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Abstract

In this thesis we study a probabilistic approach for the shape matching problem.
The studied approach is based on an intuitive definition of the shape matching task:
Given two shapes A and B find that transformation within the class of allowable
transformations which maps B to A in a best possible way. A mapping is considered
to be good if large parts of the two shapes coincide within some tolerance distance δ.

We assume that the shapes are modeled by finite sets of rectifiable curves in
the plane. As possible classes of transformations we consider sub-classes of affine
transformations: translations, rigid motions (translations and rotations), similar-
ity maps (translation, rotation, and scaling), homotheties (translation and scaling),
shear transformations, and affine maps.

The major idea of the probabilistic algorithm is to take random samples of points
from both shapes and give a “vote” for that transformation matching one sample with
the other. If that experiment is repeated frequently, we obtain by the votes a certain
probability distribution in the space of transformations. Maxima of this distribution
indicate which transformations give the best match between the two figures. The
matching step of the algorithm is, therefore, a voting scheme.

In this thesis we analyze the similarity measure underlying the algorithm and
give rigorous bounds on the runtime (number of experiments) necessary to obtain the
optimal match within a certain approximation factor with a prespecified probability.
We perform a generic analysis of the algorithm for arbitrary transformation classes,
as well as an in-depth analysis for different sub-classes of affine transformations. It is
also shown that the density function of the vote distribution is exactly the normalized
generalized Radon transform in the cases of translations and rigid motions.

We consider the theoretical analysis as the major contribution of this thesis, since
it leads to a better understanding of this kind of heuristic techniques.





Zusammenfassung

In dieser Arbeit wird ein probabilistischer Ansatz zum Vergleichen von Formen unter-
sucht. Der Ansatz entspricht der intuitiven Vorstellung von “Formanpassung”: zwei
Formen werden als ähnlich empfunden wenn es eine Transformation aus der Menge
der erlaubten Transformationen gibt, die die beiden Formen gut zur Deckung bringt.
Dabei bedeutet “gute Deckung” dass große Teile einer Form sich in der räumlichen
Nähe der anderen Form befinden.

Die Formen, für die wir den Ansatz untersuchen, werden als endliche Men-
gen von Kurvensegmenten endlicher Länge dargestellt. Als Menge der erlaubten
Transformationen betrachten wir Unterklassen der affinen Abbildungen: Translatio-
nen (Parallelverschiebungen), starre Bewegungen (Translationen und Drehungen),
Ähnlichkeitsabbildungen (Translationen, Drehungen und Skalierungen), Homothetien
(Translationen und Skalierungen), Scherungen und affine Abbildungen selbst.

Die Grundidee des Algorithmus ist folgende: Nimm zufällige Punktproben aus
jeder der Formen und zeichne eine “Stimme” für die Transformation auf, die die
Probe der einen Form auf die Probe der anderen Form abbildet. Nach mehrfacher
Wiederholung des Experiments zeichnet sich im Transformationsraum eine gewisse
Verteilung der Stimmen aus. Die Maxima dieser Verteilung deuten “gute” Transfor-
mationen an, wobei eine gute Transformation eine ist, die große Teile der Formen
zur Deckung bringt.

In dieser Arbeit untersuchen wir das dem Algorithmus zu Grunde liegende Ähn-
lichkeitsmaß und bestimmen die notwendige Anzahl an Experimenten um eine gute
Anpassung von Formen innerhalb einer vorgegebenen Approximationsschranke mit
vorgegebener Erfolgswahrscheinlichkeit zu bestimmen. Der durchgeführte Analyse
ist generisch und gilt für beliebige Transformationsklassen. Zusätzlich führen wir eine
ausführliche Analyse für die oben genannten Transformationsklassen durch. Weiter-
hin zeigen wir, dass die vom Experiment induzierte Wahrscheinlichkeitsdichtefunk-
tion im Transformationsraum genau der verallgemeinerten Radon-Transformation
für Translationen und starre Bewegungen entspricht.

Die theoretische Analyse betrachten wir als den Hauptbeitrag dieser Arbeit, denn
sie führt zum besseren Verständnis einer Klasse von Heuristiken die unter dem Sam-
melnamen “Abstimmungsmethoden” bekannt ist.
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Chapter 1

Introduction

Shape Matching

Our research is motivated by the task of automated retrieval of figurative images
in large databases, where the evaluation of the similarity of two images is based on
their geometric shape and not color or texture. Matching two geometric shapes under
transformations and evaluating their similarity is one of the central problems in such
retrieval systems, but it is also a problem of independent interest which is widely
covered in literature, as surveys by Alt and Guibas [3], Hagedoorn and Veltkamp
[34], and Latecki and Veltkamp [41] indicate.

We assume that the shapes are modeled by finite sets of rectifiable curves in
the plane. As possible classes of transformations we will consider translations, rigid
motions (rotation and translation) and similarities (rotation, scaling and translation)
and more general affine transformations. Our objective is to develop an algorithm
which allows an efficient implementation and whose result comes close to human
similarity perception.

Several similarity measures and algorithms are known to match two curves, es-
pecially polygonal curves. One of the most widely used similarity measures is the
Hausdorff distance which is defined for any two compact sets A and B. Alt et al.
describe in [3, 4] efficient algorithms for computing the Hausdorff distance and min-
imizing it under translations and rigid motions for arbitrary sets of line segments.
One of the drawbacks of the Hausdorff distance is that it is very sensitive to noise,
i.e., parts of the input data that result from some errors in a digitalization process.
A few similarity measures are defined for pairs of curves, which capture the relative
course of two curves: the Fréchet distance by Alt and Godau [2], the turning function
distance by Arkin et al. [8], and the dynamic time warping distance by Efrat et al.
[24]. There are only a few generalizations of those distances to sets of curves: Alt
et al. [5] define a generalization of the Fréchet distance to geometric graphs, and
Tanase et al. [56] describe an algorithm for matching a set of polygonal curves to a
single polygon. Further, Dumitrescu and Rote [21] define the Fréchet distance of a
set of curves. However, they consider a slightly different problem, namely, measur-
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2 CHAPTER 1. INTRODUCTION

ing the similarity within one set of curves, whereas in the shape matching task we
consider two sets of curves and want to determine the similarity between them. One
similarity measure which is designed for comparing sets of curves is the reflection
visibility distance described by Hagedoorn et al. [35]. This measure is robust against
different kinds of disturbances in the input data but is expensive to compute.

There is a vast variety of shape matching methods developed in the image pro-
cessing and computer vision community which do not require shapes to consist of a
single curve. A large group of matching algorithms can be generally described as fol-
lows: In a preprocessing phase a signature vector is computed for each shape. During
the matching phase the similarity of the shapes is determined by the similarity of the
corresponding signature vectors. A signature vector can be a representation of the
shape by Fourier descriptors, as in [15, 27, 39], or wavelet descriptors [14, 17, 47].
A signature can also be an aggregation of some statistical features of the complete
shape, e.g., aspect ratio, circularity, and relative area, as well as features of the parts
of the boundary, e.g., right-angleness or sharpness, see [22]. Two such signatures
are then compared component-by-component and a similarity value for the shapes is
aggregated from the similarity of the individual components of the signature vectors.

Another type of signature vectors is constructed by selecting some points along
the shape, e.g., equally spaced points, and for each of these points computing a set
of characteristic values. The characteristic values of a point can be, for example, the
curvature and the length of the adjacent segments [53], the integral of the curvature
function over a certain interval of the curve containing that point [18], the curvature
and the distances to all other points of the shape [28], the curvature and the distance
to the centroid [40]. The optimal alignment for two such vectors is found in the first
three cited articles ([18, 28, 53]) using dynamic programming techniques that are
similar to string alignment algorithms. In [40] a good alignment is found using a
technique called particle filters, which maintains an alignment-probability matrix,
where the matrix element pij denotes the probability of the i-th element of the first
signature vector to match the j-th element of the second. Thus, every possible
correspondence between an element of one signature vector and an element of the
other is considered simultaneously and is represented by a probability value in the
alignment-probability matrix. The probabilities are iteratively re-computed and after
a certain number of iteration steps the alignment with the highest probability is
considered to be the best one. A similar idea can be found in matching methods
based on expectation maximization (EM) algorithms (see, e.g., [43, 58]). However,
EM algorithms consider just one possible matching transformation, or one set of
model fitting parameters in each iteration step. Observe, that the signature vectors
consisting of point features are suitable only for shapes composed of a single contour
curve, since the order of the points in the signature vector is relevant for the alignment
step.

Another class of shape matching algorithms is known under the general name
“voting schemes”. It includes geometric hashing [59], alignment methods [37, 49], the
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generalized Hough transform, also called pose clustering [1, 55], the Radon trans-
form [31, 57], and the RANSAC algorithm by Fischler and Bolles [26]. A more
detailed description of these methods is included in Section 2.3.1.

Common to many of the methods described above is the representation of the
shapes by pixel images or by a finite set of points, which might be connected to form
polygonal curves. In the latter case the points or polygonal curves are usually the
result of an edge detection process in pixel images. Clearly, pixel images are the
typical source of the data for computer vision applications. Consequently, the defi-
nition of the similarity measures or of the point features for the algorithms working
with polygonal curves relies on the fact that the vertices of a polygon are almost
equally spaced along the curve and are close to each other. Such assumptions are
not necessary for the algorithm presented in this work.

The method we introduce is close to an intuitive notion of “matching”, i.e., find
one or more candidates for the best transformations, which when applied to the
shape B map the most similar parts of the two shapes to each other. The major
idea is to take random samples of points from both shapes and give a “vote” for that
transformation (translation, rigid motion, or similarity) matching one sample with
the other. If that experiment is repeated frequently, we obtain by the votes a certain
probability distribution in the space of transformations. Maxima of this distribution
indicate which transformations give the best match between the two figures. The
matching step of our algorithm is, therefore, a voting scheme. The idea of random
sampling for geometric problems with an analysis similar to ours has been used in a
more general context by Cheong, Efrat, and Har-Peled [16]. Further, Mitra, Guibas,
and Pauly [44] use a related random sampling technique, but different clustering
methods, for symmetry detection in 3D geometric models.

Related methods in the image processing community are the generalized Hough
transform and the RANSAC algorithm. In contrast to those methods we do not
consider a discrete set of features that describe shapes, but work with continuous
curves. Our method is independent of the choice of the parameterization and the
discretization grid in the transformation space. In addition, we give rigorous bounds
on the runtime (number of experiments) necessary to obtain the optimal match
within a certain approximation factor with a prespecified probability. This work
gives a generic analysis of the algorithm for arbitrary transformation classes, as well
as an in-depth analysis for different sub-classes of affine transformations. We also
show that the density function of votes is exactly the normalized generalized Radon
transform in case of translations and rigid motions. The classical definition and
analysis of Radon transform can be found in Gel’fand et al. [29]. Toft [57] formulates
a definition of generalized Radon transform in the context of image analysis, and
Ginkel et al. [30] give a comparative analysis of the generalized Hough and Radon
transforms. For the reader’s convenience we include the definition of the generalized
Radon transform in Section 2.3.3.

We consider the theoretical analysis as the major contribution of this work, since
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it leads to a better understanding of this kind of heuristic techniques. In fact, our
algorithm is not meant to be directly applied to shape comparison problems arising
in practice. For such purposes it makes sense to modify our technique and enhance
it with heuristic methods, which we did (see Alt et al. [6]) within a shape retrieval
system developed in the EU-funded project PROFI. Its major application, in co-
operation with the industrial PROFI-partner Thomson-Compumark in Antwerp, is
to identify (illegal) similarities between new trademark designs and existing trade-
marks of various companies in a large trademark database.

Overview of the Thesis

In this thesis we investigate a probabilistic approach to matching two planar shapes
modeled by sets of rectifiable curves under several classes of transformations, such
as translations, rigid motions and similarity transformations.

First, in Chapter 2 we discuss preliminaries that will be used in several of the
following chapters and give an overview of the related methods in the computational
geometry and in the image processing community. In Chapter 3 we describe the
proposed probabilistic matching algorithm in a generic way and analyse the under-
lying similarity measure. We derive rigorous bounds on the number of experiments
required by the algorithm in order to achieve an approximation of the underlying sim-
ilarity measure within the given error bounds with high probability. In Section 3.3 we
provide the details of the algorithm for different subclasses of affine transformations
and discuss alternative variants of the algorithm for some transformation classes. In
Section 3.4 we analyse the approximation of the similarity measure by a grid count-
ing method. Further, we discuss the robustness of the algorithm against different
types of disturbances in shape representation and some possible generalizations of
the presented method to matching higher-dimensional shapes. In Chapter 4 we show
that the density function of the probability distribution induced by the algorithm
in the transformation space corresponds to the generalized Radon Transform for the
case of translations and for rigid motions. We also analyze the distribution of the
scaling factor for a modified version of the random experiment. The latter analysis
is performed only for some simple types of shapes.



Chapter 2

Preliminaries

In this preliminary chapter we collect some known concepts and techniques which
are used several times along this thesis. Definitions of general concepts, such as, e.g.,
curve or transformation, are restricted to a two-dimensional case since the subject
of this work is matching of shapes in the plane.

2.1 Representation of Shapes

In general there are many ways to describe a geometric shape. The representation
varies depending on the application and the field of research. In the most general case
a geometric shape is a compound object which consists of a finite number of basic
objects, such as points, straight line segments, smooth curves or bounded regions, as
illustrated in Figure 2.1. Another representation of shapes which is commonly used in

(a) (d)(c)(b) (e)

Figure 2.1: Examples of geometric shape representations by points, straight line
segments, curve segments and regions.

the field of computer vision and pattern recognition is by a set of pixels. These can be
seen as special sets of points, which are arranged on a grid. However, representation
by higher dimensional objects, such as lines and regions, allows a more compact
description. One can describe a shape either as a solid volume, or by its boundary. In
two dimensions this yields the special case of closed curves representing the boundary
of a shape. Curves are a class of shapes which are worthwhile to consider since they
appear in many applications. Furthermore, psychological experiments indicate that
for human perception the shape information is concentrated along the boundary,

5



6 CHAPTER 2. PRELIMINARIES

see for example Feldman and Singh [25], Rogowitz and Voss [52]. Therefore, it is
reasonable to consider shapes that are curves for the purpose of similarity evaluation.

Throughout this thesis we consider shapes represented by sets of rectifiable curves
in the plane, which includes sets of straight line segments, boundary curves of solid
objects, and shapes composed of smooth curves. Thus, in Figure 2.1 shapes (b) and
(c) and the boundaries of regions in shapes (d) and (e) are in scope of this work.

We now describe in detail the representation of shapes considered in this thesis.

Definition 2.1 (Curve/Polygonal Curve). A curve in a plane is the image of a
continuous mapping C : I → R2 for a closed interval I = [a, b] ⊂ R. If additionally
C(a) = C(b) then the curve C is said to be closed.

A plane polygonal curve P of complexity n ∈ N is a curve P : [0, n] → R2 with
vertices Pi := P (i) for i ∈ {0, 1, 2, . . . , n} and line segments P (j) := P |[j,j+1] for
j ∈ {0, 1, . . . , n− 1}, such that P (j + λ) = (1− λ)P (j) + λP (j + 1) for all λ ∈ [0, 1].

The representation of a curve by a mapping is called parametrization of a curve.
We call a bijective continuous mapping α : I ′ → I from a closed interval I ′ into a
closed interval I, such that the inverse of α is also continuous, a reparameterization,
since for a curve C : I → R2 it defines a reparameterized curve C ◦ α : I ′ → R2 that
has the same image points in R2.

If C : I → R2 represents a smooth curve, then we denote by C ′(r) the differential
displacement vector along C at the point C(r). A parameter form representation
C : I → R2 is called a constant speed parameterization if for all r ∈ I the length
of the vector C ′(r) is constant. We will assume that the shapes are represented by
a set of piecewise smooth curves and that for each smooth piece a constant speed
parameterization is available. Obviously, this is the case for polygonal curves, which
would be the most common representation in practice.

Definition 2.2. The length L of a smooth curve C : I → R2 is defined as

L =
∫
r∈I

∣∣C ′(r)∣∣d r ,
where |·| denotes the length of a vector.

The length of a curve is invariant under reparametrizations and is therefore a
geometric property of a curve. A curve is said to be rectifiable if its length is finite.
Thus, we only consider curves of finite length.

A parameterization C is called a unit speed parameterization if |C ′(r)| = 1 for all
r ∈ I. It is also known as natural parameterization or parameterization by length since
in this case the length of the parameter interval I corresponds to the length of the
curve, I = [0, L], and for every parameter value r ∈ I it holds that r =

∫ r
0 |C ′(r)| d r.

Under the assumption that a curve is given in a natural or constant speed
parametrization, which can be computed in constant time for every parameter value,
selecting a random point on the curve under uniform distribution with respect to
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length is equivalent to selecting randomly a real number in a given interval. Assum-
ing that a random number can be generated in constant time, selection of a random
point can be performed in constant time.

2.2 Geometric Transformations

The transformation classes considered in this work are sub-classes of affine trans-
formations. Although the algorithm presented in this work is very general and can
be applied to a broader class of transformations, we do not provide the details for
projective or other non-linear transformations. This decision is motivated by the
fact that the most commonly used transformations for the shape matching task are
translations, rigid motions, and similarities.

Affine transformations: An affine transformation in the plane is a map t : R2 →
R2 of the form t(p) = M · p+ v, where

M =

(
m1 m2

m3 m4

)

is a linear transformation matrix and v = (vx, vy) ∈ R2 is a translation vector.
An affine transformation preserves collinearity, i.e., three collinear points are still
collinear after the transformation, and ratios of distances, e.g., the midpoint of a line
segment remains the midpoint after transformation.

An affine map has six parameters, so each map t can be associated with a point
(m1,m2,m3,m4, vx, vy) ∈ R6 and vice versa. In order to exclude degenerate trans-
formations, i.e., non-invertible transformations, we restrict R6 to the points where
the corresponding linear transformation matrix M has a non-zero determinant. The
subset of R6 defined as

{
(m1,m2,m3,m4, vx, vy) ∈ R6 | m1m4 −m2m3 6= 0

}
, where

every point represents an affine transformation map, is called the space of affine
transformations. We denote the space of transformations by T . In the remainder of
this work we use the same symbol for a transformation map t : R2 → R2 and for the
corresponding point t ∈ T .

Given two ordered sets of three non-collinear points in the plane (a1, a2, a3) and
(b1, b2, b3) there exists a unique affine transformation t such that t(bi) = ai for
i ∈ {1, 2, 3}. The parameters, or coordinates, of t are the solution of the system
of six linear equations of the form M · bi + v = ai. Three is also the smallest size
of point sets such that an affine transformation mapping one set to the other is
uniquely defined. For sets consisting of four or more points there is in general no
affine transformation mapping exactly the points of one set to those of the other.
Therefore we say that the minimum sample size for affine transformations is three.

Translations: The first sub-class of affine transformations, that we will consider,
is the class of translations. A translation is a map t : R2 → R2 of the form t(p) =
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p + v, where v ∈ R2 is the translation vector. The linear transformation matrix is
the identity matrix and is therefore omitted in the formula. Thus, there are two
parameters describing a translation map, and the space of translations is a two-
dimensional subspace of the space of affine transformations. Translation is a length,
angle and orientation preserving transformation.

For two points a and b there exists a unique translation that maps b to a. There-
fore, the minimum size of a sample needed to determine a translation map is one.

Rigid motions: The next class we consider is the class of rigid motions. A rigid
motion is a combination of rotation around the origin by an angle α and translation
by a vector v ∈ R2. A linear transformation matrix M of a rigid motion has the
form

M =

(
cosα − sinα

sinα cosα

)
,

that is, m1 = m4 = cosα and m2 = −m3 = − sinα. There are three parameters de-
scribing a rigid motion, and therefore the space of rigid motions is three-dimensional.
Rigid motions preserve lengths, angles and orientations.

There are two commonly used possibilities to parameterize the space of rigid
motions. The intuitive way is to use the rotation angle and coordinates of the
translation vector. In this case we have to perform computations with trigonometric
functions. Another possibility is to use the matrix and translation vector parameters
(m1,m2, vx, vy) to describe a rigid motion. Thus, a rigid motion is represented by
a four-dimensional point. Since not every four-dimensional point represents a valid
rigid motions, we need to restrict the four-dimensional space to a three-dimensional
algebraic variety by the constraintm2

1+m2
2 = 1. We will use the latter representation

for computational reasons in this work, but will refer to the parameterization by angle
and translation vector in order to provide an intuitive description.

Observe that there is no point sample that uniquely determines a rigid motion:
for two points a and b and for every rotation angle α there exists a translation vector
vα such that the rigid motion with parameters (α, vα) maps b to a. Thus, two samples
consisting each of one point are not sufficient to determine uniquely a rigid motion.
If we have two ordered sets consisting of two (or more) points each, then, in general,
there is no rigid motion mapping each point of one set to the corresponding point of
the other. In this case we say that rigid motion is overdetermined by samples of two
or more points.

If we would somehow associate with every point a direction information then
a rigid motion mapping one point to the other in such a way that their directions
coincide would be uniquely determined. We discuss later different variants of assign-
ing direction information to a point of a shape, as well as different approaches of
determining a transformation from small samples of two shapes.
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Similarity transformations: Another commonly used class of transformations
is the class of similarity maps, which combines rotation around the origin, scaling,
and translation. A similarity transformation is a map t : R2 → R2 of the form
t(p) = M · p+ v, where

M =

(
m1 m2

−m2 m1

)

is the linear transformation matrix with non-zero determinant and v is the translation
vector. Rotation by angle α and scaling by factor k is expressed by parameters of
the matrixM , where m1 = k ·cosα and m2 = −k ·sinα. A similarity transformation
preserves angles and the ratio of lengths of the segments.

The space of similarity maps is four dimensional and can be parameterized by
rotation angle, scaling factor, and coordinates of the translation vector, or by the
parameters of the linear transformation matrix and the coordinates of the translation
vector. We choose the latter parameterization for computational reasons.

For any two ordered sets of two points (a1, a2) and (b1, b2) there exists a unique
similarity transformation that maps b1 to a1 and b2 to a2. Therefore, we say that
the minimum size of a sample needed to determine a similarity map is two.

Homothetic transformations: A homothety is a map t : R2 → R2 of the form
t(p) = k · p + v, where k is the scaling factor and v is the translation vector. Thus,
a homothety combines scaling and translation. The parameters of the linear trans-
formation matrix are m1 = m4 = k and m2 = m3 = 0. The space of homothetic
transformations is three dimensional. Homothetic transformations preserve angles
and the ratio of lengths of the segments.

Like in the case of rigid motions, there is no point sample that uniquely determines
a homothetic transformation. We discuss in Section 3.3.4 different approaches to
determine a homothetic transformation using small samples of shapes.

Shear transformations: A shear is an affine transformation in which all points
along a given line l remain fixed while other points are shifted parallel to l by a dis-
tance proportional to their perpendicular distance from l, as illustrated in Figure 2.2.
A shear is an area preserving transformation.

ϕ
l

Figure 2.2: Shear transformation along a line l.

Commonly considered are horizontal shear transformations, or shears parallel to
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the x-axis, which are defined by a linear transformation matrix

Mhor.shear =

(
1 m

0 1

)

and map the unit vector (0, 1) to the vector (m, 1), and vertical shear transformations,
or shears parallel to the y-axis, defined by a matrix

Mvert.shear =

(
1 0

m 1

)
.

The parameter m is the negative tangent of the declination angle ϕ of a vertical
line, m = − tanϕ, in case of a horizontal shear, and m = tanϕ for a vertical shear,
where ϕ is the inclination angle of a horizontal line, as depicted in Figure 2.3. Thus,
the shear along the x-axis with parameter m maps a vertical line x = a to a line
y = (x − a)/m of a slope 1/m for m 6= 0, and with m = 0 we have an identity
transformation.

y

x

1

1m

ϕ

y

x

1

1

m

ϕ

shear along x-axis shear along y-axis

Figure 2.3: Horizontal and vertical shear.

The space of shear transformations is three dimensional and can be parameterized
by (m, vx, vy).

For two points a and b there is no unique transformation that maps b to a, rather
for every shear parameter m there exists a unique translation vector that completes
the desired transformation. For a pair of two points (a1, a2) and (b1, b2), in general,
there exists no shear transformation that maps b1 to a1 and b2 to a2. Different
approaches to computing a shear transformation from a small sample of two shapes
are discussed in Section 3.3.5.

2.3 Related Work

2.3.1 Voting Schemes

In this section we briefly describe related methods in the image processing and pat-
tern recognition community, which can be combined under the common name “voting
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schemes”. These methods include RANSAC, geometric hashing, alignment methods,
and the generalized Hough or Radon transform, also known as pose clustering.

Common to all these methods is the representation of shapes by a finite set
of so-called feature points. The point set representing a shape might be a set of
characteristic points extracted from a pixel image, a set of points of high curvature
extracted from a curve or a set of curves, or some set of points that are important
or characteristic to the shape according to some criterion.

The problem addressed by these methods is the following: Given an observed
shape A, a model shape B and the class of allowed transformations, determine
whether A is an instance of B and if so, find parameters of the transformation
that when applied to B results in a maximum correspondence between A and B.
Let m denote the number of points in A and n the number of points in B.

RANSAC. RANSAC is an abbreviation for Random Sample Consensus, an it-
erative algorithm by Fischler and Bolles [26]. Apart from the pattern matching
application, RANSAC is also used in statistical data analysis for estimating param-
eters of a mathematical model from a set of observed data. The main assumption
made by the algorithm is that the data consist of inliers, that is, the points in A

that correspond to some point in B, and outliers, the points in A that have no
correspondences in B.

In one iteration the algorithm draws a random sample SA of A consisting of the
minimum number of points, say k, needed to uniquely determine a transformation
of the given class, as described in the previous section. Then it computes for every
ordered k-tuple SB of points in B the size of the so-called consensus set, the set of
points in A that have a counterpart in B when the transformation mapping SB to
SA is applied to B. Hereby a point a ∈ A is considered to be an inlier if there is
a point in the transformed shape B with distance at most some error tolerance δ
from a.

The algorithm terminates after some number of iterations N . The result is either
the size of the largest consensus set together with the corresponding transformation
parameters, or the assertion that there is no “large enough” consensus set. In both
cases the result is correct with some probability η. A consensus set is said to be large
enough, if the ratio of inliers is not smaller than a threshold value ρ.

Consider a sample SA drawn in one iteration step. Assuming that the ratio of
inliers in A is at least ρ, the probability that SA does not consist of k inliers is at most
1−ρk. Observe that once the algorithm selects a sample consisting of k points of the
largest consensus set, it finds the corresponding transformation and the size of the
largest consensus set in the deterministic step of the iteration. Therefore, the result
is wrong if the algorithm fails to select a sample consisting of k inliers in each of N
iteration steps. The failure probability is, therefore, (1 − ρk)N . If this probability
has to be bound by 1− η, the number of iterations should be N =

⌈
log1−ρk(1− η)

⌉
.

Thus, the total complexity of the algorithm is O(N · nk · TC), where TC is the time
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needed to compute the size of the consensus set.
Finally, if the ratio of inliers is not known in advance and should be discovered

by the algorithm, the number of iterations N is initialized to some large value. Every
time a larger consensus set is found N is adjusted according to the new inlier ratio.

Geometric hashing. Geometric hashing is a two-stage object recognition algo-
rithm, see Wolfson and Rigoutsos [59] for an overview article.

In the preprocessing step coordinates of the model points are computed with
respect to all reference frames defined by the points of the model shape B. These
coordinates are then stored in a hash table. A reference frame, also called basis, is a
set of points defining the coordinate system. The type and size of a reference frame
depends on the class of the allowed transformations. So for example, for matching
under translations a single point suffices as basis, since it determines the origin of
the coordinate system and the orientation of coordinate axes is fixed. For rigid
motions a reference frame consists of two points, where the first point defines the
origin of the coordinate system and the second the orientation of the x-axis. Thus, if
a reference frame for the given class of transformations consists of k points, then for
every ordered k-tuple of points of the model shape B the coordinates of all points of
B are computed with respect to that k-tuple as the basis.

In the recognition phase a similar procedure is applied to the observed shape A,
that is, for every k-tuple of points in A the coordinates of all points are computed
with respect to that k-tuple as the reference frame. Then a pair of reference frames
for the model and observed shapes gets a vote for each matched point coordinates
pair. The reference frame pairs with high number of votes are the candidate solutions.
For every candidate solution the model is transformed according to basis information
and the match is verified.

Geometric hashing requires O(nk+1) additional storage space for each model
shape, where n is the number of points in the model shape. The preprocessing
time is O(nk+1), and the recognition time is O(mk+1TH), where m is the number of
points in the observed shape and TH is the time needed to access the hash table.

Alignment methods. The basic idea of the alignment method is to determine
hypothesized alignments, or transformations, from small sets of observed shape points
and model points, see Huttenlocher and Ullman [37], Olson [49]. These alignments
can then be tested to determine if they are correct.

The general idea of an alignment method is to iteratively choose a basis set SB
of the model shape B and a basis set SA of observed shape A. A basis set is a set of
points of minimum size k needed to uniquely determine a transformation of a given
class. The transformation t mapping SB to SA is computed and verified, that is,
t is applied to B and the number of points in both shapes that are mapped into a
certain proximity of each other is calculated. The basis pair with the highest number
of correspondences determines the best match.
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The choice of the basis sets can be performed deterministically or randomly. In
deterministic case the time complexity of the algorithm is O(nkmkTV ), where n and
m denote the size of model and observed shapes, respectively, k is the size of a basis
set, and TV is the verification time.

In case of random choice, the algorithm terminates if with high probability either
the best match is found or it can be stated that the model is not present in the
observed shape. The randomized variant of the alignment method is closely related
to the RANSAC algorithm.

The generalized Hough transform. The ideas of alignment methods have mo-
tivated development of other techniques cited under different names such as cluster
methods, pose clustering, evidence gathering, hypothesis accumulation, the general-
ized Hough transform, or the generalized discrete Radon transform. The articles by
Aguado et al. [1], Ginkel et al. [31], Olson [48], Stockman [55], Toft [57] are just a
small portion of the vast variety of literature on these methods. Instead of perform-
ing a verification process for each transformation of the model, the set of all possible
transformations is considered as a cluster space according to a suitable parametriza-
tion. The usual clustering techniques used together with pose clustering are binning
and multidimensional histogramming.

The transformation space, or cluster space is considered to be discretized by
some grid, and every grid cell is used as an accumulator for the “votes”. Then for
every point a of the observed shape and every point b of the model shape a vote is
added to every accumulator cell containing a transformation mapping b to a. Since
in general the region of all possible transformations mapping the point b to the point
a is unbounded, the possible transformations are usually limited to some predefined
region. Alternatively, a vote is casted for every minimum size subset of points of the
model and observed shape that uniquely define a transformation of the given class
mapping one subset to the other.

After all point pairs of the two shapes or pairs of minimum size subsets have been
considered, the number of votes in each cluster cell of the transformation space is
considered to be the measure of consistency for a transformation representing that
cell, e.g., center of the cell. Some authors add an additional verification procedure
for the transformations with the maximum number of votes. In the verification step
the candidate transformation is applied to the model shape B and the number of
correspondences between the observed shape A and the transformed copy of B is
counted.

