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Kurzfassung

Das Aufkommen zweidimensionaler Schichtmaterialien brachte das enorme Potenzial mit sich,
einstellbare korrelierte Phasen von Materie zu realisieren. Diese Arbeit beschäftigt sich mit der
vielfältigen Physik dieser Materialien und konzentriert sich dabei auf Plattformen auf Basis von
Graphen und Übergangsmetall-Dichalkogeniden, die in den letzten Jahren bemerkenswerte
Fortschritte erfahren haben. Zu den Hauptthemen zählen Interbandkohärenz, Moiré Physik
und Elektrostatik.

Als erstes Beispiel betrachtet diese Arbeit geschichtete Materialien als Plattform zur Realisie-
rung von Exzitonenkondensaten, bei denen Elektron-Loch-Paare spontan und kohärent kon-
densieren. Es wird gezeigt, wie Rastertunnelmikroskopie genutzt werden kann, um die Inter-
bandkohärenz der Exzitonenkondensaten in diesen Materialien zu untersuchen.

Als besonders erfolgreich hat sich das Paradigma des Stapelns und Verdrehens von Material-
schichten erwiesen, wodurch ein langwelliges Moiré-Muster und, unter bestimmten Bedingun-
gen, flache Bänder entstehen. Das beste Beispiel hierfür ist Twisted Bilayer-Graphen beim magi-
schen Winkel, das korrelierte Isolatorphasen und Supraleitung aufweist, obwohl eine einzelne
Graphenschicht keines von beiden zeigt. Der theoretische Hauptkandidat für den Grundzu-
stand in der Isolatorphase von Twisted Bilayer-Graphen ist der Kramers Intervalley-Coherent
Zustand, der einem Exzitonenkondensat ähnelt. In dieser Arbeit zeigen wir, dass dieser Zustand
einzigartig vor bestimmten Arten von Störungen durch ein Analogon des Anderson-Theorems
geschützt ist.

Über zwei Schichten hinausgehend wurde kürzlich gezeigt, dass verdrehteN -Schicht-Graphen
Moiré-Strukturen eine robuste Supraleitung aufweisen, die der von Twisted Bilayer-Graphen
ähnelt. Für N = 4 und N = 5 weist das Phasendiagramm eine robuste supraleitende Tasche
auf, die über die vollständige Füllung der flachen Bänder hinausgeht, was ein experimentelles
Rätsel darstellt. In dieser Arbeit zeigen wir, wie eine sorgfältige Berücksichtigung der dreidimen-
sionalen Natur des Systems dieses Rätsel auf natürliche Weise erklärt. Ein wichtiges Merkmal
geschichteter Materialien ist die Möglichkeit, ihre Dotierung n und das elektrische Verschie-
bungsfeldD durch Anpassung der oberen und unteren Gate-Spannungen zu steuern, wobei n
undD durch lineare Kombinationen der Gate-Spannungen gegeben sind. Während typischer-
weise angenommen wird, dass die Systemeigenschaften hauptsächlich durch D gesteuert wer-
den, haben neuere Experimente an Graphen-Mehrschichten Eigenschaften gezeigt, die offen-
bar nur auf eine einzelne Gate-Spannung empfindlich reagieren. Diese Eigenschaften werden
im Rahmen dieser Arbeit erklärt.

Das langwellige Moiré-Muster weist eine vergrößerte Einheitszelle auf, und im letzten Teil
dieser Arbeit untersuchen wir zwei Konsequenzen daraus. Erstens untersuchen wir die Realraum-
Texturen von Wellenfunktionen in Moiré-Systemen, die aufgrund ihrer großen Einheitszelle
in lokalen Tunnelexperimenten beobachtbar sind. Zweitens analysieren wir die Wirkung ei-
nes Magnetfelds in verdrehten Doppelschicht-Übergangsmetall-Dichalkogeniden, bei denen
die große Einheitszelle den Zugang zum sogenannten Hofstadter-Regime ermöglicht.





Abstract

The advent of two-dimensional van der Waals materials brought with it the remarkable po-
tential to realize tunable correlated phases of matter. This thesis delves into the rich physics of
these materials, focusing on platforms based on graphene and transition metal dichalcogenides,
which have experienced significant progress in recent years. The main themes include interband
coherence, moiré physics, and electrostatics.

As a first example, this thesis considers layered materials as a platform to realize exciton con-
densates, in which electron-hole pairs spontaneously and coherently condense. Characterized
by interband coherence, we demonstrate how the exciton condensate phase can be probed using
scanning tunneling microscopy.

The paradigm of stacking and twisting layers of materials has been remarkably successful,
forming a long-wavelength moiré pattern and producing flat bands under certain conditions.
The prime example is magic angle twisted bilayer graphene, which hosts correlated insulating
and superconducting phases, even though a single graphene layer does not show either phase.
The prime theoretical candidate ground state for the correlated insulators in twisted bilayer
graphene is the Kramers intervalley coherent state, which is analogous to an exciton condensate.
In this thesis, we find that this state is uniquely protected from certain types of disorder by an
analog of Anderson’s theorem.

Going beyond bilayers, twistedN -layer graphene moiré structures have recently been shown
to exhibit robust superconductivity similar to twisted bilayer graphene. ForN = 4 andN = 5,
the phase diagram features a robust superconducting pocket extending beyond full filling of the
flat bands, presenting an experimental puzzle. We show in this thesis, how a careful considera-
tion of the three-dimensional nature of the devices, particularly by taking into account out-of-
plane electric fields, naturally explains this puzzle. An important feature of layered materials is
the ability to control their charge doping,n, and electric displacement field,D, by adjusting top
and bottom gate voltages, where n andD are given by linear combinations of the gate voltages.
While typically, system properties are assumed to be primarily tuned byD, recent experiments
on graphene multilayers revealed features seemingly sensitive only to a single gate voltage. As
part of this thesis, we explain these features.

The long-wavelength moiré pattern features an enlarged unit cell, and in the last part of this
thesis, we explore two surprising consequences of this. Firstly, we study the real-space textures
of wavefunctions in moiré systems, which, due to their large unit cell, are experimentally ob-
servable in local tunneling experiments. Secondly, we explore the effect of magnetic field on the
topological bands in twisted bilayer transition metal dichalcogenides, where the large unit cell
enables access to the so-called Hofstadter regime. We find that the effect of external magnetic
field is most dramatic when it “cancels” the effective field arising due to the band topology. Re-
markably, for zero-field bands that resemble Landau levels, cancelling the effective field by an
external magnetic flux recovers a nearly-free parabolic dispersion.
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1 Introduction

The experimental realization of an atomically thin monolayer in the form of graphene [8] ignited
a transformative era in condensed matter physics [9]. Graphene made it possible to study Dirac
particles on a tabletop [10], with carrier density that could be tuned simply by tuning the volatage
on a nearby gate. Graphene multilayers also proved interesting. They occur in two forms: in the
natural Bernal stacking, and in the metastable rhombohedral stacking. Importantly, in addition
to filling fraction, multilayers offered the additional tunability afforded in doubly gated setups
by varying the difference between the gate voltages [11–13], effectively tuning the displacement
field in the sample. For trilayers and beyond, rhombohedral stacking proved particularly inter-
esting due to the emergence of extremely high density of states [11, 14–16], leading to flat surface
states in the infinite layer limit [17].

However, already for bilayers, there is a fascinating possibility of stacking two monolayers at a
small angle offset that has led to profoundly rich physics. In this case, interference of the lattices
of the two layers creates a beating, or moiré, pattern in real space, significantly enlarging the orig-
inal unit cell. Importantly, as predicted in seminal works [18, 19], the electronic bands in such de-
vices, denoted twisted bilayer graphene (TBG), undergo significant flattening near the so-called
“magic” angle of θ = 1.1◦, amplifying electron-electron interactions. However, achieving this
precise twist angle was a major experimental challenge, accomplished eventually by Pablo Jarillo-
Herrero’s group, with groundbreaking discoveries of superconductivity, first in graphene-based
systems, and correlated insulating behavior [20, 21]. These findings took the condensed matter
community by storm, not least because of the similarity of the phase diagram of twisted bilayer
graphene to that of high-temperature superconductors. The initial findings [20, 21] were soon
reproduced by other groups and provided more information on the physics of twisted bilayer
graphene [22–30], but also pointed towards strong device dependence arising from twist angle
and strain uncertainties. Beyond twisted bilayer graphene, experimentalists have also explored
other possibilities of twisting and stacking graphene layes, leading to new exciting platforms.
For example, in alternating twisted graphene multilayers [23, 31–34], a flat band twisted bilayer
graphene-like sector coexists with other, more dispersive sectors. Another example is helical tri-
layer graphene [35], in which two moiré patterns coexist and relax into macroscopic domains.
We also mention twisted double bilayer graphene [36–38], which features strongly correlated
topological insulating phases.

A few years after the succesful experimental realization of graphene, the successful exfoliation
of monolayers of transition metal dichalcogenides (TMDs) marked another major milestone
[39]. Unlike graphene, TMDs, such as MoTe2 , WSe2, and WTe2, are a family of semiconductors
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1 Introduction

with strong spin-orbit coupling and diverse electronic properties. Given the absence of free
carriers, the community was particularly interested in their optical properties [40, 41], which
are dominated by transitions involving excitons, bound states of electrons and holes, as in two-
dimensional materials the exciton binding energy is enhanced compared to bulk materials.

Thanks to their remarkable excitonic properties, TMD layers provided a deep material push
to the effort to find an exciton condensate [42–44], an elusive state of matter in which excitons
spontaneously condense in a coherent fashion [45–48]. Furthermore, TMD layers allowed the
possibility to engineer bilayer structures with an insulating spacer [49–51], which allow the spa-
tial separation of electrons and holes, as originally proposed for double quantum wells. Com-
pared to these quantum wells, however, TMD bilayers offer greater tunability, allowing inter-
layer electric field and interlayer bias to be varied at will.

Inspired by the success of twisted bilayer graphene, researchers extended the twisting and
stacking paradigm to transition metal dichalcogenides. Compared to twisted bilayer graphene,
TMDs have the additional possibly of stacking different material layers, leading to so-called het-
erobilayers. Interestingly, for heterobilayers, a moiré (beating) pattern emerges already at zero
twist angle, arising due to the differing lattice constant of the two constituent layers. This pro-
posal has been the subject of some very interesting experiments, exhibiting the first example of
the quantum anomalous Hall effect without magnetic doping [52, 53], as well as simulating the
famous Hubbard model [54]. Twisted homobilayer TMDs, consisting of the same underlying
TMD, have arguably proven even more remarkable. Following the theoretical prediction of flat
and detached topological bands [55], experiments on twisted TMD bilayers showed Mott in-
sulating phases [56], superconductivity [57, 58], quantum criticality [59], and, most remarkably,
the integer and fractional quantum anomalous Hall effects [60–64]. Very recently, experiments
on twisted TMD bilayers suggested a fractional quantum spin Hall effect of holes [65] and ap-
peared to feature multiple flat bands of equal Chern number in a given valley [65, 66], resembling
Landau levels.

Motivated by these remarkable discoveries, in this thesis, we delve into the world of layered
materials, with a focus on moiré systems. Figure 1.1 presents a schematic diagram of the topics
covered and some of the connections between them. We begin by introducing moiré models
and deriving the continuum models for twisted bilayer graphene and twisted bilayer transition
metal dichalcogenides in Chapter 2.

In the following Chapter 3, we focus on one of the conceptually simplest proposals, that of
an exciton condensate phase in monolayer and bilayer systems, primarily composed out of tran-
sition metal dichalcogenides. We exploit the fact that in these systems, surface probes can in fact
probe bulk properties, by virtue of their two-dimensional nature. A natural such probe is scan-
ning tunneling microscopy (STM). We show how STM can be used to extract vital properties
of the exciton condensate phase both for monolayer and bilayer condensates. For monolayers,
we find that coherent exciton condensation manifests in interband coherence, which can be
probed by STM. In bilayers, although interband coherence between layers does not manifest
directly in STM, the presence of excitons can be inferred from an additional tunneling peak.

2



Figure 1.1: Schematic showing the six parts of this thesis and their primary connections

The next Chapter 4 builds on interband coherence, but this time in the context of moiré
systems. In particular, it studies the effects of disorder on interband coherence in twisted bilayer
graphene. We find that a prime candidate state, the Kramers intervalley coherent state is directly
analogous to an s-wave superconductor, and derive a corresponding Anderson theorem for this
state.

In the following Chapter 5, we consider the addition of multiple layers, focusing on structures
with an alternating arrangement of twist angles. These arrangements exhibit similar physics to
twisted bilayer graphene, but feature higher magic angles, facilitating experimental realization.
Surprisingly, while superconductivity in twisted bilayer graphene typically vanishes when more
than three charge carriers per unit cell are present, in twisted pentalayer graphene, it persists up
to five carriers per unit cell. In Chapter 5, we resolve this discrepancy using electrostatics and a
powerful insight regarding vertical distributions of charges.

The next Chapter 6 moves to a different class of moiré systems from the graphene family.
These involve Bernal or rhombohedrally stacked graphene layers, such as twisted double bilayer
graphene and rhombohedral pentalayer graphene aligned with hexagonal boron nitride (hBN).
Exhibiting a plethora of interesting correlated phases, these systems have recently attracted great
experimental interest [16, 36–38, 67]. One experimental mystery present in these diverse devices
was the presence of diagonal features in the filling-displacement field plane, apparently tuned by
a single gate only. In Chapter 6, we explain this feature for both twisted double bilayer graphene

3



1 Introduction

and rhombohedral pentalayer graphene, pointing to its origin in the local Bernal stacking com-
mont to both systems.

In the next Chapter 7, we study the real-space properties of multi-component wavefunc-
tions, relevant both to twisted graphene devices and to twisted bilayer transition metal dichalco-
genides, forming a natural bridge between the two main platforms of this thesis. Defining a
real-space Chern number, we find that it can only be non-trivial for wavefunctions with zeroes
in the unit cell, a situation which naturally occurs in the chiral limit of twisted bilayer graphene,
as well as the adiabatic limit of twisted bilayer transition metal dichalcogenides.

