Chapter 6: Proof-of-Concept Implementation

In Chapter 4, we motivated the need for enterprise applications with custom and adaptable process
topologies. Then, in Chapter 5, we presented our FPT architecture, which consists of a set of concepts for
realizing enterprise application middleware that supports custom and adaptable process topologies. In this
chapter, we outline the design and implementation of our Free Data Objects (FDO) framework, which is
a proof-of-concept implementation of an enterprise application middleware that is based on the FPT
architecture.

Our FDO framework provides common infrastructure functionality for enterprise applications that follow
the “multi-tiered enterprise application” architectural style defined in Chapter 3. The framework is data-
centric — its main task is to provide enterprise applications with efficient, distributed, transactional access
to business data objects that are persistently stored in one or more data stores. All concepts of the FPT
architecture have been implemented — in particular, this means that a software architect can realize
arbitrary custom process topologies through configuration. Also, an architect can easily adapt process
topologies of existing enterprise applications through reconfiguration, which is important when
requirements change. All process topology patterns described in Section 3.4 are supported.

The FPT architecture focuses on fundamental, high-level design decisions — many medium and lower-
level details are left to implementations and, thus, there is still considerable freedom for realizing FPT-
based middleware implementations. The purpose of this chapter is to present our particular
implementation as an example of how the concepts of the FPT architecture can be realized and fit
together in a concrete system. An evaluation of the FPT architecture and the FDO framework can be
found in the following Chapter 7.

A detailed description of all design and implementation aspects of our FDO framework is clearly out of
scope. Instead, we focus on

= the top-level design of our framework,

= the design and implementation of concepts of the FPT architecture,
= core data structures, and

= design decisions that have a major impact on performance.

The latter are important because they have a heavy impact on the results of the evaluation presented in the
next chapter.

This chapter is structured as follows: In Section 6.1, we give an overview of the FDO framework and
describe its top-level architecture. Section 6.2 shows how application developers can define process
topology and data distribution scheme through configuration. Section 6.3 describes how communication
between object managers is implemented. In Section 6.4, we outline how copies and versions of data
objects are realized. Section 6.5 is devoted to the framework’s basic and advanced concurrency control
features. Section 6.6 describes how data objects are cached in our implementation. Section 6.7 provides
details on transaction management and how data in Oracle databases is accessed. For performance
reasons, our implementation is fully multi-threaded — the multi-threaded design is presented in Section
6.8. Section 6.9 describes our implementation of object and query routing. Section 6.10 discusses selected
aspects of our implementation in more detail and, finally, Section 6.11 gives a summary of this chapter.

93

Chapter 6: Proof-of-Concept Implementation

6.1 Overview

Our Free Data Objects framework has been implemented in the Java programming language, version 1.4,
under the Linux operating system. The framework mainly consists of an implementation of an object
manager component — at an architectural level, that component has already been briefly described in
Section 5.1. The framework is accompanied by two command line tools that aid the development process
(but their use is not mandatory for developers). The first tool generates a relational database schema from
data object definitions. The second tool generates Java interfaces for type-safe access to data objects. At
the time of writing, the source code of our FDO framework consists of about 24,000 lines of source code
in about one hundred Java classes.

As has been shown in Figure 5-1, an object manager is placed in each process of the process topology of
an enterprise application. Object managers of connected processes interact with each other and
collaboratively fulfill data management functions for an enterprise application. Our object manager
implementation is generic in the sense that it can be deployed in each process of a process topology. That
means that the same implementation can be used in pure client processes as well as in processes with
access to data stores or in processes that belong to intermediate tiers. Depending on its position in a
process topology, an object manager will use all of its functionality or only a specific subset. The
advantage of a generic implementation is that all object manager instances in a process topology are
based on the same source code.

The framework has been named Free Data Objects mainly because we wanted to emphasize that
instances of data objects (copies) are not restricted to one specific server process, as for example is the
case with the distributed objects paradigm. Instead, copies can be freely propagated (copied by value)
along C1 connectors in a process topology to any process that contains an object manager. As pointed out
in Requirement R1 (see Subsection 4.4.1), this is essential for avoiding fine-grained communication and
the resulting performance problems. Also, there is no need for application developers to use container
classes for remote transfer and/or to duplicate server-side data object types (see Subsection 4.5.3). From a
client/server database point of view, our implementation is based on the object server approach
[DFMV90], i.e., (collections of) individual data objects are copied between clients and servers. Unlike
page servers, which transmit entire disk/memory pages, the object server approach allows each object
manager and each data store in the process topology to choose its own internal representation for
caching/storing data objects. Particularly in heterogeneous topologies, this is advantageous.

94

Overview

connections from client
object managers

socket connection (SOAP connection
API for transaction object manager plug-in plug-in)
demarcation, 1 1 |
. queres, up connection manager .
object creation
application —>
code object manager core
. query trans-
invokes on and "**es. router analyzer action
references copy 5N e data object manager
objects < * e o

down connection manager

object manager NIO socket Oracle JDBC (ODBMS X
intercepts all calls connection plug-in = connection plug-in =] connection plug-in)

Sy) \

connections to data sources

Figure 6-1. The internal architecture of an object manager component.

Figure 6-1 depicts the internal design of an object manager component. Application code that runs in the
same process as the object manager may invoke functions on the object manager (e.g., to perform queries
or to set transaction boundaries). Internally, an object manager maintains a cache, which contains copies
of data objects. The copies are exposed to the application code, which may keep references to them and
may invoke methods on them (typically getXXX and setXXX methods to access attributes). All invocations
are transparently intercepted by the object manager, which ensures that each transaction “sees” an
appropriate version of the accessed copy instance (see isolation described in Subsection 5.7.2) and that a
copy is fetched from an underlying data source when a cache-miss occurs (see Section 5.6). The router
component is responsible for routing items through the process topology (see Section 5.8). The query
analyzer component, which is used by the router component, calculates which domains (see Subsection
5.2.2) are addressed by queries. The transaction manager component keeps track of all running
transactions and the copies accessed by them. An object manager communicates with object managers of
direct clients via the up connection manager component. With underlying data sources (object managers
and/or transactional data stores), an object manager communicates via the down connection manager
component. Into both connection manager components, protocol adapter implementations for different
remote communication protocols can be plugged. Currently, two plug-ins for inter object manager
communication through sockets and one plug-in for access to Oracle databases through JDBC are
implemented. The plug-in mechanism makes it easy to add support for other protocols, e.g., the simple
object access protocol (SOAP), protocols for accessing object databases (both shown in brackets in Figure
6-1), or CORBA.

Listing 6-1 depicts the signatures of the most important methods in the API that an object manager offers
to application code (exceptions are not included).

95

Chapter 6: Proof-of-Concept Implementation

01: public class ObjectManager {

02: public ObjectManager(String name, String cfgString) ..

03: public void release() ..

04: public void beginTx() ...

05: public Object suspendTx()..

06: public void resumeTx(Object transactionHandle) ..

07: public void rollbackTx()..

08: public void commitTx()..

09: public DataObject createNewDataObject(Class applnterface) ..
10: public List query(String queryString) ...

11: }

Listing 6-1. The Java API an object manager exposes to application code.

To create an object manager component in a process, application code has to call the object manager’s
constructor. A unique name for the new object manager and a string containing its configuration have to
be passed as parameters. In the constructor, the object manager initializes itself, starts several background
threads, and then is ready to serve the local application code as well as client processes. To shut down a
running object manager, the release method has to be called. Application code can access data objects
only within transactions, which are started with the beginTx method and terminated with the rollbackTx
and commitTx methods. beginTx implicitly associates the calling thread with a newly created transaction
(see introduction to Section 5.7). Internally, a java.lang.ThreadLocal object is used for that association.
The methods suspendTx and resumeTx allow application code to temporarily disassociate and then re-
associate threads with transactions, respectively. Within a transaction, application code can create new
data objects by invoking the createNewDataObject method — the type of the new data object has to be
passed as a parameter. Also, application code can execute queries, which return lists of references to data
objects, via the query method.

The API of an object manager is similar to APIs typically offered by object databases and
object/relational mapping tools. Listing 6-2 demonstrates how application code may use the API. We can
see that access to transactional data objects is provided in a comfortable, transparent way — persistence,
data distribution, remote communication, and other infrastructure details are transparently handled by the
object manager.

01: String cfg = ...; // read cfg from file

02: ObjectManager localOM = // create object manager
03: new ObjectManager(“oml7”, cfg); // with name “oml7”
04: localOM.beginTx(); // start new transaction
05: List orderList = localOM.query(// execute query

06: “SELECT FROM Order WHERE™ + //

07: “reg=10 AND customer IS NOT NULL™”); //

08: Order order = (Order) orderList.get(0); // get fTirst result data object
09: Customer customer = order.getCustomer(); // navigational access
10: if(customer.getName().equals(’Meyer”)) { // read a primitive value

11: order.setDiscount(new Float(0.06)); // write a primitive value
12: //

13: localOM.commitTx(); // commit transaction

14: // here we could perform some more txns

15: localOM.release(); // shut down object manager

Listing 6-2. Example application code that demonstrates how the object
manager API can be used.

The query language is similar to the query languages SQL [EN00] and OQL [CB00] but provides only a
small subset of their features (in order to keep our proof-of-concept implementation relatively simple).
Only sets of data objects can be selected. Projection, sub queries, and aggregation are not supported. A
query string has the following form

SELECT FROM <type> [WHERE <condition>] [ORDER BY <attribute name> [ASC|DESC]]

96

Configuration

type must be the name of a data object type. condition is a Boolean expression that can be evaluated on
the attribute values of a data object of the given type. Brackets, AND, OR, NOT, NULL, IS NOT NULL,
compare operators, constant values, and attribute names may be used in the Boolean expression. Compare
operators (>, >=, <, <=, <>, =) require an attribute name on the left side and a constant value on the right
side (or vice versa). Attribute names may only be used in conjunction with compare operators. The order-
by clause is optional and, if used, defines that the list of result data objects is to be sorted according to a
given attribute. In addition to the queries described above, the FDO framework provides limited support
for equi-joins’.

6.2 Configuration

The FPT architecture states that the process topology and the data distribution scheme of an enterprise
application are defined through configuration (see Section 5.4). In this section, we describe how
configuration is realized in our FDO framework.

For simplicity, we will assume that (a) each process in a process topology is started manually® by an
administrator and (b) that the configuration data for an object manager is stored in a local text file’. We
recommend the following straightforward approach to start-up when using our framework:

1. The process is started. The object manager’s unique name and the name of the configuration file
are supplied as command line parameters to the process.

2. The application (start-up) code of the process reads the contents of the configuration file into a
string.
3. The application code instantiates a local object manager as shown in Listing 6-2. The unique

name and the configuration string are passed as parameters to the constructor.

An example configuration file is shown in Listing 6-3. A complete grammar of object manager
configuration files can be found in Appendix A. In our implementation, an object manager parses its
configuration data with code produced by the ANTLR parser generator [PQ95].

! For an equi-join query, two query strings and the name of a join attribute have to be supplied. Both query strings have to address
the same domain. The result consists of two lists of references to data objects. The join is not a distributed join — only those pairs of
objects are selected where both objects are stored in the same data store (pairs may come from different data stores). However, it
would be possible to add a distributed join mechanism to the implementation.

% Alternatively, a system management tool or scripts could be used to automate the task of starting and shutting down processes on
different machines in a network.

® In principle, the configuration can be stored in any place. The application code in each process is responsible for obtaining the
configuration data and passing it as a string to the local object manager.

97

Chapter 6: Proof-of-Concept Implementation

01: # Configuration file for object manager P4
02: OBJECT MANAGER P4 {
03: ID = 6361;

04:

05: DATA OBJECT Employee {

06: TYPECODE = 200;

07: empno:int; name:string; dep:Department;

08: boss:Employee; retired:bool;

09: }

10: DATA OBJECT Department {

11: TYPECODE = 201;

12: name:string; address:string;

13: }

14:

15: INTERFACE FOR Employee: empapp -dataobjects.Employee;
16: INTERFACE FOR Department: empapp-dataobjects.Department;
17:

18: DOMAIN doml {

19: CODE = 1001;

20: DEF = SELECT FROM Employee WHERE retired=FALSE;
21: RITREE = 1(dsl, ds2);

22: }

23: DOMAIN dom2 {

24: CODE = 1002;

25: DEF = SELECT FROM Employee WHERE retired=TRUE;
26: RITREE = ds2;

27: }

28: DOMAIN dom3 {

29: CODE = 1003;

30: DEF = SELECT FROM Department;

31: RITREE = R(dsl1, ds2);

32: }

33:

34: EXPORTS = (doml, dsl) (doml, ds2) (dom3, ds2);

35:

36: SERVER CONNECTION {

37: SERVERADDRESS = JDBCAddress

38: “jdbc:oracle:thin@//foo.mi.fu-berlin.de:1521/MYDB”
39: “clemens” “ah7tqgkly” “dsl”;

40: IMPORTS = (doml, dsl);

41: ADAPTER = OracleJDBCConnection;

42: }

43: SERVER CONNECTION {

44: SERVERADDRESS = JDBCAddress

45: “jdbc:oracle:thin@//bar.mi.fu-berlin.de:1523/XDB”
46: “fdouser” “hjsb3epf” *“ds2”;

47: IMPORTS = (doml, ds2) (dom3, ds2);

48: ADAPTER = OracleJDBCConnection;

49: }

50: CLIENT LISTENER {

51: LOCALADDRESS = SocketAddress ‘“snake.mi.fu-berlin.de” *“12320;
52: ADAPTER = SocketConnection;

53: }

54: }

Listing 6-3. Example configuration of an object manager.