Discussion. While sharing some similarities, our method is fundamentally differ-
ent from the described pattern recognition methods. There is a conceptual difference
in the representation of shapes: We do not require any discretization or feature points
identification, but work with continuous sets of points corresponding to planar curves.
Further, we avoid the costly verification procedure performed by RANSAC and align-
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ment methods for every sample pair. In fact, by defining the similarity measure that
can be directly computed from the clustering information, we avoid completely the
verification step. At the same time our method requires no additional storage, in
contrast to geometric hashing. Finally, we do not restrict the transformation space
to a predefined region. Our method is independent of the choice of parameterization
and discretization grid in transformation space.

2.3.2 Related Work in Computational Geometry

Cheong, Efrat, and Har-Peled [16] introduced a probabilistic framework based on
the theory of ε-approximations. The basic idea behind it is that the area of a planar
region can be estimated by counting the number of points of an ε-approximation
inside the region. The ε-approximations are generated by random sampling. The
authors apply the described framework to the problems of maximizing the visibility
region inside a simple polygon, maximizing the Voronoi region, and the problem of
maximizing the area of overlap of two simple planar polygons under translations and
rigid motions.

For the shape matching problem it is shown that using a uniform random sample
the maximum area of overlap of two polygons under translations can be approxi-
mated with an absolute error at most ε and failure probability at most 1/n6 in time
O(m+ (n2/ε4) log2 n), where n and m are the complexities of the polygonal shapes.
Although the problem considered in this work does not involve area computation
or maximization we use related ideas in the argumentation of the approximation
bounds proofs.

Mitra, Guibas, and Pauly [44] use a related random sampling technique for sym-
metry detection in 3D geometric models. There two point samples are taken from
one shape and a transformation mapping one sample to the other is recorded in
transformation space. Then clusters of “votes” in transformation space are detected
using a mean shift clustering technique.

2.3.3 The Generalized Radon Transform

In this section we briefly describe the Radon transform and a generalized definition
of it. This definition is used in Chapter 4 to show that the density function underlying
the random experiment in our algorithm is exactly the generalized Radon transform
of one shape with respect to the other.

The Radon transform in two dimensions is named after Johann Radon who
showed in [51] that a function f : R2 → R can be represented by values of its
integral along straight lines. Since every straight line can be uniquely represented by
two parameters, Radon transform is a mapping from the function into the two dimen-
sional parameter space of straight lines. The inverse Radon transform corresponds
to the reconstruction of the function from the integral projections.
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Consider the normal form, also called Hesse standard form, of a line g:

g : τ − x cos θ − y sin θ = 0 , (2.1)

where θ is the angle of inclination of the normal to g and τ is the distance from the
origin to g. The corresponding parametric form of g is

gx(s) = τ cos θ − s sin θ (2.2)

gy(s) = τ sin θ + s cos θ

for s ∈ R. The Radon transform of f with respect to the parameterized family of
lines is then

Rf (τ, θ) =
∫
s∈R

f(τ cos θ − s sin θ, τ sin θ + s cos θ) d s

=
∫
x∈R

∫
y∈R

f(x, y)δ(τ − x cos θ − y sin θ) d y dx ,

where δ(·) is the Dirac delta-function. Mathematical properties of the Radon trans-
form have been extensively studied in [29].

Ginkel et al. [30] further generalized the definition of the Radon transform in the
context of shape detection. They consider the task of detecting a k-dimensional shape
in a D-dimensional image, which is also considered to be a collection of k dimensional
objects. More precisely, given an image, that is, a set of k dimensional objects in D
dimensions, and a family of k-dimensional shapes (also in D dimensions) that can
be described by d parameters, the task is to find the parameters corresponding to
the best fitting member of the family of shapes.

For example, the image could be a set of planar curves, that is, a set of one-
dimensional objects (k = 1) in two dimensions (D = 2). A parameterized family of
shapes could be given by an arbitrary planar curve and the set of allowed transfor-
mations of that curve. Then the number of parameters d describing the family of
shapes is the dimension of the transformation space, and the parameters of a shape
instance are the parameters of the corresponding transformation.

First we introduce notation as used in [30]:

c denotes the model shape.

ct denotes the model shape c with parameters t, or with transformation t applied.

c(s) is an internal parametrization of a model shape c by parameter s, that is,
coordinates of a point of shape c corresponding to the parameter value s (e.g.,
parametric form of a straight line).

ct(s) denotes the coordinates of a point c(s) transformed by t.

C(p, t) is a set of D − k constraint functions that define a shape, where p is a point
in RD and t is a transformation. All constraint functions Ci(p, t) with 1 ≤ i ≤
D − k evaluate to zero iff the point p lies on the shape c transformed by t.
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I(p) denotes a D-dimensional image that consists of k-dimensional shapes. The
image is also given in constraint form: I(p) =

∏D−k
j=1 δ(C Ij (p)), where C Ij (p) = 0

for all 1 ≤ j ≤ D − k iff p is a point of an image shape.

Observe that every set C(p) of D − k constraint functions has to fulfill the property
that a D-dimensional integral of

∏D−k
i=1 δ(Ci(p)) over a region R ⊂ RD evaluates to

the k-dimensional volume of the part of the shape contained in R.
The generalized Radon transform of an image I with respect to the parameterized

family of shapes c(t) can then be formulated in the following equivalent ways:

Rc(I, t) =
∫
p∈ct

I(p) d p

=
∫
s∈Rk

I(ct(s))
∥∥∥∥∂c∂s

∥∥∥∥d s (2.3)

=
∫
p∈RD

I(p)
D−k∏
i=1

δ (Ci(p, t)) d p . (2.4)

The generalized Radon transform provides a mapping from the image space to
the parameter (transformation) space. The function created in transformation space
contains peaks for those t, for which ct is present in the image. If there is a shape
ct
∗ in the image I and t 6= t∗ then Rc(I, t) evaluates to a finite number proportional

to the number of intersections between ct and ct∗. In case t = t∗, Rc(I, t) yields a
large response proportional to the k-dimensional volume of the shape ct∗.

The shapes considered in this work are planar curves, that is, one-dimensional
objects in two-dimensional image space. An algebraic curve in the plane can be de-
scried by one constraint equation. The polygonal curves can be viewed as a collection
of straight line segments. For each segment the parametric representation is exactly
the parametric representation given by Equation (2.2) of the line containing that
segment with parameter s restricted to some interval. Similarly, a constraint func-
tion for a line segment is the constraint function of the line containing that segment,
Equation (2.1), with additional restrictions on point coordinates. This constraint
function fulfills the integral conditions mentioned above.



Chapter 3

Probabilistic Matching

In this chapter we describe the probabilistic shape matching algorithm in a generic
way, and analyze what distance measure between shapes is being minimized and how
many experiments are necessary to get reasonable results. Further, we discuss the
details and the properties of the algorithm for individual transformation classes.

3.1 The Probabilistic Algorithm

We assume that the shapes are modeled by finite sets of rectifiable curves in the
plane as described in Section 2.1, whereas we do not take into account the direction
of curves given by the parameterization, i.e., the shape consists of all points lying
on the union of curves. We also assume that for each curve a random point under
uniform distribution can be generated in constant time. This is the case for line
segments, which would be the most common representation in practice, but also for
other curves for which a natural parameterization is explicitly given.

Given two shapes A,B ⊂ R2, a class of allowed transformations T and a certain
parameter δ > 0, we want to find a transformation t ∈ T which lets the transformed
image of B, t(B), match best A within a tolerance of δ. We assume that the distance
metric for the points in the image space is an algebraic function, for example a
general Lp metric. Commonly used distance measures are Euclidean distance (L2),
Manhattan distance (L1), or maximum distance (L∞). A δ-neighborhood of a point
p is defined as Uδ(p) =

{
x ∈ R2 | dist(x, p) ≤ δ}, where dist(x, p) is the distance

with respect to the chosen metric.
The analysis of the similarity measure between shapes underlying this algorithm

and thus a definition of what exactly a good match means is given in Section 3.2 for
the general case and in more details for different transformation classes in Section 3.3.
Here we follow an intuitive notion of a “good match”: two shapes are similar if they
can be mapped to each other in such a way that large parts of them are close, this
position is then a good match. So we are searching for a transformation that maps
the most similar parts of the shapes A and B to each other.

The idea of the probabilistic approach is quite simple. We first describe an algo-

17
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rithm for matching under translations:

1. Take a random point a from the shape A and a random point b from B and
give one “vote” to the translation t which maps b to a, that is t = a− b.

2. Repeat this experiment many times. Then the distribution of votes in the
two-dimensional translation space T approximates a certain probability distri-
bution.

3. For a prespecified neighborhood size δ return the points of T with the highest
number of votes in their δ-neighborhood as candidates for good transforma-
tions.

The idea behind this algorithm is that the transformations, that map large parts of
shapes to each other, should get significantly more votes than others. The size of the
δ-neighborhood influences the quality of the match.

For more complex classes of transformations two points are not sufficient to de-
termine a unique transformation, therefore, several points or a point and a direction
vector might be necessary to form a random sample in the first step of the algorithm.
The size of a random sample within one experiment and the shape and the size of
the δ-neighborhoods depend on the class of transformations allowed as described in
Section 2.2. Further, we denote by SB

t−→
δ
SA the fact that the transformation t

maps every element of SB into the δ-neighborhood of the corresponding element of
SA. A “vote” generated by a pair of random samples SA and SB is a δ-region in
the transformation space, which is defined as the set of transformations t such that
SB

t−→
δ
SA. For transformation classes other than translations the shape of a δ-region

depends on the sample pair generating it.
Before giving a generic variant of the algorithm we briefly describe the random

samples and δ-regions for the basic transformation classes:

Translations: For translations, as described above, a random sample consists of a
single randomly selected point of each shape, a ∈ A and b ∈ B, since two points de-
termine uniquely a translation mapping one point to the other. The δ-neighborhood
of a translation vector t in the two-dimensional transformation space is defined as a
set of vectors that have distance at most δ to vector t, where distance is measured
with respect to the metric chosen in image space.

Rigid motions: In case of rigid motions the transformation space is three di-
mensional. A rigid motion t = (α, vx, vy) is defined by a rotation angle α and a
translation v = (vx, vy). For computational reasons it is more convenient to work
with the four-dimensional parameterization (m1,m2, vx, vy) where m1 = cosα and
m2 = − sinα and an additional constraint m2

1 +m2 = 1 as described in Section 2.2.
Which means that we consider the space of rigid motions as a three dimensional
variety in the four dimensional space of similarity transformations. For a general Lp
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metric the δ-regions are then bounded by algebraic surfaces, and for the L1 and L∞
metrics a region is a convex polytope. We are then interested in the arrangement in-
duced by those four-dimensional regions on the three-dimensional variety described
by m2

1 + m2 − 1 = 0. For the remainder of this section we will use the intuitive
parameterization of the space of rigid motions and give the details about using the
four dimensional embedding in Section 3.3.2.

We will consider two approaches for randomized matching under rigid motions.
Approach 1: We use a single random point of each shape a ∈ A and b ∈ B as a

sample in one random experiment and record a δ-region in the space of rigid motions
as the set of transformations that map the point b into the δ-neighborhood of point
a, while all rotation angles are allowed.

In the three dimensional space parameterized by the rotation angle and transla-
tion vector the δ-region corresponding to a sample pair (a, b) in this approach has
the shape of a spiral tube extending from 0 to 2π in the direction of the rotation
axis, where for each value α ∈ [0, 2π] the cross-section parallel to the translation
plane has the shape of the δ-neighborhood with respect to the chosen metric in im-
age space. The structure of δ-regions is described in more detail in Section 3.3.2 and
an illustration is provided in Figure 3.5.

Approach 2: A random sample of a shape within one experiment contains random
points a ∈ A and b ∈ B and for each of the points an angle θa and θb, respectively,
defined by the direction of the tangent line at this point, i.e., SA = (a, θa), SB =
(b, θb). Two such point-angle pairs define uniquely a rigid motion t = (α, vx, vy), such
that θb + α = θa and t(b) = a. Here we have a special case where a sample consists
of different types of data: a point and an angle. So it is reasonable to have different
values for the tolerance bounds: δ = (δ1, δ2), where δ1 defines a neighborhood of
points, and δ2 restricts the maximal allowed difference of directions. Thus, a δ-
region corresponding to a sample pair is the set of rigid motions t′ such that the
angle between the tangent at b after rotation and the tangent at a is at most δ2 and
the distance between t′(b) and a is at most δ1.

A δ-region corresponding to a sample pair ((a, θa), (b, θb)) is a part of the spiral
tube defined by the points a, b and the distance tolerance value δ1 which is bounded
by the planes α = θa − θb + δ2 and α = θa − θb − δ2.

We also experimented with yet other approaches for rigid motions but the two
we present here give good results and fit into the general framework of our analysis.

Similarity transformations: For similarity maps the transformation space is
four-dimensional. A similarity map t = (α, k, vx, vy) is defined by a rotation an-
gle α, scaling factor k and a translation vector v = (vx, vy). t maps a point b ∈ R2

to a point t(b) = Mb+ v, where

M =

(
k cosα −k sinα

k sinα k cosα

)
=

(
m1 m2

−m2 m1

)
.
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A random sample from the shapes contains two points SA = (a1, a2) of A, and
two points SB = (b1, b2) of B, which determine a unique similarity transformation
t mapping b1 to a1 and b2 to a2. Although a standard way to parameterize the
space of similarity transformations is by (α, k, vx, vy), for computational reasons it
is more convenient to use the parameterization (m1,m2, vx, vy) where m1 = k cosα
and m2 = −k sinα. For a general Lp metric a δ-region is then bounded by algebraic
surfaces, and for the L1 and L∞ metrics it is a convex polytope bounded by four
pairs of parallel hyperplanes.

Affine transformation: A more general class of transformations are the affine
maps. An affine transformation t = (M, v), where

M =

(
m1 m2

m3 m4

)
is a linear transformation matrix and v = (vx, vy) is a translation vector, is defined
by six parameters. The transformation space is six-dimensional in this case. An
affine transformation t maps a point b ∈ R2 to a point Mb+ v. Three non-collinear
points in each shape a1, a2, a3 ∈ A and b1, b2, b3 ∈ B determine a unique affine
transformation that maps bi to ai, i ∈ {1, 2, 3}. Therefore, a random sample taken
in step one of the algorithm consists of three points of each shape.

Generic probabilistic algorithm: Now we can describe the probabilistic algo-
rithm in a generic way: Given two shapes A and B, a class of allowed transformations
T and a certain tolerance parameter δ, we want to find a transformation t ∈ T which
lets t(B) in some sense match best A within a range of δ:

1. Take random samples SA from A and SB from B of an appropriate size and
record the δ-region corresponding to this sample pair.

2. Repeat this experiment many times, say N .

3. Take the points of T covered by the highest number of δ-regions as candidates
for good transformations.

In the next section we analyze the probability distribution in transformation
space induced by the algorithm and provide the bounds on the number of experiments
needed to approximate the maximum of this distribution within a certain factor with
a prespecified probability.

3.2 Generic Analysis

3.2.1 Hit Probability in Transformation Space

First we introduce some formal notation and definitions. Let Ω denote the sample
space, i.e., the set of all sample pairs (SA, SB). By the definition of our random exper-
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iment, the samples of two figures are drawn independently and uniformly, therefore,
we have a uniform distribution on Ω, i.e., for any subset R ⊂ Ω the probability of a
randomly drawn sample to be in R is Pr(R) = |R|

|Ω| , where |·| denotes the Lebesgue
measure.

Let T ⊂ Rd denote the d-dimensional transformation space. Consider for every
transformation vector t the random variable Y : T × Ω→ {0, 1} defined as

Y (t, (SA, SB)) =

1 if SB
t−→
δ
SA,

0 otherwise.
For a transformation t and a sample pair (SA, SB) Y indicates whether SA and SB
match under t, that is, whether t maps every component of SB into a δ-neighborhood
of the corresponding component of SA. That means, the pre-image of 1 of the random
variable Y for a fixed transformation t is the set

Mδ(t) =
{

(SA, SB) ∈ Ω | SB t−→
δ
SA

}
.

Therefore, the probability that within one random experiment the value of Y (t, ·) is 1
is Pr(Y (t, ·) = 1) = |Mδ(t)|

|Ω| which we denote by pδ(t) – the hit probability function in
transformation space. We formalize the above observation in the following remark:

Remark 3.1. The hit probability pδ(t) in the transformation space induced by the
generic algorithm described in Section 3.1 has its maximum at the transformation
maximizing the Lebesgue measure of the set Mδ(t) defined as

Mδ(t) =
{

(SA, SB) ∈ Ω | SB t−→
δ
SA

}
.

We can interpret the Lebesgue measure of the set Mδ(t) as a similarity measure
associated with a transformation t. Intuitively, this should reflect the perceived
notion of “closeness” of two shapes.

The role of the parameter δ. In the description of the algorithm we introduced a
parameter δ, which defines how far apart two samples are allowed to be that are still
considered as being close. The choice of δ, therefore, controls the trade-off between
the quality of match and the size of the parts matched. With a small value of δ our
algorithm would find a transformation which maps nearly congruent parts of two
shapes to each other. A large value of δ leads to a transformation which gives a
rough match for larger parts of the shapes, see Figure 3.1.

The value of δ does not determine whether the matching is partial or complete,
in fact the algorithm always performs a partial matching in a sense that the corre-
sponding parts of two shapes are mapped to each other. Neither does δ determine
how large the matched parts are, it only specifies how exact the match should be.
For nearly congruent figures a small neighborhood size already leads to a complete-
complete matching, see Figure 3.2(a). If figure B is nearly congruent to some parts
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A
topt(B)

A

topt(B)

Figure 3.1: Matching under translations with large (left) and small (right) values
of δ and the corresponding probability distributions in translation space.

of A, then still with a small value of δ we detect the occurrences of B in A, that is,
find a complete-partial matching as shown in Figures 3.2(b) and 3.2(c). The problem
of partial-partial matching is not uniquely defined since there is a certain correlation
between the quality of match and the size of the matched parts. We address this
problem by letting the user specify the quality of match through the choice of δ, for
which we then find the matching parts.

For some applications it might be worth to consider several local maxima of the
distribution, since they can give us additional information about the shapes. For
example, multiple local maxima of the distribution, that are almost equally good,
indicate multiple occurrences of one shape, or its parts, depending on the value of
the similarity measure, within the other, see Figure 3.2(b).

3.2.2 Rating the Shape Similarity

We showed above that the objective function underlying the probabilistic algorithm
is the hit probability pδ(t), which is exactly the measure of the set Mδ(t) normalized
by the measure of the sample space Ω. Informally, the measure of the set Mδ(t), and
thus also the hit probability pδ(t), indicates the amount of correspondence between
two shapes A and B for the transformation t. This measure alone does not tell us
whether two given shapes are similar to each other or not. Since we consider the
maximum of that similarity or closeness evidence over all possible transformations,
we know how much correspondence we can possibly get for the two shapes.

For the matching scenario where we have a shape A and a set of shapes B =
{B1, . . . , Bk} and want to determine the shapes in B that are most similar to A,
which is a typical scenario for a retrieval task, it might be sufficient to order the
shapes of the set B according to their maximum hit probability. Then the shapes
with higher maximum hit probability are those with higher correspondence amount.

Note that the hit probability is in this case a better similarity criterion than the
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t(B)A

(a) Nearly congruent trade-
mark images

A

t1(B)

A

t2(B)

(b) Shape B occurs twice in A

A

t(B)

(c) A rough complete-partial
match of horse and carriage
shapes from the MPEG7-
ShapeB data set

Figure 3.2: Matched shapes and the corresponding probability distributions in trans-
lation space

measure of the set Mδ: Consider an example where the shape B1 is a translated
copy of the shape A and the shape B2 contains every curve of the shape A twice
with a very small offset (� δ), as illustrated in Figure 3.3. Assume that the class
of allowed transformations is the class of translations. Let LA, LB1 , LB2 denote the
total lengths of the shapes A,B1, B2, respectively, with LB1 = LA and LB2 = 2LA.
The maximum measure of Mδ for the shape B1 is approximately δLA, since for the
translation mapping B1 to A for every point a of A there is a part of a curve in B1 of
length approximately δ, such that every point of that part is in the δ-neighborhood
of a. The maximum measure of Mδ for the shape B2 is approximately 2δLA, since
the contours of A are doubled in B2. Thus, according to the maximum measure of
Mδ the shape B2 is rated to be much more similar to A than its exact copy. The
maximum hit probability pδ for the shape B1 is approximately δLA

LALB1
= δ

LB1
= δ

LA

and for the shape B2 it is 2δLA
LALB2

= 2δ
LB2

= δ
LA

. Ranking by maximum value pδ rates
both shapes equally similar to A, which is more intuitive.

Another possibility is to normalize the amount of correspondence measured be-
tween two shapes by the correspondence of a shape to itself. Again we have a choice
of normalizing the maximum measure of Mδ or the maximum value of pδ. Let for
now µAB denote the maximum measure of similarity over all possible transforma-
tions for two shapes A and B. The measure µAB can either be pδ or |Mδ|. Further,
let µA and µB denote the maximum of the corresponding similarity measure for the
shape A compared to itself and for the shape B compared to itself, respectively.
Then the ratio µAB

µA
measures the amount of correspondence of the shape B relative

to A, that is, how well B covers A, and µAB
µB

the amount of correspondence of A
to B. Then for a complete-partial matching for A and B i.e., for a question how
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A B1 B2

� δ

Figure 3.3: An example of shapes A, B1, B2, for which the maximum of the measure
of the set Mδ(t) for shapes A and B2 is approximately twice the maximum measure
of the set Mδ(t) for shapes A and B1, whereas the maximum values of pδ(t) are
approximately equal for both pairs of shapes.

well does the complete shape A match to possibly some part of B, we are interested
in the measure µAB

µA
. For a complete-complete matching the appropriate measure is

the min
{
µAB
µA

, µABµB

}
. Note that for the scenario of comparing a shape A to a set of

shapes B with respect to complete-partial matching the ranking of the shapes in B
by µABi is equivalent to the ranking by the relative measure.

Which of the measures Mδ or pδ is more appropriate as a normalized similarity
measure depends on the application, we discuss the differences for the above example
of the shapes A,B1, B2. Let us first consider the maximum of Mδ as the similarity
measure, that is µAB1 = maxtMδ(t) for the shapes A and B1 and let µAB2 , µA,
µB1 , µB2 denote the corresponding maximum measures of Mδ. As mentioned above,
µAB1 = µA = µB1 ≈ δLA, µAB2 = 2δLA, and µB2 ≈ 2δLB2 = 4δLA. The normalized
measures for the shapes A,B1 are then µAB1

µA
= µAB1

µB1
= 1, which indicates that the

shapes A and B1 have a 100% correspondence (within a tolerance value δ). For the
shapes A and B2 the measure normalized relative to A µAB2

µA
≈ 2 indicates that the

shape B2 covers the shape A twice, which is exactly the case here. Normalizing with
respect to B2

µAB2
µB2

≈ 1/2 indicates that A covers only a half of B2. Although this
is true, since A is only half as large as B2, in many cases (e.g. for rating visual
resemblance) we would want A to be still rated as similar to B2. For the maximum
of the hit probability pδ we get for all four normalized similarity measures the value
1, which means that A is very similar to B1 and B1 is very similar to A, but also
that A is very similar to B2 and B2 is very similar to A. The latter rating reflects
better the visually perceived similarity, although the first one captures better the
mathematical relations of the shape measures. Since this research is motivated by
comparing shapes according to their visual similarity we favor measuring similarity
by relative hit probability.

3.2.3 Approximation of the Hit Probability by Arrangement

In this section we determine how many samples are needed in order to approximate
the hit probability function pδ(t) in the transformation space within a certain accu-
racy ε with high probability and analyze the total running time of the algorithm.
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In order to find a transformation covered by the highest number of δ-regions
corresponding to the samples, we consider the arrangement of these δ-regions. All
transformations in the same cell of the arrangement have the same region coverage.
Therefore, it is sufficient to traverse the arrangement and take the nodes with the
highest number of δ-regions that contain this node.

We first show that the number of δ-regions covering the deepest cell of the ar-
rangement gives a good approximation to the maximum value of the hit probability.
The number of necessary samples is expressed in terms of the allowed approximation
error ε and the maximal probability of failure η. The running time of the algorithm
depends on the time needed to determine the deepest cell in the arrangement, which
grows exponentially with the dimension of the space, the detailed analysis of running
time is given below. We also show that an approximation of the depth of the arrange-
ment as described by Aronov and Har-Peled in [9] results in an approximation of the
maximum value of the hit probability with an error of at most 2ε. The speed-up in
determining the deepest cell of the arrangement results directly in a speed-up of the
probabilistic matching algorithm.

Let the random variable Z(t) denote the sum of the N independent random
variables Y (t, (SA1, SB1)), . . . , Y (t, (SAN , SBN )), as defined in Section 3.2.1, cor-
responding to the set of N samples in our algorithm. Z(t) counts the number of
δ-regions produced by N random experiments that cover t. Note that the expected
value of Z(t) is E(Z(t)) = pδ(t)N . In the algorithm we find a transformation which
is contained in the highest number of δ-regions of the sample set, that is, a trans-
formation t ∈ T that maximizes the value of Z(t). Let p̃δ(t) denote the ratio of the
number of the observed δ-regions that cover t to the total number of samples, that
is p̃δ(t) = Z(t)

N . p̃δ(t) is an estimate of pδ(t).
Using Chernoff bounds, see Mitzenmacher and Upfal [45], and the technique

described by Cheong et al. in [16] we can bound the relative error for the estimate
of the hit probability in the transformation space.

The following theorem bounds the number of samples needed for an approxima-
tion with a relative error at most ε:

Theorem 3.1. Given two shapes A and B modeled by finite sets of n rectifiable
curves with total lengths LA, LB respectively and a tolerance value δ > 0, for any
parameter values ε, η, 0 < ε, η < 1, the following holds: Let tapp be a transformation
maximizing p̃δ(t) and topt a transformation maximizing pδ(t), and let ν, 0 < ν < 1
be a parameter such that either pδ(topt) > ν, or otherwise we say that the shape A
and B do not match well. Then there exists a constant c such that after

N ≥ c 1
ε2ν

ln
(

max
(

1
η
,

1
ε2ν

))
random experiments the following holds:

(i) If pδ(topt) > ν the probability that the estimate of the maximum of pδ(t) has a
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relative error larger than ε is at most η, that is

Pr [ |p̃δ(tapp)− pδ(topt)| ≥ εpδ(topt) ] ≤ η .

(ii) If pδ(topt) ≤ ν the probability that p̃δ(tapp) ≥ (1 + ε)ν is at most η.

For translations, rigid motions (Approach 1) and similarity transformations it
holds:

(iii) There exists a constant c such that the probability that |p̃δ(tapp)− pδ(topt)| ≥
εpδ(topt) is at most η after

N ≥ c m
2

ε2δ2
ln
(

max
(

1
η
,
m2

ε2δ2

))
random experiments, where m = max(LA, LB, nδ).

That means that the number of required experiments in order to get an ε-
approximation with probability at least 1 − η is in O

(
1
ε2ν

ln
(

max
(

1
η ,

1
ε2ν

)))
for

general transformations, where the parameter ν is a lower bound for the value of the
similarity function which will be approximated within guaranteed error bounds. In
case that the maximum value of the similarity function is below ν we can say that
the shapes do not match well. Parameter ν can be eliminated for the transforma-
tion classes for which we can a priori determine a lower bound for the maximum
of the similarity function. Such lower bound can be found for translations, rigid
motions and similarity maps. The required number of experiments is then bounded
by O

(
m2

ε2δ2
ln
(

max
(

1
η ,

m2

ε2δ2

)))
.

Observe that the relative error with respect to pδ(t) is also the relative error with
respect to |Mδ(t)|, which is the similarity measure underlying our algorithm.

Proof of the relative error bound

We first show that for any transformation vector t and a given threshold ν with high
probability we either get a good approximation of pδ(t), if this value is at least ν,
or otherwise make sure that we do not overestimate it, where with high probability
means that the probability of a large error falls exponentially with the number of
experiments N .

Lemma 3.1. For all 0 < ε, ν < 1 for a sample S of size N and any transformation
vector t ∈ Rd the following holds:

• pδ(t) ≤ ν ⇒ Pr(p̃δ(t) > (1 + ε)ν) ≤ e− ε
2νN
3

• pδ(t) ≥ ν ⇒ Pr(|p̃δ(t)− pδ(t)| > εpδ(t)) ≤ 2e−
ε2νN

4 .
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Proof. First we show that if pδ(t) ≤ ν the probability of overestimating this value
falls exponentially with N :

Pr(p̃δ(t) > (1 + ε)ν) = Pr(Z(t) > (1 + ε)νN) = Pr(erZ(t) ≥ er(1+ε)νN ) for all r > 0

≤ E(erZ(t))
er(1+ε)νN

by the Markov inequality [45, Theorem 3.1]

≤ e(er−1) E(Z(t))

er(1+ε)νN
see [45, Section 4.2.1]

=
e(er−1)pδ(t)N

er(1+ε)νN
since E(Z(t)) = pδ(t)N

≤
(
e(er−1)

er(1+ε)

)νN
since pδ(t) ≤ ν

=
(
eε−(1+ε) ln(1+ε)

)νN
for r = ln(1 + ε)

≤ e− ε
2νN
3 for 0 < ε < 1 .

In case pδ(t) ≥ ν:

Pr(|p̃δ(t)− pδ(t)| > εpδ(t)) = Pr(|Z(t)− pδ(t)N | > εpδ(t)N)

= Pr(|Z(t)− E(Z(t))| > εE(Z(t)))

≤ e− ε
2 E(Z(t))

2 + e−
ε2 E(Z(t))

4

by the simplified Chernoff bound [45, Thm. 4.4,4.5]

≤ 2e−
ε2pδ(t)N

4

≤ 2e−
ε2νN

4 since pδ(t) ≥ ν,

which concludes the proof.

We associate with each cell C of the arrangement A of δ-regions a so-called witness
point p, i.e., a point that lies on a lowest-dimensional face F of A that contributes to
the boundary of C. Observe that F must be completely contained in the boundary
of C and is in general a connected component of the intersection of k boundaries
of δ-regions with 1 ≤ k ≤ d. The dimension of F is d − k. Thus, by considering
all k-tuples of δ-regions and taking a point in each connected component of their
intersection we can be sure to have at least one witness point for each cell of the
arrangement.

Since we assume that the distance metric is an algebraic function of constant de-
gree, every intersection of k δ-region boundaries has a constant number of conected
components. If δ-regions are convex, which is the case for translations and for simi-
larities in combination with L1 and L∞ distance metric, each intersection of k bound-
aries has just one connected component. Thus, the total number of witness points is
at most c

∑d
k=1

(
N
k

) ≤ cNd, where c is a constant.
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Now consider a witness point t of the δ-region arrangement corresponding to S.
The following lemma states bounds for the witness points of the arrangement.

