
Theoretical Investigations
of

Multivalent Reactions

Inaugural Dissertation
to obtain the academic degree

Doctor rerum naturalium (Dr. rer. nat.)

submitted to
the Department of Biology, Chemistry and Pharmacy

of Freie Universität Berlin

by
Andreas Johannes Achazi

from Berlin, Germany

2017





This thesis was developed under the supervison of Prof. Dr. Beate Paulus between March
2013 and October 2017 at the Department of Biology, Chemistry and Pharmacy of Freie
Universität Berlin.

1st Referee: Prof. Dr. Beate Paulus
2st Referee: Prof. Dr. Christoph A. Schalley

Date of defence: 27 November 2017



“The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be sol-
uble.”

– P. A. M. Dirac, 1929
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Abstract

A strong but easily reversible connection is important on the molecular level in biological
recognition, adhesion, and signaling processes but also for drug design or supramolecular
complexes. This connection can be achieved by using multivalency: the connection is
formed with a large number of weak interactions instead of only one strong interaction.
Multivalency and the underlying cooperative effects are not yet fully understood.
Small multivalent crown ether/ammonium assemblies are used in this thesis as model

system for multivalent interactions and as building blocks for functionalized supramolec-
ular host-guest complexes. For analysis, a theoretical multilevel approach to determine
the Gibbs energy of association in solution ∆Gsol

A of these assemblies in silico has been
developed. Dispersion corrected density functional theory is used to obtain the associa-
tion energies in the gas phase. The effects of translation, rotation and vibration are taken
into account by a rigid-rotor-harmonic-oscillator approximation with a free-rotor approx-
imation for low-lying vibrations. The solvation is included by the implicit solvent models
COSMO-RS and D-COSMO-RS. Addionally counterions have to be included explicitly
for a good agreement with the experiments. The average deviation from the experimental
results was about 5 kJmol−1, which is state-of-the-art.
In collaboration with specialists for supramolecular chemistry and for molecular dy-

namic simulations new insights into the bond formation of crown ether/ammonium assem-
blies and multivalency were gained. A delicate counterbalancing between the effects of the
solvent methanol on the crown ether/ammonium assembly formation and the ammonium-
guest/counterion complex dissociation was revealed. This renders a chloroform/methanol
mixture with a medium methanol content best for achieving high association constants
with crown ether/ammonium assemblies. The counterions cause negative allosteric co-
operativity in the investigated guests, whereas the negative allosteric cooperativity in
the investigated hosts is caused by the polarisable π-system of the spacer. Attractive
spacer-spacer interactions yield a strong positive chelate cooperativity. The variation
of the length and flexibility of the ammonium guest spacer gives interesting results. It
was expected that guests with a rigid spacer, that approximates the spacing between the
binding sites in the host, would have the strongest positive chelate cooperativities and
highest association constants, because guests with flexible spacer would suffer from an
entropic penalty. Surprisingly the ammonium guests with flexible spacer exhibited the
strongest positive chelate cooperativities and one of these ammonium guests exhibited
the highest association constant. The results were summarized to a general guideline to



create multivalent molecular assemblies with high binding affinity. Most important is a
high complementarity of host and guest. A mix of preoganisation and adaptability is
preferred over maximizing the preoganisation by lowering the adaptability.
Additionally this thesis includes the investigation of two functionlized supramolecular

complexes: a photoswitch and a donor-acceptor complex.
The theoretical multilevel approach to determine ∆Gsol

A was then applied in a mechanis-
tic investigation of the samarium diiodide mediated reductive coupling of the N -oxoalkyl-
substituted methyl indole-3-carboxylates. In contrast to previous proposals, it was found
that the high diastereoselectivity in the cyclization step is caused by the formation of an
energetically highly favorable chelate complex.
Finally the stretching of polyethylene glycol in water was investigated in collaboration

with experts for atomic force microscope experiments and molecular dynamic simula-
tions. Surprisingly the stretching of polyethylene glycol in water is enthalpically unfa-
vorable and not entropically unfavorable. This indicates that a multivalent host or guest
in water with a flexible polyethylene glycol spacer suffers from an enthalpic penalty and
not from an entropic penalty in complex formation. Together with the results of the
crown ether/ammonium assemblies, this challenges the notion that flexible spacers cause
in general an entropic penalty in complex formations. However, the situation is more com-
plicated. Spacer length, intramolecular interactions, solvent and counterions can affect
the conformational space of both the flexible spacer and the whole system or have strong
enthalpic effects. This will be difficult to grasp experimentally. The in silico methods
presented in this thesis are powerful tools to identify the important effects in chemical
reactions and to comprehend the experimental findings.



Zusammenfassung

Feste, jedoch leicht reversible Verbindungen auf molekularer Ebene sind essentiell für
biologische Erkennungs-, Adhäsions- und Signalprozesse und werden mittlerweile auch in
der medizinischen Wirkstoffforschung und für supramolekulare Komplexe genutzt. Diese
Art von Verbindung kann mittels Multivalenz erreicht werden, das heißt die Verbindung
wird mit einer Vielzahl schwacher Wechselwirkungen geformt anstatt einer einzigen sehr
starken. Multivalenz und die zugrundeliegenden kooperativen Effekte sind allerdings
bis heute noch nicht vollständig verstanden. In der vorliegenden Dissertation werden
kleine multivalente Kronenether/Ammonium Aggregate als Modellsystem für multiva-
lente Wechselwirkungen und als Bausteine für funktionalisierte supramolekulare Wirt-
Gast-Komplexe verwendet. Zur Analyse wurde eine theoretische Mehrstufen-Methode
zur in silico Berechnung der Gibbs-Energie der Assoziation ∆Gsol

A solcher Aggregate
im Lösungsmittel entwickelt. In dieser wird die Assoziationsenergie der Partner in der
Gasphase mit Hilfe von dispersionskorrigierter Dichtefunktionaltheorie bestimmt. Die
Effekte der Translation, Rotation und Vibration werden mittels einer Starrer-Rotator-
Harmonischer-Oszillator-Näherung mit Freier-Rotator-Näherung für niedrig liegende Vi-
brationen berücksichtigt. Die Solvatisierung wird mittels der Lösungsmittelmodelle
COSMO-RS und D-COSMO-RS einbezogen. Zusätzlich müssen Gegenionen explizit mit
berücksichtigt werden, um eine gute Übereinstimmung mit dem Experiment zu erhal-
ten. Die durchschnittliche Abweichung zu den experimentellen Ergebnissen lag bei circa
5 kJmol−1. Dies entspricht dem derzeitigen Stand der Technik.
In Kooperation mit Spezialisten für supramolekuare Chemie und für Moleküldynamik-

Simulationen konnten neue Erkenntnisse über die Bildung von Kronenether/Ammonium
Aggregaten und über die Multivalenz erhalten werden. Zwischen den Effekten vom
Lösungsmittel Methanol auf die Bildung des Kronenether/Ammonium Aggregates und
auf die Dissoziation des Ammonium/Gegenion Komplexes zeigte sich ein fragiles Gle-
ichgewicht. Daher ist ein Chloroform/Methanol Gemisch mit einer mittleren Methanol-
konzentration am besten geeignet, um hohe Assoziationskonstanten bei Kronenether/Am-
monium Aggregaten zu erzielen. In Bezug auf die negative allosterische Kooperativität
zeigt sich, dass diese in den untersuchten Gästen von Gegenionen verursacht wird, in
den untersuchten Wirten aber durch Polarisierung des π-Systems des Spacers (Verknüp-
fungsstruktur). Attraktive Spacer-Spacer-Wechselwirkungen erzeugen dagegen eine stark
positive Chelatkooperativität. In den Untersuchungen wurden Länge und Flexibilität
von den Spacern der Gastmoleküle variiert. Dabei wurde davon ausgegangen, dass Gäste



mit starren Spacern, die ungefähr den Abstand zwischen den Bindungsstellen des Wirtes
überspannen, sowohl die stärkste positive Chelatkooperativität aufweisen, als auch die
höchste Assoziationskonstante, weil die Gäste mit flexiblen Spacern entropisch ungünstig
sind. Im Gegensatz zu dieser Annahme zeigten jedoch die Gäste mit flexiblen Spacer
die stärksten positiven Chelatkooperativitäten, wobei einer sogar die höchste Assozia-
tionskonstante aufwies. Die Ergebnisse lassen sich zu einer allgemeinen Leitlinie für die
Herstellung multivalenter molekularer Aggregate mit hoher Assoziationskonstante zusam-
menfassen. Am wichtigsten ist ein hoher Grad an Komplementarität von Wirt und Gast.
Zudem ist eine Mischung aus Vororganisation und Anpassungsfähigkeit besser als die
Vororganisation durch eine Reduktion der Anpassungsfähigkeit zu maximieren.
In dieser Dissertation wurden darüber hinaus zwei funktionalisierte Wirt-Gast-Komplexe

untersucht, ein Photoschalter und ein Elektronen-Donor-Akzeptor-Komplex.
Die theoretische Mehrstufen-Methode zur Berechnung ∆Gsol

A , wurde ebenfalls in einer
mechanistischen Untersuchung der Samariumdiiodid vermittelten reduktiven Kupplung
von N-Oxoalkyl-substituiertem Methyl-indol-3-carboxylat angewendet. Im Gegensatz zu
bisherigen Vorschlägen für den Reaktionsmechanismus, hat sich gezeigt, dass die hohe Dia-
stereoselektivität im Zyklisierungsschritt durch die Bildung eines energetisch sehr vorteil-
haften Chelatkomplexes hervorrufen wird.
Des weiteren wurde mit Experten für Rasterkraftmikroskopie und Moleküldynamik-

Simulationen die Dehnung von Polyethylenglycol in Wasser untersucht. Anders als er-
wartet, war die Dehnung von Polyethylenglycol in Wasser enthalpisch und nicht entropisch
ungünstig. Das bedeutet, dass ein multivalenter Wirt oder Gast mit einem flexiblen
Polyethylenglycol-Spacer bei der Komplexbildung enthalpisch und nicht entropisch be-
nachteiligt ist. Zusammen mit dem Ergebnissen für die Kronenether/Ammonium Ag-
gregate widerspricht dies der Auffassung, dass flexible Spacer im allgemeinen entropisch
ungünstig sind. In der Realität stellt sich die Situation deutlich komplizierter dar. So be-
einflussen Spacerlänge, intramolekulare Wechselwirkungen, Lösungsmittel und Gegenio-
nen sowohl den Konformationsraum des flexiblen Spacers als auch den des Gesamtsystems
und können darüber hinaus auch starke enthalpische Effekte haben. In Experimenten ist
es schwer diese Effekte auseinanderzuhalten. Die in silicoMethoden, die in dieser Disserta-
tion vorgestellt werden, stellen wirkungsvolle Werkzeuge dar, um die wichtigen Effekte in
chemischen Reaktionen zu identifizieren und experimentelle Ergebnisse nachzuvollziehen.
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1 Introduction

A key principle in nature to create a connection between two components, which is strong
but easily reversible at the same time, is to use a large number of weak interactions. A
macroscopic example is the burr (Arctium spec.) and the hook-and-loop fastener derived
from it (Figure 1.1). The hooks on the one surface catch on the loops on the opposite
surface. This creats a large number of weak interactions which form a strong connection
between the two surfaces. In contrast to two surfaces which are connected by only one
strong interaction, these two surfaces can be easily separated from each other by sequen-
tially detaching the individual hooks and loops. This principle is called “multivalency”.
One the molecular level, it is essential for biologic systems in processes such as recogni-
tion, adhesion, and signaling.1,2 Multivalent interactions are interactions between systems
consisting of multiple, interconnected binding sites (Figure 1.2). In the given macroscopic
example (Figure 1.1), the binding sites are the hooks and the loops. In molecular systems
these hooks and the loops are replaced with non-covalent bonds. Multivalency is already
used in medicine (drug design),1,3 biochemistry,4 material science,5 surface science6 and
supramolecular chemistry.7,8 However, it is not yet fully understood.
To gain a better understanding, the effects of multivalency can be deconvoluted into

contributions originating from allosteric cooperativity, chelate cooperativity, interannular

Figure 1.1: On the left side is a burr (Arctium spec.), one the right site is a hook-and-
loop fastener inspired from it. Included with permission from Fasting et al.1 ( c©2012
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
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1. Introduction

Figure 1.2: Mulivalent molecular binding units. The blue cylinders with cavity are the
binding sites of the host. These encompass the binding sites of the guest, which are
depicted as red balls. Included with permission from SFB765.16

cooperativity and symmetry effects.9–14 Detailed overviews on cooperativity are written
by Hunter and Anderson,13 Ercolani and Schiaffino14 and Schalley and co-workers.15

Allosteric cooperativity describes the effects that a bond formation between a monova-
lent guest and a multivalent host (and vice versa) has on the subsequent bond formation,
that is on bond formation of the next monovalent guest with the multivalent host. Pos-
itive allosteric cooperativity is present if the first binding event amplifies the association
strength of the subsequent binding event and negative allosteric cooperativity is present
if the association strength of the subsequent binding event is reduced.
Chelate cooperativity is an effect that solely occurs in multivalent systems, for example

in a complex of a divalent guest with a divalent host. For the rating of the strength of
chelate cooperativity Hunter and Anderson13 introduced one approach and Ercolani and
Schiaffino14 another. Negative chelate cooperativity, as defined by these two approaches,
indicates that not all binding sites of the multivalent complex are closed and the complex is
prone to oligo- or polymerization. Positive chelate cooperativity indicates that all binding
sites of the multivalent complex are closed and oligo- or polymerization is unlikely to occur.
Interannular cooperativity does not occur in the systems investigated in this thesis.

Therefore, it is not discussed here. A detailed explaination of interannular cooperativity
is given by Ercolani and Schiaffino.14

A monovalent guest binds m-times more often to a m-valent host (with m binding
sites) than to a monovalent host.1 Such statistical effects are also called symmetry ef-
fects.1,9–12 They are system dependent and have to be subtracted for the determination
of the cooperativity.

2



Theoretical Investigations of Multivalent Reactions

The experimental determination of the cooperativity can be carried out using the double
mutant cycle (DMC) analysis.17–23 This consists of the measurement of the association
constant not only for the multi- and monovalent complexes but also their intermediates,
i.e. multivalent host with monovalent guest and vice versa. These association constants
are used to define cooperativity factors,13–15 which evaluate whether the allosteric or
chelate cooperativity is positive or negative. The equations for the allosteric and chelate
cooperativity factors will not be presented here, but can be found in the experimental
part of the corresponding published papers.

Of special importance for the research on multivalency is host-guest chemistry, a branch
of supramolecular chemistry defined in 1974 by Cram.24 A host-guest complex consists
of at least two molecules or ions. The binding sites of the host encompass usually the
binding sites of the guest (Figure 1.2). The bonds between host and guest are only formed
by non-covalent interactions, like ion-ion interactions, ion-dipole interactions, hydrogen
bonds, π − π stacking and van der Waals interactions (including London dispersion).
Host-guest systems can be designed with a defined number of binding sites and can be
used to investigate intermediate systems of monovalent and multivalent hosts and guests.
Thus, host-guest systems are ideal for performing DMC analyses to quantify the mul-
tivalent binding amplification.1 Additionally, the length, geometry and flexibility of the
spacer which connects the binding sites can be systematically varied. In other words,
the complementarity, preorganization and adaptability of the systems can be controlled
and modified. These three are important characteristics of hosts and guests. A com-
mon approach, suggested by Cram,25,26 is to use preorganized and complementary hosts
and guests to obtain high binding affinities.1,5,7,27,28 “Preorganization” implies that the
conformation of the unbound host and the unbound guest should be as close as pos-
sible to their bound conformations in the host-guest complex.25,26 “Complementarity”
means that the binding sites of the host attract the binding sites of the guest (and vice
versa). Cram25,26 was only considering monovalent systems. In a multivalent system
“complementarity” additionally means that the distance between the binding sites of the
host corresponds to the distance between the binding sites of the guest (and vice versa).
Whitesides and co-workers2 basically extended Cram’s approach to multivalent systems
by recommending the use of guests with rigid (i.e. preorganized) spacers, that approxi-
mates the spacing between the binding sites in the host (i.e. complementarity spacers).
The advantage of the rigid host-guest systems is, that they suffer from a lower entropic
penalty in the formation of the host-guest complex compared to flexible systems, because

3



1. Introduction

the number of available conformations reduces much less.2,29,30 The disadvantage of rigid
host-guest systems is, that even small spatial mismatches between host and guest can
result in drastically reduced binding affinities.2 Therefore, the complementarity is im-
portant. However, nature has created highly effective systems for molecular recognition
based on flexible peptides.1,30 An unbound flexible guest can adapt to a huge variety of
different sized hosts (and vice versa). This characteristic of the guest or host can be called
“adaptability” and could be an alternative concept to obtain high binding affinities. A
guest whose binding sites are connected with a flexible spacer could compensate for small
spatial mismatches with the host and vice versa, which might then negate the above men-
tioned possible entropic penalty for flexbile systems in the formation of the host-guest
complex. Amazingly, except from foldamers,31–33 adaptability has been barely used34–37

in multivalent systems.38 One part of this thesis will focus on determining to which ex-
tent complementarity, preorganization, and adaptability are needed to gain high binding
affinities and to develop a general “guideline” to create multivalent molecular assemblies
with high binding affinity.

Crown ether/cation complexes were discovered in 1967 by Pedersen.39,40 Meanwhile,
they are easily synthetically accessible and have been used extensively as host–guest
complexes in supramolecular chemistry and to mimic biological systems.20,41–52 Therefore,
the 18-crown-6/primary ammonium ion and the 24-crown-8/secondary ammonium ion
binding motif are used in this thesis as binding sites for host-guest model systems to
investigate multivalency. The primary ammonium ion is too large for penetrating the
center of the 18-crown-6 ether; therefore, it stays on top of the crown ether ring plane and
both form a side-on complex. However, the secondary ammonium ion threads through
the 24-crown-8 ether. They form a pseudo[2]rotaxane, which can be interlocked by adding
large stopper units yielding a [2]rotaxane. Figure 1.3 shows schematic depictions of these
three types of crown ether/ammonium ion assemblies.

The experimental supramolecular chemistry was mainly done by the AG Schalley, espe-
cially by Larissa K. S. von Krbek and the molecular dynamic simulations were performed
by the AG Weber, especially by Marthe Solleder. In this thesis quantum chemical meth-
ods are applied to analyze multivalency. Quantum chemistry allows to make in silico
reliable predictions of experimental outcomes, which offer new insights into the reaction
processes and can be used to verify the assumptions drawn from experimental results. The
AG Schalley uses isothermal titration calorimetry (ITC) to analyze the thermodynamic
and measure the Gibbs energy of association of the multivalent crown ether/ammonium

4
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Figure 1.3: Schematic depictions from the left to the right of a side-on complex as
formed by the 18-crown-6/primary ammonium ion binding motif, a pseudo[2]rotaxane as
formed by the 24-crown-8/secondary ammonium ion binding motif and a [2]rotaxane. A
[2]rotaxane can be gained from a pseudo[2]rotaxane by locking the the ring on the rod
with stoppers. Included with permission from von Krbek.38

assemblies. At the same time, one of the main research objectives of this thesis is to
develop a theoretical (multilevel) approach to determine the Gibbs energy of association
in solution ∆Gsol

A of these assemblies in silico. The Gibbs energy of association in so-
lution can be separated into three terms (Figure 1.4): the electronic energy in the gas
phase, the contributions of translation, rotation and vibration (often called “finite tem-
perature contribution”) and the Gibbs free energy of solvation.53 These terms can be
calculated at different theoretical-chemical levels, which allow to find a balance between
accuracy and computational cost. Coupled Cluster Singles and Doubles with perturba-
tive Triples (CCSD(T)) is the “Gold Standard” in quantum chemistry to obtain accurate
electronic energies of association in the gas phase.54,55 However, this method is not fea-
sible for the systems under investigation. Even with further approximations, like the
local/domain55 and the density fitting55 approxiamtion, the Coupled Cluster method can
only be used to get benchmarks for the electronic association energies of the smallest sys-
tems in this thesis. Therefore, the Kohn-Sham Density Functional Theory (DFT)56,57 is
applied. DFT includes electron correlation in a highly effectiv manner, which makes it a
very fast and accurate method. It is less reliable than CCSD(T); however, with Coupled
Cluster benchmarks for the association energies, an appropriate density functional can
be chosen. Unfortunately, most density functionals fail in describing the long-range elec-
tron correlation, which is responsible for the London dispersion. Therefore, the disperion
correction DFT-D3(BJ)58–61 is employed. The effects of translation, rotation and vibra-
tion are taken into account by a rigid-rotor-harmonic-oscillator (RRHO) approximation
with free-rotor approximation to account for low-lying vibrations. Even with DFT the
solvent cannot be included explicitly. The Gibbs free energy of solvation is calculated
as a seperate term with the COSMO-RS62–65 model. COSMO-RS describes solvent ef-
fects with a model of interacting molecular surface segments based on quantum chemical
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1. Introduction

Figure 1.4: Schematic representation of the thermodynamic cycle for the calculation of
the Gibbs energy of association ∆Gsol

A in solution. The Gibbs energy of association ∆Ggas
A

in the gas phase contains the electronic energy of association in the gas phase and the
contributions of translation, rotation and vibration. GS

Solv,g, GS
Solv,h and GS

Solv,c are the
Gibbs energies of the solvation of a guest, host and complex molecule. Included with
permission from Achazi et al.72 ( c©2015 Wiley Periodicals, Inc.)

calculations with the dielectric continuum solvation model COSMO.66,67 In contrast to
pure dielectric continuum solvation models, COSMO-RS is able to take short-range in-
teractions into account like hydrogen bonds and London dispersion interactions. In total
this results in a DFT-based multilevel approach and the Gibbs energy of association in
solution ∆Gsol

A is determined in a thermodynamical cycle as depicted in Figure 1.4. This
kind of approach is also used by other groups.68–71 Unlike the investigations of these other
groups, in this thesis the systems of interest have charged binding sites and sometimes
large flexible parts. Thus, it is may be necessary to consider several conformers for the
same molecule or counterions which interfere in the binding process. An average devia-
tion of 7.5 kJmol−1 or less of the theoretical approach to the experiemental results can
be seen as state-of-the-art according to a survey70 of theoretical publications. As men-
tioned above the in silico determination of the Gibbs energy of association in solution
∆Gsol

A of the multivalent assemblies will offer new insights into the reaction processes and
the underlying effects which render the cooperativity. The Gibbs energy of association
in solution ∆Gsol

A also yields the association constant. Thus, the allosteric and chelate
cooperativity factors can be determined quantum chemically in case the accuracy is suf-
ficient. The quantum chemical data also give insight, for example, into the molecular
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structure, which is important for evaluating the complementarity, or other characteristics
like HOMO-LUMO gaps.
This thesis aims on achieving the research objectives:

• Development of a multilevel DFT-based approach to determine the Gibbs energy
of association in solution of monovalent 18-crown-6/primary ammonium ion com-
plexes. (Paper A1)

• Extension of the multilevel DFT-based approach to divalent 18-crown-6/primary
ammonium ion complexes and 24-crown-8/secondary ammonium ion pseudo[2]ro-
taxanes to elucidate the association mechanisms as well as use of this approach and
further quantum chemical approaches to analyze the impact of complementarity,
preorganization and adaptability on the multivalent binding amplification. (Paper
A2-A5)

• Development of a general “guideline” for the creation of multivalent molecular as-
semblies with high binding affinity based on the acquired knowledge.