The example configuration file in Listing 6-3 is suitable, e.g., for the process P4 of the process topology
shown in Figure 5-6. The file covers all details outlined in Section 5.4: a subset of the enterprise
application’s process topology, a subset of the data distribution scheme, and a subset of the import/export
scheme. Additionally, the configuration file contains definitions of data object types and interfaces. In the
following, we explain the contents of the file in more detail:

= FEach object manager is described in a separate OBJECT MANAGER section. An object manager
reads only the section that matches its unique name. This allows multiple object managers to be
configured within a single file. The example file contains only one OBJECT MANAGER section.
That section configures an object manager named P4 (lines 2 to 54),

98

Configuration

Lines 5 to 13 contain definitions of data object types. Two data object types are defined in the
file: Employee and Department. Each type is described in a separate DATA OBJECT section, is
assigned a unique type code, and has an arbitrary number of attributes. An attribute can be either
a bool, short, int, long, float, double, string, or a reference attribute.

In lines 15 and 16, data object types are associated with Java interfaces (which must be present in
the local classpath). A Java interface for a data object type must extend the generic DataObject
interface and should define a pair of get and a set methods for each attribute, for instance, String
getAddress() and void setAddress(String address) for the address attribute of a data object type
Department. Interfaces allow application code to access data objects in a type-safe manner.
Associating data object types with interfaces is optional. However, a data object of a type that has
no associated interface can only be accessed via the DataObject interface, which provides generic
get and set methods, such as Object getAttributeValue(int attributelndex) and void
setAttributeValue(int attributeindex, Object value). More details on interfaces are given in
Section 6.4.

Lines 18 to 32 define a data distribution scheme as described in Section 5.2. Three domains —
doml, dom2, and dom3 — are defined, each in a separate DOMAIN section. Each domain is
defined through a query (or a sequence of coma-separated queries). For each domain, an Rl-tree
is defined (as text, in prefix notation), which describes how data objects of that domain are
distributed among data stores. The Rl-trees defined in lines 21, 26, and 31 correspond to the three
RI-trees shown in Figure 5-6. An example of a more complex RI-tree was given in Figure 5-3 —in
a configuration file, that tree would be textually represented as 1(R(ds2, ds3, 1(ds5, ds6)), R(ds8,
ds9)).

Line 34 defines the exports of process P4, i.e., which data objects may be imported and accessed
by client processes of P4 (see Section 5.3).

The part of the process topology that is visible to P4 is configured in lines 36 to 53. Each C1
connector from P4 to a data source is defined in a separate SERVER CONNECTION section.
Since P4 has direct access to two data stores, its configuration contains two SERVER
CONNECTION sections (lines 36 to 49); each specifies a protocol adapter plug-in to be used
(JDBC access to Oracle), a remote host, a username, a password, and a data store name. In
addition, each SERVER CONNECTION section defines what data is imported from the respective
data source (see Section 5.3).

C1 connectors from client object managers to P4 are configured via CLIENT LISTENER sections.
The CLIENT LISTENER section in lines 50 to 53 defines that P4 accepts clients requests sent via
plain sockets on port 12320. In contrast to a SERVER CONNECTION section, a CLIENT
LISTENER section does not configure a single, concrete C1 connector but represents an arbitrary
number of C1 connectors. Clients remain anonymous to P4 until they actually request P4’s
services at runtime.

In Listing 6-3, the configuration file contains only definitions for a single object manager. With such a
scheme, each process in the process topology of an enterprise application is configured via a separate,
locally available file. However, in some cases, it is desirable to have a single configuration file that
contains configuration data for multiple object managers. For example, during development, a single
configuration file can significantly simplify configuration in a single-machine or local area network
environment. Or, when configuration data for a group of processes is created and managed in a central
place, it is convenient to (manually or automatically) distribute the same single configuration file to all
machines that run those processes.

The FDO framework supports multiple OBJECT MANAGER sections within a single configuration file.
An object manager reads only the section that matches its unique name. Note that different object

99

Chapter 6: Proof-of-Concept Implementation

managers in a process topology often use similar definitions — especially definitions of data objects,
interfaces, and domains. These common definitions can be placed in an OBJECT MANAGER * section.
This reduces redundancy when multiple object managers are configured in a single configuration file.
Listing 6-4 shows a configuration file that merges definitions for the object managers of two processes:
P2 and P4 (both shown in Figure 5-6). Process P2 is client of P4. Common definitions for both object
managers are factored out into the OBJECT MANAGER * section. Also, we can see that P2 defines a
server connection to P4 (lines 64 to 68) that matches P4’s client listener. P2’s configuration does not
define any EXPORTS clause or CLIENT LISTENER sections because P2 does not accept client requests
from other processes.

01: # Configuration file for object managers P2 and P4
02: OBJECT MANAGER * {

(contains lines 5 to 32 from Listing 6-3)
31: }

33; OBJECT MANAGER P4 {
34: ID = 6361;
35: EXPORTS = (doml, dsl) (doml, ds2) (dom3, ds2);

36:

37: SERVER CONNECTION {

38: SERVERADDRESS = JDBCAddress

39: “jdbc:oracle:thin@//foo.mi.fu-berlin.de:1521/MYDB”
40: “clemens” “ah7tqkly” “dsl1”;

41: IMPORTS = (doml, dsl);

42: ADAPTER = OracleJDBCConnection;

43: }

44: SERVER CONNECTION {

45: SERVERADDRESS = JDBCAddress

46: “jdbc:oracle:thin@//bar .mi.fu-berlin.de:1523/XDB”
47: “fdouser” “hjsb3epf” “ds2”;

48: IMPORTS = (doml, ds2) (dom3, ds2);

49: ADAPTER = OracleJDBCConnection;

50: 3

51: CLIENT LISTENER {

52: LOCALADDRESS = SocketAddress “snake.mi.fu-berlin.de” “12320”;
53: ADAPTER = NI0SocketConnection;

54: 3}

55: }

56:

57: OBJECT MANAGER P2 {
58: ID = 9371;
59: SERVER CONNECTION { # connects to P3 (not configured in this file)

60: SERVERADDRESS = SocketAddress “worm.mi.fu-berlin.de” “12320”;
61: IMPORTS = (doml, dsl) (dom3, dsl);

62: ADAPTER = SocketConnection;

63: }

64: SERVER CONNECTION { # connects to P4

65: SERVERADDRESS = SocketAddress “snake.mi.fu-berlin.de” “123207;
66: IMPORTS = (doml, dsl) (doml, ds2) (dom3, ds2);

67: ADAPTER = NI0SocketConnection;

68: }

69: }

Listing 6-4. Example file that configures multiple object managers.
Common definitions are placed in the OBJECT MANAGER * section.

A configuration file contains all configuration data for one or more object managers. However, in some
situations, administrators might not want to statically define all configuration data as part of configuration
files. Instead, it might be more convenient to let a start-up script determine selected values (like IP
addresses, port numbers, or object manager names) at runtime. With our implementation, this can be
achieved by using variables in configuration files. For example, an administrator can change line 52 of
the configuration file shown in Listing 6-4 to

LOCALADDRESS = SocketAddress “$(MYHOSTNAME)” “$(MYPORT)”;

100

Communication between Object Managers

and pass the values for MYHOSTNAME and MYPORT as command line parameters (using Java’s —-D
option) when starting the process of the corresponding object manager. Especially when processes in a
process topology are replicated, variables are convenient because the same configuration file can be used
on different machines.

Configuration, as described in this section, plays a key role in the FDO framework. Through
configuration, a software architect can construct arbitrary custom process topologies. Each object
manager of a process topology is configured either by a separate configuration file or by a section in a
common configuration file. This way, processes can be easily “plugged” together by configuring
appropriate C1 connectors, i.e., matching pairs of SERVER CONNECTION and CLIENT LISTENER
sections. Also, since the topology is not explicitly defined (“hard-coded”) in the application code of an
enterprise application, a software architect can easily adapt an existing custom process topology to
changing requirements.

6.3 Communication between Object Managers

Only object managers connected via a C1 connector are allowed to directly communicate with each other.
In the previous section, we learned how such communication links are configured. This section describes
the internal implementation of inter-process communication.

As already mentioned in Section 6.1 and shown in Figure 6-1, an object manager uses its internal
up/down connection manager components to communicate with directly connected client object managers
and data sources. Into both connection manager components, different protocol adapters for remote
communication can be plugged. Any combination of plug-ins is permitted — this allows an object manager
to use different communication protocols for different remote object managers in parallel. A precondition
for communication between a client object manager and a server object manager is that both are equipped
with the same protocol adapter plug-in. Internally, the protocol adapter plug-ins are used for sending and
receiving asynchronous point-to-point messages over the network. In principle, any underlying protocol
(connection-based or connectionless) can be used to implement protocol adapter plug-ins. In the FDO
framework, we have implemented two protocol adapter plug-ins for inter object manager communication:

= The SocketConnection plug-in is a simple plug-in that sends and receives serialized Java objects
over plain sockets. For each connection to a client or server, an object manager maintains an open
TCP connection and two dedicated threads (one for reading incoming data, the other for sending
data).

* In addition, we implemented an optimized plug-in named NIOSocketConnection, which uses a
more efficient wire format than Java object serialization and uses more scalable, low-level socket
communication. The client side implementation is similar to that of the SocketConnection plug-in,
except for the optimized wire format. The server side implementation is based on the new nio
package introduced with Sun’s JDK version 1.4. Under load, the implementation scales to many
more concurrent clients than the SocketConnection plug-in because it uses a constant number of
threads for IO (one thread per port) instead of two threads per client.

Within an object manager, the representation of a message is well-defined (by our framework). But how
messages are represented on the wire (for instance, as XML formatted text, serialized Java objects, or
CORBA/IIOP messages) is left to protocol plug-ins. Plug-ins are responsible for communication with
remote sites and for translating between the object manager’s internal message representation and the
wire representation (marshalling and unmarshalling). The FDO framework defines twelve different
message types — six pairs of request and reply messages. Communication always follows a strict
client/server request-response style: Request messages are sent from client object managers to server
object managers. For each request message received from a client, a server object manager sends back a
corresponding reply message. Servers never proactively send messages to clients. As outlined in
Subsection 5.9.2, this approach reduces complexity. The different message types used in our FDO

101

Chapter 6: Proof-of-Concept Implementation

framework are described in Table 6-1. Internally, each message type corresponds to a (serializable) Java
class in our object manager implementation.

request message type

reply message type

A ConnectRequestMessage is sent from a client
(e.g., on client start-up) to a server to initiate commu-
nication.

A ConnectReplyMessage informs the recipient
whether its previous connection attempt has been
accepted or rejected.

With a QueryRequestMessage, a client requests a
server to return a set of copies of data objects. The
client specifies the set either by including a SELECT
query (see Section 6.1) or a reference to a particular
data object to fetch.

As a reply to a query request, a server sends back a
QueryReplyMessage. The message either indicates
an error or contains a query result, i.e., a set of copies
of data objects.

Messages of type PushDownRequestMessage are
sent in the push-down phase of an FPT transaction
(see Subsection 5.7.4). They are used for object
routing (see Subsection 5.8.2), i.e., to propagate
optimistic locks and private versions of committing
FPT transactions “down” the process topology to
transactional data stores.

A PushDownReplyMessage informs the recipient
whether the routing it requested with a
PushDownRequestMessage was successfully
performed or led to an error. In the former case, the
reply message includes information about where
items have been routed.

PrepareRequestMessages are sent in the commit
phase of FPT transactions (see Subsection 5.7.4) to
access and then prepare transactional data stores that
have received items in the push-down phase.

A PrepareReplyMessage informs the recipient about
prepare votes of transactional data stores (o.k. or
abort).

CommitRequestMessages correspond to the second
phase of the two-phase commit (2PC) protocol. They

A CommitReplyMessage is sent back to an object
manager to indicate a successful commit or an error.

are sent in the commit phase of FPT transactions to
commit transactional data stores that have received
items in the push-down phase and have been prepared
with PrepareRequestMessages.

A RollbackRequestMessage is similar to a Commit-
RequestMessage — however, it does not commit a
transaction but is used to roll back a prepared
transactional data store.

A RollbackReplyMessage is sent back to an object
manager to indicate a successful rollback or an error.

Table 6-1. Pairs of message types defined by the FDO framework. Request
messages are sent from client object managers to server object managers;
reply messages vice versa.

Figure 6-2 shows an example message flow produced by an FPT transaction. The enterprise application’s
process topology and data distribution scheme are shown in the upper part of the figure. Each process Pi
(i=1..5) of the topology contains a corresponding object manager Oi. Messages sent between object
managers are shown in the UML collaboration diagram in the bottom part of the figure.