Lemma 3.2. For all ε, ν, 0 < ε, ν < 1, and a sample set S of size N ≥ 2d
εν + d,

for a witness point t ∈ Rd of the arrangement of the δ-regions corresponding to the
samples in S, the following holds:

• pδ(t) ≤ ν ⇒ Pr(p̃δ(t) > (1 + ε)ν) ≤ e− ε
2(N−d)ν

12

• pδ(t) ≥ ν ⇒ Pr(|p̃δ(t)− pδ(t)| > εpδ(t)) ≤ 2e−
ε2ν(N−d)

16 .

Proof. Observe that Lemma 3.1 cannot be applied to the witness points directly since
they depend on the experiment, i.e., the chosen samples. However, since a witness
point depends only on k ≤ d samples, the remaining ≥ N − d samples are “random”
for that point and we can apply Lemma 3.1 replacing N by N −d. More specifically:

Let S1, . . . , Sk ∈ S, 1 ≤ k ≤ d, be the sample pairs whose δ-regions induce the
witness point t. Consider the sample set Q = S \ {S1, . . . , Sk}, |Q| = N − k. The
point t and the sample set Q are independent. Let ZQ(t) and ZS(t) = Z(t) denote
the number of the δ-regions that cover t in the sample sets Q and S respectively,
and p̃δQ(t) = ZQ(t)/(N − k), p̃δS(t) = ZS(t)/N = p̃δ(t). Since we consider closed
neighborhoods, ZQ(t) = ZS(t)− k, p̃δQ(t) ≤ p̃δS(t) and

p̃δQ(t) =
ZS(t)− k
N − k =

ZS(t)
N

N

N − k −
k

N − k ≥ p̃δS(t)− k

N − k ≥ p̃δS(t)− d

N − d .

Therefore,

|p̃δS(t)− pδ(t)| ≤ |p̃δQ(t)− pδ(t)|+ |p̃δS(t)− p̃δQ(t)| ≤ |p̃δQ(t)− pδ(t)|+ d

N − d .

In case pδ(t) ≤ ν

Pr(p̃δS(t) > (1 + ε)ν) ≤ P
(
p̃δQ(t) +

d

N − d > (1 + ε)ν
)

= P

(
p̃δQ(t) > (1 + ε)ν − d

N − d
)

≤ P
(
p̃δQ(t) >

(
1 +

ε

2

)
ν
)

for N ≥ 2d
εν + d

≤ e− (ε/2)2(N−d)ν
3 by Lemma 3.1

= e−
ε2(N−d)ν

12
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If pδ(t) ≥ ν:

Pr(|p̃δS(t)− pδ(t)| > εpδ(t)) ≤ P
(
|p̃δQ(t)− pδ(t)|+ d

N − d > εpδ(t)
)

≤ P
(
|p̃δQ(t)− pδ(t)| > ε

2
pδ(t)

)
for N ≥ 2d

εν + d

≤ 2e−
(ε/2)2ν(N−d)

4 by Lemma 3.1

= 2e−
ε2ν(N−d)

16

In the above lemmas we used an additional parameter ν for the smallest value
of pδ(t) which we want to approximate well enough. If the considered transforma-
tion class allows to define an a priori lower bound for the maximum value of the hit
probability function pδ, then we can eliminate that parameter in the general error
bound in the Theorem 3.1. For translations, rigid motions, and similarity transfor-
mations we show in Section 3.3 that there exists such lower bound, see Lemmas 3.4,
3.5 and 3.6.

Now we can prove Theorem 3.1:

Proof. (Of Theorem 3.1)
First, we show that for an arbitrary sequence ofN random experiments performed

by the algorithm, the probability that there exists a witness point t corresponding
to this sequence, for which the estimate p̃δ(t) of pδ(t) is bad, can be bounded by a
parameter η.

As we have seen above it is sufficient to consider k-subsets of the δ-regions with
1 ≤ k ≤ d in order to have at least one witness point in each cell of the arrangement.
Any such tuple produces at most a constant number of witness points. We can
enumerate all k-tuples of the δ-regions and, thus, all possible witness points corre-
sponding to an arbitrary sequence of N experiments. For an arbitrary witness point
tij (a witness point number j of the i-th δ-region tuple) we can apply Lemma 3.2
and, hence bound the probability that a sequence of N random experiments results
in a bad approximation for tij . Note that if for some set of random experiments
the i-th tuple does not have a witness point number j or does not have any witness
points, the statement of the lemma trivially holds. In other words, according to
Lemma 3.2 the probability that an arbitrary N -sequence gives a bad approximation

for a witness point j produces by i-th tuple is at most 2e−
ε2ν(N−d)

16 .
Since there are at most Nd k-subsets of the δ-regions and, therefore, at most

c1N
d witness points, where c1 is a constant, we have to apply the lemma at most

c1N
d times. Then, given some threshold value 0 < ν < 1, the probability that there

exists a witness point t with pδ(t) ≥ ν and |p̃δ(t)− pδ(t)| > εpδ(t) or with pδ(t) < ν

and p̃δ(t) > (1 + ε)ν is at most c1N
d2e−

ε2ν(N−d)
16 . A straightforward calculation

shows that for N ≥ c2
ε2ν

ln
(

1
ε2ν

)
with some suitable constant c2 this value is at most

e−
ε2ν(N−d)

32 (see Proposition 3.3 for a proof), which is less than η for N ≥ 32
ε2ν

ln 1
η +d.
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So the probability that there exists a witness point, for which the estimate of pδ(t)
is bad in the sense described above, is at most η/2 for

N ≥ c

ε2ν
ln
(

max
(

1
η
,

1
ε2ν

))
(3.1)

for some constant c. Observe that this is a combinatorial result which does not
depend on the spatial position of witness points corresponding to a certain sequence
of N experiments.

Since after N experiments the estimate p̃δ is ε-accurate with probability at least
1− η for every witness point, it is in particular ε-accurate for the witness point tapp.
Then for the case pδ(topt) ≤ ν we have that pδ(tapp) ≤ pδ(topt) ≤ ν. Therefore, the
probability that pδ(tapp) > (1 + ε)ν is at most η, which completes the proof of the
part (ii) of the theorem.

If pδ(topt) > ν then, by Lemma 3.1, after N experiments the probability of a bad
estimation of pδ(topt) is also at most η. Combining these error bounds we get

p̃δ(tapp) ≥ p̃δ(topt) since tapp maximizes p̃δ(t)

≥ (1− ε)pδ(topt) with probability ≥ η by Lemma 3.1

and

p̃δ(tapp) ≤ (1 + ε)pδ(tapp) with probability ≥ η by Lemma 3.2

≤ (1 + ε)pδ(topt) since topt maximizes pδ(t)

Therefore, |p̃δ(tapp)− pδ(topt)| ≤ εpδ(topt) with probability at least 1 − 2η (part (i)
of the theorem).

For the part (iii) of the theorem we show in Lemmas 3.4, 3.5 and 3.6 that in
case of translations, rigid motions with Approach 1, and similarity transformations
for any two shapes and a tolerance bound δ there always exists a transformation t,
such that pδ(t) ≥ δ2

m2 , where m = max(LA, LB, nδ). Then for ν = δ2

m2 the maximum
of pδ(t) is pδ(topt) ≥ ν.

Plugging δ2

m2 for ν in Formula (3.1) we obtain that after

N ≥ c m
2

ε2δ2
ln
(

max
(

1
η
,
m2

ε2δ2

))
experiments it holds with probability at least 1 − 2η that |p̃δ(tapp)− pδ(topt)| ≤
εpδ(topt).

It remains to prove the following proposition for completeness of the proof:

Proposition 3.3. Let c, k, d be positive real numbers and let m = max
{

2d+1
k , c

}
.

For all N ≥ m logm holds
cNd ≤ ekN .
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Proof. Let m be a positive real number and N0 = m logm. The claim of the propo-

sition for N0 is equivalent to
ekN0/d

N0
≥ c1/d. Evolving the left side of this inequality

we get

ekN0/d

N0
=
ekm logm/d

m logm
=

mmk/d

m logm
≥ mmk

d
−2

≥ m1/d if m ≥ 2d+ 1
k

≥ c1/d if m ≥ c

which implies the claim for N0 and thus for all N ≥ N0.

Running time

The running time of the algorithm consists of the time needed to generate N random
samples denoted by Tgen(n,N), where n is the number of curves in the shape, and
the time needed to determine the depth of the arrangement of N δ-regions denoted
by Tdepth(N).

As mentioned in Section 2.1 we assume that every smooth curve piece in our
curve sets has a constant speed parameterization, which is either given or can be
reconstructed in constant time. The latter is the case for line segments, and thus,
for polygonal curves. Under this assumption a random point on a curve can be
generated in constant time. For generating a random point from a set of n curves
we first select a curve randomly with probability proportional to the relative length
of the curve and then take a random point from the selected curve uniformly with
respect to length, which is equivalent to selecting a random value uniformly from a
real numbers interval.

The selection of a random segment can be trivially done in time linear in n. If we
first compute the relative curve lengths and record the corresponding probabilities
to allow for binary search during the generation process we get preprocessing time
linear in n and O(log n) generation time for a single point. Therefore, Tgen(n,N) =
O(n+N log n).

In order to determine the depth of the arrangement of N δ-regions we can con-
struct this arrangement and during the construction keep record of the depth of
the cells. Then at the end of the construction algorithm we know the depth of the
deepest cell. For general metrics Lp and the considered classes of transformations
the boundaries of δ-regions are defined by semi-algebraic varieties. Every sample
pair induces a constant number of such varieties. And for all transformation classes,
except for rigid motions, we consider the arrangement of the varieties produced by
N experiments in the corresponding d-dimensional transformation space. By Basu
et al. [11], the corresponding arrangement can be constructed and traversed in time
O(Nd+1pO(d2)), where p denotes the degree of polynomials describing the boundaries
of the δ-regions and depends on the chosen distance metric Lp. Since once the dis-
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tance metric is chosen, the degree of polynomials can be considered as constant, we
can simplify the expression for the running time to Tdepth(N) = O(Nd+1).

In case of rigid motions the boundaries of δ-regions are described by polynomials
in four variables, i.e., we consider semi-algebraic hypersurfaces in four (that is in d+1)
dimensions. But we are interested in the deepest cell of the arrangement induced on
a three (d) dimensional variety. With the algorithm by Basu et al. [12] it can be done
in time O(Nd+1pO(d+1)), where p is the degree of polynomials, which depends on the
chosen distance metric Lp. Considering p as a constant we get the same time bounds
for rigid motions as for translations and similarity maps, Tdepth(N) = O(Nd+1).

Alternatively, we can compute the intersection of the boundaries for all k-subsets
of δ-regions, 1 ≤ k ≤ d, and choose one point in each connected component of the
intersection. Since we assumed that the distance metric is an algebraic function of
constant degree, the intersection computation means solving a system of polynomial
equations with constant number of equations and polynomials of constant degree,
which can be performed numerically in constant time. Then for every computed
witness point we can count the number of δ-regions containing it. Thus, we have
O(Nd) intersection computations and for each of the O(Nd) witness points O(N)
time cost for counting the number of δ-regions covering it.

Summarizing these results and using Theorem 3.1 we obtain the following running
time of the algorithm:

Theorem 3.2. Given two shapes A and B modeled by finite sets of n rectifiable
curves in the plane of total lengths LA and LB respectively, parameters ε, η, ν, 0 <
ε, η, ν < 1, and a transformation class T of dimension d, such that the inter-
section of the boundaries of any up to d δ-regions in T has constant complexity.
Let topt denote the transformation maximizing pδ(t). In time O(n + N log n +
Nd+1) the generic probabilistic algorithm computes a transformation tapp such that
|p̃δ(tapp)− pδ(topt)| ≤ εpδ(topt) or determines that no transformation t with pδ(t) >
ν exists with error probability at most η. The required number of experiments is
N ∈ O

(
1
ε2ν

ln
(

max
(

1
η ,

1
ε2ν

)))
.

For translations, rigid motions (Approach 1), and similarity transformations the
algorithm finds an ε-approximation of pδ(topt) with probability at least 1 − η, the
required number of experiments is N ∈ O

(
m2

ε2δ2
ln
(

max
(

1
η ,

m2

ε2δ2

)))
, where m =

max(LA, LB, nδ).

Observe that, at least for sufficiently small values of δ, the runtime of the al-
gorithm depends much more on the parameters ε and η than on the combinatorial
input size n, which is only needed in the preprocessing and the drawing of random
samples.

The running time of the algorithm is actually better than that stated in The-
orem 3.2 for translations and for similarities in combination with the L1 and L∞
metrics. In case of translations, the δ-regions are pseudo-disks and their arrangement
can be constructed straightforwardly in time O(N2). For similarities in combination
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with the L1 or L∞ metric the δ-regions in transformation space are bounded by a
constant number of 3-dimensional hyperplanes. Using the algorithm of Edelsbrunner
et al. [23] the arrangement of N such δ-regions can be constructed in O(N4) time.
These observations are summarized in the following remarks:

Remark 3.2. Under the conditions of Theorem 3.2 for the case of translations the
generic probabilistic algorithm computes a good approximation of the maximum of
pδ(t) in time O(n + N log n + N2), where a good approximation is to be understood
as stated in the Theorem.

Remark 3.3. Under the conditions of Theorem 3.2 for the case of similarity trans-
formations in combination with L1 or L∞ metric in image space the generic prob-
abilistic algorithm computes a good approximation of the maximum of pδ(t) in time
O(n + N log n + N4), where a good approximation is to be understood as stated in
the Theorem.

In order to achieve a speed up of the algorithm a combination with the depth ap-
proximation algorithm by Aronov and Har-Peled [9] is possible. Given a set of N ob-
ject in Rd whose arrangement has depth D and a prespecified parameter ε > 0, their
algorithm finds a point of depth at least (1− ε)D in O

(
N + TDT(N, ε−2 log n) log n

)
expected time, where TDT(N, k) is the running time of a depth thresholding algo-
rithm. A depth thresholding algorithm takes a set S of N objects and an integer
k > 0 and returns the depth of the arrangement of S together with a witness point
if this depth is at most k, or tells that the depth is greater than k.

It is easy to verify that in combination with depth approximation the proba-
bilistic algorithm gives an approximation of pδ(topt) with an error at most 2ε: Let
t∗ be the transformation determined by the depth approximation algorithm, tapp a
transformation maximizing p̃δ(t), and topt a transformation maximizing pδ(t), then

p̃δ(t∗) ≥ (1− ε)p̃δ(tapp) by the property of depth approximmation algorithm

≥ (1− ε)2pδ(topt) by Theorem 3.1

≥ (1− 2ε)pδ(topt) for 0 < ε < 1 ,

and

p̃δ(t∗) ≤ p̃δ(tapp) ≤ (1 + ε)pδ(topt) .

Thus, provided a fast depth thresholding algorithm exists, this combination would
result in a significant speed up of the probabilistic algorithm. For translations, that
is for an arrangement of pseudo-disks in the plane, a fast thresholding algorithm is
known to exist [9], which results in running time Tdepth(N) = O(Nε−2 logN).

3.2.4 Generic Description

The generic probabilistic algorithm as described in Section 3.1 is not restricted to
sub-classes of the affine transformations but can be applied to matching curve sets
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with respect to a broader class of transformations, e.g., projective or even non-linear
transformations. In this section we summarize which steps of the algorithm need to
be specified for a transformation class T with d degrees of freedom, and the conditions
that need to be fulfilled for the approximation error guarantees in Theorem 3.1 and
the running time bound in Theorem 3.2 to hold.

First, we need to specify the samples generated during one random experiment
and the corresponding δ-region. For transformation classes of dimension d ≥ 2, i.e.,
with two ore more degrees of freedom, one can always use a single randomly selected
point of each shape as the random sample, i.e., SA = a ∈ A and SB = b ∈ B. Then,
in general, the set of transformations that map SB to SA is a (d − 2)-dimensional
variety in the d dimensional transformation space. Larger samples with up to d

parameters constrain further degrees of freedom and so reduce the dimension of the
corresponding set of transformations. The larger samples also induce δ-regions of
smaller volume.

From the general analysis of the objective function of the algorithm it follows: If
the random sample consists only of points of the shapes, in particular of a single point,
then the algorithm maximizes the measure of the set of point pairs that are δ-close
to each other after the chosen transformation is applied. For the samples containing
different characteristics assigned to the points the matching criterion depends on
these parameters and the definition of the δ-regions. The additional parameters can
help to reduce the search space for the transformation resulting in a good match,
but, as for example in the case of rigid motions (see Section 3.3.2), might lead to
matching results that are different from those based only on the proximity of points.

The δ-regions induced by a random sample have to be specified by a constant
number of polynomial equations and inequalities. Then the algorithm by Basu et
al. [11] can be used to compute the arrangement of δ-regions and determine the
deepest cell of the arrangement. For some transformation classes the intuitive pa-
rameterization of the transformation space results in a non-algebraic description of
δ-regions, e.g., for rigid motions. In such cases one should examine the possibil-
ity of reparameterization and embedding in a higher dimensional space to obtain a
semi-algebraic description of the δ-regions. Then the algorithm by Basu et al. [12]
for computing the arrangement of semi-algebraic sets on a variety gives the desired
result. In both cases the computation time of the deepest cell of the arrangement of
δ-regions is O(Nd+1), where N is the number of random experiments. If the δ-region
description contains only linear equations, that is, a δ-region is bounded by a set of
hyperplanes, the arrangement can be constructed an traversed in time O(Nd) with
the algorithm by Edelsbrunner et al. [23].

If the definition of the δ-regions with polynomial equations or inequalities is not
possible, one has to specify the way to find a transformation covered by the most
δ-regions corresponding to the sample set. In this case the computation time of the
deepest cell of the arrangement might vary from that stated in the Theorem 3.2.
Although, if the definition of a δ-region fulfills the condition that the intersection of
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the boundaries of any k δ-regions has a constant number of connected components,
and given the possibility to compute a point in each of the connected components,
the statement of the Theorem 3.2 still holds: By considering all k, 1 ≤ k ≤ d,
tuples of δ-regions and taking one point in each of the connected components in the
intersection of their boundaries, we get a set W of witness points of the arrangement
(defined in Section 3.2.3). The set W contains O(Nd) points, and for every cell of
the arrangement there exists at least one point in W that lies on the boundary of
that cell. Then for each point in W we can count the number of δ-regions covering
that point. The computation of the deepest cell of the arrangement has then the
time complexity of O(NdTcon + Nd+1Tcov), where Tcon denotes the time needed to
compute a point in each connected component of the boundary of k δ-regions, and
Tcov the time to test whether a point lies inside a δ-region. If the last two operations
can be performed in constant time, we get the desired computation bounds.

Finally, for the approximation error bound that is independent of a threshold
value one needs to show that for the given class of transformations and for any two
shapes A and B there exists some value ν, which depends on the distance tolerance
value δ and properties of the shapes, such that the maximum of the underlying prob-
ability distribution pδ(t) is at least the value ν. That is, statements equivalent to
those of Lemmas 3.4, 3.5 and 3.6 need to hold for the considered class of transfor-
mations. If the value ν is proportional to δ2

m2 , where δ is the distance tolerance value
and m = max (LA, LB, nδ) with LA, LB being the total length of the shapes A and
B respectively, and n the number of curve segments comprising the shapes, then the
bound on the number of experiments is the same as for translations, rigid motions
and similarity transformations given by Theorem 3.1.

Summarizing, we can say that in order to apply the probabilistic matching
method to matching shapes modeled as sets of curves under an arbitrary trans-
formation class with d degrees of freedom one need to complete the following steps:

• Specify the random sample taken from each shape within one random experi-
ment. A sample can consist of up to d parameters.

• Provide a description of the corresponding δ-region as a semi-algebraic variety.
If such description is not possible, provide a method for finding the deepest
cell in the arrangement of δ-regions.

• For the threshold independent relative error bound show that for any two
shapes there exists an a priori lower bound for the maximum value of the hit
probability function pδ(t).

• Adapt the analysis of the running time of the algorithm if the sample generation
procedure or the computation of the deepest cell of the arrangement differ from
that described in Section 3.2.3.

We complete the description of the algorithm according to the described steps for
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translations, rigid motions, similarity, homothety, shear and affine transformations
in Section 3.3.

3.3 Details for Subclasses of Affine Transformations

The transformation classes considered in this section are subclasses of affine trans-
formations. An affine transformation t is defined by a linear transformation matrix

M =

(
m1 m2

m3 m4

)
(3.2)

and a translation vector v = (vx, vy), and maps a point b ∈ R2 to a point t(b) =
Mb+v. Then the condition t(b) ∈ Uδ(a) for two points a and b and a transformation
tmeans dist(t(b), a) ≤ δ. For general Lp metrics, since the distance function is always
positive, the condition dist(t(b), a) ≤ δ is equivalent to distp(t(b), a) ≤ δp. Then, for
even values of p the distance condition can be described by one inequality of degree p:

(m1bx +m2by + vx − ax)p + (m1by +m2bx + vy − ay)p ≤ δp (3.3)

For odd values of p the distance condition induces four inequalities of degree p:

(m1bx +m2by + vx − ax)p + (m3by +m4bx + vy − ay)p ≤ δp
−(m1bx +m2by + vx − ax)p + (m3by +m4bx + vy − ay)p ≤ δp (3.4)

(m1bx +m2by + vx − ax)p − (m3by +m4bx + vy − ay)p ≤ δp
−(m1bx +m2by + vx − ax)p − (m3by +m4bx + vy − ay)p ≤ δp

And for the L∞ metric we get four linear inequalities:

m1bx +m2by + vx − ax ≤ δ
−(m1bx +m2by + vx − ax) ≤ δ (3.5)

m3by +m4bx + vy − ay ≤ δ
−(m3by +m4bx + vy − ay) ≤ δ

These distance constraints contribute to the description of the δ-regions in the fol-
lowing analysis of the effect of the matching algorithm for different transformation
classes.

3.3.1 Translations

The first class of transformations that we consider are translations. The translation
space T is two-dimensional. Two points a, b ∈ R2 define uniquely a translation t that
maps b to a, t = a − b. Therefore, a random sample of each shape in step one of
our algorithm consist of a single point and the sample space is Ω = A×B. The set
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Mδ(t) is then the set of the point pairs of the two shapes that are mapped to the
δ-neighborhood of each other by the transformation t, formally,

Mδ(t) = {(a, b) ∈ A×B | t(b) ∈ Uδ(a)} . (3.6)

With an Lp metric as the underlying distance function for the points in the plane a
δ-region corresponding to a sample pair a, b is a convex region defined by inequalities
(3.3) – (3.5) depending on p, where the matrix M defined in (3.2) is the identity
matrix with m1 = m4 = 1 and m2 = m3 = 0.

To maximize the measure of the set Mδ(t) means to find a transformation that
maps largest possible parts of the shapes into proximity of each other, which comes
close to the intuitive notion of matching of two shapes.

Observe that there is a direct connection between the set Mδ(t) and a free space
diagram, which was first defined for polygonal curves by Alt and Godau in [2]. Let
f : I → R2, g : J → R2 be two curves, with parameter intervals I, J ⊂ R. The set
Fδ(f, g) := {(s, r) ∈ I × J | dist(f(s)− g(r)) ≤ δ} denotes the free space of f and
g, where dist(·, ·) denotes the distance measure in the image space. The partition
of I × J into regions belonging or not belonging to Fδ(f, g) is called the free space
diagram.

A set of curves can be parameterized over the interval [0, 1] ⊂ R in the following
way: Let the set A be composed of k curve segments of lengths l1, . . . , lk and let
L denote the total length of A. Subdivide the interval [0, 1] into k subintervals
Ij = [rj−1, rj ] for 1 ≤ j ≤ k of size proportional to the lengths of curves with r0 = 0
and rj =

∑j
i=1 li/L for 1 ≤ j ≤ k. Since we assumed that the curves are given

by natural parameterization Cj : [0, lj ]→ R2, the constant speed reparameterization
over the intervals Ij can be easily constructed as C ′j : [rj−1, rj ] → R2 with C ′j(r) =
Cj ((r − rj−1) · L). Then the whole set A is a piecewise function from [0, 1] to R2 and
equals C ′j on a subinterval Ij . The order of curves can be arbitrary, since we consider
the shapes as the points in the plane without orientation or ordering.

Thus, the shapes A and B can be regarded as functions A : [0, 1] → R2, B :
[0, 1] → R2. Then, the free space of the set A and the set B transformed by t is
defined as Fδ(A, t(B)) :=

{
(s, r) ∈ [0, 1]2 | dist(A(s)− t(B(r))) ≤ δ}, see Figure 3.4

for an example.
It is easy to see, that there is a one-to-one correspondence between the set Mδ(t)

defined above and the set Fδ(A, t(B)), namely a parameter pair (s, r) is in Fδ(A, t(B))
if and only if the corresponding pair of points (A(s), t(B(r))) is in Mδ(t). The
measure of the set Fδ(A, t(B)) is exactly the measure of Mδ(t) normalized by the
total measure of sampling space, that is, pδ(t) = |Mδ(t)|

|A×B| = |Fδ(A, t(B))|.
Another observation that we make is, if a translation t corresponds to the sample

pair s = (a, b) then a transformation t′ is covered by the δ-region corresponding to s
exactly if the distance between vectors t and t′ is at most δ under the same distance
measure as for points. That means every sample pair produces a δ-region of the
same size and shape in the space of translations. Thus, in case of translations we
do not need to record a sample pair (a, b), but only the translation t = a − b and
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A

t(B)

0 1

1

0

A

t(B)

Figure 3.4: Free space diagram of two sets of curves. White regions denote the free
space Fδ(A, t(B)).

then consider the δ-neighborhoods of the translation vectors, which are defined in
the same way as the δ-neighborhoods of points.

For a general Lp-metric, 1 ≤ p ≤ ∞, the arrangement of the δ-regions is an
arrangement of pseudo-disks in the plane, that is, the boundaries of any two objects
have at most two intersection points. The arrangement can be computed in O(N2)
time, where N is the number of objects.

If for each sample pair (a, b) we record a translation that maps b to a instead of the
corresponding δ-region, we get a certain distribution of “votes” in translation space.
We show in Section 4.1 that the density function of this probability distribution is
exactly the weighted generalized Radon transform of the shape A with respect to
shape B, [29, 30, 57]. The hit probability induced by δ-regions corresponds to a
“smoothed” version of the generalized Radon transform. In fact, the hit probability
function is a convolution of the normalized generalized Radon transform with a
function that is constant over a δ-neighborhood of the origin and zero elsewhere and
integrates to one.

Finally, we complete the proof of the part (iii) of Theorem 3.1 for translations.
In the next Lemma it is shown that for any two shapes and a parameter value δ
there exists an a priori lower bound ν such that the maximum of the hit probability
function pδ is greater or equal ν.

Lemma 3.4. Given two shapes A and B modeled by finite sets of n rectifiable curves
with total lengths LA, LB respectively and a tolerance value δ > 0. If the class of the
allowed transformations T is the group of translations then maxt∈T pδ(t) ≥ ν, where
ν = δ2

m2 and m = max(LA, LB, nδ).

Proof. We show that for any two shapes A and B there exists a translation vector
tx such that pδ(tx) ≥ δ2

m2 . Then the maximum maxt∈T pδ(t) ≥ pδ(tx) ≥ δ2

m2 .
If the shape A contains a curve segment of length at least δ, let sa denote a

subsegment of that segment with length exactly δ. Otherwise let sa denote the
longest curve segment in A. sa has length at least LA

n ≤ δ. Similarly sb denotes a
subsegment of length δ or the longest segment of B with length at least LB

n ≤ δ. Let
xa, xb denote the centers of the segments sa, sb, respectively, and tx the translation
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vector xa − xb. For an arbitrary point pa of sa and an arbitrary point pb of sb the
distances between pa and xa and between pb and xb are at most δ/2. Then it holds
that

dist(pa, pb + tx) ≤ dist(pa, xa) + dist(xa, pb + tx)

≤ δ/2 + dist(xa, pb + tx)

= δ/2 + dist(xb + tx, pb + tx)

= δ/2 + dist(xb, pb)

≤ δ ,

therefore tx is covered by the δ-region corresponding to pa, pb. Thus, sa × sb is a
subset ofMδ(tx) and |Mδ(tx)| ≥ min

(
δ2, Lδn ,

LALB
n2

)
, where L = min (LA, LB). Then

pδ(tx) ≥ min
(

δ2

LALB
, Lδ2

(nδ)LALB
, LALBδ

2

(nδ)2LALB

)
≥ δ2

m2 .

3.3.2 Rigid Motions

The space of rigid motions T is three dimensional, T = [0, 2π)×R2. For two points in
the plane there is no unique rigid motion that maps one point to the other, rather for
every rotation angle we can find a unique translation vector such that the resulting
rigid motion performs the desired mapping. For two points the set of rigid motions
that map one of the points to the other is, therefore, a one dimensional curve in
three dimensional transformation space.

As mentioned in Section 3.2.3, for computational reasons we will also view the
space of rigid motions as a three dimensional subspace of a four dimensional space
of similarity transformations. Recall, that the space of similarity transformations
is parameterized by (m1,m2, vx, vy), where (vx, vy) is the translation vector, and

m1,m2 describe the rotation and scaling matrix M =

(
m1 m2

−m2 m1

)
, with m1 =

k cosα, m2 = −k sinα. Since rigid motions are similarity transformations with
scaling factor k = 1, the subspace of rigid motions is an algebraic variety described
by the polynomial

m2
1 +m2

2 − 1 = 0 (3.7)

In the following the intuitive view as a three dimensional space with parame-
terization by angle and translation vector is used to explain the functioning of the
algorithm and the effect of the different approaches on matching results.

Approach 1: In Approach 1 for the rigid motions as described in section 3.1 we
use a single random point of each shape a ∈ A and b ∈ B as a sample in one
random experiment and record a δ-region in the space of rigid motions as a set of
transformations that map the point b into the δ-neighborhood of the point a. The
sample space is in this case Ω = A × B. A δ-region corresponding to a sample
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(a, b) ∈ Ω has a shape of a spiral tube, where the projection to the translation vector
plane has a shape of an annulus with center a and radius

∥∥b̄∥∥ of width δ as shown
in Figure 3.5.

a

btrajectory
of b

(a) (b)

8,0
6,4

0

1

4,8

2

3

4

5

4,83,2

6

1,6 3,20,0 1,6−1,6 0,0−3,2

(c)

Figure 3.5: δ-region in the space of rigid motions corresponding to a pair of points
a ∈ A and b ∈ B. (a) Points a and b with translation vectors corresponding to some
rotated positions of b. (b) Projection of the δ-region to the translation plane for
δ = 1. (c) δ-region in the 3-dimensional space of rigid motions.

With respect to the four dimensional parametrization by (m1,m2, vx, vy) a δ-
region is a semi-algebraic set described, depending on the chosen distance metric Lp,
either by one inequality (3.3) of degree p for even values of p, or by four inequali-
ties (3.4) of degree p for odd values of p, or by four linear inequalities (3.5) in case of
L∞, which are constrained to a three dimensional variety defined by Equation (3.7).

