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ABSTRACT
We present a novel route to constructing cost-efficient semi-empirical approximations for the non-additive kinetic energy in subsystem
density functional theory. The developed methodology is based on the use of Slater determinants composed of non-orthogonal Kohn–Sham-
like orbitals for the evaluation of kinetic energy expectation values and the expansion of the inverse molecular-orbital overlap matrix into
a Neumann series. By applying these techniques, we derived and implemented a series of orbital-dependent approximations for the non-
additive kinetic energy, which are employed self-consistently. Our proof-of-principle computations demonstrated quantitatively correct
results for potential energy curves and electron densities and hinted on the applicability of the introduced empirical parameters to dif-
ferent types of molecular systems and intermolecular interactions. Therefore, we conclude that the presented study is an important step
toward constructing accurate and efficient orbital-dependent approximations for the non-additive kinetic energy applicable to large molecular
systems.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0241361

I. INTRODUCTION

Subsystem density functional theory (sDFT)1–3 is based on
the commonly used Kohn–Sham density functional theory (KS-
DFT) and adopts the idea of partitioning the total molecular sys-
tem into subsystems based on the electron density. This approach
can provide a very favorable computational scaling, allowing one
to compute large molecular systems composed of up to a few
thousand atoms.4 However, due to the non-additive nature of the
exchange–correlation (XC) and kinetic energies, the density parti-
tioning gives rise to new terms in the sDFT energy expression. As
long as the XC energy is given by a pure functional of the den-
sity, the corresponding non-additive XC contribution is trivial to
compute. Unfortunately, the orbital-dependent non-additive kinetic
energy expression in a monomer basis is unknown and requires an
additional approximation to be made.5

Several different strategies were developed over the past
decades to account for this energy contribution or to avoid the

problem altogether. Among those are decomposable approxi-
mations based on the use of explicit density-dependent kinetic
energy functionals (e.g., see Ref. 5), the projection-based embed-
ding theory6–8 enforcing external orthogonality between subsystem
orbitals and ensuring that the non-additive kinetic energy is equal to
zero, and the potential reconstruction technique9–12 that is employed
to obtain accurate embedding potentials. Unfortunately, the use of
explicit kinetic energy functionals is associated with limitations such
as the inability to describe strongly interacting molecules and to cut
through covalent bonds, whereas projection-based embedding and
potential reconstruction techniques often lead to a large increase in
the computational cost of sDFT. Therefore, the problem of accu-
rately approximating non-additive kinetic energy contributions in
a cost-efficient way persists. For more information on this topic, we
refer to the recent review of sDFT in Ref. 13.

As opposed to projection-based embedding, which enforces
external orthogonality between subsystems, an approximate strat-
egy employing Slater determinants composed of non-orthogonal
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Kohn–Sham-like molecular orbitals (MOs) for the direct evalua-
tion of expectation values of quantum operators was demonstrated
within the frozen-density embedding diabatization (FDE-diab)
technique.14,15 This approach was originally developed by Pavanello
et al. and received increasing attention over the past years (see Refs.
16–21). Although not being formally exact, it was successfully used
for electron- and hole-transfer simulations,22,23 computations of
spin densities,16–18 and isotropic components of hyperfine coupling
constants.20 To the best of our knowledge and somewhat surpris-
ingly, this strategy has never been tested in the context of sDFT
for computations of kinetic energy contributions. Being inspired
by the previous success of FDE-diab, we make the first impor-
tant step toward filling this gap by developing orbital-dependent
approximations for the non-additive kinetic energy, which are
based on non-orthogonal Kohn–Sham-like MOs. In this regard,
our main priority does not lie in the construction of a formally
exact theory, as opposed to many existing approaches, but rather
in creating an alternative route to inexpensive, practical, and fully
self-consistent sDFT computations applicable to large molecular
systems.

This work is organized as follows. The formal theory behind the
sDFT method as well as derivations of orbital-dependent approxi-
mations for the non-additive kinetic energy are outlined in Sec. II.
Computational details for numerical tests conducted are given in
Sec. III. Subsequently, assessments of approximations made and
proof-of-principle computations employing the new approxima-
tions are presented in Sec. IV. Conclusions to the results and
associated discussions are given in Sec. V.

II. THEORY
In the following, we briefly outline the theory behind sDFT in

Sec. II A. For more details on this topic, the interested reader is
referred to reviews in Refs. 5 and 13. Subsequently, new approx-
imations for the non-additive kinetic energy are described in
Sec. II B.

A. Subsystem density functional theory
As mentioned above, the central idea of sDFT1–3 lies in the par-

titioning of the electron density ρ(r⃗ ) for the total molecular system
into subsystem densities. For the sake of simplicity, we only consider
here the case of the total system being composed of two subsystems
A and B. Note that the generalization of our new approach to multi-
ple subsystems is not completely trivial and could require additional
approximations to be made. The corresponding density partitioning
for two subsystems reads

ρ(r⃗ ) = ρA(r⃗ ) + ρB(r⃗ ). (1)

Each subsystem density ρI(r⃗ ), where I = A or B, is computed from
corresponding NI orthonormal occupied Kohn–Sham-like MOs
{ψI

i }
NI
i=1,

ρI(r⃗ ) =
NI

∑
i=1
∣ψI

i (r⃗ )∣
2, (2)

which describe a reference non-interacting subsystem I of electrons.
If the sets of MOs {ψA

i }
NA
i=1 and {ψB

i }
NB
i=1 are mutually orthonor-

mal, the non-interactive kinetic energy of the total molecular system

Ts[{ψi}] is equal to the sum of subsystem contributions Ts[{ψA
i }]

and Ts[{ψB
i }], which are computed from the corresponding sets of

orbitals {ψA
i }

NA
i=1 and {ψB

i }
NB
i=1, respectively. In this case, the set of

MOs for the total molecular system {ψi}
NA+NB
i=1 is simply a union of

the subsystem MO sets, i.e., {ψi}
NA+NB
i=1 = {ψA

i }
NA
i=1 ∪ {ψ

B
i }

NB
i=1. How-

ever, in practical computations, mutual orthonormality is often not
enforced and the orthonormal set {ψi}

NA+NB
i=1 is unknown. As a result,

the kinetic energy of the total molecular system Ts[{ψi}] is not
available but is formally given as

Ts[{ψi}] = Ts[{ψA
i }] + Ts[{ψB

i }] + Tnad
s [ρA, ρB], (3)

where Tnad
s [ρA, ρB] is the non-additive kinetic energy correction.