The example FPT transaction is initiated by application code in process P1 that contains object manager
O1. In its main phase, the transaction first queries a set of Customer data objects. As we can see from the
left RI-tree, Customer data objects are ad-hoc distributed among data stores ds, and dsz. Therefore, the set
query has to be routed from Ol to object managers O4 and O5, which have access to ds; and ds,
respectively. The query routing corresponds to messages 1, 1.1, and 1.2 in the diagram. After the query
result has been delivered to O1, the FPT transaction (a) places an optimistic lock on the first result object
and ignores other result objects, (b) creates a new Order data object, and (c) assigns values to its
attributes. None of the three actions trigger any messages. Then application code in P1 requests the local
object manager O1 to commit the FPT transaction. The transaction enters the push-down phase where the
private version of the new Order data object is routed to data stores ds; and ds, and the optimistic lock on
the Customer data object is routed to data store ds, (its home data store). The push-down phase
corresponds to messages 2.1, 2.2, and 2.2.1 in the collaboration diagram. While message 2.1 carries one
item (a private version), messages 2.2 and 2.2.1 both carry two items (a private version and a lock to
validate). Finally, the FPT transaction makes a transition to the commit phase where a 2PC protocol is

102

Communication between Object Managers

executed (with O1 as coordinator). Prepare messages (3.1, 3.2, and 3.2.1) and commit messages (4.1, 4.2,
and 4.2.1) are sent and follow the paths taken by the preceding push-down messages.

If the home data store of the locked Customer data object was ds; instead of ds,, then a slightly different
message flow would be the result. As before, the lock would be routed in message 2.2 together with the
private version of the new Order data object. Then object manager O3 would route the two items with
two separate messages — one to O4 and one to O5. In the collaboration diagram, we had to add three
messages sent from O3 to O5 —2.2.2: PushDown, 3.2.2: Prepare, and 4.2.2: Commit.

P1

PFI /D\ps

2
& ~

RI-tree for domain dom; (all RI-tree for domain dom; (all
Customer data objects): Order data objects):

PS5

(011
8)-1]

ng

O1:0bjectManager

. 1: Query
2.1 : PushDown :
3.1: Prepare gg : Eges;?aDrgwn
4.1+ Commit 4.2 : Commit
02:0bjectManager 03:0bjectManager
1.1: Query
2.2.1: PushDown .
3.2.1: Prepare J \ 1.2: Query
4.2.1 : Commit
04:0bjectManager 0O5:0bjectManager

Figure 6-2. Collaboration diagram depicting messages of an FPT transaction that
is initiated in P1 (which contains object manager O1), queries Customer data
objects, inserts a new Order data object, and finally commits.

Note that, for simplicity, the collaboration diagram uses the standard notation for sequential, synchronous
messages. Technically, each message shown in the diagram maps to a pair of messages in the FDO
framework (a request message from a client to a server and a reply message in the opposite direction, see
Table 6-1). Also, the diagram shows all messages as a sequential flow. To reduce response time, our FDO
framework sends multiple request messages in parallel whenever possible. More specifically, all
messages with numbers that differ only in their last component (e.g., messages 2.1 and 2.2 or messages
1.1 and 1.2) are sent in parallel by an object manager. Internally, all messages are sent asynchronously —
more details on tasks and multi-threading can be found in Section 6.8.

In this section, we outlined communication between object managers only. Communication between
object managers and transactional data stores is covered in Section 6.7.

103

Chapter 6: Proof-of-Concept Implementation

6.4 Copies and Versions

In Section 5.6 and Subsection 5.7.2, we described the general role of copies and versions in the FPT
architecture — each object manager may cache data objects by keeping copy instances in its cache. To
guarantee isolation, each copy instance may in turn contain multiple versions. In this section, we describe
how copies and versions are implemented, how they can be accessed in a type-safe way, and how the
association to their home data stores is maintained.

6.4.1 Type-Safe Access through Interfaces

As described in Section 6.2, object managers can be configured to use given interfaces for data objects
(e.g., lines 15 and 16 of Listing 6-3). With such specialized interfaces, application code always has a
type-safe view on data objects and their attributes (see requirement R2 in Subsection 4.4.2). From a
framework developer’s perspective, it is always a crucial issue how user-defined interfaces/classes are
linked to framework code in a transparent manner. In principle, this question has to be addressed in all
frameworks that realize type-safe, transparent access to remote objects (e.g., CORBA or RMI) or
persistent objects (e.g., object/relational mapping frameworks). In all such frameworks, application-
specific code has to explicitly call framework code at some point. For instance, when application code
resolves an object reference by calling the getDepartment method on an employee object, this may trigger
a pointer swizzling mechanism [Moss92] in an object/relational mapping framework. Or, such a call may
lead to network communication when the employee object is a remote CORBA object. On the one hand,
framework code has to be invoked, but on the other hand, explicit calls potentially limit transparency. To
preserve transparency, it is common practice to let a tool generate code that links application code to
framework code. There are two typical approaches:

(1) Tools generate source code or byte code for complete classes that have to be used by application
code — examples are stub and skeleton classes generated by CORBA IDL compilers or Java RMI
compilers.

(2) Tools are employed that pre/post-process existing, user-defined code (source code or byte code)
to insert (“inject”) framework code. Examples are Java Data Objects (JDO) [JR03] and PJama
[AJOO].

In our implementation, we provide type-safe, transparent access to data objects but do not require
generation of framework code at compile time. We still need code that links application code to
framework code, but that code is transparently generated at runtime. This is achieved through Java’s
dynamic proxies, which are generated on demand by the Java runtime'. The UML class diagram depicted
in Figure 6-3 shows the relationships between interfaces, dynamic proxies, and framework code in our
FDO framework.

! With prior versions of Sun’s JDK, dynamic proxies — and reflection in general — introduced a significant overhead. Since version
1.4, these problems have been resolved.

104

Copies and Versions

<<interface>>
DataObject
DORef getRef())) . .
? invoke(...) dispatches type-safe invocations to
Dat.aObJECtDe.f getMetaData() . generic method implementations.
Object getAttributeValue(int attributelndex) Code snippet from invoke’s implementation:
void setAttributeValue(int attributelndex, -
Object value) if(method.getName().startsWith("get){
void delete() D int attrlndex:: -
A return getAttributeValue(attrindex);
\
? * :
AY 1
<<interface>> AN '
Employee \ !
1
\\ K
1
String getName() \ [
void setName(String name) AN)
Department getDepartment() \ !
void setDepartment(Department dep) \\ h
\ /
\]
A N ;
1 \
1 \ K
<<unnamed dynamic proxy class, proxy forwards ,‘ Copy
generated by the Java runtime>> all calls to |
H . . I .
Copy.invoke(...) | Object invoke(Obiject proxy, Method method,
(implements stub methods for all Object[] args)
methods in DataObject, Employee, ! ! (implements generic methods from
and java.lang.Object) DataObject)

Figure 6-3. UML class diagram describing the use of dynamic proxy classes for
realizing type-safe, transparent access to data objects (Java style signatures are

used).

The DataObject interface, which is provided by the FDO framework, declares methods for generic (i.e.,
not type-safe) access to data objects. Attributes are addressed by their index number; attribute values are

treated as Objects. Each copy of a data object is represented by an instance of the Copy class in an object
manager. Copy is part of the FDO framework and implements the generic methods defined in the
DataObiject interface. For type-safe access, application developers may define specialized interfaces —
one for each type of data object. In the class diagram, a specialized interface for data objects of type
Employee is shown as an example. Application developers register specialized interfaces with an object
manager by adding INTERFACE FOR statements to the object manager’s configuration (see Listing 6-3,

lines 15 and 16).
At compile time, there is no class that implements specialized data object interfaces. Copy contains the

functionality that is needed but, technically, cannot directly implement the methods defined in the
specialized interface. For linking specialized interfaces to the generic implementation in the Copy class,
an object manager uses dynamic proxies. For each instance of Copy, an object manager requests the Java
runtime to create a proxy instance via java.lang.reflect.Proxy.newProxylnstance(...). Between copy
instances and proxy instances, there is a 1:1 relationship. A proxy instance belongs to a class that
implements the given specialized data object interface — the Employee interface in our example. Proxy
classes do not exist at compile time — instead, the Java runtime transparently generates appropriate classes
that implement the specialized interfaces. Whenever an object manager passes a data object reference to
application code (e.g., as part of a query result or as result of navigational access), the object manager
does not pass a direct reference to the corresponding Copy instance but a reference to the instance’s
proxy. On the proxy instance, application code may invoke type-safe methods declared in a specialized
interface because the proxy implements that interface. Proxies delegate all method invocations to their
Copy instances; for each method invoked (e.g., String getName()), a proxy instance calls the invoke
method on its corresponding Copy instance. The details of the invocation, i.e., the method and the
parameters, are passed as parameters to the invoke method. As shown in the code snipped in the class
diagram, the implementation of Copy.invoke(...) examines its parameters and calls the appropriate generic
105

Chapter 6: Proof-of-Concept Implementation

method, e.g., Object getAttributeValue(int) for method String getName(). Application code never directly
references instances of Copy — an object manager makes sure that a proxy is always passed to application
code instead. For data object types for which application developers do not provide specialized interfaces,
the proxy directly implements the generic DataObject interface.

The approach described above is an elegant way of providing the interception functionality described in
Section 6.1. The approach has the advantage that application code and framework code are strictly
separated — unlike conventional approaches, which add generated framework code to the application
code. Without a clear separation, changes to a framework might break existing, already deployed
enterprise applications because their generated code parts remain unchanged. Also, our approach is
simple and based on standard Java APIs; no modifications to the Java virtual machine and no low-level
byte code modifications are necessary.

Application developers that use our FDO framework may manually define interfaces for type-safe access
to data objects. In that case, no separate code generation step is necessary at compile time. Alternatively,
developers can use our InterfaceGenerator tool that reads an object manager’s configuration file and
generates a Java interface (source code) for each data object type defined in the configuration. Using our
tool introduces a compile time code generation step like many other frameworks do. However, the
separation of application code and framework code is preserved because only interface definitions (which
belong to the application code) and not a single line of framework code are generated.

6.4.2 Implementation of Copies and Versions

In the previous section, we outlined that, at runtime, each cached data object is represented by a pair of
object instances in our implementation: a Copy instance and a dynamic proxy instance for forwarding
type-safe invocations to the Copy instance. To guarantee isolation, each Copy instance may in turn
contain multiple versions as described in Subsection 5.7.2. There are public versions, which reflect
snapshots of data objects at different times (committed values only), and private versions, which store
values not yet committed by a transaction. In the following, we explain how copies and versions are
realized in our implementation.

Table 6-2 lists the most important instance variables (all declared as private) defined by the Copy class.

106

Copies and Versions

instance variable description

DataObjectDef md Contains metadata for the type of the data object
represented by this copy instance, including the number of
attributes, their names, and their types.

Object myProxy Reference to the dynamic proxy instance that proxifies this
copy.
DORefT myRef Data object reference of this (i.e., to this) copy. A DORef

instance contains a unique object identifier (64 bit), a data
object type code (16 bit), a domain code (16 bit), and a bit
field that stores the data object’s home data stores (32 bit).

short lifeCycleState A copy is always in one of these four states:
LCS_CREATED, LCS_ALIVE, LCS_DELETED,
LCS_CREATED_DELETED

PublicVersionSet publicVersions Stores all public versions contained in this copy. Each
public version corresponds to an instance of class
PublicVersion.

HashMap txToAccessState Map that contains one entry for each running transaction
that has accessed this copy. Each such transaction is
mapped to an AccessState instance (which stores access
information for the transaction such as lock status, public
version seen, and possibly a private version).

long lastSyncTime Absolute time (in ms) this copy has last been synchronized
with its persistent state. Serves as a freshness indicator —
see Section 6.6 for details.

Table 6-2. Private instance variables of the Copy class.

In this subsection, we describe the three variables lifeCycleState, publicVersions, and txToAccessState in
more detail.

Variable lifeCycleState

Each Copy instance always is in one of four life cycle states — a corresponding state value is stored in the
lifeCycleState instance variable. The UML statechart diagram shown in Figure 6-4 depicts life cycle states
and state transitions.

transaction creates a creating transaction
new data object LCS CREATED deletes new data object LCS CREATED
- _DELETED
—
creating transaction
object manager commits successfully ?:f;[;?%reeg(:i!ecﬁon
receives a copy) garbage transaction ’

via a C1 connector collection

LCS_ALIVE terminated)

object manager commits
a transaction that called
delete() on the copy

object manager detects
that the corresponding
data object has been
deleted

(Copy instance
LCS_DELETED > does not exist any

garbage more)
collection

Figure 6-4. A statechart diagram describing life cycle states of a
Copy instance and transitions between states.

107

Chapter 6: Proof-of-Concept Implementation

When an FPT transaction creates a new data object, the lifeCycleState of the corresponding Copy instance
is set to LCS_CREATED. In that state, the Copy instance is only visible to the FPT transaction that
created it and does not contain any public versions yet. Only after a successful commit, the Copy’s
lifeCycleState is set to LCS_ALIVE and a first public version is inserted into it. Also, when an object
manager loads a copy from a server, that copy is set to LCS_ALIVE.

