Aus der Klinik für Klauentiere
des Fachbereichs Veterinärmedizin
der Freien Universität Berlin

Untersuchungen zu den Konzentrationen
an Mengen- und Spurenelementen
im Harn von Holstein-Friesian
Milchkühen

Inaugural-Dissertation
zur Erlangung des Grades eines
Doktors der Veterinärmedizin
an der
Freien Universität Berlin

vorgelegt von

Jeannine Ehlert
Tierärztin aus Pasewalk

Berlin, 2015
Journal-Nr.: 3838
Meiner Familie
Inhaltsverzeichnis

1 Einleitung .. 1

2 Literaturübersicht .. 2

2.1 Allgemeine Aspekte zu den Mineralstoffen .. 2

2.2 Mengenelemente ... 5

2.2.1 Kalium ... 5

2.2.2 Natrium .. 7

2.2.3 Magnesium .. 9

2.2.4 Kalzium ... 11

2.2.5 Chlorid ... 14

2.2.6 Phosphor .. 15

2.2.7 Schwefel .. 17

2.3 Spurenelemente .. 18

2.3.1 Kupfer .. 18

2.3.2 Selen ... 23

2.3.3 Zink ... 28

2.3.4 Eisen ... 33

2.3.5 Mangan .. 38

2.3.6 Molybdän ... 40

2.3.7 Iod .. 43

2.3.8 Chrom ... 45

2.3.9 Kobalt .. 47

2.4 Ultra-Spurenelemente ... 48

2.4.1 Cadmium .. 48

2.4.2 Aluminium .. 51

2.4.3 Blei ... 53

2.5 Akzidentielle Spurenelemente .. 55

2.5.1 Strontium .. 55

3 Material und Methoden ... 57

3.1 Allgemeine Angaben .. 57

3.2 Probanden ... 57
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Probenmaterial</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Analytik</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>Statistik</td>
<td>58</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Deskriptive Statistik</td>
<td>59</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Grenzwerte</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>Ergebnisse</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Kalium</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Natrium</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Magnesium</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Kalzium</td>
<td>68</td>
</tr>
<tr>
<td>4.5</td>
<td>Chlorid</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Phosphor</td>
<td>74</td>
</tr>
<tr>
<td>4.7</td>
<td>Schwefel</td>
<td>76</td>
</tr>
<tr>
<td>4.8</td>
<td>Kupfer</td>
<td>79</td>
</tr>
<tr>
<td>4.9</td>
<td>Selen</td>
<td>82</td>
</tr>
<tr>
<td>4.10</td>
<td>Zink</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>Eisen</td>
<td>88</td>
</tr>
<tr>
<td>4.12</td>
<td>Mangan</td>
<td>91</td>
</tr>
<tr>
<td>4.13</td>
<td>Molybdän</td>
<td>93</td>
</tr>
<tr>
<td>4.14</td>
<td>Chrom</td>
<td>96</td>
</tr>
<tr>
<td>4.15</td>
<td>Kobalt</td>
<td>98</td>
</tr>
<tr>
<td>4.16</td>
<td>Cadmium</td>
<td>101</td>
</tr>
<tr>
<td>4.17</td>
<td>Aluminium</td>
<td>103</td>
</tr>
<tr>
<td>4.18</td>
<td>Blei</td>
<td>106</td>
</tr>
<tr>
<td>4.19</td>
<td>Strontium</td>
<td>108</td>
</tr>
<tr>
<td>5</td>
<td>Diskussion</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Kalium</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Natrium</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>Magnesium</td>
<td>113</td>
</tr>
<tr>
<td>5.4</td>
<td>Kalzium</td>
<td>113</td>
</tr>
<tr>
<td>5.5</td>
<td>Chlorid</td>
<td>114</td>
</tr>
<tr>
<td>5.6</td>
<td>Phosphor</td>
<td>115</td>
</tr>
<tr>
<td>5.7</td>
<td>Schwefel</td>
<td>116</td>
</tr>
<tr>
<td>5.8</td>
<td>Kupfer</td>
<td>116</td>
</tr>
<tr>
<td>5.9</td>
<td>Selen</td>
<td>117</td>
</tr>
</tbody>
</table>
5.10 Zink .. 118
5.11 Eisen ... 118
5.12 Mangan .. 119
5.13 Molybdän .. 119
5.14 Chrom .. 120
5.15 Kobalt .. 120
5.16 Cadmium .. 121
5.17 Aluminium ... 121
5.18 Blei ... 122
5.19 Strontium ... 122
6 Schlussfolgerungen ... 123
7 Zusammenfassung .. 125
8 Summary .. 128
9 Literaturverzeichnis ... 131
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AES</td>
<td>Atomemissionsspektroskopie</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosinmonophosphat</td>
</tr>
<tr>
<td>a.p.</td>
<td>ante partum</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>AP</td>
<td>alkalische Phosphatase</td>
</tr>
<tr>
<td>Ca</td>
<td>Kalzium</td>
</tr>
<tr>
<td>cAMP</td>
<td>zyklisches Adenosinmonophosphat</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Cl</td>
<td>Chlorid</td>
</tr>
<tr>
<td>Co</td>
<td>Kobalt</td>
</tr>
<tr>
<td>Cu</td>
<td>Kupfer</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>Fe</td>
<td>Eisen</td>
</tr>
<tr>
<td>FM</td>
<td>Frischmasse</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>optische Emissionsspektroskopie mit induktiv gekoppeltem Plasma</td>
</tr>
<tr>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>KS- Test</td>
<td>Kolmogorov- Smirnov- Test</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LM</td>
<td>Lebendmasse</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol</td>
</tr>
<tr>
<td>Mn</td>
<td>Mangan</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdän</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>N</td>
<td>Fallzahl</td>
</tr>
<tr>
<td>n</td>
<td>Stichprobenumfang</td>
</tr>
<tr>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>P</td>
<td>Phosphor</td>
</tr>
<tr>
<td>p</td>
<td>Signifikanzniveau</td>
</tr>
<tr>
<td>Pb</td>
<td>Blei</td>
</tr>
<tr>
<td>p.p</td>
<td>post partum</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million „Teile von einer Million“</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>S</td>
<td>Schwefel</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Se</td>
<td>Selen</td>
</tr>
<tr>
<td>SeMet</td>
<td>Selenomethionin</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>TMR</td>
<td>totale Mischration</td>
</tr>
<tr>
<td>TS</td>
<td>Trockensteher</td>
</tr>
<tr>
<td>U</td>
<td>internationale Einheit</td>
</tr>
<tr>
<td>üM.</td>
<td>Über dem Meeresspiegel</td>
</tr>
<tr>
<td>Vb</td>
<td>Vollblut</td>
</tr>
<tr>
<td>Vit.</td>
<td>Vitamin</td>
</tr>
<tr>
<td>VK</td>
<td>Variationskoeffizient</td>
</tr>
<tr>
<td>Zn</td>
<td>Zink</td>
</tr>
</tbody>
</table>
1 Einleitung

2 Literaturübersicht

2.1 Allgemeine Aspekte zu den Mineralstoffen

Als akzidentielle Spurenelemente werden Begleitelemente, wie Strontium, Silber und Quecksilber bezeichnet. Zwar entfalten diese Begleitelemente keine bisher bekannte physiologische Funktion, können aber bei erhöhter Aufnahme toxisch wirken und die Homöostase von essentiellen Spurenelementen beeinflussen (KIRCHGESSNER 2004).

Abb. 1: Abhängigkeit des Wachstums vom Spurenelementangebot (ANKE 1993)

Der Bereich der pharmakodynamischen Wirkung stellt bei den Spurenelementen eine Besonderheit dar. KIRCHGESSNER (1987a) unterscheidet je nach Zufuhr zwischen folgenden Versorgungslagen mit Mineralstoffen:

1. Mangelhafte Versorgung: gekennzeichnet durch klinische Symptome
2. Suboptimale Versorgung: biochemische Veränderungen im Stoffwechsel gegenüber dem Optimalzustand, jedoch ohne klinische Symptome
3. Optimale Versorgung: gewährleistet volle Gesundheit und Leistungsfähigkeit
4. Subtoxische Versorgung: gekennzeichnet durch biochemische Veränderungen im Stoffwechsel; noch ohne klinische Symptome
5. Toxische Zufuhr: gekennzeichnet durch klinische Symptome
Zur Beurteilung der Mineralstoffversorgung bietet sich zum einen eine Futtermittelanalyse an, womit sich auch auf die Anwesenheit von Antagonisten schließen lässt. Zum anderen eignet sich für die Beurteilung des Versorgungsstatus je nach Element die Analyse von Blutplasma, Speichel und Harn (GÜNTER 1991; GROPPEL 1995a), wie in der Tabelle 1 gezeigt wird.

Tab. 1: Diagnostische Möglichkeiten zur Erkennung einer mineralischen Fehlernährung (GÜNTER 1991)

<table>
<thead>
<tr>
<th>Element</th>
<th>Untersuchung von</th>
<th>Boden</th>
<th>Futter</th>
<th>Blutplasma</th>
<th>Speichel</th>
<th>Harn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natrium</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kalium</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kalzium</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phosphor</td>
<td></td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Kupfer</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eisen</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Zink</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mangan</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selen</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Molybdän</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kobalt</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2.2 Mengenelemente

2.2.1 Kalium

Da Kalium ausreichend im Futter enthalten ist, wird der Bedarf des Rindes (Tab. 2) gedeckt und Mangelerscheinungen treten äußerst selten auf (NRC 2005). Ein erhöhter Bedarf besteht während der Laktation, da mit 1,5 g/l Kalium in der Milch eine hohe Kaliummenge ausgeschieden wird (SUTTLE 2010).
Tab. 2: Kaliumbedarf von Rindern

<table>
<thead>
<tr>
<th>Tierart</th>
<th>g/kg TM Futter</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinder</td>
<td>6,0</td>
<td>NRC 2000</td>
</tr>
<tr>
<td></td>
<td>5-8</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td>laktierende Kühe</td>
<td>10,0</td>
<td>NRC 2001</td>
</tr>
<tr>
<td>wachsende Kälber</td>
<td>3,4 - 5,8</td>
<td>WEIL et al. 1988</td>
</tr>
</tbody>
</table>

Tab. 3: Physiologischer Kaliumgehalt in Serum und Urin

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gruppe</th>
<th>Kalium in mmol/l</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>adulte Rinder</td>
<td>3,9 – 5,2</td>
<td>KRAFT u. DÜRR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5 – 10</td>
<td>2005</td>
</tr>
<tr>
<td></td>
<td>Kälber, Jungrinder</td>
<td>4,3 – 5,3</td>
<td>KRAFT u. DÜRR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2005</td>
</tr>
<tr>
<td>Urin</td>
<td>adulte Rinder</td>
<td>150 – 300</td>
<td>KRAFT u. DÜRR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2005</td>
</tr>
</tbody>
</table>
2.2.2 Natrium

Die Natriumhomöostase wird durch Wasseraufnahme (Durst), die Wirkung von Renin, Adiuretin, Aldosteron und die Flüssigkeitsreserve im Verdauungstrakt gesteuert. So wird, außer bei starkem Durchfall, der physiologische Natriumspiegel des Blutserums (Tab. 4) auch bei mangelhafter Kochsalzzufuhr aufrechterhalten (DIRKSEN et al. 2006; HOGAN et al. 2007).
Tab. 4: Referenzwerte für Natriumkonzentrationen in verschiedenen Medien beim Rind

<table>
<thead>
<tr>
<th>Medien</th>
<th>Na-Gehalt</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>130 – 145 mmol/l</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td></td>
<td>135 – 157 mmol/l</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Kalb:</td>
<td>115 – 145 mmol/l</td>
<td>DIREKSEN 2006</td>
</tr>
<tr>
<td>adulte Rind:</td>
<td>135 – 155 mmol/l</td>
<td></td>
</tr>
<tr>
<td>Urin</td>
<td>3 – 60 mmol/l</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td>Futter</td>
<td>0,5 – 1 g/kg TM</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td></td>
<td>0,6 – 0,8 g/kg TM</td>
<td>MORRIS u. MURPHY 1972</td>
</tr>
<tr>
<td>laktierende Rinder:</td>
<td>1 g/kg TM</td>
<td>EDMEADES u. O’CONNOR 2003</td>
</tr>
</tbody>
</table>

Durch diese und weitere hormonelle Mechanismen kann eine adequate Versorgung der Rinder nicht allein über Blutparameter oder Gewebe geprüft werden, sondern es sollten Futterproben und Urinproben dazu herangezogen werden (NRC 2005).
2.2.3 Magnesium

Laktierende Kühe zwischen 500 - 600 kg LM benötigen 2,5 - 3 g Mg/Tag plus 0,12 g pro Liter Milchleistung, was (bei 20 - 30l) 5 - 6,5 g Mg/Tag ergibt (STÖBER u. SCHOLZ 2006). Der NRC (2005) spricht von einem 0,15 - 0,3 % igen Gehalt an Magnesium in der Futter-TM von Rindern, um bedarfsdeckend zu sein. Magnesium ist im Organismus zu 60 - 70 % im Knochen gespeichert (UNDERWOOD u. SUTTLE 1999). Der Rest befindet sich hauptsächlich in der intrazellulären Flüssigkeit. Allerdings sind aus dem Skelettspeicher nur 2 % der Mg - Salze täglich für den Metabolismus in einer Mangelsituation verfügbar (NRC 2005; STÖBER u. SCHOLZ 2006).

Tab. 5: Magnesiumreferenzwerte in unterschiedlichen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Mg-Gehalt (mmol/l)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milch</td>
<td>3,3 – 7,4</td>
<td>STÖBER u. SCHOLZ 2006</td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td>Serum</td>
<td>0,7 – 1,2</td>
<td>STÖBER u. SCHOLZ 2006</td>
</tr>
<tr>
<td>normal</td>
<td>0,4 – 0,7</td>
<td></td>
</tr>
<tr>
<td>subnormal</td>
<td>0,08 – 0,4</td>
<td></td>
</tr>
<tr>
<td>krankhaft erniedrigt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>0,75 – 1,5</td>
<td>NRC 2005</td>
</tr>
<tr>
<td>Rinder</td>
<td>0,9 – 1,32</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Kälber</td>
<td>0,75 – 1,15</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Harn</td>
<td>3,7 – 16,5</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
</tbody>
</table>

Vergiftungen durch Magnesiumsalze werden durch Fütterungs- oder Behandlungsfehler verursacht. Über eine Toxikose bei oraler Aufnahme höherer Mengen Magnesium wird bei intakter Nierenfunktion nicht berichtet. Allerdings kann eine sehr hohe Einzeldosis zu einer Hypermagnesämie mit Sedation führen. Akute und chronische Vergiftungen führen zu Diarrhoe und Appetitlosigkeit (NRC 2005). PETERSSON et al. (1988) stellten bei Kälbern bei 0,3 % Mg im Futter geringere Gewichtszunahmen und bei 0,6 % Mg sogar Nierensteine fest. JITTAKHOT et al. (2004a) führten einen ähnlichen Versuch mit Rindern durch (mit 0,37 % und 0,63 % Mg im Futter). Sie konnten während der 16 Tage des Versuchs keine

2.2.4 Kalzium

Zusätzlich führt eine Trockensteherration mit reichlichem Kalziumgehalt dazu, dass Kühe ihren Bedarf (Tab. 7) mit passiv resorbierbarem Kalzium decken und so ebenfalls die Menge an Vitamin-D3-Rezeptoren abnimmt. Schnell verfügbares Kalzium macht nur 0,3 % (15-20 g) des im Körper gespeicherten Elements aus. Ungefähr 8 g werden mit Harn und Faeces ausgeschieden. Milch enthält pro Liter etwa 1,25 g und im Kolostrum sind es pro Liter sogar 1,8-2,5 g Kalzium. Trockenstehende Kühe benötigen für den Aufbau des fetalen Skeletts 4-5 g Ca am Tag (DIRKSEN et al. 2006). Eine Fütterung mit sauren Salzen erhöht die Sensitivität der Knochen und der Nieren für Parathormon (PHILLIPPO et al. 1994; GOFF u. HORST 1997; GOFF 2007) und führt zu einem Anstieg der Kalziumkonzentration im Plasma vor der Kalbung (CHARBONNEAU et al. 2006).

Tab. 6: Referenzwerte für Kalziumgehalte in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Ca- Gehalt (mmol/l)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harn</td>
<td>< 2,5</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Plasma adulte Kühe</td>
<td>2,0 - 2,54</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Plasma Kälber</td>
<td>2,4 - 3,0</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>2,25 – 2,75</td>
<td>NRC 2005</td>
</tr>
<tr>
<td>Serum physiologisch</td>
<td>2,1 – 2,7</td>
<td></td>
</tr>
<tr>
<td>Serum Hypokalzämie</td>
<td>1,9</td>
<td>DIRKSEN et al. 2006</td>
</tr>
<tr>
<td>Serum Gebärparese</td>
<td>< 1,5</td>
<td></td>
</tr>
<tr>
<td>Kälber marginal</td>
<td>1,8 – 2,0</td>
<td>SUTTLE 2010</td>
</tr>
<tr>
<td>Kühne marginal</td>
<td>1,3 – 2,0</td>
<td></td>
</tr>
<tr>
<td>Gebärparese</td>
<td><1,75</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 7: Tagesbedarf von Kalzium nach DIRKSEN et al. (2006)

<table>
<thead>
<tr>
<th>Altersgruppe/Produktionszweig</th>
<th>Kalziumbedarf pro Tag in g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufzuchtkälber (60-130 kg LM)</td>
<td>10 - 22</td>
</tr>
<tr>
<td>Mastkälber (70-170 kg LM)</td>
<td>22 - 35</td>
</tr>
<tr>
<td>Mastbullen (150-550 kg LM)</td>
<td>43 – 50</td>
</tr>
<tr>
<td>Milchkühe (650 kg LM)</td>
<td></td>
</tr>
<tr>
<td>bis 10 kg (4% Fett) Milch:</td>
<td>55</td>
</tr>
<tr>
<td>20 kg Milch:</td>
<td>86</td>
</tr>
<tr>
<td>30 kg Milch:</td>
<td>114</td>
</tr>
<tr>
<td>40 kg Milch:</td>
<td>144</td>
</tr>
</tbody>
</table>

2.2.5 Chlorid

Als wichtigstes Anion der extrazellulären Flüssigkeit ist Chlorid zusammen mit Natrium essentiell für die osmotische und Säure-Basen-Balance (HARPER et al. 1997; SUTTLE 2010). Metabolismus, Funktion und Bedarf dieser beiden Elemente hängen stark zusammen und sind im Natriumteil unter Kochsalz bereits beschrieben. Der Bedarf (Tab. 8) von Chlorid ist mit dem Futter meistens mit 0,3-0,5 % (NRC 2005) beziehungsweise 1-3 g/kg TM gedeckt (SUTTLE 2010) und Mangelsituationen treten eher selten auf. Symptome sind verringerte Milchproduktion, Obstipation und Herz-Kreislauf-Schwäche (FETTMAN et al. 1984).

Tab. 8: Referenzwerte für Chloridgehalte in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Cl- Gehalt (mmol/l)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>normal</td>
<td>95-110</td>
</tr>
<tr>
<td></td>
<td>niedrig</td>
<td>70-85</td>
</tr>
<tr>
<td></td>
<td>hoch</td>
<td>>150</td>
</tr>
<tr>
<td>Urin</td>
<td>niedrig</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>normal</td>
<td>40-160</td>
</tr>
</tbody>
</table>
2.2.6 Phosphor

Tab. 9: Tagesbedarf von Phosphor nach DIRKSEN et al. (2006)

<table>
<thead>
<tr>
<th>Altersgruppe/ Produktionszweig</th>
<th>P-Bedarf pro Tag in g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufzuchtkälber (60-130 kg LM)</td>
<td>6 - 13</td>
</tr>
<tr>
<td>Mastkälber (70-170 kg LM)</td>
<td>14 - 21</td>
</tr>
<tr>
<td>Mastbullen (150-550 kg LM)</td>
<td>22 - 31</td>
</tr>
<tr>
<td>Milchkühe (650 kg LM)</td>
<td></td>
</tr>
<tr>
<td>bis 10 kg (4% Fett) Milch:</td>
<td>41</td>
</tr>
<tr>
<td>20 kg Milch:</td>
<td>58</td>
</tr>
<tr>
<td>30 kg Milch:</td>
<td>75</td>
</tr>
<tr>
<td>40 kg Milch:</td>
<td>98</td>
</tr>
</tbody>
</table>

Tab. 10: Referenzwerte für Phosphorgehalte in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>P-Gehalt in mmol/l</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harn</td>
<td>0,1 - 3,3</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Serum stark altersabhängig</td>
<td>1,55 – 2,29</td>
<td></td>
</tr>
<tr>
<td>Frischabkalber</td>
<td>1,26 – 2,13</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Kälber</td>
<td>1,9 – 3,0</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 11: Phosphorkonzentration in Serum und Milch

<table>
<thead>
<tr>
<th>Menge im Futter</th>
<th>Serum in mg/l</th>
<th>Milch in g/l</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,34 % P</td>
<td>39</td>
<td>0,89</td>
<td>KNOWLTON u. HERBEIN 2002</td>
</tr>
<tr>
<td>0,51 % P</td>
<td>45</td>
<td>0,90</td>
<td></td>
</tr>
<tr>
<td>0,67 % P</td>
<td>57</td>
<td>0,89</td>
<td></td>
</tr>
</tbody>
</table>

2.2.7 Schwefel

Wiederkäuer haben einen Schwefelbedarf von 0,16-0,24 % TM der Ration, das entspricht 50-70 mg/kg LM und Tag (DIRKSEN 2006). Die Absorption erfolgt über spezifische Transportprozesse über die Darmwand. 77-87 % des Schwefels werden als Natrium- und

2.3 Spurenelemente

2.3.1 Kupfer

Symptome wie Immunsuppression, Anämie, Achromotrichie (UNDERWOOD u. SUTTLE 1999; CERONE et al. 2000; SPEARS u. WEISS 2008), enzootische Ataxie (Neuronale

Der Bedarf adulter Wiederkäuer beträgt 8 mg/kg TS (ANKE, 1993; WIESEMÜLLER, 1994; KOSLA et al. 1994). Nach ANKE et al. (1989c) verdoppelt sich der Kupferbedarf bei Anwesenheit von Antagonisten. Einen Überblick bietet die Abbildung 2.