The term Tnad
s [ρA, ρB] cannot be evaluated directly from Eq. (3)

and, therefore, is often approximated with explicit functionals
of density.

Analogously, a non-additive correction term appears in the
expression for the XC energy of the total molecular system EXC[ρ],

EXC[ρ] = EXC[ρA] + EXC[ρB] + Enad
XC [ρA, ρB]. (4)

Here, EXC[ρA], EXC[ρB], and Enad
XC [ρA, ρB] are XC energy contribu-

tions from subsystems A and B as well as the non-additive XC
correction, respectively. As long as all terms from Eq. (4) are given as
pure functionals of density, the total XC energy EXC[ρ] and subsys-
tem contributions EXC[ρA] and EXC[ρB] can be computed exactly.
This is made possible by the fact that the density ρ(r⃗ ) of the
total molecular system is equal to the sum of subsystem densities
ρA(r⃗ ) and ρB(r⃗ ), as shown in Eq. (1), and can easily be com-
puted. Therefore, the non-additive XC energy Enad

XC [ρA, ρB] could
be evaluated from Eq. (4) without the need to introduce any new
approximations.

With both non-additive energy terms being defined, the energy
for the total molecular system can be represented as

E[ρ] = Ts[{ψA
i }] + Ts[{ψB

i }] +Uext[ρ] + J[ρ] + EXC[ρA] + EXC[ρB]

+ Tnad
s [ρA, ρB] + Enad

xc [ρA, ρB] +Unuc, (5)

where Uext[ρ] is the external potential, J[ρ] is the classical Coulomb
electronic repulsion, and Unuc is the nucleus–nucleus repulsion, all
being additive quantities and known from standard KS-DFT. To
find the ground-state energy, the expression from Eq. (5) has to
be minimized with respect to both subsystem densities ρA(r⃗ ) and
ρB(r⃗ ). In practice, this can be achieved by performing a series of
constrained minimizations. First, the energy E[ρ] is minimized with
respect to an electron density of a single subsystem (referred to as
“active”) while keeping another subsystem (called “environment”)
density fixed. Subsequently, the roles of active and environment sub-
systems are exchanged and the minimization procedure is repeated
until the full relaxation of the total electron density. This con-
strained minimization approach is known as frozen density embed-
ding (FDE),24 whereas the iterative minimization procedure is called
freeze-and-thaw cycles.25

If we regard subsystem A as active and minimize E[ρ] with
respect to ρA(r⃗ ), we obtain the Kohn–Sham equations with
constrained electronic density (KSCED),24,26

[ t̂ + υ(A)eff [ρA](r⃗ ) + υ(A)emb[ρA, ρB](r⃗ )]ψA
i (r⃗ ) = ε

A
i ψ

A
i (r⃗ ). (6)
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Here, t̂ denotes the one-electron kinetic energy operator −∇2
/2. The

term υ(A)eff [ρA](r⃗ ) is the effective potential,

υ(A)eff [ρA](r⃗ ) = υ(A)nuc (r⃗ ) + υCoul[ρA](r⃗ ) + υxc[ρA](r⃗ ), (7)

which is similar to that from standard KS-DFT but is defined
for active subsystem A. It includes the nuclear υ(A)nuc (r⃗ ), Coulomb
υCoul[ρA](r⃗ ), and XC υxc[ρA](r⃗ ) potential contributions. The new
term υ(A)emb[ρA, ρB](r⃗ ), which is not present in KS-DFT, is the embed-
ding potential accounting for the interaction between subsystems. It
is given as

υ(A)emb[ρA, ρB](r⃗ ) = υ(B)nuc(r⃗ ) + υCoul[ρB](r⃗ )

+ υnad
xc [ρA, ρB](r⃗ ) + υnad

kin [ρA, ρB](r⃗ ). (8)

Here, υnad
kin [ρA, ρB](r⃗ ) is the functional derivative of the non-additive

kinetic energy Tnad
s [ρA, ρB] with respect to the active subsystem

density ρA(r⃗ ),

υnad
kin [ρA, ρB](r⃗ ) =

δTnad
s [ρA, ρB]

δρA(r⃗ )
=
δTs[ρ]
δρ(r⃗ )

−
δTs[ρA]

δρA(r⃗ )
. (9)

The non-additive XC potential υnad
xc [ρA, ρB](r⃗ ) is defined analo-

gously as the functional derivative of the non-additive XC energy
Enad

xc [ρA, ρB].

B. Non-additive kinetic energy correction
To derive new orbital-dependent expressions for the non-

additive kinetic energy, we start from approximating the total system
non-interactive kinetic energy Ts as

Ts ≈
⟨Φ∣T̂∣Φ⟩
⟨Φ∣Φ⟩

, (10)

where Φ is a Slater determinant composed of two sets of
Kohn–Sham-like MOs {ψA

i }
NA
i=1 and {ψB

i }
NB
i=1, which are not mutually

orthogonal, and T̂ is the operator of electronic kinetic energy of the
total molecular system. This expression could further be re-written
in terms of MOs as27,28

Ts ≈
NA+NB

∑
i,j=1

⟨ϕi∣ t̂∣ϕj⟩(S−1
)ji. (11)

Here, {ϕi}
NA+NB
i=1 = {ψA

i }
NA
i=1 ∪ {ψ

B
i }

NB
i=1 is a non-orthogonal set of

MOs and S−1 is the inverse of the MO overlap matrix S containing
elements Sij = ⟨ϕi∣ϕj⟩. Note that both the original MO overlap matrix
S and its inverse S−1 are real symmetric matrices, which means that
(S−1
) ji = (S−1

)i j . The same holds for kinetic energy integrals, i.e.,
⟨ϕi∣ t̂∣ϕ j⟩ = ⟨ϕ j ∣ t̂∣ϕi⟩. However, expressions presented in this work
do not account for these properties and are derived in a more gen-
eral case of complex-valued non-symmetric matrices. This is merely
a matter of convenience when deriving functional derivatives as is
done later in the text.