In the final Chapter 8, we zoom in on twisted bilayer TMDs, investigating their behavior
under large external magnetic fields, and completing the circle of Figure 1.1. A unique feature
of moiré systems is that their large unit cells allow for the experimental realization of the Hofs-
tadter regime, where magnetic fluxes on the order of a flux quantum thread each unit cell. Our
most notable finding is that, counterintuitively, the bands of twisted bilayer TMDs can simplify
under an applied magnetic field. In particular, we find that when minus one flux quantum is
threaded per unit cell, topological flat bands turn into nearly-free parabolic bands.

4



2 Background

In this Chapter, we introduce the continuum models of moiré systems that form the backbone
of much of this thesis.

2.1 Principles of construction of a moiré Hamiltonian for
twisted structures

Consider a monolayer system with a basis of lattice vectors c1, c2 forming a triangular lattice,
and a single layer Bloch Hamiltonian Hmono(k). The first step to construct a Hamiltonian for a
twisted bilayer is to consider how a single layer is affected upon twisting. Under a rigid rotation
by angle θ, implemented in real space by a rotation matrix

R(θ) =

cos θ − sin θ

sin θ cos θ

, (2.1)

the single-particle Hamiltonian of the rotated system also rotates as

Hθ
mono(k) = Hmono(R(θ)k). (2.2)

Let us now consider two layers stacked on top of each other and rotate the top layer by θ/2 and
the bottom layer by−θ/2with respect to the unrotated positions. Then, we have the following
single particle Hamiltonians for the bottom and top layers:

Hb
mono(k) = H−θ/2

mono (k) (2.3)
Ht

mono(k) = Hθ/2
mono(k). (2.4)

In addition, each layer l = t, b will experience an effective potential and will be able to tun-
nel into the other layer. The continuum model can now be constructed by assuming that the
effective potentials and tunneling only depend on the local relative displacement d(r) of the

5



2 Background

top layer relative to the bottom layer. Then, we can write a general twisted bilayer continuum
Hamiltonian

HM =

Hb
mono(k) + V b[d(r)] T [d(r)]

T †[d(r)] Ht
mono(k) + V t[d(r)]

, (2.5)

where V l=b/t(d) are the potentials on the bottom/top layer and T (d) is the tunneling term.
An important property of the potentials and tunnelings is that changing the displacementd by
a lattice vector should leave them invariant as follows:

V l(d+ c1) = V l(d+ c2) = V l(d) (2.6)
T (d+ c1) = T (d+ c2) = T (d). (2.7)

For a twisted bilayer at twist angle θ, supposing we start at zero displacement, d = 0 at r = 0,
the displacement of the top layer with respect to the bottom layer at position r is then

d(r) = [R(θ)− 1]r. (2.8)

For simplicity, in what follows, we will make the small angle approximation

[R(θ)− 1]r ≈ θẑ × r, (2.9)

with ẑ the unit vector along the out-of-plane z-direction. This implies, that as functions of the
real-space position, r, the tunneling and layer potentials are in fact periodic under translations
by the enlarged, moiré, lattice vectors:

a1 = −1

θ
ẑ × c1 (2.10)

a2 = −1

θ
ẑ × c2. (2.11)

This enlarged periodicity reflects real space beating (moiré) patterns, shown in Fig. 2.1a. The
corresponding moiré reciprocal basis is

G1 = − 1

AUC
ẑ × a2 (2.12)

G2 =
1

AUC
ẑ × a1, (2.13)

where
AUC = |a1 × a2| (2.14)
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2.1 Principles of construction of a moiré Hamiltonian for twisted structures

Figure 2.1: (a) The moiré pattern showing the moiré lattice vectors a1, a2. (b) Reciprocal space plot of the first
shell reciprocal lattice moiré vectors g1, . . . ,g6.

is the moiré unit cell area. The moiré reciprocal basis satisfies

Gi · aj = 2πδij. (2.15)

This emergent moiré periodicity allows us to expand the potentials and tunnelings in a Fourier
expansion in the moiré lattice vectors g, which are given as linear combinations of G1 and G2.
In particular, we have:

V l(r) =
∑
g

V l
ge

ig·r (2.16)

T (r) =
∑
g

Tge
ig·r, (2.17)

where typically one only considers elements to be nonzero for a finite set ofgwith small enough
g. In particular, most studies take g to lie in the first moiré reciprocal shell, satisfying |g| ≤
|G1|. In addition to the zero Fourier mode, g = 0, there are six nonzero vectors in the first
shell. We label these vectors as gj for j ∈ {1, . . . , 6}. g1 ≡ G2 = (4πθ/(

√
3a0), 0), and gj

are defined as the j−1-th counterclockwiseC6z rotations ofg1. We illustrate these basis vectors
in Fig. 2.1b. Using the reciprocal lattice vectors, the moiré Brillouin zone can be constructed in
the standard way.

Importantly, the values of the coefficients at different values of g are related by symmetries.
In the following two Sections, we consider two typical twisted bilayer systems – twisted bilayer
TMDs and twisted bilayer graphene, and construct their continuum Hamiltonians using their
symmetries.
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2.2 Twisted bilayer transition metal dichalcogenides

Transition metal dichalcogenides are semiconductors with strong spin-orbit coupling. The
spin-valley locked active valleys for WSe2 and MoTe2 are at the K and K ′ points, which are
at momenta K = ( 4π

3a0
, 0) and K′ = (− 4π

3a0
, 0) with a0 the lattice constant. Since we can use

time-reversal symmetry to relate the Hamiltonians in the two valleys, we focus on aK valley in
what follows. In theK-valley, we have a parabolic dispersion with the following single-particle
quadratic Hamiltonian

Hmono(k) =
ℏ2(k−K)2

2m∗ , (2.18)

where m∗ is the effective mass in the effective mass approximation. Considering a bilayer, and
applying rotations by ±θ/2 to the top and bottom layers, we obtain the top and bottom layer
single-particle Hamiltonians

Hb
mono(k) =

ℏ2(k−Kb)2

2m∗ (2.19)

Ht
mono(k) =

ℏ2(k−Kt)2

2m∗ , (2.20)

where Kb = R(−θ/2)K is the position of the rotated bottom layer K-point and Kt =

R(θ/2)K is the position of the K-point of the top layer. We plot the positions of the rotated
K-points in Fig. 2.2a, together with the reciprocal vectors g5,g6.

Twisted bilayer TMDs are symmetric under three-fold rotations around the z-axis (C3z), un-
der time-reversal (T ), and under two-fold rotations around the y-axis (C2y), which swaps the
layers. To constrain the Hamiltonian in a single valley, only valley preserving symmetries are
necessary. A convenient choice isC3z andC2yT .

Consider first the symmetry constraints on the layer potentials, which are best obtained by
considering the real space actions of symmetries. C3z imposes that

V l(r) = V l(C3zr), (2.21)

which constrains the Fourier coefficients as follows:

V l
g = V l

C3zg
. (2.22)

The reality of V l(r) implies that
V l
g = (V l

−g)
∗. (2.23)

Finally,C2yT gives the following constraint

V t(x, y) = V b(−x, y), (2.24)
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2.2 Twisted bilayer transition metal dichalcogenides

Figure 2.2: (a) Illustration of the rotated top and bottom layer K-points, together with the two reciprocal vectors
g5,g6, which are relevant for interlayer tunneling. (b) Band structure plot for twisted bilayer WSe2
at twist angle θ = 1.43◦. (c) Sketch of the moiré brillouin zone, together with the path in reciprocal
space used to plot band structures in this work.

which in Fourier space obtains
V t
g = V b

C2yg
. (2.25)

This in particular shows that the constant g = 0 Fourier mode can be neglected as it is equal in
both layers due toC2yT symmetry.

Remarkably, in the first harmonic approximation, in which one takes only the first shell of
reciprocal vectors, the potentials are parametrized by only two parameters: an amplitudeV , and
a phase ψ. The layer potentials then read:

V b(r) =

(
V eiψ

∑
j=1,3,5

eir·gj

)
+ h. c. (2.26)

V t(r) =

(
V e−iψ

∑
j=1,3,5

eir·gj

)
+ h. c., (2.27)

where h. c. denotes the complex conjugate. We now turn to the symmetry constraints on the
tunneling term T (r), which is more subtle than the layer potentials, which could be obtained
simply by considering the real space actions of symmetries. To obtain the symmetry constraints
for the tunneling terms, we need to define the basis of kets |k, t⟩ and |k, b⟩, which correspond
to momentum eigenstates at momentum k in the top and bottom layers, respectively, where k
will typically lie close to the K-valley momentum K .

Let us now discuss the representation ofC3z symmetry on the basis of states expanded around
the K-valley. C3z rotates momentum by 120◦, but, crucially, with respect to the K-point of
each given layer. Formally, it acts on momentum eigenstates in the two layers as follows:

C3z |Kb + k, b⟩ = |Kb + C3zk, b⟩ (2.28)
C3z |Kt + k, t⟩ = |Kt + C3zk, t⟩ . (2.29)
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2 Background

However, to have a Bloch periodic Hamiltonian, we need to measure momentum with respect
to a common origin. Let us therefore measure momentum k with respect to the bottom layer
Dirac point, so that the total momentum is written as Kb + k. In this convention, we obtain
the following non-trivial representation forC3z symmetry on the top layer wavefunctions:

C3z |Kb + k, t⟩ = C3z |Kt −∆K + k, t⟩ (2.30)
= |Kt + C3z(−∆K + k), t⟩ (2.31)
= |Kb +∆K − C3z∆K + C3zk, t⟩ (2.32)
= |Kb − g5 + C3zk, t⟩ , (2.33)

where we defined ∆K = Kt − Kb as the relative momentum shift between the valleys of
the two layers. Note that if we measure momentum with respect to the bottom layer, C3z act-
ing on wavefunctions in the top layer, in addition to rotating momentum, implements also a
momentum boost by −g5. With this, we obtain the followingC3z constraint on the tunneling
term:

Tg = Tg5+C3zg. (2.34)

In particular the additional momentum boost implies that a purely spatially uniform tunnel-
ing term is not allowed by C3z symmetry. Concentrating again on the Fourier components of
smallest magnitude, assuming T0 is nonzero, we see that we have T0 = Tg5 = Tg6 . Therefore,
the simplest symmetry allowed tunneling term is

T (r) = w(1 + eg5·r + eg6·r), (2.35)

where the real constantw parametrizes the strength of interlayer tunneling. We illustrate these
tunnelings in Fig. 2.2a, where a particle at theK-valley of the top layer can either tunnel without
a momentum transfer, or it can pick up a boost by g5 or g6. Altogether, we obtain the twisted
bilayer TMD Hamiltonian in the K-valley in the first harmonic approximation:

HK
tTMD =

 −ℏ2(k−Kb)2

2m∗ + V b(r) w(1 + eig5·r + eig6·r)

w(1 + e−ig5·r + e−ig6·r) −ℏ2(k−Kt)2

2m∗ + V t(r)

, (2.36)

where V b(r) is given in Eq. (2.26) and V t(r) is given in Eq. (2.27).

For physically relevant parameters, this continuum model leads to valley-resolved topological
flat bands [55]. The physical reason for this is that the real-space texture defined by the tunneling
and potential terms forms a real-space skyrmion, and particles tracking the skyrmion experience
an effective magnetic field. We will describe this picture in more detail in Chapter 7. As an exam-
ple, consider the parameters obtained in Ref. [68] as an illustrative example. The parameters for
twisted bilayer WSe2 are (a0,m∗, V, ψ, w) = (0.332 nm, 0.43me, 9meV,−128◦, 18meV),
where me is the bare electron mass. We plot the band structures at twist angle θ = 1.43◦ in
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2.3 Twisted bilayer graphene

Fig. 2.2b, which shows a flat detached Chern number one band. The band structures are plot-
ted along a path in the moiré Brilloun zone, shown in Fig. 2.2c. Note that conventionally, the
K-points of the two layers are referred to as the moiré KM and moiré KM ′ points, so that we
identify Kt = KM ′ and Kb = KM .

2.3 Twisted bilayer graphene

For twisted bilayer graphene, we have a Dirac Hamiltonian at each valley. We start with unro-
tated layers with a Dirac cone of a single spin-valley flavor at momentum K = ( 4π

3a0
, 0), with

a0 the monolayer lattice constant, with the following single-particle Dirac Hamiltonian:

Hmono(k) = vF (k−K) · σ, (2.37)

where vF = 542.1meV · nm is the graphene Dirac velocity and whereσ is the vector of Pauli-
matrices in sublattice space.

Considering a bilayer, and applying rotations by ±θ/2 to the top and bottom layers, we ob-
tain the top and bottom layer single-particle Hamiltonians

Hb
mono(k) = vF [R(−θ/2)k−Kb] · σ (2.38)
Ht

mono(k) = vF [R(θ/2)k−Kt] · σ, (2.39)

where we note that the rotations acting on momentumk in the Hamiltonians for the two layers
have a very small effect on the band structure and are often neglected.

Twisted bilayer graphene is symmetric under three-fold rotations around the z-axis (C3z),
under time-reversal (T ), and under two-fold rotations around the x, y, and z-axes (C2x, C2y,
C2z). To constrain the Hamiltonian in a single valley, only valley preserving symmetries are
necessary, of which a convenient choice isC3z ,C2zT , andC2x.

In discussing symmetries, it is most natural to measure the momentum in each layer with
respect to its respective Dirac point [69]. While in this way our Hamiltonian and eigenfunc-
tions cease being Bloch periodic, we can always come back to the original representation. The
Bloch non-periodicity manifests in the interlayer tunneling terms, which have to be modified
as follows.