• Investigation of functionalized supramolecular assemblies with quantum chemical
methods. (Paper A5-A6)

As already mentioned, this thesis has been accomplished in strong collaboration with
specialists for supramolecular chemistry (AG Schalley) and for molecular dynamic simu-
lations (AG Weber). The results are the outcome of the joint efforts of the members of
the just mentioned groups and me.
Another research objective is to use the acquired knowledge for the DFT-based deter-

mination of the Gibbs energy of association in solution for reaction processes in which
the experimental determination the of the Gibbs energy is not possible. Thus, the re-
action mechanisms for the samarium diiodide (SmI2) mediated reductive coupling of the
N -oxoalkyl-substituted methyl indole-3-carboxylates is investigated in this thesis, too.
(Paper A7)
This thesis is part of the Collaborative Research Center (SFB) 765 “Multivalency as

chemical organization and action principle: new architectures, functions and applica-
tions”. As part of part of this Collaborative Research Center, this thesis includes also a
collaboration investigating the stretching of polyethylene glycol (PEG) in water. PEG
can be used as flexible spacer, which connects this investigation with the investigation of
the crown ether/ammonium ion assemblies. (Paper B1)
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1. Introduction

Altogether, this thesis is a quantum chemical investigation of various systems to gain
insights into multivalency and its underlying effects.
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2 Theoretical Methods

2.1 Time-independent and dependent Schrödinger
equation

In this thesis the thermodynamics of the formation of mono- and multivalent molecular
assemblies in solution is investigated. The three main contributions are the electronic
interactions within the molecular assemblies, effects of translation, rotation and vibration
of the participating molecules, and the interaction with the solvent. They are to be
investigated based on natural constants and laws of nature and not on experiments. The
number of empirical models is kept as small as possible. However, simplifications can not
be avoided.

The electronic interactions are described with quantum mechanics which describes a
physical system by its quantum state. The evolution with time of the quantum state can
be determined by the non-relativistic, time-dependent Schrödinger equation73

ih̄
∂

∂t
Ψ = ĤΨ (2.1)

where Ĥ is the Hamiltonian and the quantum state is expressed by a wave function Ψ.
For the large systems investigated in this study the non-relativistic Schrödinger equation
is only solvable in reasonable time by using various simplifications or approximations,
respectively.

The first simplification is already done by using the non-relativistic Schrödinger equa-
tion omitting relativistic effects, the spin-orbit interactions, the spin of the atomic nuclei
and further interactions which have negligible influence on the valence electrons (i.e. the
chemical properties of a molecule).

The Hamiltonian Ĥ associated with the energies of interest for this thesis is given in
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atomic units by

Ĥ = −
n∑
i

~∇2
i

2︸ ︷︷ ︸
T̂e

−
C∑
A

~∇2
A

2MA︸ ︷︷ ︸
T̂C

−
n∑
i

C∑
A

ZA∣∣∣~ri − ~RA

∣∣∣︸ ︷︷ ︸
V̂eC

+
n∑
i

n∑
j>i

1
|~ri − ~rj|︸ ︷︷ ︸
V̂ee

+
C∑
A

C∑
B>A

ZAZB∣∣∣~RA − ~RB

∣∣∣︸ ︷︷ ︸
V̂CC

.

(2.2)
where the atomic nuclei of the number C have the indexes A and B, the spatial coordinates
~R, the massM , and the nuclear charge Z. The electrons of the number n have the indexes i
and j, and the spatial coordinates ~r. ~∇ =

(
δ
δx
, δ
δy
, δ
δz

)
is the nabla operator. The operators

for the kinetic energy of the electrons and atomic nuclei are T̂e and T̂C, respectively
and the ones for the potential energy of the electron-nuclei-interaction, the electron-
electron-interaction and the nuclei-nuclei-interaction are V̂eC, V̂ee and V̂CC, respectively.
This Hamiltonian Ĥ is not explicitly time-dependent. This can be used for another
simplification, because it allows to use a separation ansatz:

Ψ
(
~R,~r, ~s, t

)
= Φ

(
~R,~r, ~s

)
· P (t) , (2.3)

with the time t and the spin coordinates ~s of the electrons. Putting the equation (2.3) in
the time-dependent Schrödinger equation (2.1) leads to

ih̄ ∂
∂t
P (t)

P (t) =
ĤΦ

(
~R,~r, ~s

)
Φ
(
~R,~r, ~s

) = E , (2.4)

which transforms to the non-relativistic, time-independent Schrödinger equation (TISE)

ĤΦ
(
~R,~r, ~s

)
= EΦ

(
~R,~r, ~s

)
, (2.5)

where E is the total energy of the system. A wave function Φ
(
~R,~r, ~s

)
is a stationary

state if Φ
(
~R,~r, ~s

)
fulfills the TISE.

2.2 Born–Oppenheimer approximation
The next simplification is the Born–Oppenheimer approximation (BOA).74 Its idea is to
decouple the movement of the electrons and of the atomic nuclei. Atomic nuclei are much
heavier and hence they move much slower than electrons. Therefore, the atomic nuclei in
the BOA are considered to be fixed for the motion of the electrons. Thus, the electrons
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are moving in a field created by fixed atomic nuclei. The wave function can than be
expressed as

Φ
(
~R,~r, ~s

)
= Φe

(
~r, ~s,

{
~R
})
· ΦC

(
~R
)
, (2.6)

with Φe
(
~r, ~s,

{
~R
})

being the electronic wave function, which only parametrically depends
on the coordinates of the atomic nuclei. ΦC

(
~R
)
is the wave function of the atomic nuclei,

but is not of interest in this thesis. As the atomic nuclei are assumed to be fixed, T̂C
is getting zero and the potential energy for the nuclei-nuclei-interaction VCC (calculated
with V̂CC) becomes an easy calculable constant. The BOA leads to the non-relativistic,
time-independent electronic Schrödinger equation

ĤeΦe
(
~r, ~s,

{
~R
})

=
(
T̂e + V̂eC + V̂ee

)
Φe
(
~r, ~s,

{
~R
})

= EeΦe
(
~r, ~s,

{
~R
})

. (2.7)

It should also be pointed out that for the positions of the atomic nuclei a classical descrip-
tion with point like atomic nuclei is used instead of a probability distribution which would
arise from the actual wave function of the atomic nuclei ΦC

(
~R
)
. The energy E

({
~R
})

of
a system is calculated as

E
({
~R
})

= Ee
({
~R
})

+ VCC
({
~R
})

(2.8)

and depends parametrically on the coordinates ~R of the atomic nuclei. The solutions
of E

({
~R
})

in dependence of ~R create a multidimensional surface, the potential energy
surface (PES), on which the atomic nuclei move in the BOA.

2.3 Hartree–Fock Method

To solve the non-relativistic, time-independent electronic Schrödinger equation (2.7) the
wave function Φe is approximated with an antisymmetric product of one-electron wave
functions χi (~ri, ~si) called Slater determinant75 ΦSD,

ΦSD = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~r1, ~s1) χ2 (~r1, ~s1) . . . χn (~r1, ~s1)
χ1 (~r2, ~s2) χ2 (~r2, ~s2) . . . χn (~r2, ~s2)

... ... . . . ...
χ1 (~rn, ~sn) χ2 (~rn, ~sn) . . . χn (~rn, ~sn)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.9)

11



2. Theoretical Methods

The one-electron wave functions χi (~ri, ~si) are called spin orbitals. They consist of a spatial
function φi (~ri) and a spin function σsp (~si) which is either spin-up (α) or spin-down (β)

χi (~ri, ~si) = φi (~ri)σsp (~si) with σsp (~si) = α or β . (2.10)

The use of an antisymmetric product is necessary because electrons are fermions. A wave
function of fermions changes its sign if two of the fermions are exchanged. This is known
as Pauli’s exclusion principle. A linear combination of all possible Slater determinants
built from an infinite set of one-electron wave functions is needed to get the exact wave
function of a many-electron system. However, this is impossible to handle in an actual
calculation. Therefore, the wave function is approximated in a first step by using only
one Slater determinant built from a finite set of one-electron wave functions.

The variation principle is applied to find the Slater determinant which is closest to the
exact solution. It states that an approximation for the wave function will always have an
energy higher or equal to the energy of the exact solution but never a lower energy. In
case of normalized wave functions the variation principle can be written as:

〈ΦSD| Ĥe |ΦSD〉 = EHF ≥ Ee = Eexact = 〈Φexact| Ĥe |Φexact〉 . (2.11)

EHF is the Hartree–Fock energy. Equality is only reached in case the approximation for
the wave function is the exact solution (ΦSD = Φexact). This lower limit can be used to
find the best approximation for the exact wave function by varying the approximate wave
function ΦSD until the minimum energy is reached. In order to calculate and minimize
the Hartree–Fock energy

(
EHF = 〈ΦSD| Ĥe |ΦSD〉

)
the Hamiltonian Ĥe can be separated

into the one-electron operator ĥi which describes the kinetic energy of the electron i in
the field created by all atomic nuclei and the two-electron operator ĝij which describes
electron-electron interaction:

Ĥ =
n∑
i

ĥi +
n∑
i

n∑
j>i

ĝij , (2.12)

ĥi = −
~∇2
i

2 −
C∑
A

ZA∣∣∣~ri − ~RA

∣∣∣ , (2.13)

ĝij = 1
|~ri − ~rj|

. (2.14)
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The matrix elements ha of ĥ and the matrix elements Jab and Kab of ĝ can be expressed
with the spin orbitals χi (~ri, ~si) by using the Slater-Condon rules. This can be applied to
calculate the Hartree–Fock energy EHF

EHF =
N∑
a=1

ha + 1
2

N∑
a=1

N∑
b=1

(Jab −Kab) , (2.15)

with
ha =

∫
χ∗a (~x1) ĥ1χa (~x1) d ~x1 , (2.16)

Jab =
∫
χ∗a (~x1)χ∗b (~x2) ĝ12χa (~x1)χb (~x2) d ~x1d ~x2 , (2.17)

Kab =
∫
χ∗a (~x1)χ∗b (~x2) ĝ12χa (~x2)χb (~x1) d ~x1d ~x2 . (2.18)

N is the number of occupied spin orbitals, whereas a and b are the summation indices.
For better clarity ~ri and ~si are merged to ~xi. Jab is called Coulomb integral and can be
interpreted as classical repulsion between two charge distributions which are described
by |χa (~x1)|2 and |χb (~x2)|2. Kab is called an exchange integral, but in contrast to the
Coulomb integral it has no analogue in classical physics.

The Hartree–Fock energy EHF will then be minimized with respect to the orthonormal
spin orbitals

〈χa|χb〉 = δab =

 1 for a = b

0 for a 6= b
. (2.19)

The minimization can be done under this constraint with the method of Lagrange multi-
pliers

L = EHF −
N∑
a

N∑
b

λab (〈χa|χb〉 − δab) , (2.20)

δL = δEHF −
N∑
a

N∑
b

λabδ 〈χa|χb〉 = 0 . (2.21)

L is the Lagrange functional, λab are the Lagrange multipliers and δab is the Kronecker
delta. Solving equation (2.21) leads to the so called Hartree–Fock equations

F̂ |χa〉 =
N∑
b

λab |χb〉 (2.22)

with the Fock operator F̂ .
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With the help of an unitary transformation the matrix of Lagrange multipliers can be
diagonalized (this means λab = 0 and λaa = εa)

F̂ |χ̃a〉 = εa |χ̃a〉 . (2.23)

The spin oribtals χa transform to the so called canonical spin orbitals χ̃a with the orbital
energies εa. The Fock operator F̂ is not changed due to the unitary transformation and
can be described by

F̂i = ĥi +
N∑
b

(
Ĵb (~xi)− K̂b (~xi)

)
, (2.24)

with the Coulomb operator Ĵb (~xi)

Ĵb (~xi) χ̃a (~xi) =
[∫

χ̃∗b (~xj) ĝijχ̃b (~xj) d~xj
]
χ̃a (~xi) (2.25)

and the exchange operator K̂b (~xi)

K̂b (~xi) χ̃a (~xi) =
[∫

χ̃∗b (~xj) ĝijχ̃a (~xj) d~xj
]
χ̃b (~xi) . (2.26)

The Coulomb and the exchange operator require that all other orbitals have to be known
to solve the Hartree-Fock equation (2.23) for a specific orbital. Therefore, Hartree-Fock
equations are pseudo-eigenfunction-equations and they can only be solved in an iterative
procedure. A starting guess for the spin orbitals is used to construct the starting Fock
operator and solve the Hartree-Fock equations. This gives a new set of spin orbitals
which can be used for a new iteration. The procedure continues until the spin orbitals
before and after an iteration step are identical within a given error margin. Therefore,
the Hartree–Fock method is also called self-consistent field (SCF) method.

A common step is now to expand the spin orbitals χ̃a linearly into a finite set of atom-
centered basis functions φµ,

χ̃a =
L∑
µ

Cµaφµ . (2.27)

Cµa are the expansion coefficients and will serve as optimization parameters. L is the
number of basis functions and is finite. Therefore, this is an approximation as well. The
equation (2.27) is now inserted into equation (2.23). Multiplying a specific basis function
from the left and subsequent integrating yields for closed shell systems the so called
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Roothaan–Hall76,77 equations
FC = SCε , (2.28)

while open shell systems will be discussed in the next section. The Fock matrix F contains
the matrix elements Fνµ = 〈φν | F̂ |φµ〉 . S is the overlap matrix with Sνµ = 〈φν |φµ〉. The
overlap matrix shows up because the basis functions are not orthogonal. C represents the
expansion coefficient matrix and ε is a diagonal matrix of the orbital energies εa. Details
like the formation of the density matrix, which is the product of the expansion coeffi-
cients Cµa, and the diagonalization of S, are not discussed here. A detailed overview of
the Hartree-Fock method78–82 can be found in modern textbooks on molecular quantum
chemistry like “Modern Quantum Chemistry” by Szabo and Ostlund, 1982.83 The most in-
tuitive procedure for solving the non-relativistic, time-independent electronic Schrödinger
equation (2.7) with the Hartree-Fock method is the so called “in-core” (“core” is referring
to the computational procedure) SCF procedure:

a) Choose the atomic nuclei and their spatial coordinates ~R, the number of electrons n
and the basis set.

b) Calculate all required integrals.

c) Diagonalize S.

d) Make a starting guess for the expansion coefficients matrix C.

e) Calculate the density matrix from (the starting guess of) C.

f) Calculate the Fock matrix.

g) Diagonalize the Fock matrix. The eigenvectors build the new expansion coefficient
matrix C and the eigenvalues the new orbital energy matrix ε.

h) The new expansion coefficient matrix C yields the new density matrix. If the new
density matrix is identical (within the chosen accuracy) to the previous density matrix,
the procedure has converged and finished. Otherwise continue with step f.

The number of two-electron integrals is proportional to the number of basis functions L
to the power of four (i.e. L4). For the systems in this thesis the amount of two-electron
integrals is too large to be stored on the main memory of today’s computer systems.
Therefore, approximations have to be used which reduce the number of integrals (see
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section 2.4.2). For the calculations done without these approximations, “direct SCF”
was applied. This means the integrals are calculated in every iteration instead of only
once for the whole SCF cycle. In the direct SCF procedure the calculation of the two-
electron integrals is the most time-consuming part. Since their number is proportional to
the number of basis functions to the power of four (i.e. L4), the calculation time scales
formally with L4 as well.
As each electron experiences only an averaged repulsive potential from all other elec-

trons, the Hartree-Fock method is a mean field approximation. For electrons with the
same spin the Hartree-Fock method includes the so called “Fermi correlation” due to the
exchange term which derives from the antisymmetry of the Slater determinant. All other
correlation effects are not considered. The Hartree-Fock energy reaches the “Hartree-Fock
limit” ELimit

HF as the basis set approaches completeness. The difference between the exact
energy EExact and the Hartree-Fock limit ELimit

HF is called “correlation energy” Ecorr

Ecorr = EExact − ELimit
HF (2.29)

despite the Hartree-Fock method already covers the correlation of electrons with the same
spin partly.

2.3.1 RHF and UHF

Closed shell systems (often) can be described reasonably well by using doubly occupied
spatial orbitals. Thus, two spin orbitals χiα and χiβ are represented by the same spatial
orbital φi multiplied with an α and a β spin function, respectively. The two spin orbitals
will have the same orbital energy. This approach is known as restricted Hartree-Fock
(RHF) and leads to the Roothaan–Hall equations (2.28). For open shell systems unre-
stricted Hartree-Fock (UHF) is applied, which uses different spatial orbitals for different
spins. This yields the Pople-Nesbet-Berthier equations84

FαCα = SCαεα ,

FβCβ = SCβεβ , (2.30)

which consist of a pair of coupled Roothaan equations (2.28). These equations are coupled
since both Fock matrices Fα and Fβ depend on Cα as well as on Cβ. The orbital energies
for α and β electrons differ in UHF. Finally it must be added that the wave function in
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the UHF approach is not an eigenfunction of the total spin operator Ŝ2. The spin state
can get contaminated by other spin states. The expectation value of Ŝ2 can be used as a
measure of the contamination which should be low.
Only restriced and unrestriced approaches were used in this thesis. An alternative to

UHF for open shell systems is the restricted open-shell Hartree–Fock (ROHF) approach.85

In the ROHF approach doubly occupied spatial orbitals are used as far as possible. Only
for the rest different spatial orbitals are applied for different spins. ROHF is more difficult
to implement and is not used in this thesis.

2.3.2 Fermi Smearing

“Fermi smearing”86 can be used to find the lowest spin state in an unrestricted calculation.
Instead of integer occupation numbers fractional occupation numbers are used for the
orbitals. The fractional occupation number na of an orbital with energy εa is calculated
at temperature T as

na = 1
2 erfc

εa − µ
4kBT√

π

 . (2.31)

where erfc is the complementary error function and kB is the Boltzmann constant. The
“Fermi level” µ gives the orbital energy which corrpondes to na = 0.5 with equation (2.31).
However, µ is not the actual Fermi level because equation (2.31) is chosen to diminish
the appearance of extreme small occupation numbers and not to represent exactly the
Fermi–Dirac statistics.87,88

The occupation numbers na and the Fermi level µ are determined in every SCF step for
the given set of orbitals with energies εa at temperature T provided that the sum over the
occupation numbers na is equal to the total number of electrons. Due to this approach
the occupation pattern changes during the SCF procedure and the minimization of the
energy leads to the lowest spin state. The Fermi smearing calculations in this thesis were
started with a temperature of 300 K. This temperature was reduced at every iteration
step about 2% until 50 K was reached. Thus, integer occupation numbers are yielded at
the end of the SCF procedure.

2.3.3 Correlation energy

The Hartree-Fock method covers in the Hartree-Fock limit ELimit
HF about 99% of the total

energy. The remaining energy is the correlation energy Ecorr (see equation (2.29)). Even
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if the correlation energy amounts only to about 1% of the total energy, it is essential
for binding energies. For a given basis set the Hartree-Fock method already gives the
best result of the total energy achievable with a single determinant description of the
wave function. Therefore, more determinants have to be included in the description of
the wave function to cover the last 1% of the total energy or the correlation energy,
respectively.

In the Hartree-Fock approach shown above, the spin orbitals are linearly expanded into
a finite set of atom-centered basis functions and then the Roothaan–Hall equations are
solved. This yields more molecular orbitals than needed to describe the electrons. The
excess orbitals are unoccupied and are called virtual orbitals, but only the occupied or-
bitals are optimized and form the wave function (expressed with a Slater determinant) as
well as determine the total energy. Starting from the Hartree-Fock approach new deter-
minants can be built by replacing occupied orbitals with virtual orbitals in the forming an
“excited” Slater determinant. Depending on the number of replaced orbitals (one, two,
three, etc.) this yields singly, doubly, triply, etc. excited determinants relative to the
Hartree-Fock determinant. The most intuitive approach would be a linear combination of
these determinants. This is known as Configuration Interaction (CI) or Full Configuration
Interaction (FCI) if all possible excitations are considered. With an infinitely large basis
set FCI would exactly solve the non-relativistic, time-independent electronic Schrödinger
equation (2.7). However, this is not achievable. FCI with a finite basis set yields the best
solution possible of the non-relativistic, time-independent electronic Schrödinger equation
(2.7) in the given basis set. Nevertheless, even this is only feasible for small molecules,
but not for systems investigated in this thesis. Therefore, FCI must be truncated. For
example only single and double excited determinants could be used. This is known as
CISD (CI with Singles and Doubles). Unfortunately the CISD approach yields concep-
tually wrong binding energies. The binding energy of a dimer is calculated as difference
between the total energy of the dimer and the total energy of the two monomers (see
equation (2.129)). A truncated CI approach would include higher excited determinants
for the combined system of two separated monomers than for the dimer. Hence, more
of the correlation energy is covered for the monomers as for the dimer. Errors of this
kind are summarized in the concept of size extensivity. A method is size extensive if
two monomers calculated at a distance at which they do not interact (like 100 Å) have
the same energy as the sum of the separately calculated monomers. The definition of
size extensivity is not consistent in literature and it is sometimes interchanged with size
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consistency. In this thesis the before mentioned definition of size extensivity is used.