In state LCS_ALIVE, any number of concurrent FPT transactions can read and update the corresponding
data object as described in Subsection 5.7.2. Also, the delete() operation can be called by an FPT
transaction, which creates a new private version (with a delete marker) in that copy. On successful
commit of an FPT transaction that deleted a data object, the data object’s persistent state is removed from
all data stores and lifeCycleState of the copy is set to LCS_DELETED. When an object manager sets a
Copy’s lifeCycleState to LCS_DELETED (either because the object manager commits a delete operation
or because it detects that an FPT transaction in another object manager deleted the corresponding data
object), only running FPT transactions that already have accessed the Copy until then may continue to
access the Copy. This ensures repeatable reads even when a data object has been deleted. It is also
possible that a data object has been deleted but some object managers in the process topology still contain
stale copies of that data object in their caches because they have not detected the delete yet. In that case,
their (stale) Copy instances are still in state LCS_ALIVE and can be accessed by local FPT transactions.
However, updates, deletes, and the validation of optimistic locks will fail during the commit phase of
such FPT transactions (see Subsection 5.7.4). State LCS_CREATED_DELETED is only used when a data
object is created and deleted within the same transaction (and thus never becomes visible to other
transactions).

Consider that an object manager OM commits a transaction T that has created, updated, or deleted a data
object D. There is a small chance that, between the execution of commit on underlying data stores and the
arrival of the commit notification at OM, other transactions work on the newly committed persistent state
of D. Thus, it is possible that OM detects the changes caused by T or by other transactions before it
receives a CommitReplyMessage for T. To handle such cases, there are two additional state transitions
which are not shown in Figure 6-4: one from LCS_CREATED to LCS_ALIVE and one from
LCS_CREATED to LCS_DELETED. Those transitions can occur, e.g., when a CommitReplyMessage gets
lost or delayed or when messages are not processed in the order they have been received. Intentionally,
sending and processing messages in a specific order is neither required nor guaranteed with our
implementation.

Variable publicVersions

The publicVersions instance variable (see Table 6-2) holds a reference to a set of (one or more) public
versions of the data object. Each public version corresponds to an instance of class PublicVersion, which
defines two instance variables: int counter (to distinguish different public versions; see Subsection 5.7.2)
and Object[] values (which stores zero or more attribute values).

The set does not reference PublicVersion instances contained in it with standard (hard) Java references.
Instead, Java’s weak reference mechanism is used so that outdated public versions are removed when
they are no longer needed. Once there is no hard reference to a given PublicVersion instance any more,
the instance becomes eligible for garbage collection. To prevent the most recent public version contained
in the set from being garbage collected, the set maintains an additional hard reference to the public
version with the highest counter value. With weak references as described above, an object manager
typically stores only one or two public versions per copy.

Variable txToAccessState

A Copy instance cached in an object manager can be accessed by multiple concurrent transactions, which
may work on different public and private versions. To keep track of concurrent transactions, a Copy
instance maintains the txToAccessState map, which stores an AccessState instance for each running

108

Copies and Versions

transaction that has accessed the Copy instance. An AccessState instance stores access information for a
transaction T. This includes

= the type of access, which is one of the following: (a) T has newly created the Copy instance, (b)
read-only access, (c) update access, and (d) T has performed a delete operation on the instance.

= for access types (a) and (c), a private version, which stores all attribute values written by T.

= a (hard) reference to a public version. For access type (a), the reference is set to null. For (b), the
reference points to the public version seen by T. For (c), the reference points to the public version
on which the private version (see above) is based. For (d), the reference points to the public
version seen by T before T performed the delete operation on the instance.

With the data structures and logic described in this subsection, a Copy instance keeps track of its state and
guarantees isolation of concurrent transactions. Each operation performed by a transaction on a data
object (e.g., create, getXXX, setXXX, delete) is handled by the corresponding Copy instance, which
provides each transaction with an appropriate view on data. For application code, the management of
Copy instances, their internal data structures, and isolation logic is transparent. It is even safe to pass a
reference to a data object from one thread/transaction to another thread/transaction. Although there may
be different versions for different transactions, a data object appears as a single Java object instance to all
transactions/threads in a process, i.e., object identity is preserved (see requirement R2 in Subsection
4.4.2).

We included neither inheritance nor user-defined methods for data objects in our proof-of-concept
implementation. Both features are convenient for application developers but are not essential from an
architectural point of view. However, it is possible to extend our implementation to support inheritance
and user-defined methods; no major redesign is required in that case.

6.4.3 Home Data Stores

In Section 5.2, we described the FPT architecture’s approach to data distribution. Each data object is
stored in one or more home data stores. A home data store of a data object stores a replica of the data
object’s persistent state. For a newly created data object, the middleware framework selects a set of home
data stores according to the enterprise application’s data distribution scheme. When the corresponding RI-
tree for a data object contains I-nodes (ad hoc distribution), the middleware has multiple options for
selecting home data stores.

Ad hoc distribution has several advantages (see Subsection 3.4.4). However, in a middleware
implementation, care must be taken that data management remains efficient when a data distribution
scheme permits multiple options. To ensure good performance, we made the following two important
design decisions:

1. The set of home data stores of a data object is stored as part of the object’s persistent state and as
part of each copy.

Consider, for instance, that the FDO framework has selected ds;, dss, and dss as home data stores
for a data object D and thus D’s persistent state is replicated to all three data stores. In addition to
D’s attribute values and its persistent counter value (see Subsection 5.7.2), each of the three data
stores contains the information that D’s home data stores are ds;, ds;, and dss. Also, that
information is stored within each copy of D cached within an object manager.

2. The set of home data stores of a data object is encoded into each object reference to that data
object.

There are two types of attribute values: primitive values and object references (to other data

109

Chapter 6: Proof-of-Concept Implementation

objects). Like all attribute values, object references are stored within public and private versions
as well as within the persistent state(s) of a data object. A simple implementation would just use
the unique object identifier (see Section 5.6) of a data object D to encode object references
pointing to D. However, in the FDO framework, we also store the set of D’s home data stores as
part of the object reference.

Both design decisions introduce a certain amount of redundancy and slightly increase the size of data
objects in data stores as well as in main memory. At the same time, that redundancy can be used to
achieve significantly better performance when updating and deleting data objects and for navigational
access. We illustrate that with the help of two examples:

Example 1: Application code in a process P executes a set query for customer data objects from a domain
for which the Rl-tree given in Figure 5-3 has been defined. Various data stores are queried (see query
routing in Section 5.8) and, for each result object, a copy is created in P’s object manager. One of the
copies (for data object C with home data stores ds,, dSs, and dss) is loaded from data store dsz. Then the
application code updates one of C’s attribute values and commits. To execute the commit request, the
middleware framework has to change C’s persistent states in ds,, dsz, and dss (ROWA replication). Since
C’s home data stores are known to P’s object manager (because of the first design decision), updates can
be directly routed from P to C’s home data stores.

If home data stores were not stored as part of persistent states and copies, P’s object manager could
possibly know that ds; is one of C’s home data stores (because the copy was loaded from dsz) and,
consequently, dsp, too (by analyzing the Rl-tree). However, the object manager could not know whether
dss or dsg is C’s third home data store. To comply with ROWA replication, updates to C either had to be
send to all data stores that are potential home data stores of C (ds,, dss, dss, and dsg in this case) or
expensive probe queries had to be performed to identify all home data stores first.

Example 2: The object manager in a process P2 caches a copy of an order data object O. O has an
attribute named customer that contains an object reference to a customer data object C (which is the same
data object as described in the first example). Application code in P2 calls the getCustomer() method on
0O, i.e., performs a navigational access. Since C’s home data stores are encoded into the object reference
(see second design decision), an instance query (see Section 5.8) can directly be routed from P2 to any
one of C’s home data stores. If object references consisted of object identifiers only, the instance query
had to be routed to multiple data stores (which is less efficient) in order to find one data store that stores
C.

In our implementation, a set of home data stores is stored as a bit field of fixed-length (32 bit)'. Each bit
represents one data store in the process topology. The advantage of a bit field representation is that most
set operations (e.g., insert, intersection, minus) can be performed extremely efficiently in terms of
processor cycles and memory usage.

6.5 Basic and Advanced Concurrency Control

Section 5.7 described the FPT architecture’s approach to transaction management and concurrency
control. Our implementation realizes those concepts. In addition, the implementation includes several
advanced concurrency control features that go beyond the (minimum) requirements of the FPT
architecture. In this section, we outline how basic and advanced concurrency control features are
implemented in the FDO framework.

! Another (even more space-efficient) way would be to assign a number to each insert option permitted by an Rl-tree and store that
number. Alternatively, variable-length bit fields could be employed instead of fixed-length bit fields.

110

Basic and Advanced Concurrency Control

6.5.1 Check Types

The FPT architecture relies on optimistic concurrency control — on each access to an existing data object
(update, delete, call to a getXXX method), an optimistic lock is placed on that data object. During the
commit phase of an FPT transaction, all optimistic locks are validated (using version counter values).
When at least one optimistic lock cannot be evaluated, the FPT transaction is aborted. This approach is
relatively simple and thus suitable for describing the architecture of a middleware framework. However,
as already discussed in subsections 5.7.5 and 5.9.1, that approach also is relatively conservative because
many locks are granted, which have to be validated and, in some cases, might produce unnecessary
transaction aborts. To address that problem, our implementation uses three types of optimistic locks
(“checks™) instead of only one':

= An existence check is the weakest check; it is successful as long as the corresponding data object
has not been deleted. The following example explicitly adds an existence check to a given account
data object:

account.addExistenceCheck();

= A predicate check® evaluates a given Boolean expression on the current committed persistent state
of a given data object. The expression is evaluated on a single data object only, i.e., cannot be
applied to sets of data objects. A predicate check is only successful when the given expression is
evaluated to true. A predicate check always includes an existence check and thus is more
restrictive. The following example explicitly adds a predicate check to a given account data
object:

account.addPredicateCheck(“balance>=0");

= A version check corresponds to the optimistic lock described in Section 5.7. A version check on a
data object is only successful if the corresponding FPT transaction (still) works on a fresh version
of the data object when the FPT transaction commits. A version check includes an existence
check. However, a version check generally does not include a predicate check or vice versa. The
following example explicitly adds a version check to a given account data object:

account.addVersionCheck();

All checks are added while an FPT transaction is running, but checks are performed only during the
commit phase of an FPT transaction. Internally, all checks are stored within AccessState instances (see
Subsection 6.4.2).

For pessimistic locks, it is common to define a compatibility matrix. However, since checks never
conflict with other checks, a compatibility matrix does not make sense here. Instead, Table 6-3 shows
what type of check protects an FPT transaction against what phenomena (by aborting the FPT transaction
in its commit phase when a phenomenon is detected).

! The term lock can be misleading because it suggests that a transaction is blocked when it accesses a data object that is already
locked by a concurrent transaction. However, that is only the case with pessimistic locks; optimistic locks are validated on commit
and do not block concurrent transactions. Although the term optimistic lock is frequently used in the literature, we decided to use the
term check for more clarity when discussing FDO implementation details. We say that FPT transactions add checks to data objects.

% Not to be confused with predicate locks, which pessimistically lock sets of items in a database.

111

Chapter 6: Proof-of-Concept Implementation

T1 accesses a stale D was updated by a D was deleted by a
copy of D (e.g., concurrent concurrent
because of caching) transaction T2 transaction T2
iﬁfgﬁnce not detected not detected detected
E;Egl;cate depends on predicate depends on predicate detected
Xﬁ;ill? n detected detected detected

Table 6-3. Transaction T1 accesses a data object D and adds a check to it.
The table shows what phenomena are detected by what types of check.

6.5.2 Delta Writes

Until now, we have assumed that updates to a data object are always made via standard setXXX calls that
overwrite an attribute value with a given, absolute value. In our implementation, we provide an additional
update operation that changes an attribute value (relative to its previous value) instead of overwriting it.
We call such updates delta writes'. In contrast to standard updates, which are general purpose, delta
writes are a semantics-based approach, see Subsection 5.9.1.

For example, with standard update operations, a credit transfer could be implemented as shown below:

float ball = accountl.getBalance().floatValue();
float bal2 = account2.getBalance().floatValue();
accountl.setBalance(new Float(ball — 100.0));
account2.setBalance(new Float(bal2 + 100.0));

In contrast to that, an implementation that uses delta writes would update the account objects as follows:

accountl.setAttributevValue(3 /*balance*/, new DeltaWrite(**-100.0"));
account2.setAttributeValue(3 /*balance*/, new DeltaWrite(“+100.0"));

When an FPT transaction updates an attribute value and then reads it again with a getXXX call, always the
updated value is returned — for standard updates as well as for delta writes (repeatable reads are
guaranteed). A delta write applied to a data object with a version check is equivalent to a standard update
to a data object with a version check. However, for existence and predicate checks, the behavior is
different. In the commit phase, a standard update writes an absolute value, whereas a delta write is
recalculated and applied to the current persistent state found in the data store(s).

For instance, assume that two FPT transactions T1 and T2 concurrently deduct 100.0 from the balance
attribute value of an account data object D. First, T1 and T2 query D and read its balance (500.0). Then
both transactions add an existence check to D and update D’s balance value. Finally, both transactions re-
read D’s balance again and commit. With standard updates, both transactions commit successfully (no
conflict since no version check has been used), but D’s persistent state stores a final balance value of
400.0 instead of 300.0 (lost update). With standard updates and version checks instead of existence
checks, only one of the transactions can commit successfully; the other is aborted. However, with delta
writes and existence checks, both transactions commit successfully and the final balance value is 300.0,
as desired. Note that, when the transactions re-read D’s balance, both read a value of 400.0 — for standard
updates as well as for delta writes. Nevertheless, on commit, delta writes are recalculated based on the
persistent state found in the data store.