T (r) → T (r)ei∆K·r =
∑
g

Tge
i(g+∆K)·r, (2.40)

with the meaning that if the electron tunnels from the top to the bottom layer, it additionally
gains momentum ∆K , as a result of the different momentum origins. The Hamiltonian now
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acts on 4-component wavefunctions Ψ(r) which are the slowly varying envelope functions ex-
panded around each layer’s Dirac cone in the K valley:

Ψ(r) = [Ψb,A(r),Ψb,B(r),Ψt,A(r),Ψt,B(r)]T . (2.41)

The representations of intravalley symmetries on Ψ(r) are as follows:

C3zΨ(r) = ei2π/3σzΨ(C3zr) (2.42)
C2zT Ψ(r) = σxΨ

∗(−r) (2.43)
C2xΨ(r) = σxµxΨ(C2xr), (2.44)

where theC3z representation is the standard representation on a Dirac Hamiltonian and where
µx is the Pauli-x matrix in layer space.

The potential matrices give rise to periodic scalar and vector potentials, which typically arise
due to lattice corrugation [70, 71]. However, in the most elementary approach, such terms are
neglected [19], therefore we set V t/b(r) = 0 for the continuum model of TBG.

The symmetry constraints on the tunneling terms due toC3z ,C2zT , andC2x are respectively:

T (r) = ei2π/3σzT (C3zr)e
−i2π/3σz (2.45)

T (r) = σxT (C2zr)
∗σx (2.46)

σxT (C2xr)σx = T †(r). (2.47)

The simplest possible tunneling term is a spatially uniform tunneling term Tg=0, which for
TBG is a matrix in sublattice space. However, just like for twisted TMDs, C3z enforces that if
Tg=0 ̸= 0, Tg5 and Tg6 are necessarily also nonzero. To see this, note that in the non-periodic
gauge currently chosen Tg=0 actually has a nontrivial spatial dependence ei∆K·r. Under C3z ,
this spatial dependence maps to eiC3z∆K·r and ei(C3z)(C3z)∆K·r, which corresponds precisely to
g = g5 and g = g6, recovering the result obtained for TMDs in a Bloch periodic gauge. The
spatial dependence of the three tunneling terms in the non-periodic gauge is now at wavevectors

q1 ≡ ∆K (2.48)
q2 ≡ C3z∆K (2.49)
q3 ≡ C2

3z∆K, (2.50)

which form an equilateral triangle, shown in Fig 2.3a.

In TBG,C3z therefore imposes that

Tg5 = ei2π/3σzT0e
−i2π/3σz (2.51)

Tg6 = ei4π/3σzT0e
−i4π/3σz , (2.52)
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2.3 Twisted bilayer graphene

Figure 2.3: (a) The two Dirac points, together with the three tunneling vectors in the non Bloch-periodic gauge.
(b) Band structure of twisted bilayer graphene at θ = 1.09◦, with lattice corrugation c = 0.7, showing
extremely flat bands. (c) Band structure of twisted bilayer graphene at θ = 1.09◦ in the chiral limit,
that is, with lattice corrugation c = 0, showing perfectly flat bands with a large gap to the remote
bands.

where the factors of ei2π/3σz arise due to theC3z representation on the Dirac Hamiltonian.

We now use C2zT and C2x to constrain T0, from which we can then obtain Tg5 and Tg6

usingC3z . C2zT restrains Tg=0 as follows:

σxT
∗
g=0σx = Tg=0, (2.53)

where the complex conjugation arises due to the antinuitary nature of the symmetry. Finally,
C2x constrains Tg=0 as follows:

σxT
†
g=0σx = Tg=0. (2.54)

Taken together, this constrains Tg=0 to have the following form:

Tg=0 = wAAσ0 + wABσx + w3iσz, (2.55)

wherewAA parametrizes the strength of intra-sublattice tunneling,wAB that of inter-sublattice
tunnelling, while w3 is an O(θ) term corresponding to an asymmetry between A ↔ A and
B ↔ B tunneling [72], but which we will presently neglect. The tunneling term in the Bloch
non-periodic gauge for TBG therefore reads:

T (r) = (wAAσ0 + wABσx)e
iq1·r + (wAAσ0 + wABσxe

2πi/3σz)eiq2·r+

+ (wAAσ0 + wABσxe
4πi/3σz)eiq3·r, (2.56)
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where it can be noted that the exponential factors multiplying σx simply put the corresponding
complex phases on the off-diagonal of the σx matrix. Putting everything together, we arrive at
the famous Bistritzer-Macdonald Hamiltonian [19] in the K-valley:

HK
TBG =

vFk · σ T (r)

T †(r) vFk · σ

. (2.57)

Typically, we take wAB ≈ 110meV, while wAA = cwAB , where the factor c accounts for
lattice relaxation. At small twist angles, this Hamiltonian leads to two detached bands near
charge neutrality per spin and valley. At the magic angle, the typical energy scale for the Dirac
term (vF |∆K|) is approximately equal to the typical tunneling scale (wAB):

wAB ≈ vF |∆K| = vF |Kt −Kb| = vF θ
magic 4π

3a0
, (2.58)

from which one can find the magic angle condition as θmagic ≈ wAB

vF

3a0
4π

≈ 1.09◦. We plot the
bands of TBG at this angle in Fig. 2.3b, showing their extremely small bandwidth.

An interesting situation arises when the lattice relaxation factor c is set to zero, c = 0. In this
limit, denoted the chiral limit, the Hamiltonian enjoys a new chiral antisymmmetry, which we
denote as C = σz . Indeed, for c = 0, the Hamiltonian of Eq. (2.57) only consists of σx and σy
Pauli matrices, which anticommute with C. In this limit, at the special magic angles, not only
does the Dirac velocity vanish. In fact, as shown in Fig. 2.3c, the entire band becomes flat [73].

There is another antiunitary particle-hole antisymmetry, denoted P [74–77]. P anticom-
mutes with the Hamiltonian of Eq. (2.57). Just like the chiral antisymmetry, this one is in fact
not a physical symmetry, and it only emerges when the small relative rotations in the Dirac
Hamiltonians in Eq. (2.38) are neglected, as we have done in writing Eq. (2.57).

P acts as follows

PΨ(r) = iµyσxΨ
∗(r), (2.59)

with µy the Pauli-y matrix in layer space. To check that P indeed anticommutes with the TBG
Hamiltonian, it is easiest to consider the combination C2zT P . Since C2zT is a symmetry, if
this combination anticommutes, P must be an antisymmetry. Remarkably, C2zT P acts very
simply as

C2zT PΨ(r) = iµyΨ(−r), (2.60)

which confirms the required property if it is noted that T †(r) = T (−r).

14



2.4 Alternating twisted graphene multilayers

2.4 Alternating twisted graphene multilayers

A natural extension of twisted bilayer graphene is to stack twisted bilayers on top of each other,
creating a structure periodic in the vertical direction with a period of two layers, having the
same moiré structure as a twisted bilayer. From this stack, one can then remove the top layer,
obtaining an analogous system with an odd number of layers.

This system is denoted alternating twisted multilayer graphene, and its Hamiltonian in the
K-valley reads [78, 79]:

HK
sp =


vFk · σ T (r) 0 · · ·

T †(r) vFk · σ T †(r)

0 T (r) vFk · σ
... . . .

, (2.61)

where we considerN layers, and where as above we neglected the relative rotations of the Dirac
Hamiltonians and we take T (r) from Eq. (2.56).

Just like one solves a particle in a well problem, we solve this problem by first solving the
infinite layer problem and then restricting to the finite system. For a system of infinite vertical
extent, we define a momentum along the z-direction, kz ∈ (−π, π], which corresponds to the
eigenvalues of vertical translations by two layers. Using this, we define the effective bottom and
top layer wavefunctions in layer space (in what follows, we suppress the sublattice and real-space
indices, since they are not affected) at vertical momentum kz as

|b, kz⟩ =
∑
l odd

eikzl/2 |l⟩ (2.62)

|t, kz⟩ =
∑
l even

eikzl/2 |l⟩ , (2.63)

where |l⟩ corresponds to layer l. In this basis, the Hamiltonian at the K-valley decomposes into
different blocks for each value of kz:

HK
TNG(kz) =

 vFk · σ 2 cos(kz/2)T (r)

2 cos(kz/2)T
†(r) vFk · σ

, (2.64)

resembling the TBG Hamiltonian of Eq. (2.57), but with a rescaled tunneling term.

This decomposition into sectors holds even for a finite system, but now the sectors rather
than being plane waves will be standing waves, formed as superpositions of kz and −kz states,
which have the same effective Hamiltonian. The vertical wavefunctions for the finite systems
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Figure 2.4: Schematics of layer charge distribution (See Eq. (2.72)) for N = 11, showing the three sectors with
lowest effective twist angle, k = 1: red, k = 2: orange, k = 3: green. In experiment to date, k = 1 is
the flattest, “magic" sector.

are obtained by imposing that they vanish on layers l = 0 and l = N +1 of the infinite system.
Vanishing on l = 0 implies that we need to consider odd parity wavefunctions only:

|b, kz,−⟩ =
∑
l odd

sin(kzl/2) |l⟩ (2.65)

|t, kz,−⟩ =
∑
l even

sin(kzl/2) |l⟩ . (2.66)

Vanishing on l = N + 1 leads to the following quantization condition for kz:

kz =
2πk

N + 1
, (2.67)

with k = 1, . . . ⌊N/2⌋ an integer, which labels the TBG-like sectors. For N odd, there is
an additional a decoupled sector, having k = N+1

2
. For this sector, |t, kz,−⟩ of Eq. (2.66)

vanishes. Therefore, there is only one effective layer in this sector. Its Hamiltonian is just the
Dirac Hamiltonian of the underlying graphene. We denote this sector forN odd as the MLG-
like sector.
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2.4 Alternating twisted graphene multilayers

To obtain the unitary basis transformation into the basis of sectors, in which the Hamiltonian
is block diagonal, we need to normalize the layer wavefunctions. The normalized wavefunctions
for sector k with k = 1, . . . ⌊N/2⌋ read:

|b, k⟩ =
√

4

N + 2

∑
l odd

sin

(
πkl

N + 1

)
|l⟩ (2.68)

|t, k⟩ =
√

4

N + 2

∑
l even

sin

(
πkl

N + 1

)
|l⟩ , (2.69)

while forN odd, we have a k = (⌊N/2⌋+ 1)-th MLG-like sector with vector:

|b, k = ⌊N/2⌋+ 1⟩ =
√

2

N + 2

∑
l odd

sin

(
πkl

N + 1

)
|l⟩ (2.70)

Using this, we define theN ×N basis transformation matrix VTNG in layer space as follows:

VTNG = (|b, k = 1⟩ , |t, k = 1⟩ , |t, k = 2⟩ . . .), (2.71)

where we think of |b/t, k⟩ asN -dimensional column vectors.
Using the normalized wavefunctions, and assuming that in a TBG-like sector the particles are

equally likely to be in the effective bottom as in the effective top layer, we obtain the effective
layer distribution of sector k as

W
(k)
l =

2

N + 1
sin2

(
πkl

N + 1

)
, (2.72)

which we plot for N = 11 in Fig. 2.4, showing a typical particle-in-a-box behavior. As will
be discussed in Chapter 5, these differing vertical distributions will prove important for the
electrostatic properties of these systems.

The tunneling term in the TBG-like sector k is rescaled by

Λk = 2 cos

(
πk

N + 1

)
, (2.73)

leading to the effective twist angle
θeff
k = θ/Λk, (2.74)

which has profound experimental consequences. By setting θeff
k=1 = θmagic, we see that the

physical magic angle is enhanced by a factor Λk=1 = 2 cos
(

π
N+1

)
. Crucially, larger angles are

more robust to disorder, providing an experimental advantage. With an increasing number of
layers, there is a continuum of twist angles [78] , with the largest density of twist angles close
to the minimal θeff

k (attained for k = 1). We show an example band structure for N = 11 in
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Figure 2.5: Band structure of magic angle TNG for N = 11.

Fig. 2.5, where the k = 1 sector is at the magic angle and other sectors are progressively more
dispersive as their effective twist angle progressively increases according to Eq. (2.74).

The proposal discussed in this Section was first realized for the case of three layers [23, 33,
80], which hosts a set of flat bands coexisting with a graphene-like Dirac cone. Twisted trilayer
graphene devices exhibit strongly-coupled superconductivity tunable by an out-of-plane dis-
placement field. More recently, twistedN -layer graphene (TNG) devices have been successfully
fabricated for up toN = 5 layers [31, 32], which we will discuss in Chapter 5.
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3 Tunneling signatures of interband
coherence in exciton insulators

In this Chapter, motivated by the experimental advanced on layered materials, we explore the
tunneling signatures of interband coherence in exciton insulators. These results will be included
in a publication in preparation, Ref. [5].

Excitons – bound pairs of electron and hole – are expected to form spontaneously in the
ground state of an intrinsic narrow-gap semiconductor if the binding energy Eb of an isolated
exciton exceeds the band gap EG between the conduction and valence bands [45–48]. When
EG is close to Eb, the exciton density nex is small and the internal structure of the excitons
becomes immaterial. They effectively realize a gas of pointlike bosons, with the residual over-
lap of excitons inducing a finite exciton compressibility. This gas is expected to undergo Bose-
Einstein condensation (BEC) at low temperatures [47]. The formation of the condensate af-
fects the noninteracting band structure only mildly by increasing the gap Eg. However, the
associated emergence of interband coherence spontaneously breaks the separate charge conser-
vation symmetries of the conduction and valence bands, permitting exciton superflow under
suitable conditions. As the exciton density increases, the system eventually crosses over into a
Bardeen-Cooper-Schrieffer (BCS) regime, in which overlapping bare valence and conduction
bands spontaneously develop an excitation gap.