Now by taking a rigid motion covered by the most neighborhoods we find a
transformation that maximizes the measure of the set of point pairs that are mapped
into the δ-neighborhood of each other by this transformation, just as in the case of
translations. That is, the set of sample pairs that “vote” for a rigid motion t is

Mδ(t) = {(a, b) ∈ A×B | t(b) ∈ Uδ(a)}
and the probability of t to be covered by a region corresponding to a randomly
selected sample pair is pδ(t) = |Mδ(t)|

|A×B| = |Fδ(A, t(B))|.

Approach 2: In Approach 2 a sample of a shape taken within one random ex-
periment in the first step of the generic algorithm consists of a random point of the
shape and the angle defined by the (interpolated) direction of the tangent line at
that point. The sample space Ω is a subset of A×B × [0, 2π)2.

A motivation for this approach is that if we would, somehow, have a unit length
direction vector associated with each point, then the rotation angle that maps one
direction vector to the other would be uniquely defined and so the rigid motion. And
a natural direction associated with a point on a curve is the direction of the tangent
line to the curve at that point.
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Note that, since in general we consider the shapes as points in the plane without
explicit direction information, the orientation of the tangent line depends on the
chosen parameterisation, which is not a part of the visible shape information and,
therefore, is not important for the similarity evaluation. For this reason, each point
pair a, b actually generates two random sample pairs: SA = (a, θa), SB = (b, θb),
where θa and θb denote the angle of inclination of the normal of the lines tangent to
A and B at the points a and b, respectively; and SA = (a, θa), S′B = (b, θ′b), where
θa is defined as above, and θ′b = θb + π. So in one random experiment we produce
two random samples and the corresponding δ-regions. In this way we record the
transformations that map the tangent line at the point b to a line parallel to, or
to the line that forms an angle at most δ2 with, the tangent line at the point a
independent of the line orientations.

We defined a δ-region in the transformation space corresponding to a sample
pair as the set of transformations that map each component of one sample into a
δ-neighborhood of the corresponding component of the other sample. So far we
interpreted δ as a distance parameter for points but it does not make much sense
for the directions. Therefore, in this case we need two parameters δ = (δ1, δ2),
where δ1 controls the distance that the points are allowed to be apart and still be
considered close, and δ2 represents the maximum difference in the directions that are
still considered to be similar.

A pair of samples SA = (a, θa), SB = (b, θb) gives us the following neighborhood
in the space of rigid motions: the rotation angles are restricted to the interval I =
[α− δ2, α+ δ2], where α = θa − θb, and for each α′ ∈ I the allowed translations are
v′ such that dist(α′(b) + v′, a) ≤ δ1, see Figure 3.6 for an illustration.

a

b
b′

2δ2

(a)

δ1

2δ2

(b)

7,5
7,0

6,5
−0,5 −1,0 6,0

1,2

−1,5 −2,0 5,5−2,5

1,4

(c)

Figure 3.6: δ-region in the space of rigid motions corresponding to a pair of points
a ∈ A and b ∈ B. (a) Points a and b with translation vectors corresponding to some
rotated positions of b. (b) Projection of the δ-region to the translation plane for
δ1 = 1. (c) δ-region in the 3-dimensional space of rigid motions.

In the four dimensional parameterization the restriction of the rotation angle α′



42 CHAPTER 3. PROBABILISTIC MATCHING

to the interval I implies the following four inequalities:

m1 ≤ max
α′∈I

cosα′

m1 ≥ min
α′∈I

cosα′

m2 ≤ max
α′∈I

sinα′

m2 ≥ min
α′∈I

sinα′

Note that we do not compute the angles θa, θb and α explicitly. Instead, we assume
that the tangent lines at the points a and b are given in Hesse standard form, i.e.,
the tangent line at point a is given as ga : uax + vay + wa = 0, and the tangent
line at point b is given as gb : ubx + vby + wb = 0, where ua = cos θa, va = sin θa
and ub = cos θb, vb = sin θb. Then, by simple trigonometric rules, the cosine and
sine of the angle α are computed as: cosα = uaub + vavb and sinα = vaub − uavb.
Similarly, the cosine and sine of the endpoints of the interval I are cos(α ± δ2) =
cosα cos δ2 ∓ sinα sin δ2 and sin(α ± δ2) = sinα cos δ2 ± cosα sin δ2. The tolerance
angle δ2 is assumed to be specified by its cosine value, and the value of its sine can
be computed as sin δ2 =

√
1− cos2 δ2.

Finally, it can be easily checked whether the interval I contains 0, π/2, π or 3π/2
by testing the signs of the sine and cosine values of the endpoints of the interval. If
kπ/2 ∈ I for k ∈ {0, 1, 2, 3} the corresponding maximum or minimum value is 1 or
−1, otherwise minimum and maximum values in the inequalities above are attained
at the endpoints of the interval.

The distance condition is described by inequalities (3.3) – (3.5), depending on
the underlying distance metric Lp, with m3 = −m2 and m4 = m1 and δ1 as the
tolerance bound. Thus, a δ-region is a semi-algebraic set defined by five or eight
polynomials, which is constraint to the algebraic variety of dimension three, described
by a polynomial of degree two, Equation (3.7).

By taking the transformation that is covered by the most neighborhoods we
maximize the measure of the set of point pairs, that are close to each other (have
distance at most δ1) and have similar tangent directions (the directions differ by at
most δ2). Note that this definition of a good match is different from that we used for
the translations, since for translations we did not take the direction of curves into
account.

However, there is still a connection to the free space diagram of the shapes.
Consider again shapes to be parameterized over the interval [0, 1], A : [0, 1] → R2,
B : [0, 1] → R2. Let function g : [0, 1]2 → R denote the distance between the
corresponding points on the shapes with respect to the chosen metric, g(s, r) =
dist(A(s), B(r)). The free space Fδ1(A,B) in the free space diagram is defined as
the set of pairs (s, r) for which g(s, r) ≤ δ1. The additional condition about the
closeness of tangent directions can be expressed by a function h : [0, 1]2 → R which
assigns to two parameter values the absolute difference of the tangent directions of
the corresponding points. Let θA(s), θB(r) denote the angles of slope of the tangent
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lines to the points A(s) and B(r) respectively. Then the function h can be written
as h(s, r) = |θA(s)− θB(r)|. Similar to the free space Fδ1 with respect to distance
function g we can define free space Hδ2 with respect to direction distance function
h, Hδ2(A,B) =

{
(s, r) ∈ [0, 1]2 | h(s, r) ≤ δ2

}
. The set of the “good” samples for a

fixed rigid motion t then corresponds to the intersection of the two free spaces (see
Figure 3.7 for an illustration):

Mδ1,δ2(t) = {(A(s), θA(s), B(r), θB(r)) | (s, r) ∈ Fδ1(A, t(B)) ∩Hδ2(A, t(B))} .
(3.8)

The probability for a rigid motion t to be covered by a δ-region corresponding to a
random sample pair is then pδ(t) = |Mδ(t)|

|Ω| = |Fδ1(A, t(B)) ∩Hδ2(A, t(B))|.

0 1

1

0

A

t(B)

Figure 3.7: Free space diagram corresponding to the two shapes depicted in Figure 3.4
for the case of rigid motions, Approach 2. The cells shaded in dark grey correspond to
the segment pairs in the two shapes, for which the direction angles differ by at most
δ2, that is, the free space with respect to Hδ2 . The white regions are the intersection
of Fδ1 and Hδ2 .

Clearly, for sets of polygonal curves, or, equivalently, sets of straight line seg-
ments, the direction of the tangent line stays the same for all points of one segment,
unless we perform some smoothing. Thus, for a segment sa of the shape A and a
segment sb of B the directions of tangent lines differ by the same amount for all
points of the segments, which explains the block structure of Hδ2 .

For practical applications it would be reasonable to take an interpolated tangent
direction. That way the problem of non-unique tangent line at the corners of the
polygon is avoided. And, which is more important, eventual noise is “smoothed off”.
For example, consider two shapes of which one, the shape B, contains a polygonal
chain consisting of short line segments pointing to different directions, and the other,
shape A, contains a straight line segment corresponding to the chain in the first shape
as depicted in Figure 3.8(a). Then for δ2 <

π
4 there is no rigid motion that would

match a larger part of the polygonal chain of B to the segment of A, instead, any
rigid motion mapping a short edge of the chain in B to a part of the segment in A
results in an equally good match, Figure 3.8(b). Although, with sufficient amount
of smoothing applied to the direction of tangent line we would get a match that
corresponds to our intuitive expectation, Figure 3.8(c).
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A

B

(a)

A

B′
B′′

(b)

A

B′′′

(c)

Figure 3.8: Matching under rigid motions with Approach 2: (a) Two shapes, where
shape B contains regular noise; (b) Some possible matching positions of B with no
tangent line interpolation; (c) Matching position of B if the direction of tangent line
is sufficiently smoothed.

The quite simple example in Figure 3.8 can be extended to more complex shapes.
The tangent smoothing, or alternatively, curve smoothing prior to matching is es-
pecially relevant for noisy data, such as coming from raster images, that already
contain a certain amount of noise, or when comparing shapes that were obtained
from raster images by different vectorization algorithms.

In the following Lemma we show that for both Approaches the parameter ν in
Theorem 3.1 can be eliminated, which completes the proof of part (iii) for rigid
motions.

Lemma 3.5. Given two shapes A and B modeled by finite sets of n rectifiable curves
in total with total lengths LA, LB respectively, the class of the allowed transformations
T as the group of rigid motions, and a tolerance value δ > 0 for Approach 1, or a
tolerance tuple (δ1, δ2) for Approach 2, let m = max(LA, LB, nδ). The maximum of
pδ(t) can be bounded by maxt∈T pδ(t) ≥ ν, where ν = δ2

m2 for Approach 1 and for
Approach 2 and shapes represented by sets of straight line segments or smooth curves
with curvature at most δ2

δ1
ν = δ21

m2 . For Approach 2 and shapes represented by curves

of high curvature ν = δ21δ
2
2

m2π2 .

Proof. For Approach 1 the proof argument is the same as in Lemma 3.4 for trans-
lations. We consider curve segments sa ⊂ A and sb ⊂ B of length δ if they exist,
or otherwise the longest curve segments with the lengths LA

n ,
LB
n ≤ δ respectively.

Then the rigid motion tx with rotation angle zero and translation vector mapping
the center of sb to the center of sa is covered by every δ-region corresponding to a
point in sa and a point in sb. Therefore, sa × sb ⊂Mδ(tx) and pδ(tx) ≥ δ2

m2 .
For Approach 2 and if the shapes A and B are represented by straight line

segments we again consider the segments sa, sb defined as above. Let xa and xb
denote the centers of sa and sb respectively. Observe that the angle θa between
the tangent line at a point of sa and the x-axis stays the same for every point of
sa. Similarly, for every point of sb the angle between the tangent line at that point
and the x-axis is θb. Then the rigid motion tx with rotation angle α = θa − θb and
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the translation vector vx = xa − α(xb) is covered by every δ-region generated by
an arbitrary point in sa and an arbitrary point in sb. Thus, sa × sb ⊂ Mδ(tx), and
pδ(tx) ≥ δ21

m2 .
For shapes A and B represented by sets of smooth curves, if in each of the shapes

there exists a part of a curve of length δ such that for every point of that part
(sa ⊂ A, sb ⊂ B) the curvature is at most δ2

δ1
, then the angles of the tangent lines at

every point of sa or sb, respectively, differ by at most δ2. Let [θa1, θa2] and [θb1, θb2]
denote the intervals of the tangent angles for the points of sa and sb respectively.
The rigid motion t with rotation angle α = 1

2(θa2−θa1)− 1
2(θb2−θb1) and translation

vector mapping the center of sb rotated by α to the center of sa is contained in every
δ-region generated by a point in sa and a point in sb. By the same argument as above
t maps every point of sb into a δ1-neighborhood of every point in sa. Additionally,
the angle of the tangent line at an arbitrary by α rotated point of sb differs from
the angle of the tangent at an arbitrary point of sb by at most 2 δ22 . An analogous
argument holds for the case that in one of the shapes every curve has length less
than δ1 but there exists a curve of length at least L/n, where L is the length of the
corresponding shape, such that the curvature at every point of that curve is at most
δ2n
L . Thus, sa × sb ⊂Mδ(tx), and pδ(tx) ≥ δ21

m2 .
Finally, if there is no part of length δ1 of any curve of one shape, say A, with

curvature at most δ2
δ1

let sa denote an arbitrary part of a curve in A of length δ1 if
there exists one, or the largest curve of A with length at least LA

n ≤ δ1 otherwise.
Consider the distribution of angles formed by the tangent line to a point in sa and

the x-axis. If we have a uniform distribution of angles and every angle between 0 and
π is present (which is the case if sa is a circle), then the density function fa of that
distribution is 1/π. For an angle θa ∈ [0, π) the probability of choosing randomly
a point of sa such that the angle of the tangent at that point differs from θa by at
most δ2

2 is
∫ θa+δ2/2
θa−δ2/2 fa(ϕ) dϕ. In case of the uniform distribution that probability is

δ2
π for every θa. Then by the pigeonhole principle for an arbitrary distribution the
maximum maxθa∈[0,π)

∫ θa+δ2/2
θa−δ2/2 fa(ϕ) dϕ ≥ δ2

π . Let θa denote the angle maximizing

that probability over an interval of size δ2. With probability at least |sa|LA
· δ2π , where

|sa| denotes the length of sa, a random sample of the shape A chosen by the algorithm
contains a point of sa with the tangent angle in the interval [θa − δ2

2 , θa + δ2
2 ].

Similarly, if the shape B does not contain a part of length δ1 with low curvature,
let sb denote an arbitrary part of length δ1 of a curve in B if there exists one, or the
longest curve in B otherwise. Then there is an angle θb such that the probability
of choosing randomly a point of sb such that the angle of the tangent at that point
differs from θb by at most δ2

2 is greater or equal δ2π . The probability that a randomly
chosen sample of B contains a point of sb with that property it at least |sb|LB

· δ2π .
Combining these two observations we get that for a rigid motion t with rotation

angle α = θa − θb and translation vector that maps the center of sb rotated by α to
the center of sa the hit probability is pδ(t) ≥ |sa|LA

· δ2π · |sb|LB
· δ2π ≥

δ21δ
2
2

m2π2 .
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Discussion: Here we address the differences between the two approaches discussed
above.

We already mentioned the problem which can arise in Approach 2 in combination
with shapes represented by polygonal curves. If one of the shapes contains a “stairs”
kind of noise, it might happen that no pair of points yield a rotation angle that is at
least δ2 close to the one we would expect as the best rotation. All transformations
computed by the algorithm get then very few votes, that is, the value of pδ(t) for
these transformations is small, so the shapes will be rated as not similar.

Approach 1, on the contrary, is insensitive to the “stair”-noise, since it does not
take the direction of lines into account and for the example in Figure 3.8 it would give
us a matching position depicted in (c). As we have seen, this problem in Approach 2
can be overcome by taking an interpolated direction of the tangent line or by applying
some smoothing to the shapes before matching. However, it depends on the relative
size of “noise” and interpolation step whether the tangent directions can be sufficiently
smoothed. Furthermore, one can easily find examples, some of them are shown in
Figure 3.9, where Approach 2 leads to non-intuitive matching results and the problem
cannot be fixed by smoothing the tangent directions. Note that matching in all
examples was performed with the same distance tolerance value for both approaches.
In some of the cases there exists more than one optimal matching position, but only
one is depicted in the figure.

A B Approach 1 Approach 2

Figure 3.9: Differences in matching results for rigid motions with Approach 1 and 2.



3.3. DETAILS FOR SUBCLASSES OF AFFINE TRANSFORMATIONS 47

The properties that these examples have in common and that lead to the differ-
ences in the matching are the following: At least one of the two compared shapes
consists of many rather small components, and thus, no curve smoothing can be
applied. Additionally, the perception of the shape is influenced more by the arrange-
ment of the components in the plane, by the so-called spatial layout, than by the
shape or the orientation of the individual components.

On the other hand, the direction information can be helpful to achieve better
matching results with respect to human perception as the following example shows.
Consider two zigzag curves as illustrated in Figure 3.10 and matching with the tol-
erance value δ such that δ is half of the zigzag width of the shape A. Then, for the
purely distance based Approach 1 the transformations with the rotation angles 0 and
π
2 as depicted in Figures 3.10(c) and 3.10(d) respectively are almost equally good.
Whereas the matching with Approach 2 uses the direction information and leads to
the more intuitive matching of Figure 3.10(d). Note that the example in Figure 3.10
is often used to demonstrate the weakness of the distance based methods as opposed
to those that consider orientation, direction, or connectivity information. Thus, the
described problem is inherent to the distance based matching and similarity evalua-
tion techniques. Of course, one can argue that a zigzag curve with the zigzag width
of at most twice the tolerance value (or any other curve with local feature size at
most the tolerance value) can be viewed as a textured region and therefore both
depicted matchings are equally good.

δ

(a) shape A (b) shape B (c) Matching
with Approach 1

(d) Matching
with Approach 2

.

Figure 3.10: Matching two zigzag curves with and without direction information

It depends on the application whether the direction of curves is important and,
therefore, which of the two approaches is appropriate.

The motivation for considering Approach 2 for matching under rigid motion is,
that the tangent direction provides additional information about the shape and its
orientation. This additional information can then be used to reduce the search
space for the optimal transformation. Clearly, if we match two points as well as
their tangents, we also match a certain neighborhood of these points. We compared
the two approaches experimentally using the MPEG-7 Core Experiment CE-Shape-1
data set, where the shapes are silhouettes of real world objects, and a set of trademark
images. In both data sets the curves are nice in a sense that the amount of noise is
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small, the curves do not “wiggle” around one point, and the shapes do not contain
multiple copies of the same curve segment. In this setting, which we assume to be
typical for a practical application, Approach 2 needs much fewer experiments to find
a good matching position than Approach 1, and the matchings achieved by both
methods do not differ much. These experiments imply that there is a large gap
between the theoretically derived bound on the sufficient number of experiments and
the actually required number for Approach 2, at least for realistic input data.

Summarizing the above discussion we can say that the direction of tangent lines
to the shape provides additional useful information about the shape which helps to
reduce the number of experiments and, hence, to reduce the running time of the
algorithm. The problem which we encounter with the tangent direction, is that it is
an unstable feature for noisy images, and thus, for the shapes extracted from these
images. Further, for some images it is not a perceptually relevant feature and might
negatively influence the matching results.

We also considered other approaches to matching under rigid motions, two of
which we briefly describe here:

Approach 3: Within one random experiment we select, instead of a point and an
angle of the tangent line at this point, randomly two points of the shape A, that is
SA = (a1, a2), a1, a2 ∈ A. From the shape B the first point b1 is picked randomly,
and the second point b2 is selected randomly from the points of the shape B that have
the same Euclidean distance from b1 as a2 from a1, SB = (b1, b2), b1, b2 ∈ B such
that ‖b1 − b2‖ = ‖a1 − a2‖. If no such point b2 exists the sample is discarded and a
new one is generated. There exists a unique rigid motion mapping SB to SA. The
corresponding δ-region is a set of rigid motions that map b1 into a δ-neighborhood
of a1 and b2 into that of a2.

Approach 4: Another possibility is to choose randomly two points in each shape
a1, a2 ∈ A and b1, b2 ∈ B and to consider random samples consisting of points a1 ∈ A
and b1 ∈ B and angles θa and θb defined as an angle between the positive direction of
the x-axis and the direction of the vector →

a1a2 or
→
b1b2 respectively. The correspond-

ing rigid motion maps b1 to a1 and matches the angles θb and θa. As in Approach 2
the tolerance bound consists of two parameter values, one for the distance between
the points and one for the angles. The definition of a δ-region corresponds to that
of Approach 2.

In both of the last two methods we aim to reduce the search space for the trans-
formations while avoiding the above mentioned drawbacks of the tangent direction.
Approach 3 uses the direction vectors between two arbitrary points of the shape
instead of the interpolated direction of the tangent line as in Approach 2. Thus, it
is less sensitive to noise and to segmentation of shapes into individual components.
However, it introduces additional computational overhead in the process of sam-
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ple generation since we first need to find points in shape B that have the specified
distance to a point b1 ∈ B and then choose randomly one of such points if any exist.

The idea to keep the smoothing properties of Approach 3 but to avoid additional
computations was the motivation for looking at Approach 4. In fact, Approaches
3 and 4 lead to similar matching positions in experimental studies. Both methods
produce results closer to that of Approach 1 than of Approach 2. As one would
expect, in all examples depicted in Figure 3.9 the matching transformation computed
with Approaches 3 and 4 correspond to those achieved by Approach 1. Of course,
the matching results obtained with Approaches 1, 3, and 4 are not always identical.
Figure 3.11 shows an example of two shapes, where Approaches 1, 2, and 3 and 4
produce different results.

A B Approach 1 Approach 2 Approach 3 Approach 4

Figure 3.11: Differences in matching results for rigid motions with Approaches 1
to 4.

The difference is due to the fact that Approach 1 does not consider any direc-
tional information, and therefore, finds a best match with respect to point proximity.
Whereas, in Approaches 3 and 4 the global orientation of the shape influences the
direction of the lines connecting random point pairs and, hence, the rotations consid-
ered for matching transformations. If the compared shapes have a clear orientation,
then Approaches 3 and 4 would find a rigid motion with a rotation angle that matches
the orientations well, and for that rotation angle determine a translation that maps
the most points of the shapes into the δ-neighborhoods of each other.

Summarizing the above discussion, we can say that Approaches 1 and 2 find
matchings emphasizing local correspondences, where Approach 2 is strongly affected
by the orientation of line segments comprising the shape, or by the direction of lines
tangent to curves, and Approach 1 only considers distances between the points of
the shapes. These two approaches have partial-partial matching character. On the
other hand, Approaches 3 and 4 match global orientation of shapes and, therefore,
have complete-complete matching character.

3.3.3 Similarity Maps

In the case of similarity maps an intuitive approach is to take two random points
from each shape as a sample in one experiment, since two pairs of points in the plane
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determine uniquely a similarity transformation that maps one pair to the other. The
sample space is then Ω = A2 × B2. According to our analysis the similarity map
with maximum coverage of the δ-regions is the one maximizing the measure of the
set

Mδ(t) =
{

(a1, a2, b1, b2) ∈ A2 ×B2|dist(t(b1), a1) ≤ δ and dist(t(b2), a2) ≤ δ} ,

which is the set of pairs of point pairs that are at most δ apart. This measure is
less intuitive with respect to matching shapes than the ones in the previous cases.
The following simple consideration shows, however, that maximizing the Lebesgue
measure of Mδ(t) means also to maximize the Lebesgue measure of the set of point
pairs that have distance at most δ, M ′δ(t) = {(a, b) ∈ A×B|dist(t(b), a) ≤ δ}. Up to
the order of the elements the setMδ(t) is exactly the setM ′2δ (t). Additionally, in our
random experiment we exclude samples where a1 = a2 or b1 = b2 because in these
cases there is either no similarity transformation that maps one sample to the other,
in case b1 = b2 and a1 6= a2, or, in case a1 = a2, a similarity map is not uniquely
defined. Those pairs are, of course, not excluded in the set M ′2δ (t), but they make
up a subset of dimension six in the eight dimensional space (recall, that we have four
points each of dimension two) and have, therefore, Lebesgue measure zero. So, the
measure of the set Mδ(t) is exactly

∣∣M ′2δ (t)
∣∣ = |M ′δ(t)|2. Since the Lebesgue measure

of a set is always non-negative, both functions have maxima at the same values of t.
Note that if p̃δ(t) is a good approximation of pδ(t), more precisely, an approxi-

mation with a relative error at most ε, then m̃δ(t) =
√
p̃δ(t) |Ω| is an approximation

of mδ(t) = |M ′δ(t)| with a relative error at most ε: Since p̃δ(t) ≥ (1 − ε)pδ(t) and
p̃δ(t) ≤ (1 + ε)pδ(t) by Lemma 3.1, then

m̃δ(t) =
√
p̃δ(t) |Ω|

≥
√

(1− ε)pδ(t) |Ω|
=
√

(1− ε) |Mδ(t)|
=
√

(1− ε)mδ(t)

≥ (1− ε)mδ(t) since 0 ≤ 1− ε ≤ 1

and

m̃δ(t) =
√
p̃δ(t) |Ω|

≤
√

(1 + ε)pδ(t) |Ω|
=
√

(1 + ε)mδ(t)

≤ (1 + ε)mδ(t) since 1 + ε ≥ 1

Therefore, for similarities as well as for translations and rigid motions (with Ap-
proach 1) the probabilistic algorithm finds a transformation that approximately



3.3. DETAILS FOR SUBCLASSES OF AFFINE TRANSFORMATIONS 51

maximizes the measure of the set of point pairs that are in a δ-neighborhood of
each other.

Although a standard way to parameterize the space of similarity transformations
is by rotation angle α, scaling factor k and a translation vector v = (vx, vy) in order
to avoid trigonometric functions in the definition of δ-regions it is more convenient to
use the parameterization (m1,m2, vx, vy) wherem1 = k cosα andm2 = −k sinα. For
general Lp metric a δ-region is then bounded by algebraic surfaces (Inequalities (3.3)
or (3.4)), and for the L1 and L∞ metrics it is a convex polytope bounded by four
pairs of parallel hyperplanes (Inequalities (3.4) for p = 1 and (3.5) for p = ∞). An
arrangement of N convex polytopes in d dimensions can be computed and traversed
in time O(Nd), see [23], which is O(N4) for similarity maps.

Next we show that for similarity transformations there exists a value ν > 0 such
that for any two shapes A and B the maximum of the corresponding probability
functions is at least ν, which completes the proof of part (iii) of Theorem 3.1 for
similarities.

Lemma 3.6. Given two shapes A and B modeled by finite sets of n curves with total
lengths LA, LB respectively and a tolerance value δ > 0, let m = max(LA, LB, nδ).
If the class of allowed transformations T is the group of similarity transformations
then maxt∈T pδ(t) ≥ ν, where ν = δ2

m2 .

Proof. The shape B can always be scaled by the factor δ
DB

, where DB is the diameter
of B, so that the diameter of the scaled shape B is δ. If A contains a connected
component of length at least δ, then we can place the scaled shape B in such a way
that for any point of a part of A of length δ the distance to any point of the scaled B
is at most δ. Therefore, the measure of the setMδ(t) for that t is at least L2

B ·δ2. The
corresponding value of pδ is pδ(t) = |Mδ(t)|

|Ω| ≥
L2
B ·δ

2

L2
AL

2
B

= δ2

L2
A
. Otherwise, the largest

connected component of A must have length at least LA
n . For the transformation t

that maps the scaled B to the largest component of A the measure of Mδ(t) is then
at least L2

A
n2 L

2
B and pδ(t) ≥ 1

n2 . Therefore, ν ≥ δ2

m2 .

The Shrinking Problem

The probabilistic algorithm applied to matching under similarity transformations in
the described way has what we call a “shrinking problem” which was observed in
experiments and can be explained theoretically. Namely, it turns out that, when
matching a shape B to a shape A, the transformations that scale the shape B down
to some small diameter, e.g., δ, or in the extreme case scale B down to a point, and
then map it to some location in the shape A can have about the same similarity
value as the transformations that yield an intuitive match.

The reason for this behaviour of the algorithm is the following: As we observed
in Lemma 3.6, for a transformation t that scales the shape B down by the factor
≤ δ

DB
, where DB is the diameter of the shape B, and maps the scaled shape B

to some location on A the measure of the set Mδ(t) is approximately δ2L2
B. On
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the other hand, if the shapes A and B are congruent, and topt is a transformation
that maps B exactly to A, then for every point b of topt(b) there exist some part
of the shape A of length about δ such that the points of that part of A are in the
δ-neighborhood of b. Of course, we cannot determine exactly the measure of the set
Mδ(topt) since it depends on the regarded shapes, but from the above consideration
we can conclude that this measure is close to δ2L2

B. Thus, we get the same estimate
of the similarity measure for transformations that scale the shape B down to a point
as for the transformation that matches two shapes exactly.

Obviously downscaling one shape to a very small size is not what one intuitively
would call a good match. There are several ways to avoid this behaviour, some of
which we describe below.

Fixed lower bound for the scaling factor. A very simple possibility to avoid
the shrinking problem is to restrict the smallest allowed scaling factor to some value,
e.g., c δ

DB
, where c is a constant. This restriction only changes the hit probability

function pδ(t) for transformations with the scaling factor ≤ c δ
DB

by setting it to zero.
In fact, if the best matching transformation for two shapes is the one that scales one
shape down to the size of the tolerance bound then we would say that the two shapes
do not match well, or are not similar. Thus, by setting a lower bound on the scaling
factor we disregard the downsizing transformations and for all other transformations
the similarity measure remains unchanged.

Modification of the random sample (Approach 2). Another possibility is
to change the random sample taken within one experiment. A natural attribute
associated with a point on a curve in the plane which depends on the scaling factor
is the curvature. For a plane curve given by Cartesian parametric equations x = x(s)
and y = y(s), where x(s) and y(s) are twice continuously differentiable functions,
the curvature κ is defined by

κ =
x′y′′ − y′x′′

(x′2 + y′2)3/2

and is the inverse of the radius of the curve’s osculating circle in the corresponding
point. Since we assumed that the curves are given by a constant speed parame-
terization (as described in Section 2.1), the denominator of the above expression is
constant for each curve of the set and can be precomputed at the beginning. The
radius ra of the curve’s osculating circle at a point a is the inverse of the absolute
value of the curvature at that point and is a real value if the curvature is non-zero.

A random sample consisting of one point a of the shape A, the curvature κa of
the curve containing a at the point a, and the inclination angle θa of the normal
to the tangent at the point a and a corresponding random sample (b, κb, θb) of the
shape B uniquely define a similarity map t = (α, k, v) such that in the shape t(B) the
absolute value of curvature at the point t(b) is equal to |κa| (k = |κb|

|κa|), the inclination
angle of the normal to the line tangent to t(b) is θa (α = θa − θb), and the point b
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is mapped to the point a (v = a−Mkαb), where Mkα =

(
k cosα −k sinα

k sinα k cosα

)
. Simi-

larly as in Approach 2 for the case of rigid motions with every random sample pair
SA = (a, κa, θa), SB = (b, κb, θb) we also add the sample pair SA = (a, κa, θa), SB =
(b, κb, θ′b), where θ

′
b = θb + π since we consider the curves to be undirected.

This approach is not directly applicable to shapes represented by polygonal
curves, since the curvature of a straight line segment is zero and the curvature at the
vertices of a polygonal curve is infinite. Therefore, some curvature approximation is
needed. There are some methods for curvature approximation of discrete curves in
the pattern recognition field, an extensive survey is included in the Master’s theses
by Driemel [19] and the article by Hermann and Klette [36] gives a short overview.
Alternatively, each polygonal curve can be approximated by a smooth curve, or a
constant number of smooth curves, for example as a B-spline curve, or as a set of
circular arcs or biarcs, see e.g., the approximation algorithm by Drysdale et al. [20].
The advantage of the latter method is that each circular arc can easily be param-
eterized and has constant curvature. However, a polygonal curve is typically itself
an approximation of some curve sampled by a finite number of points, for example
a GPS track, a curve in a pixel image, or an outline of a real world object registered
with a laser range scanner. Thus, whether a further approximation is desired or
appropriate depends on the origin of data and the application.