Instead of a truncated CI the size extensive DF-LCCSD(T)55 method was employed in
this thesis. DF-LCCSD(T) is based on coupled cluster (CC)54 which is size extensive at
all levels of truncation. CC uses the excitation operator T̂

T̂ =
n∑
i

T̂i (2.32)

with the number of electrons n and the operator T̂i, acting on the Hartree Fock wave func-
tion/Slater determinant

∣∣∣ΦHF
SD

〉
generating all i-order excited determinants. The operators

for single and double excitation T̂1 and T̂2 yield

T̂1

∣∣∣ΦHF
SD

〉
=

occ∑
a

vir∑
r

tra |Φr
a〉 , (2.33)

T̂2

∣∣∣ΦHF
SD

〉
=

occ∑
a<b

vir∑
r<s

trsab |Φsr
ab〉 , (2.34)

occ is the number of occupied oribtals with the summation indices a and b, vir is the
number of virtual oribtals with the summation indices r and s. Φr

a and Φsr
ab are the single

and double excited determinants, and tra and trsab are the expansion coefficients called
amplitudes.

The size extensivity at all levels of truncation is achieved by an exponential ansatz for
the coupled cluster wave function |ΨCC〉

|ΨCC〉 = exp
(
T̂
) ∣∣∣ΦHF

SD

〉
. (2.35)

The exponential operator exp
(
T̂
)
can be written as

exp
(
T̂
)

= 1︸︷︷︸
HF

+ T̂1︸︷︷︸
single excitation

+
(
T̂2 + 1

2 T̂
2
1

)
︸ ︷︷ ︸
double excitation

+
(
T̂3 + T̂2T̂1 + 1

6 T̂
3
1

)
︸ ︷︷ ︸

triple excitation

+ . . . . (2.36)

The terms are sorted in a way that the first term generates the Hartree Fock determinate,
the second term generates all singly excited determinates etc. The product terms (like
T̂ 2

1 ) are called disconnected and the pure terms (like T̂2) connected. For the truncated
Coupled Cluster Singles and Doubles (CCSD) the exponential operator exp

(
T̂1 + T̂2

)
can
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be written as

exp
(
T̂
)

= 1 + T̂1 +
(
T̂2 + 1

2 T̂
2
1

)
+
(
T̂2T̂1 + 1

6 T̂
3
1

)
+ . . . . (2.37)

Pluging equation (2.35) into the non-relativistic, time-independent electronic Schrödinger
equation (2.7) yields

Ĥe exp
(
T̂
)
|ΦSD〉 = Ee exp

(
T̂
)
|ΦSD〉 . (2.38)

In contrast to CI the variational principle cannot be applied in the coupled cluster
approach, because it results in an intractable set of nonlinear equations. Instead the
coupled cluster Schrödinger equation (2.38) is projected onto the Hartree Fock and all
excited determinants, to gain the energy and the amplitudes. It is beneficial to use the
similarity transformed Hamiltonian exp

(
−T̂

)
Ĥe exp

(
T̂
)
. This is done by multiplying

equation (2.38) first from the left with exp
(
−T̂

)
and performing afterwards the projection.

The exp
(
−T̂

)
operator is the deexcitation operator and works on the function to the left.

The resulting equations are

〈
ΦHF
SD

∣∣∣ exp
(
−T̂

)
Ĥe exp

(
T̂
) ∣∣∣ΦHF

SD

〉
= Ee (2.39)

〈Φr
a| exp

(
−T̂

)
Ĥe exp

(
T̂
) ∣∣∣ΦHF

SD

〉
= 0

〈Φrs
ab| exp

(
−T̂

)
Ĥe exp

(
T̂
) ∣∣∣ΦHF

SD

〉
= 0 (2.40)
...

The similarity transformed Hamiltonian exp
(
−T̂

)
Ĥe exp

(
T̂
)
can be simplified with

the Baker-Campbell-Hausdorff (BCH) expansion. Due to the two-particle nature of the
Hamiltonian the BCH expansion truncates conveniently after the quadruply nested com-
mutator. Thus, the similarity transformed Hamiltonian exp

(
−T̂

)
Ĥe exp

(
T̂
)
can be ex-

actly expanded as

exp
(
−T̂

)
Ĥe exp

(
T̂
)

= Ĥe +
[
Ĥe, T̂

]
+ 1

2!
[[
Ĥe, T̂

]
, T̂
]

+ 1
3!
[[[
Ĥe, T̂

]
, T̂
]
, T̂
]

+ 1
4!
[[[[

Ĥe, T̂
]
, T̂
]
, T̂
]
, T̂
]
. (2.41)

With the BCH expansion the equations (2.40) can be solved in order to get the am-
plitudes which are then used to calculate the energy Ee of equation (2.39). For CCSD
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only the two explicitly shown equations (2.40) have to be solved. In the calculation of the
amplitudes for CCSD up to quadruple excitations are considered with T̂ 2

2 , T̂2T̂
2
1 and T̂ 4

1 .
The inclusion of these excitation is the reason for the size extensivity of the truncated
coupled cluster.

Unfortunately the accuracy of CCSD is not high enough for chemical accuracy and
the next truncation level (CCSDT) is not feasible for large molecules. Therefore, the
perturbation theory89 has to be applied to add a perturbative correction for the connected
Triples T̂3 based on CCSD amplitudes. The forth and fifth order perturbation theory
terms which contain the connected triples amplitudes are used, while for the fifth order
only those which arise from the projection onto single and double exitated determinates
are used. Coupled Cluster Singles and Doubles with perturbative Triples is abbreviated
as CCSD(T). Its calculation time scales with the system size to the power of seven and
has a large prefactor. Thus, CCSD(T) was not feasible for all systems in this thesis, and
further approximations are utilized.

Electron correlation is a short range effect. A good approximation for the electron
correlation can be gained by determining only the electron correlation of spatially close
electrons with high accuracy, i.e. on coupled cluster level. This approach is called local
(L) coupled cluster. The canonical orbitals from the Hartree-Fock approach are usu-
ally delocalized over the whole molecular system; therefore, localized molecular orbitals
(LMOs) are used. LMOs are molecular orbitals which are concentrated at a small and
defined spatial region like a specific bond or atom. They are gained in this thesis with
the Pipek-Mezey90,91 localization scheme by applying an unitary transformation onto the
occupied canonical orbitals from the Hartree-Fock approach. In the applied LCCSD(T)
method55 the excitations from pairs of LMOs are restricted to a certain subspace called
domain. The pairs of LMOs are divided into different classes according to their distance.
Close pairs are treated with coupled cluster theory, more distant pairs with perturbation
theory and pairs far away from each other are neglected. The domains are generated
by projecting atomic orbitals onto the canonical virtual orbital space. The generated
orbitals are called projected atomic orbitals92 (PAOs). They are orthogonal to the LMOs
but non-orthogonal to each other. PAOs spatially close to a LMO pair are used to build
the corresponding domain.

Furthermore the density fitting (DF) approximation is used to reduce the computational
costs. Density fitting is also called “resolution of the identity” and is explained in section
2.4.2 for the case of Density Functional Theory. In total it is possible to perform DF-
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LCCSD(T) single point calculations with sufficiently large basis sets for the monovalent
complexes of this thesis.

2.4 Density Functional Theory

Density Functional Theory (DFT) is an electronic structure method to describe the elec-
tronic ground state of a many-body system based on the spatially dependent electron
density ρ (~r). The electron density of a system with n electrons is the absolute square
of the wave function integrated over all spin coordinates ~si and all except one spatial
coordinates

ρ (~r) = n
∫
· · ·

∫
Φ∗ (~x1, ~x2 . . . , ~xn) Φ (~x1, ~x2 . . . , ~xn) d~s1d~x2 . . . d~xn (2.42)

where possible ~ri and ~si are merged to ~xi.
Early attempts to use the electron density were made by Thomas93 and Fermi94 in

1927. However, a firm physical foundation for the Density Functional Theory (DFT) was
first established in 1964 with the two Hohenberg–Kohn theorems.56 The first theorem
proves that the ground state electronic energy is determined uniquely by the electron
density ρ (~r). The second proves that the variation principle for the density holds true
for DFT. Thus, the exact functional E [ρ] which connects electron density and ground
state electronic energy, gives the lowest energy only with the true ground state electron
density. One year after the physical foundation Kohn and Sham published an orbital-
based framework which is known as “Kohn-Sham DFT”.57 It has become the basis for
modern DFT as other DFT methods failed in determining the kinetic energy. In Kohn-
Sham DFT a system of non-interacting electrons which are moving in an effective potential
VS (~r) is used to describe the real system of interacting electrons. The effective potential
VS (~r) is chosen in order that the electron density ρS (~r) of the non-interacting system
is equal to the electron density ρ0 (~r) of the real system. The Hamiltonian ĤKS for the
non-interacting system is

ĤKS = −1
2

n∑
i

~∇2
i +

n∑
i

VS(~ri) =
n∑
i

F̂KS
i . (2.43)

ĤKS can be written as sum of one-electron Hamiltonians called Kohn-Sham operators
F̂KS
i . The ground state of the non-interacting system is exactly represented by a single
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Slater determinant ΘKS, because such a system contains no electron-electron interaction
(the electrons are just moving in an effective potential VS (~r))

ΘKS = 1√
n!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1 (~x1) ϕ2 (~x1) . . . ϕn (~x1)
ϕ1 (~x2) ϕ2 (~x2) . . . ϕn (~x2)

... ... . . . ...
ϕ1 (~xn) ϕ2 (~xn) . . . ϕn (~xn)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.44)

The spin orbitals ϕ are called Kohn-Sham orbitals to distinguish these from the orbitals
in the Hartree-Fock methods. The orbitals are determined with the Kohn-Sham operator

F̂KS |ϕa〉 = εa |ϕa〉 . (2.45)

Inserting the Slater determinant ΘKS (eqatuion (2.44)) into equation (2.42) yields

ρS (~r) =
N∑
a

|ϕa (~r)|2 , (2.46)

where the spin is integrated out and ϕa (~r) is only a spatial orbital. The connection to
the real system is established by choosing the effective potential VS (~r) so that the sum of
the squared moduli of the Kohn-Sham orbitals ϕa (~r) is equal the exact electron density
ρ0 (~r) of the real system

ρS (~r) =
N∑
a

|ϕa (~r)|2 != ρ0 (~r) . (2.47)

The effective potential VS (~r) does not depend on the spin. However, the exact density
functional is not known (see below) and the approximations often use the α- and β-spin
density.95

In Kohn-Sham DFT the total energy as a functional of the electron density E [ρ] is
given by

E [ρ] = TS [ρ] + J [ρ] + EXC [ρ] + EeC [ρ] . (2.48)

TS [ρ] gives the kinetic energy of the non-interacting system which has the same electron
density as the real system

TS [ρ] = −1
2

N∑
a

〈ϕa| ~∇2 |ϕa〉 . (2.49)
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TS [ρ] is considered as functional of the electron density, because the Kohn-Sham orbitals
are connected to the electron density by equation (2.47). J [ρ] is the functional of the
classical Coulomb interaction

J [ρ] = 1
2

∫∫
ρ (~r1) 1

|~r1 − ~r2|
ρ (~r2) d~r1d~r2

= 1
2

N∑
a

N∑
b

∫∫
|ϕa (~r1)|2 1

|~r1 − ~r2|
|ϕb (~r2)|2 d~r1d~r2 . (2.50)

EeC [ρ] is the functional for the electron-nuclei-interaction

EeC [ρ] = −
∫ C∑

A

ZA∣∣∣~r1 − ~RA

∣∣∣ρ (~r1) d~r1

= −
N∑
a

∫ C∑
A

ZA∣∣∣~r1 − ~RA

∣∣∣ |ϕa (~r1)|2 d~r1 . (2.51)

EXC [ρ] is the so called exchange-correlation functional. It contains the self-interaction
correction, the exchange and correlation effects and the part of kinetic energy which is
not covered by TS [ρ].

In the next step the variational principle is applied like in the Hartee-Fock approxima-
tion. The energy is minimized with respect to the Kohn-Sham orbitals upon condition
that the Kohn-Sham orbitals stay orthonormal 〈ϕi|ϕj〉 = δij. This results in equation
(2.45)95,96 with the effective potential VS (~r)

VS(~r1) =
∫ ρ (~r2)
|~r1 − ~r2|

+ VXC(~r1)−
C∑
A

ZA∣∣∣~r1 − ~RA

∣∣∣ (2.52)

for the Kohn-Sham operator (equation (2.43)). VS depends on the electron density or the
orbitals; therefore, equation (2.45) has to be solved iteratively by a self-consistent field
approach like Hartree-Fock. The exchange-correlation potential VXC is the derivative of
the exchange-correlation functional EXC with respect to the electron density ρ(~r)

VXC(~r) = δEXC [ρ]
δρ(~r) . (2.53)

Up to this point no approximations are made in the Kohn-Sham DFT approach except the
Born–Oppenheimer approximation, which is here applied as well. Thus, Kohn-Sham DFT
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gives the exact energy or eigenvalue of the non-relativistic, time-independent electronic
Schrödinger equation (2.7) in case the exchange-correlation functional EXC is known, but
unfortunately EXC is unknown. As a result Kohn-Sham DFT contains approximations
for the unknown exchange-correlation functional EXC.
Like in Hartree-Fock the Kohn-Sham orbitals are now linearly expanded into a finite

set of atom-centered basis functions. Hence the density ρ (~r) is calculated as

ρ (~r) =
N∑
a

|ϕa (~r)|2 =
N∑
a

L∑
µ

L∑
ν

CµaCνaφµ (~r)φν (~r) =
L∑
µ

L∑
ν

Dµνφµ (~r)φν (~r) (2.54)

with the elements Dµν of the Density-matrix D

Dµν =
N∑
a

CµaCνa . (2.55)

Analogous to Hartree-Fock which yields in the Roothaan–Hall equations, a matrix equa-
tion is obtained for Kohn-Sham DFT which can be solved as described for Hartree-
Fock. The largest part of the calculation are the four-center-two-electron integrals for
the Coulomb term. As for Hartree-Fock a direct SCF procedure has to be applied and
the calculation time scales formally with the number of basis functions to the power of
four.
The approximations for the exchange-correlation potential VXC are in general compli-

cated mathematical constructs, which are not shown here. The corresponding integrals
cannot be solved analytically and so they are calculated numerically on a grid. Neverthe-
less, these calculations are much faster than the calculation of the four-center-two-electron
integrals for the Coulomb term.

2.4.1 DFT Functionals

The exchange-correlation functionals used in “Kohn-Sham DFT” can be characterized in
accordance to the density related variables they take into acount. Perdew97,98 suggested
a hierarchic order by putting the different functional types on different rungs of a ladder,
the so called “Jacob’s ladder”. The different rungs are:

1. Local Density Approximations (LDA),

2. Generalized Gradient Approximation (GGA),
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3. meta-GGA,

4. Hybrid GGA and Hybrid meta-GGA,

5. Fully Non-Local.

With every rung more density related variables are added and the functionals should
gain more accuracy. In practice the computational effort usually rises with every rung,
however, not necessarily the accuracy, especially between functionals of the second, third
and fourth rung.99

LDA functionals only use the electron density ρ(~r). For systems with an inhomogeneous
electron density like molecules, they usually perform poorly. The second rung are the
GGA functionals. They use additionally to the electron density ρ(~r) the gradient of the
electron density ∇ρ(~r); thus, enabling the calculation of molecules. The prefix “meta”
means that in addition the second order gradient of the electron density ∇2ρ(~r) or the
kinetic energy density τ(~r) = 1

2
∑N
a |∆ϕa (~r)|2 will be taken into account. The “Hybrid”

prefix points out that the Kohn-Sham orbitals are used to calculate the exact, non-local
exchange as in the Hartree-Fock method. This non-local exchange is then usually mixed
with the exchange calculated from a GGA or meta-GGA.
In this thesis mainly the non-empirical meta-GGA functional TPSS100–103 was used. It is

designed to satisfy exact constraints on the exchange-correlation functional EXC and is not
fitted to experimental data. Therefore, TPSS can be used for a broad set of systems. The
constraints, used for the construction of non-empirical denstiy functionals can be found
in common textbooks on computational chemistry like “Introduction to Computational
Chemistry” by Jensen, 2007.104 The GGA functional BP86100,101,105–108 was used for the
COSMO-RS approach, which is optimized for BP86. It consists of the exchange functional
B88106 and the correlation functional P86,107,108 which both contain empirical parameters.
For the samarium calculations the Hybrid GGA functional PBE0100–102,109–111 was used. It
replaces 25% of the exchange in the GGA functional PBE100–102,109,110 with the Hartree-
Fock exchange calculated from the Kohn-Sham orbitals. The TPSS functional is also
based on PBE.
The Hybrid GGA fucntional B3LYP100,101,105,112,113 was used to calculate excitation

energies (see section 2.9.2). Finally the M06-2X114 functional was applied for the investi-
gation of polyethylene glycol (PEG). It is a Hybrid meta-GGA functional which is fitted
for main-group thermochemistry and kinetics.
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2.4.2 RI-DFT and MARI-J

The most time consuming step in the DFT approach is the calculation of the four-center-
two-electron integrals. In the non-Hybrid functionals these integrals only appear for the
Coulomb terms. The Coulomb J [ρ] energy given by equation (2.50) can be written with
equation (2.54) as

J [ρ] = 1
2

L∑
µ

L∑
ν

L∑
λ

L∑
σ

DµνDλσ

∫∫
φµ (~r1)φν (~r1) 1

|~r1 − ~r2|
φλ (~r2)φσ (~r2) d~r1d~r2 . (2.56)

The computational demand can be drastically reduced by expanding the electron den-
sity ρ (~r) in terms of an atom-centered auxiliary basis set115–117

ρ(~r) ≈ ρ̃(~r) =
K∑
κ

cκηκ (~r) . (2.57)

The approximated auxiliary density is ρ̃(~r), cκ are the extension coefficients, ηκ are the
auxiliary basis functions, K is the finite number of auxiliary basis functions and κ is
the summation index. The coefficients cκ are determined by minimizing the Coulomb
repulsion of the “density error” δρ(~r) = ρ(~r)− ρ̃(~r)

∫∫ δρ(~r1)δρ(~r2)
|~r1 − ~r2|

d~r1d~r2 = min. (2.58)

This leads to a system of linear equations

K∑
υ

cυ

∫∫
ηκ (~r1) 1

|~r1 − ~r2|
ηυ (~r2) d~r1d~r2 = γκ . (2.59)

with γκ being

γκ =
L∑
λ

L∑
σ

Dλσ

∫∫
ηκ (~r1) 1

|~r1 − ~r2|
φλ (~r2)φσ (~r2) d~r1d~r2 . (2.60)

In the first step equation (2.60) is calculated to yield the γκ elements. Then with γκ

equation (2.59) can be solved to yield the coefficients cκ. Now the Coulomb J [ρ] energy
(equation (2.56)) is approximated with J̃ [ρ]

J [ρ] ≈ J̃ [ρ] = 1
2

∫∫
ρ̃ (~r1) 1

|~r1 − ~r2|
ρ (~r2) d~r1d~r2 = 1

2

K∑
κ

cκγκ . (2.61)
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Thus, four-center-two-electron integrals are approximated with three-center-two-electron
integrals. The approach is abbreviated as “RI-J” or “RI-DFT” because equation (2.58)
can be rewritten to formally resemble a “resolution of the identity” (RI).115–117 The num-
ber of three-center-two-electron integrals is proportional to L2K with L being the number
of basis functions and K the number of auxiliary basis functions.95 K is usually two to
three times as large as L to have a reasonable balance between accuracy and feasibility.
Compared to the number of four-center-two-electron integrals which is proportional to L4,
the number of integrals is drastically reduced. The reduction is large enough to switch
from the direct SCF procedure to the “in-core” procedure. Therefore, RI-DFT is not
only faster because the number of integrals is reduced, but also because the integrals only
have to be solved once in the SCF procedure.115,116 For the systems in this thesis the
calculations were usually five to ten times faster with RI-DFT. The Coulomb energy in
the RI-DFT approach typically deviates about 10−4 Eh per atom from the corresponding
energy from a DFT calculation without RI-J approximation.115,116 For energy differences
like binding energies these deviations are neglectable due to error cancellation.