Abb. 2: Kupferantagonisten (ANKE et al. 1994a)

Abb. 3: Kupferstoffwechsel

Daher sind Wiederkäuer empfindlicher bezüglich der Toleranz einer hohen Kupferaufnahme und die einzigen Tiere, bei denen eine Kupfervergiftung zum Tode führen kann. Während Schweine in Fütterungsversuchen bei Kupferkonzentrationen von 250 mg/kg im Futter keinerlei Krankheitssymptomatik zeigen, lösen schon 40 mg/kg Kupfer im Futter von Schafen toxische Symptome aus (SCHENBERG, 1984). Nach NRC (2005) ist der maximal tolerierbare Gehalt von Kupfer auf 40 mg/kg TS für Rinder heruntergesetzt worden.

Da Kupfer im Plasma bis zu 88 % an Caeruloplasmin gebunden ist, könnte man analytisch den Caeruloplasmingehalt bestimmen. Vergleicht man den Kupfergehalt von Serum und Plasma, so kann dieser im Serum individuell bis zu 20 % erniedrigt sein (LAVEN u. LIVESEY 2006), was am Gerinnungsprozess liegt. KEGLEY u. SPEARS (1994), YOST et al. (2002) und SPEARS et al. (2004b) zogen für Ihre Studien der Bioverfügbarkeit von

Tab. 12: Referenzwerte für Kupfergehalte in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Kupfergehalt</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>763-1207 µg/l</td>
<td>GROPPEL 1995a</td>
</tr>
<tr>
<td></td>
<td>508-2478 µg/l</td>
<td>ROSENBERGER 1990</td>
</tr>
<tr>
<td></td>
<td>763-1462 µg/l =ausreichend</td>
<td>MACKENZIE et al. 1996</td>
</tr>
<tr>
<td></td>
<td>508-763 µg/l =marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td><508 µg/l =defizitär</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>801-1201 µg/l</td>
<td>ROSSOW u. BOLDUAN 1994</td>
</tr>
<tr>
<td></td>
<td><450 µg/l =Mangel</td>
<td>GELFERT u. STAUFENBIEL 1998</td>
</tr>
<tr>
<td></td>
<td>800-1200 µg/l</td>
<td>DIRKSEN et al. 2002</td>
</tr>
<tr>
<td></td>
<td>794-2084 µg/l</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Leber</td>
<td>>35 mg/kg TM</td>
<td>GELFERT u. STAUFENBIEL 1998</td>
</tr>
<tr>
<td></td>
<td>30-350 mg/kg TM</td>
<td>DIRKSEN et al. 2002</td>
</tr>
<tr>
<td></td>
<td>>35 mg/kg TM</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td>Haare</td>
<td><6 mg/kg TM =Mangel</td>
<td>ANKE et al. 1980a; PIATKOWSKI et al. 1990; GROPPEL 1995a</td>
</tr>
<tr>
<td></td>
<td>8-15 mg/kg TM</td>
<td>WIESNER 1970</td>
</tr>
<tr>
<td></td>
<td>6,6-10,4 mg/kg TM</td>
<td>DIRKSEN et al. 2002</td>
</tr>
<tr>
<td></td>
<td>>0,1 mg/kg TM</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
</tbody>
</table>
2.3.2 Selen

Tab. 13: Effekt auf Milch-, Blut-, Urin- und Faeceskonzentrationen von Milchkühen bei Supplementation von organischem Selen (JUNIPER et al. 2006)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Kontrollgruppe</th>
<th>Organisches Selen (Sel-Plex)</th>
<th>Anorganisches Selen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se im Futter</td>
<td>0,15</td>
<td>0,27</td>
<td>0,33</td>
</tr>
<tr>
<td>Blut Se (µg/l)</td>
<td>211</td>
<td>214</td>
<td>235</td>
</tr>
<tr>
<td>SeMet im Blut (mg/l)</td>
<td>11,0</td>
<td>20,9</td>
<td>29,3</td>
</tr>
<tr>
<td>Milch Se (µg/l)</td>
<td>19,4</td>
<td>27,8</td>
<td>40,3</td>
</tr>
<tr>
<td>SeMet in Milch (mg/l)</td>
<td>4,6</td>
<td>7,5</td>
<td>11,2</td>
</tr>
<tr>
<td>Urin Se (mg/l)</td>
<td>0,02</td>
<td>0,05</td>
<td>0,08</td>
</tr>
<tr>
<td>Faeces Se (mg/kg TM)</td>
<td>0,37</td>
<td>0,51</td>
<td>0,65</td>
</tr>
</tbody>
</table>
Tab. 14: Referenzwerte für Selen in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Selenstatus</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollblut</td>
<td>normal</td>
<td>SCHOLZ 1990</td>
</tr>
<tr>
<td></td>
<td>marginal</td>
<td>MAAS et al. 1990</td>
</tr>
<tr>
<td></td>
<td>defizitär</td>
<td></td>
</tr>
<tr>
<td>>70 µg/l</td>
<td>30-70 µg/l</td>
<td></td>
</tr>
<tr>
<td>70-100 µg/l</td>
<td>50-60 µg/l</td>
<td></td>
</tr>
<tr>
<td>50-100 µg/l</td>
<td><30 µg/l</td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>normal</td>
<td>ROSENBERGER 1990</td>
</tr>
<tr>
<td></td>
<td>marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defizitär</td>
<td></td>
</tr>
<tr>
<td>>70 µg/l</td>
<td>40-70 µg/l</td>
<td>WHITEHAIR 1986</td>
</tr>
<tr>
<td>>40 µg/l</td>
<td><40 µg/l</td>
<td>BOSTEDT u. SCHRAMEL 1990</td>
</tr>
<tr>
<td>Milch</td>
<td>normal</td>
<td>PIATKOWSKI et al. 1990</td>
</tr>
<tr>
<td></td>
<td>marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defizitär</td>
<td></td>
</tr>
<tr>
<td>>100 µg/kg TS</td>
<td>50-100 µg/kg TS</td>
<td>WHITEHAIR 1986</td>
</tr>
<tr>
<td>Futter</td>
<td>normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defizitär</td>
<td></td>
</tr>
<tr>
<td>>100 µg/kg TS</td>
<td>50-100 µg/kg TS</td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td>1,25-2,5 ng/mg TS</td>
<td>0,6-1,25 ng/mg TS</td>
</tr>
<tr>
<td>Glutathion-</td>
<td>>35 U/g Hb</td>
<td>MAAS 1990</td>
</tr>
<tr>
<td>peroxidase-</td>
<td>25-35 U/g Hb</td>
<td></td>
</tr>
<tr>
<td>Aktivität</td>
<td><25 U/g Hb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-161 U/g Hb</td>
<td>ROGERS und MEE 1996</td>
</tr>
<tr>
<td></td>
<td>32-42 U/g Hb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-32 U/g Hb</td>
<td></td>
</tr>
</tbody>
</table>

2.3.3 Zink

Tab. 15: Zinkgehalte im Futter (mg/kg TS) und im Blut (µmol/l) von 48 Kälbern in Abhängigkeit von der Zinkquelle (WRIGHT u. SPEARS 2004)

<table>
<thead>
<tr>
<th>Zinkzulagen im Futter (mg/kg TS)</th>
<th>Quellen</th>
<th>Zeitdauer in Tagen</th>
<th>Blutkonzentration in µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>98</td>
<td>16,8</td>
</tr>
<tr>
<td>20</td>
<td>Zinksulfat</td>
<td></td>
<td>18,4</td>
</tr>
<tr>
<td>20</td>
<td>Zink-Proteinat</td>
<td></td>
<td>18,2</td>
</tr>
<tr>
<td>20</td>
<td>Zink-Mix</td>
<td></td>
<td>17,4</td>
</tr>
<tr>
<td>500</td>
<td>Zinksulfat</td>
<td></td>
<td>27,4</td>
</tr>
<tr>
<td>500</td>
<td>Zink-Proteinat</td>
<td></td>
<td>35,6</td>
</tr>
<tr>
<td>500</td>
<td>Zink-Mix</td>
<td></td>
<td>35,2</td>
</tr>
</tbody>
</table>

Zink-Mix = je 50 % Zinksulfat und Zink-Proteinat

Für eine bedarfsgerechte Versorgung großer Wiederkäuer werden nach GFE (2001) 50 mg/kg TS im Futter empfohlen. PIATKOWSKY et al. (1990) und ANKE (1993) halten 30 mg/kg TS für wachsende Tiere und 40 mg/kg TS für laktierende Kühe für ausreichend.

Tab. 16: Referenzwerte für Zink in verschiedenen Medien (µg/l)

<table>
<thead>
<tr>
<th>Medium</th>
<th>Zn-Gehalt</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>850-1240 = ausreichend</td>
<td>MAAS 1987</td>
</tr>
<tr>
<td></td>
<td>390-785 = marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 390 = defizitär</td>
<td></td>
</tr>
<tr>
<td></td>
<td>915-3000</td>
<td>GROPPEL 1995a</td>
</tr>
<tr>
<td></td>
<td>655-1310</td>
<td>ROSENBERGER 1990;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HOFMANN 1992</td>
</tr>
<tr>
<td></td>
<td>920 (Kalb p.p.)</td>
<td>BOSTEDT u. SCHRAMEL</td>
</tr>
<tr>
<td></td>
<td>1120 (Kalb 6. Woche p.p.)</td>
<td>1982</td>
</tr>
<tr>
<td></td>
<td>520-1240</td>
<td>SPOLDERS et al. 2010</td>
</tr>
<tr>
<td></td>
<td>600-1900</td>
<td>HERDT u. HOFF 2011</td>
</tr>
<tr>
<td>Plasma</td>
<td>745-1500</td>
<td>MÄNNER u. BRONSCH</td>
</tr>
<tr>
<td></td>
<td>785-1180</td>
<td>NRC 1984</td>
</tr>
<tr>
<td></td>
<td>< 390 = defizitär</td>
<td>MEYER et al. 1989</td>
</tr>
<tr>
<td></td>
<td>720-1500</td>
<td>SCHOLZ 1990</td>
</tr>
<tr>
<td></td>
<td>800-1400 = ausreichend</td>
<td>MAAS 2007</td>
</tr>
<tr>
<td></td>
<td>500-800 = marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 400 = defizitär</td>
<td></td>
</tr>
<tr>
<td></td>
<td>920-1370</td>
<td>GUYOT et al. 2009</td>
</tr>
</tbody>
</table>

2.3.4 Eisen

Das am höchsten konzentrierte Spurenelement im Wirbeltierkörper ist Eisen mit durchschnittlich 70 mg/kg Körpermasse (MÄNNER u. BRONSCH 1987). Etwa die Hälfte des Gesamtkörpersens ist Bestandteil des Hämoglobins (SCHÜMANN et al. 1995; KIRCHGESSNER 2004). Es übernimmt die Funktion der Sauerstoffbindung im Blut mit dessen Transport in die Zellen des Organismus (NRC 1984; GROPPEL 1995). Im

Abb. 5: Verteilung des Körpereisens in einzelnen Verbindungen (Mittel von verschiedenen Spezies), (FLACHOWSKY 2005)

Im Futter liegt Eisen vorwiegend in Form von Eisenhydroxid oder in organischen Verbindungen vor und ist dreiwertig, welches in weit niedrigerem Maße als das zweiwertige Eisen absorbiert wird. Also werden diese Moleküle vom Organismus gespalten und in die lösliche und damit besser resorbierbare zweiwertige Form überführt. Die Aufnahme des Eisens erfolgt im Duodenum, wo es zum Transport an Transferrin gebunden wird. Je nach

Der Eisenbedarf für Aufzuchtkälber bis 150 kg liegt bei 100 mg/kg TS und für Rinder ab 150 kg bei 50 mg/kg TS (NRC 1984, 1989; GEH 1986; GÜRTLER u. ANKE 1993). Trächtige Kühe haben einen Bedarf von 60-80 mg/kg TS (WIESNER 1970), weil sich vor der Kalbung und am Anfang der Laktation der Eisenbedarf erhöht, während sich die Eisenverwertung gleichzeitig verschlechtert (KIRCHGESSNER et al. 1980). Bei einer Unterversorgung der Aufzuchtkälber mit 40-50 mg/kg TS ist eine normale Blutbildung und Gewichtszunahme zu sehen, aber es findet nur eine ungenügende Myoglobinsynthese im Muskelfaserzweige statt (ARC 1980).

Eine übermäßige Eisenzufuhr kann zu einer vermehrten Speicherung, also einer Hämochromatose, ohne Gewebeschädigung führen. Bei der angeborenen Erkrankung, der Hämochromatose, wird allerdings verstärkt Eisen resorbiert und in Leber, Myokard, Pankreas, endokrinen Drüsen und Hoden eingelagert, was sich in Hautpigmentierungen, Lebervergrößerung und Diabetes mellitus zeigt (LÖFFLER u. PETRIDES 1998).

Tab. 17: Referenzwerte für Eisengehalte in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Fe-Gehalt</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum/Plasma</td>
<td>22-50 µmol/l (1,2-2,8 mg/l)</td>
<td>ANKE 1994</td>
</tr>
<tr>
<td></td>
<td>26-40 µmol/l (1,5-2,2 mg/l)</td>
<td>GRAHAM 1991</td>
</tr>
<tr>
<td></td>
<td>13-33 µmol/l (0,7-1,8 mg/l)</td>
<td>KRAFT u. DÜRR 2005</td>
</tr>
<tr>
<td></td>
<td>0,9-2,7 mg/l</td>
<td>HERDT u. HOFF 2011</td>
</tr>
<tr>
<td></td>
<td>1,3-2,5 mg/l</td>
<td>PULS 1994</td>
</tr>
<tr>
<td>Hämatokrit</td>
<td>0,3-0,4 l/l</td>
<td>GEH 1986; ANKE 1994</td>
</tr>
<tr>
<td>Hämoglobin</td>
<td>80-120 g/l</td>
<td>GEH 1986; ANKE 1994</td>
</tr>
<tr>
<td>Totale Eisenbindungskapazität</td>
<td>71 µmol/l (3,9 mg/l)</td>
<td>ANKE 1994</td>
</tr>
<tr>
<td>Ferritinehalt</td>
<td>30-50 µg/l</td>
<td>ANKE 1994</td>
</tr>
<tr>
<td>Leber</td>
<td>45-300 µg/g Frischmasse <30 µg/g = Mangel</td>
<td>GRAHAM 1991; PULS 1994</td>
</tr>
<tr>
<td></td>
<td>140-1000 mg/kg TS</td>
<td>HERDT u. HOFF 2011</td>
</tr>
</tbody>
</table>

2.3.5 Mangan

Tab. 18: Referenzwerte für Mangan in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Mn-Gehalt</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>6-700 µg/l</td>
<td>GRAHAM 1991</td>
</tr>
<tr>
<td></td>
<td>0,9-6 µg/l</td>
<td>HERDT u. HOFF 2011</td>
</tr>
<tr>
<td>Plasma</td>
<td>25 µg/l</td>
<td>MEYER et al. 1989</td>
</tr>
<tr>
<td></td>
<td>5-11 µg/l</td>
<td>DIRKSEN et al. 2006</td>
</tr>
<tr>
<td>Vollblut</td>
<td>70-200 µg/l</td>
<td>MAAS 2007</td>
</tr>
<tr>
<td>Leber</td>
<td>1,5-3 µg/g Leberfrischmasse</td>
<td>GRAHAM 1991</td>
</tr>
<tr>
<td></td>
<td>5000-15000 µg/kg TS</td>
<td>HERDT u. HOFF 2011</td>
</tr>
<tr>
<td>Deckhaar</td>
<td>6 mg/kg TS</td>
<td>WIESNER 1970; PIATKOWSKI et al. 1990; GROPPEL 1995</td>
</tr>
<tr>
<td>Futter</td>
<td>40-200 mg/kg TS</td>
<td>CORAH u. IVES 1992</td>
</tr>
</tbody>
</table>

2.3.6 Molybdän

Boden keine Rolle, da in Leguminosen ein bedarfsdeckender Molybdängehalt vorhanden ist (ANKE et al. 1994c). Molybdängehalte im Weidegras werden mit 0,19 mg/kg TS (KLECZKOWSKI et al. 1995) bis 1,4 mg/kg TS bei belasteten Weiden in den neuen Bundesländern (ANKE et al. 1992b) angegeben.

Tab. 19: Referenzwerte für Molybdän in verschiedenen Medien

<table>
<thead>
<tr>
<th>Medium</th>
<th>Mo-Gehalt</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>2-35 µg/l</td>
<td>HERDT u. HOFF 2011</td>
</tr>
<tr>
<td>Plasma</td>
<td>10-100 µg/l</td>
<td>PULS 1994</td>
</tr>
<tr>
<td>Leber</td>
<td>1000-4000 µg/kg TS</td>
<td>HERDT u. HOFF 2011</td>
</tr>
</tbody>
</table>
2.3.7 Iod

Tab. 20: Iodbedarf im Futter nach MC DOWELL (2003)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleischrinder</td>
<td>0,50 mg/kg</td>
</tr>
<tr>
<td>Milchrinder im Wachstum</td>
<td>0,25 mg/kg</td>
</tr>
<tr>
<td>Laktierende Milchrinder</td>
<td>0,50 mg/kg</td>
</tr>
<tr>
<td>Schafe</td>
<td>0,1-0,8 mg/kg</td>
</tr>
</tbody>
</table>

Verlagerung der Iodausscheidung von der Milch zu Urin und Kot bei Verfütterung von Rapsmehl mit erhöhtem Serumiodgehalt.

2.3.8 Chrom

Chrom liegt im Boden mit einer Konzentration von 10-100 mg/kg vorwiegend in dreiwertiger Form vor. Sechswertiges Chrom geht in Anwesenheit von Elektronendonatoren, wie organischer Materie, in seine dreiwertige Form über. In Pflanzen sind geringe Chromgehalte von 0,05-0,1 mg/kg Trockensubstanz üblich, da Chrom im Boden schlecht löslich und gering verfügbar ist (FINCK 1991).

entscheidend, da nach Abtrennung des Chroms die Trypsinaktivität auf 5 % ihres Ausgangswertes abfällt. Chrom ist am Mineralstoff-, Protein- und Kohlenhydratstoffwechsel sowie an der Fettsäure- und Cholesterinsynthese beteiligt (MÄNNER u. BRONSCHE 1987).

2.3.9 Kobalt

Tab. 2: Referenzwerte für Kobalt und Vitamin B12 in verschiedenen Medien

<table>
<thead>
<tr>
<th>Gehalt in Milch (µg/l)</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kobalt</td>
<td></td>
</tr>
<tr>
<td>0,6 – 0,9</td>
<td>WIESNER 1970</td>
</tr>
<tr>
<td>0,4 – 1,1</td>
<td>NRC 1989</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ANKE 1993</td>
</tr>
<tr>
<td>0,1 – 2,1</td>
<td>JUDSON et al. 1982</td>
</tr>
<tr>
<td>Gehalt in Serum (µg/l)</td>
<td></td>
</tr>
<tr>
<td>< 0,2 – 0,3 Defizit</td>
<td>PIATKOWSKI et al. 1990</td>
</tr>
</tbody>
</table>

2.4 Ultra-Spurenelemente

2.4.1 Cadmium

Tab. 22: Cadmiumkonzentrationen in Wiederkäuerorganen und –flüssigkeiten (in mg/kg oder mg/l)

<table>
<thead>
<tr>
<th>Tierart</th>
<th>Menge</th>
<th>Dauer</th>
<th>Muskel</th>
<th>Niere</th>
<th>Leber</th>
<th>Knochen</th>
<th>Milch</th>
<th>Serum</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rind</td>
<td>3,5 mg/kg</td>
<td>8 Jahre</td>
<td>8,9</td>
<td>43,8</td>
<td>1,09</td>
<td>0,064</td>
<td>0,245</td>
<td>0,002</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>13 mg/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FITZGERALD et al. 1985</td>
</tr>
<tr>
<td>Rind</td>
<td>0,25 mg/kg</td>
<td>394 d</td>
<td>0,18</td>
<td>2,95</td>
<td>0,48</td>
<td>0,94</td>
<td>0,032</td>
<td>0,075</td>
<td>0,077</td>
</tr>
<tr>
<td>Holstein-</td>
<td>1,0 mg/kg</td>
<td></td>
<td>0,39</td>
<td>18,75</td>
<td>2,03</td>
<td>1,27</td>
<td>0,034</td>
<td>0,074</td>
<td>0,038</td>
</tr>
<tr>
<td>Färse</td>
<td>5,0 mg/kg</td>
<td></td>
<td>0,24</td>
<td>132,17</td>
<td>14,41</td>
<td>0,84</td>
<td></td>
<td></td>
<td>SMITH et al. 1991a,b</td>
</tr>
<tr>
<td>Ziege</td>
<td>0,14 mg/kg</td>
<td>135 d</td>
<td>0,04</td>
<td>1,06</td>
<td>0,10</td>
<td>0,03</td>
<td></td>
<td></td>
<td>TELFORD et al. 1984b</td>
</tr>
<tr>
<td></td>
<td>3,81 mg/kg</td>
<td></td>
<td>0,04</td>
<td>1,65</td>
<td>0,39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schaf</td>
<td>0,175 mg/kg</td>
<td>1,5 Jahre</td>
<td>0,014</td>
<td>0,33</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
<td>LEE et al. 1994</td>
</tr>
<tr>
<td></td>
<td>0,5 mg/kg</td>
<td></td>
<td>0,005</td>
<td>1,11</td>
<td>0,41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 23: Cadmiumgehalte in verschiedenen Böden und Wasser

<table>
<thead>
<tr>
<th>Erscheinungsbild</th>
<th>Cadmiumgehalt</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdkruste</td>
<td>0,1 - 1 mg/kg</td>
<td>ELINDER 1992</td>
</tr>
<tr>
<td>Ozeane</td>
<td>0,001 – 0,1 µg/L</td>
<td>ATSDR 1999, PINOT et al. 2000</td>
</tr>
<tr>
<td>Grundwasser</td>
<td><0,1 µg/L</td>
<td>ATSDR 1999, PINOT et al. 2000</td>
</tr>
<tr>
<td>Unbelastete Böden</td>
<td>0,5 mg/kg</td>
<td>SCHEFFER u. SCHACHTSCHABEL 1992</td>
</tr>
<tr>
<td>Verkehrsreiche Straßennähe</td>
<td>3 mg/kg</td>
<td>SCHEFFER u. SCHACHTSCHABEL 1992</td>
</tr>
<tr>
<td>Unbelastete Böden USA</td>
<td>0,25 mg/kg</td>
<td>EPA 1985</td>
</tr>
<tr>
<td>Belastete Böden USA</td>
<td>72 mg/kg</td>
<td>EPA 1985</td>
</tr>
<tr>
<td>Belastete Böden D</td>
<td>40 mg/kg</td>
<td>SCHEFFER u. SCHACHTSCHABEL 1992</td>
</tr>
<tr>
<td>Auenböden Harzvorland</td>
<td>200 mg/kg</td>
<td>MERKEL u. KÖSTER 1981</td>
</tr>
</tbody>
</table>

2.4.2 Aluminium

Der Aluminiumgehalt im Boden variiert von 11 bis 317 460 mg/kg und wird von Faktoren wie verschiedene Bodentypen und den pH-Wert der Wasserphase beeinflußt. So steigt die Aluminiumverfügbarkeit in Pflanzen bei saurem Regen (CANDRIAN 1985). Die durchschnittliche Konzentration in Pflanzen beträgt 20 bis 50 mg/kg Trockensubstanz, wobei Kräuter wie Oregano, Thymian und Tee oft mehr als 500 mg/kg akkumulieren können (HOPKINS u. EISEN 1959; EDEN 1976; FINCK 1991).