! Currently, only addition and subtraction to/from numeric values are implemented. However, in principle, all commutative
operations could be used.

112

Basic and Advanced Concurrency Control

6.5.3 Automatic and Manual Check Mode

The FDO framework’s default mode is the automatic check mode. In this mode, application code does not
explicitly add checks to data objects. Instead, the framework transparently adds checks to data objects as
they are accessed. While the automatic check mode is convenient for application developers and provides
a relatively high level of consistency, it provides only standard concurrency control features. To benefit
from advanced concurrency control, application code may switch to the framework’s manual check mode.
In this mode, only a minimum level of consistency is guaranteed — for more consistency, application code
has to explicitly add more restrictive checks. The check mode is set separately for each application thread.
A thread can change the mode anytime, even while a transaction is running. For example, when om
references the local object manager instance, an application thread can switch to manual check mode as
follows:

om.getThreadContext() -setAutoCheckMode(false);

Table 6-4 shows which checks are implicitly added by the FDO framework in automatic check mode and
manual check mode. For example, when an FPT transaction deletes a data object while in automatic
check mode, the framework implicitly adds a version check to the data object. In both check modes,
application code is free to explicitly add more restrictive checks any time'.

read update (setXXX) .
XX - delete insert
(ge) | standard delta write
no check A, M M AM
existence
check M AM
predicate * "
check
version
check A A

A: check implicitly added in automatic check mode
M: check implicitly added in manual check mode
* . combinations that correspond to field calls

Table 6-4. Combinations of access operations and checks. Combinations that
are not permitted/possible are shown in gray.

In addition to the checks shown in the table, the FDO frameworks implicitly adds an existence check to
the referenced data object when an attribute of type reference is written. This is done in automatic check
mode only and prevents referencing a data object that is deleted by a concurrent transaction.

Note that, in either mode, the framework does not add any checks to data objects that have only been read
by the FPT transaction. That behavior corresponds to a lower level of consistency than assumed by the
FPT architecture. To guarantee the level of consistency assumed by the FPT architecture, application
developers have to explicitly add version checks to such data objects. Our implementation does not add
checks in that case because, typically, such checks are not required by an enterprise application. For
example, consider an FPT transaction that queries a set of order data objects, reads their attribute values
to display them to a user, updates one of the order objects (update of the shippingMethod attribute value),

"It is permitted to add multiple checks (even of different type) to the same data object. Internally, an existing check and a newly
added check are immediately combined into a single check. For example, an existence check and a version check are combined into
a version check. Or, a predicate check with Boolean expression exprl and a predicate check with Boolean expression expr2 are
combined into a predicate check with Boolean expression exprl AND expr2. A predicate check and a version check are combined

113

Chapter 6: Proof-of-Concept Implementation

and finally commits. In this case, only a single check (for the updated order data object) is required —
applying checks to all order data objects read is neither required nor efficient.

In addition to the checks added implicitly by the framework, Table 6-4 also shows two combinations that
are of particular interest because they correspond to field calls [GR93]. Field calls are updates that are
only applied if a given predicate is evaluated to true. Field calls have been implemented in IBM’s
Information Management System (IMS) Fast Path, where they correspond to FLD/Verify and
FLD/Change calls [IBM03b]. Note that field calls as realized in IMS Fast Path and described in [GR93]
are implemented at the database level, whereas our field calls are implemented at the framework level.
However, the basic mechanism remains the same.

6.5.4 Advantages

Concurrency control, as implemented in our FDO framework, has several advantages:

= In most cases, application developers can rely on the automatic check mode, which is convenient
because concurrency control is transparently managed by the framework.

= The framework gives application developers the flexibility to execute FPT transactions with a
lower level of consistency (typically, to improve performance) or a higher level. This can be
achieved through the framework’s manual check mode and/or checks that are explicitly added.
We expect that only selected parts of some enterprise applications require the framework’s
advanced concurrency control features. Application code can rely on standard concurrency
control and, for selected operations, switch to manual check mode if necessary.

= There is a broad range of options when using advanced concurrency control features (see Table 6-
4). If necessary, data access operations can be fine-tuned on a per-object basis to achieve a good
trade-off between consistency and performance.

= The advanced concurrency control features include the functionality of field calls. Especially
delta writes in combination with predicate checks (or existence checks) have two important
advantages over standard updates: (1) They allow for more concurrency and thus higher
transaction throughput. The risk of transaction aborts due to updates of concurrent transactions is
greatly reduced. (2) Caching can be much more effective. In many typical cases, transactions can
operate even on cached (and thus possibly stale) hotspot data objects. An example of field calls
and a more detailed discussion can be found in Section 7.7.

6.6 Object Caching

For the FPT architecture, caching has been described in Section 5.6. In addition, several caching related
details have been discussed in Section 5.7. In this section, we outline how caching is implemented in the
FDO framework.

The framework performs caching completely transparent to application code. All copies of data object
created within or loaded into an object manager are stored into the object manager’s object cache. The
cache stores and looks up copies of data objects by their unique object identifier, which is a Java long
value. Internally, the cache is implemented as a hash table that hashes object identifiers to Copy
instances'. All local transactions work on the same (shared) cache of an object manager. The cache uses a
least-recently-used scheme for eviction.

into a version check; additionally, the predicate is immediately evaluated on the version currently seen by the FPT transaction and
the transaction is set to rollback-only if the evaluation result is false.
' To keep the implementation simple, we implemented only basic object caching. The object cache speeds up navigational access
but does not remember which copies belong to which query result. To improve the performance of queries, a query caching
mechanism had to be added to the implementation (see Section 8.2).

114

Obiject Caching

In many object caching systems, a pointer swizzling mechanism [Moss92] is employed to convert virtual
references to main memory references and vice versa. That is not the case in our implementation.
Attribute values in copies that represent references to other data objects are always represented in the
same way (as an instance of DORef), whether a copy of the referenced data object is present in the cache
or not. A DORef instance does not contain a Java reference — instead, it contains the referenced object’s
unique identifier, which can be used to lookup the referenced data object. The advantage of that approach
is that copies can be loaded into and evicted from the cache without updating references that point to
them. On the other hand, each navigational access always requires a cache lookup with our approach.
However, since cache lookups are based on hashing and thus are sufficiently fast, that is acceptable.

To prevent a cache from growing too large, a cache eviction mechanism is typically employed. In our
implementation, we rely on Java’s soft references and the Java virtual machine’s garbage collector for
eviction. The object cache itself does not maintain any hard Java references to Copy instances. Instead,
Java soft references are used. Once there is no hard reference to a Copy instance any more, the instance
becomes eligible for garbage collection. When the garbage collector claims the instance, it is removed
from the cache. Note that there is an important difference between weak references (used for referencing
public versions, see Subsection 6.4.2) and soft references. Objects that are reachable only via weak
references are to be claimed rather sooner than later. In contrast to that, virtual machine implementations
are supposed not to claim objects reachable only via soft references when they have been recently used
[CLK99]. The existence of hard references to a cached Copy instance intentionally prevents it from being
garbage collected. Hard references can either be held by application code (indirectly via a dynamic proxy
instance, see 6.4.1) or be stored within a Transaction instance. A Transaction instance represents a
running transaction and maintains hard references to all copies accessed by the transaction.

When copies of data objects are cached, it might be necessary to prevent the copies from becoming too
stale (because working on stale data might prevent transactions from committing successfully). To give
application developers some control over the freshness of cached data, we have implemented three
different cache policies:

1. The NOCACHING policy prevents caching. Each access of an FPT transaction to a data object
forces the local object manager to load/reload a fresh copy from one of the data stores (directly or
indirectly via other object managers). However, after a copy of a data object has been accessed
for the first time by an FPT transaction, further accesses of the same transaction always work on
the local copy to guarantee repeatable reads. The NOCACHING policy should be used for
maximum freshness but typically requires more remote interactions.

2. With the FRESHNESS policy, copies of data objects are cached but the object manager attempts
to keep them relatively fresh (according to a freshness parameter, which defines a desired
minimum freshness in milliseconds). For each Copy instance, the object manager remembers the
time of the last synchronization with the data object’s persistent state (see lastSyncTime in Table
6-2). Both read and write access count as synchronization. When an FPT transaction accesses a
cached copy for the first time, the object manager forces a reload when lastSyncTime+freshness <
currentTime. The FRESHNESS policy is the default cache policy; the freshness parameter
defaults to 3,000 milliseconds.

3. The UNLIMITED policy does not trigger reloads and allows transactions to access arbitrarily stale
data. The UNLIMITED policy should only be used if freshness is less important or the cached
data is never or rarely changed.

Application code can change the cache policy and the freshness parameter any time, even while a
transaction is running. For example, application code may use the FRESHNESS cache policy for most
operations and temporarily switch to the NOCACHING policy for accessing selected crucial data objects.
The cache policy is set per object manager and thread to avoid conflicts between concurrent
transactions/threads.

115

Chapter 6: Proof-of-Concept Implementation

6.7 Database Access and Transaction Management

In principle, any type of (XA compliant) transactional data store can be integrated into our FDO
framework. As outlined in Section 6.1, a separate plug-in is necessary for each type of data store. For
application code, the number and types of underlying data stores are transparent — database access is
managed by the framework. As part of our proof-of-concept implementation, we provide a plug-in for the
Oracle 9i relational database management system. In this section, we outline how data objects are mapped
to relational data by the plug-in, give details on how relational data is accessed, and describe how the
framework manages distributed transactions.

6.7.1 Object/Relational Mapping

Our OracleJDBCConnection plug-in implementation relies on Oracle’s JDBC driver to access Oracle 9i
databases. The plug-in implements a simple object/relational mapping as follows. Each data object type is
mapped to a dedicated table. Each data object instance is mapped to a row in such a table. A table always
has at least the following columns:

*= The OID column (primary key) is of type DECIMAL(20) and stores a data object’s unique object
identifier' (see Section 5.6). By default, Oracle creates an index for this column.

= The INFO column is of type DECIMAL(20) and stores a data object’s type code, domain code,
and home data stores (see DORef in Table 6-2 and Subsection 6.4.3).

= The VERSION column is of type INTEGER and stores a data object’s persistent counter (see
Subsection 5.7.2), i.e., the number of the most recent committed version.

For each primitive attribute value of a data object, a column of an appropriate type is added to its table.
For each object reference attribute, two columns are added; one stores the unique object identifier of the
referenced data object (i.e., a foreign key) and the other stores the same data as the INFO field stored for
the referenced data object (that data helps to locate the referenced object when it is stored in another data
store, see Subsection 6.3.4). To simplify development, we have implemented a command line tool
(DBSchemaCreator) that generates an initial relational database schema from the data objects defined in a
given object manager configuration file.

Intentionally, we kept the object/relational mapping simple in our proof-of-concept implementation. As
already pointed out in Subsection 6.4.2, inheritance is not supported. However, it is straightforward to
realize additional plug-ins that support more sophisticated and also custom mappings (e.g., by using
advanced object/relational mapping frameworks for that particular task). Furthermore, our
object/relational mapping component makes use of relational features only. For datastores with object
support (object or object-relational DBMS), additional optimizations are possible.

6.7.2 Access to Relational Data

Relational data in an Oracle database is accessed (a) when an FPT transaction performs a query that
cannot be answered by a cache and (b) during the commit phase of an FPT transaction (see Subsection
5.7.4). The handling of queries is straightforward; framework queries are directly translated into SQL
SELECT queries that return all result data objects (one per row). The actions executed during the commit
phase of an FPT transaction depend on the data objects accessed by that transaction, the operations
performed on those data objects, and the types of checks associated with those data objects (see

! An object identifier is a 64 bit value that consist of the id of the object manager that created the data object (16 bit) and a value that
is the sum of the object manager’s start-up timestamp and a counter (48 bit). Our object identifiers are simplified versions of
universally unique identifiers (UUID) [Open97]. 16,000 ids per second can be generated by each object manager. More precisely, an
object manager that has been running for s seconds and has already generated n ids after it has been started can immediately
generate $*16,000-n new ids.

116

Database Access and Transaction Management

Subsection 6.5.1). In the remainder of this subsection, we describe the database access operations
performed during the commit phase of an FPT transaction.

After application code has called commitTx() to terminate a running FPT transaction, the transaction’s
push-down phase (see Subsection 5.7.4) starts and the FDO framework routes items to the appropriate
data stores (see object routing described in Subsection 5.8.2). In the following commit phase, all data
stores are accessed according to the items that were routed to them. An item is either a private version,
which represents an insert, update, or delete operation, or a check to be performed on a data object’s
persistent state.

Let us assume that a set of items arrives at a given Oracle database. During the commit phase, our
OracleJDBCConnection plug-in acts as follows:

1.

The data objects to be processed are identified. For each of those data objects, there is either a
private version or a check or both. For instance, for an employee data object with 0id=4C0B724E,
there might be a private version that reflects an update to the salary attribute and a version check
for version number 42.

The data objects to be processed are sorted by their unique object identifier to ensure a defined
lock order for the following SQL statements. This prevents local deadlocks (however, distributed
deadlocks are still possible).

All data objects are processed, one after another. The actions for each data object are shown as
pseudo-code in Table 6-5 and depend on the operation performed (insert/update/delete/read) and
the types of check associated with the data object (version/existence/predicate/none). Thus, the
table describes 16 combinations; five of them are invalid or do not apply.