The calculation of the inverse overlap matrix S−1 scales as
O([NA +NB]

3
) with respect to the number of MOs and, therefore,

is rather expensive. However, less expensive approximate expres-
sions for Ts from Eq. (11) can be obtained assuming that S−1 can
be expanded into the Neumann series,29,30

S−1
=
∞
∑
n=0
(I − S)n, (12)

where I is the identity matrix. The convergence of this series is fur-
ther discussed and analyzed in Sec. IV A. Note that, when being
applied to the inverse MO overlap matrix S−1, the expression from
Eq. (12) is also known as the Löwdin expansion.31,32

By substituting Eq. (12) into Eq. (11), we obtain an expression
for the kinetic energy Ts, which takes the form of the series,

Ts ≈ T(0)s + T(1)s + T(2)s + ⋅ ⋅ ⋅ =
∞
∑
n=0

T(n)s . (13)

It can be shown that the first three terms of this new expansion are
equal to

T(0)s = ∑
I=A,B

NI

∑
i=1
⟨ψI

i ∣ t̂∣ψ
I
i ⟩ = Ts[{ψA

i }] + Ts[{ψB
i }], (14)

T(1)s = −

NA

∑
i=1
⟨ψA

i ∣ t̂ρ̂B + ρ̂B t̂∣ψA
i ⟩, (15)

T(2)s =
1
2

NA

∑
i=1
⟨ψA

i ∣ t̂ρ̂Aρ̂B + ρ̂Bρ̂A t̂ + 2ρ̂B t̂ρ̂B∣ψA
i ⟩. (16)

Here, ρ̂I are projection operators given by

ρ̂I =
NI

∑
i=1
∣ψI

i ⟩⟨ψ
I
i ∣. (17)

More detailed derivations of these expressions can be found in Sec.
S1 of the supplementary material.

As one can see, the zero-order expansion term T(0)s from
Eq. (14) is equal to the sum of subsystem kinetic energies Ts[{ψA

i }]

and Ts[{ψB
i }], which are equivalent to those from the sDFT energy

expression in Eq. (5). Therefore, using the definition of the non-
additive kinetic energy Tnad

s from Eq. (3), we can approximate
Tnad

s as

Tnad
s ≈ Ts − T(0)s = T(1)s + T(2)s + ⋅ ⋅ ⋅ =

∞
∑
n=1

T(n)s . (18)

This expression is the central assumption analyzed in this work as
it provides a route to developing orbital-dependent approximations
for Tnad

s as opposed to commonly employed density-based kinetic
energy functionals.

It is also interesting to note that the first-order term T(1)s from
Eq. (15) contains the operator (− t̂ρ̂B − ρ̂B t̂), which is very similar to
the projector by Huzinaga and Cantu,6

Ô HC
= − f̂ ρ̂B − ρ̂B f̂ , (19)

but features the one-electron kinetic energy operator t̂ instead of
the Fock operator f̂ . One might find it surprising as the operator
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from Eq. (19) is often employed in projection-based embedding7,33,34

to enforce external orthogonality between subsystem orbitals and,
therefore, ensures that Tnad

s [ρA, ρB] = 0, whereas no external orthog-
onality requirements were adopted in our derivations. However,
a close relation between the Huzinaga building-block equations
for many-electron systems6 and the Adams–Gilbert formalism,35,36

which similarly to the present work employs Slater determinants
composed of non-orthogonal MOs, is known and was previously
discussed in the literature.37 Moreover, the expression from Eq. (15)
was derived in Ref. 37 for the more general case of one-electron
operators.

To self-consistently employ the approximation from Eq. (18)
within sDFT, the corresponding potential υnad

kin has to be derived as
well. As seen from Eq. (9), this requires computations of the func-
tional derivative δTnad

s [ρA]/δρA(r⃗ ) or, equivalently, derivatives of
the expansion terms T(n)s . Since T(n)s depend on MOs and are not
known as explicit functionals of the density, these evaluations could
be performed by using the optimized effective potential method,38–40

which is, however, computationally very demanding. Instead, we fol-
low the idea behind the generalized Kohn–Sham (GKS) approach,41

where the use of orbital-dependent energy contributions naturally
results in orbital-dependent potentials. In other words, the action
of the potential υnad

kin on an active subsystem MO ψA
l is represented

as the functional derivative of Tnad
s with respect to the complex

conjugate ψA∗
l ,40 i.e.,

υnad
kin (r⃗ )ψ

A
l (r⃗ )→ [υ

nad
kin ψ

A
l ](r⃗ ) =

δTnad
s [{ψA

i },{ψB
i }]

δψA∗
l

. (20)

For a more rigorous introduction of GKS, we refer to the origi-
nal work in Ref. 41. Note that expressions of the GKS theory were
also formulated within the FDE formalism.42 Therefore, deriva-
tions of functional derivatives of the form δT(n)s [{ψA

i },{ψB
i }]/δψA∗

l
for the first few expansion terms of Eq. (18) are required. These
detailed derivations are presented in Sec. S2 in the supplementary
material, whereas working equations in atomic orbital representa-
tion and a description of the associated computational cost are given
in Sec. S4.1. The final expressions in the MO representation read
as follows:

δT(1)s [{ψA
i },{ψB

i }]

δψA∗
l

= −(ρ̂B t̂ + t̂ρ̂B)ψA
l (21)

and

δT(2)s [{ψA
i },{ψB

i }]

δψA∗
l

= (ρ̂Bρ̂A t̂ + t̂ρ̂Aρ̂B + ρ̂B t̂ρ̂B)ψA
l . (22)

As one can see, the same operator (−ρ̂B t̂ − t̂ρ̂B) appears in the
expressions for the first-order energy correction from Eq. (15) and
for the corresponding functional derivative from Eq. (21). However,
a slightly different operator expression is found for the second-
order expansion terms when compared to the corresponding energy
expressions. The operators from Eqs. (21) and (22) are used in the
following as parts of the Fock operator to self-consistently account
for the non-additivity of kinetic energy, whereas Eqs. (15) and (16)
are employed for energy evaluations. The latter fact distinguishes

our theory from projection-based embedding, where the corre-
sponding energy contributions are equal to zero by definition due
to the enforced external orthogonality of subsystem orbitals, i.e.,
Tnad

s [ρA, ρB] = 0. Note also that the terms from Eqs. (21) and (22)
can be implemented such that the computational cost is cubic with
respect to the number of active system basis functions. For more
details on this topic, we refer to Sec. S4.1 in the supplementary
material.