Toxische Auswirkungen zeigen sich bei Lämmern, die mit 1 450 und 2 000 mg/kg Aluminium im Futter zugefüttert wurden. Die Symptome äußerten sich in geringerem Wachstum, vermindelter Futteraufnahme, gesenktem Plasmaphosphorspiegel und verringelter Phosphorabsorption (VADIVIA et al. 1982; ROSA et al. 1982). CROWE et al. (1990) konnten ebenfalls eine Verminderung der Phosphorabsorption nachweisen und fanden außerdem eine verstärkte renale Exkretion von Calcium, was zu einer Abnahme dieser beiden Elemente im Organismus führt.
2.4.3 Blei

Tab. 24: Diagnostische Beurteilung des Bleigehalts verschiedener Medien, modifiziert nach DIRKSEN et al. (2006).

Referenzwerte in mg/kg FM bei denen eine Bleivergiftung

<table>
<thead>
<tr>
<th>Medium</th>
<th>unwahrscheinlich -</th>
<th>möglich -</th>
<th>sicher -</th>
<th>ist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vollblut</td>
<td>0,05-0,25</td>
<td>0,25-1,5</td>
<td>>1,5</td>
<td></td>
</tr>
<tr>
<td>Kot</td>
<td><35</td>
<td></td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>Milch</td>
<td>0,02-0,1</td>
<td></td>
<td>>0,15</td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td><1</td>
<td>2-20</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Nierenrinde</td>
<td><2</td>
<td>Kalb: 2-25</td>
<td>>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rind: 2-40</td>
<td>>40</td>
<td></td>
</tr>
<tr>
<td>Knochen</td>
<td><7</td>
<td></td>
<td>>30</td>
<td></td>
</tr>
</tbody>
</table>

2.5 Akzidentielle Spurenelemente

2.5.1 Strontium

Die Strontiumkonzentrationen in verschiedenen Geweben von Tieren werden in Tabelle 25 beschrieben.
Tab. 25: Referenzwerte von Strontiumgehalten in verschiedenen Medien

<table>
<thead>
<tr>
<th>Gewebe</th>
<th>HAMILTON et al. 1972, 1973</th>
<th>ALTMAN u. DITTMER 1973</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td></td>
<td>0,057 mg/l</td>
</tr>
<tr>
<td>Vollblut</td>
<td></td>
<td>0,033 mg/l</td>
</tr>
<tr>
<td>Niere</td>
<td>0,1 mg/kg frisches Gewebe</td>
<td></td>
</tr>
<tr>
<td>Leber</td>
<td>0,1 mg/kg frisches Gewebe</td>
<td></td>
</tr>
<tr>
<td>Muskel</td>
<td>0,05 mg/kg frisches Gewebe</td>
<td></td>
</tr>
</tbody>
</table>
3 Material und Methoden

3.1 Allgemeine Angaben

3.2 Probanden

Als Probanden wurden aus jedem Betrieb wenn möglich 10 klinisch unauffällige, multipare Kühe pro Laktationsgruppe ausgewählt. Die Tiere befanden sich in den folgenden Laktationsstadien:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Zeit</th>
</tr>
</thead>
</table>

Als Laktationsgruppe werden hier auch die Gruppen der Trockensther und Vorbereiter bezeichnet, obwohl sie der Definition nach nicht aus laktierenden Tieren bestehen.
3.3 Probenmaterial

3.4 Analytik

3.5 Statistik

Zur Eingabe der Daten wurde zunächst MS Excel (Microsoft Office Excell 2007, USA), zur weiteren statistischen Auswertung SPSS 19.0 (SPSS Inc., USA) und zur Darstellung der Ergebnisse MS Word (Microsoft Office Word 2007, USA) verwendet. Das Signifikanzniveau wurde mit p=0,05 festgelegt. Also wird bei einem Wert p<0,05 die Nullhypotese verworfen.
3.5.1 Deskriptive Statistik

Als statistische Kennzahlen wurden mittels explorativer Datenanalyse die Fallzahl (N), der Mittelwert (MW), die Standardabweichung (SD), das Minimum (Min), das Maximum (Max), der Median (Med), die Schiefe und die Kurtosis berechnet und tabellarisch aufgeführt. Zur Prüfung auf Normalverteilung wurde der Kolmogorov-Smirnov-Test mit Signifikanzkorrektur nach Lilliefors genutzt. Außerdem wurden die Kennzahlen Schiefe und Kurtosis und die graphische Überprüfung der Verteilungsdiagramme (Histogramme mit Normalverteilungskurven und Boxplot) dazu herangezogen. Im Boxplot wurden Ausreißerwerte als º, wenn sie das 1,5 fache und als *, wenn sie das 3 fache des Interquartilsabstandes überschreiten, veranschaulicht. Mittels einfaktorieller Varianzanalyse (ANOVA) wurde der Laktations-Zeit-Einfluss auf die Mineralstoffkonzentration im Harn geprüft. Angegeben wurde das Ergebnis der Varianzanalyse und der Signifikanzprüfung mit F***, p<0,001 als hoch signifikant, F**, p<0,01 als sehr signifikant, F*, p<0,05 als signifikant und p>0,05 als nicht signifikant.

3.5.2 Grenzwerte

Für die untersuchten Mineralstoffsubstratkonzentrationen wurden zweiseitige Referenzbereiche für die Poolprobenwerte ermittelt. Da sich bei der Prüfung auf Normalverteilung ergab, dass viele der Parameter nicht normalverteilt sind, wurde zur einheitlichen Veranschaulichung ausschließlich das nicht parametrische Verfahren zur Berechnung der Referenzbereiche angewendet. Als Intervall werden die 2,5- bis 97,5-Perzentile berechnet. Die Daten werden ranggeordnet, jeweils die 2,5 % der kleinsten und größten Messwerte ausgegrenzt und die verbleibenden Daten als Referenzbereich angegeben. Differenzierte Referenzwerte wurden bei signifikanten Unterschieden zwischen den Laktationsgruppen in den Substratkonzentrationen angegeben. Bei so zusammengefassten Teilstichproben sind die Referenzwerte gerundet. Die Gesamtprobenzahl (N) ist oft größer als die Probenanzahl der Laktationsgruppen, da auch Harnproben von Tieren außerhalb der hier ausgewählten Laktationszeiträume entnommen wurden.
4 Ergebnisse

4.1 Kalium

Die statistischen Kennzahlen des Kaliumgehaltes im Urin sind in Tab. 26 aufgeführt. In Abb. 7 sind die Kaliumkonzentrationen im Urin dargestellt. Im originalen sowie im logarithmierten Datensatz wird keine Normalverteilung erreicht. Der Kolmogorov-Smirnov-Test (KS-Test) weist den Kaliumgehalt im Urin als nicht normalverteilt aus (p<0,05). Nur bei den Trockenstehern kann man aufgrund der Schiefe und dem KS-Test von einer Normalverteilung ausgehen.

Tabelle 26: Deskriptive Statistik zum Kaliumgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>4236</td>
<td>228</td>
<td>67,1</td>
<td>48</td>
<td>513</td>
<td>224</td>
<td>0,4</td>
<td>0,04</td>
<td>0,2</td>
<td>0,08</td>
<td>0,03 (.000)</td>
</tr>
<tr>
<td>gesamt_in</td>
<td>4236</td>
<td></td>
<td>-0,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,04</td>
<td>0,6</td>
<td>0,08</td>
<td>0,04 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>815</td>
<td>242</td>
<td>69,8</td>
<td>65</td>
<td>513</td>
<td>237</td>
<td>0,4</td>
<td>0,09</td>
<td>0,2</td>
<td>0,17</td>
<td>0,04 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>746</td>
<td>200</td>
<td>60,7</td>
<td>58</td>
<td>420</td>
<td>195</td>
<td>0,4</td>
<td>0,09</td>
<td>-0,2</td>
<td>0,18</td>
<td>0,04 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>761</td>
<td>226</td>
<td>60,3</td>
<td>70</td>
<td>506</td>
<td>222</td>
<td>0,5</td>
<td>0,09</td>
<td>0,7</td>
<td>0,18</td>
<td>0,04 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>730</td>
<td>226</td>
<td>57,8</td>
<td>75</td>
<td>470</td>
<td>223</td>
<td>0,2</td>
<td>0,09</td>
<td>0,0</td>
<td>0,18</td>
<td>0,03 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>748</td>
<td>258</td>
<td>72,1</td>
<td>48</td>
<td>480</td>
<td>258</td>
<td>0,1</td>
<td>0,09</td>
<td>0,0</td>
<td>0,18</td>
<td>0,03 (.275)</td>
</tr>
</tbody>
</table>

Abbildung 7: Histogramme zur Verteilung der Kaliumkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=4236)

Die Verteilung des Kaliumgehaltes im Urin in verschiedenen Laktationsabschnitten wird in Abb. 8 veranschaulicht, wobei die Varianzanalyse einen hochsignifikanten Einfluss des Laktationsabschnittes zeigt. Die Einzelwerte sind weit gestreut. Tab. 27 zeigt die aus den Untersuchungen ermittelten Referenzbereiche von Kalium im Urin in den einzelnen Laktationsstadien. Die Kaliumwerte im Bereich des unteren Perzentils unterscheiden sich nur geringfügig. Bei den Trockenstehern und den Vorbereitern sind die Werte bis 97,5 % aber deutlich höher als bei den laktierenden Kühen.
Ergebnisse

Abbildung 8: Kalium im Urin in Abhängigkeit vom Laktationsstadium (F=86,1***; p<0,001; n=3799)

Tabelle 27: Kalkulierte Referenzbereiche für die Kaliumkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Laktationsstatus</th>
<th>Perzentile</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>N</td>
<td>4236</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>108</td>
<td>372</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>815</td>
<td>117</td>
<td>390</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>746</td>
<td>98</td>
<td>323</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>761</td>
<td>114</td>
<td>356</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>730</td>
<td>115</td>
<td>342</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>748</td>
<td>125</td>
<td>398</td>
</tr>
</tbody>
</table>
4.2 Natrium

In Tab. 28 werden die statistischen Kennzahlen zum Natriumgehalt der analysierten Urinproben aufgeführt. Abb. 9 zeigt die Verteilung der Natriumkonzentrationen im Urin. Der K-S-Test lässt ebenso wie die Histogramme (Abb. 9) keine Normalverteilung der Werte erkennen.

Tabelle 28: Deskriptive Statistik zum Natriumgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>4229</td>
<td>67</td>
<td>42,0</td>
<td>1</td>
<td>253</td>
<td>59</td>
<td>0,8</td>
<td>0,04</td>
<td>0,6</td>
<td>0,08</td>
<td>0,07 (.000)</td>
</tr>
<tr>
<td>gesamt</td>
<td>4229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1,5</td>
<td>0,04</td>
<td>3,5</td>
<td>0,08</td>
<td>0,10 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>812</td>
<td>56</td>
<td>37,3</td>
<td>1</td>
<td>236</td>
<td>47</td>
<td>1,0</td>
<td>0,09</td>
<td>1,3</td>
<td>0,17</td>
<td>0,10 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>745</td>
<td>60</td>
<td>38,2</td>
<td>1</td>
<td>220</td>
<td>53</td>
<td>0,9</td>
<td>0,09</td>
<td>0,8</td>
<td>0,18</td>
<td>0,09 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>761</td>
<td>80</td>
<td>44,8</td>
<td>1</td>
<td>253</td>
<td>75</td>
<td>0,6</td>
<td>0,09</td>
<td>0,2</td>
<td>0,18</td>
<td>0,07 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>730</td>
<td>80</td>
<td>42,9</td>
<td>1</td>
<td>219</td>
<td>77</td>
<td>0,6</td>
<td>0,09</td>
<td>0,1</td>
<td>0,18</td>
<td>0,06 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>746</td>
<td>55</td>
<td>38,4</td>
<td>1</td>
<td>248</td>
<td>49</td>
<td>1,0</td>
<td>0,09</td>
<td>1,3</td>
<td>0,18</td>
<td>0,08 (.000)</td>
</tr>
</tbody>
</table>

Ergebnisse

Abbildung 9: Histogramme zur Verteilung der Natriumkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=4229)

Abbildung 10: Natrium im Urin in Abhängigkeit vom Laktationsstadium (F=77,8***; p<0,001; n=3793)

Tabelle 19: Kalkulierte Referenzbereiche für die Natriumkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>gesamt</td>
<td>4229</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>812</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>745</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>761</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>730</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>746</td>
</tr>
</tbody>
</table>
4.3 Magnesium

Die wesentlichen Lage- und Streuungsmaße für die Magnesiumkonzentrationen im Urin sind in Tab. 30 zusammengefasst. Die Histogramme zur Magnesiumkonzentrationsverteilung (Abb. 11) zeigen im originalen sowie im logarithmierten Datensatz keine Normalverteilung. Das bestätigt auch eindeutig der K-S-Test mit Werten $p<0.05$.

Tabelle 20: Deskriptive Statistik zum Magnesiumgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>4236</td>
<td>15,1</td>
<td>6,69</td>
<td>0,8</td>
<td>48,4</td>
<td>14,4</td>
<td>0,8</td>
<td>0,04</td>
<td>1,3</td>
<td>0,08</td>
<td>0,05 (.000)</td>
</tr>
<tr>
<td>gesamtlín</td>
<td>4236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,8</td>
<td>0,04</td>
<td>1,5</td>
<td>0,08</td>
<td>0,06 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>814</td>
<td>16,1</td>
<td>6,68</td>
<td>1,5</td>
<td>48,4</td>
<td>15,8</td>
<td>0,8</td>
<td>0,09</td>
<td>1,6</td>
<td>0,18</td>
<td>0,05 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>746</td>
<td>10,9</td>
<td>5,23</td>
<td>1,6</td>
<td>39,8</td>
<td>10,1</td>
<td>1,3</td>
<td>0,09</td>
<td>3,0</td>
<td>0,18</td>
<td>0,08 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>761</td>
<td>15,2</td>
<td>6,79</td>
<td>1,8</td>
<td>48,3</td>
<td>14,1</td>
<td>1,3</td>
<td>0,09</td>
<td>3,1</td>
<td>0,18</td>
<td>0,08 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>728</td>
<td>17,0</td>
<td>6,14</td>
<td>1,1</td>
<td>43,0</td>
<td>16,6</td>
<td>0,6</td>
<td>0,09</td>
<td>0,6</td>
<td>0,18</td>
<td>0,05 (.002)</td>
</tr>
<tr>
<td>TS</td>
<td>751</td>
<td>15,2</td>
<td>6,59</td>
<td>0,8</td>
<td>42,5</td>
<td>14,7</td>
<td>0,7</td>
<td>0,09</td>
<td>0,8</td>
<td>0,18</td>
<td>0,06 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 11: Histogramme zur Verteilung der Magnesiumkonzentration im Urin: links originaler, rechts logarithmierter Datensatz (n = 4236)

In Abb. 12 sind die Verteilungen der Magnesiumkonzentration in unterschiedlichen Laktationszeiträumen im Harn abgebildet. Die Einzelwerte sind breit gestreut. Von der Kalbung bis eine Woche danach sinken die Magnesiumgehalte signifikant ab. Danach ist ein Anstieg der Konzentrationen bis zum Ende der Laktation zu sehen. Die hier ermittelten Referenzbereiche in Tab. 31 zeigen außer der niedrigeren Magnesiumgehalte in der frühen Laktation (0-1 Woche p.p) relativ homogene Werte.

Abbildung 12: Magnesium im Urin in Abhängigkeit vom Laktationsstadium (F=104,7***; p<0,001; n=3799)
Ergebnisse

Tabelle 31: Kalkulierte Referenzbereiche für die Magnesiumkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>2,5</td>
<td>97,5</td>
</tr>
<tr>
<td>gesamt</td>
<td>4236</td>
<td>4,3</td>
<td>30,3</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>814</td>
<td>4,9</td>
<td>32,2</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>746</td>
<td>3,7</td>
<td>23,9</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>761</td>
<td>5,1</td>
<td>31,1</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>728</td>
<td>6,8</td>
<td>31,7</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>751</td>
<td>4,4</td>
<td>30,7</td>
</tr>
</tbody>
</table>

4.4 Kalzium

Tabelle 32: Deskriptive Statistik zum Kalziumgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>4217</td>
<td>2,33</td>
<td>2,470</td>
<td>0,01</td>
<td>19,93</td>
<td>1,55</td>
<td>2,6</td>
<td>0,04</td>
<td>9,2</td>
<td>0,08</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>gesamt ln</td>
<td>4217</td>
<td></td>
<td></td>
<td>-0,3</td>
<td></td>
<td>0,1</td>
<td>0,08</td>
<td></td>
<td>0,03</td>
<td></td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>800</td>
<td>3,72</td>
<td>3,495</td>
<td>0,02</td>
<td>19,93</td>
<td>2,61</td>
<td>1,8</td>
<td>0,09</td>
<td>3,3</td>
<td>0,17</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>743</td>
<td>1,94</td>
<td>1,941</td>
<td>0,06</td>
<td>17,70</td>
<td>1,39</td>
<td>2,4</td>
<td>0,09</td>
<td>9,6</td>
<td>0,18</td>
<td>0,17 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>761</td>
<td>1,75</td>
<td>1,744</td>
<td>0,06</td>
<td>16,70</td>
<td>1,20</td>
<td>2,6</td>
<td>0,09</td>
<td>11,4</td>
<td>0,18</td>
<td>0,17 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>728</td>
<td>1,56</td>
<td>1,613</td>
<td>0,01</td>
<td>16,20</td>
<td>1,07</td>
<td>3,5</td>
<td>0,09</td>
<td>20,7</td>
<td>0,18</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>749</td>
<td>2,60</td>
<td>2,360</td>
<td>0,04</td>
<td>19,90</td>
<td>1,89</td>
<td>2,4</td>
<td>0,09</td>
<td>8,6</td>
<td>0,18</td>
<td>0,15 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 13: Histogramme zur Verteilung der Kalziumkonzentration im Urin: links originaler, rechts logarithmierter Datensatz (n = 4217)

Abbildung 11: Kalzium im Urin in Abhängigkeit vom Laktationsstadium (F=108,2***; p<0,001; n=3780)
Tabelle 33: Kalkulierte Referenzbereiche für die Kalziumkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2,5</td>
</tr>
<tr>
<td>gesamt</td>
<td>4217</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>800</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>743</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>761</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>728</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>749</td>
</tr>
</tbody>
</table>

4.5 Chlorid

Die beschreibende Statistik in Tab. 34 enthält die wichtigsten Lage- und Streuungsmaße für den Chloridgehalt in den analysierten Harnproben. Die Schiefe und der Kolmogorov-Smirnov-Test weisen die Chloridgehalte im Urin als nicht normalverteilt aus. Auch die Histogramme in Abb. 15 zeigen im originalen sowie im logarithmierten Datensatz keine Normalverteilung von Chlorid im Harn.
Ergebnisse

Tabelle 34: Deskriptive Statistik zum Chloridgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>4226</td>
<td>78</td>
<td>48,0</td>
<td>2</td>
<td>292</td>
<td>69</td>
<td>0,9</td>
<td>0,04</td>
<td>0,7</td>
<td>0,08</td>
<td>0,08 (,000)</td>
</tr>
<tr>
<td>gesamt</td>
<td>4226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1,0</td>
<td>0,04</td>
<td>1,4</td>
<td>0,08</td>
<td>0,07 (,000)</td>
</tr>
<tr>
<td>VB</td>
<td>812</td>
<td>100</td>
<td>49,3</td>
<td>6</td>
<td>277</td>
<td>94</td>
<td>0,6</td>
<td>0,09</td>
<td>0,1</td>
<td>0,17</td>
<td>0,06 (,000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>744</td>
<td>64</td>
<td>38,1</td>
<td>2</td>
<td>243</td>
<td>59</td>
<td>1,0</td>
<td>0,09</td>
<td>1,2</td>
<td>0,18</td>
<td>0,07 (,000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>759</td>
<td>62</td>
<td>40,7</td>
<td>2</td>
<td>234</td>
<td>55</td>
<td>1,0</td>
<td>0,09</td>
<td>1,0</td>
<td>0,18</td>
<td>0,08 (,000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>728</td>
<td>63</td>
<td>40,1</td>
<td>3</td>
<td>241</td>
<td>55</td>
<td>1,0</td>
<td>0,09</td>
<td>1,1</td>
<td>0,18</td>
<td>0,09 (,000)</td>
</tr>
<tr>
<td>TS</td>
<td>746</td>
<td>103</td>
<td>52,0</td>
<td>2</td>
<td>278</td>
<td>94</td>
<td>0,6</td>
<td>0,09</td>
<td>0,0</td>
<td>0,18</td>
<td>0,07 (,000)</td>
</tr>
</tbody>
</table>

Abbildung 15: Histogramme zur Verteilung der Chloridkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n = 4226)

Die laktationsabhängigen Chloridkonzentrationen im Urin sind in Abb. 16 dargestellt. Die einzelnen Chloridgehalte gehen zwar weit auseinander, lassen aber signifikante Unterschiede zwischen den nichtlaktierenden und den laktierenden Kühen erkennen. Ebenso zeigen die ermittelten Referenzwerte aus Tab. 35 höhere Chloridgehalte bei den Trockenstehern als bei
den milchgebenden Kühen im Harn, wobei die Werte in diesen beiden Gruppen eine nahezu gleiche Verteilung aufweisen.