We already discussed the possibilities of interpolating the direction of the tangent
line at a point or smoothing a curve prior to sampling in the description of Approach
2 for rigid motions. Of course it is reasonable, for the sake of consistency, to apply
related interpolation or smoothing methods for the curvature computation and for
computation of the tangent direction.

For this approach the user needs to specify a triple of tolerance values (δ1, δ2, δ3)
where δ1 denotes the maximal distance for points to be considered close, δ2 the
maximal allowed difference of the angles formed by the tangents at the points, and δ3

the maximal allowed relative curvature difference. Then the δ-region corresponding
to the sample pair SA, SB is, by definition, the set of all similarity transformations
t, such that the transformed point t(b) has distance at most δ1 from the point a, the
angle of inclination of the normal of the tangent at the point t(b) in the transformed
shape B differs from θa by at most δ2, and the relative deviation of the absolute value
of the curvature at the image point of b within the transformed shape B, denoted
by t(κb) from the absolute value of the curvature at the point a is at most δ3. The
latter condition is expressed by

|t(|κb|)− |κa||
|κa| ≤ δ3.

We decided to use relative tolerance for the scaling factor instead of absolute toler-
ances as in the case of distance and tangent directions, since the perceived change
of the shape caused by the scaling is relative to the start size of the shape and not
absolute in the change of the scaling factor.
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Since translation and rotation do not change curvature, the curvature at the
point b after applying t to the corresponding curve is t(κb) = κb/k, where k is the
scaling factor of t. Then, the curvature tolerance condition implies the following two
linear inequalities:

|κb|
(1 + δ3) |κa| ≤ k ≤

|κb|
(1− δ3) |κa| (3.9)

if κa, κb 6= 0. A drawback of this approach is that it cannot handle cases where
one of the curvature values is zero, since in that case there is no scaling factor that
would map one curvature value to the other. For smooth curves, if there are finitely
many points with curvature value zero, we can split the curves at the points of zero
curvature and treat the curve segments separately. For smooth curves containing
segments of zero curvature we need some “special treatment”, for example, we can
use some small value ε for the curvature instead of zero. Further, we assume that
there are no points with infinite curvature values, since the curve segments can be
split at sharp corners and the new segments treated separately. For polygonal curves,
where the only curvature values are zero and infinity, for this approach we need some
curvature approximation procedure as described above.

Recall that we consider the parameterization of the similarity space given by
(m1,m2, vx, vy), where m1 = k cosα,m2 = −k sinα. In this parameterization the
scaling factor k is the square root of m2

1 + m2
2. Since we do not include reflections

in the class of similarity maps, the scaling factor k is positive and, therefore, the
equations of the type k ≤ c and k ≥ c are equivalent to equations k2 ≥ c2 and
k2 ≥ c2 respectively. Condition (3.9) results thus in two non-linear constraints:

m2
1 +m2

2 ≤
(

κb
(1− δ3)κa

)2

(3.10)

m2
1 +m2

2 ≥
(

κb
(1 + δ3)κa

)2

The tangent direction condition α ∈ I = [θa − θb − δ2, θa − θb + δ2] imposes the
following constraints on parameters m1 and m2:

m1 ≤
(

max
α′∈I

cosα′
)√

m2
1 +m2

2

m1 ≥
(

min
α′∈I

cosα′
)√

m2
1 +m2

2

m2 ≤
(

max
α′∈I

sinα′
)√

m2
1 +m2

2

m2 ≥
(

min
α′∈I

sinα′
)√

m2
1 +m2

2 .

Similar to Approach 2 in the case of rigid motions, we do not compute the angles
explicitly. Instead, we assume that the tangent lines are given in Hesse normal form,
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which gives us directly the values of sine and cosine of the angles of inclination of
the normals. Thus, the minimum and maximum values of sine and cosine in the
interval I can be computed without applying trigonometric functions as described in
Section 3.3.2 on page 42.

The square root function is avoided by squaring each side of the inequality and
adding additional constraints in order to preserve the sign information. We explain
the modification for the first two constraints on m1, the second pair is to be handled
analogously. LetMc denote maxα′∈I cosα′ andmc denote minα′∈I cosα′ for shortness
of notation. There are three possibilities for the sign of Mc and mc: (a) both are
non-negative, (b) both are non-positive, and (c) the signs are different. In the first
case (a) the inequalities are squared and the additional constraint m1 ≥ 0 is added:

m2
1 ≤M2

c · (m2
1 +m2

2)

m2
1 ≥ m2

c · (m2
1 +m2

2)

m1 ≥ 0 .

In the second case (b) the inequality signs have to be reversed:

m2
1 ≥M2

c · (m2
1 +m2

2)

m2
1 ≤ m2

c · (m2
1 +m2

2)

m1 ≤ 0 .

In the third case the interval [mc,Mc] is split into two [mc, 0] and [0,Mc], so that
the sign of m1 stays the same within each interval. Then for each of the intervals a
δ-region is defined as described above.

Note that if both intervals for sine and cosine contain zero, than for one sample we
need to generate four δ-regions. Although for sufficiently small values of δ2 (δ2 <

π
4 )

only one of the intervals may contain zero.
Finally, the distance condition is expressed by Inequalities (3.3) to (3.5) with the

linear transformation matrix M =

(
m1 m2

−m2 m1

)
and tolerance value δ1. Thus, a

δ-region is a semi-algebraic set defined by nine or twelve non-linear inequalities.

Vote modification. Another possibility to avoid the shrinking problem is to gen-
erate random samples SA, SB and the corresponding δ-regions as in Approach 1, but
to give each δ-region a weight which depends on the scaling factor of the transfor-
mation mapping SB to SA. For example, instead of counting one for each vote we
could assign to a transformation with the scaling factor s the weight s, or the weight
1 + λs for some constant λ > 0. Then the weight of a cell of the arrangement of
δ-regions is the sum of the weights of the regions covering that cell. The transfor-
mations of the cell with the highest weight are considered to be the transformations
yielding the best match. Since the weights assigned to votes do not affect the ran-
dom experiments generating the votes, the number of δ-regions covering a cell of the
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arrangement divided by the total number of votes still gives an approximation of the
pδ function, which can be used for rating the similarity of the shapes. This way we
avoid the transformations with high values of pδ and small scaling factor that cause
the shrinking problem.

This heuristic approach is motivated by the analysis of the density function of
the scaling factor distribution for some simple geometric objects in Section 4.3 and
the experiments on the MPEG-7 shape B dataset described in Section A.2. We
consider an experiment where the samples SA, SB consist of two points each, just
as in the case of similarity maps, and examine the probability distribution of the
random variable X = dA

dB
, which corresponds to the scaling factor, where dA, dB

are the distances between the points in SA and SB respectively. It turns out that
the density function f(x) of that distribution for two straight line segments has its
maximum at zero (see Section 4.3.2), and the experimental evaluation for the shapes
in the MPEG-7 dataset also shows that the density function attains its maximum
value for some values of x close to zero independent of the size of the compared shapes
(Section A.2). In fact, the function g(x) = λx · f(x), where λ > 0 is a constant,
actually attains its maximum at the value x = LA

LB
in case A and B are straight line

segments or circles, where LA, LB are the lengths of the corresponding segments.
The formal analysis can be found in Section 4.3.2 for the case of line segments and
in Section 4.3.4 for circles. Furthermore, for the MPEG-7 dataset the maximum
of the function g(x) = λx · f(x) with λ = 1 was attained at the value of x that
corresponds to the expected scaling factor as reported in Section A.2. By expected
factor we mean the scaling factor that makes two compared shapes approximately
equally large. Since the shapes do not match exactly, the optimal scaling factor is
hard to determine.

Applying this modification directly to matching under similarity transformations
by assigning the scaling factor as the weight for the δ-regions does not lead to good
matching results, since the votes for the same scaling value in the scaling factor exper-
iment are spread in the four dimensional space of similarity transformations. Testing
the vote modification strategy experimentally with the shapes from the MPEG-7
dataset we found that assigning a weight 1 + λx, where λ > 0 is a constant, to the
δ-region corresponding to a sample pair SA, SB where x is the scaling factor of the
transformation mapping SB to SA results in a most intuitive matching transforma-
tion. Setting λ = 1 already results in good matching positions of the shapes. This
weighting method accounts for the number of δ-regions containing a transformation,
and penalizes small scaling factors by giving the corresponding δ-regions smaller
weights. Thus, if two transformations have the same value of pδ(t) the one with the
larger scaling factor will receive larger weight. By adjusting the value of the constant
λ we can control the influence of the scaling factor on the matching results.

It may also be reasonable to either bound the largest possible scaling factor, or
to consider only the cells of the arrangement that are covered at least by a certain
smallest amount of δ-regions. Otherwise it might happen that a single δ-region
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corresponding to some very large scaling factor has the highest weight at the end
of the experiment. The weight modification method with this additional restriction
worked well in the experiments on the shapes of the MPEG-7 dataset.

3.3.4 Homotheties

Homothety is defined as a similarity transformation which preserves orientation.
That means, a homothety transformation t = (k, vx, vy) consists of a scaling factor
k and a translation vector v = (vx, vy) and maps a point b to a point kb + v. The
corresponding linear transformation matrix M defined by Equation (3.2) is in this
case

M =

(
k 0

0 k

)
,

i.e., m1 = m4 = k, m2 = m3 = 0. The transformation space T is three dimensional,
T = R+ × R2.

Similar as in the case of rigid motions, for two points a and b in the plane there
exists no unique transformation that maps b to a. Rather for a every scaling factor k
we can find a unique translation vector v = a−kb such that the resulting homothety
transformation performs the desired mapping. Therefore, the set of transformations
that map one of the points to the other is one dimensional and forms a straight line
in the three dimensional transformation space. While a sample consisting of one
point of each shape is not sufficient to determine a single homothety transformation
mapping the sample point of one shape that of the other, a sample consisting of two
points overdetermines the transformation, in a sense that in general there may not
exist a homothety which maps two points of one shape to arbitrary two points of the
other. In the following some approaches to sample generation and the corresponding
matching results achieved by the probabilistic algorithm are discussed.

Approach 1. A sample SA = (a, κa) of shape A and SB = (b, κb) of B taken
within a single random experiment in this case consists of a point a ∈ A and b ∈ B
selected randomly under the uniform distribution with respect to length, and the
corresponding curvature values κa and κb of the curves in A and B containing the
points a and b. The sample space Ω is then a subset of R2×A×B. The homothety
transformation t′ = (k′, v′x, v

′
y) that maps SB to SA is defined as k′ = κb

κa
and v′ =

a− kb, if κa 6= 0.
Since the components of the samples are of different nature (points and cur-

vature), it is reasonable to have two different values for the tolerance bound: δ =
(δ1, δ2), where δ1 denotes the maximal distance the points may be apart to be consid-
ered close and δ2 controls the maximally allowed tolerance in the curvature. Further-
more, we will consider δ2 as the relative error bound for the curvature and require
that 0 < δ2 < 1. Then the δ-region corresponding to the sample pair SA, SB is,
by definition, the set of all homothety transformations t, such that the transformed
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point t(b) has distance at most δ1 from the point a, and the relative deviation of the
curvature at the image point of b within the transformed shape B, denoted by t(κb),
from the curvature at the point a is at most δ2. The curvature tolerance condition
implies the following two linear inequalities:

k ≤ κb
(1− δ2)κa

(3.11)

k ≥ κb
(1 + δ2)κa

if κa, κb 6= 0. Similarly to Approach 2 for similarity transformations, this approach
has a problem with the cases where one of the curvature values is zero, since in that
case there is no real values scaling factor that would map one curvature value to the
other. As mentioned in the previous section we can either assume that the shapes
A and B do not contain curve pieces with zero curvature, or use some small value ε
for the curvature instead of zero. We can also assume that there are no points with
infinite curvature values, since the curve segments can be split at sharp corners and
the new segments treated separately.

The distance condition is expressed by Inequalities (3.3) to (3.5) with the linear
transformation matrix M as defined above and tolerance value δ1. Thus, a δ-region
is a semi-algebraic set defined by three or six inequalities of degree at most p, where
p depends on the chosen distance metric Lp, or of degree one in case of L∞. Such
δ-region is bounded in scaling dimension by two planes k = κb

(1−δ2)κa
and k = κb

(1+δ2)κa
and for every fixed k the cross-section parallel to the translation plane is exactly a
δ1-neighborhood of the translation mapping the point kb to the point a. That is, a
δ-region is a shifted cylinder as illustrated in Figure 3.12.

a

1
κa

b 1
κb

(a) Sample points a and b with corre-
sponding curvatures κa and κb.

κb

κa δ1

κb

(1−δ2)κa

κb

(1+δ2)κa

scaling k

vx

vy

(b) A δ-region in the three dimensional trans-
formation space corresponding to a sample pair.

.

Figure 3.12: A δ-region in the space of homothety transformations with Approach 1.

With this approach the algorithm finds a homothety transformation t that maxi-
mizes the measure of the setMδ1,δ2(t) of point pairs with distance at most δ1 after the
transformation t is applied to shape B and the curvature at these points is similar,
where similar means that the relative difference of the curvature values is at most
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δ2. Formally:

Mδ1,δ2(t) =
{

(a, b) ∈ A×B|t(b) ∈ Uδ1(a) and
|t(κb)− κa|

κa
≤ δ2

}
.

Since this definition of a good match includes, beside the closeness of the shape
points, the similarity of the curvature values, and the curvature is a local feature,
Approach 1 favours the transformations that map common local features of two
shapes to each other.

Note that this approach as described above is not directly applicable to matching
shapes modeled by polygonal curves, since the only curvature values that occur at
any point of a polygonal curve are either zero or infinity. As mentioned in the
description of similarity transformations, there are curvature approximation methods
in the field of pattern recognition which can be applied to approximate the curvature
of a polygonal curve, see [19, 36] for surveys. Alternatively, a polygonal curve can
be approximated by a smooth or a piecewise smooth curve prior to the sample
generation.

Approach 2. The second approach is to use a single random point of each shape
a ∈ A and b ∈ B as a sample in one random experiment and to define a δ-region as
a set of homothety transformations that map the point b into the δ-neighborhood of
the point a. The sample space is then Ω = A × B. A δ-region is a semi-algebraic
set defined by the Inequalities (3.3), (3.4) or (3.5), depending on the underlying
distance metric Lp. The δ-region corresponding to a sample pair a ∈ A, b ∈ B is an
unbounded shifted cylinder as illustrated in Figure 3.13.

a

b

(a) A random sample consisting of a sin-
gle point of each shape: a ∈ A and
b ∈ B.

δ1

scaling k

vx

vy

(b) A δ-region in the three dimensional trans-
formation space corresponding to the sample
pair (a, b).

.

Figure 3.13: A δ-region in the space of homothety transformations with Approach 2.

As mentioned in Section 3.2.4, in this case the algorithm finds a transformation
t that maximizes the measure of the set Mδ(t) of point pairs that have distance at
most δ after the matching transformation is applied to the shape B:

Mδ(t) = {(a, b) ∈ A×B|t(b) ∈ Uδ(a)} .
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For the completeness of the relative error bound proof we also need to show that
there exists a value ν such that the maximum of the probability function pδ(t) is
always at least ν. Note that in the proof of Lemma 3.6, which states the existence
of such value ν for the class of similarity transformation, the rotation component
of the similarity transformations was never used. Therefore, the statement of the
Lemma holds also for the class of homothety transformations in combination with
Approach 2.

The next two approaches are heuristics aimed to reduce the search space compared to
that of Approach 2 but to avoid the sensitivity to local features, and thus sensitivity
to noise, specific to Approach 1.

Approach 3. A random sample within one experiment is defined as a pair of
random points of the shape A, SA = (a1, a2) ⊂ A, and a pair of points of the shape
B, SB = (b1, b2) ⊂ B, where the point b1 is chosen randomly and the point b2 is a
point that lies on a straight line l, which goes through b1 and is parallel to the line
through a1, a2. If the intersection of the line l with the shape B contains more than
one point, a sample point is chosen randomly among those. If no such point exists
the sample is discarded and a new one is generated. There exists a unique homothety
transformation that maps b1 to a1 and b2 to a2. The corresponding δ-region is defined
as a set of transformations that map the point b1 into a δ-neighborhood of the point
a1 and b2 into that of a2. A δ-region defined this way is an intersection of two
δ-regions defined in Approach 2 corresponding to the point pairs a1, b1 and a2, b2.

The underlying measure of similarity for this approach corresponds to the mea-
sure maximized by Approach 1 in the case of similarity maps, that is, the measure of
the set of pairs of point pairs that are at most δ apart is maximized. As mentioned
in the description of the similarity transformation, maximizing the measure of this
set is equivalent to maximizing the measure of the point pairs of two shapes that are
mapped into the δ-neighborhood of each other.

Approach 4. A random sample in this approach consists of a point randomly se-
lected from each shape, a ∈ A and b ∈ B, and a positive real number associated
with that point, da and db respectively, which denotes the distance to another ran-
domly selected point from the same shape, that is, S=(a, da) and SB = (b, db). The
transformation that maps SB to SA is then t = (k, v) with k = da

db
and v = a − kb.

The corresponding δ-region can be defined similarly to that in Approach 1, using two
tolerance values δ1, δ2, where δ1 is used to specify the distance conditions given by
Inequalities (3.3) to (3.5), and δ2 expresses the maximally allowed relative difference
of the distances da and t(db). The latter condition is expressed by Inequalities (3.11)
where κb

κa
is replaced by da

db
.

The underlying similarity measure in this case is not as clearly defined as for the
previously describes methods. Informally, Approach 4 finds a homothety transfor-
mation maximizing the measure of the set of point pairs that are δ close to each
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other while scaling the shape A approximately to the size of the shape B.

Discussion. Approach 1 uses curvature to limit the range of the scaling factor in
the definition of a δ-region. Although the curvature is a natural parameter associated
with curves which depends on the scaling factor, it is also a purely local feature.
Therefore, it can be very sensitive to noise if the data comes from some sampling
procedure. Additionally, Approach 1 can result in a non-intuitive match if the two
shapes are defined with different detail levels, as illustrated in Figure 3.14. Whereas
Approach 2, which is only based on the distances between the points of the shapes
leads to more intuitive matching results, see Figure 3.14(d), but has a larger search
space.

(a) Shape A (b) Shape B (c) Matching with Ap-
proach 1

(d) Matching with Ap-
proach 2

Figure 3.14: Matching two shapes under homothety transformations with Approach 1
and Approach 2.

Approaches 3 and 4 attempt to combine the advantages while avoiding the draw-
backs of the first two. In Approach 3 a δ-region corresponding to a sample pair in
one experiment covers the transformations that map two points of the shape B into
δ-neighborhoods of two points of the shape A, thus the definition of a good match is
based only on distances and the size of a δ-region is considerably smaller than that
in Approach 1. On the other hand, generating a random sample of the shape B has
additional computational overhead, since we first need to compute all intersection
points of the shape B with a given line and then select one of these points randomly.

Approach 4 avoids the computational overhead of Approach 3 but restricts the
search space for the optimal transformation in a similar way. The range of the scaling
factor associated with a sample pair reflects the ratio of the distances between the
points in two shapes, which is a global feature, in contrast to the local feature –
curvature, in the first approach. It also means that the range of the scaling factors
that match the average distance between two points in each of the shapes have higher
probability to be covered by a δ-region. Note that the average distance between two
points is not necessarily related to the diameter of the shape, and, therefore, the
scaling factor matching the average distances is not necessarily the same as the one
that matches diameters.

Summarizing the above discussion, we can say that Approaches 3 and 4 tend to
scale the shape B to be of roughly the same size as the shape A and with that scaling
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find the best translation to match the shapes with respect to distances, and therefore
have complete matching character. Approaches 1 and 2 find a transformation that
maps the largest similar parts of the shapes close to each other, where the similarity
of the parts is defined by local parameters: curvature and point proximity in the first
case, and only point proximity in the second. Therefore, these approaches have a
partial matching character. Figure 3.15 gives an example of differences in matching
results depending on the sample selection strategy.

A B Approach 1 Approach 2 Approach 3/4

Figure 3.15: Differences in matching results for homothety transformations with
Approaches 1 to 4.

3.3.5 Shear Transformations

A shear is an affine transformation in which all points along a given line l remain
fixed while other points are shifted parallel to l by a distance proportional to their
perpendicular distance from l, as described in Section 2.2.

In the following we will describe the details of the probabilistic algorithm for the
transformations consisting of horizontal shear and translation, vertical shear can be
handled analogously. The transformation space T is then three dimensional T = R3.
A transformation t ∈ T is described by three parameters (m, vx, vy) and maps a
point p to the point M · p+ v, where

M =

(
1 m

0 1

)
is the shear transformation matrix, and v = (vx, vy) is the translation vector.

For two points a and b there is no unique transformation that maps b to a, rather
for every shear parameter m there exists a unique translation vector that completes
the desired transformation. For a pair of two points a1, a2 nd b1, b2, in general, there
exists no transformation that maps b1 to a1 and b2 to a2. Therefore, similar to the
case of rigid motions and homothety transformations, there are several possibilities
to define a random sample and, correspondingly, a δ-region in the transformation
space.

Approach 1. The first approach results from the observation that a shear trans-
formation changes the slopes of the lines, and, as mentioned in the Section 3.3.2,
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that a natural slope information associated with a point on a curve is the slope of
the tangent line. A random sample in this case consists of randomly selected points
a ∈ A and b ∈ B, and an angle θa and θb respectively between the tangent line at
that point and the x-axis, i.e., SA = (a, θa), SB = (b, θb). Note that the orientation
of the tangent lines is not a part of the shape information, and is therefore discarded,
so the angles θa, θb lie in the interval [0, π). The sample space Ω is then a subspace
of A×B × [0, π)2.

A sample pair SA = (a, θa), SB = (b, θb) define uniquely a transformation t =
(m, vx, vy) that maps b to a and the angle defined by the tangent line to the trans-
formed shape B at the image of point b is exactly θa, for θa, θb 6= 0. Obviously, there
is is no transformation mapping SB to SA if θb = 0 and θa 6= 0, since shear along
x-axis does not change the slope of horizontal lines. Also if θa = 0 and θb 6= 0, which
means that the tangent line at a is horizontal and the tangent at b is not, there exists
no finite value of m that yields the desired transformation. On the other hand, if
both θa, θb = 0 then, since every shear factor maps a horizontal line to itself, the
transformation is not unique. For θa, θb 6= 0 the shear parameter m is computed as
m = 1

tan θa
− 1

tan θb
and the corresponding translation vector is v = a −Mhor.shearb,

if θa, θb 6= π
2 . If both tangents are vertical, the shear parameter is m = 0. For

θb = 0, θa 6= 0 the value of m is 1/ tan θa, and for θa = 0, θb 6= 0 the shear is
m = −1/ tan θb.

Due to heterogeneity of the sample data it is once again reasonable to use two
different values δ = (δ1, δ2) for the tolerance bounds in the definition of a δ-region.
A δ-region corresponding to a sample pair SA, SB is defined as the set of transforma-
tions that map the point b into a δ1-neighborhood of the point a so that the angle
formed by the tangent line to the image of point b differs from θa by at most δ2.
A transformation covered by the most δ-regions is then a one approximately maxi-
mizing the measure of the set Mδ(t) defined by Equation (3.8) in the description of
Approach 1 for rigid motion in Section 3.3.2.

The distance condition for the points in a sample is, again, expressed by the
inequalities (3.3) to (3.5), depending on the underlying metric Lp, with Matrix
Mhor.shear as the transformation matrix and δ1 for the tolerance value.

The inequalities expressing the similarity of tangent slopes can be derived in the
following way: Consider a line l which forms an angle θ with the x-axis as depicted
in Figure 3.16, l is defined by the equation y = 1

cot θx + q for some constant q. The
image of the line l under the shear transformation with parameter m is then a line l′

with equation y = x
cot θ+m − mq

cot θ+m + q, were cot θ +m is the cotangent of the new
angle θ′, i.e., cot θ′ = cot θ+m. Note that the last observation holds also for θ = π

2 ,
since a vertical line is mapped to a line with a slope 1/m.

A condition θ′ ∈ [θ1, θ2] ⊂ (0, π) is then equivalent to the condition

cot θ2 ≤ cot θ +m ≤ cot θ1 ,

since cotangent is a continuous monotone decreasing function on the interval (0, π).
With this observation we can conclude that for a random sample with θb 6= 0 and θa ∈
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m

1

θ θ′

l

l′

Figure 3.16: Image of the line l : y = 1
cot θx + q under shear transformation with

parameter m is the line l′ : y = x
cot θ+m − mq

cot θ+m + q.

(δ2, π− δ2) the definition of a δ-region is extended by the following two inequalities:

m ≥ cot(θa + δ2)− cot θb (3.12)

m ≤ cot(θa − δ2)− cot θb (3.13)

where all inequalities in the definition of a δ-region are logically combined by an
AND-operator, Fig 3.17(a).

In case θb 6= 0 and θa ∈ [0, δ2)∪ (π− δ2, π) the ranges of the shear factor defined
by the inequalities (3.12) and (3.13) are disjoint. The corresponding δ-region consists
of two parts: one is defined by the distance constraints and inequality (3.12), and
the other by distance constraints and inequality (3.13), Fig 3.17(b).

If θb = 0 and θa /∈ [0, δ2] ∪ [π − δ2, π) then there exists no shearing that maps
a line with a declination angle θb to a line with a declination angle of θa ± δ2.
The sample pair has to be discarded. For θb = 0 and θa ∈ [0, δ2] ∪ [π − δ2, π)
every shear transformation performs the desired mapping. Therefore the factor m is
unbounded and the corresponding δ-region is defined only by the distance constraints,
Fig. 3.17(c).

Similar to the case of rigid motions, we do not compute the angles θa and θb
explicitly, but assume that the tangent lines are given in Hesse standard form, which
contains the sine and cosine values of the inclination angle of the normal to the
tangent line. Additionally, we assume that the tolerance value δ2 is given by its cosine
value. Then using simple trigonometric rules the computation of the cotangent values
in Inequalities (3.12) and (3.13) includes only algebraic operation on the parameters
of the tangent lines and the tolerance value.

Approach 2. As mentioned in the description of the general approach, Section 3.2.4,
we can always use a single random point of each shape as a sample within one exper-
iment. That is, SA = a ∈ A and SB = b ∈ B, the sample space is Ω = A× B. The
corresponding δ-region is then defined only by the point distance constraints (3.3),
(3.4), or (3.5), and has the shape of a shifted cylinder as depicted in Figure 3.17(c).
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Figure 3.17: The distance constraints define an infinite shifted cylinder in the param-
eter space of transformations. For the sample pairs with θb 6= 0 and θa ∈ (δ2, π− δ2)
the δ-region is a part of this cylinder bounded by two planes (a). If θb 6= 0 and
θa ∈ [0, δ2) ∪ (π − δ2, π) the corresponding δ-region consists of two parts, each of
which is bounded on one side by a plane (b). For θb = 0 and θa ∈ [0, δ2]∪ [π− δ2, π)
the whole unbounded cylinder is the corresponding δ-region (c).

The transformation covered by the most δ-regions is in this case the one (approx-
imately) maximizing the measure of the set Mδ(t) of point pairs that are at most δ
far apart after t is applied. Mδ(t) is defined exactly as in the case of translations in
Equation (3.6).

Approach 3. For the third approach a random sample within one experiment is
generated in the following way: Two points a1, a2 of the shape A and a point b1 of
B are selected randomly. A point b2 ∈ B is selected so that the difference between
the y-coordinates of the points b1, b2 equals to that of the points a1, a2. If there are
several points with this property one is chosen randomly. Then there exists a unique
shear and translation transformation that maps the point b1 to a1 and b2 to a2. The
corresponding δ-region is defined as a set of transformations that map the point b1
into the δ-neighborhood of the point a1 and b2 into the δ-neighborhood of a2. That
is, it is an intersection of two δ-regions as defined in Approach 2 corresponding to
the point pairs a1, b1 and a2, b2. The parameter δ is the distance tolerance value.

Approach 4. Another possibility is to select two points of each shape randomly,
a1, a2 ∈ A and b1, b2 ∈ B. Then, a random sample SA of the shape A consists of a
point a1 and an angle θa formed by the line through points a1, a2 with the x-axis.
Analogously, the sample SB = (b1, θb), where θb is the angle between the x-axis
and the line through points b1, b2. The corresponding δ-region is defined exactly as
in Approach 1 using two tolerance values δ1, δ2, where δ1 specifies the maximally
allowed distance between the points, and δ2 the difference between the line slopes.
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Discussion. Similar to the previously considered transformations, each of the ap-
proaches to generating a random sample can provide different matching results in
some cases. The most general Approach 2 considers only the distances between the
points of the shapes and, therefore, corresponds directly to the intuitive notion of
similarity mentioned in the description of the algorithm, Section 3.1. On the negative
side, the δ-regions generated by Approach 1 have the largest volume, and therefore,
it has the largest search space.

In Approach 1 we use the slope of a tangent line as additional information to
reduce the search space for finding the optimal transformation. Since the direction
of the tangent line can be unstable, depending on the origin of data, the disadvan-
tages of this method mentioned in the description of Approach 1 for rigid motions,
Section 3.3.2, hold also in case of shear transformations.

For Approaches 3 and 4 it can be said that both of them tend to match the
general slope information of the shapes and for that shear transformation find the
best translation vector. Approach 3 requires a more complex procedure to generate
a random sample in each random experiment, but generates δ-regions that comprise
transformations that map at least two points of the shape B into the δ-neighborhoods
of some two points of the shape A, whereas a δ-region of Approach 4 can match a
single point of the shape B to some point of A. Thus, the set of δ-regions produced
by Approach 3 is more concentrated and should require less experiments to determine
the best matching transformation.

3.3.6 Affine Maps

As described in Section 3.1 a random sample taken from one shape within one random
experiment consists of three points. A δ-region in the space of affine transformations
corresponding to a pair of random samples from two shapes is then, by definition,
the set of transformations that map each point of the sample from shape B into
the δ-neighborhood of the corresponding point of the sample from shape A. Such a
δ-region is described by equations (3.3), (3.4) or (3.5) for each point correspondence
pair of the random samples, depending on the chosen distance metric Lp. Thus, a
δ-region is bounded by semi-algebraic surfaces, and for the L1 and L∞ metrics it is
a convex polytope bounded by six pairs of parallel hyperplanes.

According to our general analysis, an affine transformation which is covered by
the most δ-regions maximizes the measure of the set

Mδ(t) =
{

(a1, a2, a3, b1, b2, b3) ∈ A3 ×B3|dist(t(bi), ai) ≤ δ, i ∈ {1, 2, 3}
}
.

With a similar observation as for similarity maps, we find that the measure of this
set is maximized exactly if the measure of the set of point pairs which are in the δ-
neighborhood of each other is maximized. Also by the same argument as for similarity
maps we can show that there exists a value ν > 0 such that for any two shapes A
and B the maximum of the corresponding probability functions is at least ν:
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Lemma 3.7. Given two shapes A and B modeled by finite sets of n curves with
total lengths LA, LB respectively and a tolerance value δ > 0 and the class of allowed
transformations T as the group of affine transformations. Let m = max(LA, LB, nδ).
Then maxt∈T pδ(t) ≥ δ3

m3 .