Although the approximate non-additive kinetic energy
Tnad

s [ρA, ρB] is the main error source in sDFT computations
(e.g., see Ref. 43), the overall performance of the method also
depends on the chosen XC functional. In practical computations,
the so-called conjoint functionals,44,45 a pair of XC and kinetic
energy functionals sharing the same form of enhancement factor,
are often applied. In this regard and in the context of this work,
it was unclear whether the development of new approximations
for the non-additive kinetic energy alone would lead to inconsis-
tencies in evaluating the embedding potential. Therefore, similar
approximations were derived for the non-additive XC contributions
in Secs. S3 and S4.2 in the supplementary material and tested in
Sec. IV B.

III. COMPUTATIONAL DETAILS
All computations presented in this work were carried out

in a locally modified version of the SERENITY program.46–48

The geometry of the T-shaped Be+ ⋅ ⋅ ⋅H2 electrostatic complex
was taken from Ref. 49 and used without further structure opti-
mization. Molecular clusters of small solvent molecules such as
water⋅ ⋅ ⋅water (H2O⋅ ⋅ ⋅H2O), water⋅ ⋅ ⋅methanol (H2O⋅ ⋅ ⋅CH3OH),
water⋅ ⋅ ⋅acetone [H2O⋅ ⋅ ⋅(CH3)2O], and methanol⋅ ⋅ ⋅methanol
(CH3OH⋅ ⋅ ⋅CH3OH) were optimized with KS-DFT using the
PW91 XC functional50,51 and the valence triple-ζ polarization
def2-TZVP basis set.52,53 The resulting molecular structures are
shown in Fig. 1. Subsequently, the sets of displaced structures
were created by varying the intermolecular O⋅ ⋅ ⋅H and Be+ ⋅ ⋅ ⋅H2
bond distances while keeping other degrees of freedom fixed. No
further structure optimization was performed on the resulting
geometries.

The generated molecular structures were used in subsequent
KS-DFT and sDFT single-point calculations. To that end, the same
def2-TZVP basis set52,53 was employed for all molecular clusters
except for Be+ ⋅ ⋅ ⋅H2, which was computed using a smaller 3-21G

FIG. 1. Molecular structures of (a) Be+ ⋅ ⋅ ⋅H2, (b) H2O⋅ ⋅ ⋅H2O, (c)
H2O⋅ ⋅ ⋅CH3OH, (d) H2O⋅ ⋅ ⋅(CH3)2O, and (e) CH3OH⋅ ⋅ ⋅CH3OH studied in
this work.
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basis,54 unless stated otherwise. The XC PW91 functional50,51 was
consistently applied in both KS-DFT and sDFT computations. We
defined and tested several different sDFT computational protocols
varying in (i) the choice of the electron density (ρΦ or ρ) used for the
evaluation of non-additive XC contributions, (ii) the non-additive
kinetic energy approximation employed, and (iii) the truncation
level M of the Neumann expansion. Thus, standard sDFT com-
putations using PW9150,51 and PW91k55 functionals to account
for non-additive contributions are referred to as sDFT/PW91k
in the following. sDFT/EA[M] denotes computational protocols,
which employ orbital-dependent embedding approximations of up
to the Mth order of the Neumann series for the non-additive
kinetic energy. If additionally the electron density ρΦ obtained
from the Mth order truncation of the series from Eq. (31) of the
supplementary material is applied to evaluate non-additive XC con-
tributions in conjunction with the PW91 XC functional, the notation
sDFT/EA[M, M] is used. In all these cases, fully self-consistent
computations were carried out and freeze-and-thaw cycles25 were
performed until full convergence of electron densities, i.e., until the
sum of absolute element-wise differences between density matrices
from subsequent cycles was below the default convergence threshold
of 1.0 × 10−6 a.u.

For KS-DFT potential energy curves presented in Secs. IV B
and IV C, the counterpoise (CP) correction scheme by Boys and
Bernardi56 was used to account for the basis set superposition error.
However, this error was not accounted for in sDFT-type compu-
tations and a monomer basis set was consistently applied in all
cases. This is because sDFT is reported to be free of the basis-set
superposition error unless charge-transfer-like interactions become
important.57,58 Furthermore, the goal of this work is to construct
practical and computationally feasible approximations applicable to
large molecular systems, which requires the use of a monomer basis
set. Therefore, sDFT-type potential energy curves were computed
according to the following expression:

ΔEsDFT
= EsDFT

(AB; R) − EKS−DFT
(A) − EKS−DFT

(B), (23)

where EsDFT
(AB; R) is the sDFT energy of the complex A ⋅ ⋅ ⋅B

at the intermolecular distance R, and EKS−DFT
(A) and EKS−DFT

(B)
are KS-DFT energies of isolated subsystems A and B in vacuum,
respectively. Note that, in the following, we refer to ΔEsDFT as sDFT
interaction energy.

To provide a quantitative measure for a difference between
KS-DFT electron densities and those generated with other com-
putational approaches, densities were first represented on accurate
atom-centered Becke grids59–61 of the same size. For this purpose,
integration grids of the highest quality from those available in the
SERENITY package were constructed (“accuracy 7”). By integrat-
ing grid-represented densities over the whole space and comparing
results with the exact number of electrons, integration errors were
found to be below about 2 × 10−3 a.u. Then, absolute differences of a
target density ρX

(r⃗ ) generated with sDFT-based protocols, from the
reference KS-DFT results ρDFT

(r⃗ ) on grids points r⃗i were computed
and subsequently integrated over space, i.e.,

Npoints

∑
i=1
∣ρKS−DFT

(r⃗i ) − ρX
(r⃗i )∣ ωi, (24)

where ωi are integration weights for grid points r⃗i. A similar grid-
based integration technique was used to verify whether the density
ρΦ from Eq. (31) of the supplementary material integrates to the
correct number of electrons.

IV. RESULTS
In what follows, we first analyze the convergence of the Neu-

mann series for a number of molecular clusters in Sec. IV A. To that
end, overlap matrices generated with standard sDFT computations
employing density-dependent approximations for the non-additive
kinetic energy are used. Then, in Sec. IV B, the performance of newly
proposed approximations is analyzed in detail for the test case of
the Be+ ⋅ ⋅ ⋅H2 electrostatic complex. Finally, in Sec. IV C, a semi-
empirical approach to calculating interaction energies is proposed
and demonstrated.