Abbildung 16: Chlorid im Urin in Abhängigkeit vom Laktationsstadium (F=169,9***; p<0,001; n=3788)

Tabelle 35: Kalkulierte Referenzbereiche für die Chloridkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>4226</td>
<td>10</td>
<td>192</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>812</td>
<td>22</td>
<td>210</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>744</td>
<td>10</td>
<td>159</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>759</td>
<td>7</td>
<td>164</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>728</td>
<td>7</td>
<td>159</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>746</td>
<td>23</td>
<td>211</td>
</tr>
</tbody>
</table>
Ergebnisse

4.6 Phosphor

Tabelle 36: Deskriptive Statistik zum Phosphorgehalt im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>4191</td>
<td>0,89</td>
<td>1,000</td>
<td>0,01</td>
<td>8,60</td>
<td>0,60</td>
<td>2,8</td>
<td>0,04</td>
<td>10,6</td>
<td>0,08</td>
<td>0,21 (.000)</td>
</tr>
<tr>
<td>gesamt ln</td>
<td>4191</td>
<td></td>
<td></td>
<td>-0,7</td>
<td></td>
<td></td>
<td>0,6</td>
<td>0,04</td>
<td>0,6</td>
<td>0,08</td>
<td>0,11 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>801</td>
<td>0,79</td>
<td>0,843</td>
<td>0,01</td>
<td>7,25</td>
<td>0,57</td>
<td>2,8</td>
<td>0,09</td>
<td>10,9</td>
<td>0,17</td>
<td>0,21 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>735</td>
<td>1,30</td>
<td>1,431</td>
<td>0,01</td>
<td>8,60</td>
<td>0,78</td>
<td>2,1</td>
<td>0,09</td>
<td>5,0</td>
<td>0,18</td>
<td>0,19 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>751</td>
<td>0,85</td>
<td>0,961</td>
<td>0,01</td>
<td>6,77</td>
<td>0,59</td>
<td>2,8</td>
<td>0,09</td>
<td>10,2</td>
<td>0,18</td>
<td>0,20 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>721</td>
<td>0,78</td>
<td>0,848</td>
<td>0,01</td>
<td>5,30</td>
<td>0,55</td>
<td>2,3</td>
<td>0,09</td>
<td>6,0</td>
<td>0,18</td>
<td>0,20 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>749</td>
<td>0,71</td>
<td>0,778</td>
<td>0,01</td>
<td>8,10</td>
<td>0,52</td>
<td>3,5</td>
<td>0,09</td>
<td>18,7</td>
<td>0,18</td>
<td>0,20 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 17: Histogramme zur Verteilung der Phosphorkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n = 4191)

Abbildung 18: Phosphor im Urin in Abhängigkeit vom Laktationsstadium (F=41,8***; p<0,001; n=3756)
Tabelle 37: Kalkulierte Referenzbereiche für die Phosphorkonzentration im Urin (mmol/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0,04</td>
<td>3,77</td>
</tr>
<tr>
<td>Gesamt</td>
<td>4191</td>
<td>3,39</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>801</td>
<td>3,39</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>735</td>
<td>5,58</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>751</td>
<td>3,68</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>721</td>
<td>3,40</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>749</td>
<td>2,90</td>
</tr>
</tbody>
</table>

4.7 Schwefel

Tabelle 38: Deskriptive Statistik zum Schwefelgehalt im Urin (mg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>406</td>
<td>1065</td>
<td>484,1</td>
<td>201</td>
<td>2630</td>
<td>964</td>
<td>0,9</td>
<td>0,12</td>
<td>0,4</td>
<td>0,24</td>
<td>0,09 (.000)</td>
</tr>
<tr>
<td>gesamt_ln</td>
<td>406</td>
<td>-0,2</td>
<td>0,12</td>
<td>-0,18</td>
<td>0,24</td>
<td>0,09 (.200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>85</td>
<td>1283</td>
<td>521,1</td>
<td>201</td>
<td>2630</td>
<td>1144</td>
<td>0,7</td>
<td>0,26</td>
<td>0,0</td>
<td>0,52</td>
<td>0,13 (.002)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>55</td>
<td>892</td>
<td>400,6</td>
<td>312</td>
<td>2225</td>
<td>791</td>
<td>1,3</td>
<td>0,32</td>
<td>1,8</td>
<td>0,63</td>
<td>0,15 (.006)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>57</td>
<td>1026</td>
<td>470,6</td>
<td>409</td>
<td>2319</td>
<td>867</td>
<td>0,9</td>
<td>0,32</td>
<td>0,1</td>
<td>0,62</td>
<td>0,14 (.007)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>57</td>
<td>1076</td>
<td>411,3</td>
<td>366</td>
<td>2023</td>
<td>1047</td>
<td>0,4</td>
<td>0,32</td>
<td>-0,3</td>
<td>0,62</td>
<td>0,11 (.186)</td>
</tr>
<tr>
<td>TS</td>
<td>83</td>
<td>909</td>
<td>483,0</td>
<td>249</td>
<td>2523</td>
<td>752</td>
<td>1,1</td>
<td>0,26</td>
<td>0,9</td>
<td>0,52</td>
<td>0,16 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 19: Histogramme zur Verteilung der Schwefelkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n = 406)

Abbildung 20: Schwefel im Urin in Abhängigkeit vom Laktationsstadium (F=8,8***; p<0,001; n=336)
Tabelle 39: Kalkulierte Referenzbereiche für die Schwefelkonzentration im Urin (mg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>406</td>
<td>367</td>
<td>2251</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>85</td>
<td>483</td>
<td>2615</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>55</td>
<td>336</td>
<td>2136</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>57</td>
<td>425</td>
<td>2230</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>57</td>
<td>384</td>
<td>2007</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>83</td>
<td>277</td>
<td>2170</td>
</tr>
</tbody>
</table>

4.8 Kupfer

Die statistischen Variablen des Kupfergehaltes im Harn sind in Tab. 40 aufgeführt. In Abb. 21 sind die Kupferkonzentrationen im Urin dargestellt. Dabei ist in beiden Histogrammen keine gleichmäßige Verteilung der Variablen zu erkennen, obwohl der logarithmierte Datensatz schon nah herankommt, was auch an der Schiefe mit 0,4 zu sehen ist.
Tabelle 40: Deskriptive Statistik zum Kupfergehalt im Urin (mg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>1441</td>
<td>0,16</td>
<td>0,122</td>
<td>0,02</td>
<td>0,95</td>
<td>0,12</td>
<td>2,9</td>
<td>0,06</td>
<td>11,5</td>
<td>0,13 (,000)</td>
</tr>
<tr>
<td>gesamt_ln</td>
<td>1441</td>
<td></td>
<td>0,4</td>
<td>0,06</td>
<td>0,6</td>
<td>0,13</td>
<td>0,03</td>
<td>0,01</td>
<td>2,9</td>
<td>0,17 (,001)</td>
</tr>
<tr>
<td>VB</td>
<td>301</td>
<td>0,19</td>
<td>0,159</td>
<td>0,02</td>
<td>0,95</td>
<td>0,14</td>
<td>2,5</td>
<td>0,14</td>
<td>7,2</td>
<td>0,20 (,000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>210</td>
<td>0,17</td>
<td>0,116</td>
<td>0,03</td>
<td>0,79</td>
<td>0,14</td>
<td>2,7</td>
<td>0,17</td>
<td>9,9</td>
<td>0,16 (,000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>215</td>
<td>0,15</td>
<td>0,110</td>
<td>0,04</td>
<td>0,78</td>
<td>0,12</td>
<td>2,8</td>
<td>0,17</td>
<td>10,5</td>
<td>0,18 (,000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>210</td>
<td>0,14</td>
<td>0,096</td>
<td>0,03</td>
<td>0,66</td>
<td>0,12</td>
<td>2,7</td>
<td>0,17</td>
<td>9,1</td>
<td>0,16 (,000)</td>
</tr>
<tr>
<td>TS</td>
<td>301</td>
<td>0,13</td>
<td>0,091</td>
<td>0,02</td>
<td>0,87</td>
<td>0,11</td>
<td>3,3</td>
<td>0,14</td>
<td>17,6</td>
<td>0,28 (,000)</td>
</tr>
</tbody>
</table>

Abbildung 21: Histogramme zur Verteilung der Kupferkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1441)

Abbildung 22: Kupfer im Urin in Abhängigkeit vom Laktationsstadium (F=9,5***; p<0,001; n=1236)
Ergebnisse

Tabelle 41: Kalkulierte Referenzbereiche für die Kupferkonzentrationen im Urin (mg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>0,05</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>0,05</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>0,05</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>0,04</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>0,04</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>0,04</td>
</tr>
</tbody>
</table>

4.9 Selen

Die wesentlichen Lage- und Streuungsmaße für die Selenkonzentrationen sind in Tab. 42 zusammengefasst. Die Histogramme in Abb. 23 zur Selenverteilung zeigen im originalen sowie logarithmierten Datensatz keine Normalverteilung. Dies bestätigt auch die deskriptive Statistik.
Tabelle 423: Deskriptive Statistik zum Selengehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>1425</td>
<td>170</td>
<td>116,5</td>
<td>3</td>
<td>716</td>
<td>143</td>
<td>1,4</td>
<td>0,07</td>
<td>2,5</td>
<td>0,13</td>
<td>0,10 (,000)</td>
</tr>
<tr>
<td>gesamt</td>
<td>1425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,6</td>
<td>0,07</td>
<td>0,8</td>
<td>0,13</td>
<td>0,05 (,000)</td>
</tr>
<tr>
<td>VB</td>
<td>296</td>
<td>181</td>
<td>118,6</td>
<td>9</td>
<td>674</td>
<td>160</td>
<td>1,2</td>
<td>0,14</td>
<td>1,6</td>
<td>0,28</td>
<td>0,10 (,000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>211</td>
<td>138</td>
<td>88,9</td>
<td>18</td>
<td>566</td>
<td>126</td>
<td>1,3</td>
<td>0,17</td>
<td>2,6</td>
<td>0,33</td>
<td>0,10 (,000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>213</td>
<td>172</td>
<td>114,9</td>
<td>24</td>
<td>679</td>
<td>140</td>
<td>1,4</td>
<td>0,17</td>
<td>2,7</td>
<td>0,33</td>
<td>0,13 (,000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>209</td>
<td>171</td>
<td>111,6</td>
<td>9</td>
<td>633</td>
<td>145</td>
<td>1,3</td>
<td>0,17</td>
<td>2,1</td>
<td>0,34</td>
<td>0,11 (,000)</td>
</tr>
<tr>
<td>TS</td>
<td>294</td>
<td>141</td>
<td>102,4</td>
<td>4</td>
<td>637</td>
<td>111</td>
<td>1,3</td>
<td>0,14</td>
<td>2,2</td>
<td>0,28</td>
<td>0,12 (,000)</td>
</tr>
</tbody>
</table>

Abbildung 23: Histogramme zur Verteilung der Selenkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1425)
Ergebnisse

In Abb. 24 sind die Verteilungen der Selengehalte in unterschiedlichen Laktationszeiträumen im Urin abgebildet. Die Einzelwerte sind auch hier breit gestreut. Es ist eine hohe Signifikanz zwischen dem Selengehalt und dem Laktationsstatus in der Varianzanalyse zu sehen. Die Frischabkalber und Trockensteher weisen niedrigere Selengehalte als die laktierenden Kühe auf. Die Vorbereiter haben sogar noch höhere Werte im Urin, was man auch an den kalkulierten Referenzbereichen in Tab. 43 erkennen kann.

Abbildung 24: Selen im Urin in Abhängigkeit vom Laktationsstadium (F=8,6***; p<0,001; n=1425)
Tabelle 43: Kalkulierte Referenzbereiche für die Selenkonzentrationen im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1425</td>
<td>25</td>
<td>457</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>296</td>
<td>25</td>
<td>489</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>211</td>
<td>23</td>
<td>375</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>213</td>
<td>29</td>
<td>471</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>209</td>
<td>32</td>
<td>471</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>294</td>
<td>18</td>
<td>374</td>
</tr>
</tbody>
</table>

4.10 Zink

In Tab. 44 sind die wichtigsten statistischen Kennzahlen zum Zinkgehalt der analysierten Harnproben zu finden. Abb. 25 zeigt die Verteilung der Zinkgehalte im Urin. Die Histogramme lassen ebenso wie die Schiefe und der K-S-Test keine Normalverteilung der Werte erkennen.
Ergebnisse

Tabelle 44: Deskriptive Statistik zum Zinkgehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1442</td>
<td>88</td>
<td>82,0</td>
<td>7</td>
<td>592</td>
<td>60</td>
<td>2,5</td>
<td>0,06</td>
<td>7,6</td>
<td>0,13</td>
<td>0,19 (.000)</td>
</tr>
<tr>
<td>gesamt_{ln}</td>
<td>1442</td>
<td></td>
<td>0,5</td>
<td></td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,13</td>
<td>0,06</td>
<td>0,06</td>
<td>0,06 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>301</td>
<td>106</td>
<td>105,1</td>
<td>7</td>
<td>592</td>
<td>65</td>
<td>2,1</td>
<td>0,14</td>
<td>4,5</td>
<td>0,28</td>
<td>0,22 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>210</td>
<td>93</td>
<td>75,5</td>
<td>19</td>
<td>460</td>
<td>70</td>
<td>2,2</td>
<td>0,17</td>
<td>5,3</td>
<td>0,33</td>
<td>0,19 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>216</td>
<td>90</td>
<td>82,9</td>
<td>20</td>
<td>566</td>
<td>62</td>
<td>2,7</td>
<td>0,17</td>
<td>9,2</td>
<td>0,33</td>
<td>0,21 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>210</td>
<td>82</td>
<td>75,5</td>
<td>17</td>
<td>526</td>
<td>57</td>
<td>2,8</td>
<td>0,17</td>
<td>10,1</td>
<td>0,33</td>
<td>0,22 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>301</td>
<td>65</td>
<td>58,8</td>
<td>7</td>
<td>424</td>
<td>47</td>
<td>30,0</td>
<td>0,14</td>
<td>11,9</td>
<td>0,28</td>
<td>0,19 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 25: Histogramme zur Verteilung der Zinkkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1442)

Abbildung 26: Zink im Urin in Abhängigkeit von Laktationsstadium (F=10,2***; p<0,001; n=1237)
Ergebnisse

Tabelle 45: Kalkulierte Referenzbereiche für die Zinkkonzentration im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>gesamt</td>
<td>1442</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>301</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>210</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>216</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>210</td>
</tr>
<tr>
<td>Trockenstehrer</td>
<td>301</td>
</tr>
</tbody>
</table>

4.11 Eisen

Ergebnisse

Tabelle 46: Deskriptive Statistik zum Eisengehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1439</td>
<td>45</td>
<td>38,8</td>
<td>5</td>
<td>388</td>
<td>37</td>
<td>5,7</td>
<td>0,06</td>
<td>39,6</td>
<td>0,13</td>
<td>0,22 (.000)</td>
</tr>
<tr>
<td>gesamt</td>
<td>1439</td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>301</td>
<td>49</td>
<td>36,1</td>
<td>5</td>
<td>348</td>
<td>42</td>
<td>5,4</td>
<td>0,14</td>
<td>36,6</td>
<td>0,28</td>
<td>0,22 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>211</td>
<td>48</td>
<td>33,3</td>
<td>7</td>
<td>354</td>
<td>41</td>
<td>5,3</td>
<td>0,17</td>
<td>39,7</td>
<td>0,33</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>216</td>
<td>44</td>
<td>39,3</td>
<td>5</td>
<td>386</td>
<td>34</td>
<td>5,7</td>
<td>0,17</td>
<td>40,5</td>
<td>0,33</td>
<td>0,25 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>209</td>
<td>35</td>
<td>32,7</td>
<td>6</td>
<td>371</td>
<td>30</td>
<td>8,4</td>
<td>0,17</td>
<td>79,1</td>
<td>0,34</td>
<td>0,28 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>299</td>
<td>44</td>
<td>40,4</td>
<td>9</td>
<td>388</td>
<td>35</td>
<td>6,0</td>
<td>0,14</td>
<td>42,2</td>
<td>0,28</td>
<td>0,25 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 27: Histogramme zur Verteilung der Eisenkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1439)

Die Verteilung des Eisengehaltes im Harn in verschiedenen Laktationsabschnitten wird in Abb. 28 abgebildet. Die einzelnen Werte sind nach oben stark gestreut. Tab. 47 zeigt die aus
den Untersuchungen ermittelten Referenzbereiche von Eisenkonzentrationen im Urin in den einzelnen Laktationsstadien. In beiden Darstellungen (Abb. 28 und Tab. 47) sind die Eisengehalte im Harn in den verschiedenen Laktationsabschnitten nahezu konstant.

Abbildung 28: Eisen im Urin in Abhängigkeit von Laktationsstadium (F=5,5***; p<0,001; n=1235)

Tabelle 47: Kalkulierte Referenzbereiche für die Eisenkonzentration im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Laktationsstatus</th>
<th>Perzentile N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1439</td>
<td>18</td>
<td>118</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>301</td>
<td>20</td>
<td>122</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>211</td>
<td>20</td>
<td>118</td>
</tr>
<tr>
<td>3-5 Wochen p. p.</td>
<td>216</td>
<td>17</td>
<td>148</td>
</tr>
<tr>
<td>15-18 Wochen p. p.</td>
<td>209</td>
<td>17</td>
<td>69</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>299</td>
<td>17</td>
<td>120</td>
</tr>
</tbody>
</table>
4.12 Mangan

Die Lage- und Streuungsmaße für die Mangankonzentrationen im Urin sind in Tab. 48 aufgeführt. Die Histogramme aus Abb. 29 zeigen im originalen sowie im logarithmierten Datensatz, genau wie die deskriptive Statistik, keine Normalverteilung.

Tabelle 48: Deskriptive Statistik zum Mangangehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1438</td>
<td>2,00</td>
<td>1,760</td>
<td>0,10</td>
<td>15,70</td>
<td>1,5</td>
<td>3,1</td>
<td>0,06</td>
<td>14,2</td>
<td>0,13</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>gesamt ln</td>
<td>1438</td>
<td></td>
<td></td>
<td>0,1</td>
<td>0,07</td>
<td>0,4</td>
<td>0,13</td>
<td>0,04 (.000)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>299</td>
<td>1,98</td>
<td>1,907</td>
<td>0,30</td>
<td>15,70</td>
<td>1,50</td>
<td>4,2</td>
<td>0,14</td>
<td>24,4</td>
<td>0,28</td>
<td>0,22 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>211</td>
<td>1,84</td>
<td>1,572</td>
<td>0,20</td>
<td>9,90</td>
<td>1,40</td>
<td>2,3</td>
<td>0,17</td>
<td>6,4</td>
<td>0,33</td>
<td>0,19 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>215</td>
<td>2,18</td>
<td>1,893</td>
<td>0,20</td>
<td>13,3</td>
<td>1,60</td>
<td>2,4</td>
<td>0,17</td>
<td>7,5</td>
<td>0,33</td>
<td>0,19 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>210</td>
<td>2,03</td>
<td>1,629</td>
<td>0,20</td>
<td>11,50</td>
<td>1,70</td>
<td>2,8</td>
<td>0,17</td>
<td>11,1</td>
<td>0,33</td>
<td>0,16 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>299</td>
<td>1,82</td>
<td>1,676</td>
<td>0,10</td>
<td>14,70</td>
<td>1,30</td>
<td>3,6</td>
<td>0,14</td>
<td>18,3</td>
<td>0,28</td>
<td>0,19 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 29: Histogramme zur Verteilung der Mangankonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1438)

Abbildung 230: Mangan im Urin in Abhängigkeit von Laktationsstadium (F=1,7; p=0,141; n=1233)
Tabelle 49: Kalkulierte Referenzbereiche für die Mangankonzentration im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>2,5</td>
<td>97,5</td>
</tr>
<tr>
<td>gesamt</td>
<td>1438</td>
<td>0,40</td>
<td>7,01</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>299</td>
<td>0,40</td>
<td>6,45</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>211</td>
<td>0,30</td>
<td>6,85</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>215</td>
<td>0,30</td>
<td>8,00</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>210</td>
<td>0,40</td>
<td>8,24</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>299</td>
<td>0,40</td>
<td>6,35</td>
</tr>
</tbody>
</table>

4.13 Molybdän

Die deskriptive Statistik (Tab.50) zeigt die Kennzahlen der Molybdängehalte im Harn in Abhängigkeit vom Laktationsstadium. Abb. 31 veranschaulicht wie auch die Schiefe und der K-S-Test, dass der logarithmierte Datensatz eine Normalverteilung aufweist. Die restlichen Daten sind als nicht normalverteilt anzusehen.
Tabelle 50: Deskriptive Statistik zum Molybdängehalt im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1441</td>
<td>120</td>
<td>79,3</td>
<td>5</td>
<td>599</td>
<td>100</td>
<td>1,7</td>
<td>0,06</td>
<td>4,1</td>
<td>0,13</td>
<td>0,12 (,000)</td>
</tr>
<tr>
<td>gesamt ln</td>
<td>1441</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,4</td>
<td>0,06</td>
<td>0,6</td>
<td>0,12</td>
<td>0,03 (,024)</td>
</tr>
<tr>
<td>VB</td>
<td>302</td>
<td>121</td>
<td>74,0</td>
<td>7</td>
<td>526</td>
<td>106</td>
<td>1,7</td>
<td>0,14</td>
<td>4,8</td>
<td>0,28</td>
<td>0,13 (,000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>212</td>
<td>117</td>
<td>74,8</td>
<td>20</td>
<td>416</td>
<td>96</td>
<td>1,6</td>
<td>0,17</td>
<td>2,9</td>
<td>0,33</td>
<td>0,15 (,000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>216</td>
<td>119</td>
<td>87,1</td>
<td>17</td>
<td>531</td>
<td>92</td>
<td>1,8</td>
<td>0,17</td>
<td>3,9</td>
<td>0,33</td>
<td>0,15 (,000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>207</td>
<td>127</td>
<td>94,1</td>
<td>5</td>
<td>599</td>
<td>98</td>
<td>1,8</td>
<td>0,17</td>
<td>4,3</td>
<td>0,34</td>
<td>0,18 (,000)</td>
</tr>
<tr>
<td>TS</td>
<td>300</td>
<td>115</td>
<td>74,9</td>
<td>6</td>
<td>550</td>
<td>100</td>
<td>1,6</td>
<td>0,14</td>
<td>4,7</td>
<td>0,28</td>
<td>0,10 (,000)</td>
</tr>
</tbody>
</table>

Abbildung 31: Histogramme zur Verteilung der Molybdänkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1441)

Die aus den Daten ermittelten Molybdängehalte in verschiedenen Laktationsabschnitten sind in Abb. 32 aufgeführt. Es sind kaum Unterschiede zwischen den Gruppen erkennbar und die
Varianzanalyse bestätigt diese statistisch nicht relevante Signifikanz (F=0,8). Ebenso nicht erhebliche Unterschiede sind zwischen den Gruppen in Tab. 51 zu finden.