Further reduction of the computational demand can be archived with the “multipole
accelerated resolution of identity for J” (MARI-J ) approach which is based on RI-DFT.117

Coulomb interactions are divided into a “near-field” and a “far-field” part. In the near-
field the Coulomb interactions are calculated with the RI-J approach. In the far-field
a multipole expansion is used. The electron density ρ(~r) and the auxiliary density ρ̃(~r)
are divided into atomic partitions and into atom-centered partitions, respectively. For
these partitions spherical extents (= radii) are defined based on the exponents ζ of the
Gaussian Type Orbitals118 which are used as basis functions (see section 2.7). If the
extent of a density partition and the one of an auxiliary density partition are overlapping,
they are considered as near-field otherwise as far-field. A small exponent ζ yields a large
extent and by this a larger near-field. The deviation of MARI-J to the pure RI-DFT
calculation is typically below 10−7 Eh per atom; hence, three orders of magnitude smaller
than the deviation of RI-DFT to DFT.117 For systems with about 1000 atoms MARI-J
calculations are reported to be up to 6.5 times faster than the already fast pure RI-DFT
calculations.117 In this thesis with systems about 170 atoms, the MARI-J calculations
were just slightly accelerated by a factor between 1.01 and 1.2 compared to the pure
RI-DFT.
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2.4.3 Dispersion correction DFT-D

Many density functionals are failing in describing the correct −C6R
−6 dependence of

the long-range electron correlation which is responsible for the London dispersion119,120

interaction.60 A non-local description of the correlation would be necessary to describe
the London dispersion interactions correctly. LDA, GGA and meta-GGA functionals only
use local informations of the density. Hybrid functions include the non-local Hartree-Fock
exchange, however the description of the correlation is still local. To take the London
dispersion into account and still use DFT (especially GGA and meta-GGA functionals)
the disperion corrections DFT-D358–60 and DFT-D3(BJ)61 were used which differ only in
the damping function fdamp

q (see below). The non-additive three body term was not used,
because it has only a minor effect on the energy of a molecular system.
In the DFT-D3 and the DFT-D3(BJ) approach a correction term ED is added to the

total energy EDFT of a Kohn-Sham DFT calculation to get the corrected total energy
EDFT-D

EDFT-D = EDFT + ED . (2.62)

ED is a semi-empirical atom-pairwise potential. For DFT-D3 it is given with

ED = −1
2
∑
A 6=B

∑
q=6,8

sq
CAB
q

Rq
AB
fdamp
q (2.63)

with the so called zero-damping

fdamp
q = 1

1 + 6
(
RAB(sR,qRAB

0 )−1)−(8+q) . (2.64)

ED for DFT-D3(BJ) is given with

ED = −1
2
∑
A 6=B

∑
q=6,8

sq
CAB
q

Rn
AB + fdamp

q

(2.65)

with the Becke-Johnson-damping61,121–123

fdamp
q =

(
β1R

AB
0 + β2

)q
. (2.66)

RAB is the distance between the atoms A and B. CAB
q are the qth-order atom-pair AB

depending isotropic dispersion coefficients and sq are DFT functional depended scaling
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factors. The s6 scaling factor is usually set to unity for all functionals and only s8 is used as
empirical functional dependent parameter. CAB

6 is computed based on the Casimir–Polder
formula58,124

CAB
6 = 3

π

∫ ∞
0

αA (iω)αB (iω) dω (2.67)

with α (iω) being the averaged dipole polarizability at imaginary frequency ω calculated
with time-dependent DFT (TDDFT). The TDDFT calculations were done with the PBE
functional mixed with 37.5% Hartree-Fock exchange for the evaluation of CAB

6 . Instead
of free atoms different hydrides were used to account for different binding situations. The
CAB

8 coefficients are calculated recursively from the CAB
6 coefficients with

CAB
8 = 3CAB

6

√√
ZAQA

√
ZBQB (2.68)

where ZA and ZB are the nuclear charges, and QA and QB are the quotients of averages of
powers of the electron-nucleus distance calculated from the ground state electron density
of atom A and B, respectively.58,125

RAB
0 is the cutoff radius. The cutoff radius is multiplied with the functional dependent

scaling factor sR,q or β1. The sR,8 scaling factor is set to unity for all functionals. In
total DFT-D3 with zero-damping has two functional dependent scaling factors s8 and
sR,6. The successor, DFT-D3(BJ), has three functional dependent scaling factors s8, β1

and additionally β2.
ED in DFT-D3 with zero-damping approaches zero if the distance between the atoms

A and B goes to zero. Therefore, atoms can experience a repulsive force for small and
medium distances. With Becke-Johnson damping this problem is solved, because ED ap-
proaches a constant finite value if the distance between the atoms A and B goes to zero.
In this thesis mainly DFT-D3(BJ) was used. Calculating analytically vibrational fre-
quencies with DFT-D3(BJ) yields spurious imaginary frequencies; therefore, vibrational
frequencies are determined numerically with DFT-D3(BJ). DFT-D3 with zero-damping
was used for analytic frequency calculations for systems which are not feasible with nu-
merical calculations.

2.5 Thermal effects and thermodynamic properties

Until now only the electronic energy is taken into account, however, the change in the
electronic energy makes only about 50% of the Gibbs energy of association for the com-
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plexes in this thesis at room temperature. The other 50% are solvent effects and the
“thermal effects” of translation, rotation and vibration. In this section the determination
of the thermal effects in the gas phase is described. The experimental parts belonging to
this study are performed on macroscopic samples considering an ensemble of molecules.
To connect the results of the calculation of single molecules to an ensemble of molecules,
statistical mechanics has to be used. Thermodynamic functions, macroscopic observables
and their derivatives (enthalpy H, the entropy S and Gibbs energy G) for an ensemble are
obtained from the partition function in statistical mechanics. The ensemble of molecules
is regarded as ideal gas which allows to express the partition function in closed analytical
form.104

The partition function q for a single molecule is the sum over the Boltzmann factors of
all its quantum states n

q =
∞∑
n

e−εn(kBT )−1
, (2.69)

with the energy εn of quantum state n, the Boltzmann constant kB and the temperature
T (in this section the common symbols/characters from statistical mechanics for the
variables and the International System of Units (SI) are used in contrast to the other
sections). The energy εn is given with respect to the energy ε0 of the lowest state, which
will be chosen to be zero for the sake of convenience. Q is the corresponding partition
function of an canonical ensemble of N indistinguishable non-interacting molecules at
room temperature

Q = qN

N ! , (2.70)

the number of molecules N , the volume V and the temperature T are constants. In
the canonical ensemble the enthalpy H, the entropy S and the Gibbs energy G can be
calculated from the partition function Q with

H = U + PV = kBT
2
(
∂ lnQ
∂T

)
N,V

+ kBTV

(
∂ lnQ
∂V

)
N,T

, (2.71)

S = kBT

(
∂ lnQ
∂T

)
N,V

+ kB lnQ , (2.72)

G = H − TS = kBTV

(
∂ lnQ
∂V

)
N,T

− kBT lnQ . (2.73)

U is the internal energy and P the pressure.
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To calculate the partition function Q, and thus the enthalpy H, the entropy S and the
Gibbs energy G, further approximations have to be made, assuming first the Hamiltonian
Ĥtot characterizing the total energy εtot of the quantum state of a single molecule is
the sum of the translational Ĥtrans, rotational Ĥrot, vibrational Ĥvib and electronic Ĥe

Hamiltonians126

Ĥtot = Ĥtrans + Ĥrot + Ĥvib + Ĥe . (2.74)

The total wave function Φtot for a single molecule is then a product of the translational
Φtrans, rotational Φrot, vibrational Φvib and electronic Φe wave function

Φtot = Φtrans · Φrot · Φvib · Φe (2.75)

and the total energy εtot the sum over the corresponding individual energies

εtot = εtrans + εrot + εvib + εe . (2.76)

It follows from equation (2.76) and (2.69) that the total partition function qtot of a signal
molecule can be calculated as a product of the individual translational qtrans, rotational
qrot, vibrational qvib and electronic qelec partition functions

qtot = qtrans · qrot · qvib · qelec . (2.77)

At atmospheric pressure and room temperature the translational wave function Φtrans of
an individual molecule is delocalized over the the whole volume V of the ensemble, whereas
the rotational Φrot, vibrational Φvib and electronic Φe wave functions are localized at the
corresponding molecule not overlapping with the corresponding wave functions of the
other molecules. This absence of overlap makes the molecules distinguishable if only the
rotational, vibrational and electronic states are considered.127 Thus, indistinguishability
of the molecules only effects the translational partition function Qtrans of the ensemble;
therefore, the 1

N ! term correcting the over-counting of states due to the indistinguishability
is included only in Qtrans. It follows for the partition function Q of the ensemble from
equation (2.70)

Q = qNtot
N ! = qNtrans

N !︸ ︷︷ ︸
Qtrans

· qNrot︸︷︷︸
Qrot

· qNvib︸︷︷︸
Qvib

· qNelec︸︷︷︸
Qelec

. (2.78)
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Applying the natural logarithm leads to

ln (Q) = N ln (qtrans)− ln (N !) +N ln (qrot) +N ln (qvib) +N ln (qelec) . (2.79)

This can be simplified in case of a large N , with Stirling’s formula truncated after the
second term

(
ln (N !) ≈ N ln (N)−N = N ln

(
N 1

exp(1)

))
, to

ln (Q) ≈ N ln
(
qtrans
N

exp (1)
)

︸ ︷︷ ︸
ln(Qtrans)

+N ln (qrot)︸ ︷︷ ︸
ln(Qrot)

+N ln (qvib)︸ ︷︷ ︸
ln(Qvib)

+N ln (qelec)︸ ︷︷ ︸
ln(Qelec)

. (2.80)

The total enthalpy Htot (equation (2.71)) and entropy Stot (equation (2.72)) are calculated
from ln (Q) (equation (2.80)); therefore, they can be separated also into the individual
contributions

Htot (ln (Q)) = Htrans (ln (Qtrans)) +Hrot (ln (Qrot)) +Hvib (ln (Qvib))

+Helec (ln (Qelec)) , (2.81)

Stot (ln (Q)) = Strans (ln (Qtrans)) + Srot (ln (Qrot)) + Svib (ln (Qvib))

+Selec (ln (Qelec)) . (2.82)

2.5.1 Translation

The energy for the quantum states of translation can be determined from the “particle in
a box” model with infinitely large potential walls. In the first step the translation in only
one dimension is assumed, leading to the translational energy levels εnx ,

εnx = n2
xh

2

8mL2
x

(2.83)

with the massm of the molecule under investigation, h the Planck constant and the length
Lx in x-direction. At 298.15K the difference between the Boltzmann factors is getting
so small that the summation in equation (2.69) can be replaced by an integral leading to
the partition function qtrans,x for the translation along x

qtrans,x =
∞∑

nx=0
e−εnx (kBT )−1

=
∫ ∞

0
e−εnx (kBT )−1

dnx =
√

2πmkBT
h2 Lx . (2.84)
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The lowest state in the “particle in a box” model is characterized with nx = 1, nevertheless,
nx = 0 with ε0 = 0 is used in this thesis. It does not change the partition function because
the energy difference is small but it allows to solve equation (2.84) in a closed analytic
form. The total translational partition function qtrans for a single molecule is the product
of the translational partition functions in the individual directions

qtrans = qtrans,xqtrans,yqtrans,z =
(

2πmkBT
h2

) 3
2

V (2.85)

with the volume V = LxLyLz. Inserting qtrans in equations (2.80), (2.71) and (2.72) yields
for N = 1mole = NA (NA: Avogadro constant) and volume V = Vm (Vm: molar volume)
the translational Htrans and Strans

Htrans = 5
2RT , (2.86)

Strans = 5
2R +R ln

 Vm
NA

(
2πmkBT

h2

) 3
2
 , (2.87)

where R = kBNA is the ideal gas constant.

2.5.2 Rotation

The geometric structure of the molecules is assumed not to change or to stretch due to
rotation. Hence the geometric structure stays fixed in the energetic minimum calculated
within the Born–Oppenheimer approximation. This approximation is called “rigid-rotor”
(RR) approximation. Even within the rigid-rotor approximation the solution for a non-
linear polyatomic molecule is non-trival. However, every molecule (except hydrogen)
which is stable at room temperature and atomospheric pressure has such larges moments
of inertia (which leads to very small differences between the rotational energy levels) that
at room temperature the rotations can be treated accurately with classical mechanics,126

which yields the following partition function

qrot =
√
π

σ

(
8π2kBT

h2

) 3
2√

I1I2I3 . (2.88)

I1, I2 and I3 are the moments of inertia and can be calculated from the optimized geometric
structure. The number of rotations which transfer the molecule into itself yields the
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symmetry index σ which corrects for the overcounting of rotational states. This is a
consequence of Pauli’s exclusion principle. The total wave function has to be symmetric
with respect to the exchange of two identical nuclei with zero or integer spins (bosons)
and antisymmetric if the nuclei have half integer spins (fermions). To rationalize this, the
nuclear spin wave function Φns has to be included in equation (2.75). It can be seen that
only rotational states are accessible which have a symmetry fitting with the symmetry
of the nuclear spin states. Detailed discussions on this are made by Mayer et al.126 and
Gilson et al.128 Other than that, the nuclear spin wave function Φns does not have to be
taken into account, because the effects will be canceled out in chemical reactions.126

Equation (2.88) yields for N = NA to

Hrot = 3
2RT , (2.89)

Srot = 3
2R +R ln

√π
σ

(
8π2kBT

h2

) 3
2√

I1I2I3

 . (2.90)

2.5.3 Vibration

If the geometric structure of the molecule is at a stationary point, meaning the first
derivatives of the electronic energy with respect to the nuclear coordinates are zero,
then the vibrational modes of the molecule can be calculated with a harmonic oscillator
(HO) approximation. In this approximation the nuclear Schrödinger equation is sepa-
rable into 3Natom one-dimensional Schrödinger equations, with Natom being the number
of atoms in the molecule. The one-dimensional Schrödinger equations have the form of
one-dimensional harmonic oscillators. The corresponding eigenvalues can be gained from
the Hessian matrix, which contains all second derivatives of the energy E

({
~R
})

(equa-
tion (2.8)) with respect to the coordinates.104 The Hessian matrix has to be transformed
to mass-dependent coordinates and then diagonalized. This yields 3Natom eigenvalues λi.
Six of the eigenvalues are zero because they correspond to the three translations and the
three rotations of the rigid molecule, respectively. The other eigenvalues λi yield the
frequencies νi for the 3Natom − 6 vibrational modes

νi = 1
2π

√
λi . (2.91)
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The corresponding energy levels εn,i are

εn,i =
(
n+ 1

2

)
hνi with n = 0, 1, 2, . . .∞ . (2.92)

The Planck constant h is used. If the temperature T is 0K, only the ground-state n = 0 is
occupied. In contrast to the translation and rotation, the vibrational ground-state energy
EZPVE is different from zero

EZPVE =
3Natom−6∑

i=1

1
2hνi . (2.93)

The vibrational ground-state energy EZPVE will be subtracted from the vibrational energy
levels εn,i (equation (2.92)) and included as a separate term in the vibrational enthalpy
Hvib (equation (2.97)). The new vibrational energy levels ε′n,i are

ε′n,i = nhνi with n = 0, 1, 2, . . .∞ . (2.94)

The spacing between the energy levels ε′n,i is too large to replace the summation for qvib,i
with an integral. Nevertheless, the summation yields a closed form, because the spacing
is regular

qvib,i =
∞∑
n=0

e−ε
′
n,i(kBT )−1

= 1 + e−hνi(kBT )−1
+ e−2hνi(kBT )−1

+ · · · = 1
1− e−hνi(kBT )−1 . (2.95)

The partition function qvib of all vibrational modes derives from the partition function
qvib,i of a single vibrational mode i (equation (2.95))

qvib =
3Natom−6∏

i=1
qvib,i . (2.96)

For N = NA, this yields to

Hvib = R
3Natom−6∑

i=1

 hνi
2kB

+ hνi

kB
(
ehνi(kBT )−1 − 1

)
 , (2.97)

Svib = R
3Natom−6∑

i=1

 hνi

kBT
(
ehνi(kBT )−1 − 1

) − ln
(
1− e−hνi(kBT )−1) . (2.98)

The first addend in equation (2.97) is the zero-point vibrational energy EZPVE.

The approach described so far in this section is called “rigid-rotor-harmonic-oscillator”
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(RRHO) approximation, although it contains some more approximations. The RRHO
approximation performs reasonably well with one exception. Figure 2.1 shows the rotation

Figure 2.1: Internal rotation of a
methyl group in toluene.

of a methyl group in toluene. It is not a rotation
of the whole molecule, it is an internal rotation.
More precisely, it is a hindered internal rotation
which has to overcome an energy barrier for full ro-
tation. This kind of rotations are treated as vibra-
tions with the harmonic oscillator (HO) approxima-
tion. As long as the barrier is high (which results
in high frequencies) the harmonic oscillator approx-
imation gives a reasonable description of the parti-

tion function of the hindered internal rotation. If the barrier becomes vanishingly small
(which results in low frequencies) the partition function determined from the harmonic
oscillator approximation goes to infinity, whereas the actual partition function of the hin-
dered internal rotation converges to the partition function of a free rotator as shown in
Figure 2.2.129,130 Thus, for molecules with low-lying vibrations the RRHO approximation
usually overestimates the entropy. This causes an overestimation of the binding energies
of organic molecules, because a large product molecule usually has more hindered internal
rotations than its smaller educts.

Figure 2.2: Partition function q
for a harmonic oscillator, a hin-
dered rotor, and a free rotor plot-
ted against the vibration frequency
ν.129

A cosine potential can be used to describe the
hindered internal rotation in case it is a rotation
along an isolated single bond like shown in Fig-
ure 2.1. Usually the hindered internal rotations
are not isolated (for example in alkans). In this
cases a simple description of the potential of a hin-
dered internal rotation can not be given, because
an accurate description of the potential needs to
recognize that internal rotations are coupled.130,131

The first attempts of theoretical investigations of
hindered internal rotations were started in 1932 by
Nielsen,132 resulting in a series of publications from
Pitzer131,133,134 in the 1940s delivering accurate de-
scriptions for the partition function of hindered in-
ternal rotations. Pitzer’s work was adapted in 1997

37



2. Theoretical Methods

by East and Radom130 to gain accurate entropies for molecules with hindered internal
rotations with modern computational chemistry. East’s and Radom’s approach include
an ab inito calculation of the multidimensional torsional potential (of the corresponding
molecule) and the expression of this potential in terms of Fourier series. The parti-
tion function for the hindered internal rotations can then be calculated in high accuracy
according to Pitzer’s131 proposal involving the numerical solution of multidimensional in-
tegrals built from the multidimensional torsional potential. Unfortunately this method
is not feasible for large molecules. Therefore, more drastic approximations have to be
applied. The easiest solution to account for the hindered internal rotations would be to
treat all low-lying vibrational modes as independent free rotors with the rigid-rotor ap-
proximation and to empirically interpolate subsequently between this new approximation
and the harmonic oscillator approximation. Truhlar135 published such an approach in
1991 and Grimme61 a similar one in 2012. The approach from Grimme is used in this
thesis, but only for vibrational modes with a frequency below 500 cm−1 since this cor-
rection makes no sense for high-lying vibrational modes (Figure 2.2). First the harmonic
oscillator approximation is used to calculate the frequencies νi of all “vibrational” modes.
For the vibrational modes with frequencies below 500 cm−1 the moment of inertia µi is
calculated, which corresponds to the moment of inertia for a rigid-rotor having the same
frequency νi as the vibrational mode

hνi = h2

8π2µi
⇒ µi = h

8π2νi
. (2.99)

To prevent too large µi values resulting from too small frequencies νi, the damped moment
of inertia µ′i is used

µ′i = µiB

µi +B
with B = 10−44 kgm2 . (2.100)

The limiting value B in this thesis was always set to 10−44 kgm2. The damping introduced
due to the limiting valueB has only noticeable effects if the frequency νi gets below 1 cm−1,
which did not occur in this thesis. The damped moment of inertia µ′i is used to calculate
the rotational entropy Sint-rot,νi

Sint-rot,νi
= 1

2R +R ln
(8π3µ′ikBT

h2

) 1
2
 . (2.101)

A damping function f (νi) from Head-Gordon136 is used to interpolate between rotational
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Srot,νi
and harmonic vibrational Svib,νi

(equation (2.98)) approximation

Sνi
= f (νi)Svib,νi

+ (1− f (νi))Sint-rot,νi
with f (νi) = 1

1 +
(
ν0
νi

)4 . (2.102)

The parameter ν0 is set to 100 cm−1.
This correction for hindered rotations will be called “free-rotor approximation” in this

thesis.

2.5.4 Electronic partition function

The energy difference between the electronic ground state and the excited states of the
molecules in this thesis is large. Therefore, qelec is set to one, Selec to zero, and for Helec

the energy E
({
~R
})

(equation (2.8)) is used to get the total values for equation (2.77),
(2.81) and (2.82).

2.6 Solvent effects

Next to the electronic and thermal effects the solvent effects have to be considered. There-
fore, the COSMO-RS62–65 (Conductor-like Screening Model for Real Solvents) is em-
ployed, which is based on the dielectric continuum solvation model (DCM) COSMO66,67

(Conductor-like Screening Model).

