. Morgan & Clay-
pool Publishers, 2007.

Denis Noble. The Music of Life: Biology Beyond Genes. Ox-
ford University Press, USA, April 2008.

Mike Owens and Grant Allen. SQLite. Apress, 2010.

Djomangan A Ouattara, Wassim Abou-Jaoudé, and Marcelle
Kaufman. From structure to dynamics: Frequency tuning
in the p53-Mdm2 network. II: Differential and stochastic ap-
proaches. Journal of theoretical biology, 264(4):1177-1189,
2010.

David A Patterson and John L Hennessy. Computer organi-
zation and design: the hardware/software interface. Newnes,
2013.

Robert J Prill, Julio Saez-Rodriguez, Leonidas G Alexopou-
los, Peter K Sorger, and Gustavo Stolovitzky. Crowdsourcing
network inference: the DREAM predictive signaling network
challenge. Science signaling, 4(189):mr7, 2011.

John Ross and Adam P Arkin. Complex systems: from chem-
istry to systems biology. Proceedings of the National Academy
of Sciences, 106(16):6433-6434, 2009.

Adrien Richard, JP Comet, and Gilles Bernot. Formal meth-
ods for modeling biological regulatory networks. Modern For-
mal Methods and Applications, pages 1-33, 2006.

Assieh Saadatpour, Réka Albert, and Timothy C Reluga. A
reduction method for boolean network models proven to con-

serve attractors. SIAM Journal on Applied Dynamical Sys-
tems, 12(4):1997-2011, 2013.

Michael Sipser. Introduction to the Theory of Computation.
International Thomson Publishing, 1st edition, 1996.

Ilya Shmulevich and Stuart A Kauffman. Activities and sen-
sitivities in Boolean network models. Physical review letters,
93(4):048701, 2004.

Steven S. Skiena. The Algorithm Design Manual. Springer
Publishing Company, Incorporated, 2nd edition, 2008.

105

Bibliography

[SKSv13]

[Sno89]

[SRK*13]

[SS15]

[STL10]

[Stro7]

[STS15a]

[STS15b)]

[TA90]

[Tho91]

[Thol3]

Adam Streck, Juraj Kol¢dk, Heike Siebert, and David
Safranek. Esther: Introducing an online platform for parame-
ter identification of boolean networks. In Computational Meth-
ods in Systems Biology: 11th International Conference, CMSB
2018, Klosterneuburg, Austria, September 22-24, 2013, Pro-
ceedings, volume 8130, page 257. Springer, 2013.

El Houssine Snoussi. Qualitative dynamics of piecewise-linear
differential equations: a discrete mapping approach. Dynamics
and stability of Systems, 4(3-4):565-583, 1989.

Diego O. Serra, Anja M. Richter, Gisela Klauck, Franziska
Mika, and Regine Hengge. Microanatomy at cellular resolution
and spatial order of physiological differentiation in a bacterial
biofilm. mBio, 4(2), May 2013.

Adam Streck and Heike Siebert. Extensions for LTL model
checking of thomas networks. In advances is Systems and Syn-
thetic Biology, volume 14, pages 101-114. EDP Sciences, 2015.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. Mod-
eling and programming with gecode, 2010.

B. Stroustrup. The C++ programming language. Addison-
Wesley Longman Publishing Co., Inc., 1997.

Adam Streck, Kirsten Thobe, and Heike Siebert. Analysing cell
line specific EGFR signalling via optimized automata based
model checking. In Computational Methods in Systems Biol-
ogy, volume 9308 of Lecture Notes in Computer Science, pages
264-276. Springer International Publishing, 2015.

Adam Streck, Kirsten Thobe, and Heike Siebert. Comparative
statistical analysis of qualitative parametrization set. In Hybrid
Systems Biology, volume 9271 of Theoretical Computer Science
and General Issues. Springer International Publishing, 2015.

Louis C. Thomas and Richard d’ Ari. Biological feedback. CRC
Press, Boca Raton, 1990.

René Thomas. Regulatory networks seen as asynchronous au-
tomata: A logical description. Journal of Theoretical Biology,
153(1):1-23, 1991.

R. Thomas. Remarks on the respective roles of logical pa-
rameters and time delays in asynchronous logic: An homage
to El Houssine Snoussi. Bulletin of Mathematical Biology,
75(6):896-904, 2013.

106

Bibliography

[TJ09]

[TSKS14]

[Turb2]

[van95]

[VGE+15]

[Wol01]

[WPP+06]

[WSA12]

[WVD12]

[YSS+15]

Jean-Francois Tanti and Jennifer Jager. Cellular mechanisms
of insulin resistance: role of stress-regulated serine kinases and
insulin receptor substrates (IRS) serine phosphorylation. Cur-
rent opinion in pharmacology, 9(6):753-762, 2009.