![Abbildung 32: Molybdän im Urin in Abhängigkeit von Laktationsstadium (F=0,8; p=0,541; n=1236)](image)

Tabelle 51: Kalkulierte Referenzbereiche für die Molybdänkonzentration im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>gesamt</td>
<td>1441</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>302</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>212</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>216</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>207</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>300</td>
</tr>
</tbody>
</table>
Die statistischen Kennzahlen des Chromgehaltes im Urin sind in Tab. 52 aufgeführt. Der K-S-Test weist im originalen Datensatz eine Normalverteilung auf. Dies bestätigen auch die Werte der Schiefe, die nahe 0 liegen. Auch das Histogramm mit den nicht logarithmierten Daten Abb. 33 veranschaulicht diese Normalverteilung.

Tabelle 52: Deskriptive Statistik zum Chromgehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>405</td>
<td>26,9</td>
<td>8,10</td>
<td>5,6</td>
<td>49,4</td>
<td>27,2</td>
<td>-0,0</td>
<td>0,12</td>
<td>-0,6</td>
<td>0,24</td>
<td>0,04 (0,069)</td>
</tr>
<tr>
<td>gesamt ln</td>
<td>405</td>
<td></td>
<td>-1,0</td>
<td>0,12</td>
<td>1,4</td>
<td>0,24</td>
<td>0,08 (0,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>85</td>
<td>28,3</td>
<td>8,42</td>
<td>5,6</td>
<td>49,4</td>
<td>28,7</td>
<td>-0,2</td>
<td>0,26</td>
<td>-0,1</td>
<td>0,52</td>
<td>0,07 (0,200)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>56</td>
<td>22,7</td>
<td>6,90</td>
<td>6,9</td>
<td>37,9</td>
<td>22,1</td>
<td>0,2</td>
<td>0,32</td>
<td>-0,2</td>
<td>0,63</td>
<td>0,10 (0,200)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>57</td>
<td>26,0</td>
<td>8,04</td>
<td>8,2</td>
<td>43,6</td>
<td>25,8</td>
<td>-0,0</td>
<td>0,32</td>
<td>-0,4</td>
<td>0,62</td>
<td>0,08 (0,200)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>57</td>
<td>26,2</td>
<td>7,28</td>
<td>10,2</td>
<td>40,2</td>
<td>27,1</td>
<td>-0,0</td>
<td>0,32</td>
<td>-0,7</td>
<td>0,62</td>
<td>0,08 (0,200)</td>
</tr>
<tr>
<td>TS</td>
<td>82</td>
<td>26,4</td>
<td>7,83</td>
<td>10,0</td>
<td>43,1</td>
<td>26,5</td>
<td>0,2</td>
<td>0,27</td>
<td>-0,7</td>
<td>0,53</td>
<td>0,08 (0,200)</td>
</tr>
</tbody>
</table>

Abbildung 33: Histogramme zur Verteilung der Chromkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=405)

Die Varianzanalyse zeigt eine Signifikanz zwischen den Laktationsstadien und dem Chromgehalt im Urin (Abb. 34). Bei den Frischabkalbern sind die niedrigsten Chromkonzentrationen im Harn zu sehen. Dies wird auch in der Tab. 53 untermauert, in der die hier ermittelten Referenzbereiche aufgeführt sind.

Abbildung 34: Chrom im Urin in Abhängigkeit von Laktationsstadium (F=4,3**; p=0,002; n=405)
Tabelle 53: Kalkulierte Referenzbereiche für die Chromkonzentration im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>Perzentile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>2,5</td>
</tr>
<tr>
<td>gesamt</td>
<td>405</td>
<td>10,2</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>85</td>
<td>8,9</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>56</td>
<td>8,3</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>57</td>
<td>8,5</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>57</td>
<td>11,4</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>82</td>
<td>11,2</td>
</tr>
</tbody>
</table>

4.15 Kobalt

Die wesentlichen Lage- und Streuungsmaße zum Kobaltgehalt im Urin sind in Tab. 54 zusammengefasst. Die Werte zeigen wie auch die Abb. 35, dass beim Kobalt im Harn keine Normalverteilung vorliegt.
Tabelle 54: Deskriptive Statistik zum Kobaltgehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>450</td>
<td>3,7</td>
<td>3,91</td>
<td>0,5</td>
<td>38,0</td>
<td>2,8</td>
<td>5,2</td>
<td>0,12</td>
<td>34,1</td>
<td>0,23</td>
</tr>
<tr>
<td>gesamt_in</td>
<td>450</td>
<td></td>
<td>0,5</td>
<td>0,12</td>
<td>1,3</td>
<td>0,23</td>
<td>0,06 (,001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>101</td>
<td>4,1</td>
<td>4,46</td>
<td>0,6</td>
<td>38,0</td>
<td>3,2</td>
<td>5,3</td>
<td>0,24</td>
<td>36,0</td>
<td>0,48</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>69</td>
<td>3,9</td>
<td>4,44</td>
<td>0,6</td>
<td>32,0</td>
<td>3,0</td>
<td>4,6</td>
<td>0,29</td>
<td>25,6</td>
<td>0,57</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>62</td>
<td>3,9</td>
<td>3,99</td>
<td>0,9</td>
<td>29,1</td>
<td>2,7</td>
<td>4,5</td>
<td>0,30</td>
<td>26,3</td>
<td>0,60</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>60</td>
<td>3,4</td>
<td>3,89</td>
<td>0,5</td>
<td>29,4</td>
<td>2,4</td>
<td>5,3</td>
<td>0,31</td>
<td>34,4</td>
<td>0,61</td>
</tr>
<tr>
<td>TS</td>
<td>91</td>
<td>3,0</td>
<td>3,65</td>
<td>0,8</td>
<td>32,4</td>
<td>2,4</td>
<td>6,5</td>
<td>0,25</td>
<td>49,2</td>
<td>0,50</td>
</tr>
</tbody>
</table>

Abbildung 35: Histogramme zur Verteilung der Kobaltkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=450)

Abbildung 36: Kobalt im Urin in Abhängigkeit von Laktationsstadium (F=1,1; p=0,377; n=382)

Tabelle 55: Kalkulierte Referenzbereiche für die Kobaltkonzentration im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>450</td>
<td>0,8</td>
<td>11,5</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>101</td>
<td>0,8</td>
<td>16,5</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>69</td>
<td>0,8</td>
<td>23,0</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>62</td>
<td>1,0</td>
<td>19,4</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>60</td>
<td>0,5</td>
<td>18,9</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>91</td>
<td>0,9</td>
<td>13,9</td>
</tr>
</tbody>
</table>
4.16 Cadmium

Tabelle 56: Deskriptive Statistik zum Cadmiumgehalt im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>380</td>
<td>0,11</td>
<td>0,078</td>
<td>0,01</td>
<td>0,48</td>
<td>0,10</td>
<td>1,7</td>
<td>0,13</td>
<td>3,8</td>
<td>0,25</td>
<td>0,14 (.000)</td>
</tr>
<tr>
<td>gesamtln</td>
<td>380</td>
<td></td>
<td></td>
<td>-0,5</td>
<td>0,13</td>
<td>0,7</td>
<td>0,25</td>
<td>0,08</td>
<td>0,17</td>
<td>(.000)</td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>81</td>
<td>0,09</td>
<td>0,075</td>
<td>0,01</td>
<td>0,48</td>
<td>0,08</td>
<td>2,5</td>
<td>0,27</td>
<td>9,1</td>
<td>0,53</td>
<td>0,17 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>52</td>
<td>0,10</td>
<td>0,072</td>
<td>0,01</td>
<td>0,41</td>
<td>0,09</td>
<td>2,0</td>
<td>0,33</td>
<td>5,8</td>
<td>0,65</td>
<td>0,17 (.001)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>53</td>
<td>0,11</td>
<td>0,070</td>
<td>0,01</td>
<td>0,39</td>
<td>0,10</td>
<td>1,5</td>
<td>0,33</td>
<td>3,6</td>
<td>0,64</td>
<td>0,13 (.019)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>50</td>
<td>0,11</td>
<td>0,067</td>
<td>0,02</td>
<td>0,34</td>
<td>0,10</td>
<td>1,5</td>
<td>0,34</td>
<td>2,9</td>
<td>0,66</td>
<td>0,16 (.003)</td>
</tr>
<tr>
<td>TS</td>
<td>80</td>
<td>0,13</td>
<td>0,085</td>
<td>0,01</td>
<td>0,43</td>
<td>0,11</td>
<td>1,6</td>
<td>0,27</td>
<td>3,2</td>
<td>0,53</td>
<td>0,13 (.002)</td>
</tr>
</tbody>
</table>

Ergebnisse

Abbildung 37: Histogramme zur Verteilung der Cadmiumkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=380)

Das Diagramm in Abb. 38 zeigt die Verteilung des Cadmiumgehaltes im Harn in verschiedenen Laktationsstadien. Es besteht eine Signifikanz, wie die Varianzanalyse mit F=2,9 zeigt. Die Tab. 57 lässt nahezu homogene Werte der Cadmiumexkretion in unterschiedlichen Laktationsabschnitten erkennen.

Abbildung 38: Cadmium im Urin in Abhängigkeit von Laktationsstadium (F=2,9*; p=0,023; n=380)
Tabelle 57: Kalkulierte Referenzbereiche für die Cadmiumkonzentration im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Stadium</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>380</td>
<td>0,02</td>
<td>0,33</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>81</td>
<td>0,01</td>
<td>0,33</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>52</td>
<td>0,01</td>
<td>0,36</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>53</td>
<td>0,02</td>
<td>0,35</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>50</td>
<td>0,02</td>
<td>0,33</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>80</td>
<td>0,01</td>
<td>0,42</td>
</tr>
</tbody>
</table>

4.17 Aluminium

Tabelle 58: Deskriptive Statistik zum Aluminiumgehalt im Urin (\(\mu g/l \)) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1368</td>
<td>18,7</td>
<td>12,57</td>
<td>0,5</td>
<td>87,6</td>
<td>16,3</td>
<td>1,7</td>
<td>0,07</td>
<td>4,3</td>
<td>0,13</td>
<td>0,11 (.000)</td>
</tr>
<tr>
<td>gesamt(\ln)</td>
<td>1368</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,5</td>
<td>0,07</td>
<td>0,8</td>
<td>0,13</td>
<td>0,05 (.000)</td>
</tr>
<tr>
<td>VB</td>
<td>287</td>
<td>18,9</td>
<td>12,99</td>
<td>0,5</td>
<td>79,0</td>
<td>16,4</td>
<td>1,9</td>
<td>0,14</td>
<td>5,0</td>
<td>0,29</td>
<td>0,11 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>201</td>
<td>17,5</td>
<td>11,80</td>
<td>1,1</td>
<td>74,1</td>
<td>15,2</td>
<td>1,6</td>
<td>0,17</td>
<td>3,9</td>
<td>0,34</td>
<td>0,12 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>207</td>
<td>18,8</td>
<td>11,63</td>
<td>0,7</td>
<td>72,5</td>
<td>17,0</td>
<td>1,6</td>
<td>0,17</td>
<td>4,1</td>
<td>0,34</td>
<td>0,10 (.000)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>198</td>
<td>14,5</td>
<td>9,48</td>
<td>1,5</td>
<td>77,2</td>
<td>12,4</td>
<td>2,1</td>
<td>0,17</td>
<td>9,5</td>
<td>0,34</td>
<td>0,11 (.000)</td>
</tr>
<tr>
<td>TS</td>
<td>285</td>
<td>21,9</td>
<td>14,33</td>
<td>1,2</td>
<td>87,6</td>
<td>19,0</td>
<td>1,5</td>
<td>0,14</td>
<td>3,7</td>
<td>0,29</td>
<td>0,11 (.000)</td>
</tr>
</tbody>
</table>

Abbildung 39: Histogramme zur Verteilung der Aluminiumkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1368)

Die aus den Daten ermittelten Aluminiumgehalte im Urin in Abhängigkeit vom Laktationsstatus sind in Abb. 40 abgebildet. Die Einzelwerte sind weit gestreut. Die
Signifikanz lässt mit $F=10,9$ leichte Unterschiede zwischen den Gruppen erkennen. Dies ist auch in Tab. 59 zu sehen, in der die hier erfassten laktationsabhängigen Referenzbereiche für Aluminium im Harn aufgeführt sind.

Abbildung 40: Aluminium im Urin in Abhängigkeit von Laktationsstadium ($F=10,9***$; $p<0,001$; $n=1368$)

Tabelle 59: Kalkulierte Referenzbereiche für die Aluminiumkonzentration im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>1368</td>
<td>3,4</td>
<td>51,1</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>287</td>
<td>3,3</td>
<td>63,1</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>201</td>
<td>3,0</td>
<td>53,0</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>207</td>
<td>3,7</td>
<td>50,9</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>198</td>
<td>3,1</td>
<td>40,5</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>285</td>
<td>3,3</td>
<td>56,2</td>
</tr>
</tbody>
</table>
Ergebnisse

4.18 Blei

In Tab. 60 sind die statistischen Kennzahlen zum Bleigehalt im Harn in Abhängigkeit vom Laktationsstand zu finden. Außer bei den Vorbereitern sagt der K-S-Test aus, dass die Daten normalverteilt sind mit p>0,05. Die Histogramme (Abb. 41) zeigen, dass die Bleikonzentrationen im Urin annähernd normalverteilt sind.

Tabelle 60: Deskptive Statistik zum Bleigehalt im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>292</td>
<td>11,1</td>
<td>4,67</td>
<td>2,0</td>
<td>25,0</td>
<td>10,5</td>
<td>0,7</td>
<td>0,14</td>
<td>0,3</td>
<td>0,28</td>
<td>0,08 (.000)</td>
</tr>
<tr>
<td>gesamtln</td>
<td>292</td>
<td></td>
<td>-0,4</td>
<td>0,14</td>
<td>0,3</td>
<td>0,28</td>
<td>0,05 (.200)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>66</td>
<td>11,6</td>
<td>4,95</td>
<td>2,0</td>
<td>24,0</td>
<td>10,5</td>
<td>0,7</td>
<td>0,30</td>
<td>0,2</td>
<td>0,58</td>
<td>0,18 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>37</td>
<td>9,5</td>
<td>3,99</td>
<td>3,0</td>
<td>22,0</td>
<td>9,1</td>
<td>1,0</td>
<td>0,39</td>
<td>1,4</td>
<td>0,76</td>
<td>0,09 (.200)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>43</td>
<td>11,5</td>
<td>4,52</td>
<td>5,0</td>
<td>25,0</td>
<td>11,2</td>
<td>0,9</td>
<td>0,36</td>
<td>1,1</td>
<td>0,71</td>
<td>0,11 (.200)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>41</td>
<td>9,7</td>
<td>4,05</td>
<td>4,0</td>
<td>21,0</td>
<td>9,4</td>
<td>0,9</td>
<td>0,37</td>
<td>0,7</td>
<td>0,72</td>
<td>0,11 (.200)</td>
</tr>
<tr>
<td>TS</td>
<td>52</td>
<td>10,5</td>
<td>4,58</td>
<td>3,0</td>
<td>23,0</td>
<td>9,8</td>
<td>0,6</td>
<td>0,33</td>
<td>0,2</td>
<td>0,65</td>
<td>0,11 (.184)</td>
</tr>
</tbody>
</table>

Abbildung 41: Histogramme zur Verteilung der Bleikonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=292)

Abbildung 42: Blei im Urin in Abhängigkeit von Laktationsstadium (F=2,1; p=0,088; n=292)
Tabelle 61: Kalkulierte Referenzbereiche für die Bleikonzentration im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>292</td>
<td>3,7</td>
<td>22,7</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>66</td>
<td>3,8</td>
<td>23,5</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>37</td>
<td>2,9</td>
<td>21,3</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>43</td>
<td>4,8</td>
<td>24,7</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>41</td>
<td>3,6</td>
<td>21,1</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>52</td>
<td>2,6</td>
<td>22,3</td>
</tr>
</tbody>
</table>

4.19 Strontium

Die wesentlichen Lage- und Streuungsmaße zum Strontiumgehalt im Urin sind in Tab. 62 zusammengefasst. Es liegt in keinem Laktationsabschnitt eine Normalverteilung vor. Im logarithmierten Histogramm ist nahezu eine Normalverteilung zu sehen (Abb. 43).
Ergebnisse

Tabelle 624: Deskriptive Statistik zum Strontiumgehalt im Urin (µg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>MW</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Med.</th>
<th>Schiefe</th>
<th>SF</th>
<th>Kurtosis</th>
<th>SF</th>
<th>K-S-Test (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1439</td>
<td>703</td>
<td>319,0</td>
<td>73</td>
<td>2090</td>
<td>657</td>
<td>0,9</td>
<td>0,07</td>
<td>1,1</td>
<td>0,13</td>
<td>0,07 (.000)</td>
</tr>
<tr>
<td>gesamtln</td>
<td>1439</td>
<td></td>
<td>-0,6</td>
<td>0,8</td>
<td>0,13</td>
<td>0,04</td>
<td>(.000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>302</td>
<td>713</td>
<td>308,6</td>
<td>93</td>
<td>1950</td>
<td>646</td>
<td>0,7</td>
<td>0,14</td>
<td>0,7</td>
<td>0,28</td>
<td>0,10 (.000)</td>
</tr>
<tr>
<td>0-1 W.</td>
<td>211</td>
<td>584</td>
<td>336,8</td>
<td>110</td>
<td>2050</td>
<td>498</td>
<td>1,3</td>
<td>0,17</td>
<td>2,1</td>
<td>0,33</td>
<td>0,11 (.000)</td>
</tr>
<tr>
<td>3-5 W.</td>
<td>214</td>
<td>758</td>
<td>322,5</td>
<td>160</td>
<td>1750</td>
<td>718</td>
<td>0,7</td>
<td>0,17</td>
<td>0,3</td>
<td>0,33</td>
<td>0,07 (.011)</td>
</tr>
<tr>
<td>15-18 W.</td>
<td>208</td>
<td>730</td>
<td>307,4</td>
<td>178</td>
<td>1950</td>
<td>685</td>
<td>1,2</td>
<td>0,17</td>
<td>2,2</td>
<td>0,34</td>
<td>0,09 (.001)</td>
</tr>
<tr>
<td>TS</td>
<td>300</td>
<td>671</td>
<td>296,7</td>
<td>73</td>
<td>1720</td>
<td>622</td>
<td>0,9</td>
<td>0,14</td>
<td>1,1</td>
<td>0,28</td>
<td>0,07 (.002)</td>
</tr>
</tbody>
</table>

Abbildung 43: Histogramme zur Verteilung der Strontiumkonzentrationen im Urin: links originaler, rechts logarithmierter Datensatz (n=1439)

Abb. 44 veranschaulicht die aus den Daten ermittelten Strontiumgehalte im Urin. Es liegt eine Signifikanz zwischen den Laktationsabschnitten vor. Die Einzelwerte sind weit gestreut. Tab. 63 fasst die hier kalkulierten Referenzbereiche von Strontium im Harn zusammen. Außer bei
den Frischabkalbern, die niedrigere Strontiumkonzentrationen im unteren Bereich aufweisen, liegen die Werte, wie auch im Boxplot-Diagramm zu sehen ist, eng beieinander.

Abbildung 44: Strontium im Urin in Abhängigkeit von Laktationsstadium (F=10,2***; p<0,001; n=1439)

Tabelle 63: Kalkulierte Referenzbereiche für die Strontiumkonzentration im Urin (μg/l) in Abhängigkeit vom Laktationsstadium

<table>
<thead>
<tr>
<th>Perzentile</th>
<th>N</th>
<th>2,5</th>
<th>97,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>gesamt</td>
<td>1439</td>
<td>203</td>
<td>1480</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>302</td>
<td>241</td>
<td>1404</td>
</tr>
<tr>
<td>0-1 Woche</td>
<td>211</td>
<td>133</td>
<td>1525</td>
</tr>
<tr>
<td>3-5 Wochen</td>
<td>214</td>
<td>263</td>
<td>1503</td>
</tr>
<tr>
<td>15-18 Wochen</td>
<td>208</td>
<td>295</td>
<td>1487</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>300</td>
<td>209</td>
<td>1504</td>
</tr>
</tbody>
</table>
5 Diskussion

5.1 Kalium

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAFT u. DÜRR 2005</td>
<td>4236</td>
<td>150 – 300</td>
<td>5,9 – 11,7</td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>1563</td>
<td>120 – 390</td>
<td>4,7 – 15,2</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>1491</td>
<td>120* - 350</td>
<td>4,7 – 13,7</td>
</tr>
</tbody>
</table>

* 0-1 W. p. p. 100 mmol/l / 3,9 g/l
Diskussion

5.2 Natrium

Tab. 65: Abgeleitete Referenzwerte für die Natriumkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUTTLE 2010</td>
<td>3-60</td>
<td></td>
<td>0,07 – 1,4</td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>4229</td>
<td>4-164</td>
<td>0,09 – 3,8</td>
</tr>
<tr>
<td>Trockenstehers</td>
<td>1558</td>
<td>3-140</td>
<td>0,07 – 3,2</td>
</tr>
<tr>
<td>laktierende Kühe</td>
<td>1491</td>
<td>8*-180</td>
<td>0,2 – 4,1</td>
</tr>
</tbody>
</table>

*0-1 W. p. p. 4 mmol/l / 0,09 g/l
5.3 Magnesium

Tab. 66: Abgeleitete Referenzwerte für die Magnesiumkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAFT u. DÜRR 2005</td>
<td>4236</td>
<td>3,7 - 16,5</td>
<td>0,09 - 0,4</td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>4236</td>
<td>4,3 - 30,3</td>
<td>0,1 - 0,7</td>
</tr>
<tr>
<td>Kühe</td>
<td>3054</td>
<td>5* - 31</td>
<td>0,1 - 0,75</td>
</tr>
</tbody>
</table>

*0-l W. p. p. 3,7 mmol/l / 0,09 g/l

5.4 Kalzium

Tab. 67: Abgeleitete Referenzwerte für die Kalziumkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAFT u. DÜRR 2005</td>
<td>< 2,5</td>
<td>< 0,1</td>
<td></td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>4217</td>
<td>< 9,6</td>
<td>< 0,4</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>1549</td>
<td>< 13,1</td>
<td>< 0,5</td>
</tr>
<tr>
<td>laktierende Kühe</td>
<td>1489</td>
<td>< 6,5*</td>
<td>< 0,26</td>
</tr>
</tbody>
</table>

*0-1 W. p. p. < 7,4 mmol/l / < 0,3 g/l

5.5 Chlorid

Tab. 68: Abgeleitete Referenzwerte für die Chloridkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAFT u. DÜRR 2005</td>
<td>40 - 160</td>
<td>1,4 - 5,7</td>
<td></td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>4226</td>
<td>10 - 192</td>
<td>0,4 - 6,8</td>
</tr>
<tr>
<td>Trockensteher</td>
<td>1558</td>
<td>22 - 210</td>
<td>0,8 - 7,4</td>
</tr>
</tbody>
</table>

5.6 Phosphor

Tab. 69: Abgeleitete Referenzwerte für die Phosphorkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAFT u. DÜRR 2005</td>
<td>0,1 - 3,3</td>
<td>0,003 - 0,1</td>
<td></td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>4191</td>
<td>0,04 - 3,77</td>
<td>0,001 - 0,1</td>
</tr>
<tr>
<td>Kühe</td>
<td>3022</td>
<td>0,03 - 3,4*</td>
<td>0,001 - 0,1</td>
</tr>
</tbody>
</table>

*0-1 W. p. p. < 5,6 mmol/l / 0,2 g/l
5.7 Schwefel

Da in der Literatur keine Angaben zu Schwefelgehalten im Urin zu finden sind, sind hier die Referenzwerte aus den ermittelten Daten angeführt (Tab.70). Die Ausscheidung über den Harn wird vorwiegend von der Leber gesteuert (HARRINGTON u. LEMANN 1970; MAGEE et al. 2004). Da viele Kühe um die Kalbung herum weniger Futter aufnehmen und mit Ketose, Puerperalstörungen und Hypokalziämie belastet sind, müssen sich Pansen und Leber erst regenerieren, um Schwefel einerseits für den Organismus nutzbar zu machen (Pansenmikroorganismen) und dann in oxidierter Form (Leber) über den Urin auszuscheiden. Deswegen sind die Frischabkalber hier gesondert angegeben.