A. Convergence of the Neumann series
A necessary and sufficient condition for the convergence of the

Neumann series from Eq. (12) is that the spectral radius R of the
matrix A = (I − S), i.e., the largest absolute eigenvalue λi of A,

R(A) = maxi∣λi∣, (25)

is smaller than 1.30 Unfortunately, a formal mathematical proof of
convergence for general matrices of the form (I − S) cannot be
given, as can be seen in the following example. Let us consider
a helium dimer He⋅ ⋅ ⋅He composed of two subsystems, which are
labeled as A and B and contain one helium atom each. In the case
of restricted sDFT, the subsystem density ρI(r⃗ ), where I = A or B,
is defined by the corresponding doubly occupied MO ψI. The inter-
subsystem overlap integral is then equal to s ∶= ⟨ψA

∣ψB
⟩ = ⟨ψB

∣ψA
⟩ and

the [2 × 2]matrix A = (I − S) is given by

A = (
0 −s
−s 0

). (26)

The eigenvalues of this matrix can be found analytically and are
equal to ±s. Therefore, the spectral radius R(A) of A is equal to
the absolute value ∣s∣ of s and is smaller than or equal to 1. This
means that, for the molecular system considered, the Neumann
series converges for all values ∣s∣ ∈ [0, 1) and diverges for ∣s∣ = 1.
However, the divergent case corresponds to the nuclear fusion of
two helium atoms and is of no concern for any realistic chemical
system.

For larger molecular systems, spectral radii R(A) can be com-
puted numerically. Such sDFT/PW91k computations for the molec-
ular clusters H2O⋅ ⋅ ⋅H2O, H2O⋅ ⋅ ⋅CH3OH, CH3OH⋅ ⋅ ⋅CH3OH, and
H2O⋅ ⋅ ⋅(CH3)2O at different intermolecular displacements are pre-
sented in Fig. 2. As one can see, the spectral radii R(A) are well below
1 for all molecular clusters at all investigated displacements, thus sig-
nifying the convergence of the Neumann series. Furthermore, it can
be seen that the spectral radii R(A) tend to zero for larger displace-
ments. This is due to inter-subsystem overlap integrals tending to
zero and, hence, A becoming the zero-matrix 0.

As an alternative to direct and rather expensive numerical com-
putations of eigenvalues, the Geršchgorin circle theorem62 can be
employed to evaluate an upper bound of spectral radii. In the gen-
eral case, this theorem provides access to a set of disks in the complex
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FIG. 2. Spectral radii R(A) for complexes H2O⋅ ⋅ ⋅H2O, H2O⋅ ⋅ ⋅CH3OH, H2O⋅ ⋅ ⋅
(CH3)2O, and CH3OH⋅ ⋅ ⋅CH3OH at different intermolecular displacements.
Computations of overlap matrices were performed with sDFT/PW91k.

plane, which contains eigenvalues of a matrix. Since we are deal-
ing with symmetric, real-valued matrices A, which have zeros as
diagonal elements, the eigenvalues are contained within real-valued
intervals centered at the origin (0) ∈ R. The lengths of these inter-
vals li are equal to the sum of absolute values of elements belonging
to ith row or column, i.e., for row sums,

li =∑
k=1
∣(A)ik∣. (27)

Hence, the convergence of the Neumann series is guaranteed in
cases of Geršchgorin intervals being in or equivalent to the interval
(−1, 1). With inter-subsystem overlaps s in [−1, 1], this holds true if
all column or all row sums of the absolute values of entries of A are
smaller than 1. This sufficient condition offers a simple way to pre-
dict the convergence of the Neumann series in chemically relevant
systems.

In addition to the formal convergence of the Neumann series in
the limit of an infinite number of expansion terms, its convergence
rate is also of particular interest. Thus, if a considerably large num-
ber of expansion terms is required to approximate the inverse MO
overlap matrix S−1, evaluations of Tnad

s , as given in Eq. (18), would
become computationally very inefficient. Therefore, it is important
to assess the performance of the Neumann series at different trunca-
tion levels M and identify the minimal number of terms needed for
reaching a specific accuracy. To that end, we rewrite Eq. (12) by tak-
ing the difference between the inverse MO overlap matrix S−1 and
a truncation of its expansion, and subsequently computing a matrix
norm of the whole expression as follows:

Δ = ∥S−1
−

M

∑
n=0
(I − S)n

∥. (28)

Here, Δ is a scalar value representing the error of truncation at
order M. For practical applications of Eq. (28), the exact inverse
MO overlap matrix S−1 has to be available, which is not the case.
We avoid this issue by calculating an approximate value of Δ using
the Moore–Penrose pseudo inverse63–65 of S. Furthermore, differ-
ent matrix norms can be applied in Eq. (28). In this work, we tested

the performance of the 1-norm Δ1, 2-norm Δ2, ∞-norm Δ∞, and
Frobenius norm ΔF.66 Very similar results were obtained in all cases.
Therefore, we limit our consideration here to only 2-norm Δ2. For
more information on matrix norms, their properties, definitions,
and additional numerical tests, see Sec. S5 in the supplementary
material.

Calculations of the truncation error Δ2 from Eq. (28) for a set
of molecular complexes at different intermolecular displacements
relative to the equilibrium structure are demonstrated in Fig. 3. As
can be seen, very similar results are obtained for all complexes. At
intermolecular separations larger than about 2 Å, the overlap matrix
S and its inverse S−1 become identity matrices I. This situation is
accurately described by the Neumann series truncated at the zero
order M = 0, since the corresponding expansion term (I − S)0 is also
equal to I, whereas all higher-order terms M > 0 yield zero matrices
0. As a result, the error Δ2 is equal to zero. At shorter displacements,
orbital overlaps grow and S−1 start deviating from I. Therefore, the
zero-order expansion term is no longer sufficient for describing S−1.
Using the Neumann series truncated at the first order M = 1, the
error Δ2 can be kept around zero for intermolecular displacements
as short as 0.5 Å. However, higher expansion terms are required for
even shorter distances. We find the second expansion order M = 2
sufficient for our applications as it yields very small errors at the
equilibrium distance and is less computationally demanding than
the third-order expanded series.

B. Non-additive corrections
For the initial numerical testing of our new approach, we

employ a small electrostatic complex of the beryllium cation Be+

with a hydrogen molecule H2. This complex was previously inves-
tigated theoretically (e.g., see Refs. 49 and 67–70) and experimen-
tally.71 It is known that Be+ and H2 are bound by weak (De ≈

0.4 eV) electrostatic and induction interactions resulting in a T-
shaped molecular geometry. The ground and first excited electronic
states are well-separated from each other, allowing us to apply
single-reference electronic-structure methods. These make it a con-
venient example to test the performance of sDFT-based approaches.
In fact, this compound was previously employed for numerical tests
in Ref. 16.