Example: Consider an FPT transaction that updated a given data object D in manual check mode
and added a predicate check to D. During the commit phase, an SQL SELECT statement is
executed to read the row that contains D’s persistent state. The row is looked up by its OID value.
If no row is returned, then D must have been deleted and the current FPT transaction worked on
stale data. In that case, the predicate check fails and the FPT transaction is aborted. However, if a
row for D is returned, then the predicate is evaluated on that row. If the result of the evaluation is
true, then the predicate check is successful and the row is updated with a dedicated SQL
UPDATE statement. However, if the result of the evaluation is false, then the predicate check
fails and the FPT transaction is aborted. Table 6-5 also provides details on fresh versions that are
reported back to an object manager — this aspect is discussed in the end of this subsection.

117

Chapter 6: Proof-of-Concept Implementation

existence check predicate check version check no check
£ n/a n/a n/a INSERT new row,
Q . . L . . L . . L report new version
c (invalid combination) (invalid combination) (invalid combination)
SELECT rows by oid SELECT rows by oid SELECT rows by oid n/a
0 rows found: check failed, 0 rows found: check failed, 0 rows found: check failed, . .
report deleted obj report deleted obj report deleted obj (mval}d .
aq-(; 1 row found: check ok, 1 row found: eval predicate 1 row found: combination)
'g_ UPDATE row, true: check ok, UPDATE if current version then
S report new version row, report new version check ok, UPDATE row,
false: check failed, if newer report new version
version then report it if newer version then
report it, check failed
DELETE by oid DELETE by oid AND predicate | DELETE by oid AND version | DELETE by oid,
0 rows affected: check 0 rows affected: check failed, 0 rows affected: check failed, report deleted obj
failed, SELECT by oid SELECT by oid
o} report deleted obj 0 rows found: 0 rows found:
%’ 1 row affected: check ok, report deleted obj report deleted obj
° report deleted obj 1 row found: 1 row found:
report version found report newer version
1 row affected: check ok, 1 row affected: check ok,
report deleted obj report deleted obj
n SELECT rows by oid SELECT rows by oid SELECT rows by oid n/a
§ 0 rows found: check failed, 0 rows found: check failed, 0 rows found: check failed, . L
b report deleted obj report deleted obj report deleted obj (valid combination
> | ! row found: 1 row found: eval predicate 1 row found: but no item is routed
5 if current version then true: check ok if current version then to data stores in that
-5 check ok false: check false check ok case)
5 if newer version then if newer version then report it if newer version then
= report it, check ok report it, check failed

Table 6-5. Actions performed in the commit phase of an FPT transaction (for
each data object accessed within that transaction). SELECT, INSERT,

UPDATE, and DELETE stand for the respective SQL statements.

UPDATE statements change only those attribute values that have actually been updated by an FPT
transaction. In addition, an UPDATE statement always increments the version column, which stores the
persistent counter of a data object. In the table, we do not distinguish between standard updates and delta
writes (see Subsection 6.5.2). The values to write for delta writes are always calculated based on the row
returned by the preceding SELECT statement.

All database access operations for a set of routed items are executed within a branch of a distributed
transaction (see following subsection). Our implementation uses Oracle’s default isolation level, which is
read committed. All SELECT statements — except for those executed for deleted data objects — use the
FOR UPDATE clause to pessimistically lock the accessed row until the transaction branch is terminated.
Note that pessimistic locks are held for a short time only and occur only during the commit phase of an
FPT transaction — the FDO framework’s overall concurrency control mechanism is still optimistic.

After all database accesses have been performed, i.c., at the end of the commit phase of an FPT
transaction, it is essential to propagate fresh public versions' of data objects back to the object manager
that initiated the FPT transaction. This helps to keep the object manager’s cache contents fresh. A fresh
public version is reported in the following three cases:

= A new version of a data object has been created by the current FPT transaction (as a result of an
insert, update, or delete statement). The new public version is reported because, in many cases,
the corresponding data object will be accessed by following transactions working on the same
object manager. Note that, in some cases, an object manager does not require to be explicitly
informed of a new public version (e.g., for a newly created data object) because all information
necessary for creating that version is already available. However, in other cases (e.g., when a data

"including information on deleted data objects

118

Database Access and Transaction Management

object is updated in combination with an existence or a predicate check), an object manager
requires a fresh version from the database.

= A check failed, possibly because the FPT transaction had worked on stale data. The object
manager is supplied with a fresh public version to improve the chance of success of future FPT
transactions (which are likely to access the same data object(s), e.g., to retry the aborted
transaction).

= An existence or predicate check has been performed successfully but the plug-in implementation
detects that the FPT transaction has worked on stale data. The FPT transaction commits
successfully because no version check has been requested. However, to improve the freshness of
the object manager’s cache, a fresh version is propagated.

Table 6-5 describes in detail when fresh versions are reported. Note that not only the root object manager
of an FPT transaction but also each intermediate object manager that routed messages for that transaction
benefits from the propagation of fresh versions.

6.7.3 Distributed Transactions

In the push-down phase of an FPT transaction, items are routed from the root object manager “down” the
process topology to routing endpoints, i.e., object managers with direct access to appropriate data stores
(JDBC access to Oracle databases in our case). During the commit phase, the object managers that are
routing endpoints access the databases through the OracleJDBCConnection plug-in as described in the
previous subsection. All database accesses on behalf of an FPT transaction are performed within a single
distributed XA transaction (see Section 2.2 for XA transactions). By default, the root object manager (the
object manager local to the initiator of the FPT transaction) plays the role of a transaction coordinator for
the distributed transaction. This includes creation of a unique transaction identifier for the XA transaction
and driving the two-phase commit protocol to terminate the transaction. An XA transaction consists of
one or more transaction branches. In our implementation, each branch is uniquely identified by a path P
of C1 connectors. The path starts at the root object manager of the FPT transaction to the routing endpoint
object manager OM;, to the database db.

All items that are routed together on the same path are processed within one transaction branch. It is
possible that, within the same XA transaction, the same database is accessed by more than one routing
endpoint object manager. Also, one object manager may access multiple databases. It is even possible that
items are routed on different paths to the same object manager. In all such cases, different XA transaction
branches are created because the path uniquely identifies a branch.

All transaction branches are executed concurrently. Each branch is initiated by a PrepareRequestMessage
(see Section 6.3) and proceeds as follows:

1. The branch obtains an XAConnection® instance from a pool of available JDBC connections.
The branch calls start on the XAResource instance associated with the connection.
The connection is used to execute all SQL statements of the branch (see Subsection 6.7.2).

2

3

4. The branch calls end on the XAResource instance.

5. The branch calls prepare on the XAResource instance.
6

A PrepareReplyMessage containing a vote is propagated back to the transaction coordinator
(following the reverse path of the PrepareRequestMessage that initiated the branch).

At this stage, the transaction coordinator collects all votes and, if no branch voted for a transaction abort,
sends out CommitRequestMessages. However, if at least one branch voted for abort or after a timeout not

! XAConnection and XAResource are classes implemented by Oracle’s JDBC driver.

119

Chapter 6: Proof-of-Concept Implementation

all votes have been received, RollbackRequestMessages are sent out instead. One message per transaction
branch is sent; the messages follow the same paths as used for PrepareRequestMessages and
PushDownRequestMessages before. Finally, each transaction branch continues execution and is
completed as follows:

7. The branch calls commit (or rollback) on the XAResource instance associated with the connection.

8. A CommitReplyMessage (or RollbackReplyMessage) containing a status value and fresh data
object versions (see Subsection 6.7.2) is propagated back to the transaction coordinator.

We have implemented only those parts of the 2PC protocol that are essential for a proof-of-concept
implementation. Restart and termination protocols, which provide fault tolerance and are important for
production systems, have not been implemented.

Note that, with standard transaction identifiers for XA transactions (different branches of a transaction use
the same global transaction id but different branch qualifiers), it would not be possible for two branches
to concurrently access and prepare the same database. One way to solve that problem would be to wait
until all branches have completed executing their SQL statements and then prepare each involved
database exactly once (instead of executing prepare once per branch). However, that would also require
an additional roundtrip of request/reply messages. In our implementation, we solve the problem in
another way. The branch qualifier part of an XA transaction identifier (Xid) is not used and is always set
to a default value. The global transaction id of an Xid is constructed by concatenating the unique FPT
transaction identifier with a binary representation of the path, which uniquely identifies a branch. As a
consequence, all Xids seem to belong to different XA transactions from the viewpoint of a database. That
means that branches of the same distributed transaction that access the same database are executed by the
database as if they belonged to different XA transactions. However, since our object routing mechanism
guarantees that two branches of the same distributed transaction can never access the same data objects in
the same database (i.e., there are no conflicts between different branches), the result of the execution is
equivalent.

We enhanced our implementation with two optimizations:

= Coordinator transfer. By default, the root object manager becomes the transaction coordinator of
an XA transaction. However, when the paths of all items to be routed in the push-down phase
start with a common prefix, the task of coordinating the distributed transaction can be transferred
together with the (single) PushDownRequestMessage that is sent by the root object manager. The
receiving object manager may again delegate coordination to the next object manager on the path;
that process is repeated until the path forks or a routing endpoint object manager is reached.
Coordinator transfer is a well-known technique to optimize distributed commit processing and is,
for example, described in [GR93].

= One-phase commit. When a distributed transaction consists of one branch only, a one-phase
commit is used instead of a 2PC. The 8-step execution of a branch described above changes as
follows: In Step 1, a standard connection instead of an XAConnection is taken from the pool.
Steps 2, 4, and 7 are omitted. Step 5 is replaced with a commit call on the standard connection
instance.'

Both optimizations improve performance. With coordinator transfer, the paths of messages exchanged in
the 2PC protocol are shorter. With one-phase commit, database access is faster. However, there are more
advantages. For example, when a client object manager is configured to have only a single server
connection to another object manager, the client will never have to coordinate a distributed transaction. In

! Note that, after a one-phase commit, a CommitRequestMessage and a CommitReplyMessage (which correspond to the second
phase of the 2PC protocol) are still exchanged. In principle, that round of messages could be eliminated. However, to avoid defining
new or changing existing message types for the one-phase commit optimization (fresh versions are propagated via
CommitReplyMessages, see Subsection 6.7.2), we kept the round of messages. Nevertheless, accessing a database within a non-
distributed transaction is still a significant performance improvement compared to a two-phase commit.

120

Multi-Threading

all cases, the client can transfer coordination. This is important because, in most setups, it is not desirable
to let (unreliable) client machines execute the 2PC protocol. Even when a client object manager is
connected to multiple servers, client coordination can be avoided with an appropriate process topology
and import/export scheme.

In many cases, the coordinator transfer optimization and the one-phase commit optimization can be
combined. For example, consider an FPT transaction that consists of a single update access to a non-
replicated data object. In that case, only a single path is used for routing and coordination can always be
transferred to a routing endpoint object manager, which has direct access to the data object’s home data
store. In addition, the data object’s persistent state can be updated with a fast, non-distributed transaction
that is terminated by a one-phase commit.

6.8 Multi-Threading

An important property of enterprise applications — and thus of underlying enterprise application
middleware — is performance. Note that, in practice, it is usually not the primary goal to minimize
response time for an individual client request. Instead, it is typically much more important to achieve a
high (average) transaction throughput so that the enterprise application can serve many concurrent clients
while maintaining response time at an acceptable level.

With a single-threaded implementation and an object manager that sequentially processes transactions,
only low transaction throughput could be achieved because only one processor would perform work on a
multi-processor machine. Furthermore, either CPU work or 10 could be performed by a single thread —
but typically not both in parallel. For demonstrating the core features of our proof-of-concept
implementation — custom and adaptable process topologies — a single-threaded implementation would
have been sufficient. However, for a thorough evaluation (including transaction throughput and
transaction conflicts — see Chapter 7), a single-threaded implementation would not yield meaningful
results. For that reason, we designed our FDO framework to be fully multi-threaded. Each part of the
framework has been optimized for high transaction throughput. This includes that threads never spend
their time busy waiting, i.e., threads never consume CPU cycles while waiting for an event.

6.8.1 Multi-Threaded Communication Plug-ins

In the FDO framework, protocol adapter plug-ins (which are responsible for inter object manager
communication or database access, see Figure 6-1) define their own threading model. Each plug-in
instance uses one or more dedicated private threads to perform its work. When a thread of the core of an
object manager wants to send a message to a remote site, it identifies an appropriate plug-in instance and
inserts the message into the message queue maintained by the plug-in instance. The plug-in instance’s
private threads are then responsible for asynchronously marshalling and sending the message, while the
object manager core thread immediately continues processing. A message from a remote object manager
received by one of the plug-in instances is handled accordingly — a plug-in thread that reads a message
from the network first unmarshals it, then inserts it into a queue maintained by the core object manager,
and finally continues processing. The message is then asynchronously processed by an object manager
core thread. The types of messages internally passed between the object manager core and plug-in
instances are the same as shown in Table 6-1. As described in Section 6.3, our SocketConnection plug-in
employs two private threads per connection; one for reading data from a socket and one for writing
reading data to a socket. In contrast to that, the NIOSocketConnection plug-in employs only one thread
per plug-in instance/port.