While exciton condensates have been studied for almost sixty years, recent years have seen a
surge of interest in exciton insulators driven by the emergence of breakthrough materials. Re-
cent work on monolayers of ZrTe2 [42] and WTe2 [43, 44], bilayer transition metal dichalco-
genides [49–51], and bulk Ta2Pd3Te5 [81, 82] presented evidence for exciton-insulator formation,
improving upon earlier candidate materials such as Ta2NiSe5 [83–86] and TiSe2 [87, 88]. Un-
equivocal detection of an exciton insulators is challenging since it is a state with spontaneous
mixing of conduction and valence bands [46, 89, 90]. If this band mixing occurs between bands
with a finite momentum offset, it generically couples to the lattice [89], which can also drive
band mixing. Recently, Refs. [42, 91, 92] doubt a purely excitonic origin of the states observed
in Ta2NiSe5 and TiSe2, suggesting instead a lattice driven mechanism. Bilayer condensates in
which conduction and valence bands are localized to separate layers, do not couple to the lattice
[93, 94], while the recent experiments on ZrTe2 [42] and Ta2Pd3Te5 [82] rely on careful mod-
elling to preclude a lattice-driven phase. Experiments on monolayer WTe2 [43, 44] argued based
on transport anomalies and did not observe any lattice distortion, possibly as a result of the
specific spin ordering [95].
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3 Tunneling signatures of interband coherence in exciton insulators

Diverse experimental techniques were used to probe candidate materials for exciton-insulator
formation. Angle-resolved photoemission spectroscopy (ARPES) [42, 82, 83, 87, 92, 96] mapped
band structures, and the spontanoues opening of a gap at small temperatures was taken as evi-
dence. Bilayer systems, with extraordinary tunability afforded by bias voltages and external gates
[97, 98], allowed the thermodynamic measurement of exciton density as a function of the band
gap EG [49–51]. Furthermore, bilayer systems allow exciton superflow to be probed, manifest-
ing in perfect Coulomb drag [99, 100], similarly to quantum Hall bilayer condensates [101–104].
Notably, ARPES, thermodynamic and transport measurements as global probes are sensitive
to disorder. For example, Ref. [49] obtained a compressibility peak upon onset of exciton for-
mation, potentialy due to sample disorder.

A natural tool to study local features with high spatial and energy resolution is scanning tun-
neling microscopy (STM). STM has, however, been used in the study of excitonic states only in
a limited way, primarily to confirm a gapped state [42, 43, 81, 82, 84, 96]. The usefulness of STM
beyond establishing gapped states was highlighted by recent experiments on bulk Ta2Pd3Te5 [81]
and on flat band graphene based systems [105–107]. These state-of-the-art experiments utilized
STM to probe finite-momentum interband coherence, which arises as a secondary excitonic or-
der in Ta2Pd3Te5 [81], or as a ground state inter-valley coherent order in graphene platforms [76,
108–110].

Here we theoretically study how STM can be applied to study excitonic insulators, going be-
yond the paradigm of establishing a gapped state. To emphasize this point, we focus on the BEC
regime, in which there is a gap even in the absence of exciton formation. In fact this low exciton
density regime has two advantages compared to BCS. Firstly, the effect of exciton-lattice cou-
pling is smaller [46], rendering a lattice-driven transition less likely. Secondly, screening effects
are negligible for small electron-hole density. On the other hand, screening is crucial in the BCS
regime, particularly in bilayer devices, in which it causes an early transition into an electron-hole
plasma as the density increases [111, 112].

In monolayer samples (Fig 3.1a), in which excitonic coherence happens between conduction
and valence bands offset by a certain momentum (so that the band gap is indirect), lattice-
symmetry breaking spatial oscillations in the tunneling signal are expected – which occur, de-
pending on the spin-ordering, in the spin-resolved or spin-averaged tunneling. These oscilla-
tions reflect excitons forming a coherent condensate. Importantly, we show that the combi-
nation of spatially averaged and oscillatory components of tunneling allows the exciton wave-
function to be determined. Furthermore, we predict finite peaks (rather than divergences as
in the BCS regime) at the band edge in the spatially averaged tunneling, obtaining analytical
expressions for their shape, finding sharper peaks on the heavier band side.

In a bilayer sample, the tip electrons only directly couple to the top layer, as shown Fig. 3.1b.
Assuming the conduction band is in the top layer and the valence band in the bottom layer,
the presence of excitons enables a new type of tunneling process, depicted in Fig. 3.1b. In this
process, an electron in the conduction band in the top layer bound into an exciton tunnels into
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3.1 Exciton condensates

Figure 3.1: (a) Schematics of STM tunneling into a monolayer. The tip can effectively tunnel into both bands.
A shift of the conduction and valence bands by wavevector w in momentum space, leads to additional
wavelength 2π

|w| spatial oscillations in the STM signal, which allow the exciton wavefunction to be deter-
mined. (b) Schematics of a tunneling experiment into a bilayer exciton condensate. The tip electrons
can only directly tunnel into the top layer. Exciton condensation enables a process in which a con-
duction electron bound in an exciton tunnels out, leaving behind a spare valence hole, leading to an
additional peak in tunneling spectra.

the tip, leaving behind a hole in the bottom layer. This process is only possible if excitons are
present, and leads to an additional peak in the tunneling conductance.

This Chapter is structured as follows. In Section. 3.1, we introduce the basic model of an exci-
ton insulator, including a solution using mean-field decoupling and a perturbative low-density
solution. In Section 3.2, we introduce the framework for discussing scanning tunneling mi-
croscopy measurements. In Section 3.3, we study the tunneling signatures in a minimal spinless
monolayer exciton insulator, and present a method of recovering the exciton wavefunction. In
Section 3.4, we discuss signatures in bilayer exciton condensates. In Section 3.5, we discuss the
complications due to the spin degree of freedom. We conclude with a discussion in Sec. 3.6.

3.1 Exciton condensates

In this Section, we first introduce the basic model of an exciton insulator in Subsection 3.1.1,
In the following Subsection 3.1.2, we introduce the mean-field decoupling. Finally, in Subsec-
tion 3.1.3, we undertake a perturbative solution in the low exciton density limit.
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3 Tunneling signatures of interband coherence in exciton insulators

3.1.1 Basic model

We begin our discussion with an elementary two-band model of exciton condensation [46, 90],
which neglects the spin degree of freedom. It describes the conduction and valence bands within
the effective-mass approximation,

ϵck =
ℏ2k2

2mc

+
1

2
EG (3.1)

ϵvk = −ℏ2k2

2mv

− 1

2
EG. (3.2)

We assume that the bands are isotropic with effective massmc (mv) of the conduction (valence)
band and band gap EG. The momenta k are measured from the respective band extrema. As-
suming charge neutrality, we omit a chemical potential term.

In terms of underlying Bloch functions, the conduction and valence band operators c†k,c and
c†k,v are given as

c†k,i =

∫
dr
ei(k+wi)·r
√
NUC

uk+wi,i(r)ψ
†(r), (3.3)

whereψ†(r) creates an electron at position r,NUC is the number of unit cells,wi is the location
of the band extremum of band i = c, v, and uk+wi,i(r) is the periodic part of the Bloch func-
tion normalized within the unit cell. The extrema of conduction and valence band are offset
in momentum by w = wc − wv. With a view towards van der Waals materials, we assume
the Bloch states to be perfectly localized along the z-direction, with band i localized at zi. We
choose zc = 0, so that zc = zv = 0 for monolayers and zv < 0 for a bilayer. For this choice,
the conduction-band layer is above the valence-band layer as in Fig. 3.1b.

Including the Coulomb interaction, the Hamiltonian takes the form

Ĥ =
∑
k

ϵckc
†
k,cck,c +

∑
k

ϵvkc
†
k,vck,v

+
1

2A

∑
q

: Vcc(q)ρq,cρ−q,c + Vcv(q)ρq,cρ−q,v + (c↔ v) : +EC . (3.4)

Here,A is the sample area, normal ordering is with respect to the intrinsic semiconductor (i.e.,
conduction-band electrons and valence-band holes), and Vij(q) is the unscreened Coulomb
interaction for bands i, j,

Vij(q) =
e2

2ϵϵ0|q|
exp(−|q| · |zi − zj|), (3.5)
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3.1 Exciton condensates

with the electron chargee, vacuum permittivity ϵ0, and a background relative dielectric constant
ϵ. We included the electrostatic charging energyEC of a parallel-plate capacitor

EC =
1

2ACG
: N̂2

ex :, (3.6)

with the interlayer capacitance per unit area CG = ϵϵ0
e2
|zc − zv|−1 and the exciton number

operator N̂ex =
1
2

∑
k(c

†
k,cck,c − ck,vc

†
k,v). (The charging energyEC vanishes for a monolayer

condensate.) Finally, ρq,c/ρq,v denotes the electron density in the conduction/valence band.
The Hamiltonian in Eq. (3.4) assumes the dominant term approximation, which neglects

the momentum dependence of wavefunction overlaps and interband scattering [46]. In this
approximation, the electron density is just the sum of the densities

ρq,i =
∑
k

c†k,ick+q,i (3.7)

in the two bands. Neglecting the momentum dependence of band overlaps is equivalent to ap-
proximating uk+wi,i(r) ≃ uwi,i(r). This is justified when uk+wi,i(r) is slowly varying with k

on the scale of the inverse Bohr radius of the excitons. In what follows, we also use the simpli-
fied notation uwi,i(r) → ui(r). In general, the electron density involves mixed terms involving
both conduction and valence band operators, leading to interband scattering. For monolayer
systems, these can be neglected when conduction and valence bands are offset by a finite mo-
mentum w (Fig 3.1a) and the Coulomb potential Vw ∝ 1/|w| is suppressed relative to in-
traband contributions [46]. For bilayer systems with conduction and valence bands residing in
different layers, the neglect of interband scattering is justified by the vanishing overlap between
the conduction and valence band wavefunctions [94, 113, 114] (Fig. 3.1b).

Within the dominant term approximation (DTA), interband scattering is neglected and the
model has separate charge-conservation symmetries for conduction and valence electrons. In-
terband coherence spontaneously breaks these separate symmetries, leaving only overall charge
conservation. In monolayer systems, interband coherence results in spatial density modulations
at the wavevectorw, forming a charge density wave (CDW) within the spinless model. The ori-
gin of this CDW is arbitrary, leading to a gapless Goldstone mode. However, interband scatter-
ing (neglected in the DTA) explicitly breaks the separate charge conservation symmetries and
generally pins the origin of the CDW, gapping out the Goldstone mode. Consequently, while
monolayer exciton condensates spontaneously break the lattice translation symmetry, the inde-
pendent charge conservation symmetries are explicitly broken by interband scattering terms in
the interaction.

3.1.2 Mean-field solution

The Coulomb attraction between electrons in the conduction band and holes in the valence
leads to spontaneous condensation of electron-hole pairs (excitons) as the band gap EG is re-
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3 Tunneling signatures of interband coherence in exciton insulators

duced below the exciton binding energyEb [46–48]. In the BEC limit, we can view
∑

k ϕkc
†
k,cck,v

as the creation operator of an exciton with the (normalized, so that 1
A

∑
k ϕ

2
k = 1) hydrogenic

1s wave function ϕk in momentum representation. The corresponding Bose-condensed state
takes the form [90]

|Ψλ⟩ = exp

(
λ
∑
k

ϕkc
†
k,cck,v

)
|IS⟩ , (3.8)

where |IS⟩ =
∏

k c
†
k,v |vac⟩ is the ground state of the intrinsic semiconductor. The eigenvalue

λ of the coherent state controls the exciton density, with nex = |λ|2 in the dilute limit.
More generally, the exciton wave function ϕk can be viewed as a variational parameter [90].

Expanding the exponential, the (normalized) coherent state can be rewritten as

|Ψλ⟩ = Πk(ukc
†
k,v + vkc

†
k,c) |vac⟩ , (3.9)

where

uk =
1√

1 + λ2ϕ2
k

(3.10)

vk =
λϕk√

1 + λ2ϕ2
k

. (3.11)

This shows that the BEC ansatz is in fact a Hartree-Fock approximation in terms of the varia-
tional Slater determinant |Ψλ⟩, which is not limited to the BEC limit.

The optimal Slater determinant is obtained by mean-field decoupling the full interacting
Hamiltonian of Eq. (3.4). This leads to the mean-field Hamiltonian [46, 90, 113]

ĤMF =
∑
k

(
c†k,c c†k,v

)
hmf

ck,c
ck,v

 ; hmf =

 ϵ̄ck ∆k

∆k ϵ̄vk

. (3.12)

Here, the single-particle energies

ϵck = ϵck −
1

A

∑
k′

Vcc(k− k′)⟨c†k′,cck′,c⟩+
nex

2CG
, (3.13)

ϵvk = ϵvk +
1

A

∑
k′

Vvv(k− k′)⟨ck′,vc
†
k′,v⟩ −

nex

2CG
(3.14)

are renormalized by Fock and (for bilayer systems) interlayer capacitance terms, nex = ⟨N̂ex⟩/A
denotes the exciton density, and

∆k = − 1

A

∑
k

Vcv(k− k′)⟨c†k′,cck′,v⟩ (3.15)
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3.1 Exciton condensates

measures the strength of interband coherence. We choose the order parameter to be real, which
can be achieved by a suitable gauge transformation. Above, ⟨Ô⟩ denotes the expectation value
of an operator Ô in the trial state in Eq. (3.9). The self-consistent ground state of Eq. (3.12) is
the Slater determinant, which minimizes the expectation value of the full Hamiltonian [115].