Before presenting the results generated with the new com-
putational scheme, we point out two potential issues. First, by
introducing new correction terms dependent on the non-orthogonal
MOs, we, in principle, incorporate a new electron density ρΦ(r⃗ )
in sDFT as seen from Eq. (31) of the supplementary material. This
new density is not equal to ρ(r⃗ ), which is given in Eq. (1) and
is being optimized/relaxed within sDFT to find the minimum of
energy. This creates an inconsistency in the overall approach and
means that the new scheme can no longer be considered formally
exact as opposed to the standard KS-DFT and sDFT. The second
issue stems from the fact that ρΦ(r⃗ ) does not necessarily integrate
to the number of electrons N in the total molecular system when
being represented as a truncated Neumann series. This is easy to see
from Eq. (31) of the supplementary material, where the zero-order
term ρ(0)(r⃗ ) is equal to the electron density ρ(r⃗ ) = ρB(r⃗ ) + ρA(r⃗ )
and, therefore, by definition, integrates to the number of electrons
N. As a consequence, integration of ρΦ(r⃗ ) results in N only if the
integral of the sum of higher-order expansion terms is equal to

J. Chem. Phys. 162, 054117 (2025); doi: 10.1063/5.0241361 162, 054117-6

© Author(s) 2025

 06 M
arch 2025 12:17:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7608833
https://doi.org/10.60893/figshare.jcp.c.7608833
https://doi.org/10.60893/figshare.jcp.c.7608833
https://doi.org/10.60893/figshare.jcp.c.7608833


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. The error Δ2 computed at truncation levels M = 0, 1, 2, and 3 of the Neumann series. The results are shown for molecular clusters of H2O⋅ ⋅ ⋅H2O (top left),
H2O⋅ ⋅ ⋅CH3OH (top right), H2O⋅ ⋅ ⋅(CH3)2O (bottom left), and CH3OH⋅ ⋅ ⋅CH3OH (bottom, right) at different intermolecular displacements relative to the equilibrium structure.
Computations of overlap matrices were performed with sDFT/PW91k.

zero. This requirement is satisfied for the infinitely large series, but
does not necessarily hold for all possible truncated expansions. To
further analyze this aspect, we computed integrals of ρΦ(r⃗ ) with
sDFT/EA[M] for different truncation orders M as seen in Fig. S2
in the supplementary material. Our results demonstrate that the
first-order truncated density expansion, M = 1, does not correctly
reproduce the number of electrons in Be+ ⋅ ⋅ ⋅H2 for intermolecu-
lar displacements shorter than about 1.5 Å. The deviation reaches
about −1 electron for the equilibrium distance (i.e., at the displace-
ment of 0.0 Å). This also shows that the density correction ρ(1)

could be negative. However, already for M = 2, the correct number
of electrons N = 5 is obtained for all displacements. Furthermore, no
negative density areas were found when analyzing the second-order
expanded ρΦ. Higher-order terms were found to have negligible
contributions to the number of electrons.

As the next step, we analyze the performance of new approx-
imations by computing non-additive energy contributions and
potential energy curves. To that end, KS-DFT and sDFT/PW91k
approaches are used as reference. The results are shown in Fig. 4.
As one can see from Fig. 4 (top left), the non-additive energy con-
tributions computed with sDFT/PW91k have opposite signs. The
non-additive kinetic energy Tnad

s is always positive and, to a large
extent, cancels the negative Enad

XC contributions to the interaction
energy. In fact, it was proven that the non-additive kinetic energy
Tnad

s computed as a functional of electron density is always non-
negative.72 The corresponding sDFT/PW91k potential energy curve
is qualitatively correct, but strongly underestimates the interaction
strength when compared to KS-DFT as seen from Fig. 4 (bottom
left). On the contrary, both sDFT/EA[1] non-additive energies are
negative and result in qualitatively incorrect and quickly descending
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FIG. 4. Non-additive energy contributions and interaction energies as functions of the intermolecular displacement computed for the Be+ ⋅ ⋅ ⋅H2 complex with KS-DFT-
and sDFT-based approaches. Non-additive contributions computed with sDFT/EA[M] and sDFT/EA[M, M] are shown in the top left and top right panels, respectively. The
interaction energies obtained with sDFT/EA[M] and sDFT/EA[M, M] are given in the bottom left and bottom right graphs, respectively. KS-DFT and sDFT/PW91k results
serve as references.

potential curves, see Fig. 4 (top left and bottom left). This is proba-
bly a consequence of the first-order expansion term of the Neumann
series from Eq. (15) featuring a negative sign. This assumption is
supported by sDFT/EA[1,1] computations, demonstrated in Fig. 4
(top right and bottom right), which lead to both non-additive con-
tributions having opposite signs to those from sDFT/PW91k. In this
case, there is partial cancellation between non-additive contribu-
tions. However, the corresponding sDFT/EA[1,1] potential energy
curve is overly repulsive and still qualitatively incorrect. Note that
the sign of T(1)s depends on the truncation level M since our non-
additive corrections are employed self-consistently. It is negative
in sDFT/EA[1] computations but becomes positive when higher-
order correction terms are included, i.e., for sDFT/EA[M] with
M > 1. This fact is demonstrated in Sec. S7 in the supplementary
material. All sDFT/EA[2] and sDFT/EA[2,2] non-additive energy

contributions show a much better agreement with sDFT/PW91k
results, as shown in Fig. 4 (top left and top right, respectively),
and reproduce signs correctly. However, the deviations are still too
large to correctly reproduce the shape of the associated potential
energy curves. In addition, sDFT/EA[2] and sDFT/EA[2,2] have
convergence issues in self-consistent field procedures at intermolec-
ular displacements shorter than 0.0 Å. As can be seen from Fig. 4
(bottom left and bottom right), both curves have a qualitatively
incorrect non-bonding character. It should also be noted that poten-
tial energy curves and non-additive XC energy contributions Enad