Kirsten Thobe, Adam Streck, Hannes Klarner, and Heike
Siebert. Model integration and crosstalk analysis of logical
regulatory networks. In Computational Methods in Systems
Biology, pages 32-44. Springer, 2014.

Alan Mathison Turing. The chemical basis of morphogenesis.
Philosophical Transactions of the Royal Society of London B:
Biological Sciences, 237(641):37-72, 1952.

Guido van Rossum. Python reference manual. Report CS-
R9525, Centrum voor Wiskunde en Informatica, P. O. Box
4079, 1009 AB Amsterdam, The Netherlands, April 1995.

Santiago Videla, Carito Guziolowski, Federica Eduati, Sven
Thiele, Martin Gebser, Jacques Nicolas, Julio Saez-Rodriguez,
Torsten Schaub, and Anne Siegel. Learning Boolean logic mod-
els of signaling networks with {ASP}. Theoretical Computer
Science, 599:79-101, 2015. Advances in Computational Meth-
ods in Systems Biology.

Olaf Wolkenhauer. Systems biology: The reincarnation of sys-
tems theory applied in biology? Briefings in Bioinformatics,
2(3):258, 2001.

H. Weber, C. Pesavento, A. Possling, G. Tischendorf, and
R. Hengge. Cyclic-di-GMP-mediated signalling within the o
network of Escherichia coli. Molecular Microbiology, 2006.

Rui-Sheng Wang, Assieh Saadatpour, and Réka Albert.
Boolean modeling in systems biology: an overview of method-
ology and applications. Physical Biology, 9(5), 2012.

Marian Walhout, Marc Vidal, and Job Dekker. Handbook of
Systems Biology. Elsevier, 2012.

Kaveh P Yousef, Adam Streck, Christof Schiitte, Heike Siebert,
Regine Hengge, and Max von Kleist. Logical-continuous mod-
elling of post-translationally regulated bistability of curli fiber
expression in Escherichia coli. BMC' systems biology, 9(1):39,
2015.

107

Bibliography

108

APPENDIX A

Nomenclature

symbol meaning

Vecien the vector Vec where the element with the index
i € [1,[Vec]] is replaced by the value n

Ny the natural numbers with 0

Ny No \ {0}

P(S) the power set of S

G (V, E, p)—a regulatory graph

1% a set of components

E a set of regulations s.t. (u,t,v) € E = wu,v €
VAte[l p(u)]

p(v) the maximum activity level of v € V

0(u,v) {t | (u,t,v) € E}—the threshold function

O(u,v) 0(u,v)U{0, p(u)+1}—the extended threshold func-
tion

=© the ordinal successor in the set ©

t_,ty the closes lower and higher element of ¢ in ©

Iy {[t,=® () | t € O(u,v) U{0}}—the set of activity
intervals of u in regulations of v

Q, [L.cv I3 the regulatory contexts of v € V

K,(w) the parameter of v in the context w € €,

K (K,)pev—a parametrization

(K] G—a network that is parametrizable by K

K a set of parametrizations

S¢ [1oevel0, p(v)]—the state space of G

FK(s) update value for the component v in the state s

under parametrization K

109

TBA,DBA,NBA

costX

succX (s)

robustness™

FX(s) — s,—a discrete partial derivative of FX in
s

(SIE] 5T)— a transition system

the transition relation in T’

the set of asynchronous transitions systems over the
state space SK]

an automaton encoding a property for a network G
a set of BA states

a transition relation with propositions

P{oxn | v € V9 x € {<,>,<,>=})hn €
[0, p(v)]})—the set of propositions for the network
G

a set of initial states in SP

a set of accepting states in S

TE x Bl 4 product structure

{w e (=) | n € Ny, (XK, w = PIE)}—the set of
witnesses of P in XK

terminal, deterministic and non-deterministic Biichi
automaton

the length of some shortest w in W
{s" | s =X s'}—the successor function in X

the probability of finding a witness by taking a ran-
dom walk in X of the length exactly equal to cost™

true iff e is activating

true iff e is inhibiting

an regulation constraint for e

a parameter constraint on K,

the normalization constraint on K,

(]\76', BG, End®, Exp®) a property of G
(M?Y,..., M¥*)—a sequence of measurements
a measurement, i.e. a sub-range in [0, p(v)]
(D', ..., DF)—a sequence of delta constraints
a delta constraint, one of {up, down, stay, none}
is an ending, either open, stable, or cyclic

is an experiment, which forms a rectangular subset

of S¢

a vector of indices mapping some states the trace w’

to each of the measurements in M, if such exists

110

ReduceG(K , Exp[K]) is a parametrization K that has been reduced by

ZK

sign®(e)
indegreeX (v)
impact™ (e)
bias™ (v)