According to Koopman’s theorem, the mean-field Hamiltonian hmf in Eq. (3.12) describes
the single-particle excitations [116]. This yields two bands with energies

Ek,± =
ϵ̄ck + ϵ̄vk

2
±

√(
ϵ̄ck − ϵ̄vk

2

)2

+∆2
k. (3.16)

and eigenvectors (uk,−vk) for the upper (+) and (vk, uk) for the lower (−) band. The corre-
sponding Bogoliubov operators are

d†k,+ = ukc
†
k,c − vkc

†
k,v, (3.17)

d†k,− = vkc
†
k,c + ukc

†
k,v. (3.18)

The mean-field Hamiltonian in Eq. (3.12), written in terms of these operators is diagonal:

ĤMF =
∑

k,α=±
Ek,αd

†
k,αdk,α. (3.19)

At charge neutrality, all d†k,− orbitals are occupied, while all d†k,+ orbitals are empty. Thus,
the mean-field ground state is simply

|GS⟩ = Πk(ukc
†
k,v + vkc

†
k,c) |vac⟩

= Πk(uk + vkc
†
k,cck,v) |IS⟩ , (3.20)

where the first line emphasizes the Hartree-Fock nature and the second the electron-hole pairing
of |GS⟩. Using the expectation values ⟨c†k,cck,c⟩ = ⟨ck,vc

†
k,v⟩ = v2k and ⟨c†k,cck,v⟩ = ukvk in

this state, the self-consistency equation reads(
ℏ2k2

2m
+ Eg +

1

A

∑
k

v2k
CG

− 2

A

∑
k′

Vcc(k− k′)v2k′

)
ukvk =

=

[
1

A

∑
k′

Vcv(k− k′)uk′vk′

]
(u2k − v2k), (3.21)

with the reduced massm = mcmv/(mc +mv).
We briefly make several comments. The excitonic ground state in Eq. (3.20) is reminiscent

of the BCS ground state of superconductivity. Indeed, it has been suggested that decreasing
EG into the semimetallic regime leads to a BCS state of electrons and holes [90]. However, this
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3 Tunneling signatures of interband coherence in exciton insulators

mean-field picture faces a series of subtleties. First, exciton-exciton interactions are generically
attractive at large distances, resulting in a tendency of excitons to form molecules, which can in
turn undergo BEC [111, 117–119]. Second, depending on details, the gas phase can be unstable to
the formation of liquid droplets of excitons [120, 121]. Last, for increasing electron-hole densities,
screening effects reduce the effective electron-hole attraction [112, 114, 122–125].

For bilayer condensates, biexciton and liquid-droplet formation are irrelevant, as the out-of-
plane dipole moment of the excitons, represented by Eq. (3.6), renders the exciton-exciton in-
teraction repulsive [113]. However, pairing is weakened due to the reduced interband Coulomb
interaction, so that pairing is suppressed by screening effects at smaller densities [123–125], likely
rendering only the BEC regime accessible.

In monolayer samples, weakly bound biexcitons should form at the smallest densities [111, 117–
119] and a theory based on excitons is, strictly speaking, not valid. However, as biexcitonic bind-
ing is weak, we neglect this complication. At large densities, the electron-hole liquid renders the
BCS regime inaccessible unless there is strong exciton-lattice coupling. However, such a phase
would not classify as a pure interaction-driven exciton insulator. In contrast, lattice distortion
in the BEC regime is small [46].

3.1.3 Low exciton density solution

For both monolayers and bilayers, we will focus on the low-exciton-density (BEC) regime, where
we can exploit a systematic expansion of the mean-field solution [47, 90]. ForEG > Eb, there is
only the trivial solution uk = 1, vk = 0. ForEG < Eb, there will be a finite density of excitons
in the ground state given by nex = 1

A

∑
k v

2
k. To lowest order in the low-density limit (small

vk), Eq. (3.21) reduces to the excitonic Schrödinger equation [90]

ℏ2k2

2m
vk −

1

A

∑
k′

Vcv(k− k′)vk′ = −EGvk. (3.22)

This equation is solved by setting EG = Eb, the binding energy of the corresponding ground
state (hydrogenic 1s) wavefunction vk = λϕk. At this order, one therefore recovers the bosonic
coherent state of the excitons in Eq. (3.8).

The exciton density is determined by considering higher-order contributions in Eq. (3.21),
assuming vk is small. Sinceλhas units of [distance]−1, the appropriate dimensionless expansion
parameter is in factλa∗B , with the natural lengthscale of the system being the Bohr radius, a∗B =
4πϵ0ϵℏ2
e2m

. Physically, λa∗B ≪ 1 is equivalent to nex(a
∗
B)

2 ≪ 1, the low exciton density limit.
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3.1 Exciton condensates

While the small expansion parameter is λa∗B , for clarity of notation, we write our expansion
in terms of λ instead. We know from Eq. (3.22) that to lowest order, vk = λϕk andEG = Eb.
Assuming this lowest-order solution, we expand to higher orders.

vk = λϕk + λ2v
(2)
k + λ3v

(3)
k + . . . (3.23)

uk =
√

1− v2k (3.24)

EG = Eb + λE
(1)
G + λ2E

(2)
G + . . . , (3.25)

where we choose the functions ϕk, v(2)k ,v(3)k , . . . to be orthogonal to each other, and where
v
(n)
k ∝ (a∗B)

n as a result of expanding in terms of λ and not λa∗B .

To order λ2, Eq. (3.21) reads:

E
(1)
G ϕk +

ℏ2k2

2m
v
(2)
k − 1

A

∑
k′

Vcv(k− k′)v(2)k′ = −Ebv(2)k . (3.26)

Projecting onto ϕk and using Eq. (3.22), we obtain E(1)
G = 0. Without E(1)

G , we recover the
lowest order Eq. (3.22) for v(2)k , so that v(2)k ∝ ϕk, implying v(2)k can be absorbed into ϕk.
Therefore, we set v(2)k = 0.

To order λ3, Eq. (3.21) reads:[
E

(2)
G +

1

A

∑
k′

ϕ2
k′

CG
− 2

A

∑
k′

{
Vcc(k− k′)ϕ2

k′ − ϕkVcc(k− k′)ϕk′
}]
ϕk+

+

[
(
ℏ2k2

2m
+ Eb)ϕk −

1

A

∑
k′

Vcv(k− k′)ϕk′

]
ϕ2
k

2
+

+
ℏ2k2

2m
v
(3)
k − 1

A

∑
k′

Vcv(k− k′)v(3)k′ = −Ebv(3)k . (3.27)

Firstly, note that the second line vanishes by merit of Eq. (3.22). Secondly, multiplying by ϕk

and summing over k removes the v(3)k term, allowingE(2)
G to be evaluated as:

E
(2)
G = − 1

CG
+

2

A2

∑
k,k′

[
Vcc(k− k′)ϕ2

kϕ
2
k′ − ϕ3

kVcv(k− k′)ϕk′
]
, (3.28)

where we used that ϕk is normalized.
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3 Tunneling signatures of interband coherence in exciton insulators

The exciton compressibility dµex
dnex

= −dEG

dnex
= −E(2)

G is obtained by noting that nex = λ2 +

O(λ6), and is given by the following expression

dµex

dnex
=

1

CG
− 2

A2

∑
k,k′

[
Vcc(k− k′)ϕ2

kϕ
2
k′ − ϕ3

kVcv(k− k′)ϕk′
]
, (3.29)

where the first term is due to the geometric capacitance and reflects the dipole-dipole repulsion
of excitons in bilayers, the second term is the intraband exchange energy gain, while the last term
is the inter-band exchange repulsion.

In the monolayer case with 1/CG = 0 and a 2D Coulomb interaction, Eq. (3.22) can be
solved analytically, giving the binding energy ofEb = 4Ry∗ (in terms of the excitonic Rydberg
constant Ry∗), and the wavefunction

ϕk = a∗B
√
2π

1

(1 + (ka∗B)
2/4)

3
2

, (3.30)

where a∗B is the excitonic Bohr radius. Furthermore, knowledge of this wavefunction allows the
sums over k and k′ in Eq. (3.29) to be performed, obtaining the numerical value of the exciton
compressibility

dµex

dnex

∣∣∣∣
monolayer

≈ 6.0Ry∗(a∗B)
2. (3.31)

Knowledge of the wavefunction also allows the pairing term ∆k to be evaluated

∆k =
∑
k′

1

A
Vcv(k− k′)uk′vk′ ≈

∑
k′

1

A
Vcv(k− k′)λϕ1s

k′ . (3.32)

Comparing with the excitonic Schrödinger equation, Eq. 3.22, we can also write this as

∆k =

(
ℏ2k2

2m
+ Eb

)
λϕ1s

k. (3.33)

Finally, we also evaluate the intraband Fock term, which reads

ΣFock(k
′) =

1

A

∑
k

Vvv(k− k′)(vk)
2 =

1

A

∑
k

Vcc(k− k′)(vk)
2. (3.34)

To evaluate it in the low density limit, we plug in vk from Eq. (3.23). To order λ2, we obtain

ΣFock(k) ≈
1

4π2

∫
dk′Vvv(k− k′)(λϕ1s

k′)2. (3.35)
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For general k, this integral cannot be evaluated analytically. We can nevertheless analytically
obtain a Taylor expansion of ΣFock(k) giving

ΣFock(k)/Ry
∗ ≈ 3π2

2
nex(a

∗
B)

2 − 15π2

32
nex(a

∗
B)

2(ka∗B)
2 + . . . , (3.36)

where . . . stand for terms of order O[(ka∗B)
4]. Keeping only terms up to (ka∗B)

2 implies that
these expressions are only accurate for k ≈ 0 – close to the band edge. In Subsection 3.3.1
below, we will use the above expression to evaluate the mean-field energies Ek,± and densities
of states in the low density limit.

3.2 Tunneling probes

Let us denote ψ(rtip) the electron operator at the position of the tip, and assume the system to
be in an initial state |i⟩ of energy Ei. Then, the tunneling conductance at tip-sample bias V is
according to Fermi’s golden rule given by

dI

dV
=

2π

ℏ
t2e2gsν0

∑
f

[
| ⟨f |ψ†(rtip) |i⟩ |2δ(Ef − Ei + eV )+

+ | ⟨f |ψ(rtip) |i⟩ |2δ(Ei − Ef + eV )
]
, (3.37)

where t is the tunneling amplitude, ν0 is the tip density of states per spin, and gs = 2 is a factor
accounting for spin degeneracy. The sum is over final many-body states |f⟩ having energyEf .

For a fermionic mean-field system, the above expression can be considerably simplified. First,
by inverting Eq. (3.3), the electron operatorψ(rtip) is expanded in terms of the band operators:

ψ†(rtip) =
∑
k

∑
i

1√
NUC

e−i(k+wi)·rtipu∗k+wi,i
(rtip)c

†
k,i. (3.38)

Next, projectors onto each mean-field band α at momenutm k are defined as:

P
(α)
i,j (k) = ⟨i|k, α⟩ ⟨k, α|j⟩ , (3.39)
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3 Tunneling signatures of interband coherence in exciton insulators

where |k, α⟩is the solution of the mean-field Hamiltonian at k with energyEk,α. For the spin-
less exciton system of Sec. 3.1, we have the following projectors onto the upper and lower bands
(α = ±) at k:

P+(k) =

 uk

−vk

(uk −vk
)
=

 u2k −ukvk
−ukvk v2k

 (3.40)

P−(k) =

vk
uk

(vk uk

)
=

 v2k ukvk

ukvk u2k

, (3.41)

which encode all the information about the eigenstates of the mean-field Hamiltonian, Eq. (3.12).

Using this framework, the tunneling conductance at sample-tip bias V can be compactly
written as a sum over the mean-field eigenstates:

dI

dV
=

2π

ℏ
t2e2gsν0Tr

[
Φ(rtip)

A

∑
k,α

P (α)(k)δ(Ek,α − eV )

]
, (3.42)

where we defined a matrix of wavefunctions at the position of the tip as[
Φ(rtip)

]
i,j

= AUCe
i(wj−wi)·rtipu∗wi,i

(rtip)uwj ,j(rtip), (3.43)

where AUC denotes the unit cell area. Note that in this equation, the weak dependence on
momentumkof periodic parts of the Bloch functionsuwi+k,i(r)was neglected. The advantage
of the above expression is that it separates the real-space dependence on the band wavefunctions,
encoded in Φ(rtip), from the dependence on the solution of the mean-field equations, which
is to a large extent (entirely in the dominant-term approximation) independent of the detailed
structure of the band wavefunctions. The diagonal components of Φ(rtip) are squared moduli
of wavefunctions and have the lattice periodicity, while off-diagonal comonents have additional
oscillations at wavevector (wi −wj) if wi ̸= wj . These off-diagonal terms lead to signatures
of translational symmetry breaking in monolayer condensates.

Spatial averaging in this framework is straightforward. Assuming the tip tunnels at z = 0,
we obtain the spatial average of Φ(rtip), which is the only term depending on rtip in Eq. (3.42),
as follows:

1

A

∫
z=0
drtip Φ(rtip) = Diag(δzj ,0), (3.44)

where δzj ,0 is one for layers states localized at z = 0 and zero otherwise.
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Figure 3.2: Spatially averaged DOS for a monolayer [Eq. (3.45)]. Numerical results (blue) are compared to analyt-
ical results from Eqs. (3.49),(3.50), working at nex = 0.025 (a∗B)

−2 (a) for equal masses, mc = mv

(b) for unequal masses, mv = 3mc.

For a monolayer, we have that zj = 0 for each j, and the right hand side becoms the identity
matrix. The spatially averaged dI

dV
(denoted dI

dV
) is then

dI

dV

∣∣∣∣
monolayer

=
2π

ℏ
t2e2gsν0

1

A

∑
k,α

δ(Ek,α − eV ), (3.45)

measuring the total density of states (DOS).
Since neither the tunneling amplitude t nor the tip density of states ν0 are directly experi-

mentally accessible, we express our results in terms of:

G0 = gs
m

ℏ3
t2e2ν0, (3.46)

which corresponds to a spatially averaged conductance into a parabolic band with massm. Ex-
perimentally, this conductance can be obtained from the normal state conductances into the
conduction and valence bands, which differ from the above equation only by the replacement
m→ mc for the conduction band andm→ mv for the valence band.

Note that strictly speaking,Ek,α in Eq. (3.42) should be measured with respect to the chemi-
cal potential, as the tip bias physically corresponds to the difference of electrochemical potentials
of the sample and the tip. For a gapped system like an exciton condensate, the chemical poten-
tial can be anywhere in the gap, with position tunable by a back gate, so that there is no natural
choice of chemical potential. Therefore, we do not include it, noting that our dI

dV
spectra hold

up to an overall energy shift.

3.3 Tunneling into monolayer exciton condensates – spinless
case

Let us now consider a spinless monolayer, in which the conduction band minimum and valence
band maximum are offset by a wavevector w = wc −wv, see Figure 3.1a. For simplicity, and
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3 Tunneling signatures of interband coherence in exciton insulators

to emphasize the essential physics, we assume in this section thatw is incommensurate with the
lattice. The wavefunction matrix at r is

Φspinless(r) = AUC

 |uc(r)|2 e−iw·ru∗c(r)uv(r)

eiw·ruc(r)u∗v(r) |uv(r)|2

, (3.47)

which has oscillatory off-diagonal components breaking lattice periodicity. Due to the structure
of Eq. (3.42), therefore, if the projector matrices P±(k) have off-diagonal components, the
spatial dependence of dI

dV
will break lattice translation symmetry.