Tab. 70: Abgeleitete Referenzwerte für die Schwefelkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>406</td>
<td>12 - 72</td>
<td>0,4 - 2,3</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>85</td>
<td>16 - 81</td>
<td>0,5 - 2,6</td>
</tr>
<tr>
<td>laktierende Kühe +</td>
<td>197</td>
<td>12 - 69*</td>
<td>0,4 - 2,2</td>
</tr>
<tr>
<td>Trockensteher</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*0-1 W. p. p. 9 - 66 mmol/l / 0,3 - 2,1 g/l

5.8 Kupfer

In der Literatur sind keine Angaben zu Kupferkonzentrationen im Harn zu finden. Bei Kupfer sind die frisch abgekalbten Kühe bei den Referenzwerten aufgrund der besonderen Stoffwechsellage (Ketose) um die Kalbung herum und der wichtigen Funktion der Leber für die Exkretion (SUTTLE 2010) gesondert angegeben. Aufgrund der homogenen Werte von laktierenden und trockenstehenden Kühen sind diese in einem Referenzwertvorschlag zusammengefasst (Tab. 71). Da die Ausscheidung von Kupfer mit dem Harn gering ist und
der untere Referenzwert gegen 0 geht ist hier nur eine obere Grenze aufgeführt. Damit lässt sich im Urin eine Übersorgung von Kupfer nachweisen.

Tab. 71: Abgeleitete Referenzwerte für die Kupferkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>1441</td>
<td>< 0,01*</td>
<td>< 0,7</td>
</tr>
</tbody>
</table>

*0-1 W. p. p. < 0,008 mmol/l / 0,5 mg/l

5.9 Selen

Tab. 72: Abgeleitete Referenzwerte für die Selenkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mmol/l</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNIPER et al. 2006</td>
<td></td>
<td>< 0,001</td>
<td>< 0,1</td>
</tr>
<tr>
<td>Gesamtstichprobe</td>
<td>1425</td>
<td>< 0,005</td>
<td>< 0,4</td>
</tr>
</tbody>
</table>
5.10 Zink

Tab. 73: Abgeleitete Referenzwerte für die Zinkkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td></td>
<td>0,3 - 5</td>
<td>0,02 - 0,34</td>
</tr>
</tbody>
</table>

5.11 Eisen

Da die Eisenexkretion insgesamt eher gering ist (NRC 2005), ist der Gehalt im Urin in der Literatur nicht näher erforscht. Hier der Vorschlag der ermittelten Referenzwerte für Eisen von 1439 Poolproben aus verschiedenen Milchviehbetrieben (Tab. 74).

Tab. 74: Abgeleitete Referenzwerte für die Eisenkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>1439</td>
<td>0,3 - 2</td>
<td>0,018 - 0,118</td>
</tr>
</tbody>
</table>
5.12 Mangan

Auch bei Mangan ist die Exkretion via Urin eher gering und scheint wenig sensitiv auf die Manganzufuhr zu reagieren (DAVIS u. GREGER 1992). Aus diesem Grund gibt es im Referenzwertvorschlag (Tab. 75) eine Gruppe in der laktierende und nichtlaktierende Kühe zusammengefasst werden.

Tab. 75: Abgeleitete Referenzwerte für die Mangankonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>1438</td>
<td>0,007 - 0,1</td>
<td>0,4 - 7,0</td>
</tr>
</tbody>
</table>

5.13 Molybdän

Tab. 76: Abgeleitete Referenzwerte für die Molybdänkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>1441</td>
<td>0,2 - 3</td>
<td>23 - 323</td>
</tr>
</tbody>
</table>
5.14 Chrom

Tab. 77: Abgeleitete Referenzwerte für die Chromkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>405</td>
<td>0,2 - 0,8</td>
<td>10 - 42</td>
</tr>
</tbody>
</table>

5.15 Kobalt

Absorbiertes Kobalt wird hauptsächlich über den Urin ausgeschieden (KIRCHGESSNER et al. 1994). Tab. 78 fasst die kalkulierten Daten zu einem Referenzbereich für Kobalt im Urin zusammen

Tab. 78: Abgeleitete Referenzwerte für die Kobaltkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühe (N=450)</td>
<td>450</td>
<td>0,01 - 0,2</td>
<td>0,8 - 11,5</td>
</tr>
</tbody>
</table>
5.16 Cadmium

Tab. 79: Abgeleitete Referenzwerte für die Cadmiumkonzentrationen im Urin

<table>
<thead>
<tr>
<th>Gesamtstichprobe</th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>380</td>
<td>< 0,003</td>
<td>< 0,34</td>
</tr>
</tbody>
</table>

5.17 Aluminium

Tab. 80: Abgeleitete Referenzwerte für die Aluminiumkonzentrationen im Urin

<table>
<thead>
<tr>
<th>Gesamtstichprobe</th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1368</td>
<td>0,1 - 1,9</td>
<td>3,4 - 51</td>
</tr>
</tbody>
</table>
5.18 Blei

Tab. 81: Abgeleitete Referenzwerte für die Bleikonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>292</td>
<td>0,02 - 0,1</td>
<td>4 - 23</td>
</tr>
</tbody>
</table>

5.19 Strontium

Zwar fanden COMAR u. WASSERMAN (1964) heraus, dass Strontium (mit denselben Transportmechanismen wie Kalzium) hauptsächlich mit dem Urin ausgeschieden wird. Dennoch fehlen bei Strontium Literaturangaben zu Referenzwerten. In dem hier vorgeschlagenen Referenzbereich (Tab. 82) sind die Frischabkalber gesondert vermerkt, da die geringere Futteraufnahme um die Kalbung herum auch eine geringere Strontiumausscheidung mit dem Harn bedingt.

Tab. 82: Abgeleitete Referenzwerte für die Strontiumkonzentrationen im Urin

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>µmol/l</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtstichprobe</td>
<td>1439</td>
<td>2 - 20</td>
<td>0,2 - 1,5</td>
</tr>
</tbody>
</table>

*0-1 W. p. p. 0,001 mmol/l / 0,1 mg/l
6 Schlussfolgerungen

- Urin ist ein schnell reagierender Parameter, um in der Bestandsbetreuung frühzeitig Abweichungen von einer bedarfsgerechten Mineralstoffversorgung zu erkennen.
- Harnproben spiegeln die tagaktuelle Versorgung mit Mengen- und Spurenelementen wider.
- Dennoch wird die Diagnostik der Störungen der Mineralstoffe mittels Harnanalyse bislang selten bis gar nicht genutzt.
- Die teilweise für Harn angeführten Referenzwerte in der Literatur stammen aus einem langen Zeitraum mit wechselnder Analytik.
- In den letzten Jahren hat sich die Untersuchungsmethode mittels ICP-AES etabliert.
- Zur Diagnostik der Störungen der Mineralstoffversorgung mittels Harn bedarf es einer Neufestlegung der Referenzwerte.
- Für einige Mineralstoffe sind in der Interpretation Besonderheiten zu beachten, da nicht bei allen Elementen die Homöostase über die Harnausscheidung reguliert wird, was auch an der ausbleibenden Laktationsdynamik zu erkennen ist.
- Eisen und Mangan haben eine geringe Harnekrektion und reagieren wenig sensitiv auf eine erhöhte Zufuhr.
- Die Exkretion via Urin unterliegt bei Molybdän kaum einer homöostatischen Kontrolle und ist nur bei hoher Versorgung ein wichtiger Ausscheidungsweg.
- Blei wird zu 98 % mit dem Kot, zu 1 % mit dem Harn und zu < 1 % mit der Milch aus dem Körper eliminiert.
- Die Tab. 83 veranschaulicht die Hauptausscheidungswege für die einzelnen Mineralstoffe.
Tab. 83: Hauptausscheidungswege der Mineralstoffe

Ausscheidung über

<table>
<thead>
<tr>
<th>Mineralstoff</th>
<th>Urin</th>
<th>Kot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalium*</td>
<td>++</td>
<td>(+)</td>
</tr>
<tr>
<td>Natrium*³</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Magnesium</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Kalzium²</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chlorid²</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phosphor</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Schwefel</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Kupfer</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Selen</td>
<td>++</td>
<td>(+)</td>
</tr>
<tr>
<td>Zink</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eisen*</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Mangan</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>Molybdän²</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chrom</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Kobalt</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Cadmium</td>
<td>+</td>
<td>(+)</td>
</tr>
<tr>
<td>Aluminium</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Blei²</td>
<td>(+)</td>
<td>++</td>
</tr>
<tr>
<td>Strontium</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

*Exkretion über Schweiß; ²Exkretion über Milch; ³Exkretion über Speichel
7 Zusammenfassung

Untersuchungen zu den Konzentrationen an Mengen- und Spurenelementen im Harn von Holstein - Friesian Milchkühen

Die Diagnostik einer bedarfsdeckenden Mineralstoffversorgung ist für die Herdengesundheit und damit für die integrierte Bestandsbetreuung von großer Bedeutung. Da Harn als wichtiger Exkretionsweg für Mineralstoffe eine aktuelle Versorgungslage widerspiegelt, könnte er neben anderen Substraten, wie Blut, zur Erhebung des Mineralstoffstatus mit herangezogen werden.

Ziel dieser Arbeit war es, eine Übersicht zur Funktion, Mangelerscheinung, Toxizität, Homöostase und Diagnostik von Mineralstoffen zu geben und Referenzbereiche für Mengen- und Spurenelemente im Urin zu erarbeiten.

In dieser Untersuchung konnten Referenzbereiche für die einzelnen Elemente bestimmt werden. Aufgrund der signifikanten Unterschiede in der Laktationsdynamik sind bei fast allen Mineralstoffen die Frischmelker aus den Betrachtungen ausgeschlossen worden, um die Referenzwerte nicht mit den kalbebedingten Besonderheiten in der Mineralstoffhomöostase zu verfälschen. Außerdem konnte festgestellt werden, dass für einige Elemente, wie Eisen, Mangan und Molybdän der Gehalt im Harn nur bedingt zur Beurteilung der Versorgungslage herangezogen werden kann. Daher sollten auch immer die Blutwerte und weitere Substrate wie Futter oder Lebergewebe in die Auswertungen einbezogen werden, um eine zuverlässige Interpretation der Versorgungslage zu gewährleisten.
Aus den Ergebnissen konnten nachfolgende Referenzwerte kalkuliert werden.

<table>
<thead>
<tr>
<th>Mengenelement</th>
<th>Gruppen</th>
<th>Referenzwerte in</th>
<th>Referenzwerte in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mmol/l</td>
<td>g/l</td>
</tr>
<tr>
<td>Kalium</td>
<td>Gesamtstichprobe</td>
<td>108 - 372</td>
<td>4,3 - 14,5</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>120 - 390</td>
<td>4,7 - 15,2</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>120 - 350</td>
<td>4,7 - 13,7</td>
</tr>
<tr>
<td>Natrium</td>
<td>Gesamtstichprobe</td>
<td>4 - 164</td>
<td>0,09 - 3,8</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>3 - 140</td>
<td>0,07 - 3,2</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>8 - 180</td>
<td>0,2 - 4,1</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Gesamtstichprobe</td>
<td>4,3 - 30,3</td>
<td>0,1 - 0,7</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>4,5 - 31</td>
<td>0,11 - 0,75</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>5,2 - 31</td>
<td>0,13 - 0,75</td>
</tr>
<tr>
<td>Kalzium</td>
<td>Gesamtstichprobe</td>
<td>< 9,6</td>
<td>< 0,4</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>< 13,1</td>
<td>< 0,5</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>< 6,5</td>
<td>< 0,26</td>
</tr>
<tr>
<td>Chlorid</td>
<td>Gesamtstichprobe</td>
<td>10 - 192</td>
<td>0,4 - 6,8</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>22 - 210</td>
<td>0,8 - 7,4</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>7 - 160</td>
<td>0,2 - 5,7</td>
</tr>
<tr>
<td>Phosphor</td>
<td>Gesamtstichprobe</td>
<td>0,04 - 3,77</td>
<td>0,001 - 0,1</td>
</tr>
<tr>
<td></td>
<td>Trockensteher</td>
<td>0,04 - 3,1</td>
<td>0,001 - 0,1</td>
</tr>
<tr>
<td></td>
<td>lactierende Kühe</td>
<td>0,03 - 3,4</td>
<td>0,001 - 0,1</td>
</tr>
<tr>
<td>Schwefel</td>
<td>Gesamtstichprobe</td>
<td>12 - 72</td>
<td>0,4 - 2,3</td>
</tr>
<tr>
<td>Vorbereiter</td>
<td>16 - 81</td>
<td>0,5 - 2,6</td>
<td></td>
</tr>
<tr>
<td>Trockensteher</td>
<td>9 - 69</td>
<td>0,3 - 2,2</td>
<td></td>
</tr>
<tr>
<td>lactierende Kühe</td>
<td>12 - 66</td>
<td>0,4 - 2,1</td>
<td></td>
</tr>
<tr>
<td>Spurenelement</td>
<td>Gesamtstichprobe</td>
<td>µmol/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>Kupfer</td>
<td>< 10</td>
<td>< 700</td>
<td></td>
</tr>
<tr>
<td>Selen</td>
<td>< 5</td>
<td>< 400</td>
<td></td>
</tr>
<tr>
<td>Zink</td>
<td>< 6</td>
<td>< 350</td>
<td></td>
</tr>
<tr>
<td>Eisen</td>
<td>< 3</td>
<td>< 119</td>
<td></td>
</tr>
<tr>
<td>Mangan</td>
<td>0,007 - 0,1</td>
<td>0,4 - 7,0</td>
<td></td>
</tr>
<tr>
<td>Molybdän</td>
<td>0,2 - 3,0</td>
<td>23 - 323</td>
<td></td>
</tr>
<tr>
<td>Spurenelement</td>
<td>Gesamtstichprobe</td>
<td>µmol/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Chrom</td>
<td>0,2 - 0,8</td>
<td>10 - 42</td>
<td></td>
</tr>
<tr>
<td>Kobalt</td>
<td>0,01 - 0,2</td>
<td>0,8 - 11,5</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>< 0,003</td>
<td>< 0,34</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>0,1 - 1,9</td>
<td>3,4 - 51</td>
<td></td>
</tr>
<tr>
<td>Blei</td>
<td>0,02 - 0,1</td>
<td>4 - 23</td>
<td></td>
</tr>
<tr>
<td>Strontium</td>
<td>2 - 20</td>
<td>200 - 1500</td>
<td></td>
</tr>
</tbody>
</table>
8 Summary

Studies on the levels of minerals and trace elements in urine of Holstein – Friesian dairy cows

The diagnosis of a demand-covering mineral supply is significant for the herd health and thus for the integrated livestock management. Urine reflects a current mineral supply situation, as an important way of mineral excretion. Urine should be used in addition to other substrates such as blood.

The aim of this work was, to give an overview of the function, deficiency, toxicity, homeostasis and diagnostics of minerals and to develop reference ranges for minerals and trace elements in urine.

Therefor urine pool samples were taken from different dairy farms in northern Germany for several years. The pooled samples were collected from 7-10 clinically healthy Holstein Friesian cows from the lactating groups: preparer (3-0 weeks a.p.), fresh dairy cow (0-1 week p.p.) high lactation (3-5 weeks p.p.), late lactation (15-18 weeks p.p.) and dry standing cows (to 3 weeks a.p.). In urine, the minerals and trace elements (K, Na, Mg, Ca, Cl, P, S, Cu, Se, Fe, Mn, Mo, Cr, Co, Cd, Al, Pb, Sr) were determined by ICP-OES.

In this study, reference ranges for the individual elements could be determined. Due to the significant differences in the dynamics of lactation the fresh dairy cows have been excluded from consideration in almost all minerals for the reference values are not distorted by the calving-related features in the homeostase of minerals. It was also found that for some elements, such as iron, manganese and molybdenum the content in the urine can be used only conditionally to assess the supply situation. Therefore, always blood values and other substrates such as foraging or hepatic tissue should be included in the analysis, to ensure an optimal interpretation of the supply situation.
Summary

Reference value for minerals in the urine of dairy cows.

<table>
<thead>
<tr>
<th>minerals</th>
<th>groups</th>
<th>reference value</th>
<th>mmol/l</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium</td>
<td>total sample</td>
<td>108 - 372</td>
<td>4.3 - 14.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>120 - 390</td>
<td>4.7 - 15.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>120 - 350</td>
<td>4.7 - 13.7</td>
<td></td>
</tr>
<tr>
<td>sodium</td>
<td>total sample</td>
<td>4 - 164</td>
<td>0.09 - 3.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>3 - 140</td>
<td>0.07 - 3.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>8 - 180</td>
<td>0.2 - 4.1</td>
<td></td>
</tr>
<tr>
<td>magnesium</td>
<td>total sample</td>
<td>4.3 - 30.3</td>
<td>0.1 - 0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>4.5 - 31</td>
<td>0.11 - 0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>5.2 - 31</td>
<td>0.13 - 0.75</td>
<td></td>
</tr>
<tr>
<td>calcium</td>
<td>total sample</td>
<td>< 9.6</td>
<td>< 0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>< 13.1</td>
<td>< 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>< 6.5</td>
<td>< 0.26</td>
<td></td>
</tr>
<tr>
<td>chloride</td>
<td>total sample</td>
<td>10 - 192</td>
<td>0.4 - 6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>22 - 210</td>
<td>0.8 - 7.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>7 - 160</td>
<td>0.2 - 5.7</td>
<td></td>
</tr>
<tr>
<td>phosphor</td>
<td>total sample</td>
<td>0.04 - 3.77</td>
<td>0.001 - 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>0.04 - 3.1</td>
<td>0.001 - 0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>0.03 - 3.4</td>
<td>0.001 - 0.1</td>
<td></td>
</tr>
<tr>
<td>sulfur</td>
<td>total sample</td>
<td>12 - 72</td>
<td>0.4 - 2.3</td>
<td></td>
</tr>
<tr>
<td>preparer</td>
<td></td>
<td>16 - 81</td>
<td>0.5 - 2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry cows</td>
<td>9 - 69</td>
<td>0.3 - 2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lactating cows</td>
<td>12 - 66</td>
<td>0.4 - 2.1</td>
<td></td>
</tr>
<tr>
<td>trace element</td>
<td>total sample</td>
<td>mmol/l</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>copper</td>
<td></td>
<td>< 0.01</td>
<td>< 0.7</td>
<td></td>
</tr>
<tr>
<td>selenium</td>
<td></td>
<td>< 0.005</td>
<td>< 0.4</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
<td>< 0.006</td>
<td>< 0.35</td>
<td></td>
</tr>
<tr>
<td>iron</td>
<td></td>
<td>< 0.003</td>
<td>< 0.119</td>
<td></td>
</tr>
<tr>
<td>manganese</td>
<td></td>
<td>0.007 - 0.1</td>
<td>0.4 - 7.0</td>
<td></td>
</tr>
<tr>
<td>molybdenum</td>
<td></td>
<td>0.2 - 3.0</td>
<td>23 - 323</td>
<td></td>
</tr>
<tr>
<td>trace element</td>
<td>total sample</td>
<td>µmol/l</td>
<td>µg/l</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>chromium</td>
<td>0.2 - 0.8</td>
<td>10 - 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cobalt</td>
<td>0.01 - 0.2</td>
<td>0.8 - 11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cadmium</td>
<td>< 0.003</td>
<td>< 0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aluminium</td>
<td>0.1 - 1.9</td>
<td>3.4 - 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lead</td>
<td>0.02 - 0.1</td>
<td>4 - 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>strontium</td>
<td>2 - 20</td>
<td>200 - 1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 Literaturverzeichnis

Beziehungen zwischen Jodstoffwechsel und Fortpflanzung bei Kühen.

Agricultural Research Council (ARC) (1980):
The nutrient requirements of ruminant livestock.
Commonwealth Agricultural Bureaux, Farnham Royal

Alfrey, A. C. (1986):
Aluminium.
In: Trace Elements in Human and Animal Nutrition, Vol. 2, Mertz, W. ed. New York:
Academic Press. 399-413

Metabolism and toxicity of aluminium in renal failure.