121

Chapter 6: Proof-of-Concept Implementation

6.8.2 Multi-Threaded Database Access

From the viewpoint of the object manager core, the OracleJDBCConnection plug-in employed for
database access (see Section 6.7) behaves like other plug-ins. For example, a QueryRequestMessage can
be handed over to a SocketConnection plug-in so that the message is sent to an underlying object
manager, but it can also be handed over to an OracleJDBCConnection plug-in so that the query is
executed directly on an underlying Oracle database. The OracleJDBCConnection plug-in maintains a
pool of private worker threads which work on database connections they obtain from a connection pool.
When an object manager hands over a request message to an OracleJDBCConnection plug-in, a worker
thread of the plug-in first processes the message by accessing the underlying Oracle database (see
Subsection 6.7.2), then constructs an appropriate reply message from the result (e.g., a
QueryReplyMessage), and finally hands over the reply message to the object manager core.

By default, 20 worker threads and 50 pooled JDBC connections are used by an instance of the
OracleJDBCConnection plug-in. Although each running worker thread works on at most one connection
at any given time, there are more connections than threads because some connections can be in the
reserved state. When the plug-in processes a PrepareRequestMessage, an XA prepare call is performed
and the current JDBC connection is marked as reserved. The connection remains reserved until an
appropriate CommitRequestMessage is received by the plug-in and an XA commit or rollback call
terminates the current distributed transaction (see steps 5 and 7 in Subsection 6.7.3). To avoid situations
where too many or all connections are simultaneously in the reserved state (which may reduce throughput
and could lead to distributed deadlocks), the OracleJDBCConnection plug-in uses a priority queue where
messages are buffered before they are processed. When multiple messages are waiting in the queue,
priority is always given to CommitRequestMessages and RollbackRequestMessages because processing
those types of messages frees reserved connections. All other message types (PushDownRequestMessage,
PrepareRequestMessage, and QueryRequestMessage) are assigned a lower priority. In addition, when the
number of reserved connections exceeds a given threshold, all further PrepareRequestMessages” remain
in the queue until connections are freed again.

6.8.3 Multi-Threaded Object Manager Core

The core of an object manager uses a separate pool of worker threads and thus is decoupled from plug-in
instances. By default, two worker threads are used for each object manager that is a pure client (i.e., its
configuration does not define any client listeners). 15 worker threads are used for each server object
manager. When a plug-in hands over a request message to the object manager core, a corresponding Task
instance is created and queued — for instance, a QueryTask instance for a QueryRequestMessage or a
PrepareTask for a PrepareRequestMessage. A task encapsulates the state and context of a request. A task
is either

* running (currently being executed by a worker thread),

= ready (waiting for a worker thread to execute the task),

= blocked (the task has sent one or more request messages and is waiting for all reply messages), or
= completed.

Internally, all tasks are organized as state machines. For example, the states of a QueryTask are initial,
waiting_for_replies, and success. In addition, there are several error states. A state transition may occur
when either (1) a task is ready, (2) all reply messages expected by a blocked task have arrived, or (3) a
blocked task experiences a timeout. The state transition is executed when a task’s doNextStep method is
executed by a worker thread. For instance, a QueryTask might be created and processed as follows:

! PrepareRequestMessages that require a one-phase commit only (see optimizations in Subsection 6.7.3) are processed normally
because they do not reserve connections.

122

Multi-Threading

1. A plug-in receives a QueryRequestMessage from a client object manager and hands over the
message to the object manager core, where a QueryTask instance is created. In the beginning, the
new task is ready and in the initial state.

2. Eventually, a worker thread calls the doNextStep method of the task. The task (now running)
analyzes the given query, performs a query routing, and (in this particular example) sends out
three QueryRequestMessages by handing them over to appropriate plug-ins (for communication
or database access). The task registers an interest in all three reply messages it expects, moves to
the waiting_for_replies state and becomes blocked.

3. Eventually, reply messages arrive and plug-ins hand them over to the object manager core. The
first two (of the three) QueryReplyMessages the QueryTask has registered an interest for are
buffered. When the third message is handed over, the task becomes ready again.

4. Eventually, a worker thread (not necessarily the one from Step 2) calls the doNextStep method of
the task. The task (now running) reads all three reply messages, integrates the partial query results
contained in the reply messages, constructs a QueryReplyMessage, and hands over the message to
a plug-in so that the query result is (asynchronously) sent to the client object manager mentioned
in Step 1. Finally, the task moves to the success state, becomes completed and can be garbage
collected.

The same mechanism as described above is used when a task is initiated by local application code (e.g.,
an application thread calls the object manager’s query method, see Listing 6-1) instead of a remote object
manager. However, the initial request message and the final reply message are omitted in that case. For
associating incoming reply messages with waiting threads (see Step 3 above), we employed a modified
version of the reply manager design pattern we proposed in [Hart99].

With our approach to multi-threading, 10 is strictly decoupled from processing in the object manager’s
core. Also, different plug-in instances and their 1O are isolated from each other. All activities can run in
parallel. In addition, an object manager can cope well with overload situations because messages and
tasks that cannot be processed immediately are buffered and then processed asynchronously. Except for
the queue of the OracleJDBCConnection plug-in, all internal queues are FIFO queues. However, it would
be straightforward to replace them with priority queues so that an overloaded system can give higher
priority to certain message types or clients.

Another advantage of our multi-threaded design is that, with tasks designed as state machines, the number
of concurrent tasks is completely decoupled from the number of worker threads. Since blocked tasks do
not require that a thread is associated with them, a constant number of threads can be used to handle an
arbitrary number of concurrent tasks. In contrast to that, approaches based on synchronous remote
invocations (e.g., with RPCs or object middleware), typically require one thread per request. Once a
request is dispatched to a thread, the thread remains assigned to the request (and, if necessary, is blocked
on I0) until the request is completed. To avoid creating too many threads, requests could be queued
before they are processed by threads, but this way it is not possible to partially process many requests. All
in all, our state machine based approach requires fewer threads because worker threads are only blocked
when there is no work to do.

Note that, on server machines with many processors, it might not be the best approach to assign all
processors to a single process. In many cases, better performance can be expected when multiple multi-
threaded processes (each with a separate object manager) are run on a server machine to reduce
synchronization overhead.

123

Chapter 6: Proof-of-Concept Implementation

6.9 Object and Query Routing

In Section 5.8, we described object routing and query routing at an architectural level. We defined several
constraints for selecting target data stores and valid paths to those data stores. Moreover, we explained
that a simple approach to routing (i.e., selecting target data stores and paths first and then propagate items
to be routed) conflicts with the limited visibility requirement and makes optimizations difficult. In this
section, we outline the particular routing implementation of our FDO framework, which avoids the two
problems mentioned above. We continue to use the example routing that has been described in Subsection
5.8.2. In the following, we focus on routing a single item— routing of multiple items is described in
Subsection 6.9.4.

6.9.1 Basic Approach

The basic idea is that an object manager calculates a routing incrementally. Decisions regarding target
data stores and paths are deferred for as long as possible and made during the propagation process. Each
object manager that receives a set of items to be routed (within a QueryRequestMessage or a
PushDownRequestMessage) recursively delegates routing decisions to its server object managers — unless
RI-tree, import/export schema, and process topology require a local decision.

For instance, consider the routing shown in Figure 5-10. In the example, a single item (a private version
of a newly created data object) is routed from a root object manager to target data stores, into which the
new data will be inserted. The data object belongs to a domain for which the RI-tree given in Figure 5-3
has been defined. Initially, the root object manager has three options for selecting target data stores (see
Subsection 5.2.3): (1) ds,, dsz, and dss, (2) dsy, dsz, and dsg, or (3) dSg, and dSe. In principle, the item can
be routed from the root object manager to P1, P3, or P4 (or to any combination of these three) in the first
step. Let us assume that the root object manager routes the item to P1 as shown in the figure. This
decision implicitly means that only options (1) and (2) remain valid choices for home data stores since
neither dsg nor dsy can be accessed via P1. However, there is no need for the root object manager to
decide whether option (1) or (2) should be selected. Instead, that decision can be delegated to P1 —
together with the PushDownRequestMessage that propagates the item. P1 in turn delegates the decision to
P3, which finally decides whether dss or dsg is included in the set of home data stores. Simultaneously, P1
routes the item to P2, since it is clear at that stage that both ds, and ds; must be included in the set of
home data stores.

In our implementation, each object manager uses a local routing function to make local routing decisions
(see Figure 6-5). The local routing function is implemented as part of the router component depicted in
Figure 6-1. Together with each item, a set of possible target data stores targetCandidatesIn is routed. The
set and the item to be routed are input parameters of the local routing function. The task of the function is
to decide to which directly connected servers (server object managers or data stores) an item should be
routed and to produce a set of possible target data stores targetCandidatesOut for each of those servers.
Underlying server object managers then use the produced targetCandidatesOut set as an input parameter
of their local routing function.

124

Object and Query Routing

client object
manager

routing message
for item X @

process..... targetCandidatesin
object local routing function
manager| targetCapdi- targewt:andi- targgtCandi-
datesQut, datesOut, *** dategOut,
. / AN
routing
messages
for tem X M/ > M\
server object server object server object
manager 1 manager 2 e manager n

Figure 6-5. Each object manager performs a local routing using a local
routing function.

Figure 6-6 shows the example routing from Figure 5-10, annotated with sets of target data store
candidates for each process involved in the routing. In the root object manager, which initiates the
routing, targetCandidatesIn is set to {ds,, dsz, dss, dsg, dSg, dSg}, which are all the potential home data
stores (all leaf nodes of the new data object’s RI-tree that are accessible). Each C1 connector is annotated
with the targetCandidatesOut value produced by the sending object manager’s local routing function.

{ds;, ds3, dss, dss, dsg, dso}

root process of
the routing
{ds;, dss, dss, dsg}
{ds,, ds3} {dss, dse}

sy | NS} {dss}

—] — —
ds; ds, dsg ds; dsg dsg

Figure 6-6. Example routing of a private version, annotated with
sets of target data store candidates.

An alternative routing, which is also correct, is shown in Figure 6-7. In this example, the root object
manager decides to route the item to P1 and also to P4. However, that decision also forces the root object
manager to immediately select ds,, dss, and dsg as target data stores. Note that, unlike the routing shown
in Figure 6-6, the decision whether dss or dsg should be selected cannot be delegated here because P4 has
only access to dsg (via P5). P1 could access dss, but if the root object manager included dss also in the
targetCandidatesOut for P1, then the item would be routed to both dss and dss, which is not compliant
with the Rl-tree. While the root object manager selects all target data stores in this example, it does not
determine the paths to target data stores and delegates that decision to P1 and P4.

125

Chapter 6: Proof-of-Concept Implementation

{ds, dss, dss, dss, dsg, dso}

root process of
(ds», dss} the routing
{dse}

{dse}

{dse}

—l]]
ds; ds, dss ds; dsg dsg

Figure 6-7. An alternative routing.

6.9.2 Initial Parameters and Routing Matrices

All object managers involved in the routing (except for the root object manager) use the
targetCandidatesOut parameter supplied by a client object manager as targetCandidatesin parameter for
their local routing function. The root object manager sets the initial targetCandidatesIn value depending
on the type of item to be routed (see Subsection 5.8.3 for a description of the five different types of
items). In the following, we use definitions from sections 5.2.3 and 5.8.3.

Let dom be the domain associated with the item to be routed and Rl the Rl-tree defined for dom.
Furthermore, we define accessibleDataStores := {ds; | the root object manager imports (dom, ds;) from at
least one server}.

* For an item that is a set query, the root object manager sets targetCandidatesin :=
accessibleDataStores. If there is no G € queryOptions(RI) such that G < targetCandidatesin,
then a routing error occurs.

= For an instance query for data object D or a check (optimistic lock) on D, the root object manager
sets targetCandidatesin := accessibleDataStores n home(D). If targetCandidatesIn is empty,
then a routing error occurs.

= For a private version of a newly created data object, the root object manager sets
targetCandidatesIn := accessibleDataStores. If there is no G e insertOptions(RI) such that G <
targetCandidatesln, then a routing error occurs.

= For a private version of an existing data object D, the root object manager sets targetCandidatesIn
:= accessibleDataStores m home(D). If targetCandidatesin # home(D), then a routing error
occurs.

A routing error is the result of an inappropriate configuration that does not give an object manager
sufficient imports to successfully initiate a routing. For example, if the root object manager shown in
Figure 6-7 had only access to P3, but not to P1 or P4, then it could not produce a valid local routing for a
private version of a newly created data object. In case of a routing error, the corresponding FPT
transaction is aborted.

Internally, a local routing function first creates an input routing matrix from the targetCandidatesin input
parameter. Then the function calculates a local routing. The result is represented by an output routing
matrix. Finally, the output routing matrix is transformed into one or more targetCandidatesOut sets.

A routing matrix R is a matrix that contains a “1” or a “0” value for each combination of a (possible)
target data store i and a directly connected server k. In an input routing matrix, Ry=1 means that it is
allowed to route an item via server K to data store i; Ry=0 means that it is forbidden. In an output routing
matrix, each R that is set to “1” means that the item is to be routed to server k and that data store i is

126

Object and Query Routing

included in targetCandidatesOuty. An input routing matrix IRM is constructed as follows: IRMy=1 <
(dom, ds;) is imported by the local object manager from server k and ds;etargetCandidatesin.