RFX(v)

qual(K®,1,y)
quan(K®,1,y)
frequency’c(b (e)

. L
correlation” (

trace’ (PK])
BG
wz‘tnessK(ﬁ[K])

size(p®)

Comp(K)

sgn(n)
()™ (s)

Norm(K,v,w)

Norm(K)
NG
size(X)

v, u)

the experiment Ezp

a label of parametrization K

an edge label, one of {0,+,—,1}

a number of observable regulators of v

the impact of the regulation e on its target

the tendency of the components v towards higher or
lower values

a Post Algebra expression describing the partial pa-
rametrization of the component v

a qualitative report
a quantitative report
how often is e observable in the selection

Pearson correlation coefficient between biases of u
and v in the selection

transitions of the shortes witness of P in TK
(M?, ..., M*)—a sequence of properties
a witness graph

the maximal number of activity levels of any com-
ponent

the maximal number of regulator contexts

the maximal size of a single parametrization
the maximal size of the parametrization space
canonized form of the parametrization K

the set of canonical parametrizations of G

K with a single additional non-observable edge
the sign of n, one of {—1,0,+1}

the monotone target value of v under K in the state
s

the normalized parameter value of v from K in the
context w

the normalized form of the parametrization K
the set of normalized parametrizations of G
K with a single non-observable edge removed

the maximal size of a transition system X, in the
number of transitions

111

112

APPENDIX B

Supplementary Files

There are multiple supplementary files supporting the results of this thesis.
All of these are available on the medium that is attached to the thesis and
on the web. The specific locations are detailed below.

B.1 TREMPPI

For the TREMPPI tool we are providing documentation, open-source, and
binary distributions.

e documentation: is available as a single HT'ML page called docu-
mentation.html or at http://dibimath.github.io/TREMPPI/.

e source: is available in the folder source or in the on-line repository
https://github.com/xstreckl/TREMPPI.

e binaries: are available for multiple platforms, each in a single
archive. The local archives are stored in the folder build. The sup-
ported platforms are:

— Windows-32/64 bit: file: Windows_32bit.zip, URL: http://
dibimath.github.io/TREMPPI/build/TREMPPI_Windows32.zip

— Ubuntu-32/64 bit: file: Ubuntu 32bit.zip, URL: http://
dibimath.github.io/TREMPPI/build/TREMPPI_Debian64.tar.
gz

— Debian-64 bit only: file: Debian 64bit.zip, URL: http://
dibimath.github.io/TREMPPI/build/TREMPPI_Ubuntu32.tar.
gz

B.2 Understanding Case Studies

In the following sections we list the data for the individual case studies.
These are always available for viewing either at the medium attached to the

113

http://dibimath.github.io/TREMPPI/
https://github.com/xstreck1/TREMPPI
http://dibimath.github.io/TREMPPI/build/TREMPPI_Windows32.zip
http://dibimath.github.io/TREMPPI/build/TREMPPI_Windows32.zip
http://dibimath.github.io/TREMPPI/build/TREMPPI_Debian64.tar.gz
http://dibimath.github.io/TREMPPI/build/TREMPPI_Debian64.tar.gz
http://dibimath.github.io/TREMPPI/build/TREMPPI_Debian64.tar.gz
http://dibimath.github.io/TREMPPI/build/TREMPPI_Ubuntu32.tar.gz
http://dibimath.github.io/TREMPPI/build/TREMPPI_Ubuntu32.tar.gz
http://dibimath.github.io/TREMPPI/build/TREMPPI_Ubuntu32.tar.gz

B.3 Toy Network Data

thesis in the folder projects, or on-line. Details are provided individually
in each section.

Data for each of the case studies are stored as a TREMPPI project.
This means that all the data are presented via respective HTML pages. The
content of the individual pages is quite intuitive to understand. If needed,
please refer to the documentation of TREMPPI, linked above.

To view any of the projects there are four options:

1. Navigate to the respective web address (recommended).

2. Copy the data from the medium and extract the build fitting your
system. Then execute the binary called tremppi, which will load all
the projects into TREMPPI.

3. Navigate to the projects folder on the medium and start a local
server, for example by calling python -m SimpleHTTPServer 8080, if
Python 2 is available, or python -m http.server 8080, if Python 3
is available.

4. Navigate to the directory of the specific project and open the required
web-page directly in a browser. This way is discouraged, as some
browsers may refuse to load data correctly due to security reasons.

B.3 Toy Network Data

First we present data for the running example in Figure 2.1, which provide a
concise showcase for all the methods in this thesis. The project is available
either at the URL: http://dibimath.github.io/Toy_example or in the
folder Toy_example on the attached medium.