Allen, J. D., Gawthorne, J. M. (1985):
Changes in copper metabolism following intravenous administration of organic and inorganic molybdenum-sulphur compounds.
In: Mills, C. F., Bremner, I., Chester, J. K. TEMA 5. CAB Press, Slough 361-363

Biology Data Book, Vol. 3. Bethesda, M. D.:

Chromium.
Sci. Total Environ. 17: 13-28

Aluminium: an essential element for goats.
Trace elements in man and animal. TEMA 8: Proceedings on the 8th Int. Symp. of trace elements in man and animals. 699-704
Literaturverzeichnis

Aufgaben der Spurenelemente in der Nahrungskette von Tier und Mensch.
4. Rekasan Anwenderseminar, Berkholz-Rehbrücke, Ber.:17-32

In: Klinische Pathologie der Haustiere. Hartmann, H., Meyer, H.
Störungen im Spurenelementhaushalt - Eisen.
Jena, Stuttgart: Fischer 7-64

Bedeutung der Ultraspurenelemente Aluminium, Arsen, Brom, Cadmium, Fluor, Lithium, Rubidium und Vanadium für das Tier.
Rekasan Journal 2: 9-12

The influence of a sulphur, molybdenum and cadmium exposure on the growth of goat, cattle and pig.

Kupfer, Jod und Nickel in Futter – und Lebensmitteln.
Übersichten zur Tierernährung 22: 321-362

Der Einfluß des Nutzungszeitpunktes auf den Mengen- und Spurenelementgehalt des Grünfutters.
Das wirtschaftseigene Futter 40: 304-319

Anke, M., Groppel, B., Grün, M. (1975a):
Tierzucht 28: 9-77

Arch. Tierernähr. 30: 707-721
Anke, M., Grün, M., Groppel, B., Partschefeld, M. (1975b):
Die Spurenelementversorgung der Wiederkäuer in der Deutschen Demokratischen Republik.
Arch. Tierernährsg. 25: 91-379

Spurenelementmangelerscheinungen bei Tier und Mensch.
In: Anke, M., Gürtler, H.: Mineralstoffe und Spurenelemente in der Ernährung. Offset Köhler,
Gießen- Wieseck, 24-36

Die Bedeutung der Spurenelemente für extensiv gehaltene Weiderinder.
In: Matthies, H. D., Derno, M. Symposium über die Regulation des Stoffwechsels unter
Beachtung der Ernährung und Umgebungstemperatur. Schriftenreihe des FBN, 7: 165-178

Anke, M., Masaoka, T., Müller, M., Glei, M., Krämer, K. (1992b):
Die Auswirkungen der Belastung von Tier und Mensch mit Schwefel, Molybdän und
Cadmium.
Stuttgart 11-29

Die Mengen- und Spurenelementversorgung der Wildwiederkäuer. 3. Der Zinkgehalt der
Winteräsung und der Zinkstatus des Rot-, Dam-, Reh- und Muffelwildes.
Arch. Tierernährsg. 30: 479-490

 Studies on the transfer of thio-oxazolidone-type goitrogens into cow`s milk in goitre endemic
districts of Finland and in experimental conditions.
Acta Endocrinol. (Copenhagen) 60: 712-718

 Hepatic iodothyronine 5´-deiodinase. The role of selenium.
Biochem. J. 272: 537-540

Estimation of daily urinary potassium excretion using urinary creatinine as an index substance
in prepartum dairy cows.
Anim. Sci. J. 76: 51-54

133
ATSDR (Agency for Toxic Substances and Disease Registry) (1999):
Toxicological profile for cadmium.
Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service
www.atsdr.cdc.gov.toxprofiles

ATSDR (Agency for Toxic Substances and Disease Registry) (2004):
Toxicological profile for iodine.
Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service

Lead intoxication in cattle: a case report.
Food Additives and Contaminants. 9: 64-357

Carryover effects of potassium supplementation on calcium homeostasis in dairy cows at
parturition.
J. Dairy Sci. 93: 29-2119

Sites of gastrointestinal-blood passage of iodide and thyroxine in young cattle.
J. Dairy Sci. 47: 539-541

Peripartum responses of Holstein cows and heifers fed graded concentrations of calcium
(calcium carbonate) and anion (chloride) three weeks before calving.
J. Dairy Sci. 84 (Suppl.1): 83

Identification of type I iodothyronine 5‘deiodinase as a seleno-enzyme.

Berner, Y. N. (1997):
Phosphorus.
In Handbook of Nutritionally Essential Mineral Elements. O’Dell, B. L., Sunde, R. A.
New York: Marcel Dekker 63-92
Blalock, T. L. (1985):
Studies on the role of iron in the reversal of zinc, cadmium, vanadium, nickel and cobalt
toxicities in broiler pullets.
PH. D. Thesis, North Carolina State University, Raleigh

J. Zhejiang Univ. Sci. B. 9: 165-191

Complex study of the physiological role of cadmium.
II. Effect of cadmium load on the cadmium content of eggs.
Acta Vet. Hung. 43: 45-62

Boonsanit, D., Chanpongsang, S., Chaiyabutr, N. (2012):
Effects of supplemental recombinant bovine somatotropin and mist-fan cooling on the renal
tubular handling of sodium in different stages of lactation in crossbred Holstein cattle.
Res. Vet. Sci. 93: 26-417

Altering dietary cation-anion differences in lactating dairy cows to reduce phosphorus
excretion to the environment.
J. Dairy Sci. 87: 1751-1757

Zur Dynamik der Blutserumkonzentration von Kalzium und Magnesium sowie der
Spurenelemente Eisen, Kupfer und Zink in den ersten Lebenswochen des Kalbes.
Tierärztl. Umsch. 37: 471-476

Bostedt, H., Schramel, P. (1990):
The importance of selenium in the prenatal and postnatal development of calves and lambs.
Biol. Trace Element Res. 24: 163-166

Sulfur requirement of lactating dairy cows. II. Utilization of sulfates, molasses, and lignin-
sulfonate.
J. Dairy Sci. 56: 1429-1434
III. Quantitative aspects of phosphorus excretion in ruminants.

Extracellular calcium as an integrator of tissue function.
Int. J. Bioch. Cell Biolo. 40: 1467-1480

Aspectos clinico-hematologicos de la molibdenosis experimentaö en bovinos con y sin tratamiento parenteral de cobre.
Vet. Arg. 71: 38-49

Bremner, I. (1987):
Mechanism and nutritional importance of trace element interactions.

Metabolism of 51Cr, 54Mn, 59Fe and 60Co in lactating dairy cows.
Health Phys. 46(5): 1069-1082

Buddecke, E. (1994):
Grundriss der Biochemie.

Arachnomelia syndrome in Simmental cattle is caused by a homozygous 2-bp deletion in the molybdenum cofactor synthesis step 1 gene (MOCS1).
Bmc. Genetics. 12: 1-10

Orale und parenterale Eisenmangelbekämpfung in Beziehung zum Ablauf von Erkrankungen
bei Tränkekälbern aus verschiedenen Herkunftsbetrieben.

Biological activity of selenium.
Am. Rev. Nutr. 3: 53-70

Sodium in Health and Disease.
CRC Press, Boca Raton, Florida

Vorkommen und toxikologische Bedeutung von Aluminium in der Nahrung.
Mitt. Gebiete Lebensm. Hyg. 76: 570-608

Insights into the complex aluminium and iron relationship.
Nephrol. Dial. Transpl. 6: 605-607

Cardin, C. J., Mason, J. (1975):
Sulphate transport by rat ileum. Effect of molybdate and other anions.
Biochim. Biophys. Acta. 394: 46-54

Cytochrome c oxidase, Cu, Zn-Superoxide dismutase and ceruplasmin activities in copper-deficient bovines.
Biol. Trace Elem. Res. 73: 269-278

Impact of lowering dietary cation-anion-balance in non-lactating cows: a meta-analysis.
J. Dairy Sci. 89: 537-548

Chester, J. K., Boyne, R., Petrie, L. (1993):
Zinc dependent promoters in cell replication and differentiation.
Trace elements in man and animal. TEMA 8: Proceedings oft he 8th Int. Symp. of trace elements in man and animals 9-136
Physiological and pathological effects of feeding high levels of magnesium to steers.

Chmielnicka, J. (1988):
Zinc-seelenium interactions in the rat.
Biol. Trace Element Res. 15: 267-276

The relationship between mineral nutrition of the beef cow and reproductive performance.
Bovine Pract. 29: 38-42

In vivo effect of zinc on iron-induced ferritin synthesis in rat liver.
Biochim. Biophys. Acta, 177: 106-112

Comar, C. L., Wasserman, R. H. (1964):
Strontium.
In: Mineral Metabolism.
Vol. 2, Comar, C. L., Bronner, F.

Hair analysis as an indicator of mineral status of livestock.
J. Anim. Sci. 65: 8-1753

Toxipathology of oil-field poisoning in cattle – a review.
Vet. Human Toxicol. 38: 36-42

Corah, L. R., Ives, S. (1992):
Trace minerals in cow herd nutrition programs.
Agri. Practice 13: 29-33

Crowe, N. A., Neathery, M. W., Miller, W. J. et al. (1990):
Influence of high dietary aluminium on performance and phosphorus bioavailability in dairy calves.
J. Dairy Sci. 73: 18-808
Davis, C. D., Greger, J. L. (1992):
Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of
manganese and iron status in women.

Copper.
In: Mertz, W. Trace Elements in Human and Animal Nutrition, Volume 1. Academic Press,
New York, London 301-342

Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature
from 1985 to 2000.
Human Exp. Toxicol. 20: 439-451

Manganese deficiency in bovines: Connection between manganese metalloenzyme dependant
in gestation and congenital defects in newborn calves.
Pak. J. Nutr. 9: 488-503

Delange, F. (1994):
The disorders induced by iodine deficiency.
Thyroid. 4: 107-128

Iodine content of milk and other foods.
J. Food Protec. 47: 678-684

Effect of reduced glutathione treatment on selenosis, blood selenium concentration and
glutathione peroxidase activity after repeated short-term selenium exposure in buffalo calves.
Toxicology. 213(1-2): 169-174

Innere Medizin und Chirugie des Rindes.
5. Auflage. MVS Medizinverlage Stuttgart
Literaturverzeichnis

DLG (1960):
Futterwerttabellen- Mineralstoffgehalte in Futtermitteln.
Band 61. DLG- Verlags- GmbH, Frankfurt am Main

DLG (1973):
Futterwerttabellen- Mineralstoffgehalte in Futtermitteln.
Band 62. DLG- Verlags- GmbH, Frankfurt am Main

Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules.
Toxicol. Appl. Pharmacol. 130: 161-168

Phosphorus characteristics of dairy feces affected by diets.
J. Environ. Qual. 31: 2058-2065

Phosphorus feeding levels and critical control points on dairy farms.
J. Dairy Sci. 86: 3787-3795

Physiological phenomena associated with eructation in ruminants.
In Physiology of Digestion in the Ruminant, Dougherty, R. W.
Washington, D. C.: Butterworths. 159

Effect of organic and inorganic zinc supplementation on the prevention of zinc deficiency in Aberdeen Angus calves.
XXV World Buiatrics Congress, 2008 548: 44-46

Eden, T. (1976):
Tea.
London: Longman. pp. 8-15
Sodium requirements for temperate pastures in New Zealand.
New Zealand J. Agric. Res. 46: 37-47

Klinisch-chemische Diagnostik von Schilddrüsenstörungen in der Veterinärmedizin.
Wien. Tierärztl. Mschr. 57: 286-292

Elinder, C. G. (1992):
Cadmium as an environmental hazard.
IARC Sci. Publ. 123-132

Physical, hematologic, biochemical and immunologic effects of supranutritional supplementation with dietary selenium in Holstein cows.
Am. J. Vet. Res. 58: 760-764

Engelhardt, W., Breves, G. (2010):
Physiologie der Haustiere.
3. Aufl. Enke Verlag, Stuttgart. 390-431

Respiratory cancer among chromate workers.
J. Occup. Med. 16: 523-526

EPA (U.S. Environmental Protection Agency) (1985):
Cadmium Contamination of the Environment.
EPA-440/4-85-023. Washington, DC: U.S. Environmental Protection Agency

Acute chromium poisoning in calves.
Atti della Societa Italiana di Buiatria. 23: 549-553

Nutritional chloride deficiency in early lactation Holstein cows.
J. Dairy Sci. 67: 2321-2335
Litaturverzeichnis

Pflanzenernährung in Stichworten.
5. Aufl., Hirt Verlag, Berlin

A surgical model for determination of true absorption and biliary excretion of manganese in conscious swine fed commercial diets.
J. Nutr. 127: 2334-2341

Fitzgerald, P. R., Peterson, J., Lue-Hing, C. (1985):
Heavy metals in tissues of cattle exposed to sludge-treated pastures for eight years.
Am. J. Vet. Res. 46: 703-707

Flachowsky, G. (2000):
Spurenelemente.
In: Engelhardt, W., Breves, G. Physiologie der Haustiere, Enke Verlag Stuttgart, 609-620

Spurenelemente.
In: Engelhardt, W., Breves, G. Physiologie der Haustiere, Enke Verlag Stuttgart, 628-638

Forster, E. S. (2000):
Vergleichende Untersuchung spezifizierter Untersuchungsmaterialien von Rindern auf relevante Spurenelemente (Al, Cd, Pb, Cr, Cu) unter besonderer Berücksichtigung der Haltungsform.
Dissert. Universität München

Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source.
J. Dairy Sci. 92: 4514-4523

Effect of various iodine supplementations, rapeseed meal application and two different iodine species on the iodine status and iodine excretion of dairy cows.
Livestock Sci. 125: 223-231
Use of ultrasonography for detecting calcification in cattle and sheep given calcinogenic
Trisetum flavescens silage.
Vet. Rec. 161: 751-754

Frimmer, M. (1986):
Pharmakologie und Toxikologie.
3. Aufl., Schattauer, Stuttgart 309-313

Ganrot, P. O. (1986):
Metabolism and possible health effects of aluminium.
Environ. Health Perspect. 65: 363-441

Selenium metabolism. I. Effects of diet arsenic and cadmium.
J. Nutr. 77: 210-215

Gauglhofer, J. (1984):
Chrom.
In: Merian, E.: Metalle in der Umwelt.
Verlag Chemie, Weinheim, 409-424

Gelfert, C.-C., Staufenbiel R. (1998):
Störungen im Haushalt der Spurenelemente beim Rind aus Sicht der Bestandsbetreuung.
Teil 1: Klassische Spurenelemente.
Tierärztliche Praxis, 26 (G): 55-66

Gerloff, B. J. (1992):
Effect of selenium supplementation on dairy cattle.
J. Anim. Sci. 70: 3934-3940

Gesellschaft für Ernährungsphysiologie der Haustiere, Ausschuß für Bedarfsnormen, (GEH)
(1986):
Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere.
Nr.3 Milchkühe und Aufzuchtrinder.
DLG-Verlag, Frankfurt/Main
Gesellschaft für Ernährungsphysiologie (GFE) (2001):
Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder.
DLG- Verlag, Frankfurt/Main

Effect of cadmium on lipid peroxidation and antioxidant enzymes in undernourished weanling rat brain.
Pharmacol. Toxicol. 65: 73-77

Glatzle, A., (1990):
Weidewirtschaft in den Tropen und Subtropen.
Eugen Ulmer Verlag, Stuttgart

Goff, J. P. (2007):
The monitoring, prevention and treatment of milk fever and subclinical hypocalcaemia in dairy cows.
Vet. J. 176: 50-57

Physiological changes at parturition and their relationship to metabolic disorders.
J. Dairy Sci. 80: 1260-1268

Decreased plasma retinol, alpha-tocopherol and zinc concentration during the periparturient period: Effect of milk fever.
J. Dairy Sci. 73: 3195-3199

Effects of dietary copper, molybdenum and sulfur on biliary copper and zinc excretion in Simmental and Angus cattle.
Can. J. Sci. 74: 25-315

Role of the rumen in copper and thiomolybdate absorption.

Nonmetallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the
rath.
Toxicol. Appl. Pharmacol. 101: 232-244

Relationship between blood selenium concentration or glutathione peroxidase activity and
milk selenium concentrations in New Zealand dairy cows.

Trace element deficiencies in cattle.
Food Anim. Pract. 7: 153-215

Greger, J. L. (1993):
Aluminium metabolism.

Assessment of exposure to parental and oral aluminium with and without citrate using a
desferrioxamine test in rats.
Toxicol. 76: 119-132

Mengen -und Spurenelemente – Funktion, Bedarf, Versorgung und Diagnose.
Rekasan Journal 3: 3-8

Groppel, B. (1996):
Mineralstoffe, Vitamine, Nitrate, Pflanzenöstrogene und mikrobielle Faktoren beeinflussen
die Fruchtbarkeit der Milchkuh.
Rekasan Journal 5/6: 19-25

Groppel, B. (1993):
Jodmangel beim Tier.
Gersdorf: Media Touristik. 56-127

Gross, J., (1962):
Iodine and bromine.
In: Mineral Metabolism, Comar, C. L., Bronner, F.
New York: Academic Press

Grunberg, W., Hartmann, H., Burfeind, O., Heuwieser, W., Staufenbiel, R. (2011):
Plasma potassium-lowering effect of oral glucose, sodium bicarbonate, and the combination thereof in healthy neonatal dairy calves.
J. Dairy Sci. 94: 5646-5655

Selenium supply of cattle in Hessian herds and possible preventative measures.
Tierärztliche Umschau 50: 250-255

Schwermetalle in der Nahrungskette unter besonderer Berücksichtigung des Transfers vom Boden zur Pflanze.
Übersichten zur Tierernährung 22: 7-16

Fertilitätsstörungen beim weiblichen Rind.
3. Aufl. Berlin: Parey 321-325

Mineralstoffe und Fruchtbarkeit.
Prakt. Tierarzt, 72, collegium veterinarium XXII: 26-29

Der Mengen- und Spurenelementbedarf verschiedener Tierarten und des Menschen – ein Vergleich.
In: Anke, M., Gürtler, H. Mineralstoffe und Spurenelemente in der Ernährung.
Verlag Media Touristik, Gersdorf 1-13

Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.
The effect of steam-flaked or dry ground corn and supplemental phytic acid on phosphorus partitioning and ruminal phytase activity in lactating cows.
J. Dairy Sci. 86: 3972-3982

Immune functions of veal calves fed low amounts of iron.

Efficiency of manganese absorption in chicks fed corn-soy and casein diets.
J. Nutr. 116: 1747-1751

Halverson, A. W., Monty, K. J. (1960):
An effect of dietary sulfate on selenium poisoning in the rat.
J. Nutr. 70: 100-102

The concentration and distribution of some stable elements in healthy human tissue from the United Kingdom (an environmental study).
Sci. Total Environ. 1: 341-374

Bioaccessibility of iron from soil is increased by silage fermentation.
J. Dairy Sci. 92(6): 2896-2905

Sodium and chloride in nutrition.
Marcel Dekker, Inc., New York, 93-116

The metabolic production and disposal of acid and alkali.
Med. Clin. N. Am. 54: 1543-1554

Effect of selenium intake on selenium utilization by the nonlactating dairy cow.
J. Dairy Sci. 67: 219-223
Hefnawy, A. E. G., Tortora-Perez, J. L. (2010):
The importance of selenium and the effects of its deficiency in animal health.

Untersuchungen zum Selengehalt in wirtschaftseigenen Futtermitteln und zur
Selenversorgung von Pferden und Wiederkäuern in Ostfriesland.
Vet. Med. Diss. Tierärztliche Hochschule Hannover

Hemken, R. W., (1960):
Iodine.
J. Dairy Sci. 53: 1138-1143

Trace element and vitamin provision to calves by a sustained-release rumen bolus system.
In: XIX World Buiatrics Congress, Edinburg, Proceedings 409-412

Henry, P. R., Littell, R. C., Ammerman, C. B. (1997):
Bioavailability of cobalt sources for ruminants. 1. Effects of time and dietary cobalt
concentration on tissue cobalt concentration.
Nutr. Res. 17: 947-955

Wichtige Gifte und Vergiftungen.
In: Forth, W., Henschler, D., Rummel, W., Starke, K. Pharmakologie und Toxikologie. 6.
Aufl. Wissenschaftsverlag, Mannheim

Herdt, T. H., Hoff, B. (2011):
The use of blood analyses to evaluate trace mineral status in ruminant livestock.

Urinary iodine level as an intake indicator in dairy cows.
Vet. Med. – Czech, 41: 97-101

The iodine deficiency disorders: their nature and prevention.
Hetzel, B. S., Welby, M. C. (1997):
Iodine.
In: Handbook of Nutritionally Essential Mineral Elements, O'Dell, B. L., Sunde, R. A. eds. New York: Marcel Dekker, 557-582

Hidiroglou, M., Ivan, M., Byran, M. K. (1990):
Assessment of the role of manganese in congenital joint laxity and dwarfism in calves.

Hoekstra, W. G. (1973):
Biochemical role of selenium.
In: Hoekstra, W. G., Suttie, J. W., Ganther, H. E., Mertz, W. TEMA 2, University Park Press, Baltimore 59-64

Verlag Eugen Ulmer, Stuttgart 283-303

Der Selengehalt pflanzlicher Lebensmittel in der Bundesrepublik.
Deutsche Lebensmittel Rundschau. 78: 39-49

The physiological and metabolic impacts on sheep and cattle of feed and water deprivation before and during transport.

Magnesium absorption by lactating dairy cows on a grass silage-based diet supplied with different potassium and magnesium levels.
J. Dairy Sci. 91: 743-748

Hopkins, H., Eisen, J. (1959):
Mineral elements in fresh vegetables from different geographic areas.
J. Agric. Food Chem. 7: 633-638
The influence of dietary iron on copper metabolism in the calf.
In: Mills, C. F., Bremner, I., Chester, J. K. TEMA 5. CAB Press, Slough 371-373

Effects of dietary molybdenum and iron on copper metabolism in calves.

Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows.
J. Dairy Sci. 84: 225-232

Futterwert und Futterakzeptanz von Aufwüchsen aus extensiv genutztem Grünland bei wachsenden Rindern.
Das wirtschaftseigene Futter. 39: 23-35

Effect of high magnesium intake on apparent magnesium absorption in lactating cows.
Anim. Feed Sci. Tech. 113: 53-60

Apparent magnesium absorption in dry cows fed at 3 levels of potassium and 2 levels of magnesium intake.
J. Dairy Sci. 87: 379-385

Gastrointestinal absorption of aluminium in rats using 26Al and accelerator mass spectrometry.
Clin. Nephrol. 40: 244-248

Vitamin B12 and copper supplementation in beef calves.

