## 3.4 Versuch zum Nachweis der enzymatischen Aktivität von immobilisierter 5'-Nukleotidase

Das Nukleotid Ap<sub>5</sub>A ist von der Firma Sigma synthetisch hergestellt worden. Im Versuch soll es dazu dienen, den Nachweis der Aktivität der 5'-Phosphodiesterase zu ermöglichen.

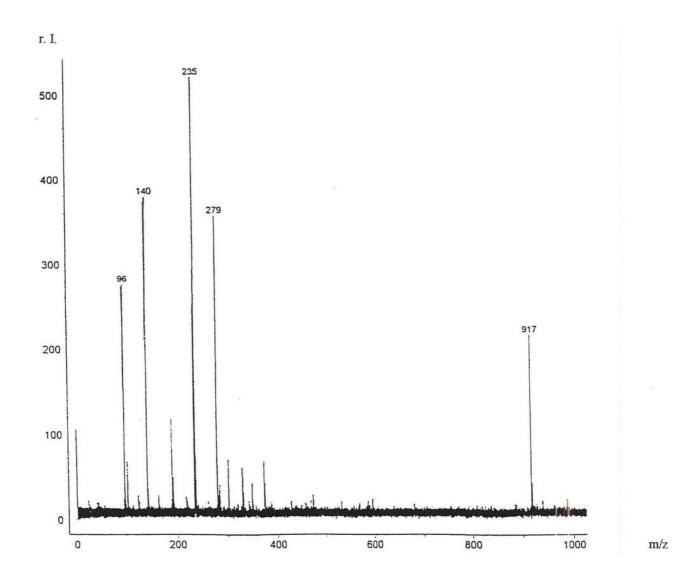



Abb. 16: MALDI-Massenspektrum von  $Ap_5A$  vor der Inkubation mit der 5'-Nukleotidase

Abszisse: Massenzahl pro Ladung (m/z)

Ordinate: relative Intensität (dimensionslos)

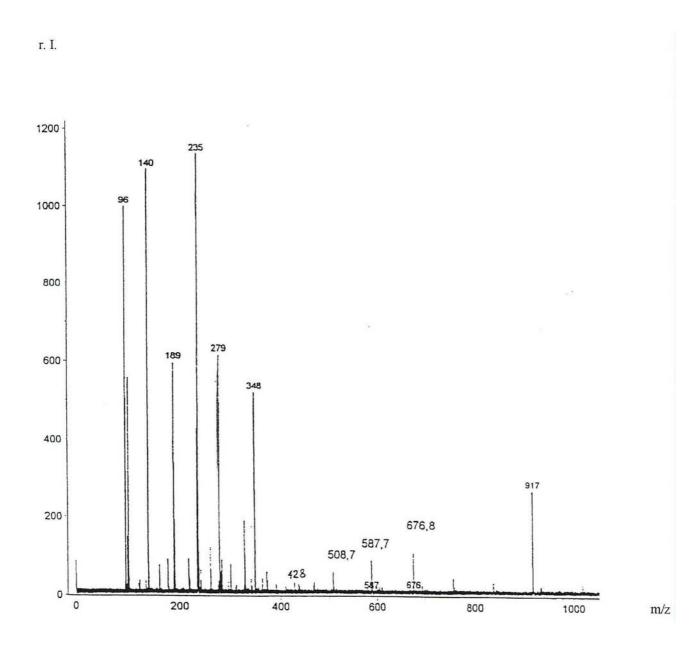



Abb. 17: MALDI-Massenspektrum von  $Ap_5A$  nach der Inkubation mit der 5'-Phosphodiesterase.

Abszisse: Massenzahl pro Ladung (m/z)

Ordinate: relative Intensität (dimensionslos)

Nachfolgend werden die Signale aus den MALDI-Massenspektren präsentiert und interpretiert, die in den Abbildungen 16 und 17 vorgekommen sind.

| Masse des gemessenen         | Interpretation des   | Masse des berechneten        |
|------------------------------|----------------------|------------------------------|
| Fragments [M+H] <sup>+</sup> | gemessenen Fragments | Fragments [M+H] <sup>+</sup> |
| 917                          | Ap <sub>5</sub> A    | 918.4                        |

Tab. 7: Interpretation der Signale im MALDI-Massenspektrum der Abbildung 16.

| Masse des gemessenen         | Interpretation des   | Masse des berechneten        |
|------------------------------|----------------------|------------------------------|
| Fragments [M+H] <sup>+</sup> | gemessenen Fragments | Fragments [M+H] <sup>+</sup> |
| 348                          | AMP                  | 348.2                        |
| 428                          | ADP                  | 428.2                        |
| 508.7                        | ATP                  | 508.2                        |
| 587.7                        | $Ap_4$               | 588.2                        |
| 676.8                        | ?                    | ?                            |
| 917                          | Ap <sub>5</sub> A    | 918.4                        |

Tab. 8: Interpretation der Signale im MALDI-Massenspektrum der Abbildung 17.