XC
are very similar for the sDFT/EA[2] and sDFT/EA[2,2] approaches.
Therefore, the use of the electron density ρΦ for evaluations of the
non-additive XC contribution does not significantly change the out-
come of computations when second- or higher-order expansion
terms are employed. In addition, we assessed the performance of
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the sDFT/EA[3] computational protocol. The obtained interaction
energies were found to be very similar to those from sDFT/EA[2]
with the largest deviation of about 0.003 eV. Therefore, we con-
clude that the Neumann series is sufficiently well converged at
the second order of truncation and the use of even higher-order
terms is not likely to lead to considerable improvements. Finally,
we analyzed the basis set and XC functional dependencies of the
sDFT/EA[M] and sDFT/EA[M, M] computational schemes. To that
end, similar computations of interaction energies for Be+ ⋅ ⋅ ⋅H2
were performed using the double-ζ def2-SVP and triple-ζ def2-
TZVP52,53 basis sets, and pairs of XC and kinetic energy functionals
such as (i) LDA and TF,73,74 and (ii) BP8675,76 and LLP91K.44 The
results of this analysis are shown in Sec. S8 of the supplementary
material. A strong dependency of standard sDFT computations on
XC and kinetic energy functionals was reported before in the liter-
ature (e.g., see Ref. 77) and was, therefore, expected to be observed
for sDFT/EA[M] and sDFT/EA[M, M] as well. However, qualita-
tively same and unsatisfactory results, to those presented in Fig. 4,
were obtained with sDFT/EA[M] and sDFT/EA[M, M] showing
only rather minor dependencies on the basis set and XC functional
applied.

C. Semi-empirical approach
As demonstrated in Sec. IV B, the use of our approximations

constructed for the non-additive kinetic energy led to qualita-
tively incorrect results. Since it was also shown that the Neumann
series converges sufficiently well already at the second order, errors
in the interaction energy are probably due to other assumptions
made. First, as outlined above in Sec. II B, we assumed that the
non-interactive kinetic energy of the total molecular system can
be computed according to Eq. (10). Second, and as was pointed
out previously, we incorporated an inconsistency by introducing
a new density ρΦ(r⃗ ). Analyzing these assumptions in more detail
is not a trivial task, which clearly goes beyond the scope of this
work. Instead, we adopt a more pragmatic approach and show how

qualitatively correct results could still be obtained by introduc-
ing purely empirical parameters in orbital-dependent expressions
for the non-additive kinetic energy. This decision is motivated by
sDFT/EA[M] results, which show very little dependence on the basis
set and XC functional used. Therefore, a set of parameters found
for one molecular system, and a specific basis set and functional
might be transferable to other cases. To analyze this hypothesis,
several parametric forms based on Eq. (18) were tested. Among
those are the non-additive kinetic energies Tnad

s being represented
as α(T(1)

+ T(2)
), αT(1)

+ α2T(2), and αT(1)
+ βT(2). Note that com-

putations were still performed self-consistently and parameters α
and β were used as scaling factors for the associated energy- and
Fock-matrix contributions. The best results were obtained with the
latter fit expression, setting α to −1.0 and finding β by minimiz-
ing deviations between sDFT/EA[2] and KS-DFT interaction energy
curves of Be+ ⋅ ⋅ ⋅H2. To that end, the PW91 XC functional and
3-21G basis set were employed. The results of this minimization pro-
cedure (with β = 0.17) are shown in Fig. 5. It can be argued that
the use of a positive α parameter is a more natural choice. How-
ever, since T(1)s and T(2)s obtained from sDFT/EA[2] are positive,
as was mentioned before in Sec. IV B, such a fit does not result in
a bound state.

As can be seen from Fig. 5 (left), the fitted sDFT/EA[2] inter-
action energy curve (denoted as sDFT/EA[2]/fit) shows qualita-
tively correct behavior and outperforms sDFT/PW91k in repro-
ducing the well-depth De value. The corresponding equilibrium
distance is shorter than that from KS-DFT but agrees well with
that from the original coupled cluster computation from Ref. 49.
This improvement in the performance of sDFT/EA[2]/fit is, of
course, not surprising since the fitting was performed on the very
same molecular cluster. However, deviations from KS-DFT results
are still considerable. At the displacement of 0.0 Å, the difference
between sDFT/EA[2]/fit and KS-DFT is about 0.1 eV. It is also
interesting to note that the integrated sDFT/EA[2]/fit density error,
computed according to Eq. (24), is smaller than that from stan-

FIG. 5. Interaction energies (left) and integrated density errors (right) as functions of the intermolecular displacement computed for the Be+ ⋅ ⋅ ⋅H2 complex with KS-DFT-
and sDFT-based approaches. sDFT density errors are computed according to Eq. (24) with KS-DFT density serving as the reference.
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dard sDFT/PW91k at short intermolecular displacements as shown
in Fig. 5 (right).

Subsequently, the parameters found for Be+ ⋅ ⋅ ⋅H2 were used
without re-optimization for the H2O⋅ ⋅ ⋅H2O, H2O⋅ ⋅ ⋅CH3OH,
H2O⋅ ⋅ ⋅(CH3)2O, and CH3OH⋅ ⋅ ⋅CH3OH molecular complexes. To
that end, the larger def2-TZVP basis set was employed. The results
of these computations are shown in Fig. 6. As one can see, all
sDFT/EA[2]/fit interaction energy curves show qualitatively correct
behavior. Furthermore, issues with converging the self-consistent
field procedure are no longer observed. In all four cases, the
use of sDFT/EA[2]/fit results in slightly larger equidistant inter-
molecular distances than those from KS-DFT. Furthermore, the
value of the well-depth De is underestimated for H2O⋅ ⋅ ⋅H2O
and CH3OH⋅ ⋅ ⋅CH3OH by about 0.015 eV and overestimated
for H2O⋅ ⋅ ⋅CH3OH and H2O⋅ ⋅ ⋅(CH3)2O by about 0.015 and
0.024 eV, respectively. Computing root-mean-square deviations of

sDFT/PW91k and sDFT/EA[2]/fit interaction energies from refer-
ence KS-DFT results (on 26 equidistantly separated grid points for
displacements from −0.5 to 2.0 Å), we obtain errors below about
0.04 eV in all cases. sDFT/PW91k outperforms sDFT/EA[2]/fit
for three compounds, namely, H2O⋅ ⋅ ⋅H2O, H2O⋅ ⋅ ⋅(CH3)2O, and
CH3OH⋅ ⋅ ⋅CH3OH, by only about 0.01 eV, whereas sDFT/EA[2]/fit
shows a higher accuracy than sDFT/PW91k by 0.006 eV in the case
of H2O⋅ ⋅ ⋅CH3OH. Furthermore, we computed sDFT/PW91k and
sDFT/EA[2]/fit integrated density errors relative to KS-DFT. The
results of this analysis are presented in Sec. S9 of the supplementary
material. As one can see, sDFT/EA[2]/fit outperforms sDFT/PW91k
in all cases except for the H2O⋅ ⋅ ⋅H2O complex. Therefore, we
conclude that the proposed semi-empirical approach is robust and
has the potential to be transferable between different molecular
systems and basis sets. However, a thorough benchmark study is
required to find optimal parameters applicable to a broad range of