In this Section, we first discuss spatially averaged tunneling in Subsection 3.3.1. We subse-
quently discuss the spatial dependence of dI

dV
in Subsection 3.3.2. We conclude with Subsec-

tion 3.3.3, which presents a method to extract the exciton wavefunction by combining the spa-
tially averaged and spatially dependent measurements.

3.3.1 Spatially averaged tunneling

As shown in Eq. (3.45), spatially averaged tunneling in a monolayer probes the total density
of states. We can obtain analytical insights by using the perturbative solution in the low ex-
citon density limit, Eq. (3.23). In this limit, we obtained the value of the pairing term ∆k in
Eq. (3.33), the value of the intraband Fock renormalizations in Eq. (3.36), as well as the exciton
compressibility in Eq.(3.31). Together, these are sufficient to obtain the mean-field energies,
defined in Eq. (3.16), to linear order in nex.

Firstly, to linear order in nex, the gap increases to

E0,+ − E0,− =
[
4− 6.0ñex + 16πñex − 3π2ñex

]
Ry∗, (3.48)

where we defined the exciton density in atomic units as ñex = nex(a
∗
B)

2. The first two terms are
the single-particle band gapEG = Eb − dµex

dnex
nex, whereEb = 4Ry∗ is the monolayer binding

energy, and where dµex
dnex

= (6.0)Ry∗(a∗B)
2 is the inverse exciton compressibility, obtained in

Eq. (3.31). The third term, (16πñex) Ry
∗, is the increase of the interacting gap due to a finite

pairing term ∆k on the off-diagonals in Eq. (3.12). To evaluate it, we use the analytical expres-
sion of Eq. (3.33). The last term, (−3π2ñex) Ry

∗ = −2ΣFock(k = 0), is due to the intraband
Fock term of Eq. (3.36) evaluated at k = 0. This term acts to reduce the gap.

Secondly, the tunneling conductance dI
dV

at positive bias is

dI

dV
(eV > 0) = G0Θ(eV − E0,+)[

m

mc

+
15π2

64
ñex −

256πñex(
4 + mc

m
(eV − E0,+)/Ry

∗)3
]−1

, (3.49)
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Figure 3.3: (a) Wavevector w component of dI
dV at nex = 0.041(a∗B)

−2 (orange) and nex = 0.041(a∗B)
−2 (blue).

We take mc = mv . (b) Wavefunction deduced from a combination of oscillating and average dI
dV ,

plotted as a function of k2 = eI
G0 Ry∗ (a∗B)

−2, cf. Eq. (3.56). Shown in dashed red is the analytical
wavefunction, Eq. (3.30) multiplied by a constant to fit the inferred wavefunctions.

while at negative bias, it is

dI

dV
(eV < 0) = G0Θ(E0,− − eV )[

m

mv

+
15π2

64
ñex −

256πñex(
4 + mv

m
(E0,− − eV )/Ry∗

)3
]−1

, (3.50)

where the first term in square brackets is the non-interacting term, the second term is a mass
renormalization due to the intraband Fock term, and the third term is due to the excitonic pair-
ing, leading to a peak in the tunneling signal at the band edge. Note that the above results were
obtained using a Taylor expansion of the intraband Fock term aroundk = 0 given in Eq. (3.36),
meaning they are only valid close to the band edge (eV ≈ E0,±).

The main conclusion to be drawn from Eqs. (3.49) and (3.50) is that for differing conduction
and valence band masses, the peak at the band edge will be more pronounced for the heavier
band. Numerical solution of the mean-field equations, shown in Figs. 3.2a,b confirms these
analytical expectations. In these plots, we compare the analytical results (shown in red) with
Hartree-Fock numerical simulations (shown in blue) for equal (a) and different (b) masses. The
analytical expressions match well close to the band edge, accurately capturing the more pro-
nounced effect of excitons on the heavier side. On the other hand, further away from the band
edge, the analytical and numerical results deviate. This is a result of using a Taylor expanded ex-
pression for the intraband Fock [Eq. (3.36)], leading to large deviations for |eV | → ∞, where
we expect the non-interacting density of states to be recovered. Our Taylor expanded expression
for the intraband Fock term, however, wrongly predicts a mass renormalization in this limit.
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3 Tunneling signatures of interband coherence in exciton insulators

3.3.2 Tunneling current oscillations

Studying the spatial Fourier transform of dI
dV

reveals exciton-driven oscillations at wavevector
w and more generally at w +G for a reciprocal lattice vector G:

dI

dV

∣∣∣∣
w+G

=
2π

ℏ
t2e2gsν0 ⟨uwv ,v|uwc+G,c⟩

1

A

∑
k

ukvk[δ(Ek,− − eV )− δ(Ek,+ − eV )], (3.51)

where the wavefunction overlap is defined as

⟨uwv ,v|uwc+G,c⟩ =
∫
UC

dru∗v(r)e
iG·ruc(r), (3.52)

with UC denoting the unit cell. This overlap typically decays quickly with G, implying the
strongest signal at w. A crucial difference from the spatially averaged result of Eq. (3.45) is the
additional weight factor ukvk.

In the low exciton density limit, the perturbative solution of Sec. 3.1.2 gives

ukvk ≈
√
Anexϕ

1s
k , (3.53)

with the exciton wavefunction ϕ1s
k given in Eq. 3.30. We plot the oscillatory component in

Figure 3.3a for two representative values of the exciton density nex, where we use the value
⟨uwc,c|uwv ,v⟩ = 1

2
for the band overlap, modelling a scenario in which the conduction and

valence bands have similar orbital character. Note that due to the ukvk factor, the oscillatory
signal decays quickly away from the band edge.

These lattice-symmetry breaking oscillations in dI
dV

are a signature of a coherent exciton con-
densate in the BEC limit, and are analogous to the Kekulé pattern observed recently in graphene
devices [105–107]. Importantly, these oscillations would not be present for an incoherent exciton
gas [114], which occurs at elevated temperatures.

3.3.3 Recovering the wavefunction

Remarkably, by combining the spatially averaged and wavevector-w measurements, the exci-
ton wavefunction can be recovered as follows. Firstly, the wavevector w measurement dI

dV

∣∣
w

[Eq. (3.51)] is divided by the spatially averaged measurement dI
dV

[Eq. (3.45)], cancelling the
density of states factor. Assuming a rotationally symmetric solution (suggested by the fact that
the exciton ground state is the symmetric 1s state), we obtain at positive bias

dI

dV

∣∣∣∣
w

/
dI

dV
(V > 0) ∝ Θ(eV − E0

+)uk(V )vk(V ), (3.54)
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Figure 3.4: (a) Spatially averaged dI
dV into a bilayer EC for |za−zb| = 0.2 a∗B for two values ofnex. The appearance

of a peak at negative bias is a highlight of exciton condensation, whose integrated weight gives nex. (b)
Like (a) but with |za − zb| = 0.5 a∗B . The integrated weight of the negative bias peak yields nex, cf.
Eq. (3.59). For both plots, we take mc = mv .

where k = |k|. The function k(V ) is for eV > E0
+ defined implicitly as

Ek(V ),+ = eV, (3.55)

where monotonicity ofEk,+ was assumed, which is a natural assumption in the BEC regime.

Secondly, a change of variables from bias to momentum needs to be performed. To that end,
we use that the total spatially-averaged current I at positive biasV can be obtained by integrating
dI
dV

from the conduction band bottom up to the bias V . This integral is in turn related to the
total number of states up to the momentum k(V ) [defined in Eq. (3.55)] corresponding to the
bias V as follows

I(V ) =

∫ Ek(V ),+

E0
+

d(eV )
dI

dV
= G0

Ry∗

e
[k(V )a∗B]

2. (3.56)

Noting that I(V ) is directly observable in an STM experiment, k(V ) can be obtained and in-
verted, allowing the recovery of ukvk and therefore [using Eq. (3.53)] also of the exciton wave-
function.

We show the resulting quantity obtained using a numerical mean-field solution as a func-
tion of k2 in Figure 3.3b in blue and orange, comparing to the analytical expectation ϕ1s

k of
Eq. (3.30), shown in dashed red. For small nex (shown in orange), the shape can be fit perfectly
with the analytical form, where only the overall prefactor of the wavefunction needs to be fit
(shown in dashed red). On the other hand, for larger nex (shown in blue), it deviates for small
momenta. This deviation results because vk becomes large for small momentak, so that assum-
ing uk ≈ 1 as in Eq. (3.53) is no longer valid. Nevertheless, we conclude that in the low exciton
density limit, spatial oscillations in the STM signal, in addition to establishing an exciton con-
densate, enable the form of the exciton wavefunction to be recovered.
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3 Tunneling signatures of interband coherence in exciton insulators

3.4 Tunneling into a bilayer exciton condensate

In a bilayer setup, only the conduction band is tunneled into, cf. Figure 3.1b. In this case
uk,v(rtip) = 0 vanishes due to the vertical offset and the matrix of wavefunctions Φ(rtip) is

Φ(rtip) =

|uc(rtip)|2 0

0 0

. (3.57)

This form implies that there is no lattice translation symmetry breaking – the only spatial de-
pendence is lattice periodic. We therefore concentrate on spatially averaged tunneling, which
already shows important differences to averaged tunneling in a monolayer.

The matrix of wavefunctions will pick out the (1, 1) component of the projector matrices
[Eq. (3.40) and Eq. (3.41)], yielding

dI

dV
=

2π

ℏ
t2e2ν0gs

1

A

∑
k

[
v2kδ(Ek,− − eV ) + u2kδ(Ek,+ − eV )

]
, (3.58)

which probes the DOS, but weighted by the factors (vk)2 and (uk)
2 for the upper and lower

bands, respectively.

In Figures 3.4a and 3.4b, we show the spatially averaged conductance dI
dV

in a bilayer for two
values of interlayer distance |zc−zv |

a∗B
= 0.2, 0.5, respectively. The presence of excitons mani-

fests in the satellite peak emerging at negative bias, arising from the (vk)2 term in Eq. (3.58).
Physically, it reflects the exciton-enabled possibility for the conduction band electrons bound
to valence holes to tunnel out, leaving behind a spare hole in the valence band, illustrated in
Fig. 3.1a. Increasing |zc− zv| reduces the exciton binding energy [126], so that the satellite peak
and conduction band come closer together, as seen by comparing Fig. 3.4b to Fig. 3.4a.

Integrating dI
dV

across the satellite peak provides a measurement of the local exciton density
in the ground state:

I(V = −∞) =

∫ −∞

E0
−

dV
dI

dV
= −G04π

Ry∗

e
nex, (3.59)

which is particularly useful in inhomogeneous samples wherenex has a spatial variation, render-
ing global probes inaccurate.

We note that while the presence of an additional peak is a signature that excitons are present,
in contrast to the monolayer case, STM in the bilayer setup is not sensitive to exciton coherence.
The satellite peak will occur even for an incoherent Bose gas, as the process in Fig. 3.1a does not
depend on excitons forming a BEC.

36



3.5 Tunneling into monolayer exciton condensates – extension to spinful condensates

3.5 Tunneling into monolayer exciton condensates –
extension to spinful condensates

Since exciton condensates can also possess a spin-structure, in this Section we consider tunnel-
ing into a spinful exciton condensate. First, in Subsection 3.5.1, we generalize the framework of
Section 3.2 to the spinful case. We then introduce a minimal spinful model of exciton conden-
sates in Subsection 3.5.2, analyzing it in the context of tunneling probes in Subsection 3.5.3.

3.5.1 Tunneling including spin

The spin-structure of exction condensates can be probed by a tip that is partially polarized along
a certain spin direction, with the following densities of states for the two spins in the tip:

ν↑ = ν0 + δν/2 (3.60)
ν↓ = ν0 − δν/2, (3.61)

where δν parametrizes the difference between the densities of states for the two spins. We define
electron operators for the two spins s =↑ / ↓ in the tip

ψ†
s(rtip) =

∑
k

∑
i

ϕk,i(rtip, s)c
†
k,i, (3.62)

where the band label i also runs over (pseudo-)spin labels. We also define wavefunction matrices
for each spin:

[Φs(r)]i,j = AUCe
i(wj−wi)·ru∗wi,i

(r, s)uwj ,j(r, s). (3.63)

Separating into terms proportional to ν0 and δν, the local tunneling conductance reads

dI

dV
=

2π

ℏ
t2e2Tr

{[
ν0(Φ↓(r) + Φ↑(r)) +

δν

2
(Φ↑(r)− Φ↓(r))

]
1

A

∑
k,α

P (α)(k)δ(Ek,α − eV )

}
. (3.64)

As we will see, the δν term probes the spin structure.

3.5.2 Minimal spinful exciton insulator model

The simplest realistic model for an exciton condensate including spin was introducing in [46].
In this time-reversal invariant model, we have doubly (spin) degenerate conduction and valence
bands and assume independent spin-rotation symmetry in the conduction and valence band
(no spin-orbit coupling). This model can be thought of as two copies of the model of Sec. 3.1.
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3 Tunneling signatures of interband coherence in exciton insulators

Time-reversal symmetry forces wc and wv to be time-reversal invariant momenta so that the
momentum difference w = wc − wv is also a time-reversal invariant momentum, which we
assume to be nonzero. Using the mean-field ground state for the spinless case, Eq. (3.20), one
mean-field charge neutral ground state for this spinful model is simply two copies of the spinless
solution:

|GS⟩ = Πk,s=↑,↓(uk + vkc
†
k,c,sck,v,s) |IS⟩ , (3.65)

which has doubly degenerate upper and lower bands with energies given in Equations (3.16).