Proof. The shape B can always be scaled by the factor δ
DB

, where DB is the diameter
of B, so that the diameter of the scaled shape B is δ. If A contains a connected
component of length at least δ, then we can place the scaled shape B in such a way
that for any point of a part of A of length δ the distance to any point of the scaled B
is at most δ. Therefore, the measure of the setMδ(t) for that t is at least L3

B ·δ3. The
corresponding value of pδ is pδ(t) = |Mδ(t)|

|Ω| ≥
L3
B ·δ

3

L3
AL

3
B

= δ3

L3
A
. Otherwise, the largest

connected component of A must have length at least LA
n . For the transformation t

that maps the scaled B to the largest component of A the measure of Mδ(t) is then
at least L3

A
n3 L

3
B and pδ(t) ≥ 1

n3 . Therefore, maxt∈T pδ(t) ≥ δ3

m3 .

Then, according to Theorem 3.1 the required number of experiments needed
to achieve an ε-approximation with probability at least 1 − η is bounded by N ∈
O
(
m3

ε2δ3
ln
(

max
(

1
η ,

m3

ε2δ3

)))
.

Matching under affine transformation with the described method suffers under
the same shrinking problem as matching under similarity transformations. The shape
B can be scaled down by an affine transformation to a shape of diameter at most
δ and the scaled shape can be translated to some point of the shape A. Such a
transformation has approximately the same value of the probability function pδ as
the transformation that maps the shape B exactly to the shape A if the shapes are
congruent.

One possibility to avoid this problem is to discard the sample pairs SA, SB if the
determinant of the matrixM of the transformation mapping SB to SA is below some
threshold value.

3.4 Further Ideas and Discussions

In this section we summarize some general observations about the method presented
here, and some ideas about further possible variants of the algorithm.

3.4.1 Approximation of the Hit Probability by Grid Counting

As stated in Theorem 3.2 the major time cost of the algorithm is the construction
of the arrangement A of the δ-neighborhoods and the subsequent detection of the
deepest cell. This “overhead” can be avoided by applying a grid counting method
in order to determine the best matching transformation. In this section we analyse
the approximation factor that can be guaranteed by this method and construct an
example for which the worst case can actually occur.
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Grid counting is the most popular technique used for voting schemes in the pat-
tern recognition community, as for example the case in the articles cited in Sec-
tion 2.3.1: [1, 31, 48, 55, 57]. Typically, the transformation space is subdivided
into equally sized bins, or grid cells. Then for each bin the number of votes that
fall into that bin are counted and the bins with the most votes are considered to
be the candidates for good matching transformations. A vote is usually a single
transformation that maps the sample of one shape exactly to that of the other. The
bin is represented by one transformation, for example by one of the corners of the
corresponding grid cell.

The obvious advantage of this method, is that adding a vote to a bin can be
performed in constant time, and, therefore, the bin containing the maximum number
of votes can be determined in time linear in the total number of votes. Given the
good time performance of the method, the question is how good are the results.

In the following we describe how this method can be adopted to the votes given
by δ-neighborhoods, examine some variants of defining the grid in transformation
space and show that counting votes by grid gives a 2d-approximation of the number
of neighborhoods covering the deepest cell in the arrangement A, where d is the
dimension of the transformation space. This worst case approximation factor can
actually occur in some cases which we will characterize later.

A natural adaptation of the grid counting method to the votes given as regions
in the transformation space (which the δ-regions are) is to count a vote for every grid
point covered by a region. Of course the grid width should be small enough so that
every δ-region covers at least one grid point. Note that in the case of translations in
combination with the L∞-metric and the grid size equal to δ counting votes for the
covered grid points is equivalent to counting votes for the grid cells that contain the
center of the δ-region.

Translations

We first show that for the axis-aligned grid of width γ ≤ δ in the case of translations
the grid counting method gives a 4-approximation to the maximum of the hit proba-
bility pδ(t) (defined in Section 3.2.1) up to a relative error ε. Formally, let topt denote
a transformation maximizing pδ(t), tg the grid point covered by the maximum number
of the δ-neighborhoods after N experiments, and let Z(t) denote the number of the
δ-neighborhoods that contain the transformation t, then Z(tg)/N ≥ 1

4(1−ε)pδ(topt).
The following example shows that the approximation factor can be as bad as

four: Consider shapes A and B that each consist of four small and widely separated
parts positioned at the corners of a square. By widely separated we mean that the
distance between the parts is significantly larger than the diameter of a part plus
2δ. Further, assume that the parts are equally large, that is, the total lengths of the
curves are equal, and the parts of the shape B are equal to the corresponding parts
of the shape A. The only difference between A and B is that each part in B is shifted
by δ − ρ towards the center of the shape relative to its position in A, where ρ > 0 is
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a very small value. In the extreme case the parts are just points in the corners of a
square. Since the main focus of this work are shapes modeled by sets of straight line
segments, each part of the shapes in the example depicted in Figure 3.18(a) consists
of a group of four vertical line segments. Each segment has length three and the
distance between segments in one group is one. Thus, each group models a three
by three filled square. The distance between two horizontally or vertically aligned
groups of the shape A is 300, and the value of δ chosen for this example is 20. Note
that although the value of δ is large compared with the size of a single group within
a shape, it is feasible with respect to the diameter of the shapes. The value of ρ is
chosen to be 2 for visualisation purposes.

The graph of the hit probability function pδ(t) for the shapes A and B in com-
bination with the L∞ metric is displayed in Figure 3.18(c), and Figure 3.18(b) gives
a detailed view of the central group containing the maximum of the function. The
support of the hit probability function is subdivided into 9 regions. The four corner
regions contain the translations that match exactly one group of the shape B to
the diagonally opposite group of the shape A. Note that there is a square in each
of these regions with side length 2(δ − size of a group) such that for every transla-
tion t in that region every point of the corresponding group in B is mapped into a
δ-neighborhood of every point of a diagonally opposite group in A. Therefore, the
probability function is constant and has equal values over these square regions, and
it decreases to zero along a narrow border around that square. The four regions in
the center of each side of the probability function support contain the translation
vectors that map one group of the shape B to the opposite group along one side of a
square of the shape A, and there is a narrow stripe of width 2ρ that maps two groups
on one side of B to two groups on the opposite side of A. Finally, the center region
(Figure 3.18(b)) contains the maximum of the probability function. The function
pδ(t) attains its maximum over a square region with side length 2ρ, which is the
set of translations that map each of the four parts of B into a δ-proximity of the
corresponding part in A. Around the maximum region there are two stripes with
the value 1/2 of the maximum, which contain the translations mapping exactly two
parts of B to the corresponding parts of A. And the larger square regions attached
to these stripes contain the translations that map exactly one group of B to the
corresponding group of A, thus the value of pδ over these square regions is 1/4 of the
maximum value.

Note that by shrinking the length of the segments in each group to some arbitrary
small value and positioning the segments close together, or just taking one segment in
each group, we can get arbitrary close to the extreme case of having just four points
in each group, and thus eliminate the regions where the hit probability function
decreases gradually

Now if the maximum region happens to lie completely inside one grid cell, the
vertices of that cell are positioned in the regions that let only one of the four parts
match the corresponding part in A as illustrated in Figure 3.18(b).
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δ − ρ

B

A

(a) Shapes A and B are com-
posed of four groups of line seg-
ments. Each shape is enclosed
in a dotted square.

(b) A close-up of the center part of the hit probability in
translation space. Positions of grid points leading to a 4-
approximation ratio are indicated by black disks.

(c) Hit probability function in translation space.
.

Figure 3.18: An example of shapes and the corresponding hit probability that leads
to a 4-approximation by the grid counting method.



3.4. FURTHER IDEAS AND DISCUSSIONS 71

According to Lemma 3.1, after a sufficient number of experiments N the estimate
p̃δ(t) = Z(t)/N is an ε-approximation of pδ(t). In particular it means, that for the
maximally covered grid point tg holds

p̃δ(tg) ≥ (1− ε)pδ(tg) ≥ (1− ε)1
4
pδ(topt) .

This is also the worst case for the approximation ratio for the described setting.
From Lemma 3.1 it follows that p̃δ(topt) is an ε-approximation of the pδ(topt). There-
fore, there are at least (1 − ε)pδ(topt)N δ-neighborhoods that cover topt, which lies
insider the grid cell g. Furthermore, due to the choice of the grid width γ ≤ δ it
holds that if the intersection of a δ-neighborhood with a grid cell is not empty, then
either

• the δ-neighborhood covers at least one grid point of the cell, as it is always the
case for L∞ neighborhoods, or

• if the δ-neighborhood does not cover any vertex of the grid cell, then it covers
both remaining grid points of the corresponding neighboring cell, which is the
case for general Lp metrics, or

• if the δ-neighborhood covers a certain portion of the cell, then it also covers at
least two of its vertices.

Then every δ-neighborhood that covers topt also covers at least one of the four groups
of grid vertices, described in the following, completely, and therefore, at least one
of these groups is covered by at least 1/4 of the δ-neighborhoods. The groups can
be the four grid vertices surrounding topt, Fig. 3.19(a), which is always the case for
L∞ metric. For other Lp metrics it can also be the case that the votes can be split
between two vertices of a cell connected by an edge and two groups of two vertices,
that belong to two edges parallel to the first one as depicted in Figure 3.19(b) for L2

δ-neighborhoods and 3.19(c) for L1.
Note that for grid size δ ≤ γ ≤ 2δ for general Lp metrics no 4-approximation

guarantee can be given. The example in Figure 3.20 shows a possible distribution of
the votes covering the maximum region in translation space, that are split into six
groups of which every group contains different grid points. Thus, each of the grid
points gets only 1/6 of the votes that contain the deepest cell in the δ-neighborhood
arrangement.

Reducing the grid size. It is rather easy to see that reducing the distance between
the grid points does not help to improve the worst case approximation factor. Intu-
itively, the probability of getting a bad approximation, or a bad split of votes should
be smaller the smaller we choose the grid size γ. In fact, the probability that the
maximum region lies completely inside one grid cell, and thus the δ-neighborhoods
covering it can be split over the four grid points, is proportional to (γ − ρ)2/γ2,
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Figure 3.19: Worst case distributions of votes in case of translations in combination
with different Lp metrics.

topt

Figure 3.20: An example of votes distribution that gives in case of grid width δ ≤
γ ≤ 2δ for L2 δ-neighborhoods a 6-approximation of the maximum of pδ(t).
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where 2ρ is the side length of the maximum region. However, in our case the under-
lying hit probability function pδ(t) is not a continuous function, and the size of the
maximum region 2ρ can be arbitrarily small. Therefore, the probability of getting a
4-approximation can be arbitrarily large.

Shifted grids. Similarly, using an additional grid G′ of width γ which is shifted
by γ/2 relatively to the original grid G, as shown in Figure 3.21, does not improve
the worst case approximation factor. By the same argument as above we can say

G

G′

γγ

topt

Figure 3.21: Grid counting with two shifted grids.

that the probability of the maximum region lying completely inside the intersection
of two grid cells g of G and g′ of G′ can be arbitrarily large, in which case the vertices
of the cells in both grids achieve only a four approximation.

Rigid Motions

In the case of rigid motions for the grid counting method the transformation space
is usually parameterized by the rotation angle and translation vector instead of the
four-dimensional parameterization by the parameters of the rotation matrix and
translation vector. Due to the heterogeneity of the transformation parameters it is
reasonable to use a nonuniform grid, that is, to choose a different grid width for the
rotation angle dimension than for the translation vector dimensions.

Recall that in Approach 2 for rigid motions we already had two values to express
the proximity of shape samples: δ1 for the maximal distance between two points that
are considered close, and δ2 for the maximal allowed difference in the directions of
the tangent lines. These values give us some obvious restrictions for the grid widths:
The grid width in translation plane γ1 should be γ1 ≤ δ for the reasons explained
above, and the grid width in direction of the rotation angle γ2 should be chosen
as γ2 ≤ δ2.

For the Approach 1 it is no longer clear how dense the grid should be for the
rotation angle. One possibility is to define some additional tolerance value compa-
rable to the δ2 in Approach 2, which denotes how fine we want to determine the
rotation factor. What we additionally want to achieve is a condition similar to that
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for the translation case, which assures that if a δ-region intersects a grid cell, then
it either contains at least one of the vertices of that grid cell, or it contains at least
two vertices of the corresponding neighboring cell.

The details about the δ-neighborhoods in the space of rigid motions are given
in the Section 3.3.2, for this section we only give a brief description. A δ-region
corresponding to a sample pair SA = {a}, SB = {b} is a spiral tube of height 2π with
a base corresponding to a δ-neighborhood in the image space. An example of such
δ-neighborhood for L2 distance measure is depicted in Figure 3.5. The projection of
the tube to the translation plane is an annulus centered at a of radius equal to the
distance of the point b to the origin and of width δ.

We are now interested in the minimal stretch in the direction of the rotation
angle of a δ-neighborhood. Obviously, there are points on the boundary of the δ-
neighborhood with stretch zero, therefore, we consider the minimal stretch σ of the
tube at the points with offset at least γ1 from the boundary in the cross-section
parallel to translation plane. Then if the grid width in direction of the rotation angle
is γ2 ≤ σ/2, we can be sure that a δ-neighborhood can not “go through” the grid
cells, that is, have a non-empty intersection with more than one consecutive grid
cells without covering any vertices of these cells.

Consider a disc B1 of radius δ − γ1 with respect to a chosen distance metric Lp
with center b1 on a circle C = (c, r), and a disc B2 with respect to the same metric
Lp of radius δ with the center b2 on the same circle C as depicted in Figure 3.22.
Then for a fixed position of b1 on the circle C the stretch σ′ at that position is the
maximum angle formed by b1 and b2 in the circle C for which the disk B2 covers
completely the disk B1. The stretch σ is the minimum σ′ over all positions of b1.

For the Euclidean distance metric L2, if two disks are tangent and one of them is
inside of the other, then the Euclidean distance between their centers is exactly the
difference of the radii. Thus, the maximum allowed Euclidean distance between the
points b1 and b2 is γ1 for every position of the point b1. By the law of cosines the
corresponding angle σ is

σ = arccos
(

1− γ2
1

2r2

)
. (3.14)

For general Lp distance metrics, with p ≥ 2, the stretch at any position of b1

is at least σ, where σ is defined by Equation 3.14. Let q be a point in B1, then
dp(q, b1) ≤ δ−γ1. Due to the fact that for all points q1, q2 ∈ R2 dp(q1, q2) ≤ d2(q1, q2)
and from the triangle inequality, it follows that the distance between q and b2 is at
most δ:

dp(q, b2) ≤ dp(q, b1) + dp(b1, b2) ≤ δ − γ1 + d2(b1, b2) = δ − γ1 + γ1 = δ ,

where dp denotes the distance with respect to Lp. Furthermore, it is easy to see that
for positions of b1 corresponding to the angles

{
0, π2 , π,

3π
2

} − σ
2 in C the stretch is

exactly σ.
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Figure 3.22: Disks B1 and B2 with respect to the L2 metric in extreme position, i.e.,
B1 is contained in B2 and the distance between their centers is maximized.

In case of L1 distance metric the minimum Euclidean distance between the centers
of the disks B1,B2, such that points on boundary of the disks coincide, is γ1/

√
2: A

disk of radius δ with respect to the L1 distance is a square with diagonal length 2δ
with axis-parallel diagonals. Two equally oriented nested squares have a common
boundary point iff they have at least one collinear side. Thus, we are interested in
the minimal distance from b1 to b2 if B1 and B2 have collinear sides. For the sake
of simplicity, let the center of B2 be placed at the origin, and the collinear sides be
the sides in the positive coordinate quadrant, as depicted in Figure 3.23. Then for
every point q = (x, y) on the boundary of B1 and B2 holds: x ≥ b1x ≥ b2x = 0 and
y ≥ b1y ≥ b2y = 0. Further, since q is a point on the boundary of B2 and B1:

x+ y = δ and

x− b1x + y − b1y = δ − γ1 .

From these equations follows b1y = γ1− b1x. Plugging in this values into the expres-
sion for the Euclidean distance we get d2

2(b1, b2) = 2b2
1x−2γ1b1x+γ2

1 . This expression
is minimized for b1x = b1y = γ1/2. Thus, the minimal Euclidean distance between
the centers is γ1/

√
2.

γ1

δ

δ − γ1 ∆
∆

b1

b2

Figure 3.23: Minimal Euclidean distance ∆ between centers of L1-disks, such that
points on the boundary of the disks coincide.
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The minimal stretch of the δ-neighborhood tube in case of L1 metric is then

σ = arccos
(

1− γ2
1

4r2

)
. (3.15)

Then by selecting the grid width in direction of rotation angle as γ2 ≤ σ, where
σ is given by Equation (3.14) or (3.15) depending on the underlying distance metric,
we can guarantee in case of rigid motions the worst case approximation factor 8 for
the maximum value of pδ(t). For Approach 1 it is, of course, meaningful to choose
γ2 ≤ min (δ2, σ).

Higher Dimensional Transformations

In general, for a grid in d-dimensional transformation space the approximation factor
of the grid counting method can be as bad as 2d, since the maximum region can be
located completely in the interior of one grid cell and each of the δ-neighborhoods
that cover the maximum region might contain only one of the vertices of that cell.
But this factor can no longer be guaranteed as the worst case approximation factor.
As we have seen above, the δ-neighborhoods behave “nicely” in the case of transla-
tions, in a sense that all δ-neighborhoods have equal shape and size and that the
δ-neighborhoods that cover the maximum region of the pδ(t) probability function,
and therefore contribute to the maximally covered cell of the arrangement, also cover
the neighboring grid points. For higher dimensional transformations it can not be
guaranteed in general, since the δ-neighborhoods are no longer uniformly sized and
are no longer convex.

Thus, the grid counting is a purely heuristic method for the higher dimensional
transformations.

Discussion

The bounds on the approximation factor for the grid counting method presented in
this section are rather of negative kind, since the approximation factor of 2d, where
d is the dimension of the transformation space, does not seem to be suitable for
practical usage. Nevertheless, the method is widely used in the computer vision and
pattern recognition community.

The obvious advantage of the grid counting method over, for example, the ap-
proximation by arrangement is the running time, which is linear in the number of
samples. Additionally, grid counting is reported to perform well in practice. In fact,
the example that we used here to show that the worst case approximation factor
can actually occur has a special structure which is unlikely to occur in practical
applications. Observe that if the size of the components or the relation between
the tolerance value δ and the distance between the components of the two shapes
in our example are modified slightly, then the approximation factor improves. Thus
we can expect the grid counting method to perform significantly better in practice
than the worst case approximation factor. In fact, experimental comparison of the
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grid counting method and the arrangement method for the class of translations in
combination with the MPEG-7 Shape B dataset and with the trademark images
showed only small difference in matching results. We actually used the grid counting
method in many experiments because of its better runtime performance.

3.4.2 Properties of the Probabilistic Algorithm

Robustness

In many applications the geometric shape data is gained through some digitalization
process from analog data. Examples of such digitalization processes are pictures of a
real world scenes taken with a digital photo camera, scans of graphical images from
paper originals, or data gathered from some special purpose devices, such as range
data scanner. After such a digitalization process we still do not have geometric data,
but rather a pixel image or a set of points without any connectivity information.
The next step is typically a vectorization process, which might include edge detec-
tion, grouping, or curve reconstruction. During both steps toward geometric data,
digitalization and vectorization, some errors might occur, e.g., parts of important
data might be lost, or some additional data might be added. In many cases it is
difficult to automatically distinguish between the important and unimportant data.
Therefore, if we need to compare shapes gained from a possibly noisy source, it is
important to know whether the matching algorithm we use is robust against possible
disturbances in the shape data.

In this section we discuss robustness of the probabilistic method against four
types of disturbance as described by Hagedoorn [33] in his PhD thesis. There he
distinguishes between noise, crack, deformation, and blur, which are illustrated in
Figure 3.24.

A An Ac AbAd

Figure 3.24: Types of disturbances: A – undisturbed shape, An – shape A with noise
added, Ac – shape A with cracks, Ad – deformed shape A, Ab – shape A with blur
added.

Informally, a similarity measure f is said to be robust against a certain type
of disturbance if for three shapes A, A′ and B, where A′ is the shape A with
small amount of disturbance added, the difference between the values of f(A,B)
and f(A′, B) is small. Recall that in Section 3.2.2 we discussed two similarity mea-
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sures associated with the algorithm: the measure of the set Mδ and the value of
the hit probability pδ. In the following we argue that the probabilistic method is
robust against noise, crack, and deformation, and to some extent against blur for the
resemblance measures µδ(A,B) = maxt∈T {(a, b) ∈ A×B | dist(a, t(b)) ≤ δ} and
ρδ(A,B) = µδ(A,B)

|A×B| , where T is the class of allowed transformations.

Noise. Noise or “outliers” are typically small isolated features of a shape. In our
setting we could call curves of small length, for which the distance to the remaining
parts of the shape is large, noise.

Let ε be the measure of noise added in A′, that is |A′ \A| = |A′|−|A| = ε. Then,
since we only added some curves to A and did not remove any, the measure of the
set Mδ(t) for the shapes A′ and B is at least as large as the measure of Mδ(t) for
the shapes A and B, that is µ(A′, B) ≥ µ(A,B). Furthermore, µ(A′, B) differs from
µ(A,B) by at most the amount of added noise matched to some parts of B, which is
bounded by ε |B|. Thus, the difference between the resemblance measure of shapes
A and B and resemblance measure of shapes A′ and B is directly proportional to
the amount of noise added to A.

Similarly, for measure ρ it holds:

ρ(A′, B) ≥ µ(A,B)
|A×B|+ ε |B| = ρ(A,B)

|A|
|A|+ ε

and

ρ(A′, B) ≤ µ(A,B) + ε |B|
|A×B|+ ε |B| = ρ(A,B)

|A|
|A|+ ε

+
ε

|A|+ ε
.

So the difference between ρ(A,B) and ρ(A′, B) is small for small ε.

Crack. A shape A′ is said to have cracks if there are small gaps in A′ which are
not present in the original shape A. So a single curve of A might be subdivided in
multiple curve segments in A′ which have small distance between their endpoints.

Let ε be the total measure of curve segments of A that are missing in A′, i.e.,
|A \A′| = |A| − |A′| = ε. Then analogously to the noise disturbance we can derive
relations of the resemblance measures µ and ρ for shape pairs A,B and A′, B:

µ(A,B)− ε |B| ≤ µ(A′, B) ≤ µ(A,B)

ρ(A,B)
|A|
|A| − ε −

ε

|A| − ε ≤ ρ(A′, B) ≤ ρ(A,B)
|A|
|A| − ε .

Again, we can conclude that for small total amount of gaps the difference between
resemblance measures for shape pairs A,B and A′, B is also small.

Deformation. If some parts of a shape A are displaced by a small distance from
their original position the resulting shape A′ is said to have deformation disturbance.
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Observe, that it does not necessarily mean that a complete curve contained in A is
transformed by a nearly identity transformation, but rather some segments of the
curves in A may be independently transformed. So for example, a single straight line
segment in A might be represented by a polygonal cure in A′.

The difference of the resemblance measures for the pairs of shapes A,B and
A′, B depends on the measure of deformed parts of A as well as on the amount
of displacement. As in the previous cases it still holds that the deformation of
small parts of A results in a small difference between the corresponding resemblance
measures. Additionally, in many cases deformation of large parts of A with small
displacement results in a small change of resemblance measures, as long as matching
parts of A and B can still be mapped into a δ-neighborhood of each other.

Blur. A shape A′ is said to have blur if some parts of the contours of the original
shape A are doubled with a small offset in A′. The duplicates of contour parts might
be additionally deformed. As in the case of deformation there are two quantities in
which blur can be measured: the total size of the contour duplicates, and the offset
between the duplicates and the original curves.

The probabilistic method and the underlying resemblance measures are robust
against blur to only a limited extent. If blur is evenly distributed along the curves of
the shape A with small offset, then the best matching transformation found by the
algorithm for the blurred shape A′ and some shape B is close to the transformation
found for the shapes A and B. The difference of the resemblance measure µ for the
pairs A,B and A′, B is directly proportional to the size of the doubled contours of
the matched parts of A. The size of the doubled contours has less influence on the
measure ρ since, assuming evenly distributed blur, the ratio of the size of blurred
matched contours to the total size of the blurred shapes is close to the ratio of the
size of matched contours to the total size for the original shapes.

However, large amount of blur even with small offset that affects only few parts
of a shape might significantly influence the matching results with regard to the best
matching transformation as well as the value of resemblance measures.

Complete and Partial Matching

In this section we discuss the applicability of the probabilistic method to the problem
of complete and partial matching. In general, the problem of complete-complete
matching is defined as rating the similarity between the complete shape A and the
complete shape B. If we ask how good does the complete shape A match some part
of the shape B we have a complete-partial matching problem. And if we want to
know how similar are some parts of A to some parts of B we ask for a partial-partial
matching. Observe that the problem of partial-partial matching is not well-defined
since arbitrary small parts of two shapes can always be matched arbitrarily well to
each other. Therefore, there should be a certain trade-off between the quality of
match and the size of matched parts.
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As mentioned in Section 3.2.2 the resemblance measure underlying the matching
algorithm described here is the maximum measure of the set Mδ, which is the set of
sample pairs that can be mapped into a δ-proximity of each other. We also argued
in Section 3.3 that, for the samples consisting only of points of the shapes, it is
equivalent to maximizing the measure of the set of point pairs that are δ-close to each
other. The hit-probability pδ is the measure of the setMδ normalized by the measure
of all possible sample pairs. So also pδ indicates the ratio of the matched parts of
two shapes. Thus, the probabilistic algorithm performs a partial-partial matching,
where the trade-off between the quality of match and the size of the matched parts is
resolved by letting the user specify the desired quality of match. The algorithm then
determines how large the matching parts can be, but not which parts are matched.
If the information about matched parts is required and additional verification step
should be performed.

The probabilistic method can also be used to perform complete-partial matching,
that is, to evaluate the resemblance of the complete shape A to some part of the shape
B. For this purpose we can use the measure of the set Mδ normalized by the size
of the shape A. This variant was also discussed in the Section 3.2.2. Finally, the
maximum of the normalized resemblance measures for each of the shapes can be used
to determine complete-complete similarity.

We also thought about the problem of determining the optimal tolerance value δ
for two given shapes automatically. The main idea is the following: Let µ denote the
maximum measure of the setMδ(t) over all allowed transformation for shapes A and
B. Consider µ as a function of the tolerance value δ. Obviously, µ(δ) = maxt∈T Mδ(t)
is monotone increasing.

Let us consider the behavior of the function µ(δ) in a few settings: First let the
shape B be a possibly shifted and rotated copy of the shape A. Then already for
a small δ the complete shapes A and B can be perfectly matched. With increasing
δ the growth of µ should be nearly linear, since every point of one shape can be
matched against a segment of the other shape with length approximately δ. So we
do not expect the function µ to have large changes in growth over a large interval of
δ values. Further, even for small δ the value of µ should be relatively large.

If the shapes A and B are very different, then for small δ the value of µ should also
be very small. Further, with increasing δ only small parts of shapes will be matched
against each other. Therefore, also in this case we do not expect the function µ to
have significant changes in growth, until for some large value of δ large parts of the
shapes can be mapped into δ-proximity of each other.

Now assume that the shapes A and B have similar parts. Further, let δ′ be the
smallest value of δ for which large parts of A and B can be mapped into δ-proximity
of each other. Then we would expect that the function µ grows fast in some interval
before δ′, and slow after. If there are several parts in A and B that can be matched
within different tolerance values, then there should be correspondingly many values
of δ where the growth behaviour of µ changes from fast to slow. An example of such
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µ(δ) function is depicted in Figure 3.25, the circles mark the possibly interesting
changes in the graph of the function.

δ

µ

Figure 3.25: An example of the measure µ(A,B) as a function of δ. Circles mark
the possibly interesting spots in the graph of µ.

When the values of δ for which large parts of the shapes match and the size of
the matching parts for each of the values are determined, some trade-off evaluation
function is needed to determine the best precision-size combination.

The described approach evokes several open questions, starting with computa-
tion or approximation of the function µ(δ) in reasonable time. Observe that the
method presented in this work approximates the value of µ for one value of δ. Fur-
ther, it would be interesting to examine whether the behavior of the µ(δ) function
actually corresponds to the one conjectured here for the practice-relevant shapes. It
is not immediately clear how the δ values of interest can be formally characterized
and automatically detected, and whether the relevant values can be found without
computing the complete µ(δ) function.

Alternative Distributions

The probabilistic approach presented here can be combined with alternative prede-
fined mass distribution functions along the curves of the shapes. In the description
and analysis of the method above we suggested the generation of random samples
under uniform distribution with respect to the length of curves. This implies that
every part of the shape of equal length is equally important and the best matching
transformation is the one that maps the parts of maximal length into proximity of
each other, which is a reasonable definition for many applications.

However, if it is known a priori that some parts of the shapes are more important
than the others, then by assigning those parts higher probability we can achieve that
the transformations mapping important parts into proximity of each other receive
higher weight.

Trademark images are a good example of shapes containing components of dif-
ferent importance. Many trademark images are enclosed in frames, which can be
a rectangle, circle or an oval shape. Such a frame curve usually has a relatively
large length and, therefore, a relatively high weight within the shape. However, it is
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clear that for the human perception the symbol within the frame has much higher
importance. So we would like to have shapes with the same trademark symbol en-
closed in differently shaped frames to be rated more similar than two shapes with
circular frames but different trademark symbols. This can be achieved by assigning
lower probability to the frame curves and higher probability to the main symbol,
thus changing the mass distribution within the shape. If the frame detection, or
detection of other unimportant features is performed automatically and the parts of
the shape can be classified with some certainty factor, the reduction of mass can also
be performed proportionally to that factor.

This idea can be generalized to arbitrary mass distributions along the curves
instead of assigning importance to some parts of the shapes. For natural contour
shapes Attneave [10] suggested in 1954 that information along visual contours is
concentrated in regions of high magnitude of curvature, rather than being distributed
uniformly along the contour. This suggestion was confirmed by several subsequent
experimental studies. Furthermore, Feldman and Singh [25] give a formal derivation
of this claim, yielding a mathematical expression for information concentration along
the contour as a function of contour curvature. Moreover, they extend Attneave’s
claim to incorporate the role of sign of curvature, not just magnitude of curvature.
Thus, for matching contours of natural objects the mass distribution along the curves
could be adjusted according to the information concentration formulas derived by
perception psychologists.

Observe that the general statements of Section 3.2 about the underlying similarity
measure for the probabilistic algorithm remain true for alternative mass distributions.
Also the interpretation that the best matching transformation for two shapes is the
one that maps the largest parts into δ-proximity of each other is still true. Although
the largest parts are no longer the parts of the maximum possible length, but the
parts with maximum total weight, or importance, that can be matched under allowed
transformations.

3.4.3 Higher Dimensions

The probabilistic method described in this thesis is not restricted to matching shapes
represented by planar curves. Rather there are several possibilities to extend the
results presented here to matching shapes in higher dimensions. Observe that there
are two types of dimensions that can be considered: the dimension of shapes, which
is one in this work, and the dimension of the space containing shapes, which we call
image space. The dimension of the image space is two in this work.