2.6.1 COSMO

In DCMs the investigated solute molecule forms a cavity in a dielectric continuum. This
cavity yields the solvent-accessible surface area (SASA) and is usually constructed from
the about 20% increased van der Waals radii of the atoms of the solute molecule. The
SASA serves as an interface between solute molecule and dielectric continuum. The elec-
tric charge distribution in the solute molecule polarizes the dielectric continuum creating
screening charges at the SASA. The screening charges from the dielectric continuum at
the SASA affect subsequently the solute molecule. Solvents have a certain finite permit-
tivity ε (or relative permittivity εr). In DCMs the solvents are simulated by modeling
a dielectric continuum with the same permittivity ε. The basis for this approach is the
Poisson equation, which usually has to be solved iteratively for a molecular shaped sur-
face and a finite permittivity ε. COSMO is able to solve the problem non-iteratively by
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describing the solvent as an ideal conductor (εr = ∞). The total potential Φtot at the
SASA becomes zero for εr =∞

Φtot = ΦX + AXq = 0 . (2.103)

The total potential Φtot is the sum of the electrostatic potential ΦX of the molecule X
in solvent S and the potential AXq arising from the screening charges. ΦX derives from
the atomic nuclei and electron density of the molecule X (determined in an electronic
structure calculation). AXq consists of the matrix of the screening charge interactions
AX at solute molecule X and the vector of the screening charges q consisting of the scalar
components qi. The SASA is divided into segments. Each segment i has the area si and
the screening charge density σi. Thus, the scalar components qi can be expressed as

qi = siσi . (2.104)

Using the boundary equation (2.103), the screening charges q are derived with

q = −A−1
X ΦX . (2.105)

In an ideal conductor the surface charges qsolute from the solute molecule are exactly
nullified by the screening charges q

qsolute = −q . (2.106)

The interaction energy (or “COMSO energy”) EX
S of a solute molecule X with the solvent

S is the product of the potential AXq arising from the screening charges and the surface
charges qsolute

EX
S = 1

2qsoluteAXq . (2.107)

The factor “1
2” appears instead of “1” because the polarization of the dielectric continuum

consumes half of the energy which is gained. The surface charges qsolute can be replaced
with the screening charges q (equation (2.106)) and the screening charges q are written
as sum over the screening charges qi on the surface segments i137

EX
S = −1

2
∑
i∈X

qi
∑
j∈X

AXij qj , (2.108)
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with equation (2.104) yielding

EX
S = −1

2
∑
i∈X

σisi
∑
j∈X

AXijσjsj . (2.109)

For actual solvents the correction factor f (εr) = (εr − 1)(εr + 0.5)−1 is used to correct for
the finite permittivity of the solvents

q∗ = f (εr) q , (2.110)

EX
S = −1

2f (εr)
∑
i∈X

σisi
∑
j∈X

AXijσjsj = −1
2
εr − 1
εr + 1

2

∑
i∈X

σisi
∑
j∈X

AXijσjsj . (2.111)

COMSO is integrated into the SCF procedure of Hartree-Fock and DFT as an additive
external potential V X

S which is the derivative of EX
S with respect to the electron density

ρX (~r) of the solute molecule

V X
S = ∂EX

S

∂ρX (~r) . (2.112)

2.6.2 COSMO-RS

DCMs do not take short-range interactions into account like hydrogen bonds and van der
Waals interactions. COSMO-RS aims to overcome these just mentioned drawbacks as in
this approach (Figure 2.3) the interaction between solute molecule and solvent is calcu-
lated based on pairwise interactions of surface segments. Each segment is characterized by
its screening charge density σ (Figure 2.4 shows the charge distribution of typical solute
and solvent molecules investigated in this thesis) and the atom type at this position.
From each species in solution, either solute or solvent, an electronic structure calculation

(with COSMO) of one molecule in an ideal conductor (εr =∞) is performed. This yields
the screening charge densities σ at the surface of the molecule. Subsequently, the surface
is divided into segments. The gained information is collected for each molecule in a
probability distribution pX (σ) of the appearance of specific screening charge densities σ
at the surface of the molecule, called σ-profile. The σ-profile pS (σ) of the whole solution is
the sum of individual σ-profiles of the involved molecules weighted by their corresponding
mole fraction xX

pS (σ) =
∑
X∈S

xXpX (σ) . (2.113)

In this thesis the solute molecules are considered in infinite dilution; thus, only the mole
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Figure 2.3: The COSMO-RS approach: a) A molecule is calculated in an ideal conductor;
b) this yields the screening charges at the surface of the molecule; c) in a next step,
the surface is divided into small segments; d) a probability distribution pX (σ) of the
appearance of specific screening charge densities σ at the surface of the molecule is created,
called σ-profile; e) the σ-potential is calculated from the σ-profile. The steps a) and b)
are performed within the COSMO model66,67 and c), d) and e) are performed within the
COSMO-RS model.62–65

fractions of the solvent molecules are non-zero.

In the next step the chemical potential µS (σ) (called σ-potential) of a surface segment
with the specific screening charge densities σ in the solvent S with the σ-profile pS (σ)
is calculated. The σ-potential is a measure for the affinity of the solvent S to a surface
segment with the screening charge density σ. It is assumed, that every surface segment
is always in contact with another surface segment, but only pairwise interactions will be
allowed. This means also the surface segments of the solvent are in contact with other
surface segments of the solvent. Steric or geometrical aspects are neglected. The σ-
potential µS (σ) can be derived from the partition function Q of this ensemble of surface
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segments and the number of segments N (σ)

µS (σ) = −kBT
(
δ lnQ
δN (σ)

)
T,V

. (2.114)

From equation (2.114) it follows for large number of segments N (σ) that the sum of the
chemical potentials µS (σk) and µS (σl) of the surface segments k and l can be expressed
with the partition function Q and the partition function Q−(σk,σl) in which the two surface
segments k and l are removed

µS (σk) + µS (σl) = −kBT
(
lnQ− lnQ−(σk,σl)

)
. (2.115)

Thus, Q−(σk,σl) can be expressed as

Q−(σk,σl) = exp
(
µS (σk) + µS (σl)

kBT

)
Q . (2.116)

The partition function Q can also be written as

Q = N (σ)
N(σ)∑
l=1
l 6=k

exp
(
−Eint (σk, σl)

kBT

)
Q−(σk,σl) , (2.117)

where N (σ) in the front accounts for the additional degeneracy in Q. Eint (σk, σl) is
the interaction energy of the the two surface segments k and l (see below). Putting the
equation (2.116) in equation (2.117) yields

Q = N (σ)
N(σ)∑
l=1
l 6=k

exp
(
−Eint (σk, σl) + µS (σk) + µS (σl)

kBT

)
Q . (2.118)

The next steps involve dividing by “Q exp
(
µS(σk)
kBT

)
”, switching to natural logarithm, re-

placing the sum with an integral, inculding the σ-profile pS (σ) and switching σk and σl
to σ and σ′. This finally yields138

µS (σ) = −RT
aeff

ln
[∫

pS (σ′) exp
{
− aeff
RT

[Eint (σ, σ′)− µS (σ′)]
}
dσ′

]
(2.119)

with the effective contact area aeff of two surface segments. The σ-profile pS (σ) of the
solvent S in equation (2.119) is normalized to sum up to 1 mol of surface segments. The
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Figure 2.4: Electrostatic potential maps (which indicate the surface charges) for
the solvent molecules chloroform (a) and methanol (b), the monovalent educts 3-
ethoxypropylammonium (c) and benzo-18-crown-6 (d) and their product (e). The surface
charges are indicated from negative to positive by red over yellow, green and cyan to blue.
The screening charges in an ideal conductor are identical to the surface charges, but they
have the opposite sign.

equation (2.119) has to be solved iteratively, because µS is on both sides of the equation.

The chemical potential µSX of solute molecule X in solvent S is calculated by integrating
the σ-potential µS (σ) of solvent S over the surface of solute molecule X. The σ-profile
pX (σ) is normalized to sum up to exactly 1.

µSX =
∫
pX (σ)µS (σ) dσ + µC,SX . (2.120)

The empirical optimized, so called “combinatorial contribution” term µC,SX accounts for
effects based on differences between the volume and the size of the surface of the solute
molecule compared to the solvent molecules.

The surface and the screening charges on the surface can significantly differ for various
conformers of a molecule. This is especially the case for ion pairs and for molecules which
conformers have varying numbers of intramolecular hydrogen bonds. It is necessary to
include all the important conformers j of a molecule X to get an accurate description in
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every solvent. Therefore, the σ-profile (equation (2.113)) of molecule X is formed by the
σ-profile of the conformers j weighted by their corresponding mole fraction xSX,j in solvent
solvent S. The mole fraction xSX,j of conformer j in the specific solvent S is calculated
assuming a Boltzmann distribution

xSX,j =
exp

[(
−EX,j

COSMO + µSX,j
)

(kBT )−1
]

∑
j exp

[(
−EX,j

COSMO + µSX,j
)

(kBT )−1
] . (2.121)

EX,j
COSMO are the quantum chemically determined total energies of the conformer j in an

ideal conductor calculated with COSMO, and µSX,j is the σ-potential of the conformer j
in solvent S.

The interaction energy Eint (σ, σ′) in equation (2.119) consists of the “misfit” energy
EMF (σ, σ′), the energy term for hydrogen bonds EHB (σ, σ′) and the energy term for van
der Waals interactions EvdW (σ, σ′)

Eint (σ, σ′) = EMF (σ, σ′) + EHB (σ, σ′) + EvdW (σ, σ′)
aeff

, (2.122)

EMF (σ, σ′) = aeff
α′

2 (σ + σ′)2
, (2.123)

EHB (σ, σ′) = aeffcHB min [0; min (0;σdonor + σHB) max (0;σacceptor − σHB)] , (2.124)

EvdW (σ, σ′) = aeff (τvdW + τ ′vdW) . (2.125)

The misfit energy EMF (σ, σ′) with the adjustable parameter α′ arises from the electrostatic
interaction of two surface segments. The COSMO-RS approach starts from molecules in
an ideal conductor, in which the charges are perfectly screened by an equal charge with
opposite sign. Thus, the misfit energy EMF (σ, σ′) describes the deviation from this ideal
situation. For σ = −σ′ the misfit energy EMF (σ, σ′) vanishes, because this fulfills the
situation in the ideal conductor. The energy term for hydrogen bonds EHB (σ, σ′) contains
the adjustable parameters cHB and σHB. EHB (σ, σ′) is atom type dependent, the donor
atom for the hydrogen bond is always a hydrogen atom in COSMO-RS. Therefore, σdonor
and σacceptor are written instead of σ or σ′, respectively. The energy for the hydrogen bond
EHB (σ, σ′) will be only different from zero if the screening charge σdonor at the hydrogen
atom is more negative than σHB and the screening charge σacceptor at the acceptor atom is
more positive than σHB. The energy term for van der Waals interactions EvdW (σ, σ′) does
not use the screening charge at all and instead only uses the atom type specific adjustable
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parameters τvdW and τ ′vdW, which are empirical optimized and tabulated.64 Thus, the
equations (2.113), (2.119) and (2.120) should also include the atom type dependency.
This is not done in the presented notion for the sake of clarity.

The chemical potential µGas
X of molecule X in the gas phase is derived from

µGas
X = EX

Gas − EX
COSMO − ωringn

X
ring + ηGas . (2.126)

EGas and EX
COSMO are the total energies of the molecule X in the gas phase and in an

ideal conductor calculated with electronic structure methods. In general the correction
term ηGas is added which accounts for the errors in the electronic structure method. For
ring shaped molecules the correction term ωringn

X
ring is used, too.

From µSX and µGas
X the Gibbs energy GS

Solv,X of the solvation of molecule X in solvent
S can be calculated with

GS
Solv,X =

(
µSX − µGas

X

)
−RT ln

(
ρsolvVM
MWS

)
, (2.127)

where ρsolv is the density of the solvent, MWS is the molecular weight of the solvent and
VM is the molar volume of the ideal gas. Finally it should be added that the empirical
fitted terms used in COSMO-RS imply the use of the BP86 functional for the quantum
chemical part.

The Gibbs energy GS
Solv,X of the solvation can be used to calculate the Gibbs energies

of association ∆Gsol
A in solution. For this purpose the Gibbs energy of association ∆Ggas

A

in the gas phase is calculated

∆Ggas
A = ∆EQM + ∆GRRHO , (2.128)

∆EQM =
products∑

X

EQM
X −

edcuts∑
X

EQM
X , (2.129)

∆GRRHO =
products∑

X

GRRHO
X −

edcuts∑
X

GRRHO
X . (2.130)

EQM
X is the quantum chemically calculated electronic energy in the gas phase of the

product or educt molecule. GRRHO
X consists of the contributions of translation, rotation

and vibration in the gas phase for the product or educt molecule. Afterwards the Gibbs
energy ∆GS

Solv to transfer the educt in the gas phase and the product from the gas phase
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in solution is added (Figure 1.4)

∆Gsol
A = ∆Ggas

A + ∆GS
Solv , (2.131)

∆GS
Solv =

products∑
X

GS
Solv,X −

edcuts∑
X

GS
Solv,X . (2.132)

The enthalpy and entropy can be calculated68 similar to equation (2.128) and (2.131)
with the use of the enthalpy ∆HS

Solv and entropy ∆SSSolv to transfer the educt in the gas
phase and the product from the gas phase in solution

∆HS
Solv = −T 2

∂
(

∆GS
Solv
T

)
∂T

, (2.133)

∆SSSolv = ∆HS
Solv −∆GS

Solv
T

. (2.134)

2.6.3 D-COSMO-RS

COSMO-RS includes hydrogen bonds and van der Waals interactions in contrast to
COSMO. However, COSMO-RS just yields an additive term to the total Gibbs energy. Di-
rect COSMO-RS139,140 (DCOSMO-RS) combines COSMO and COSMO-RS by including
the chemical potential µSX (equation (2.119)) and the “combinatorial contribution” µC,SX

(equation (2.120)) of solute molecule X in solvent S from the COSMO-RS approach in
the SCF procedure of Hartree-Fock and DFT with the additive external potential V X

S,DC-RS

V X
S,DC-RS =

∂EX
S,DC-RS

∂ρX (~r) , (2.135)

where ρX (~r) is the electron density and EX
S,DC-RS the D-COMSO-RS energy

EX
S,DC-RS = −1

2
εr − 1
εr + 1

2

∑
i∈X

σisi
∑
j∈X

AXijσjsj + fpol
∑
i∈X

siµ̃S (σi) + µC,SX . (2.136)

The first term is from the COMSO energy EX
S (equation (2.111)). The second term uses

the scaling factor fpol which is set to unity and the reduced σ-potential µ̃S (σi)

µ̃S (σi) = µS (σi)−
(

1− εr − 1
εr + 1

2

)
c0σ

2
i . (2.137)
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The c0 parameter is calculated from the σ-potential µS (σi) of hexan. The term
“−

(
1− εr−1

εr+ 1
2

)
c0σ

2
i ” is a correction for non-polar solvents (small relative permittivity εr),

which subtracts the contributions from the misfit energy EMF (σ, σ′) (2.123) because the
electrostatic interactions are well enough modeled with COSMO for non-polar solvents.140

2.7 Basis Set

In both Hartree-Fock and DFT, orbitals are expanded in atomic basis functions φ (see
equation (2.27)). Atom-centered Gaussian Type Orbitals118 (GTOs) are used as basis
functions in this thesis. In Cartesian coordinates they are given as

φζ,lx,ly ,lz (x, y, z) = Nxlxylyzlz exp
(
−ζr2

)
. (2.138)

N is the normalization constant, lx, ly and lz are defining the type of orbital (s-,p-,d-,...
orbital), r = x2 + y2 + z2 is the radius and the exponent ζ defines the spherical extent.
GTOs have a “−r2” dependence in the exponential, although a “−r” dependence would
be a better representation of the electronic wave function from molecules. Two problems
arise from the “−r2” dependency: GTOs have a zero slope at the position of the nucleolus
instead of a cusp (discontinuous derivative) and far away from the nucleus the GTOs decay
too rapidly. This disadvantage can be solved by using large numbers of GTOs. GTOs
have the advantage that the product of any number of Gaussians can be rewritten as a
single Gaussian, and their integrals can be solved in a closed analytical form. This speeds
up the calculation drastically.
The generic GTO (equation (2.138)) is a primitive GTO (PGTO). A further speedup is

achieved by using contracted GTOs (CGTOs) which are linear combinations of PGTOs
with the fixed contraction coefficients ai

φCGTO =
∑
i

aiφ
PGTO . (2.139)

The number of integrals in the Hartree-Fock and DFT approach is not reduced by the
use of CGTOs because the number of integrals depends on the number of PGTOs used to
build the CGTO. Despite this, CGTOs reduce the calculation time because the variational
problem (size of Fock matrix and number of iterations) gets smaller. The fixed linear
combinations reduce the flexibility of the basis set. Therefore, CGTOs are used especially
for the core orbitals because these need large numbers of basis functions due to the cusp,
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but not necessarily large flexibility as they are less effected by the chemical bonding
situation.

2.7.1 BSSE and Basis Set Extrapolation

The binding energy ∆EAB of a dimer AB is calculated as difference between the electronic
energy EA of the dimer and the electronic energies EA and EB of the isolated monomers
A and B (see equation (2.129)). If the calculation is not done in the basis set limit, an
error can occur, which is called the basis set superposition error (BSSE). The dimer is
calculated with the basis functions of both monomers, consequently more basis functions
are used to describe the dimer. The electronic energy EAB of the dimer is therefore closer
to the basis set limit and the binding energy ∆EAB gets too negative. The BSSE can be
corrected with the counterpoise (CP) method141

∆EAB = EAB − EA − EB − ECP , (2.140)

where ECP is the counterpoise correction for the BSSE. It is gained from the not relaxed
monomers

ECP = EAB,AB
A − EAB,A

A + EAB,AB
B − EAB,B

B . (2.141)

EAB,AB
A is the energy of monomer A with the basis functions of dimer AB and the nuclear

positions like in dimer AB, EAB,A
A is the energy of monomer A only with the basis functions

of monomer A and the nuclear positions like in dimer AB, and EAB,AB
B and EAB,B

B are the
corresponding energies for monomer B.
The counterpoise method can not be used to correct the BSSE in intramolecular reac-

tions. Since the D-COSMO-RS approach was used for intramolecular reactions, a different
approach was applied. In DFT calculations the basis set limit is often already achieved
by using a quadruple-ζ basis set. The D-COSMO-RS approach is too time demanding to
use a quadruple-ζ basis sets. Thus, the binding energy was calculated in gas phase with a
quadruple-ζ (∆Eq-ζ

gas) and with a triple-ζ (∆Et-ζ
gas). The difference between both was used

as correction for the binding energy in solution ∆Et-ζ
sol calculated with a triple-ζ basis set

and the D-COSMO-RS approach, to gain the corrected binding energy in solution ∆Ecorr
sol

∆Ecorr
sol = ∆Et-ζ

sol +
(
∆Eq-ζ

gas −∆Et-ζ
gas

)
. (2.142)

The third approach to correct the BSSE is to extrapolate the basis set limit, because in
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the basis set limit the BSSE becomes zero. For correlation methods like coupled cluster
the correlation energy in the basis set limit Ecorrel

Limit can be extrapolated142 with correlation
consistent basis sets143

Ecorrel
Limit = Y 3Ecorrel

Y −X3Ecorrel
X

Y 3 −X3 . (2.143)

X and Y are the cardinal numbers of the basis sets (i.e. three for triple-ζ, etc.) with
Y = X+1 and Ecorrel

Y and Ecorrel
X are correlation energies calculated with the corresponding

correlation consistent basis sets.
At the Hartree-Fock and DFT level the energy converges exponential, and thus much

faster than for coupled cluster.104,142,144 Hence, a basis set extrapolation is not necessary
at the Hartree-Fock and DFT level. Instead a calculation with quadruple-ζ basis sets is
often good enough.

2.7.2 Effective core potential

In this thesis systems are calculated which include samarium and iodine. Samarium and
iodine are heavy atoms (fifth and sixth row). These atoms contain a large amount of core
electrons which are not effected by the chemical bonding situation. It is very time consum-
ing to include these electrons in the calculation not only because of their large number,
but also because relativistic effects cannot be ignored for atoms with heavy cores. In this
cases the effective core potential (ECP) approximation145 is used. In this approximation
only the valence electrons are explicitly considered. The core electrons are not considered
explicitly, instead their effects on the valence system are included in an effective core
potential. The exact Hamiltonian is replaced with an pseudo-Hamiltonian which only
acts on the valence electrons and includes the ECP. Further the scalar relativistic effects
on the valence electrons can be included in the ECP. Thus, scalar relativistic effects can
be included in formally non-relativistic calculations. The errors from the effective core
potential approximation are usally much smaller than the errors from the regular post-
Hartree-Fock or DFT methods, provided reasonable effective core potentials are selected,
so that every electron that effects the chemical bonding is still treated explicitly.145

2.8 Population Analysis

2.8.1 Mulliken Population Analysis

The partial atomic charges QA can be calculated with a Mulliken population analysis.146
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The total number of electrons nel can be calculated as integral over the electron density
ρ (~r) (equation (2.54))

nel =
∫
ρ (~r) =

N∑
a

L∑
µ

L∑
ν

CµaCνa

∫
φµ (~r)φν (~r) d~r =

L∑
µ

L∑
ν

DµνSµν , (2.144)

where Dµν are the elements of the Density-matrix D and Sµν the elements of the overlap
matrix S. The DS matrix is used in the Mulliken population analysis to determine the
electron population ρA at atom A. This is done by summing up all contributions which
contain basis functions centered at atom A

ρA =
L∑

µ∈A

L∑
ν

DµνSµν . (2.145)

The partial atomic charge QA or Mulliken charge at atom A is then calculated as difference
between the nuclear charge ZA and electron population ρA at atom A

QA = ZA − ρA . (2.146)

The Mulliken population analysis can also be used to determine the populations of specific
functions, like all f functions at an atom A. In case of an “unrestricted” calculation,
the difference between the electron population of electrons with α- and β-spin can be
calculated.

2.8.2 Natural Population Analysis

Another method to determine the partial atomic charges QA is the Natural Population
Analysis (NPA).147 The gist of the NPA is to construct a set

{
φNAOi

}
of “natural atomic

orbitals” (NAOs) for the molecule of interest. “Natural orbitals” (NOs)148 are derived by
diagonalizing the “first order reduced density matrix” Γ (~x ′1, ~x1)

Γ (~x ′1, ~x1) = n
∫
· · ·

∫
Φ∗ (~x ′1, ~x2 . . . , ~xn) Φ (~x1, ~x2 . . . , ~xn) d~x2 . . . d~xn . (2.147)

The corresponding eigenvectors are the NOs and the eigenvalues are the occupation num-
bers. However, NOs are completely delocalized. NAOs are similar to NOs, but they are
localized on the individual atoms of the molecule. The first order reduced density ma-
trix Γ̂ (~x ′1, ~x1) can be partitioned in Alm subblocks associated with the (nonorthogonal)
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atom-centered basis functions. For the Alm subblocks A denotes the atom, l the angular
momentum (s, p, d, f, ...) and m the particular symmetry element of l (e.g. px etc.). The
subblocks are diagonalized interdependently from each other, which leads to a set

{
φPNAOi

}
of “pre-natural atomic orbitals” (PNAOs). The PNAOs are only orthogonal towards
PNAOs on the same atom A (i.e.