Using the basis set{|k, c, ↑⟩ , |k, c, ↓⟩ |k, v, ↓⟩ |k, v, ↓⟩}, the projector onto the spin-degenerate
upper and lower bands is given by a tensor product

P±
I (k) = P±(k)⊗ I, (3.66)

where I is the 2-by-2 identity matrix. Explicitly, we have for the upper projector

P+
I (k) =


(uk)

2 0 −ukvk 0

0 (uk)
2 0 −ukvk

−ukvk 0 (vk)
2 0

0 −ukvk 0 (vk)
2

, (3.67)

and analogously for the lower band projector. Within this model, there isU(2)×U(2) symme-
try, so that other ground states can be generated by rotating the spin axis of conduction/valence
bands. In fact, the entire ground state manifold can be generated by the following transforma-
tion: w 0

0 I

, (3.68)

wherew ∈ U(2) is a 2-by-2 unitary matrix rotating the spin axis in the conduction band. The
projectors are now labeled by the matrixw and read:

P±
w (k) =

w 0

0 I

P±
I (k)

w† 0

0 I

. (3.69)

By analyzing the energetics of different matrices in the presence of terms beyond the dom-
inant term approximation, Halperin and Rice [46] find two candidate ground state matrices.
The first, denoted the charge-density wave (CDW), reads:

wCDW = I, (3.70)
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while the second, denoted the spin-density wave (SDW), reads:

wSDW = n · σ, (3.71)

where n is a unit vector and σ is the vector of Pauli matrices. The CDW state is simply the state
in Eq. (3.65), and can be understood as two identical copies of the spinless exciton condensate.
For n = (0, 0, 1), the SDW state also consists of two such copies, but with opposite sign of the
order parameter for the two spins. The SDW state for a general n can then be understood as a
rotated version of the n = (0, 0, 1) state, having opposite sign of the order parameter for the
two spin components defined with respect to the direction n.

We note that Halperin and Rice [46] find that at small electron-phonon coupling strength,
the SDW state is the ground state, while at large enough electron-phonon coupling, the CDW
state becomes the ground state.

3.5.3 Tunneling into the spinful model

For the above spinful model, the sum of the wavefunction matrices for the two spin components
is given as

Φ↑(r) + Φ↓(r) = Φspinless(r)⊗ I, (3.72)

while their difference is

Φ↑(r)− Φ↓(r) = Φspinless(r)⊗m · σ, (3.73)

wherem is the spin polarization direction in the tip. The sum contributes to spin-averaged tun-
neling [proportional to ν0 in Eq. (3.64)], while the difference contributes to the spin-polarized
component [proportional to δν in Eq. (3.64)].

First, consider spin averaged tunneling [proportional toν0 in Eq. (3.64)]. Spatial averaging re-
covers the spinless answer (discussed in Section 3.3), probing the total density of states. Similarly
to the spinless case, excitons will cause spatial oscillations in dI

dV
at wavevectorw+G. However,

since we are assuming time-reversal symmetry, w is a commensurate wavevector. This implies
specifically that −w and w are equivalent points in the Brillouin zone. Therefore, both off-
diagonal components in Eq. (3.47) contribute to a given Fourier component. With this caveat,
the result for the oscillating, spin-averaged component is

dI

dV

∣∣∣∣
w+G

=
2π

ℏ
t2e2ν0 ⟨uv|uc⟩Tr

(
w + w†)
1

A

∑
k

ukvk[δ(Ek,− − eV )− δ(Ek,+ − eV )]. (3.74)
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Importantly, compared to the spinless model, we have an extra factor Tr
(
w + w†). For the

SDW state, this factor vanishes as the oscillations of the up and down spin exactly cancel. For
the CDW state, on the other hand, we recover two times the answer of Subsection 3.3.2. The
additional factor of two can be traced back to −w and w being equivalent wavevectors in this
time-reversal invariant model. On the other hand, in the spinless model, we assumed that w is
an incommensurate wavevector. As in Subsection 3.3.3, the wavefunction can be recovered by
combining the oscillatory and spatially averaged signal for the CDW state.

The spin-polarization component [proportional to δν in Eq. (3.64)] can be evaluated analo-
gously. The spatial average vanishes for both candidate states (CDW and SDW) under consider-
ation, as neither of them has an overall magnetization. However, there is a wavevector-(w+G)

Fourier component, which reads:

dI

dV

∣∣∣∣
w+G

=
2π

ℏ
t2e2

δν

2
⟨uv|uc⟩Tr

[
m · σ(w + w†)

]
1

A

∑
k

ukvk[δ(Ek,− − eV )− δ(Ek,+ − eV )]. (3.75)

This is only non-vanishing for the SDW order parameter, for which we the trace evaluates as
Tr
[
m · σ(w + w†)

]
= 2m · n. The oscillating signal is maximal when the tip magnetization

is aligned with the SDW direction. These oscillations in spin-resolved tunneling allow the re-
covery of the underlying momentum space exciton wavefunction for the SDW state, following
the method of Subsection 3.3.3.

3.6 Discussion

To conclude, scanning tunneling microscopy is ideally suited to probe exciton condensation,
enabling the extraction of important information like exciton density and exciton wavefunc-
tions. Its local nature enables the focusing on low-disorder regions suitable for exciton con-
densation, a big advantage compared to angle-resolved photo-emission spectroscopy [42, 83, 87].
Furthermore, our suggested method is especially powerful in combination with sample engi-
neering, which enables a whole range of model parameters to be studied in a single device [127].
While exciton density can also be measured by other means, STM allows the exction density to
be measured locally. This provides an important advantage in inhomogeneous samples, where
exciton density exhibits spatial variations.

While our focus was on the BEC regime of exciton insulators, we now comment on the pos-
sible STM signatures in the regime of higher exciton density. For bilayers, the appearance of a
satellite peak is a feature specific to the BEC limit. For increasing carrier density, the conduction
band would cross the chemical potential at some point, providing states to tunnel even in the
absence of excitonic correlations. In this BCS regime, the main signature would be a gap, which,
however, is expected to be strongly affected by screening. For monolayers at larger carrier den-
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sities, the oscillatory signal associated with interband coherence should still manifest, but the
exciton wavefunction becomes strongly modified due to the presence of other excitons. In the
semimetallic regime, furthermore, a spontaneous gap opening due to excitons can be probed
by STM, mirroring the current paradigm.

An interesting open question is the effect of finite temperature [114]. At finite temperature,
fermionic mean-field in the BEC regime breaks down [90, 128, 129], failing to account for the
center-of-mass motion of excitons. Upon increasing temperature, the exciton condensate is ex-
pected to undergo a BKT transition, and eventually turn into a classical exciton gas [114]. For
a bilayer, this will lead to thermal smearing. However, the satellite peak should persist so long
as excitons are present. On the other hand, for a monolayer, quasi-long range order is lost be-
yond the BKT transition, leading to the disappearance of lattice-symmetry breaking oscillatory
components in dI

dV
.
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4 Anderson Thoerem for twisted bilayer
graphene

The results of most of this Chapter have been published as Ref. [2], co-authored by Gal Shavit,
Christophe Mora, Yuval Oreg, and Felix von Oppen. The research was conducted by the author
of this thesis and was discussed with the other coauthors. The results of the last Section, Sec. 4.5, of
this Chapter have been published as Ref. [1], co-authored by Gal Shavit, Christophe Mora, Yuval
Oreg, and Felix von Oppen. The contribution of the author of this thesis was to aid the analysis, in
particular to clarify how disorder enters into the toy model considered there.

We move on to moiré systems in the form of twisted bilayer graphene, but continue with the
theme of interband coherence. As mentioned in the Introduction, the phase diagram of twisted
bilayer graphene is characterized by a plethora of superconducting and correlated insulating
phases [20, 25, 29, 30]. The most prominent of these correlated insulators occur at even integer
fillings of the moiré flat bands.

A prime candidate state to understand these correlated insulators is the Kramers intervalley
coherent (K-IVC) state [76, 108–110, 130–132]. These states exhibit a pattern of magnetization
currents, which triple the graphene unit cell, thereby breaking the lattice translation symme-
try as well as time reversal. The associated spontaneous interband coherence between the two
valleys of the TBG band structure gaps out the moiré Dirac points and induces insulating be-
havior. A recent work reports evidence for the K-IVC state by measuring the magnetic-field
dependence of the thermodynamic gap [133]. In general, the appearance and strength of insu-
lating states tend to be device dependent [29, 30]. A possible explanation for this sample-specific
behavior lies in residual disorder associated with random strain or impurity potentials. Thus, it
is important to study and understand their effects.

In this Chapter, we focus on understanding the effect of local impurities on the correlated
states in TBG. We show that for the K-IVC state, one can systematically classify impurities
according to their ability to induce subgap excitations, which diminish or even eliminate the
insulating gap. Our discussion is strongly informed by a far-reaching analogy with the familiar
problem of classifying impurities in s-wave superconductors [134].

Physically, these analogies can be understood by noting that K-IVC states can be thought of
as binding holes in one valley to electrons in the other, akin to excitonic insulators, discussed in
the previous Chapter 3. This is analogous to binding time-reversed electrons into Cooper pairs
According to Anderson’s theorem [134], the ability of impurities to induce subgap excitations in
s-wave superconductors is determined by whether or not they respect time-reversal symmetry.
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4 Anderson Thoerem for twisted bilayer graphene

We find that for the K-IVC state, particle-hole symmetry plays the same role as time-reversal
symmetry does for superconductors.

In contrast to the K-IVC state, we find that there are no corresponding Anderson theorems
for other possible insulating ground states such as the valley polarized and valley Hall states.
This Chapter is organized as follows. In Section 4.1, we introduce the projected theory of
twisted bilayer graphene, using which the different mean-field ordered states can be formulated.
In Section 4.2, we recall the Anderson theorem for s-wave superconductivity. In Section 4.3,
we formulate the Anderson theorem for the K-IVC state, classifying disorder according to its
transformation properties under symmetries of TBG. We also comment on the possibility of
an Anderson theorem for other candidate ground states of TBG. In Sec. 4.4, we classify physi-
cally relevant disorder according to their transformation properties and whether they satisfy the
prerequisites of our Anderson theorem or not. Finally, in Sec. 4.5, we present the results of a
self-consistent calculation based on a toy model of TBG.

4.1 Projected theory of twisted bilayer graphene: symmetries
and correlated insulators

In this section we introduce the strong coupling theory of correlated insulators in twisted bi-
layer graphene, obtained by projecting the TBG Hamiltonian onto the two flat bands in each
spin and valley flavor, therefore eight bands in total. Furthermore, we neglect the small relative
twist of the Dirac Hamiltonians of the two layers in Eq. (2.38), in order to exploit the emergent
(approximate) particle-hole antisymmetry, defined in Eq.(2.59).

To study correlated states, it is advantageous to write the projected Hamiltonian in a special
basis, denoted the Chern basis, which diagonalizes the sublattice polarization operator projected
onto the flat bands. This is equivalent to projecting onto the flat bands and then adding an
infinite staggered mass term projected onto the bands. While in monolayer graphene, such a
mass term leads to topologically trivial bands, in twisted bilayer graphene, this mass term in fact
leads to topological bands in a given valley, since in a single valley, the two underlying Dirac
cones (one for each layer) have the same chirality.

Specifically, ignoring the spin degree of freedom, which will only play a spectator role in what
follows, we have four basis states |uk,f,s⟩ at each momentum k, where s = A/B labels the
sublattice polarization and f = K/K ′ the valley degree of freedom.

Let us denote the Pauli matrices acting on the sublattice space as σα, and the Pauli matrices in
valley space as τα. In this notation, the Chern number of a band is given by C = σzτz , which
flips sign upon flipping valley as the two valleys are related by time-reversal symmetry.

So far the basis states are determined only by their momentum and the eigenvalues under
τz and σz . There is, however, an arbitrary choice of an overall phase for each state. We can
use this arbitrariness to make the representation of the projected time reversal T and particle-
hole P operators particularly simple. Time reversal flips momentum and preserves sublattice,
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4.1 Projected theory of twisted bilayer graphene: symmetries and correlated insulators

which implies that T |uk,K,s⟩ ∝ |u−k,K′,s⟩. We can now adjust the phases to demand that
this proportionality turns into an equality, giving the following simple form for the projected
time-reversal operator:

T = τxK. (4.1)

Similarly, the particle-hole antisymmetry preserves valley but flips sublattice and momentum,
cf. Eq. (2.59). Therefore, we must have that P |uk,f,A⟩ ∝ |u−k,f,B⟩, as well as P |uk,f,B⟩ ∝
|u−k,f,A⟩, with possibly different constants of proportionality for different states. Following
[76], we choose the basis state phases so that P is given as

P = iσyτzK. (4.2)

This choice is natural for the discussion of the K-IVC state, but leads to a more complicated
representation of theC2zT symmetry:

C2zT = eiθ(k)σxK, (4.3)

where θ(k) is an irremovable phase [76].

Another important symmetry is conservation of valley charge, which is associated with in-
variance under U(1) valley rotations, represented by

UV = eiθτz . (4.4)

These symmetries allow the projected band Hamiltonian h(k) to be constrained as follows

h(k) = h0(k)τz + hx(k)σx + hy(k)σyτz, (4.5)

where time-reversal symmetry enforces h0(k) = −h0(−k) and hx,y(k) = hx,y(−k).

Within the mean-field approximation for the K-IVC state [76], the band Hamiltonian h(k)
is complemented by the order parameter hIVC = ∆σy(τx cos θ+ τy sin θ), where θ denotes an
arbitrary phase. In view of the associated magnetization currents, the K-IVC state breaks time
reversal spontaneously, T hIVCT −1 = −hIVC. However, it preserves a modified time-reversal
symmetry [76]

T ′ = iτyK, (4.6)

which concatenates T with a valley rotation, T ′ = τzT . Both T and valley rotations are sym-
metries of the single-particle Hamiltonian, so that the mean-field Hamiltonian for the K-IVC
stateH(k) = h(k)+hIVC conserves the Kramers time reversal T ′ (with T ′2 = −1) as a whole.
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4 Anderson Thoerem for twisted bilayer graphene

4.2 Anderson’s theorem for s-wave superconductors

To clearly bring out the analogies, as well as differences, between TBG and superconductors,
we begin our discussion with a review of Anderson’s theorem for s-wave superconductors [134–
137], using a formulation which turns out to be adaptable to TBG. Starting from the second-
quantized BCS mean-field Hamiltonian H = 1

2

∫
drΨ†(r)HΨ(r), we write the Bogoliubov-

de Gennes (BdG) Hamiltonian

H =

 He ∆

∆ Hh

, (4.7)

in a four-component Nambu formalism, using the basis Ψ = [ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑]. The normal-

state Hamiltonians He/h for electrons (e) and holes (h) as well as the pairing ∆ are matrices
in spin space. For s-wave pairing, ∆ is proportional to the unit matrix. In the following, we
assume that ∆ is spatially uniform and chosen to be real.