FIG. 6. Interaction energies as functions of the intermolecular displacement computed for the H2O⋅ ⋅ ⋅H2O (top left), H2O⋅ ⋅ ⋅CH3OH (top right), H2O⋅ ⋅ ⋅(CH3)2O (bottom
left), and CH3OH⋅ ⋅ ⋅CH3OH (bottom right) molecular complexes with KS-DFT- and sDFT-based approaches. KS-DFT- and sDFT-based computations are performed using
the PW91 XC functional and def2-TZVP basis set.
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molecular systems and interactions. In this regard, the extended
molecular test sets S22x578 and S66x879 are especially attrac-
tive. Furthermore, other parametric forms could be investigated.
However, this goes beyond the scope of this work and will be
conducted elsewhere.

V. SUMMARY AND CONCLUSIONS
In this work, we presented an alternative route to construct-

ing inexpensive approximations for the non-additive kinetic energy
contribution in sDFT. The use of Slater determinants composed of
non-orthogonal Kohn–Sham-like MOs for computing the kinetic
energy of the total molecular system as an expectation value and
the Neumann expansion of the inverse MO overlap matrix con-
stitute the core of this methodology. By deriving the first few
terms of the Neumann-expanded kinetic energy expression and
taking the corresponding functional derivatives, we constructed
a series of orbital-dependent approximations to the non-additive
kinetic energy, which can be directly and self-consistently incorpo-
rated in sDFT. We also pointed out and discussed the differences
and similarities of the obtained expressions with those from the
projection-based embedding theory, which employs the Huzinaga
operator.6 For testing purposes, similar approximations for the non-
additive XC energy contributions were derived as well. However, it
should be noted that current derivations were carried out for the
case of two subsystems and would require introducing additional
approximations to be formulated in the general case of multiple
subsystems.

Subsequently, we studied the behavior of the Neumann series
in detail and discussed the necessary and sufficient conditions
for its convergence based on the eigenvalue analysis. For larger
molecular systems, an alternative inexpensive technique for per-
forming this analysis was proposed. Furthermore, we demonstrated
that the Neumann expansion converges sufficiently well already
at the second-order truncation level for molecular systems inves-
tigated in this work, namely, water⋅ ⋅ ⋅water, water⋅ ⋅ ⋅methanol,
water⋅ ⋅ ⋅acetone, and methanol⋅ ⋅ ⋅methanol clusters, and for a large
range of intermolecular displacements. The inclusion of higher-
order terms affected the results slightly and was found to be impor-
tant only for very short intermolecular displacements and strongly
interacting molecular systems. Therefore, we conclude that the Neu-
mann series is an efficient and robust tool for approximating the
inverse MO overlap matrix and avoiding expensive matrix inversion
operations.

The derived approximations were applied for computations of
potential energy curves of the Be+ ⋅ ⋅ ⋅H2 electrostatic complex and
compared against standard KS-DFT and sDFT approaches, which
employed explicit functionals of density. Although corrections to the
non-additive kinetic and XC energies expanded to the second-order
showed an agreement with the corresponding energy contributions
from sDFT, the resulting potential energy curves were qualitatively
incorrect. The inclusion of higher-order correction terms, as well
as the use of different XC functionals and basis sets, did not lead
to improved results. In fact, very little dependence of our computa-
tional approach on the choice of the XC functional and basis set was
observed.

This led us to the idea of introducing empirical parameters into
the derived expressions and optimizing them such that deviations

to KS-DFT potential energy curves for Be+ ⋅ ⋅ ⋅H2 are minimized.
As expected, the use of these new semi-empirical approximations
resulted in improved accuracy and better agreement with the KS-
DFT reference for the Be+ ⋅ ⋅ ⋅H2 complex. Most importantly, we
demonstrated that the very same parameters can be employed
for calculations of other molecular clusters while using a larger
basis set still resulting in quantitatively correct interaction ener-
gies. Thus, for water⋅ ⋅ ⋅water, water⋅ ⋅ ⋅methanol, water⋅ ⋅ ⋅acetone,
and methanol⋅ ⋅ ⋅methanol complexes, the average deviations from
KS-DFT energies were about 0.04 eV. For comparison, the stan-
dard sDFT employing the decomposable PW91k55 approximation
led to comparable accuracy and was even slightly outperformed by
our semi-empirical approach in the case of the water⋅ ⋅ ⋅methanol
complex. Furthermore, our approach demonstrated smaller inte-
grated density errors than sDFT for all complexes except for
water⋅ ⋅ ⋅water. Therefore, based on these proof-of-principle com-
putations, we conclude that the obtained semi-empirical approx-
imations have the potential to be transferable between different
molecular systems.

In conclusion, this work is an important step toward devel-
oping novel orbital-dependent approximations for the non-additive
kinetic energy in sDFT. Although the current computational proto-
col requires the use of empirical parameters to correctly reproduce
potential energy curves, it also shows a very good agreement with
reference KS-DFT results for a set of molecular complexes, weak
dependency on the basis set and XC functionals employed, and a
high potential of optimized parameters to be applicable to other
types of chemical compounds without re-optimization. Further-
more, the use of these semi-empirical approximations comes with
a cubic computational cost with respect to the number of atomic
orbitals in the active subsystem. Therefore, this approach is only
slightly more expensive than sDFT with explicit kinetic energy func-
tionals and could be applied to large molecular systems. However,
finding a suitable set of empirical parameters applicable to a broad
range of molecular systems and interaction types could be a chal-
lenging task and requires more thorough benchmarking, which will
be conducted elsewhere.

SUPPLEMENTARY MATERIAL

See supplementary material for (S1) detailed derivations of
non-additive kinetic energy contributions, (S2) derivations of cor-
responding functional derivatives, (S3) new approximations for the
non-additive exchange–correlation contributions, (S4) expressions
in atomic-orbital representation and associated computational cost,
(S5) additional theory aspects on matrix norms, (S6) results of den-
sity integration, (S7) consideration of energy contributions to the
non-additive kinetic energy, (S8) analysis of basis set dependence,
and (S9) integrated density errors.
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