The network is constructed based on the description in Figure 2.1, with
a single property as shown in Figure 3.1. There are three selections:

e all: is the set of all the 324 non-normalized parametrizations of the
network. This set is included for illustration and cannot be produced
by TREMPPI without disabling the normalization procedure.

e normalized: is the set of all the 144 normalized parametrizations of
the network.

e single_parametrization: is the one specific parametrization selected for
illustration of labels, as shown in Figure 3.2.

o selected: is the set of parametrizations used for comparison in Fig-
ure 3.3.

114

http://dibimath.github.io/Toy_example

B.4 EGFR Data

B.4 EGFR Data

The supporting data for the study in Section 4.1 are available either in the
folder EGFR or at http://dibimath.github.io/EGFR/.

Altogether there are 160 properties we have used for model checking.
The name of each property contains the cell line, the intervention strategy
and possible letters m for monotonicity constraints and s for stability con-
straint. Recall that this study was mainly focused on the performance of the
MC procedure, therefore the only reports available are the qualitative and
quantitative comparison for each cell line and any of the 5 different types of
selection from Figure 4.1c.

B.5 HGF Data

The data for the study in Section 4.2 are available either in the folder HGF
or at http://dibimath.github.io/HGF/.

For this case study we have constructed a network with 5 properties as
described in Section 4.2.1. Based on these properties we made three selec-
tions as detailed in Section 4.2.2. For each of these selections we have then
constructed qualitative, quantitative, regulations, and correlations reports.

B.6 E. Coli Data

The last study—FEscherichia coli biofilm production—is available either at
the URL http://dibimath.github.io/Ecoli_biofilm/ or in the folder
Ecoli_biofilm.

For this study we have constructed the network as explained in Sec-
tion 4.3.2, and derived 32 properties, as explained in Section 4.3.3. For these
32 there is the relaxed selection of only 15 of them and the strict selection
with all the 32. We have created all the reports for this study, however
only the regulatory functions are of interest for the analysis in Section 4.3.5,
which are available in the qualitative report.

115

http://dibimath.github.io/EGFR/
http://dibimath.github.io/HGF/
http://dibimath.github.io/Ecoli_biofilm/

Erklarung zur Dissertation

Hiermit erklare ich, dass ich alle Hilfsmittel und Hilfen angegeben habe und
ich versiche, dass ich auf dieser Grundlage die Arbeit selbststéindig verfasst
habe. Die Arbeit wurde in einem fritheren Promotionsverfahren nicht ein-
gereicht.

Hereby I declare that I have listed all auxiliary means used and I assure
that I have written this thesis myself. The thesis has not been submitted

before.

Berlin, 11.4.2016

Adam Streck

116

	Introduction
	Background
	Logical Modelling
	Regulatory Network
	Regulatory Contexts
	Parametrization
	Transition System

	Model Checking
	Büchi Automata
	Synchronous Product
	Automata Hierarchy
	Property Metrics

	Methods
	Enumeration
	Regulation Constraints
	Direct Constraints
	Normalization Constraint

	Data Encoding
	Measurements
	Delta Constraints
	Ending
	Experimental Setup

	Labels
	Sign
	Indegree
	Cost
	Robustness
	Impact
	Bias
	Regulatory Function

	Selection and Analysis
	Explicit Qualitative Report
	Explicit Quantitative Report
	Inferred Regulation Graph
	Correlation Graph
	Witness Graph

	TREMPPI

	Applications
	EGFR Signalling
	Model Building
	Data Encoding
	Results
	Performance

	HGF Signalling
	Network and Properties
	Selection and Analysis

	E. Coli Biofilm Production
	Curli Fimbriae Expression
	Derivation of the Logical Model
	Formalisation of the Experimental Data
	Results of the MC Procedure
	Translating Parameter Constraints

	Algorithms and Proofs
	Constructing a Parametrization Space
	Computing Regulation Constraints
	Computing Direct Constraints
	Computing Normalization Constraints

	Conservative Graph Manipulations
	Canonical Parametrizations
	Completion
	Equivalence of Complete Networks

	Network Minimization
	Observability in Transition Systems
	Monotone Target Value
	Normalization Algorithm
	Observability in Normalized Parametrization
	Minimizing the Model
	Complexity

	Encoding
	Basic Measurements Automaton
	State-conditional Büchi Automata
	Encoding Measurements
	Encoding Deltas
	Open Ending
	Stable Ending
	Cyclic Ending
	Encoding Experiments

	Model Checking with Parameter Uncertainty
	Property Checking
	Trace
	Robustness
	Extending to Deterministic BA
	Extending to Non-deterministic BA

	Labels and Reports
	Storage

	Conclusion
	Related Work
	Summary
	Outlook

	Nomenclature
	Supplementary Files
	TREMPPI
	Understanding Case Studies
	Toy Network Data
	EGFR Data
	HGF Data
	E. Coli Data