The dimension of the transformation space depends on the dimension of the image
space and the class of transformations. So for example, the space of translations
of the d-dimensional image space has also the dimension d. A rotation in a d-
dimensional space has d(d − 1)/2 degrees of freedom. Thus, rigid motions in d-
dimensional space have d(d+ 1)/2 parameters. Similarity transformations have one
additional parameter – scaling, i.e., the space of similarity transformations of d-
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dimensional image space has dimension d(d + 1)/2 + 1. The more general affine
transformations have d × d parameters of the linear transformation matrix plus d
parameters for the translation vector.

We expect that properties and approximation bounds similar to those given in
this work can be shown for the probabilistic method applied to matching of shapes
of dimension at most d− 1 in d-dimensional image space with an appropriate choice
of random samples. Mohajer [46] studied in her Master’s thesis experimentally the
probabilistic method for matching surfaces, that is, two-dimensional objects, in three-
dimensional space under translations, rigid motions and similarity transformations.

The situation is different if a similar probabilistic approach is applied to matching
shapes of dimension d in d-dimensional image space. Together with Helmut Alt
and Daria Schymura we showed in [7] that for polygonal shapes in the plane and
transformation classes translations and rigid motions the probabilistic algorithm finds
a transformation approximately maximizing the area of overlap of two given shapes.
The analysis of the properties of the probabilistic method in combination with other
transformation classes is a subject of ongoing research by Daria Schymura. The
proof that the underlying similarity measure in case of translations is the area of
overlap can be adopted to higher dimensions in a straight forward manner, whereby
the similarity measure is the d-dimensional volume of the intersection of two shapes.

The generalizations of the algorithm to higher dimensions are rather of theoretical
interest, since for practical use the running time of the clustering by arrangement of
δ-regions becomes infeasible. For practical purposes it is reasonable to modify our
technique and enhance it with heuristic methods.

Of course, the probabilistic method presented here is also applicable for matching
discrete point sets. In discrete setting the measure of a point set is to be under-
stood as the number of points contained in that set. It is then closely related to
a randomized version of the generalized Hough transform. The underlying resem-
blance measure is then the maximum possible number of correspondences between
the points of two shapes. Due to consideration of δ-regions in transformation space
instead of single transformation vectors, two points a ∈ A and b ∈ B are considered
to be matched not only if b is mapped exactly to a but also if it is mapped into a
δ-neighborhood of a for some specified tolerance parameter δ.

3.4.4 The Adaptive Heuristic

In this section we briefly describe an idea of the adaptive clustering heuristic. The
motivation for this heuristic is the observation that the probabilistic method gen-
erates many sample pairs that do not result in a good correspondence between the
shapes, and thus produce δ-regions in sparsely covered regions of the transformation
space. Another simple observation we can make is that if two shapes have large
matching parts for some tolerance value δ1 then these parts still match for a larger
tolerance value δ2 > δ1.

The main idea of the adaptive heuristic is to set the tolerance parameter δ to
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some large value at the beginning of the algorithm. This initial value should be
selected significantly larger than that specified by the user. After some (not too large)
number of experiments the clustering is performed and densely sampled regions in
the transformation space are identified.

In the next stage the value of δ is reduced and the generation of samples is
restricted to only such pairs that produce a δ-region in a dense region of the trans-
formation space. After another set of random experiments clustering is performed
again and the region of allowed transformations is further restricted. This process is
repeated until δ is reduced to the user specified value.

Since the adaptive matching process changes the distribution of votes compared
to the general probabilistic matching, the measure of resemblance between the shapes
can no longer be derived directly from clustering results. Therefore, an additional
verification procedure for the best candidate transformations might be necessary.

Alternatively to the predefined tolerance value δ, we could let the user specify the
required size of matching parts of the shapes and iteratively find the smallest value
of δ for which the matched parts are still large enough. In this scenario the minimum
value of δ for which the shapes still match to a sufficiently large extent serves as the
dissimilarity measure and no additional verification procedure is needed.

The major open problem in this heuristic is the generation of sample pairs in
such a way that the corresponding δ-region is contained in a certain region of the
transformation space.



Chapter 4

Analysis of the Density Function
of the Probability Distribution

In this section we analyze the probability distribution of the “votes” in the trans-
formation space. That is, if we record for each sample pair the transformation that
maps the sample of the shape B to the sample of the shape A, we get a certain
distribution of transformation vectors. For some of the transformations considered
in this work (translations and rigid motions) the density function induced by the
random experiment can be analysed and a closed form of that function is given here.
For other transformations, such as similarity maps, an exact analysis seems to be
very hard. Even deriving a closed form for the density function of the distribution
of the scaling factor for rather simple shapes, e.g., shapes consisting of two straight
line segments, involves an extensive case distinction. Therefore, we restrict the anal-
ysis of the scaling factor distribution to just few simple shape classes and report the
experimental density function evaluation on the MPEG-7 dataset in Appendix A.

For the case of translations and for the rigid motions we show that the density
function of the induced probability distribution corresponds to the generalized Radon
Transform. A general form of the Radon Transform with respect to images as defined
in [30] is given in Section 2.3.3.

In our case the shapes are one-dimensional objects in two-dimensional image
space. Let CA : R2 → R denote the constraint function of the shape A, that means
CA(p) = 0 iff a point p ∈ A. And let CB : R2 × T → R be the constraint function
of the shape B with transformation t ∈ T applied, CB(p, t) = 0 iff p ∈ t(B) or,
equivalently, iff t−1(p) ∈ B, where t−1 denotes the inverse transformation. Assume
that the constraint functions fulfill the property that a 2-dimensional integral of
δ(CA(p)), or δ(CB(p, t)) for a fixed t respectively, over a region R ⊂ R2 evaluates
to the 1-dimensional volume (length) of the part of the shape contained in R. Then
the Equation (2.4) defining the Radon transform of the shape A with respect to the
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shape B can be written as:

RB(A, t) =
∫

R2

δ(CA(p))δ(CB(p, t)) d p . (4.1)

The Radon transform provides a mapping from image space to parameter space,
which is the transformation space here. The function created in the transformation
space contains peaks for those t, for which t(B) is (partially) present in image A.
For other transformations t′ the function evaluates to a finite number proportional
to the number of intersections between t′(B) and A.

Let XA and XB denote two-dimensional random variables that contain coordi-
nates of the points drawn randomly, uniformly distributed with respect to length
from the shapes A and B, respectively. The probability density functions fA(p) of
XA and fB(p) XB are defined as

fA(p) =
1
|A|δ(CA(p)) and fB(p) =

1
|B|δ(CB(p, 0)).

fA and fB fulfill the properties of probability density functions:
∫

R2 fA(p) d p = 1
and Pr(XA ∈ R ⊂ R2) =

∫
R fA(p) d p = |R∩A|

|A| , analogous holds for fB.

4.1 Translations

LetXT denote the two-dimensional random variableXT = XA−XB, that is, XT con-
tains the coordinates of the translation vector generated by one random experiment
of the probabilistic algorithm. The random variable XT is a sum of two indepen-
dent random variables XA and −XB and, thus, has the following density function,
see [32]:

fT (t) =
∫

R2

fA(a)fB(a− t) d a

=
1

|A| |B|
∫

R2

δ(CA(a))δ(CB(a− t, 0)) d a

=
1

|A| |B|
∫

R2

δ(CA(a))δ(CB(a, t)) d a

=
1

|A| |B|RB(A, t) by equation (4.1)

Therefore, the density function of the probability distribution in the translation space
corresponds to a generalized Radon transform weighted by a factor 1

|A||B| .
In the following we deduce a closed formula for the Radon transform for the case

where shapes A and B are represented by finite sets of straight line segments.

The generalized Radon transform of straight line segments. Let sa and sb
be straight line segments defined by their end points a1, a2 and b1, b2. Consider the
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straight lines ga and gb supporting these segments. The normal form, also called
Hesse standard form, of a line ga is

ga : ka − x cos θa − y sin θa = 0 ,

where θa is the angle of inclination of the normal and ka is the length of the normal.
The values of cos θa, sin θa and ka can be found as cos θa = (a1y − a2y)/|sa|, sin θa =
(a2x − a1x)/ |sa| and ka = (a1ya2x − a1xa2y)/ |sa|. The constraint function for ga
is CA(x, y) = ka − x cos θa − y sin θa and it fulfills the integral constraints required
above. The parametric form of ga can then be defined as

gax(s) = ka cos θa − s sin θa (4.2)

gay(s) = ka sin θa + s cos θa

for s ∈ R. The segment sa corresponds then to s ∈ Ia ⊂ R for some interval Ia.
Analogously we can find normal and parametric form for gb.

The Radon transform of the line ga with respect to the segment sb for transforma-
tion parameter t = (tx, ty) can be written according to the form (2.3) in Section 2.3.3
in a following way (see also [57]):

Rsb(ga, t) =
∫
s∈Ib

δ (ka − (gbx(s) + tx) cos θa − (gby(s) + ty) sin θa) d s

=
∫
s∈Ib

δ (k∗ − kb cos(θb − θa) + s sin(θb − θa)) d s ,

where k∗ = ka − tx cos θa − ty sin θa.
Now if the line segments are not parallel, that is sin(θb − θa) 6= 0, then for every

translation t there is at most one value of s such that k∗−kb cos(θb− θa) + s sin(θb−
θa) = 0. Furthermore, for t ∈ ga ⊕ (−sb) = T ′b there exists exactly one value of s
and for all other t none. Thus, for t ∈ R2 \T ′b the Radon transform Rsb(ga, t) is zero,
and for t ∈ T ′b there is exactly one s ∈ Ib where the argument of the delta function
evaluates to zero, and according to the integration rules of the delta function

Rsb(ga, t) =
1

|sin(θb − θa)|
∫
s∈Ib

δ

(
ka − kb cos(θb − θa)

sin(θb − θa) + s

)
d s

=
1

|sin(θb − θa)|
If, instead of the line ga, we consider the segment sa the region in the translation
space where the Radon transform is not zero reduces to Tb = sa⊕ (−sb), within this
region, though, the constraint function for the segment sa is exactly the same as for
the line ga and, thus, the value of the Radon transform stays unchanged. Figure 4.1
illustrates the probability density function for two non-parallel segments.

If the segments are parallel we have a one dimensional translation case. As
pointed out in [57] a function g : R2 → R can be represented as

∫
R2 g(x∗, y∗)δ(x −

x∗)δ(y − y∗) dx∗ d y∗. Using parameterization of the segment we can represent sa
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a2

a1

b2b1

α = θa − θb

sa

sbα
α

a2 − b2

a1 − b2 a1 − b1
a2 − b1

1/| sinα|

Figure 4.1: Density function of the vote probability distribution for two non-parallel
segments.

as
∫
s∈Ia δ(x − gax(s))δ(y − gay(s)) d s, and sb analogously. Then, we can write the

Radon transform of sa with respect to sb in a following way:

Rsb(sa, t) =
∫

(x,y)∈sb+t

∫
q∈Ia

δ(x− gax(q))δ(y − gay(q)) d q dx d y

=
∫
s∈Ib

∫
q∈Ia

δ(gbx(s) + tx − gax(q))δ(gby(s) + ty − gay(q)) d q d s

Since the segments are parallel the integral evaluates to zero for all t that do not
lie on the segment Tb = sa ⊕ (−sb). For a translation t ∈ Tb and a fixed value of
s, that is, a fixed point on the translated segment sb, there exists at most one value
of q (representing a point on sa that coincides with the point gb(s) + t) such that
the arguments of the δ-functions evaluate to zero. These s, q-pairs correspond to the
points where the segments sa and sb + t overlap. Thus, the Radon transform for
t ∈ Tb is

Rsb(sa, t) = |sa ∩ (sb + t)| δ((ka − kb)− tx cos θa − ty sin θa) ,

where |sa ∩ (sb + t)| denotes the length of the overlapping parts and δ((ka − kb) −
tx cos θ − ty sin θ) constrains the vectors t to the line containing Tb. The density
function in this case is illustrated in Figure 4.2.

a2

a1
b2

b1

sa

sb a2 − b2

a1 − b2

a1 − b1

a2 − b1

Figure 4.2: Density function of the vote probability distribution for two parallel
segments.

Now if our shapes A and B both consist of a finite number of straight line segments,
then the density function of the corresponding distribution in the translation space
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is the weighted sum over all pairs of segments and can be written as

fT (t) =
∑
sa∈A

∑
sb∈B

|sa| |sb|
|A| |B|

1
|sa| |sb|Rsb(sa, t)

=
1

|A| |B|
∑
sa∈A

∑
sb∈B

Rsb(sa, t).

That is, the support of the density function is composed of all pairwise regions, and
if two or more regions overlap, the values of the density function in the intersection
region is the sum of the corresponding Radon transform values, see Figure 4.3

sa1

sa2

sb1

sb2

A

B
sa1 ⊕ (−sb2)

sa2 ⊕ (−sb1)

sa1 ⊕ (−sb1)

sa2 ⊕ (−sb2)

T = A⊕ (−B)

Figure 4.3: Density function in the translation space for two shapes A and B each
consisting of two straight line segments.

By considering the arrangement of the δ-regions of votes in the translation space
we perform a so-called kernel-based density estimation, see [54]. The kernel-function
is in this case a “box”-function which is 1/N on a δ-region and zero elsewhere, where
N is the number of δ-regions.

Transformation of random variables. In the above paragraph we gave a geo-
metric reasoning for the closed form of the Radon transform for straight line seg-
ments. Here we show that the same expression for the density function can be derived
from the transformation of random variables. Consider parameterization of segments
given by Equation (4.2). If sa and sb are not parallel, then the distribution of votes
in translation space is non-zero on a parallelogram T = sa ⊕ (−sb) and the function
ϕ : Ia×Ib → T with ϕ(s, r) = ga(s)−gb(r) is a bijection. The uniform distribution of
points on segments sa and sb corresponds to the uniform distribution of parameters
s and r over the interval Ia and Ib, respectively. The density function on T under
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transformation ϕ is defined as

fϕ(vx, vy) = fs,r(s, r)
1∣∣∣∂(vx,vy)

∂(s,r)

∣∣∣ ,
where fs,r(s, r) denotes the joint density function of the parameters s and r and

∂(vx, vy)
∂(s, r)

= det

(
g′ax(s) −g′bx(r)

g′ay(s) −g′by(r)

)

=

∣∣∣∣∣− sin θa sin θb
cos θa − cos θb

∣∣∣∣∣
= sin θa cos θb − cos θa sin θb
= sin(θa − θb) .

Observe that in the parametric representation given by Equation (4.2) the length
of a segment corresponds to the length of the parameter interval which defines the
segment. Therefore, and since the parameters s and r are independent, the density
function on T is

fϕ(vx, vy) =
1

|sa| |sb|
1

|sin(θa − θb)| .

If the segments sa, sb are parallel, that is, θa = θb = θ, then T = sa ⊕ (−sb) is a
segment in R2, with parametric representation

gTx(q) = (ka − kb) cos θ − q sin θ

gTy(q) = (ka − kb) sin θ − q cos θ ,

where q = s−r and if Ia = [s0, s1], Ib = [r0, r1] then q ∈ [s0−r1, s1−r0] = IT . In this
case the distribution of votes over T corresponds to the distribution of parameter
values q over IT . q is the sum of two independent random variables s and −r and
has the density function

fq(q) =
∫ ∞
−∞

fs(q + r)fr(r) d r

=
1
|sb|

∫
Ib

fs(q + r) d r since fr(r) =
1
|sb| on Ib and 0 else

=
1
|sb|

∫
Ib∩Ia−q

1
|sa| d r since fs(s) =

1
|sa| on Ia and 0 else

=
1

|sa| |sb| |Ib ∩ (Ia − q)|

=
1

|sa| |sb| |(Ib + q) ∩ Ia| .
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As we have already mentioned, the length of the parameter interval corresponds to
the length of the segment defined by this interval. The value of the density func-
tion for the parameter q is, therefore, proportional to the length of the overlapping
segment induced by q.

The density function in two-dimensional translation space is then:

fT (tx, ty) =
1

|sa| |sb| |sa ∩ (sb + t)| δ((ka − kb)− tx cos θ − ty sin θ) .

Observe that the density function can be integrated over a two-dimensional region
for non-parallel as well as for parallel segments.

4.2 Rigid Motions

Random rotation angle

We first consider the variant of taking a random point of each shape and a random
rotation angle to determine a rigid motion. We show that in this case the den-
sity function of the probability distribution in transformation space is the weighted
generalized Radon transform and derive a closed formula to compute it.

We introduce a new random variable Xr corresponding to the rotation angle with
density function fr(α) = 1

2π . The transformation space is now T = R2 × [0, 2π]. Let
P = V × I denote a region in T where V ⊂ R2 and I ⊂ [0, 2π], the probability
distribution on T is then:

F (P ) = Pr(p ∈ P ) = Pr(Xr ∈ I,XA −Xr(XB) ∈ V )

=
∫
α∈I

fr(α) Pr(XA − α(XB) ∈ V ) dα

=
∫
α∈I

1
2π

∫
v∈V

∫
x∈R2

fA(v(α(x)))fB(x) dx d v dα

=
1

2π |A| |B|
∫
α∈I

∫
v∈V

∫
x∈R2

δ(CA(x))δ(CB(α(x), v)) dx d v dα

=
1

2π |A| |B|
∫
p∈P

∫
x∈R2

δ(CA(x))δ(CB(x, p)) dx d p

=
1

2π |A| |B|
∫
p∈P

RB(IA, p) d p (4.3)

Closed formula. In order to find a closed form of this density function we again
first consider A and B consisting of a single segment sa and sb respectively, in
parameter representation as given by (4.2). Note that the parameter form of the line
supporting segment sb under rotation α has following form:

gbx(r) = ka cos(θb + α)− r sin(θb + α)

gby(r) = ka sin(θb + α) + r cos(θb + α) .
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The function ϕ : [0, 2π) × R2 → [0, 2π) × R2 with ϕ(α, s, r) = (α, ga(s) −Mαgb(r))
is a bijection except for two values of α (θa − θb and θa − θb + π) which makes
the two segments be parallel. Now with these two values excluded and with similar
computations as for the case of translations we find that the density function in the
space of rigid motions is

fT (α, v) =
1

2π |sa| |sb| ·
1

|sin(θa − θb − α)| .

For the two values of α, for which the rotated segment sb is parallel to the segment
sa the computations are again similar to those in case of translations, which gives us
the following density function:

fT (α, vx, vy) =
1

2π |sa| |sb| |sa ∩ (Mαsb + v)| δ((ka − kb)− vx cos θa − vy sin θa) .

Note that in this case we have a delta-function defined only in the translation planes
corresponding to some special values of α. Putting it together we get:

fT (α, v) =



1
2π|sa||sb| ·

1
|sin(θa−θb−α)| , if α /∈ {θa − θb, θa − θb + π}

and v ∈ sa ⊕ (−Mαsb)
1

2π|sa||sb| |sa ∩ (Mαsb + v)| δ((ka − kb)− vx cos θa − vy sin θa) ,

if α ∈ {θa − θb, θa − θb + π}
0 , else.

Rotation angle determined by direction of tangent lines

In this case a random experiment consists of taking a random point from each shape
a ∈ A, b ∈ B and determining the angle between the tangent line to the curve at
the selected point and the x-axis. Since we consider the curves to be undirected, we
also consider the tangent lines to be undirected. Then there are exactly two rotation
angles that transform the tangent at the point b to a line parallel to the tangent
at the point a. So there are exactly two rigid motions that map the point b to the
point a so that their tangents are parallel. The rotation angles α1, α2 are determined
from the difference of slopes of the tangent lines and the translation vectors v1, v2

are computed as vi = a −Mαib, where i ∈ {1, 2} and Mαi is the rotation matrix
corresponding to the angle αi.

If A and B both consist of polygonal curves and the tangent directions are not
interpolated, then, obviously, there are finitely many directions of tangents and, thus,
rotation angle α can have finitely many values. The probability for a certain value
of α to occur equals the probability of selecting points on the “right” segments, that
is, the segments that have difference in tangent angles exactly α.

For the formal definition we introduce some additional notation: Let sa1, . . . , san
be the segments contained in shape A and sb1, . . . , sbm the segments of shape B.
Further, let LA, LB denote the total length of curves in A and B respectively, Lai
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denotes the length of the segment sai and Lbj the length of sbj . Further, let θai, kai
and θbj , kbj denote the parameters of the normal form of the lines containing the
segments sai and sbj , respectively. The density of the distribution of rotation angles
can be expressed as

fα(α) =
∑

1≤i≤n
1≤j≤m

LaiLbj
LALB

δ(θai − θbj − α) +
∑

1≤i≤n
1≤j≤m

LaiLbj
LALB

δ(θai + π − θbj − α) ,

where δ is Dirac’s delta-function.
For each fixed value of α that has non-zero probability we get only the votes from

the segments that are parallel if B is rotated by α. As we have seen above, these
votes are distributed along a line segment in the corresponding translation plane.
Combining these two observations we get that the votes in three dimensional space
of rigid motions are distributed along at most 2 · n · m straight line segments and
have the following density function:

fT (α, v) =
1

LALB

∑
1≤i≤n
1≤j≤m

|sai ∩ (Mαsbj + v)| · δ(kai − kbj − vx cos θai − vy sin θai)

· (δ(θai − θbj − α) + δ(θai + π − θbj − α)) .

4.3 Distribution of the Scaling Factor

It is an intuitive technique to reduce the dimensionality of the space in consideration,
e.g., space of the similarity transformations, by considering the dimensions separately.
So one could first determine the “best” scaling factor k for two given shapes A and B.
Then the shape B is scaled by the factor k and the shapes A and k ·B are matched
under rigid motions. The matching under rigid motions might again be split into
determining the rotation angle separately and then matching under translations.

In this section we consider the distribution of the scaling factor in the following
random experiment: Given two shapes A and B, two points from each shape a1, a2 ∈
A, b1, b2 ∈ B are chosen randomly under uniform distribution with respect to length.
With every four such points we associate a random variable Xs = dist(a1,a2)

dist(b1,b2) , where
dist(·, ·) denotes the Euclidean distance between two points. That is, Xs is the scaling
factor that would map the segment b1b2 to a segment of length equal to the length
of a1a2.

Let Xda = dist(a1, a2) and Xdb = dist(b1, b2) denote the random variables as-
sociated with the distance between two randomly generated points on each of the
segments and fda, fdb the corresponding density functions. Note that Xda and Xdb

are independent and their joint density function is, therefore, a product of the indi-
vidual density functions.
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Then Xs = Xda
Xdb

and the density function fs of Xs is defined by

fs(z) =
∫ ∞
−∞
|x| fda(zx)fdb(x) dx . (4.4)

This follows from a more general statement in the following Lemma:

Lemma 4.1. Let X,Y be continuous random variables with joint density function
fXY , then the density function of Z = X/Y is

fZ(z) =
∫ ∞
−∞
|y| fXY (yz, y) d y for z ∈ R .

Proof. For jointly continuous variables X,Y and any regular subset A of R2 it is
known that P ((X,Y ) ∈ A) =

∫∫
A fXY (x, y) dx d y (see e.g. [32, Theorem 6A]).

Consider the region Az defined as the set of (x, y) such that x/y ≤ z, that is,
Az =

{
(x, y) ∈ R2 : x/y ≤ z}. The condition x/y ≤ z is equivalent to x ≤ yz for the

positive values of y and to x ≥ yz for the negative y as depicted in Figure 4.4.

x

y

x = yz

Figure 4.4: Shaded region denotes Az, drawn for the case z > 0.

Then the distribution function of Z is defined by

FZ(z) =
∫ ∞

0

∫ yz

−∞
fXY (x, y) dx d y +

∫ 0

−∞

∫ ∞
yz

fXY (x, y) dx d y .

The density fZ is found by differentiating FZ to obtain

fZ(z) =
d

d z
FZ(z) =

∫ ∞
0

yfXY (yz, y) d y +
∫ 0

−∞
−yfXY (yz, y) d y

=
∫ ∞
−∞
|y| fXY (yz, y) d y .

The distribution of the scaling factor obviously depends on the distribution of
point distances on the shapes. In the following we examine this distribution for some
basic cases.
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4.3.1 Distance Distribution on a Line Segment

Here we examine the distribution of the point distances on a line segment. The
corresponding random experiment is the following: Given a segment s of length L,
two points are selected randomly on s under uniform distribution with respect to
length, and the distance between these points is assigned to the random variable Xd.

Observe that this random experiment is equivalent to selecting two real numbers
x1, x2 in the interval [0, L] and computing the absolute difference between them
Xd = |x1 − x2|. The numbers x1, x2 correspond to the parameter values in the
natural parameterization of a segment, and the absolute difference of the parameter
values is exactly the Euclidean distance between the corresponding points. The
density function f(x) of the numbers x1, x2 equals to 1

L for x ∈ [0, L] and zero
elsewhere.

Consider first the distribution of the difference Xd′ = x1 − x2. By the formula
for the sum of random variables we get:

fd′(z) = −
∫ ∞
−∞

f(x)f(x− z) dx =
∫ min(L,L+z)

max(0,z)

1
L2

dx ,

which resolves into a symmetric function

fd′(z) =


L−z
L2 for 0 ≤ z ≤ L
L+z
L2 for − L ≤ z ≤ 0

0 else

.

Since Xd = |Xd′ |, the density of Xd is fd(z) = fd′(z) + fd′(−z) = 2fd′(z) = 2L−z
L2 if

0 ≤ z ≤ L and zero otherwise. Thus, the density of the distance variable Xd is

fd(x) =

{
2L−x
L2 for 0 ≤ x ≤ L

0 else
. (4.5)

The expected value of the distance variable Xd is E(Xd) = 1
3L.

4.3.2 Distribution of the Scaling Factor for two Line Segments.

Let the shapes A and B consist of a single straight line segment of length La and
Lb respectively. Then the density functions of the random variables denoting the
distance between two random points of each shape are according to Equation (4.5):

fda(x) =

{
2La−x

L2
a

for 0 ≤ x ≤ La
0 else

fdb(x) =

2Lb−x
L2
b

for 0 ≤ x ≤ Lb
0 else

.
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To compute the distribution of the scaling factor variable Xs we can plug these
function into the equation (4.4):

fs(z) =
∫ ∞
−∞
|x| fda(zx)fdb(x) dx

=
4

L2
aL

2
b

∫ min(Lb,La/z)

0
x(La − zx)(Lb − x) dx .

The expression has to be integrated separately for 0 ≤ z ≤ La
Lb

and for z > La
Lb

:

If 0 ≤ z ≤ La
Lb

: fs(z) =
4

L2
aL

2
b

∫ Lb

0
x(La − zx)(Lb − x) dx

= −zL
2
b

3L2
a

+
2Lb
3La

.

If z ≥ La
Lb

: fs(z) =
4

L2
aL

2
b

∫ La/z

0
x(La − zx)(Lb − x) dx

= − L2
a

3z3L2
b

+
2La

3z2Lb
.

The plot of the function fs is depicted in Figure 4.5(a).

2
3

Lb

La

La

Lb

0

(a) Plot of the density function.

0 2 4 6 8 10

(b) Experimentally con-
structed density function.

Figure 4.5: Density function of the random variable corresponding to the scaling
factor.

The expectation value of Xs does not exist since the integral
∫∞

0 z ·fs(z) d z does
not evaluate to a real value.

Since the density function fs(z) of the scaling factor distribution attains its max-
imum at z = 0 the described experiment is not suitable for the computation of the
“best” scaling factor for two line segments separately from rotation and translation.
By the “best” scaling factor for two line segments we mean the factor of the scaling
transformation that transforms the segment B to a segment of the length La, that
is z = La

Lb
. Thus, for the purpose of being able to determine the appropriate scaling

factor for two figures from the described experiment, we need to modify this func-
tion in a way that penalizes small scaling factors. One function with this property is
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f(z) = z · fs(z), see Figure 4.6. The intuition behind the choice of the function f(z)
is that the multiplicative factor z penalizes small scaling factors directly, proportion-
ally to the value of the scaling factor. Additionally, since the function fs(z) decreases
rapidly for large values of z, multiplication with z does not overweight large scaling
factors. Namely, for large values of z the function remains monotone decreasing. In
fact, the function f(z) has exactly one maximum at z = La

Lb
: The derivative

f ′(z) =

−
2Lb
3L2

a
(zLb − La) , 0 ≤ z ≤ La

Lb

−2La
3L2

b

(zLb−La)
z3

, z > La
Lb

is zero for z = La
Lb

, and the second derivative at that point is negative.

La

Lb

fs(z)

z

z · fs(z)

Figure 4.6: Graphs of the density function fs(z) of the scaling distribution for two
line segments and of the function z ·fs(z). The function z ·fs(z) attains its maximum
at z = La

Lb
.

The modified scale distribution function is easy to approximate experimentally
with standard binning techniques and it performs well on the MPEG-7 Shape B
dataset (see Section A.2) in sense that the scaling factor where the modified distribu-
tion function attains its maximum is the factor that makes the shapes approximately
equally large.

4.3.3 Distance Distribution on a Circle

Selecting a point randomly uniformly distributed on a circle of radius r corresponds to
selecting an angle ϕ uniformly randomly from the interval [0, 2π). The corresponding
point is then (r cosϕ, r sinϕ). So if we want to select two points randomly on a circle,
we need to select two angles ϕ1, ϕ2 independently randomly uniformly distributed
from the interval [0, 2π). The density function of the angle variables ϕ1, ϕ2 is f(x) =
1

2π for x ∈ [0, 2π) end 0 elsewhere. The distance between the corresponding points
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p = (r cosϕ1, r sinϕ1) and q = (r cosϕ2, r sinϕ2) is

dist(ϕ1, ϕ2) = r
√

(cosϕ1 − cosϕ2)2 + (sinϕ1 − sinϕ2)2

= r
√

2− 2(cosϕ1 cosϕ2 + sinϕ1 sinϕ2)

= r
√

2− 2 cos(ϕ1 − ϕ2) .

In the following we examine the distribution of the distance random variable Xd =
dist(ϕ1, ϕ2).

Let g(z) denote the maximal absolute difference that the angles ϕ1, ϕ2 can have
so that the distance between points p and q is at most z. Obviously we are only
interested in 0 ≤ z ≤ 2r. Since dist(ϕ1, ϕ2) ≤ z iff dist2(ϕ1, ϕ2) ≤ z2, we get that

g(z) = arccos
(

1− z2

2r2

)
.