〈
φPNAO,Ai |φPNAO,Aj

〉
= δij but

〈
φPNAO,Ai |φPNAO,Bj

〉
6= 0).

The complete set of PNAOs
{
φPNAOi

}
is orthogonalized while preserving their atomic na-

ture, which yields the set
{
φNAOi

}
of orthogonal NAOs. This orthogonalization is done

in four steps. First the PNAOs are divided in two classes. The highest occupied PNAOs
form the “natural minimal basis” (NMB), compare equation (2.148) for occupation. The
other PNAOs, with occupation numbers close to zero, form the “natural Rydberg basis”
(NRB). In the second step the NMB set is orthogonalized with an occupancy-weighted
procedure.147 The next step is to orthogonalize the NRB set relative to the NMB set with
the Schmidt orthogonalization. And in the fourth step the NRB set is orthogonalized
with the occupancy-weighted procedure.
The electron population ρA at atom A is than calculated with

ρA =
∑
i

wAi =
∑
i

∫ ∫
φ∗NAO,Ai (~x ′1) Γ (~x ′1, ~x1)φNAO,Ai (~x1) d~x ′1d~x1 , (2.148)

where wAi is the occupancy of orbital φNAO,Ai . In the final step the partial atomic charge
QA can be calculated with equation (2.146). The advantage of the NPA is that it depends
less on the applied basis set than the Mulliken population analysis.147

2.9 Orbital energies

2.9.1 Hartree-Fock Method

The orbital energies εa for the canonical spin orbitals χ̃a in the Hartree-Fock method
can be connected approximatively with the experimentally accessible physical quantities
ionization energy EIE and electron affinity EEA, receptively. The ionization energy EIE

is the energy needed to remove an electron from an n-electron system. EIE is calculated
exactly with

EIE = En−1 − En . (2.149)

En is the total energy of a n-electron system and En−1 is the energy of the corresponding
system with one electron less. Now two approximations are invoked. The first is to use

52



Theoretical Investigations of Multivalent Reactions

the Hartree-Fock method to calculate En. The second is to assume that the corresponding
(n− 1)-electron system has identical spin orbitals, except one electron is removed from
the canonical spin orbital χ̃c. This is known as “frozen orbital” approximation. The
energies for the n-electron and (n− 1)-electron system are given with equation (2.15) as

En =
N∑
a

ha + 1
2

N∑
a

N∑
b

(Jab −Kab) , (2.150)

En−1 =
N∑
a6=c

ha + 1
2

N∑
a6=c

N∑
b 6=c

(Jab −Kab) . (2.151)

N is the number of occupied spin orbitals. It follows

EIE = En−1 − En

= −hc −
1
2

N∑
a

(Jac −Kac)−
1
2

N∑
b

(Jcb −Kcb)

= −hc −
N∑
b

(Jcb −Kcb)

= −〈χ̃c| F̂ |χ̃c〉 = −εc (2.152)

with the Fock operator F̂ (see equation (2.24)). Thus, the ionization energy EIE needed to
remove a electron from the canonical spin orbital χ̃c is equal to the negative orbital energy
of χ̃c within the Hartree-Fock method and the “frozen orbital” approximation. This is
known as “Koopmans’ theorem”.149 The electron affinity EEA is the energy released if an
electron is added. EEA can be calculated like EIE. The electron is added in the unoccupied
canonical spin orbital χ̃r

EEA = En − En+1

= −hr −
N∑
b

(Jrb −Krb)

= −εr . (2.153)

The unoccupied orbitals are not optimized and are just left-overs from the basis set
expansion. For this reason, the use of unoccupied orbitals is disputed.83,104

The HOMO-LUMO gap, the difference in energy between the highest occupied molec-
ular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), corresponds
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in the Hartree-Fock method to the difference between ionization energy EIE and electron
affinity EEA.

2.9.2 DFT

The Kohn-Sham orbitals have a different connection to experimentally accessible physical
quantities. For Kohn-Sham DFT with the exact exchange-correlation functional EXC, the
electron density ρKS (~r) decays for large distances from all nuclei as

ρKS (~r) ∝ exp
[
−2
√
−2εHOMO |~r|

]
, (2.154)

where εHOMO is the orbital energy of the HOMO. The exact electron density ρ (~r) decays
for large distances from all nuclei as

ρ (~r) ∝ exp
[
−2
√

2EIE |~r|
]
, (2.155)

and it follows
− εHOMO = EIE . (2.156)

This connection is exact. Kohn-Sham DFT with the exact exchange-correlation func-
tional does not need a frozen orbital approximation and it includes the correlation energy.
Unfortunately the exact exchange-correlation functional is not known; therefore, it is just
an approximation when an actually Kohn-Sham DFT is applied.
The unoccupied orbitals in the Hartree-Fock approach and in the local Kohn-Sham DFT

(like LDA, GGA and meta-GGA) are different. In the Hartree-Fock approach the unoc-
cupied orbitals are determined in a field of n electrons because of the orbital-dependent
exchange term.150 Therefore, the orbital energy of an unocuppied canonical spin orbital
in the Hartree-Fock method can be interpreted as the energy to add an electron (electron
affinity EEA). In local Kohn-Sham DFT the unoccupied orbitals are determined in a field
of n− 1 electrons because of the local exchange-correlation term. Thus, the unocuppied
orbitals in local Kohn-Sham DFT represent excited electrons instead of additional elec-
trons.150 The HOMO-LUMO gap in local Kohn-Sham DFT is an approximation for the
lowest excitation energy of a system.150 This excitation energy can often be measured by
ultraviolet–visible spectroscopy. Due to a self-interaction error the orbital energy of the
orbital energy of the HOMO calculated with LDA and GGA functionals often becomes
too positive.104,151 The Coulomb term in Hartree-Fock and Kohn-Sham DFT includes a
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Coulomb interaction of each electron with itself. This is known as self-interaction and is
also an error. In the Hartree-Fock method the self-interaction is exactly canceled by the
exchange term. Exchange-correlation functionals for Kohn-Sham DFT usually not fully
cancel the self-interaction error.104 Hybrid functionals can be used to improve the orbital
energy of the HOMO,150 but unfortunately they include the orbital-dependent exchange
term from the Hartree-Fock method. The HOMO-LUMO gap of a hybrid functional which
uses mainly the orbital-dependent exchange term can not be interpreted as an approxi-
mation for the lowest excitation energy of a system. In this thesis the functional B3LYP
is used to calculate the lowest excitation energy by using the HOMO-LUMO gap. B3LYP
is a hybrid functional, but it uses only 20% orbital-dependent exchange.
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3 Summarized Results

This chapter summarizes the outcomes of this thesis which are published in eight scien-
tific papers and presents additional results not yet published. The investigations were
performed in close collaboration with specialists for supramolecular chemistry (AG Schal-
ley) and for molecular dynamic simulations (AG Weber).
The investigation started with the development of a multilevel DFT-based approach

to determine the Gibbs energy of association in solution of the monovalent binding mo-
tif, which consists of an 18-crown-6 ether and a primary ammonium ion (cation) with
an organic residue/spacer. Figure 3.1 shows the investigated systems. The results are
published in Paper A1 (section 5). The first step of our approach is the determina-
tion of the electronic binding energy ∆EQM in the gas phase. It was evaluated with
LCCSD(T) and various DFT-D3(BJ) to be about −260 kJmol−1 mainly resulting from
the formation of three ionic hydrogen bonds between the hydrogen atoms of the am-
monium cation and the oxygen atoms of the crown ether. Dispersive interactions be-
tween the aromatic system of the crown ether and the organic spacer of the primary
ammonium ion contribute only about −20 kJmol−1. Combining electronical, transla-
tional, rotational and vibrational contributions yield the Gibbs energy of association in
the gas phase ∆Ggas

A . The effects of translation, rotation and vibration were taken into
account by a RRHO approximation with free-rotor approximation for low-lying vibrations.

Figure 3.1: Crown ether/ammonium complexes investigated in Paper A1.72 The tosy-
late counterions are not depicted.
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Figure 3.2: Inside cover for Paper A1
adapted with permission from Achazi et al.72
( c©2015 Wiley Periodicals, Inc). It depicts
the approach to calculate the Gibbs energy
of association in solution ∆Gsol

A . First the
Gibbs energy of association in the gas phase
∆Ggas

A is calculated, then the Gibbs energy
of solvation ∆GS

Solv is included according to
the arrows.

Their main impact on the complex for-
mation is the loss in translational (about
50 kJmol−1) and rotational entropy (about
30 kJmol−1). The translational and the
rotational entropy are proportional to the
logarithm of the molecular mass and the
logarithm of the square root of the mo-
ments of inertia, respectively. Due to the
logarithmic dependencies, these entropies
reduce when two small molecules merge to
one heavier but similarly sized entity. It
should also be pointed out that the vibra-
tional entropy, including the entropy for in-
ternal rotations, has a binding effect (i.e.
a gain in vibrational entropy occurs) of
about −15 kJmol−1. The gain can most
likely be assigned to changes in degrees
of freedom. Three translational and three
rotational degrees of freedom are trans-
formed into six vibrational ones in the joint
system. The gain in vibrational entropy
(including internal rotations) can be al-
most exclusively determined from the vi-
brational modes below 600 cm−1. Their
number is growing by six. This would yield

a gain of at least −11 kJmol−1 if all new vibrational modes would be at 600 cm−1. How-
ever, all vibrational modes are effected by the formation of the complex. Thus, the gain
in vibrational entropy cannot be completely explained by the increased number of vibra-
tional degrees of freedom. In comparison with an experimental measurement152 of ∆Ggas

A ,
the DFT functional TPSS with D3(BJ) dispersion correction was the most accurate giving
a deviation of only 3 kJmol−1 compared to the experiment.

The experiments to determine the Gibbs energy of association in solution ∆Gsol
A of

the monovalent 18-crown-6/ammonium ion complex were performed in various chloro-
form/methanol solvent mixtures and tosylate was used as counterion for the ammonium
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ion. In order to include the effects of the chloroform/methanol solvent mixtures in the
calculation, the implicit solvent model COSMO-RS was applied. In this thesis several con-
formers of the same complex or molecule have been included in the COSMO-RS approach
to predict the surface charges of the ensembles of solute molecules. However, it was only
important to consider that the lowest energy structure in the gas phase and the one in
solvent were usually not identical. The additional inclusion of complexes and molecules
other than the lowest energy structures into the calculation changed the results by less

Figure 3.3: a) The investigated diva-
lent crown ether/ammonium complexes.
b) Graphical abstract included with per-
mission from von Krbek et al.153 ( c©2016
Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim). It depicts the significantly
higher chelate cooperativity of G3@H
compared to G3?@H.

than 1 kJmol−1. The agreement with the ex-
perimental Gibbs energy of association in solu-
tion ∆Gsol

A for the crown ether/ammonium com-
plex could be increased by adding the Gibbs
energy for the dissociation of the complex that
is formed by the primary ammonium ion and
the tosylate counterion. In conclusion, it has
been assumed that the primary ammonium ion
forms a complex with the tosylate counterion
which has to be dissolved for the formation of
the crown ether/ammonium complex as shown
in Figure 3.2.

The association thermodynamics (including
the Gibbs energy of association in solution
∆Gsol

A ) for the complexes was measured with
isothermal titration calorimetry (ITC) by the
AG Schalley. The experiments showed that
the unbound primary ammonium ion forms
a complex with the tosylate counterion, too.
Our investigation revealed that changing the
methanol content of the solvent has two coun-
terbalancing effects. Methanol aggravates the formation of the crown ether/ammonium
complexes by forming hydrogen bonds to the free crown ether and the ammonium ion
and it facilitates the formation of the crown ether/ammonium complexes by dissolving
the ammonium-tosylate complexes. The extent of the cancellation between these two
effects depends on the structural details of the actual crown ether and ammonium ion.

The described theoretical multilevel (DFT-based) approach yielded Gibbs energies of
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association ∆Gsol
A with an average deviation to the experimental results of 4.3 kJmol−1,

which is state-of-the-art.70 In summary a suitable theoretical approach was developed
for the determination of the thermochemistry of crown ether/ammonium complexes in
organic solvents with interfering counterions.

Figure 3.4: Lowest-energy struc-
tures with a) one counterion and b)
none counterion. Calculated with
BP86/def-TZVP and the implicit
solvent model COSMO (εr = ∞).
Included with permission from von
Krbek et al.153 ( c©2016 Wiley-VCH
Verlag GmbH & Co. KGaA, Wein-
heim).

Switching to the divalent systems, in Paper A2
allosteric and chelate cooperativity effects were in-
vestigated in two virtually identical divalent crown
ether/ammonium complexes G3?@H and G3@H
(Figure 3.3). Their two binding sites are built by the
monovalent crown ether/ammonium binding mo-
tif investigated in Paper A1. The two divalent
primary ammonium ions G3? and G3 have only
slightly different spacers as two ether oxygen atoms
of G3? are replaced by two isoelectronic methylene
groups in G3. The association thermodynamics of
the divalent complexes G3?@H and G3@H were
measured in various chloroform/methanol mixtures
with ITC. The allosteric and the chelate cooperativ-
ity were determined experimentally with a double
mutant cycle (DMC) analyses.

Similar to the monovalent complexes, our inves-
tigation of divalent complexes showed a delicate
counterbalancing between the effects of the solvent
methanol on the host-guest complex formation and

on the guest-counterion complex dissociation. Increasing the methanol content increases
the association strength until a maximum is reached at the 1:1 (v/v) chloroform/methanol
mixture. From that onward the association strength decreases with increasing methanol
content, likely because the ions are then completely dissolved. G3?@H and G3@H both
had a high association constant in the experiments with G3@H having the slightly higher
one.

We successfully adjusted our multilevel DFT-based approach for the divalent systems.
For medium methanol content the best agreement between theoretical and experimental
Gibbs energy of association in solution ∆Gsol

A was achieved by including one tosylate coun-
terion (Figure 3.4a) and for high methanol content by assuming the ions were completely
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Figure 3.5: a) H2’ is a simplified (side-chain-truncated) derivative of H. H2’2H is
a derivative of H2’, two additonal hydrogen atoms interrupt the conjugated π sys-
tem. The flat molecular structure of the anthracene spacer is fixed with constraints
in H2’2H. a) Structural formula of H2’, and electrostatic potential maps of H2’ and
(NH+

4 )@H2’. b) Structural formula of H2’2H, and electrostatic potential maps of H2’2H
and (NH+

4 )@H2’2H. The charges of each binding site are given in e. Included with
permission from von Krbek et al.153 ( c©2016 Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim).

dissolved (Figure 3.4b). Especially for the 10:3, 2:1 and 1:2 (v/v) chloroform/methanol
mixture the agreement was very good (< 5 kJmol−1). The experimental ∆Gsol

A value for
the 1:1 (v/v) chloroform/methanol mixture was in between the two models (of one and
none counterion). In case of G3?, the intramolecular hydrogen bonds (Figure 3.4) have
to be taken into account. They are most probably the reason for the lower association
strength of G3? compared to G3, which was found in the DFT calculations as well as in
the experiments. An additional proof for the effect of the intramolecular hydrogen bonds
was obtained by MD simulations.
In the experiments negative allosteric cooperativities were discovered in the host H and

the guests G3 and G3?. For the host, two effects rationalize the negative allosteric coop-
erativity. The first effect occurs because the second ammonium ion experiences charge-
charge repulsion from the first, which makes the second binding event less favorable.
Theoretically we determined an upper limit for this effect; however, the counterions lower
the charge, and therefore the negative allosteric cooperativity is much smaller than our
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suggestion. A higher methanol content dissolves the guest-counterion complex, and should
consequently enhance the negative allosteric cooperativity. The experimental measured
allosteric cooperativity factors of the host are confirming this trend. However, due to
the uncertainty of the measurement the experimental measured allosteric cooperativity
factors have to be seen as equal. Experiments with higher accuracy would be necessary
to verify the theoretical considerations. The second effect contributing to the negative
allosteric cooperativity is the high polarizability of the anthracene spacer. The binding
of the first ammonium ion polarizes the anthracene spacer. Therefore, positive charge is
transmitted to the unbound binding site of the host which repels the second ammonium
ion. We elucidated the effect with electrostatic potential maps and partial charges eval-
uated with DFT (Figure 3.5). The negative allosteric cooperativity in the guest is an
effect of the counterion. The first ammonium ion of the divalent guest binds to the crown
ether. This liberates a counterion, which interferes with the binding of the second ammo-
nium ion. Accordingly the negative allosteric cooperativity of the guest gets attenuated
by increasing the methanol content. G3? experiences a stronger negative allosteric effect
than G3. This can be explained by the lowest energy conformation of the free guest G3?

found by DFT (Figure 3.4). Both ammonium groups form intramolecular hydrogen bonds
with the oxygen atoms of the spacer. If the first ammonium ion binds to crown ether, the
distance between the two ammonium groups increases and thereby their charge-charge
repulsion decreases. This strengthens the intramolecular hydrogen bond of the second
ammonium group (Figure 3.6). Hence, the second binding event experiences a stronger
competition than the first one. It can be assumed that conformations of G3? with only
one intramolecular hydrogen bond experience a similar but less pronounced effect.

As a result, allosteric cooperativity cannot explain the strong association constants of
the two divalent complexes. The complexes must have a positive chelate cooperativity as
confirmed actually by the experiments. Attractive spacer-spacer interactions are probably
a reason for this, as shown for similar systems experimentally20 and by us154 in Paper
A4. The MD simulations provide evidence for a very effective rebinding effect15,155,156 in
G3?@H and G3@H, which adds to the positive chelate cooperativity. In addition to this,
the MD simulations rationalize the lower chelate cooperativity of G3?@H compared to
G3@H: The free G3 is mostly in a linear conformation close to its conformation in the
complex, whereas the intramolecular hydrogen bonds in G3? cause a coiled conformation,
which has to unfold prior to complex formation.

The high association constants and chelate cooperativities were surprising. Flexible
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Figure 3.6: The opening of the intramolecular hydrogen bond in order to bind to the
crown ether (first binding event) increases the distance between the charged ammonium
groups. This strengthens the second intramolecular hydrogen bond, which reduces the
association constant for the second binding event, and thus leads to negative allosteric
cooperativity. Special thanks to Larissa K. S. von Krbek for creating the graphic.

Figure 3.7: The mono- and divalent host and guest molecules investigated in Paper A3.
Three kinds of guest were used: guests with flexible spacers (blue), semi-rigid spacers (vi-
olet) and rigid spacers (red). For the quantification of cooperative effects the monovalent
complexes also have to be investigated. Included with permission from von Krbek et al.157
( c©2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).
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Figure 3.8: Depiction of the measured chelate cooperativity factor ln β against the cal-
culated differences in N-N distance of the complexes GX@H and the spacer free system
(NH+

4 )2@H for the guests with a flexible spacer (blue) and a semi-rigid spacer (violet)
or the calculated differences in N-N distance of unbound guests GX and the complexes
GX@H for guests with a rigid spacer (red). Included with permission from von Krbek
et al.157 ( c©2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

guests have the advantage to adapt to the host, in case they are not perfectly fitting.
On the other hand it is expected that flexible guests experience a large entropic penalty
because binding to a host will restrict their conformational space. Therefore, guests with
a rigid spacer that approximates the spacing between the binding sites in the host are
expected to have higher association constants,2 which should result in a stronger positive
chelate cooperativity. However, even small spatial mismatches between these rigid, highly
preorganized guests and the host can heavily reduce chelate cooperativity. To get further
insights into the balance of preorganization and adaptability, we investigated the associ-
ation thermodynamics for a variety of additional divalent guests with spacers of different
spacer lengths and flexibility (Figure 3.7) in Paper A3. Three kinds of guests were used:
guests with flexible spacers (G1-G5), with semi-rigid spacers (G6-G8) and with rigid
spacers (G9-G11). We introduced a DFT-based approach to estimate which of the guests
fits the best and has the highest complementarity to the host, respectively. We distin-
guished between two cases. In case the guest (G1-G8) is more flexible than the host, we
assumed that especially that guest will fit the best, which forms the complex with N-N
distance closest to the N-N distance of the spacer free system ((NH+

4 )2@H). Deviations
from this optimal distance imply less favorable interactions between guest and host spacer
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and an unfavorable deformation of the rigid host. In the other case the guest (G9-G11)
is more rigid than the host. Actually, the spacer of the host is as rigid as the guests
G9-G11, but the crown ethers are flexible compared to these guests. We assumed that
the rigid guest which gets the least deformed due to binding to the host will fit best and
has the highest complementarity to the host, respectively. This is estimated from the N-N
distance in the unbound guests compared to the N-N distance in the complex. Figure 3.8
shows the guests which have according to our DFT-based approach the best complemen-
tarity to the host, have as well the most positive chelate cooperativity in the experiment.

Figure 3.9: N-N distance of
unbound (orange) and bound
(green) G3 during the MD
simulation. Included with
permission from von Krbek
et al.153 ( c©2016 Wiley-VCH
Verlag GmbH & Co. KGaA,
Weinheim).

In addition the experiments show that guests with flexible
spacers have by far the highest positive chelate cooper-
ativities and the G3@H complex with the flexible guest
G3 has the highest association constant. From the experi-
mental measured entropies for the ring closing step (called
residual entropies), it can be seen that the guests with flex-
ible spacers are not exhibiting in general higher entropic
penalties than the guest with rigid spacer. Additionally
Table 6.1 in the appendix shows the calculated change in
vibrational entropy including inner rotations (−T∆Svib)
in the gas phase for the complex formation without coun-
terions of the mono- and divalvent complexes of Paper
A3. According to the calculations, the flexible guest G3
is entropically more favorable than the semi-rigid guests
G7 and G8 and entropically similar favorable to the rigid
guest G11. These results are in contrast to the common
notion,2 that flexible spacers are unfavorable due to a high entropic penalty.