Kirchgessner, M., Müller, H. L., Voigtländer, G. (1971): Spurenelementgehalte (Fe, Mn, Cu, Zn, Co, Mo) des Weidegrases in Abhängigkeit von
Wachstumsdauer und Vegetationsperiode.
Das wirtschaftseigene Futter 17: 179-187

Lead deficiency in swine.
In: Proceedings of the Seventh International Symposium on Trace Elements in Man and Animals (Tema 7), Momcilovic, B.
Dubrovinik: IMI. 11-21

Endogenous excretion and true absorption of cobalt as affected by the oral supply of cobalt.
Biol. Trace Elem. Res. 41: 175-189

Zum Einfluß der Fe-Versorgung und Laktation auf die Fe-Verfügbarkeit im intermediären Stoffwechsel.
Arch. Anim. Nutr. 30: 347-349

Wechselwirkungen zwischen den Spurenelementen Zink, Kupfer und Eisen nach Zinkdepletion und –repletion von Milchkühen.
Arch. Tierernähr. 28: 723-733

Selenium and immunresponse.
Environmental Res. 42: 277-303

Zum Einfluss von Selen auf Gesundheit und Stoffwechsel von Milchkühen.
Tierärztliche Umsch. 51: 411-417

Effect of molybdenum, zinc and sulphur on xanthine oxidase activity in bulls at various levels of dietary copper.
Mengen und Spurenelemente 14: 241-250
The effect of the low concentration of copper, zinc, molybdenum, selenium and sulphur in the fodder on selected haematological parameters and glutathione peroxidase activity in calves and cows.
Mengen- und Spurenelemente. 15: 400-408

Phosphorus partitioning during early lactation in dairy cows fed diets varying in phosphorus content.
J. Dairy Sci. 85: 1227-1236

Nitrogen and phosphorus partitioning in lactating Holstein cows fed different sources of dietary protein and phosphorus.
J. Dairy Sci. 84: 1210-1217

Der Einfluß einer Schwefel- und Kupferbelastung auf den Mengen- und Spurenelementgehalt des Jejunuminhaltes und der Faeces beim Schaf.
Mengen- und Spurenelemente. 14: 544-550

Kraft, W., Dürr, U. M. (2005):
Klinische Labordiagnostik in der Tiermedizin.
6. Aufl., Stuttgart, Schattauer

Einfluß einer defizitären Versorgung der Spurenelemente Eisen, Kupfer, Zink und Mangan auf den Schilddrüsenstoffwechsel.
Mengen- und Spurenelemente. 15: 443-450

Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress.
Exp. Biol. Med. 228: 665-673

Effect of different levels and sources of zinc supplementation on quantitative and qualitative
semen attributes and serum testosterone level in crossbred cattle (Bos indicus x Bos taurus) bulls.

Kurzes Lehrbuch der Pharmakologie.
10. Aufl., Thieme, Stuttgart

Effects of selenium and vitamin E administration during a late stage of pregnancy on colostrum and milk production in dairy cows, and on passive immunity and growth of their offspring.
Am. J. Vet. Res. 57: 1776-1780

Laiblin, Ch. (1995):
Gesundheitsprobleme bei extensiver Mutterkuhhaltung.
Vortrag, Berliner Tierärztliche Gesellschaft, 8. März 1995

Laiblin, Ch., Metzner, M. (1996):
Aktuelle Probleme der tierärztlichen Betreuung von Mutterkuherden.
Prakt. Tierarzt 77, collegium veterinarium XXVI, 14-17

Zinc deficiency in ruminants.
Irish Vet. J. 38: 40-47

Seasonal and regional variations of iodine in Danish dairy products determined by inductively coupled plasma mass spectrometry.

Lassiter, J. W., Miller, W. J., Pate, F. M., Gentry, R. P. (1972):
Effect of dietary calcium and phosphorus on 54 Mn metabolism following a single tracer intraperitoneal and oral doses in rats.

Thiocyanate in food and iodine in milk: from domestic animal feeding to improved
understanding of cretinism.
Thyroid. 12: 897-902

Influence of dietary calcium and phosphorus content in a fixed ratio on growth and development in Great Danes.

Caeruloplasmin: plasma copper ratios in cows.
Vet. Rec. 159, 608

Cadmium accumulation in liver and kidney of sheep grazing ryegrass/white clover pastures.

Iodine in British foods.

Plasma diamine oxidase: A biomarker of copper deficiency in the bovine.
J. Anim. Sci. 85: 2198-2204

Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs.
J. Anim. Sci. 71: 3359-3367

Spurenelemente und Fertilität.
In: Busch, W., Holzmann, A. Veterinärmedizinische Andrologie, Physiologie und Pathologie der Fortpflanzung bei männlichen Tieren. Schattauer, Stuttgart 474-483

Selenium metabolism VI. Effect of arsenic on the excretion of selenium in the bile.
Toxicol. Appl. Pharmacol. 9: 106-115

In: Mills, C. F., Bremner, I., Chester, J. K. Trace Elements in Man and Animals, TEMA 5 CAB Press, Slough, 356-360

Academia Press, New York

Amsterdam: Elsevier Science B. V.

Vet. Pathol. 44: 342-354

Small Ruminant Research. 65: 230-236

Zitiert von: Mengel, K. Ernährung und Stoffwechsel der Pflanze.
Gustav Fischer, Jena 395

Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis – a 2-year randomized placebo controlled trial.
J. Clin. Endocrinol. Metab. 87: 2060-2066

Supplemente zu Vorlesungen und Übungen in der Tierernährung.
M. & H. Schaper Verlag, Alfeld-Hannover

Some metabolic interrelationships between toxic levels of cadmium and nontoxic levels of selenium fed to rats.
J. Nutr. 112: 954-961

Untersuchungen zur Selenversorgung von Pferden in Norddeutschland.
Pferdeheilkunde. 11: 313-321

Using mineral requirement standards in cattle feeding programs and feed formulations.
Nutr. Conf. Feed Ind. Athens: University of Georgia

Effects of zinc deficiency per se and of dietary zinc level on urinary and endogenous fecal excretion of Zn from a single intravenous dose by ruminants.
J. Nutr. 90: 335-341

Iodine absorption, excretion, recycling and tissue distribution in the dairy cow.
J. Dairy Sci. 58: 1578-1593

Molybdenum.

Clinical observations of cattle and buffalos with experimentally induced chronic copper
poisoning.

Effects of parenteral supply of iron on RBC parameters, performance, and health in neonatal
dairy calves.

Morris, J. G., Murphy, G. W. (1972):
The sodium requirements of beef calves for growth.
J. Agric. Sci. 78: 105-108

Effects of iodine toxicity on reproduction in a dairy herd.
Bovine Prac. 16: 114-118

Effects of breed (Angus vs Simmental) and copper and zinc source on mineral status of steers
fed high dietary iron.
J. Anim. Sci. 81: 318-322

Müller, A., Freude, B. (2010):
Selen in Zeit und Raum.
8. Berlin-Brandenburgischer Rindertag, Cuvillier Verlag Göttingen, 164

The kinetics of aluminium-containig antacid absorption in man.

Urinary excretion of iodine and fluoride from supplemented food grade salt.

National Research Council (NRC) (1980):
Mineral tolerance of domestic animals.
National Academics Press, Washington, D.C.
Literaturverzeichnis

National Research Council (NRC) (1983):
Selenium in nutrition.
National Academics Press, Washington, D.C.

National Research Council (NRC) (1984):
Nutrient requirement of domestic animals, nutrient requirement of beef cattle.

National Research Council (NRC) (1989):
Nutrient requirement of domestic animals, nutrient requirement of dairy cattle.

National Research Council (NRC) (2001):
In: Dietary Reference Intakes of Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. 258-259
National Academics Press, Washington, D.C.

National Research Council (NRC) (2005):
Mineral Tolerance of Animals.
The National Academics Press, Washington, D.C.

Iodine toxicity.
Physiological effects of elevated dietary iodine on calves.

Dietary magnesium, manganese, and bor on affect the response of rats to high dietary aluminum.
Magnesium. 7: 133-147

N. N. (1999):
Cadmium.
http://www.umweltbundesamt.de

Offenbacher, E. G., Pi-Sunyer, F. X., Stoecker, B. J. (1997):
Chromium.

Iodine toxicosis in six herds of dairy cattle.

Distribution of lead-203 in human peripheral blood in vitro.
Br. J. Int. Med. 37: 78-83

The daily dietary selenium intake of West German Adults.
Biological Trace Element Res. 20: 1-13

From selenium to selenoproteins: Synthesis, identity and their role in human health.
Antioxid. Redox. Signal. 9: 775-806

Pennington, J. A. T. (1990):
Iodine concentration in U.S. milk: variations due to time, season and region.
J. Dairy Sci. 73: 3421-3427

Peterson, L. N. (1997):
Potassium in nutrition.
In: Handbook of Nutritionally Essential Mineral Elements, O’Dell, B. L., Sunde, R. A.
New York: Marcel Dekker 153-183

Influence of magnesium, water, and sodium chloride on urolithiasis in veal calves.
J. Dairy Sci. 71: 3369-3377

The effect of dietary molybdenum and iron on copper status, puberty, fertility and oestrous cycle in cattle.
J. Agric. Sci. 31: 46-61
Parturient hypocalcaemia in dairy cows: effects of dietary acidity on plasma minerals and calciotropic hormones.
Res. Vet. Sci. 56: 303-309

Grundzüge der Wiederkäuer - Ernährung.
Gustav Fischer Verlag, Jena 91-111

Pitts, W. J., Miller, W. H., Fosgate, O.T., Morton, J. D., Clifton, C. M. (1966):
Effect of zinc deficiency and restricted feeding from two to five month of age of reproduction in Holstein bulls.
J. Dairy Sci. 49: 995-1000

Plachy, J. (2002):
Cadmium.

Aluminium.
http://minerals.usgs.gov/minerals/pubs/commodity/aluminium/

Effects of high dietary molybdenum concentration and duration of feeding time on molybdenum and copper metabolism in sheep.
Anim. Feed Sci. Technol. 79: 93

Puls, R. (1994):
Mineral levels in animal health- diagnostic data.
2nd Ed. Sherpa International, Clearbrook, Canada

Diseases caused by deficiencies of mineral nutrients.
In: Veterinary Medicine: A Textbook of Diseases of Cattle, Sheep, Pigs, Goats and Horses,
Radostits, O., Gay, C., Blood, D., Hinchcliff, K.
London: Saunders, W. B. 1480-1514

Protein binding of aluminium in normal subjects and in patients with chronic renal failure.
Proceedings of the European Dialysis and Transplant Association. 21: 360-363

Raisbeck, M. F. (2000):
Selenosis.

Carry-Over von Cadmium.
Übers. Tierernaehr. 22: 184-189

Role of fos and src in cadmium-induced decreases in bone mineral content in mice.
Toxicol. Appl. Pharmacol. 185: 25-40

Reid, R. L., Horvath, D. J. (1980):
Soil chemistry and mineral problems in farm livestock. A review.
Animal Feed Science and Technology 5: 95-167

Factors influencing blood selenium concentration values: A literature review.
J. Trace Elem. Electrol. Health Dis. 8: 129-143

Arbeitstagung Mengen- und Spurenelemente, Jena. 621-637

Trace-element supplementation of cows. Part 1: Effects of oral copper, selenium and iodine
supplements on tissue status.
In: XIX World Buiatrics Congress, Edingburgh, Proceeding 394-396
Relative bioavailability of two organic and two inorganic zinc sources fed to sheep.
J. Anim. Sci. 73: 1202-1207

Chemie Lexikon.
9. Aufl., Thieme, Stuttgart

Rosenberger, G. (1990):
Die klinische Untersuchung des Rindes.
3. Auflage. Verlag Paul Parey, Berlin und Hamburg 217

Prevention of oxidative damage to rat erythrocytes by dietary selenium.
J. Nutr. 102: 689-696

Biochemical role as a component of glutathion peroxidase.
Science 179: 588-591

Gehalte ausgewählter Spurenelemente in Lebern und Nieren von Nutztieren.
Bodenkultur 49: 109-117

Cadmium in animal feed and in foodstuffs of animal origin.

Lehrbuch der Bodenkunde.
13. Aufl., Enke Verlag, Stuttgart

Kupfer.

Toxikologische Beurteilung von Bedarfsgegenständen aus Aluminium.
Bundesgesundheitsblatt. 34: 557-564

Selen. Aktueller Wissenschaftlicher Erkenntnisstand.
Vita. Min. Spu. 7 (Supplement 1)

Effects of diets with different calcium and phosphorus contents on the skeletal development and blood chemistry of growing Great Danes.
Vet. Rec. 147: 652-660

Scholz, H. (1990):
Beurteilung der Nährstoffversorgung durch Parameter am Tier.
Übers. Tierernaehr. 18: 137-164

Selen-Vitamin-E: Bedeutung und Versorgung beim Kalb.
Tierärztl. Umsch. 46: 194-202

Iodine concentration of milk in a dose-response study with dairy cows and implications for consumer iodine intake.

Zum Stellenwert von Interaktionen in Tier- Versuchen in der Lebensmitteltoxikologie; erläutert am Beispiel der Magnesium- Eisen- Interaktionen.
Mengen- und Spurenelemente. 15: 186-199

Schwarz, F. J., Kirchgessner, M. (1975a):
Zum Einfluss organischer Liganden auf die Zn- Absorbtion in vitro.
Z. Tierphys. Tierernähr. Futtermittelk. 35: 257-266
Schwarz, K. (1973):
New essential trace elements (Sn, V, F, Si): Progress report and outlook.
Univ. Park. Press, Baltimore 355-380

Zur Zinkexkretion laktierender Kühe bei unterschiedlicher Zinkversorgung.
Arch. Tierernähr. 25: 597-608

http://europa.eu.int/comm/food/fs/sc/scan/out120_en.pdf

Selen-Therapie bei Kindern mit Phenylketonurie (PKU) – Untersuchungen zu funktionellen
Veränderungen der Herz- und Skelettmuskulatur.
Mengen- und Spurenelemente. 15: 379-386

Taschenatlas der Physiologie.
Georg Thieme Verlag Stuttgart, New York 62-63

Trace minerals.
Mosby Year Book, London, 55-67

Smith, R. M. (1997):
Cobalt.
In: Handbook of Nutritionally Essential Mineral Elements, O’Dell, B. L., Sunde, R. A. eds.
New York: Marcel Dekker 357-387

Effects of dietary cadmium chloride throughout gestation on blood and tissue metabolites of
primigravid and neonatal dairy cattle.
J. Anim. Sci. 69: 4078-4087
Effects of long-term dietary cadmium chloride on tissue, milk and urine mineral
concentrations of lactating dairy cows.
J. Anim. Sci. 69: 4088-4096

Production, absorption, distribution, and excretion of vitamin B12 in sheep.

The impact of high zinc intake on the copper status of dairy cows in New Zealand.
N. Z. Vet. J. 58: 142-145

Trace mineral bioavailability in ruminants.
J. Nutr. 133: 1506-1509

Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth
and performance of growing heifers.
J. Anim. Sci. 67: 835-843

Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle.

Spears, J. W., Lloyd, K. E. (2005):
Effect of dietary sulfur and sodium bicarbonate on performance of growing and finishing
steers.
J. Anim. Sci. 83 (Supplement 1):(Abstr.)

Role of antioxidants and trace elements in health and immunity of transition dairy cows.
Vet. J. 176: 6-70

Wann sind Spurenelemente zu ergänzen?
Der Tierzüchter 42: 491-493
Assessment of reference values for copper and zinc in blood serum of first and second
lactating dairy cows.
Vet. Med. Int. 1-8

Factors influencing composition of the hen’s egg.
Worlds Poultry Sci. J. 45: 247-266

Überblick zur Diagnostik der Spurenelementversorgung von Milchkühen.
8. Berlin Brandenburgischer Rindertag. Cuvillier Verlag Göttingen. 154-159

Zinc: A multipurpose trace element.
Arch. Toxicol. 80: 1-9

Vergiftung durch anorganische Stoffe.
In: Rosenberger, G. Krankheiten des Rindes.
2. Aufl., Parey, Berlin. 1134-1139

5. Aufl. 1107-1113

Natriummangel. Hypomagnesämische Tetanien.
5. Aufl. 1085-1101

Sulfid-, Sulfat-, Sulfit- und Schwefelvergiftung.
5. Aufl. 1118
Stöckl, W., Bamberg, E., Klement, A. (1971a):
Über den Gesamtjodgehalt des Blutserums von Rindern im Bundesland Salzburg.
Wien. Tierärztl. Mschr. 58: 333-336

Stöckl, W., Meyer, W., Zacherl, M. K. (1971b):
Über den Gesamtjodgehalt im Serum von Rindern in der Steiermark.
Wien. Tierärztl. Mschr. 58: 3-9

Activation of estrogen receptor-alpha by the heavy metal cadmium.
Mol. Endocrinol. 14: 545-553

Selenium.

Selenium in Nutrition and Health.
Nottingham University Press, Nottingham UK

Quantitative aspects of the molybdenum- copper antagonism.
In: Robarts, G. E., Rackham, R. G. Feed information and animal production. Commonwealth Agricultural Bureaux, Farnham Royal 211

The interactions between copper, molybdenum, and sulphur in ruminant nutrition.
Annu. Rev. Nutr. 11: 121-140

Suttle, N. F. (2010):
Mineral nutrition of livestock.

Elementary interactions in animals exposed to cadmium, lead, molybdenum, mercury and
selenium.
Mengen- und Spurenelemente. 15: 262-268

Molybdenum toxicity in cattle: an underestimated problem.
Cattle Practice 12: 259-263

The use of caeruloplasmin activities and plasma copper concentrations as indicators of copper status in cattle.
XIX World Buiatric Congress, Edingburgh, Proceeding: 402-404

Toxicologic studies with pregnant goats fed grass-legume silage grown on municipal sludge-amended subsoil.
Arch. Environ. Contam. Toxicol. 13: 635-640

Thompson, K. G., Ellison, R. S. (1993):
Blood selenium or serum selenium?
J. Vet. Diagn. Invest. 5: 145-147

Influence of selenium- iodine- deficiency on the daily milk, fat and protein production during the suckling period of lambs.
Mengen- und Spurenelemente. 15: 725-728

Atomic absorption spectrometry in health practice.
CRC Press, Boca Raton. 41-159

Underwood, E. J. (1971):
Trace elements in human and animal nutrition.

Underwood, E. J. (1977):
Trace elements in human and animal nutrition.
Underwood, E. J. (1981):
The mineral nutrition of livestock.
CAB Press, Slough

The mineral nutrition of livestock.

Alteration in cobalt absorption in patients with disorders of iron metabolism.
Gastroenterology. 56: 241-251

Influence of phosphorus intake on excretion and blood plasma and saliva concentrations of phosphorus in dairy cows.
J. Dairy Sci. 85: 2642-2649

Maternal and fetal Vitamin E concentrations and Selenium- Vitamin E interrelationships in dairy cattle.
J. Nutr. 119: 1128-1156

Iodine in Finnish foods.

Vincent, J. B. (2001):
The bioinorganic chemistry of chromium (III).
Polyhedron 20: 1-26

Grünlandwirtschaft und Futterbau.
Eugen Ulmer Verlag, Stuttgart

Iodine intake, excretion and thyroidal accumulation in healthy subjects.

Weiß, J. (1996):
Spurenelemente in der Milchviehfütterung.
Milchpraxis, 34: 101-102

In vitro percutaneous absorption of cadmium from water and soil into human skin. Fundam.
Appl. Toxicol. 19: 1-5

Verhalten der Spurenelemente Kupfer, Zink und Mangan im Pansen des Rindes.
Arch. Tierernähr. 28: 221-233

Whitehair, C. K. (1986):
Vitamin E and selenium in cattle production.
Bov. Pract. 21: 87-90

Chromium.
Environmental Health Criteria 61. Genf

Iodine.
Environmental Health Criteria 200. Genf

The selenium status of dairy herds in Prince Edward Island.

Mineralfutter als notwendiger Rationsbestandteil bei der Milchkuh.
5. Rekasan Anwenderseminar, Güstrow, Ber.: 43-50

Ernährungsschäden der landwirtschaftlichen Nutztiere.
VEB Gustav Fischer Verlag, Jena
Literaturverzeichnis

Neuere Erkenntnisse zum metabolischen Zinkumsatz am Modell der adulten Ratte.
Mengen- und Spurenelemente 15: 1-13

Wolffram, S. (2004):
Spurenelemente.
9. Aufl., Urban & Fischer, München, Jena 765-772

Effect of zinc source and dietary level on zinc metabolism in Holstein calves.
J. Dairy Sci. 87: 1085-1091

Utilization of phosphorus in lactating cows fed varying amounts of phosphorus and forage.
J. Dairy Sci. 86: 3300-3308

Mediation of cadmium-induced oxidative damage and glucose-6-phosphate dehydrogenase expression through glutathione depletion.
J. Biochem. Mol. Toxicol. 17: 67-75

Aluminium bioavailability from drinking water is very low and is not appreciably influenced by stomach contents or water hardness.
Toxicol. 161: 93-101

Effect of copper source and level on the rate and extent of copper repletion in Holstein heifers.
J. Dairy Sci. 85: 3297-3303

Molecular handling of cadmium in transporting epithelia.
Toxicol. Appl. Pharmacol. 186: 163-188
Research on selenium deficiency in dairy cows in Poland.
Acta Facultatis Ecologiae Zvolen 5: 193-196
Danksagung

An dieser Stelle möchte ich mich bei Herrn Prof. Dr. Staufenbiel für die Überlassung des Themas, die sachkundige Hilfestellung und umfassende Unterstützung bedanken.

Mein besonderer Dank gilt Frau Dr. Anja Müller. Ihre unermüdliche Einsatzbereitschaft bei der Analyse der Mengen- und Spurenelemente und ihre Begeisterung für Diese waren ebenso wie die freundliche Einführung in ihr Labor eine Inspiration und unentbehrliche Unterstützung für mich.

Weiterhin danke ich den Mitarbeitern und Doktoranden der Klinik für Klauentiere, Berlin und allen Personen, die an der Entnahme und Analyse der Proben und der Datenaufbereitung beteiligt waren.

Insbesondere danke ich Frau Dr. C. Foelsche für ihre wertvolle Hilfe bei der Datenanalyse und jederzeit gewährten fachlichen Auskunft zur statistischen Auswertung.

Selbstständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe. Ich versichere, dass ich ausschließlich die angegebenen Quellen und Hilfen in Anspruch genommen habe.

Berlin, den 09.02.2015

Jeannine Ehlert