The probability that the distance between two randomly drawn points is at most
z, that is, the distribution function of the random variable Xd, can be expressed as

Fd(z) = Pr(Xd ≤ z) =
∫ 2π

ϕ1=0

∫ ϕ1+g(z)

ϕ2=ϕ1−g(z)
f(ϕ1)f(ϕ2) dϕ2 dϕ1 ,

where the addition and subtraction operation in the integral boundaries are meant to
be performed modulo interval boundaries of the interval [0, 2π]. The density function
can be found as

fd(z) =
d

d z
Fd(z)

=
∫ 2π

ϕ1=0

∂

∂z

(∫ ϕ1+g(z)

ϕ2=ϕ1−g(z)
f(ϕ1)f(ϕ2) dϕ2

)
dϕ1 (Leibniz integral rule)

=
∫ 2π

ϕ1=0

(
g′(z) · f(ϕ1)f(ϕ1 + g(z))− (−g′(z)) · f(ϕ1)f(ϕ1 − g(z))

+
∫ ϕ1+g(z)

ϕ2=ϕ1−g(z)

∂

∂z
[f(ϕ1)f(ϕ2)] dϕ2

)
dϕ1

(generalization of Leibniz integral rule, see [38, p. 275])

=
∫ 2π

ϕ1=0
g′(z) · f(ϕ1) (f(ϕ1 + g(z)) + f(ϕ1 − g(z))) dϕ1

=
1

2π2

∫ 2π

ϕ1=0
g′(z) dϕ1 =

1
2π2

g′(z) · ϕ1

∣∣2π
ϕ1=0

=
2

π
√

4r2 − z2
. (4.6)

The function has a pole at z = 2r. The graph of fd(z) is depicted in Figure 4.7.
The expectation value of the distance variable Xd for two points on a circle of radius
r is E(Xd) = 4

π r.
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2r

Figure 4.7: Graph of the distance distribution density function for two points on a
circle.

4.3.4 Distribution of the Scaling Factor for two Circles.

Let the shapes A and B be two circles of radii ra and rb respectively. Then the
density functions of the distance between two randomly chosen points on each shape
are given by Formula (4.6):

fda(x) =


2

π
√

4r2a−x2
for 0 ≤ x ≤ 2ra,

0 else,
fdb(x) =


2

π
√

4r2b−x2
for 0 ≤ x ≤ 2rb,

0 else.

The density function of the scale variable Xs is then according to equation (4.4):

fs(z) =
∫ ∞
−∞
|x| fda(zx)fdb(x) dx

=
4
π2

∫ min{2rb,2ra/z}

0

x√
(4r2

a − z2x2)(4r2
b − x2)

dx

with variable substitution y = x2 and d y = 2x dx we get

=
2
π2

∫ (min{2rb,2ra/z})2

0

1√
(4r2

a − z2y)(4r2
b − y)

d y

=
2
π2

∫ (min{2rb,2ra/z})2

0

1√
z2y2 − y(4r2

bz
2 + 4r2

a) + 16r2
ar

2
b

d y

by completing the square we can further simplify the expression:

=
2
π2z

∫ (min{2rb,2ra/z})2

0

1√(
y − 2(r2bz

2+r2a)

z2

)2
−
(

2(r2bz
2−r2a)

z2

)2
d y

now we perform another variable substitution u = y − 2(r2bz
2+r2a)

z2
:

=
2
π2z

∫ (min{2rb,2ra/z})2−
2(r2b z

2+r2a)

z2

−
2(r2

b
z2+r2a)

z2

1√
u2 −

(
2(r2bz

2−r2a)

z2

)2
d y
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=
2
π2z

ln

∣∣∣∣∣∣u+

√
u2 −

(
2(r2

bz
2 − r2

a)
z2

)2
∣∣∣∣∣∣
∣∣∣∣∣
(min{2rb,2ra/z})2−

2(r2b z
2+r2a)

z2

−
2(r2

b
z2+r2a)

z2

 .

For z ∈ [0, ra/rb] it holds that rb ≤ ra/z and the function fs(z) evaluates to

fs(z) =
2
π2z

(
ln
(
−2(r2

bz
2 − r2

a)
z2

)
− ln

(
2(rbz − ra)2

z2

))
=

2
π2z

ln
(
ra + rbz

ra − rbz
)

.

For z > ra/rb we have that ra/z < rb and

fs(z) =
2
π2z

(
ln
(

2(r2
bz

2 − r2
a)

z2

)
− ln

(
2(rbz − ra)2

z2

))
=

2
π2z

ln
(
rbz + ra
rbz − ra

)
.

Summarising the above computations we get: Given two circles A of radius ra
and B of radius rb, we consider the random experiment where two points on each
shape are chosen randomly uniformly distributed with respect to length. The value
of the scaling factor that makes the distance between the points of the shape B equal
to the distance between the points of the shape A is recorded in the random variable
Xs. The density function of the variable Xs is (see Figure 4.8 for an illustration)

fs(z) =


0 for z < 0,

2
π2z

ln
(
ra+rbz
ra−rbz

)
0 ≤ z ≤ ra

rb
,

2
π2z

ln
(
rbz+ra
rbz−ra

)
z > ra

rb
.

For z approaching zero from the right the limit of the function fs is according to de
l’Hospital’s rule

lim
z→0+

fs(z) = lim
z→0+

2
π2
· 2rarb
r2
a − r2

bz
2

=
4rb
π2ra

.

The function has a pole at z = ra/rb, which is exactly the scaling factor that maps
the radius of the circle B to the radius of the circle A.

Note that the modification to the distribution function f(z) = z ·fs(z) introduced
in the Section 4.3.2, when applied to the scaling distribution function for two circles,
also has a pole at z = ra

rb
and does not introduce any new local maxima.

4.3.5 Distance Distribution on two Line Segments

Given a shape A consisting of two segments s1 and s2 with lengths l1, l2 and total
length L = l1 + l2, consider the following random experiment: Select randomly,
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scalera

rb

fs

Figure 4.8: Graph of the density function of the scale distribution for two circles
plotted by Maple in the fist figure and computed experimentally in the second.

independently, uniformly distributed with respect to length two points on A and
assign the distance between these points to the random variable Xd.

The randomly selected points can either be both on the same segment, or on two
different segments. Thus, the density function fd(x) of the random variable Xd is a
weighted sum of the density functions for each of the two cases:

fd(x) =
∑
i=1,2

l2i
L2
fd1(x, si) + 2

l1 · l2
L2

fd2(x, s1, s2) , (4.7)

where fd1(x, si) denotes the density function of the distance distribution on the
segment si given by Equation (4.5), and fd2(x, s1, s2) denotes the density function of
the distance distribution where one random point is located on the segment s1 and
the other point on the segment s2. The weights l2i

L2 and 2 l1·l2
L2 are the probabilities of

the corresponding events. In the following we examine the distribution of the point
distances between two segments, that is, the function fd2.

Let g1, g2 denote the lines containing segments s1 and s2 respectively, and α

denote the sharp angle between g1 and g2. For simplicity we assume that the lines
g1, g2 are parameterized by length with the property g1(0) = g2(0), that is, their
intersection point corresponds to the parameter value zero on both lines, if g1, g2 are
not parallel, see Figure 4.9(a). If the lines are parallel, choose the position of g1(0)
arbitrarily and the parameterization of g2 such that g2(0) is the closest point of g2 to
g1(0), see Figure 4.9(b). Then the segments s1 and s2 correspond to some parameter
value intervals I1 = [ιl1, ι

u
1 ], I2 = [ιl2, ι

u
2 ] ⊂ R, and the squared Euclidean distance

between two points g1(λ1) and g2(λ2) for some parameter values λ1, λ2 is given by

d2(λ1, λ2) = λ2
1 + λ2

2 − 2λ1λ2 cosα (4.8)

for non-parallel lines, and by

d2(λ1, λ2) = (λ1 − λ2)2 + d2(g1, g2) (4.9)

for the parallel lines, where d(g1, g2) denotes the distance between the lines.
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|λ1 − λ2|
(b) parallel segments

.

Figure 4.9: Two segments s1 and s2 and their supporting lines.

For every point g1(λ1) and the distance value z ≥ 0 (z ≥ d(g1, g2) for parallel
lines), there exists an interval I(λ1, z) ⊂ R such that ∀λ2 ∈ I(λ1, z) the distance
d(λ1, λ2) ≤ z. The interval I(λ1, z) is

I(λ1, z) = [λ1 cosα−
√
z2 − λ2

1 sin2 α, λ1 cosα+
√
z2 − λ2

1 sin2 α] ,

for non-parallel lines, and

I(λ1, z) = [λ1 −
√
z2 − d2(g1, g2), λ1 +

√
z2 − d2(g1, g2)] ,

for parallel lines. Then the probability that in one random experiment the distance
between two points is at most z, that is, the probability distribution function can be
written as

Fd2(z) =
∫
λ∈I1

∫
λ2∈I′2

f1(λ1)f2(λ2) dλ2 dλ1 ,

where I ′2 = I2 ∩ I(λ1, z) and fi(λi), i = 1, 2, denote the density functions on the
segments, i.e., fi(λi) = 1

li
for λi ∈ Ii and 0 otherwise.

Let ι′′u(λ1, z) and ι
′′
l (λ1, z) denote the upper and lower bounds of the interval

I ′2. Since the functions f1, f2 are constant over the integration interval we can sim-
plify Fd2:

Fd2(z) =
1
l1l2

∫
λ∈I1

ι
′′
u(λ1, z)− ι′′l (λ1, z) dλ1 .

In order to be able to further specify the distribution and the density function, we
need to take a closer look at the intervals I(λ1, z), I2 and I1. Each of the upper and
lower bounds of the interval I ′2 can be defined by the corresponding bound either of
the interval I2 or the interval I(λ1, z), giving thus four possible cases for the interval
bounds plus the possibility of the interval I(λ1, z) being empty:

1©. Both upper and lower bounds are defined by I(λ1, z).

2©. The upper bound is defined by I(λ1, z) and the lower bound by I2.
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3©. The upper bound is defined by I2 and the lower bound by I(λ1, z).

4©. Both upper and lower bounds are defined by I2.

5©. The interval I(λ1, z) is empty.

Note that depending on the distance z and the relative position of the segments, mul-
tiple or even all these cases might occur for the values λ1 in the interval I1. Examples
of the occurrence of each of the described cases are shown in the Figure 4.10. The

4© 3©2©1© 5©

1©

λ1

λ2

I1

I2

(a) non-parallel segments

3©

2© 1© 5©

λ1

λ2

I1

I2
4© 3©2©

λ1

λ2

I1

I2

(b) parallel segments

Figure 4.10: An example of the combination of I1, I2, I(λ1, z) for non-parallel and
parallel segments where each of the described cases occurs over some subinterval of I1.
Shaded regions denote the parameter values (λ1, λ2) such that d(g1(λ1), g2(λ2)) ≤ z
and λ1 ∈ I1, λ2 ∈ I2.

function Fd2 is then a sum of the integrals over the intervals I ′1(z) = [ι′l(z), ι
′
u(z)] ⊂ I1

such that the bounds of I ′2 belong to the same case for every λ1 ∈ I ′1(z). Let F ′d2(z)
denote the summand of Fd2(z) over an interval I ′(z). The function F ′d2 has the form

F ′d2(z) =
1
l1l2

∫ ι′u(z)

λ1=ι′l(z)
ι
′′
u(λ1, z)− ι′′l (λ1, z) dλ1 .

The density function fd2 of the distance distribution is the derivative of the
distribution function and is therefore a sum of the derivatives f ′d2 of the F

′
d2 functions:

f ′d2(z) =
d

d z
F ′d2(z)

=
1
l1l2

[(
ι
′′
u(ι′u(z), z)− ι′′l (ι′u(z), z)

) d
d z

ι′u(z)

−
(
ι
′′
u(ι′l(z), z)− ι

′′
l (ι′l(z), z)

) d
d z

ι′l(z)

+
∫ ι′u(z)

λ1=ι′l(z)

∂

∂z

[
ι
′′
u(λ1, z)− ι′′l (λ1, z)

]
dλ1

]
.

In the following we show how the function fd2 is determined on the basis of
an example of two non-parallel intersecting segments depicted in Figure 4.9(a). As
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described above, for every distance value z there is a certain combination of sub-
intervals of I1 that determine a decomposition of the function fd2 into a sum. Fur-
thermore, the order and type of the intervals does not change over a certain interval of
the distance values z. We call the values of z, where the combinatorial configuration
of the subintervals changes, the event points.

It is known and is easy to see from the expression (4.8), that the parameter
values (λ1, λ2) such that d(g1(λ1), g2(λ2)) ≤ z form an ellipse E(z) in the parameter
space. The intervals I1, I2 define an axis-parallel rectangle. Thus, the points on the
segments s1, s2 with distance at most z between them correspond to the intersection
of the ellipse E(z) with the rectangle I1× I2. The function Fd2(z) is exactly the area
of that intersection over the area of the rectangle I1 × I2.

The values of z where the left- or rightmost points of E(z), i.e., points with the
lowest or highest λ1 coordinate, coincide with the lower or upper boundary of the
interval I1 are candidates for the event points, since at that positions the lower or
upper boundary of a subinterval changes from the λ1-coordinate of the corresponding
extreme point of E(z) to the corresponding bound of the interval I1.

The values of z where the bottom or top-most points of E(z), i.e., points with
the lowest or highest λ2-coordinate, reach the bounds of the interval I2, are also
candidates for the event points, since at these positions an interval of one type is
split into three intervals. The middle one of the three new intervals is of a new type,
and is bound by the intersection points of the boundary of the ellipse E(z) with the
lines λ2 = ιl2 or λ2 = ιu2 .

The lowest λi-coordinate, i = 1, 2, of a point in E(z) is λli(z) = − z
sinα , the highest

λi-coordinate is λhi (z) = z
sinα . Let zi,x,y denote the value of z for which the point of

E(z) with the lowest (x = l) or the highest (x = h) λi-coordinate reaches the lower
(y = l) or the upper (y = u) bound of the interval Ii, that is, λxi = ι

(i)
y . Then the

value zi,x,y is computed as zi,x,y = ±ι(i)y sinα, where the sign is plus for x = h and
minus for x = l.

Another type of the event points are the values of z where the boundary of E(z)
coincides with a corner of the rectangle I1×I2. At that point one interval disappears,
or a new one emerges. These event points are denoted by zx,y, where x, y ∈ {l, u}
and the first index x specifies the lower (l) or upper (u) bound of the interval I1,
and the second index y specifies the bound of I2. The zx,y values can be computed
by plugging the corresponding interval bounds in the Equation (4.8).

Finally, the last type of the candidate event points are the distance values zji ,
i, j = 1, 2, such that the λ1-coordinates of the i-th intersection point of the boundary
of E(z) with the line λ2 = ιl2 and of the j-th intersection point of ∂E(z) with the
line λ2 = ιu2 are equal. At that positions the types of some intervals change. The
λ1-coordinates are computed by plugging the interval bounds of I2 for the parameter
λ2 and solving the Equation (4.8) for λ1.

Note that not all of the described candidate event points exist for every two
segments, and not for all of the existing event points, the corresponding (λ1, λ2)-
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points lie within the rectangle I1 × I2. For this reason they are called candidates in
the above description.

In our example, for the segments depicted in Figure 4.9(a) there exist nine event
points that have the corresponding (λ1, λ2)-points within the rectangle I1 × I2, and
two of them coincide. The positions of the ellipse E(z) for each of the event points
is shown in Figure 4.11.

I1

I2

z1,l,l

z2,h,u

z1,h,u

zu,u

z2,l,l = zl,l

z1
2

zl,u

zu,l

Figure 4.11: Positions of the ellipses d2(g1(λ1), g2(λ2)) ≤ z2 within the rectangle
defined by the intervals I1, I2. The contours mark the ellipse positions at the event
points, and the regions of the same color denote the intervals of the distance values
where the combinatorial configuration of the subdivision intervals on I1 and I2 does
not change.

The event points subdivide the domain of the function fd2 into intervals for the
piecewise definition. Over each interval between two event points the function fd2 is
decomposed into a sum of the functions f ′d2, each defined over a subinterval of I1. The
bounds of the subintervals are determined by the bounds of I1, ιl1, ιu1 , by the lowest
and highest λ1 coordinate of the E(z), λl1, λh1 , and by the intersection points of the
∂E(z) with the lines λ2 = ιl2 and λ2 = ιu2 . In our example for z2,h,u ≤ z ≤ z1,h,u the
function fd2 is decomposed into a sum of three functions defined over four subintervals
of I1 of types 1©, 3©, 1© and 5© as illustrated in Figure 4.12. Of course, the summand
over the interval of type 5© is zero.

The complete definition of the function fd2 for our example in Figure 4.9(a) is
listed in Table 4.3.5 and the graph of the function is depicted in Figure 4.13. The
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z2,h,u

z1,h,u

ιl1 ιu1

ιl2

ιu2

λh
1

1© 3© 1©
5©

Figure 4.12: Subdivision of I1 into subintervals for z2,h,u ≤ z ≤ z1,h,u.

density function for the distance distribution between two points chosen randomly
on two segments (not necessarily two different segments) is defined in Equation (4.7)
and is a weighted sum of fd2 and the density function for one segment examined in
Section 4.3.1.

Since the computation of the density function for the distance distribution be-
tween two points on two arbitrary line segments involves many case distinctions, we
omit the computation of the density function for the distribution of the scaling factor
for shapes consisting of two line segments.

4.3.6 Distance Distribution on a Set of Line Segments

In this section we briefly consider the following experiment: Let A be a shape given as
a set of line segments, A = {s1, . . . , sn}. Two points a1, a2 ∈ A are chosen randomly
uniformly distributed with respect to length. The random variable Xd records the
Euclidean distance between a1 and a2. The density function of the random variable
Xd is a weighted sum of the distance distribution density functions for one segment,
fd1, examined in Section 4.3.1 and for two segments, fd2, described in the previous
section:

fd(z) =
1
L2

 n∑
i=1

l2i fd1(z, si) +
n∑
i=1

n∑
j=i+1

fd2(z, si, sj)

 ,

where li denotes the length of a segment si, i = 1, . . . , n, and L is a total length of
the segments in A. For the same reason as in the previous section we do not attempt
to give a general formula for the distribution of the scaling factor generated by two
sets of line segments.
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0.15

0.20

0.25

0.05

0.10

fd2(z)

fd(z)

fd1(z, s1)

fd1(z, s2)

Figure 4.13: Graphs of the density functions of the distance distribution between
two random points. Functions fd1(z, s1) and fd1(z, s2) denote the density function
of the experiment where two points are selected randomly on one segment s1 or
s2, respectively. Function fd2 is the density of distance distribution between two
points such that one point is selected from segment s1 and the other from segment
s2 (plotted with thin black line). The density function fd of the original experiment,
i.e., two points are selected independently each from one of the two segments, is a
linear combination of the functions fd1(z, s1), fd1(z, s2) and fd2(z) (plotted with bold
green line).
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fd2(z) =



2πz
l1l2 sinα 0 ≤ z ≤ z1,l,l

2πz
l1l2 sinα arcsin ιl1 sinα

z z1,l,l ≤ z ≤ z2,h,u
− z
l1l2
√

X

(
−2ιu2 sin2 α+

√
X

sinα

[
−π + 2 arcsin ιl1 sinα

z z2,h,u < z ≤ z1,h,u
− arcsin sinα(ιu2 cosα−√X )

z + arcsin sinα(ιu2 cosα+
√

X )
z

]
+
√
z2 − sin2 α(−ιu2 cosα+

√
X )2

+
√
z2 − sin2 α(ιu2 cosα+

√
X )2
)

− z
l1l2
√

X

(
−2ιu2 sin2 α+

√
X

sinα

[
2 arcsin ιl1 sinα

z − 2 arcsin ιu1 sinα
z z1,h,u < z ≤ zu,u

− arcsin sinα(ιu2 cosα−√X )
z + arcsin sinα(ιu2 cosα+

√
X )

z

]
+
√
z2 − sin2 α(−ιu2 cosα+

√
X )2

+
√
z2 − sin2 α(ιu2 cosα+

√
X )2
)

z
l1l2
√

X

(
−2ιu2 sin2 α+ cosα

√
X +

√
X

sinα

[
−2 arcsin ιl1 sinα

z zu,u < z ≤ z2,l,l
+ arcsin ιu1 sinα

z + arcsin sinα(ιu2 cosα−√X )
z

]
−
√
z2 − sin2 α(−ιu2 cosα+

√
X )2
)

z
2l1l2

(
4 cosα+ 1

sinα

[
−2 arcsin ιl1 sinα

z + 2 arcsin ιu1 sinα
z z2,l,l < z ≤ zl,u

−2 arcsin sinα(ιl2 cosα+
√

Y )
z + 2 arcsin sinα(ιu2 cosα−√X )

z

]
+ 2l2 sin2 α√

Y

− 2√
Y

√
z2 cos2 α− ιl2 sin2 α(ιl2 cos 2α+ 2 cosα

√
Y )

− 2√
X

√
z2 cos2 α− ιu2 sin2 α(ιu2 cos 2α− 2 cosα

√
X )

z
l1l2
√

Y

(
−ιl2 sin2 α+ cosα

√
Y +

√
Y

sinα

[
arcsin ιu1 sinα

z zl,u < z ≤ zu,l
− arcsin sinα(ιl2 cosα+

√
Y )

z

]
−
√
z2 − sin2 α(ιl2 cosα+

√
Y )2

)
0 z < 0 or z > zu,l ,

where
X = z2 − (ιu2 )2 sin2 α,
Y = z2 − (ιl2)2 sin2 α.

Table 4.1: Function fd2(z) for the segments depicted in Figure 4.9(a).
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Note that the density distribution generated by a shape can be of interest on its
own, and can be used as a characterization of a shape. Osada et al. [50] describe a
method for comparing shapes based on the so called shape distributions. The main
idea is to compute a certain distribution function for each shape and then measure
the similarity between two shapes by the similarity of their distribution functions.
The article describes different distribution functions applicable to 2D and 3D shapes.
The distance distribution is reported to be most distinctive for both 2D and 3D test
sets. The authors calculate the distribution functions analytically for basic shapes
like line segments or a sphere and experimentally for more complex shapes. In
this and the previous section we describe a method for computing the distribution
function analytically for arbitrary 2D shapes represented by line segments. Of course,
the analytical method is more complicated and might turn out to be more time
consuming then the experimental construction. It is therefore more appropriate for
applications with the main focus on exact shape analysis rather then on a large
number of shape comparisons performed within a short period of time.

From our experimental evaluation of the distance distribution on the contour
shapes of the MPEG-7 Shape B dataset (see Appendix A.1) we can conclude that
the distance distribution alone is not a sufficient descriptor for the shape matching
task. But we can confirm the observation made by Osada et al. in [50] that the
distance distribution can be used to determine the general form of a shape or even
the form of significant components of a shape, e.g., for mostly circular shapes (apples)
the distance distribution is close to that of a circle, or for lengthy shapes with two
long almost straight parallel sides (pencils) the distribution is close to that of a line
segment.

Further, we experimentally constructed the density function of the scaling fac-
tor distribution for the pairs of shapes of the MPEG-7 shape B dataset, see Ap-
pendix A.2. The experiments for the shapes within the same class confirm that the
scaling factor distribution for the shapes that are “similar” to a line segment, that
is, long thin shapes bounded by two straight parallel line segments, e.g., a pencil,
also resembles the distribution computed in the Section 4.3.2. The experimentally
computed distribution of the scaling factor for such shapes has its maximum for
some value close to zero. Similarly, the scaling distribution for the circular shapes,
e.g., apples, resembles the distribution of the scaling factor for two circles analyzed
in Section 4.3.4. We also observe that for a large group of shapes in the dataset
the distribution of the scaling factor has its maximum close to zero, independent
from the actual ratio of shapes. This observation is consistent with the analytically
derived density function in Section 4.3 for the shapes consisting of single line seg-
ments. Therefore, we conclude that determining the scaling factor for two shapes
separately by the described experiment is not meaningful in general, since even for
similar shapes the maximum of the distribution tends to be close to zero.
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Appendix A

Experiments on the MPEG-7 Core
Experiment CE-Shape-1 Dataset

The experiments described in this section are performed on the MPEG-7 Core
Experiment CE-Shape-1 dataset. The Motion Picture Expert Group (MPEG),
a working group of ISO/IEC (see http://www.chiariglione.org/mpeg/) has de-
fined the MPEG-7 standard for description and search of audio and visual content.
The data set created by the MPEG-7 committee for evaluation of shape similarity
measures [13, 42] is a commonly used dataset to measure the performance of shape
descriptors and shape retrieval systems. The dataset contains contour images cate-
gorized in 70 classes with 20 images in each class. The representation of shapes by
polygonal curves was generated with an edge detection software.

A.1 Distance Distribution

For this experiment the shapes are normalized such that every shape has the diameter
one. So the distance d between any two points of a shape is 0 ≤ d ≤ 1. In one
random experiment two points are selected randomly uniformly distributed from the
shape and the distance between the points is recorded. The experiment is repeated
1 000 000 times, and the density function is approximated by a histogram with 100
bins.

There are some observations we would like to mention here that lead us to a
conclusion that the distance distribution is not a sufficient characteristics to measure
the shape similarity. But it is suitable to perform a rather coarse shape classification,
e.g., to classify shape as circular, linear, elliptic, etc.

Similar shapes can have sufficiently different distribution functions. There
are classes in the MPEG-7 Core Experiment CE-Shape-1 dataset for which the dis-
tance distributions of the shapes of one class differ sufficiently, some examples are
given in Figure A.1. The main reason for the large variation in distance distribution
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for most of these examples is that the shapes of the same class are not geometrically
similar. In these cases the classification is based on the semantics and not on the
geometry of the shape.
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Figure A.1: Examples of classes of the MPEG-7 Core Experiment CE-Shape-1
dataset for which the distribution of the point distances does not give a good char-
acterization of the class. Below the plots of the distance distributions for each class
four examples of the images of that class are depicted.

Different shapes can have similar distributions. Figure A.2 depicts some
classes with similar distance distributions. The first group shown in the first two rows
consists of the classes beetle, cattle, crown, dog, fly and horse. The second group in
the last row comprises camels deers and elephants. Observe that the variance within
three classes depicted together in one plot (the third row in the Figure A.2) is only
slightly larger than within one class. Of course one can argue that the images of
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four legged animals have similar geometric properties. But it does not explain the
similarity between the classes cattle and fly, where the shapes of the two classes are
not geometrically similar.

Coarse shape categorization is possible. For the shapes with strong resem-
blance to some simple geometric figure, like line segment, circle, triangle, rectangle,
etc., the distance distribution is also close to that of the corresponding geometric
figure. Since we only calculated the distributions for a straight line segment and a
circle analytically in this work (see Sections 4.3.1, 4.3.3) we also give examples only
for the shapes with large circular or linear components.

The classes apple and device 9 depicted in Figure A.3 serve as examples for
circular shapes where some irregularity or additional features disturb only a little
the distance distribution of a circle. The classes with clear linear components are
for example pencil, bottle, bone, and watch, see Figure A.4. Common to these
shapes is that they are for the larger part slim lengthy rectangles with more (as for
bone shapes) or less (as for pencil shapes) additional components. The amount of
additional features is also reflected in the distance distribution function. Surprisingly,
the shapes of the class brick which are neither rectangular, nor do they have long
parallel lines, also show the linear character of the distance distribution. In fact,
these shapes can roughly be approximated by rectangles with aspect ratio of 1 : 2 to
1 : 3. Additionally, for the classes like key and spoon where about half of the shape
is almost a circle and about a half is a long thin rectangle we observe the presence
of both components in the distance distribution function.

There are also other basic shapes that can be found in the MPEG-7 dataset and
the corresponding similarities in the distribution functions, which we do not further
describe here. And, as there are quite a few classes of the shapes that cannot be
described by a small amount of simple geometric objects, there are correspondingly
many distribution functions without clear characteristics. Examples of such shapes
can be found in Figure A.2.

A.2 Scale Distribution

In this section we describe the experimental evaluation of the scaling factor distri-
bution for the shapes in the MPEG-7 Core Experiment CE-Shape-1 dataset. We
consider the distribution of the scaling factor for the pairs of shapes from the same
class. For this experiment we select randomly uniformly distributed two points from
each shape and record the ratio of the distances between the points. The experiment
is repeated 500 000 times, and the density function is approximated by a histogram
with bin width 0.1. The graphs of the density function in the figures of this section
are restricted to the maximum scaling factor value 5. In all scale distribution graphs
of this section we plot the results of comparisons of all 20 shapes of one class to the
first figure of that class.
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Figure A.2: Examples of the MPEG-7 Core Experiment CE-Shape-1 dataset classes
for which the distribution of the point distances is similar for shapes that belong
to different classes. The left figure in the last row depicts the distance distribution
curves for the classes cattle, dog, and fly, and the right figure – for the classes camel,
deer, and elephant.
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Figure A.3: Density function of the distance distribution. Examples of the MPEG-7
Core Experiment CE-Shape-1 dataset classes with circular shape: apple and device
9, and partially circular shape: key.
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Figure A.4: Density function of the distance distribution. Examples of the MPEG-7
Core Experiment CE-Shape-1 dataset classes with large linear component.
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It is not surprising that for the classes of clearly circular shapes, such as apple
and device 9, the distribution of the scaling factor also corresponds to that of two
circles, see Figure A.5. For such shapes the distribution of the scaling factor has a
clear maximum, which corresponds to the factor that scales the second shape to the
size of the first.

 0  1  2  3  4  5

apple

 0  1  2  3  4  5

device 9

Figure A.5: Classes of the MPEG-7 Core Experiment CE-Shape-1 dataset with cir-
cular shape: apple and device 9. The distribution of the scaling factor corresponds
to that of the circles.

It is also not surprising that the shapes that have a long thin rectangle as their
major component also have a scale distribution that is similar to the scale distribution
for two line segments, see Figure A.6. The maximum of the scale distribution for
such shapes is although not exactly at zero but is very close to zero.
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Figure A.6: For the classes with a large linear component the distribution of the
scaling factor corresponds closely to the distribution of the scaling factor for two line
segments.

Interestingly, the scaling factor distribution for the shapes with large circular
and large linear components, like key and spoon, that had a mixed structure in the
distance distribution function, behaves mostly like the scaling distribution for the
line segments as depicted in Figure A.7. That means that the maximum of the
scaling factor distribution is close to zero for these shapes.
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Figure A.7: Classes with a “mixed” structure: the shapes have a large circular as
well as a large linear part. The maximum of the scaling factor distribution tends to
be close to zero.

Furthermore, it turns out that for 52.8% (37 out of 70) of the shape classes of
the MPEG-7 Core Experiment CE-Shape-1 dataset the distribution of the scaling
factor has its maximum close to zero for almost all pairwise comparisons within
the class. Therefore, the experiment in this form is not suitable for computing
the appropriate scaling factor for two shapes as a first step of the matching under
similarity transformations.

With the modification described in Section 4.3.2, where the scale distribution
function fs(z) is multiplied by the scaling factor z, that is f(z) = z · fs(z) in order
to penalize the downscaling of the shapes, we find that the maxima of the function
f(z) for the shapes of the same class actually correspond to the scaling factor that
transforms one shape to be approximately of the size of the other. We only state
that the determined scaling factor is approximately the best one since it is not always
possible to determine exactly the scaling factor that maximizes the similarity measure
defined in Chapter 3. The shapes of the dataset are not exactly congruent and in
general there exist multiple transformations maximizing that measure. Figure A.8
shows the modified scaling distribution for the classes depicted in Figures A.5 to A.7.
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Figure A.8: Modified scaling distribution function f(z) = z · fs(z) for the classes
depicted in Figures A.5 to A.7.
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