Another reason for the strong positive chelate cooperativity and the high association
constant achieved with G3 is presumably its preorganization. G3 is most probably not
as preorganized as the guests with rigid spacers, but a significant fraction of the confor-
mations of the unbound G3 has the same N-N distance as G3 in the G3@H complex
as shown by the MD simulations in Paper A2 (Figure 3.9). In this complex the guest
G3 is in a mainly linear molecular structure. The lowest energy structure for alkanes
up to C17H36 in the gas phase is the linear molecular structure.158 Beyond this, a coiled
molecular structure is more favorable because of intramolecular dispersive interactions.
Lipophobic solvents like water are stabilizing the coiled molecular structure because the
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molecular surface is reduced. However, it is assumed that in chloroform the linear molec-
ular structure is for alkanes up to C142H286 the lowest in energy.159 Thus, the short size
and the lipophilic solvent increase the preorganization of the guests with flexible alkane
spacers investigated in Paper A3. Altogether, guests like G3 which have both adapt-
ability (compared to benzene and alkyne spacers) and preorganization can outperform
the guests with semi-rigid and rigid spacers which achieve a maximum of preorganization
at the price of low adaptability.
Finally it should be added that the experimental measured residual enthalpies indicate

that attractive spacer-spacer interactions are important for strong positive chelate coop-
erativities and high association constants. The insights into multivalency gained from this
research (Paper A1-A3) can be summarized in a “guideline” for designing highly stable
supramolecular structures.

• Guest and host should have the best possible complementarity.

• Preorganization and adaptability should be both maximized, instead of maximizing
the preorganization by lowering the adaptability.

• Favorable spacer–spacer interactions should be maximized.

• The preorganization of a flexible guest (or hosts) depends on its size, its ability
to form intramolecular bonds/dispersive interactions and the solvent. Thus, the
preorganization of a flexible guest (or hosts) can and should be optimized.

• The solvent and the counterions effect the association process and have to be opti-
mized.

This guideline extends and refines a previously published guideline from Larissa K. S. von
Krbek.38

In Paper A4 we switched from the 18-crown-6 complexes to 24-crown-8 pseudoro-
taxanes in which the guest is threaded through the 24-crown-8 ether. There, the Gibbs
energy of association ∆Gsol

A was calculated for mono and divalent crown ether/ammonium
pseudorotaxane with different linkers in the guest molecule (Figure 3.10). Furthermore,
the full double mutant cycle was investigated. The host molecules differ slightly from
the ones of the experiment.20 The 1,4-diazanaphthalene groups are replaced by phenyl
groups, and the side chains of the anthracene spacer in the divalent host are replaced
by hydrogen atoms. Our calculated results agree with the experimental findings. The

66



Theoretical Investigations of Multivalent Reactions

divalent guest with the shortest spacer has the highest association constant because of
dispersion interaction between the spacers from the guest and the host. In case of the
shortest spacer a nearly ideal π − π stacking is achieved. With larger spacers this is not
possible due to steric hindrance. This investigation supports the experimental finding
that the spacer-spacer interactions can contribute significantly to the binding strength.
The chelate cooperativity factors calculated with the DFT-based approach have the right
trend and predict a positive chelate cooperativity as found in the experiment. However,
the DFT-based approach yielded far too large chelate cooperativity factors due to the
logarithmic connection of ∆Gsol

A to the assocaition constant. The average deviation of
the calculataed ∆Gsol

A to the experiment is 7.4 kJmol−1. This is higher than in the other
investigations but can still be seen as state-of-the-art.70 For the accurate determination
of cooperativity factors the deviation of the quantum chemical based approach has to
achieve probably an average error of below 1mol−1.

Figure 3.10: Structural formula of the mono- and divalent guest and host molecules
investigated in Paper A4 with x = 0, 1 or 2. Included with permission from Achazi et
al.154 ( c©2015 Achazi et al.; licensee Beilstein-Institut).

In Paper A5 again a divalent 24-crown-8 host was considered. The host was used to
control the photoisomerisation of a divalent guest. The divalent E-configured azobenzene
guest E-1 can undergo a light-induced E-Z isomerisation (Figure 3.11). Experiments by
the AG Hecht and AG Schalley show that this photoisomerisation can be effectively inhib-
ited by adding the complementary host 3, which yields the complex E-1@3. Adding a base
deprotonates E-1, which dissolves the E-1@3 complex and reestablishes photochromism
of the guest E-1. The process is reversible. Reprotonating the guest with acid will yield
E-1@3 again and switches “off” the E-Z photoisomerisation. To gain further insights the
stilbene guests E-2 and Z-2 have been investigated, too.
The DFT-based calculated Gibbs energies of association ∆Gsol

A were in good agreement
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Figure 3.11: a) Structural formula of the mono- and divalent guest and host molecules
investigated in Paper A5 with x = 0, 1 or 2. Included with permission from Lohse et
al.160 ( c©2015 The Royal Society of Chemistry)

with the experiments (within 2 kJmol−1 for E-1@3). Z-1@3 and Z-2@3 should not be
formed according to the calculation and are not found in the experiment. The calculated
∆Gsol

A value of E-2@3 seems reasonable but the solubility E-2 was not sufficient for the
ITC experiments. This study shows how we can construct a controllable photoswitch, in
other words, a system in which the photochromism can be switched “on” (unbound guest)
and “off” (guest bound to host). On the other side, the guest in the Z -configuration cannot
bind to the host. Therefore, this system is also a model for photocontrolled association
processes.
In Paper A6 the binding motif of a 24-crown-8 ether with a secondary ammonium

ion was used again to construct a divalent crown ether/ammonium pseudo[2]rotaxane but
with a different application. The pseudo[2]rotaxane P-1 (Figure 3.12) was built with
spacers that form an electron-donor-acceptor complex. The host has a tetrathiafulvalene
spacer, which serves as donor, and the guest has a naphthalene diamide spacer, which
serves as acceptor. The investigation demonstrates that divalent crown ether/ammonium
pseudo[2]rotaxane P-1 is a straightforward tool to bring the donor and acceptor unit in
close proximity to each other. These donor-acceptor complexes display partial π-electron
sharing, which result in an intramolecular charge transfer measurable with UV/Vis spec-
troscopy. Assembly and disassembly of the pseudo[2]rotaxane P-1 is fully reversible and
controllable by adding chemical stimuli (like NaBArF24). As a result, the intramolecular
charge transfer properties can be switched on and off. Isothermal titration calorimetry
(ITC) and a double mutant cycle (DMC) analysis showed a positive chelate cooperativity.
The pseudo[2]rotaxane P-1 can be capped to the [2]rotaxane R-1. AG Schalley in-
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Figure 3.12: Pseudo[2]rotaxane P-1 and [2]rotaxane R-1. Included with permission
from Schröder et al.161 ( c©2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)

Figure 3.13: Left: electrostatic potential maps of a) acetone, b) toluene and c) trichlo-
roethylene. Right: the σ-profiles of a) acetone (green), b) toluene (red) and c) trichloro-
ethylene (blue).

vestigated the optoelectronic properties of R-1 by UV/Vis and cyclic voltammetry ex-
periments and could reveal R-1 is redox-switchable and stable in five different redox
states. The DFT calculations gave further insights into the molecular and electronic
structure. The HOMO-LUMO-gap calculated with B3LYP/def2-TZVP and the implicit
solvent model COSMO was in good agreement with the observed intramolecular charge
transfer band. The ICT band was measured in several different solvents. It shows no
connection to the relative permittivity εr of the solvents. However, the ICT band can
be set in relation to the surface charge of the solvent. Trichloroethylene has an excess of
positive surface charge (Figure 3.13) and no negative surface charge to counterbalance.
Therefore, trichloroethylene can only stabilize molecules with negative surface charge,

69



3. Summarized Results

Figure 3.14: The SmI2 mediated reductive coupling of N -oxoalkyl-substituted methyl
indole-3-carboxylates investigated in Paper A7. Included with permission from Achazi
et al.162 ( c©2017 Wiley Periodicals, Inc).

but can not stabilize molecules with positive surface charge. Acetone is the exact op-
posite of trichloroethylene, what can be visualized with the σ-profiles of these solvents,
as shown in Figure 3.13. It appears that solvent molecules (like trichloroethylene and
dichloromethane) which can only stabilize negative surface charges lead to the highest
wavelength for the ICT band of R-1, and solvent molecules (like dimethyl sulfoxide
and acetone) which only stabilize positive surface charges lead to the lowest wavelength.
Toluene displays no surface areas which have a highly positive or negative charge (com-
pared to acetone and trichloroethylene). It has only a small stabilizing effect on highly
negative or positive surface charges. The ICT band of R-1 in toluene is situated between
trichloroethylene and acetone. The solvents terahydrofuran, ethyl acetate and acetoni-
trile have σ-profiles similar to acetone, and these solvents shift the ICT band of R-1 to
a lower wavelength like acetone. Isopropanol is the only solvent in this study which has
due to its hydroxyl group both, surface areas with highly positive and with highly neg-
ative charge. Thus, the wavelength of the ICT band of R-1 should be situated between
trichloroethylene and acetone as for toluene. Indeed the wavelength of the ICT band
measured in isopropanol is similar to the wavelength measured in toluene. However, this
is just a rough model to predict the solvent effects on the ICT band of R-1. To gain
further insights, the electronic structures of the (photo-)excited states of R-1 have to be
calculated as well, which is beyond the scope of this thesis.
After investigating organic host-guest complexes with crown ether/ammonium binding

motif in solution, we applied our DFT-based approach for a mechanistic investigation
involving organic f-element complexes in solution. More precisely, we investigated the
samarium diiodide (SmI2) mediated reductive coupling of N -oxoalkyl-substituted methyl
indole-3-carboxylates in tetrahydrofuran (THF) depicted in Figure 3.14. The reductive
coupling yields benzannulated pyrrolizidines and indolizidines surprisingly with high di-
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astereoselectivity at the adjacent positions C-1, C-7 and C-8. Based on our knowledge
obtained in determining Gibbs energies in solution, in Paper A7 we developed a detailed
model for the reaction mechanism of the SmI2 mediated reductive coupling. For this pur-
pose, we determined the Gibbs energies for the intermediates of possible reaction path-
ways (Figure 3.15) at ambient temperature. The electronic energy was determined with
a dispersion corrected density functional PBE0-D3(BJ) together with a small-core pseu-
dopotential for samarium. Thus, the f shell was explicitly included. The solvent effects
were incorporated by the implicit D-COSMO-RS method. It was crucial for the predic-
tion of the molecular structure of the reaction intermediates to include solvent molecules
explicitly, too. Translational, rotational and vibrational contributions were included sim-
ilar to the previous studies (Paper A1-A5). In contrast to the two mechanisms which
were proposed before,163,164 our results predict the formation of an energetically highly
favorable chelate complex (4a in Figure 3.15) in which the experimentally found product
configuration at positions C-7 and C-8 is preformed. The corresponding chelate complex
(5a in Figure 3.15) with the “wrong” configuration preformed is about 50 kJmol−1 higher
in energy. Thus, the reaction will follow the path indicated with green arrows in Figure
3.15. Based on experimental results, it was proposed163 that the configuration at posi-
tion C-1 for the protonation products is under thermodynamic control. Our calculations
confirm this assumption.

The final but very interesting project (published in Paper B1) is a side project dedi-
cated to the investigation of the stretching of of polyethylene glycol (PEG) in water with
single-molecule atomic force microscope (AFM) experiments (AG Rabe), molecular dy-
namics (MD) simulations (AG Netz) and DFT. The PEG molecule was stretched in the
sense that the ends were pulled apart. It was expected that the stretching would reduce
the total entropy, because the number of available conformations decreases. Surprisingly,
the investigations show that in case of high stretching the gain in entropy for the sol-
vent molecules (water) equalizes almost exactly the decrease in conformational entropy
of the PEG molecule. In total, the stretching mainly results in a decrease of enthalpy.
Therefore, PEG can be considered an energetic spring and not an entropic spring at
high forces. The finding can be explained with MD simulations. The oxygen atoms in
the relaxed PEG are predominantly in gauche conformation (Figure 3.16) with one water
molecule as bridge between each pair of adjacent oxygen atoms. Stretching the PEG turns
the oxygen atoms in anti conformation. In this conformation each water molecule binds
only with one hydrogen atom to the PEG. On the one hand this yields a gain in entropy
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Figure 3.15: The investigated reaction pathways for the SmI2 mediated reductive cou-
pling of the N -oxoalkyl-substituted methyl indole-3-carboxylates 1a and 1b. Our results
predict the reaction will follow the reaction pathway with green arrows. The reaction
pathway with black arrows is possible but according to our determination unlikely to
happen. The reaction pathway with red arrows yields the diastereomers which have not
been found in experiments. Additionally these reaction pathways are also unlikely to hap-
pen based on our determination. Included with permission from Achazi et al.162 ( c©2017
Wiley Periodicals, Inc).
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Figure 3.16: Depiction of a gauche conformation in PEG with a water bridge (left), a
gauche conformation in PEG with only one hydrogen atom of the water molecule invloved
in the hydrogen bond (center) and an anti conformation in PEG with one hydrogen bond
to one water molecule. Included with permission from Liese et al.165 ( c©2017 American
Chemical Society).

for the water molecules, on the other hand the enthalpy decreases to a much larger extent.
In the high-force limit (stretching force larger than 375 pN), the experimental data are
in perfect agreement with the stretching force determined with DFT in the gas phase at
zero temperature. This not only demonstrates that at the high-force limit conformational
fluctuations and solvent effects are negligible, but it also allows to determine the vertical
anchoring position in the AFM experiments. This yielded a considerable correction to
the measured PEG length.
Summarized, this investigation is a case example for the counterbalancing interplay of

conformational and solvent entropy. These insights are important for understanding the
low solubility of PEG in water at high temperatures. The water bridges are enthalpi-
cally favorable but entropically unfavorable. Thus, they are only stable below a certain
temperature. Future investigations should focus on this temperature dependence.
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This thesis presents a multilevel DFT-based approach for the accurate calculation of the
Gibbs energy of association for supramolecular crown ether/ammonium host-guest sys-
tems. Dispersion corrected density functional theory was used to obtain the electronic
energy. Solvent effects were included with the implicit solvent models COSMO-RS and D-
COSMO-RS. The effects of translation, rotation and vibration were taken into account by
a RRHO approximation with free-rotor approximation for low-lying vibrations. Crucial
was the explicit consideration of the counterions. The average deviation from the experi-
mental results of all presented investigations in this thesis combined was about 5 kJmol−1,
which is state-of-the-art.70 In particular better models for the determination of the Gibbs
energies of solvation and the vibrational contribution should be developed to achieve a
higher accuracy and to replace experiments. This approach and further DFT-based data,
for example molecular structures, were used to investigate 18-crown-6/ammonium com-
plexes and 24-crown-8/ammonium (pseudo-)rotaxanes in a joint study with specialists
for supramolecular chemistry (AG Schalley) and for molecular dynamic simulations (AG
Weber). Our results can be combined to a “guideline” for highly stable supramolecular
host-guest structures:

• Host and guest should have the best possible complementarity.

• Preorganization and adaptability should be both maximized, instead of maximizing
the preorganization by lowering the adaptability.

• Favorable spacer–spacer interactions should be maximized.

• The preorganization of a flexible guest depends on its size, its ability to form in-
tramolecular bonds and the solvent. Thus, the preorganization of a flexible guest
can and should be optimized.

• The solvent and the counterions effect the association process and have to be opti-
mized.
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Figure 4.1: Schematic representa-
tion of a self-assembled166 molecu-
lar fiber consisting of tetravalent host
and guest molecules with the crown
ether/ammonium binding motif. Spe-
cial thanks to Larissa K. S. von Krbek
for creating the graphic.

With this guideline in mind, more fuctional-
ized systems can be developed. Two examples are
already presented in this thesis. A controllable
photoswitch and an electron-donor-acceptor com-
plex were constructed based on divalent 24-crown-
8/ammonium pseudo[2]rotaxanes. The future
goal will be the construction of self-assembling
molecular fibers (Figure 4.1) consisting of host
and guest molecules with crown ether/ammonium
binding motifs and metallo-porphyrins as spacer
in the center of these molecules. In case the fibers
are able to conduct electricity, the fibers could be
used as wires. An advantage of such a wire would
be that its functionality could be switched “on”
and “off” as in the switchable systems presented
in this thesis or more sophisticated as described
by Zhang et al.43 AG Hecht and AG Schalley
have already started with the preliminary inves-
tigations167 like other groups,47,48 too. Particu-

larly interesting could be the use of ruthenium(II)-porphyrin as spacer. It is known from
experimental research168 that ruthenium(II)-porphyrins form dimers connected with a
metal-metal bond, which are stable in solution. Additionally preliminary investigations
performed by Stefan Mattsson from the AG Paulus showed that stacks of ruthenium(II)-
porphyrin exhibit a particularly high binding energy, short ring distance and small band
gap compared to other metallo-porphyrin stacks like a zinc(II)-porphyrin stack.

In the last step the multilevel DFT-based approach was modified for a mechanistic
investigation of the SmI2 mediated reductive coupling of N -oxoalkyl-substituted methyl
indole-3-carboxylates. This enabled the development of a detailed model for the reaction
mechanism, which explains the high diastereoselectivity of the reaction. It is now on
experimental chemists to verify the proposed reaction mechanism. The smallest of the
next steps on the theoretical side is applying this approach to the investigation of other
SmI2 mediated reductive coupling reactions like the formation of hexahydroisoquinoline
from α-amino-ketones.

The side project with AG Rabe and AG Netz revealed that the flexible molecule PEG
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acts as an energetic spring and not as an entropic spring at high forces. This knowledge can
be used for future investigations of the solubility of PEG in water at high temperatures.
However, these results have an additional consequence. If a multivalent host or guest in
water with a flexible PEG spacer has to turn into the linear conformation (all oxygen
atoms in anti conformation) in order to form a complex, the flexible PEG spacer would
cause an enthalpic penalty and not an entropic penalty. This connects the investigation
of PEG with the investigation of crown ether/ammonium assemblies. In case of the
crown ether/ammonium assemblies, the flexibility of the spacer was not connected to the
entropic penalty; instead, enthalpic spacer-spacer interactions played an important role.
Both challenge the notion that flexible spacers in general cause an entropic penalty in
complex formations. Spacer length, intramolecular interactions, solvent and counterions
can affect the conformational space of both the flexible spacer and the whole system or
have strong enthalpic effects. This thesis demonstrates how important joined experimental
and computational investigations are to elucidate these effects and it presents powerful
in silico methods to identify these effects.
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Abstract
The Gibbs energies of association (Gibbs free (binding) energies) for divalent crown-8/ammonium pseudorotaxanes are determined

by investigating the influence of different linkers onto the binding. Calculations are performed with density functional theory

including dispersion corrections. The translational, rotational and vibrational contributions are taken into account and solvation

effects including counter ions are investigated by applying the COSMO-RS method, which is based on a continuum solvation

model. The calculated energies agree well with the experimentally determined ones. The shortest investigated linker shows an

enhanced binding strength due to electronic effects, namely the dispersion interaction between the linkers from the guest and the

host. For the longer linkers this ideal packing is not possible due to steric hindrance.

687

Introduction
If two or more binding sites of a molecular system are involved

in the association process, the interaction energy can be signifi-

cantly increased compared to the sum of the individual binding

energies. This effect is called multivalency [1] and is mainly

observed in biochemical systems [2-9]. But the concept of

multivalency can be transferred to supramolecular assemblies

with suitable building blocks [10-12] including (pseudo)rotax-

anes [13-15] as well. One common building block for pseudoro-

taxanes is the crown/ammonium binding motif. In this motif

ammonium can bind on top of small crown ethers, e.g.,

crown-6, or can pass through larger crown ethers, e.g., crown-8.

Jiang et al. [16] have investigated the assembly thermody-

namics and kinetics of divalent crown-8/ammonium pseudoro-

taxanes with different linkers. The shortest linker shows a much

larger chelate cooperativity than the longer linkers due to non-

innocent linkers that contribute to the binding. To analyze the

individual contributions to the binding, we perform first prin-

ciple calculations of the model system shown in Figure 1, which
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Figure 1: Structures of the mono- and divalent guest and host molecules. The linker in the divalent guest molecule is varied with x = 0, 1 or 2.

is strongly related to the experimentally investigated systems of

Jiang et al. [16]. The only difference is that 1,4-diazanaphtha-

lene groups of the host molecule are replaced by phenyl groups

and the side chains of the anthracene bridge in the divalent host

are neglected. In addition to the electronic contributions,

enthalpic and entropic temperature effects as well as solvent

effects are included in our simulations in order to compare to

experimentally obtained Gibbs energy of association.

Results and Discussion
In order to investigate the cooperativity effects of the binding

between divalent host molecules and divalent guest molecules it

is important to firstly describe the monovalent binding motif

computationally as accurately as possible and to understand the

underlying effects that contribute to the binding. Three major

terms have to be considered in the evaluation of the Gibbs

energy of association ΔG to model the reaction in solution at

finite temperature with reasonable accuracy. 1) The electronic

association energy ΔE is calculated [17] with the DFT func-

tional TPSS-D3(BJ) [18-20] and the basis set def2-TZVP

[21,22]. A comparison with the electronic association energy

determined with the DF-LCCSD(T) method [23,24] at the

extrapolated basis set limit shows good agreement (see

Table 1). Already the DF-LCCSD(T) with the cc-pVTZ basis

set deviates only by 5% from the TPSS-D3(BJ) value, whereas

the basis set extrapolated value is more or less equivalent to the

TPSS-D3(BJ) value (deviation less than 0.3%). This very good

agreement is somewhat fortunate, because a basis set extrapola-

tion with DZ and TZ is only accurate to within a few percent.