Figure 6-8 shows input and output routing matrices for the example routings depicted in figures 6-6 and
6-7. The matrices shown are those used and produced by the local routing function of the root object

manager. To make the matrix representation more readable, rows and columns that consist entirely of “0”
values in all three matrices are omitted.

targetCandidatesln for the root object manager: {ds,, dss, dss, dss, dss, dsg}

input routing matrix: output routing matrix (a): output routing matrix (b):
P1 | P3 | P4 P1 | P3 | P4 P1 | P3| P4
ds, 1 0 0 ds, 1 0 0 ds, 1 0 0
dss 1 0 0 dss 1 0 0 dss 1 0 0
dss 1 1 0 dss 1 0 0 dss 0 0 0
dse 1 1 1 dse 1 0 0 dse 0 0 1
dsg 0 0 1 dsg 0 0 0 dsg 0 0 0
dsg 0 0 1 dsg 0 0 0 dsg 0 0 0
=> targetCandidatesOut => targetCandidatesOut
for P1: {ds,, dss, dss, dse} for P1: {ds,, dss},

targetCandidatesOut
for P4: {dse}

Figure 6-8. Input and output matrixes used by the root object manager
of the example routings shown in figures 6-6 (a) and 6-7 (b).

6.9.3 Constraints

The main task of a local routing function is to produce an output routing matrix for a given input routing
matrix. Often, there are several different possibilities of routing an item. However, not all possible output
routing matrices necessarily correspond to valid routings, i.e., routings that adhere to the data distribution
scheme. In Subsection 5.8.3, we defined rules for selecting valid paths and target data stores. In this
subsection, we describe constraints that, when observed by a local routing function, guarantee that an
output routing matrix always complies with the rules given in Subsection 5.8.3.

As a prerequisite, we define four functions. All functions work on the RI-tree defined for the domain that
is associated with the item to be routed.

iNeighbors(x) := {y | the lowest common ancestor of ds, and ds, is an I-node}
rNeighbors(x) := {y | the lowest common ancestor of ds, and ds, is an R-node}
iNeighborGroups(x) returns a set of sets S, which is constructed as follows:

start with S .= J
for each ancestor n of X that is an I-node do
for each direct descendant m of n that is neither X nor an ancestor of X do
add the set of all leaf nodes that are descendants of m (or {m}, if m is a leaf node) to S

rNeighborGroups(x) returns a set of sets S, which is constructed as follows:

start with S .= J
for each ancestor n of X that is an R-node do
for each direct descendant m of n that is neither X nor an ancestor of X do
add the set of all leaf nodes that are descendants of m (or {m}, if m is a leaf node) to S

Examples for the RI-tree shown in Figure 5-3 are given below:

iNeighbors(ds,) = {dss, dsq}
iNeighbors(dsz) = {dss, dsq}

127

Chapter 6: Proof-of-Concept Implementation

iNeighbors(dss) = {dsg, dsg, dso}
rNeighbors(dss) = {ds,, dss}
iNeighborGroups(dss) = {{dse},{dsg, dSq}}
rNeighborGroups(dsg) = {{dsq}}

In Subsection 5.8.3, we listed five different types of items that can be routed. Depending on the type of
item, the following constraints apply for producing an output routing matrix ORM from a given input
routing matrix IRM.

Constraints for all types of items:
(a) ORM contains at least one “1” value
(b) IRMy=0= ORMy=0
(c) each row in ORM contains at most one “1” value
Additional constraints for set query items:
(d) ORMj=1 = all ORM,, with perNeighbors(i) A g # k have to be “0”

(¢) ORMjy= 1 = for each GeiNeighborGroups(i), there is at least one ge G such that row g of ORM
contains a “1” value

Additional constraint for instance queries and checks (optimistic locks):

(f) exactly one column of ORM contains “1” values; all other columns consist entirely of “0” values
Additional constraints for private versions of newly created data objects:

(g) ORMj= 1= all ORM,, with peiNeighbors(i) A q # k have to be “0”

(h) ORMj= 1 = for each GerNeighborGroups(i), there is at least one geG such that row g of ORM
contains a “1” value

Additional constraint for private versions of existing data objects:
(1) for each row i in IRM that contains at least one “1” value, row i in ORM must contain a “1” value

Constraint (a) guarantees that each item is routed to at least one server. Constraint (b) ensures that each
item is routed in compliance with the import/export scheme. Constraint (¢) ensures that, when each item
is routed to multiple servers, the targetCandidatesOut sets produced for those servers are pairwise
disjoint. Without that constraint, an item could be routed on different paths to the same data store in a
topology that contains meshes. With constraint (d), we prevent the situation that a set query is performed
redundantly on replicated data. Instead, we ensure that each query item is routed to such a set of data
stores that all partial query results are disjoint. Constraint (¢) guarantees that all result data objects are
found, i.e., each query item is routed to such a set of data stores that the union of all partial query results
represents the complete query result. Constraint (f) ensures that each item is routed to exactly one server.
Multiple paths are not permitted because an instance query or check needs only be routed to one data
store. Constraints (g) and (h) guarantee that a newly created data object is inserted into a set of data stores
in compliance with the data distribution scheme, i.e., a valid insert option is selected. Finally, constraint
(i) ensures that an update or delete is routed to all home data stores of a data object (ROWA replication).

6.9.4 Routing Function Implementation

Depending on the process topology, data distribution scheme, and import/export scheme, there can be
different possibilities of routing an item. For instance, in Subsection 6.9.1, we presented an example and
two different ways to route an item. A local routing function has to select one routing according to some
criteria. The local routing function implemented in our FDO framework simply chooses a random routing
to achieve basic load distribution among processes and data stores.

128

Discussion

The routing function calculates a routing matrix from a given input routing matrix. A recursive function
that calculates one row of the output matrix per step is used. With backtracking, a routing is calculated
that satisfies the constraints described in the previous subsection. Before the output matrix is calculated,
columns and rows are randomly permuted (logically) so that the first valid output matrix found represents
a random routing. When multiple items are to be routed, the routing function processes one item after
another. Items that are routed to the same server — i.e., items with paths that have a common prefix — are
propagated together within a single message (coarse-grained communication). Typically, routing matrices
are relatively small (e.g., one to twenty cells) and thus can be processed quickly. To prevent routing from
becoming a bottleneck when large amounts of items are routed, we implemented the following
optimizations:

= Early pruning. Constraints are checked early and limit choices for other rows so that backtracking
is reduced significantly.

= Bit sets. All matrix operations are implemented using bit sets, which dramatically improves
performance.

= Chain routing. Before all items in a given set are routed, the set is first sorted (according to item
type, domain, and targetCandidatesin). Then all items are routed, one after another. However,
before an item is passed to the routing function, it is first tested whether the item can be routed
exactly like its predecessor. This test is executed extremely efficiently. If the test is positive, the
routing of the predecessor is used for the current item, too; otherwise the routing function is
executed. With chain routing, large sets of items can be routed with typically just a few calls to
the routing function.

Because of the optimizations outlined above, routing did not play any significant role in the benchmarks
presented in Chapter 7.

Note that our routing function implementation is just one particular solution. There are many other
possible routing functions with more sophisticated optimization criteria that could be implemented. For
example, an object manager could track the response times or request queue lengths of servers to realize a
load balancing. Or, certain data objects could be clustered together in data stores. The bandwidth of
connections, the fill ratio of data stores, or the priority of clients/requests could also be taken into account.
Our random routing function provides only basic load distribution, but it demonstrates our incremental
approach to routing well. In particular, the limited visibility requirement is met. Furthermore, the
autonomy of each object manager in the process topology is preserved. Each object manager can optimize
locally and delegates items and routing decisions to server object managers. As long as the constraints
defined in Subsection 6.9.3 are satisfied, it is even possible that each object manager employs a different
routing function.

6.10 Discussion

In this section, we discuss selected aspects in more detail.

6.10.1 Programming Language

Our proof-of-concept implementation heavily relies on Java. For example, we used weak and soft
references, garbage collection, class libraries for low-level socket communication, Java serialization, and
JDBC. However, in principle, an object manager can be implemented in any programming language, for
instance in C++. Conceptually, nothing changes with another programming language. However, for
communication between object managers implemented in different programming languages,
communication plug-ins that do not rely on Java serialization have to be used.

129

Chapter 6: Proof-of-Concept Implementation

6.10.2 Object Managers in Thin Clients

In terms of code size, our object manager implementation is a relatively lightweight component.
Packaged as a Java archive, an object manager requires less than 200 kilobytes. The small size makes it
possible for a client application, including its object manager component, to be deployed as a Java applet.
A Java applet can be run by any thin client that is equipped with a recent web browser. With an
appropriate process topology, it can be prevented that such an applet ever has to coordinate a distributed
transaction (see Subsection 6.7.3). An alternative to applets is Java Web Start (bundled with Sun’s Java 2
Platform, Standard Edition), which allows clients to automatically download, install, and update Java
client applications.

6.10.3 Heterogeneous Topologies

Our FPT architecture for enterprise applications represents a homogeneous approach to middleware —
each process of a process topology has to be equipped with an object manager component. However, in
many cases, the FPT architecture and our implementation can easily be integrated with conventional
processes/applications that do not use object managers:

= Access to conventional processes. Often, transactional data is managed by conventional
processes, for instance, Enterprise JavaBeans application server processes, CORBA servers, or
applications based on object/relational mapping frameworks. With an appropriate plug-in for data
access, conventional processes can be treated like transactional data stores. For example, a plug-in
for accessing data managed by EJB servers could translate FDO request messages into
appropriate sequences of RMI invocations on EJB entity beans. Ideally, a conventional process
exposes a sufficiently rich interface (e.g., for distributed transaction management) so that the full
range of features of the FDO framework can be used. When a conventional process provides
necessary functionality but does not expose it, it might be possible to place a plug-in in that
process. Such a plug-in could be a server-side adapter for FPT-based processes.

= Conventional processes as clients. Also, conventional processes can access data objects managed
by object managers of FPT-based processes. Here, we have two options:

The first option is that application code in an FPT-based process acts as a facade and provides
services to conventional clients (which, in turn, could serve other conventional processes). For
communication, any communication protocol can be used. As an example, we implemented an
RMI-based approach, where application code wraps FDO data objects and exposes them as RMI
objects to conventional clients. That example is studied in Section 7.4 and depicted in Figure 7-9.
Another example is application code that implements a Java servlet that dynamically generates
HTML documents from transactional data objects managed by the local object manager. The
HTML documents are then delivered to conventional (ultra-thin) clients via HTTP.

The second option is to let client processes directly communicate with object managers of FPT-
based processes. A client does not need a local object manager for communication — in principle,
it is sufficient to directly send and receive FDO request/reply messages to perform basic
operations on data objects. To simplify connectivity for conventional clients, an object manager
could use, for instance, an XML-based communication plug-in.

6.11 Summary

In this chapter, we presented our proof-of-concept implementation. The implementation is a middleware
framework that realizes all concepts of the FPT architecture. In particular, arbitrary process topologies
can be conveniently defined through configuration and adapted through reconfiguration. We outlined the
overall design of the framework and provided various implementation details regarding configuration,

130

Summary

remote communication, concurrency control, caching, database access, XA transaction management,
multi-threading, and routing.

Note that, in many respects, our framework goes beyond a simple proof-of-concept implementation. We
implemented a broad range of features and tools that address practical requirements of many enterprise

applications and make development of such applications more convenient. In addition, we implemented
several optimizations to achieve high transaction throughput. The most important performance
optimizations are summarized below:

Multi-threading. Our object manager implementation is fully multi-threaded and utilizes multiple
processors of a machine, if available. With asynchronous processing and our state machine based
approach to tasks, an object manager can process more concurrent tasks using fewer threads. For
concurrent database access, JDBC connection pooling is employed.

Advanced concurrency control features. In addition to standard concurrency control, our
framework offers several advanced concurrency control features (such as field calls) that allow
application developers to fine-tune consistency and performance on a per-object basis. This is
especially useful for dealing with hotspot data as we show in Section 7.7.

Commit protocol optimizations. With coordinator transfer, the paths of messages exchanged in the
2PC protocol are made shorter. In addition, when only one database is accessed, performance is
improved by using a one-phase commit instead of a two-phase commit.

Transaction logging with bundled force writes. Although recovery is not fully implemented,
object managers write records to a transaction log while coordinating XA transactions. We
implemented a transaction log in order to obtain realistic performance results for the scenarios in
Chapter 7. To prevent the transaction log from becoming a bottleneck, we implemented an
optimization that groups multiple log writes (asynchronous and/or forced writes) into a single
disk access when load is high.

Load distribution. For object and query routing, we use a local routing function based on a
random scheme. Thereby, we achieve basic load distribution among processes and data stores.

Chain routing. When sets of items are routed (because an FPT transaction accessed multiple data
objects), our implementation routes subsets of items together, if possible. Thereby, fewer calls to
the local routing function are necessary.

Join queries. Our framework provides limited support for join queries. Join queries help to avoid
a fine-grained communication style that would occur if join functionality were realized by
application code through standard queries and navigational access.

Scalable 10. We implemented a communication plug-in that uses advanced socket-based
communication using Java’s new NIO package, which provides low-level access to socket
management and scales much better to many active client connections.

131