Additionally, the possible errors of the functional and the

dispersion correction can also be in the range of 10% for the

system under investigation. A more detailed analysis of the

accuracy of the TPSS-D3(BJ) functional has been performed for

the crown-6/ammonium complex in [25]. Another point to

remark is that even for the monovalent system about 36% of the

electronic interaction energy is due to the dispersion correction.

2) The finite temperature effects from translation, rotation and

vibration are calculated with an approach from Grimme [26],

which partially treats the low-lying vibrations as hindered rota-

tions (TPSS-D3(BJ)/def2-SVP [22,27] for vibrations). 3) The

influence of the solvent for the association process in solution is

derived from the difference of the solvation effects of the pro-

duct and the reagents, calculated with COSMO-RS [28,29]. For

the COSMO-RS (BP_TZVP_C30_1301.ctd parameterization)

calculation all structures have been optimized in an ideal

conductor [30] and in vacuum with BP86/def-TZVP [31-34].

This procedure yields very good results for the Gibbs energy of

association in the case of the crown-6/ammonium complex in

comparison with experiment [25]. For the simulations of the

crown-8/ammonium systems the same solvent as in the experi-

ment [16] is used, namely a 2.2:1 mixture of chloroform/aceto-

nitrile. The influence of the counter ion PF6
− onto the Gibbs

energy of association is taken into account explicitly.

Table 1: Electronic association energy ΔE for Ph@C8*.a

system method ΔE (kJ/mol)

Ph@C8* TPSS/def2-TZVP −134.9
Ph@C8* TPSS-D3(BJ)/def2-TZVP −210.5
Ph@C8* DF-LCCSD(T)/cbs(DZ-TZ) −210.0
Ph@C8* DF-LCCSD(T)/cc-pVDZ −174.7
Ph@C8* DF-LCCSD(T)/cc-pVTZ −199.9

aΔE calculated at TPSS-D3(BJ)/def2-TZVP level of theory is not iden-
tical to the one in Table 2, because there another conformer (a slightly
more stable one) is used. The Ph@C8* structure has been optimized
with TPSS-D3(BJ)/def2-TZVP. For the other methods only single point
calculations are done.
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Figure 2: Optimized gas phase structures (TPSS-D3(BJ)/def2-TZVP) of the divalent complexes n0@DiC8, n1@DiC8 and n2@DiC8.

Table 3: Gibbs energy of association ΔG in solution.a

system ΔE
(kJ/mol)

ΔG gas phase
(kJ/mol)

ΔG solution
(kJ/mol)

ΔG counter ion
(kJ/mol)

ΔG experiment
(kJ/mol)

Ph@C8 −215.6 −130.2 −1.1 −12.6 −15.0
n0@DiC8 −440.9 −339.3 −42.5 −44.3 −25.1
n1@DiC8 −419.9 −317.5 −24.2 −28.9 −17.4
n2@DiC8 −407.0 −299.8 −11.5 −15.3 −16.2

aElectronic association energy ΔE, Gibbs energy of association ΔG in gas phase and in solution, in the latter case with and without inclusion of the
counter ion PF6

−, and experimentally determined ΔG for monovalent and divalent pseudorotaxanes in a 2.2:1 solvent mixture of chloroform/acetoni-
trile at room temperature (T = 298.15 K) are presented.

Table 2: Electronic association energy ΔE and Gibbs energy of associ-
ation ΔG in the gas phase at room temperature (T = 298.15 K).a

system ΔE
(kJ/mol)

ΔG
(kJ/mol)

ΔH
(kJ/mol)

−TΔS
(kJ/mol)

Ph@C8 −215.6 −130.2 −204.8
(+10.9)

+74.6

n0@DiC8 −440.9 −339.3 −422.6
(+18.3)

+83.3

n1@DiC8 −419.9 −317.5 −402.6
(+17.3)

+85.2

n2@DiC8 −407.0 −299.8 −386.8
(+20.2)

+87.0

aThe enthalpic (ΔH) and entropic (−TΔS) contribution to ΔG are given.
The ΔH contribution resulting from finite temperatures is given in
brackets.

The divalent host molecules consist of two crown-8 ethers that

are linked by an anthracene bridge. For the divalent guest mole-

cule different flexible linkers, namely –O(CH2)2O– (n0),

–O(CH2)3O– (n1) and –O(CH2)4O– (n2) have been investi-

gated both experimentally in [16] and computationally. The

results for the electronic association energy ΔE, the Gibbs

energy of association ΔG in the gas phase and its enthalpic

(ΔH) and entropic (−TΔS) contributions are given in Table 2.

Comparing the electronic association energy for the n0 guest in

the divalent case with the doubled value of the monovalent

(Ph@C8) system, an electronic cooperativity effect of

9.7 kJ/mol is discovered. When the linker length is increased,

this electronic cooperativity effect is lost, and a lower elec-

tronic association energy (by 11.3 kJ/mol) is discovered for the

divalent system with the n1 linker compared to two monovalent

systems. For the longer n2 linker the electronic association

energy is even lower by 24.2 kJ/mol for the divalent system

compared to two monovalent systems. This is mainly due to the

dispersive interaction of the linking unit (two phenyl rings and

the linker), which in case of the n0 guest fits perfectly on top of

the anthracene linker of the DiC8 host. The distance between

the linker of the host and the linker of the n0 guest is around

3.7 Å, quite close to an ideal distance for the π–π stacking of

two benzene rings. The n1 and n2 guest do not perfectly fit with

the host (Figure 2). In the n1-case the linker is folded away from

the anthracene bridge, and for the n2-case one phenyl ring is

twisted away due to steric constraints.

The Gibbs energy of association ΔG in the gas phase of the

divalent systems (Table 2) result in the same trend as observed

for the electronic association energy ΔE, because the enthalpic

(ΔH) and entropic (−TΔS) contributions are similar for

n0@DiC8, n1@DiC8 and n2@DiC8.

In Table 3, the Gibbs energies of association in solution with

and without counter ion are compared to the calculated elec-

tronic association energies, Gibbs energies of association in the

gas phase and to the measured experimental values. For the

monovalently bound system Ph@C8 the computationally

obtained value of ΔG (−12.6 kJ/mol) agrees well with the
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Figure 3: Double mutant cycle for n0@DiC8. The K variables are declared in Table 4 and are used in Equation 1. Top left: n0@DiC8, top right:
n0@2C8, bottom left: 2Ph@DiC8 and bottom right: two Ph@C8. The figures show the optimized gas phase structures.

Table 4: Gibbs energy of association ΔG in solution (2.2:1 chloroform/acetonitrile, 298.15 K) and equilibrium constant K for the systems from the
double mutant cycle.a

system ΔG counter ion
(kJ/mol)

K
(mol−1·L−1) #K ΔG experimental

(kJ/mol)
K experimental
(mol−1·L−1)

Ph@C8 −12.6 161.2 K1 −15.0 420
Ph@DiC8 −16.2 677.8 K2 −16.4 735
2Ph@DiC8 −5.11 7.9 K3 −12.3 145
n0@C8 +1.4 0.6 K4 −16.3 714
n0@2C8 −13.8 261.6 K5 −13.3 220
n0@DiC8 −44.3 57679927.3 Kd −25.1 25000
n1@DiC8 −28.9 115627.5 Kd −17.4 1100
n2@DiC8 −15.3 479.1 Kd −16.2 700

aThe effects of the counter ion PF6
− are included in the calculation. #K declares the equilibrium constant K with regard to Equation 1 and Figure 3.

experimentally determined value (−15.0 kJ/mol). The Gibbs

energies of association in gas phase and the Gibbs energies of

association in solution show similar differences between

n0@DiC8, n1@DiC8 and n2@DiC8 as the electronic associ-

ation energies. Hence, the dependence on the linker length is of

electronic origin and not affected by temperature or solvent

effects. Including the counter ion in the determination of ΔG

has a much weaker effect in the divalent case compared to the

monovalent one, because the guest molecule is larger and the

positive charge of the amide group can be distributed better

over the molecule. For the divalent pseudorotaxanes the

absolute agreement between the calculated and the experimen-

tally determined Gibbs energies is not as good as in the case of

monovalent binding, but the same trends are observed in the

simulations as in experiment. The divalent pseudorotaxane with

the n0 linker shows a significantly stronger binding than the

longer molecules.

Additionally, the full double mutant cycle from [16] has been

calculated (Figure 3 and Table 4). The Gibbs energy of associ-

ation ΔG in case of Ph@DiC8 and n0@2C8 is in good agree-

ment with the experimental data. For 2Ph@DiC8 and n0@C8

the deviation is larger just as for the divalent systems in

Table 3. This deviation strongly affects the calculated equilib-

rium constants K, because ΔG is included exponentially in K.

Therefore only a qualitatively discussion of the equilibrium

constants is possible. With the determined equilibrium constants

K, the effective molarity EM can be calculated [16]:
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Figure 4: Optimized gas-phase structures for unfolding the monovalent (first row) and divalent (second row) host molecules. For the latter case a two-
step process is found.

(1)

(2)

According to Hunter and Anderson [35] EM·K1 can be used to

quantify cooperativity. If EM·K1 ≈ 1, the system shows no or

small cooperativity, if EM·K1 >> 1 the systems shows positive

cooperativity and for EM·K1 << 1 the opposite occurs. The data

for the EM·K1 values are all based on the double mutant cycle

of n0, because the experimental data are also using only the

double mutant cycle of n0 for n1 and n2. The experiment shows

that n0@DiC8 (EM·K1(exp.) = 55.3) has a highly positive coop-

erativity while n1@DiC8 (EM·K1(exp.) = 2.4) and n2@DiC8

(EM·K1(exp.) =1.5) have no significant cooperativity. In

contrast to the experiment, the calculations show that n0@DiC8

(EM·K1(cal.) = 1.6·108), n1@DiC8 (EM·K1(cal.) = 3.1·105) and

n2@DiC8 (EM·K1(cal.) = 1.3·103) have highly positive cooper-

ativity, but all calculated values are much too high compared to

experiment due to the deviations of ΔG for 2Ph@DiC8 and

n0@C8. Despite these errors the calculation shows in agree-

ment to experiment, that n0@DiC8 has a much higher EM·K1

value than n1@DiC8 and n2@DiC8. So the calculations confirm

that the linkers contribute to the binding strength in the divalent

pseudorotaxanes and can be called non-innocent as in [16].

Regarding the aforementioned deviations from experiment, the

difference in the absolute Gibbs energies of association can be

explained by the insufficient modeling of solvent effects. The

solvent model assumes a uniform distribution of the two

different solvents in the mixture. An explicit treatment of at

least some solvent molecules would be desirable but is compu-

tationally not feasible at the required quantum mechanical level.

A combined molecular mechanics/quantum mechanics treat-

ment could be a solution to this problem in the future. Neverthe-

less, concerning the difference between ΔG in the gas phase and

the experimental value, the solvent model that is used in this

study yields a significant part of ΔG, but it cannot resolve

details of the solvation effects.

At the end of this discussion it is worth mentioning that the

most stable structure of the host molecule changes from gas

phase to solution. Both the monovalent and the divalent host

have a folded ground state structure the in gas phase (Figure 4).

The electronic energy ΔE that is needed for unfolding the

monovalent host is 29.7 kJ/mol. This value increases up to

72.3 kJ/mol for fully unfolding the divalent host (52.6 kJ/mol

for the first step and 19.6 kJ/mol for the second step). In solu-

tion (2.2:1 chloroform/acetonitrile, 298.15 K) the monovalent

host is more stable in the unfolded form with ΔG being

8.2 kJ/mol lower than that of the folded form. The divalent host

stays in the folded structure, and ΔG is 6.5 kJ/mol lower than

that of the unfolded form.

Conclusion
The Gibbs energies of association, including enthalpic and

entropic temperature effects, solvent effects and the counter

ions, have been determined for the divalent crown-8/ammoni-

um pseudorotaxane with different linkers in the guest molecule.

Additionally, a full double mutant cycle has been investigated

in the same way. Our results agree with the experimental find-

ings that the shortest investigated linker yields a strongly

enhanced binding compared to the monovalent case due to the

binding of the guest linker to the host linker. Our first principle

calculations show clearly that this enhanced binding is due to

electronic effects, namely the dispersion interaction of the two
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linkers. For the shortest linker this interaction results in a nearly

ideal π–π stacking. For the two longer linkers ideal packing is

not possible due to steric hindrance. These investigations

proved that besides the primary binding sites in multivalent

arrangements the interaction of the linkers can influence the

binding process significantly. Therefore the term of non-inno-

cent linkers introduced in [16] is well justified.
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and applied it. Mirko Lohse and Karol Nowosinski wrote the manuscript together. All
authors added contributions to the final version of the publication.
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5.6 Paper A6
“A Divalent Pentastable Redox-Switchable Donor–Acceptor Rotaxane”
Hendrik V. Schröder, Henrik Hupatz, Andreas J. Achazi, Sebastian Sobottka, Biprajit
Sarkar, Beate Paulus and Christoph A. Schalley
Chemistry – A European Journal 2017, 23, 2960-2967.
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Contributions

The synthesis and experiments were done by Hendrik V. Schröder and Henrik Hupatz. Se-
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and Henrik Hupatz and I wrote the manuscript together, the main contributions and
general concept were done by Hendrik V. Schröder. All authors added contributions to
the final version of the publication.
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of the publication.
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5.8 Paper B1
“Hydration Effects Turn a Highly Stretched Polymer from an Entropic into an Energetic
Spring”
Susanne Liese, Manuel Gensler, Stefanie Krysiak, Richard Schwarzl, Andreas Achazi,
Beate Paulus, Thorsten Hugel, Jürgen P. Rabe and Roland R. Netz
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Contributions
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DFT calculations. Susanne Liese wrote the manuscript. All authors added contributions
to the final version of the publication.
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6 Appendix

Molecular structures used to calculate the dispersion interaction between the aromatic
system of the crown ether and the organic rest of the primary ammonium cation (section
3).
Energy = -1404.556861852
C -1.3581300 2.1533100 -1.5737700
C -0.0059200 2.5962800 -2.0790500
O -1.1836800 1.6059100 -0.2569600
C 0.8999800 0.3258600 3.7552600
C -0.5404800 0.0370900 3.4079500
O -0.7957400 0.5277400 2.0761900
C 4.7668400 -0.3991900 -0.1037500
C 4.4698600 0.4001600 -1.3513100
C 2.8869800 0.5458600 -3.1533000
C 2.0891900 1.8120500 -2.8990200
O 0.8434400 1.4526000 -2.2756200
O 3.2769600 -0.1213500 -1.9462100
C 3.1437800 -0.1592400 3.2038600
C 4.0177500 -0.7759900 2.1381700
O 3.7829700 -0.0848200 0.8978800
O 1.7692200 -0.4083600 2.8889200
C -4.5121500 0.5581100 2.0252300
C -4.7159900 1.1416500 0.7821300
C -3.6232500 1.5002200 -0.0139200
C -2.3255500 1.2884700 0.4423700
C -2.1202200 0.7006400 1.7081900
C -3.2111300 0.3299700 2.4875000
H -1.8037000 1.3969400 -2.2320500
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H -2.0150500 3.0313900 -1.5317500
H -0.1417500 3.1153800 -3.0381100
H 0.4620100 3.2891800 -1.3655700
H 1.1009200 1.4030400 3.6591700
H 1.0698500 0.0313900 4.8024300
H -0.7574600 -1.0373500 3.4525700
H -1.1813500 0.5663900 4.1219800
H 5.7636400 -0.1315800 0.2735200
H 4.7495100 -1.4752300 -0.3267900
H 5.3113200 0.3010600 -2.0529000
H 4.3519300 1.4620400 -1.0923000
H 2.2707400 -0.1706400 -3.7038200
H 3.7710600 0.7872100 -3.7600200
H 2.6370300 2.5150500 -2.2543600
H 1.8858100 2.3118200 -3.8571900
H 3.3946200 -0.5989900 4.1809900
H 3.3253300 0.9245500 3.2501800
H 5.0712200 -0.6614200 2.4281000
H 3.8001800 -1.8468100 2.0180200
H -3.7951700 1.9366000 -0.9905600
H -3.0631900 -0.1434800 3.4510200
N 1.0839700 -0.3391300 -0.0190200
C 0.9610400 -1.7556700 -0.5111500
C -0.2664400 -1.9375900 -1.3986900
C -1.5727000 -2.0414000 -0.6184100
O -2.6364400 -1.8079300 -1.5255400
C -3.9212900 -2.0615900 -0.9300900
C -4.9924800 -1.6908000 -1.9360500
H 0.9984000 0.3224400 -0.8165000
H 0.3675900 -0.0886100 0.6839600
H 1.8764900 -1.9521100 -1.0693900
H 0.9376500 -2.4015400 0.3711600
H -0.1300800 -2.8393200 -2.0037300
H -0.3367200 -1.0961200 -2.0975300
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H -1.6662000 -3.0399700 -0.1596300
H -1.6114200 -1.3022900 0.1990400
H -3.9844600 -3.1266200 -0.6571700
H -4.0193800 -1.4656300 -0.0112200
H -4.9316900 -0.6276800 -2.1878400
H -5.9837000 -1.8908000 -1.5168500
H -5.3549400 0.2679600 2.6435800
H -5.7215800 1.3149900 0.4135900
H -4.8798200 -2.2743800 -2.8543000

Energy = -328.5123785205
C -0.7149272 -0.4817255 -1.6246618
O -0.2631266 0.0537930 -0.3801864
C -0.2733548 1.4800075 -0.3709689
C 0.2181817 1.9640372 0.9854493
C 0.2394859 3.4972338 1.0911446
N 0.7042349 4.0412356 2.3770675
C -0.6718179 -1.9968431 -1.5365293
H 0.3482911 -2.3400138 -1.3391384
H -1.3192075 -2.3518265 -0.7289342
H -1.7399048 -0.1285174 -1.8289910
H -0.0689712 -0.1164105 -2.4409793
H -1.2961089 1.8467863 -0.5671519
H 0.3748451 1.8629449 -1.1785319
H 1.2268203 1.5677929 1.1598985
H -0.4312501 1.5490622 1.7669914
H -0.7673621 3.8944097 0.9112402
H 0.8837453 3.9133450 0.3065480
H 1.6469379 3.7022392 2.5712822
H 0.1175454 3.6839411 3.1316951
H -1.0131965 -2.4402616 -2.4780338

Energy = -1132.622899350
C -1.3581300 2.1533100 -1.5737700
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C -0.0059200 2.5962800 -2.0790500
O -1.1836800 1.6059100 -0.2569600
C 0.8999800 0.3258600 3.7552600
C -0.5404800 0.0370900 3.4079500
O -0.7957400 0.5277400 2.0761900
C 4.7668400 -0.3991900 -0.1037500
C 4.4698600 0.4001600 -1.3513100
C 2.8869800 0.5458600 -3.1533000
C 2.0891900 1.8120500 -2.8990200
O 0.8434400 1.4526000 -2.2756200
O 3.2769600 -0.1213500 -1.9462100
C 3.1437800 -0.1592400 3.2038600
C 4.0177500 -0.7759900 2.1381700
O 3.7829700 -0.0848200 0.8978800
O 1.7692200 -0.4083600 2.8889200
C -4.5121500 0.5581100 2.0252300
C -4.7159900 1.1416500 0.7821300
C -3.6232500 1.5002200 -0.0139200
C -2.3255500 1.2884700 0.4423700
C -2.1202200 0.7006400 1.7081900
C -3.2111300 0.3299700 2.4875000
H -1.8037000 1.3969400 -2.2320500
H -2.0150500 3.0313900 -1.5317500
H -0.1417500 3.1153800 -3.0381100
H 0.4620100 3.2891800 -1.3655700
H 1.1009200 1.4030400 3.6591700
H 1.0698500 0.0313900 4.8024300
H -0.7574600 -1.0373500 3.4525700
H -1.1813500 0.5663900 4.1219800
H 5.7636400 -0.1315800 0.2735200
H 4.7495100 -1.4752300 -0.3267900
H 5.3113200 0.3010600 -2.0529000
H 4.3519300 1.4620400 -1.0923000
H 2.2707400 -0.1706400 -3.7038200
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H 3.7710600 0.7872100 -3.7600200
H 2.6370300 2.5150500 -2.2543600
H 1.8858100 2.3118200 -3.8571900
H 3.3946200 -0.5989900 4.1809900
H 3.3253300 0.9245500 3.2501800
H 5.0712200 -0.6614200 2.4281000
H 3.8001800 -1.8468100 2.0180200
H -3.7951700 1.9366000 -0.9905600
H -3.0631900 -0.1434800 3.4510200
N 1.0839700 -0.3391300 -0.0190200
H 0.8426665 -1.2611610 -0.3833106
H 0.9984000 0.3224400 -0.8165000
H 0.3675900 -0.0886100 0.6839600
H -5.3549400 0.2679600 2.6435800
H -5.7215800 1.3149900 0.4135900

Energy = -56.58756117550
N 0.8030158 3.1167886 2.4684722
H 1.4113685 3.7113519 1.9058679
H 0.2049690 3.7439101 3.0062751
H 0.1925867 2.6281193 1.8136748
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Table 6.1: Change in vibrational entropy Svib (including the inner rotations) when the
guest binds to the host (mH and H, respectively). The change is given in kJmol−1 at
298.15 K.

Guest −T∆Svib

mG1-OTs -13.6
G1-2OTs -1.4
G2-2OTs 0.1
G3-2OTs -1.7
G4-2OTs 2.3
G5-2OTs 2.7
mG2-OTs -12.3
G6-2OTs -4.9
G7-2OTs 0.5
G8-2OTs 0.3
G9-2OTs -5.1

G10-2OTs -4.1
G11-2OTs -2.0
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