The BdG Hamiltonian is constrained by antisymmetry under particle-hole conjugation, mean-
ing PHP−1 = −H . As a consequence, the normal-state Hamiltonians of electrons and holes
in Eq. (4.7) are related by time reversal T ,

Hh = −T HeT −1. (4.8)

This can be deduced by defining Pauli matrices τα and sα in particle-hole and spin space, respec-
tively. Then, particle-hole conjugation is implemented by P = −iτyT = τysyK and squares
to unity, P2 = 1, while time reversal takes the form T = isyK with T 2 = −1 (K implements
complex conjugation).

We separate the normal-state Hamiltonian He = H0 + U into a spatially homogeneous
part H0 and a (local) perturbation U . While we assume H0 = T H0T −1 to be time-reversal
symmetric, a general perturbation U = U+ + U− can have components U± = ±T U±T −1,
which are even (+) or odd (−) under time reversal. Combining these symmetry properties
under time reversal with Eq. (4.8), the BdG Hamiltonian in Eq. (4.7) can be written compactly
as

H = H0τz +∆τx + U+τz + U−τ0. (4.9)

Importantly, one observes that time-reversal-symmetric perturbations anticommute with the
order-parameter term, {∆τx, U+τz} = 0, while the time-reversal breaking term, U−, com-
mutes.

It can now be seen quite generally that time-reversal-even perturbations do not reduce the
BdG gap (Anderson’s theorem). Given that antisymmetry under particle-hole conjugation P
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4.3 Anderson’s theorem for the Kramers inter-valley coherent state

enforces the eigenenergies to be symmetric about zero energy, the spectrum can be deduced
from the square ofH ,

H2 = (H0 + U+)
2 +∆2, (4.10)

implying that the magnitude of the eigenvalues of H is bounded from below by ∆. This ar-
gument uses the assumption that the gap remains uniform in the presence of the perturbation,
but holds regardless of the particular spatial structure of the impurity potential.

Conversely, perturbations, which are odd under time reversal generally reduce the gap. A
uniform Zeeman field described byU− = B·s reduces the gap to∆−|B|, provided the normal-
state Hamiltonian is spin-rotation invariant. Local magnetic impurities withU− = JS · sδ(r)
are well-known to induce Yu-Shiba-Rusinov states at subgap energies [138–141].

4.3 Anderson’s theorem for the Kramers inter-valley coherent
state

For twisted bilayer graphene in the K-IVC state we have the mean-field Hamiltonian

H(k) = h(k) + hIVC, (4.11)

which can be thought of as the analog of the BdG Hamiltonian for the K-IVC state. We will
now make the analogies yet more explicit by a change of basisH → UHU † with

U =

1 0

0 iσy

. (4.12)

In the new basis, which we refer to as the particle-hole basis, the Chern number becomesC =

σz . Transforming the Hamiltonian in this manner, we find

H(k) = H0(k)τz +∆(τx cos θ̃ + τy sin θ̃) (4.13)

(θ̃ = θ + π
2

). Here, we make the dependence on the valley Pauli matrices τα explicit, whileH0

and ∆ are still matrices in sublattice space. We find H0(k) = h0(k) + hx(k)σx + hy(k)σy
for the single-particle Hamiltonian of the K valley, while ∆ is simply proportional to the unit
matrix. The transformation (4.12) to the particle-hole basis also changes the explicit forms of
the time-reversal and charge-conjugation operations, T → UT U † and P → UPU †, which
yields P = iσyK and T ′ = −τxP .

Equation (4.13) is closely analogous to the BdG Hamiltonian of s-wave superconductors,
with particle-hole space replaced by the valley degree of freedom and spin space replaced by
sublattice space. In Eq. (4.13), the band Hamiltonian H0(k) is analogous to the normal-state
Hamiltonian. It multiplies τz as a consequence of the chiral antisymmetry PT = iτy of the
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4 Anderson Thoerem for twisted bilayer graphene

TBG Hamiltonian. Moreover, the term describing K-IVC order is analogous to the pairing
term in the BdG Hamiltonian, being offdiagonal in valley and proportional to the unit matrix
in sublattice space.

Beyond the structural similarities of the Hamiltonians, there is also a correspondence of sym-
metries. Interestingly, the roles of time reversal and particle-hole conjugation are essentially re-
versed. For superconductors, time reversal acts diagonally in particle-hole space, while particle-
hole conjugation is offdiagonal. In contrast, in TBG it is time reversal which maps between the
two valleys, while particle-hole conjugation acts separately within each valley.

We also note that gauge transformations for superconductors are structurally analogous to
U(1) valley rotations in TBG. For superconductors, the BdG Hamiltonian becomes time-reversal
symmetric by choosing a gauge, in which ∆ is real. In TBG, we can similarly exploit the valley
rotation symmetry to choose θ̃ = π

2
, so that H(k) = H0(k)τz + ∆τy. With this choice, the

mean-field K-IVC order is also odd under particle-hole conjugation, so that the full Hamilto-
nian satisfies PH(k)P−1 = −H(−k). In the following, we make this choice for definiteness.
However, just as Anderson’s theorem for s-wave superconductors is not specific to a particular
gauge, Anderson’s theorem for TBG is not limited to this choice.

Armed with this far-reaching correspondence between the BdG Hamiltonian of s-wave su-
perconductors and the K-IVC state of TBG, we now turn to discussing the effects of impurities
on the K-IVC state. We consider impurity potentials which are sufficiently smooth on the scale
of the atomic lattice, so that they preserve the U(1) valley symmetry. Intervalley scattering can
then be neglected and the impurity potential is diagonal in valley space. With this assumption,
the low-energy Hamiltonian in the presence of an impurity potential becomes

H = H0τz +∆τy + U−τz + U+τ0. (4.14)

Just as for superconductors, the impurity potentials U± are distinguished by their symmetry
properties. For superconductors, antisymmetry under particle-hole conjugation is built into
the BdG formalism. For this reason, it was sufficient to classify perturbations according to their
behavior under time reversal. In contrast, for TBG, both Kramers time reversal and particle-hole
conjugation are physical symmetries of the Hamiltonian. Consequently, we now classify pertur-
bations according to their transformation properties under the combined chiral symmetry op-
eration PT = iτy, namely (PT )U+τ0(PT )−1 = U+τ0 and (PT )U−τz(PT )−1 = −U−τz .
(Notice that due to valley rotation symmetry, the impurity terms transform in the same way
under PT and PT ′.) By comparing with the discussion of Eq. (4.9), we can now formulate
an Anderson’s theorem for TBG, our central result: The gap of K-IVC states is robust against
valley-preserving perturbations, which are odd under the combined chiral symmetry operation
PT . In fact, perturbations which are odd under PT anticommute with the K-IVC order ∆τy
and cannot reduce the gap. In contrast, similar to time-reversal-breaking impurities in super-
conductors, perturbations which are even under PT can induce subgap states in TBG. For
perturbations that are local on the moiré scale, this follows as for time-reversal-breaking impu-
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4.3 Anderson’s theorem for the Kramers inter-valley coherent state

rities in s-wave superconductors. A finite density of PT -even impurities can thus suppress or
even destroy the K-IVC gap.

So far, our discussion relied on a close structural analogy between the BdG Hamiltonian of
s-wave superconductors and the low-energy Hamiltonian of TBG with K-IVC order. More
fundamentally, the appearance of an Anderson’s theorem in both theories is rooted in the fact
that up to U(1) rotations which leave the normal-state Hamiltonian invariant, their order pa-
rameters are proportional to a natural antisymmetry of the model, namely PT . For both su-
perconductors and the K-IVC state of TBG, we have ∆τy = −i∆PT . Up to a gauge trans-
formation (superconductors) or a U(1) valley rotation (TBG), this is equivalent to the general
order-parameter term ∆(τx cos θ + τy sin θ). This form of the order parameter has two im-
portant consequences. First, the order-parameter and single-particle terms in the Hamiltonian
anticommute, so that the single-particle energies and the order parameter add in quadrature in
the mean-field excitation spectrum. Second, this property persists in the presence of disorder,
as long as the latter is odd under PT , which is Anderson’s theorem. We emphasize that Ander-
son’s theorem does not rely on a specific symmetry of the order parameter, but only on the fact
that the order parameter is proportional to a natural unitary antisymmetry of the system in the
absence of the spontaneous symmetry breaking.

One should remember that the derivation of Anderson’s theorem relies on several assump-
tions. In particular, one assumes that the order parameter remains spatially uniform and is mo-
mentum independent. Similar to anisotropic superconductors, the order parameter of TBG
exhibits some momentum dependence [76]. In the presence of momentum dependence, there
will be no systematic anticommutation behavior between the order-parameter term and the im-
purity potential. Then, Anderson’s theorem no longer applies in the strict sense, and implies
only enhanced, but not full protection of the gap.

We can also consider other candidate insulating ground states, which have been proposed in
the literature [142–145].

First, consider an alternative, time-reversal-preserving intervalley coherent state, termed T-
IVC. In the particle-hole basis, this state has the order parameter ∆σz(τx cos θ + τy sin θ).
The T-IVC gap anticommutes with only one of the three terms of the flat-band Hamiltonian,
precluding the derivation of an Anderson’s theorem.

The valley-polarized state with order parameter ∆τz leads to the mean-field Hamiltonian

Hvp = H0τz +∆τz + U−τz + U+τ0 (4.15)

in the particle-hole basis. The order-parameter term commutes with the band Hamiltonian, so
that a gap emerges only when ∆ shifts the flat bands of the two valleys sufficiently far apart in
energy. The impurity problem can be considered separately for the two bands and regardless of
impurity type, there is no robustness due to an Anderson’s theorem.
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perturbation matrix structure Anderson

layer-even pot. I ×

layer-odd pot. µz ✓

layer-even sublattice pot. σz ✓

layer-odd sublattice pot. σzµz ×

layer-even vector pot. σx, σyτz ×

layer-odd vector pot. σxµz, σyτzµz ✓

tunneling disorder see text ✓

Table 4.1: Table of time-reversal symmetric perturbations (left column) and their effect on the K-IVC gap. The
central column gives the matrix structure in the microscopic graphene basis of TBG, where µα, σα and
τα are Pauli matrices in layer, sublattice and valley space, respectively. The right column indicates the va-
lidity of Anderson’s theorem. The K-IVC gap is protected against perturbations, for which Anderson’s
theorem is valid. Notice that in this table, we only consider strain-induced vector potentials.

Finally, we consider the valley Hall state with mean field Hamiltonian

Hvh = H0τz +∆σzτz + U−τz + U+τ0 (4.16)

in the particle-hole basis. The order-parameter term anticommutes with the flat-band Hamil-
tonian H0τz [see Eq. (4.13)] only in the chiral limit, where h0(k) = 0 [73]. In this idealized
(but experimentally remote) limit, the gap is robust against perturbations, which are purely
offdiagonal in sublattice space, e.g., strain disorder.

We therefore find that the K-IVC is distinct from other possible ground states due to the
existence of Anderson’s theorem for PT -antisymmetric disorder. It is thus conceivable that
such kinds of disorder stabilize the K-IVC state relative to competing states.

4.4 Classifying physical perturbations

Above, we phrased our discussion in rather general terms, largely relying on symmetry prop-
erties of the TBG flat bands. We now classify perturbations according to their symmetry and
tabulate the presence or absence of Anderson’s theorem in Table 4.1. For a given behavior un-
der time reversal, it is sufficient to consider their transformation properties underP , which acts
separately within each valley.
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Usually, we do not know the form of perturbations in the flat-band (i.e., Chern or particle-
hole) bases, but rather in the microscopic graphene basis. Within the Bistrizer-MacDonald
model [19], the HamiltonianH0 is valley diagonal and takes the form

H =

 vDσ · (1
i
∇+At) + ϕt T (r)

T †(r) vDσ · (1
i
∇+Ab) + ϕb

 (4.17)

for the K-valley. Here, the diagonal and off-diagonal blocks are intra- and inter-layer terms, re-
spectively, and the σα refer explicitly to the graphene sublattice. Potential disorder introduces
layer- and sublattice-dependent potentialsϕt/b(r). Modulations in the interlayer distance cause
variations of the interlayer tunneling terms T (r). Strain introduces vector potentials At/b(r)

and modifies T (r) [146–148]. In terms of the strain-induced displacements ul(r) relative to
the uniformly twisted bilayer, the components of the vector potential take the form [147, 148]

(Al)µ = K · ∂µul + β
√
3

2a
(ul,xx − ul,yy,−2ul,xy). Here, β characterizes the sensitivity of

the hopping amplitude to strain-induced displacements and ul,ij is the strain tensor of layer l.
Time-reversal symmetry implies that strain-induced vector potentials are odd in valley space,
while the scalar potentials are even.

In the microscopic graphene basis of the Bistritzer-MacDonald Hamiltonian in Eq. (4.17),
particle-hole conjugation takes the form [76]

P = iσxµyK, (4.18)

where the µα are Pauli matrices in layer space (PT = iτxσxµy). The validity of Anderson’s
theorem for various perturbations is now readily established and tabulated in Table 4.1 for time-
reversal symmetric perturbations. A sublattice-symmetric potential will commute with P , if it
is layer symmetric, and anticommute withP , if it is odd under layer exchange. According to our
considerations, we find that layer-symmetric potentials induce subgap states within the K-IVC
gap, but layer-odd potentials leave the K-IVC gap intact. These conclusions are reversed for
sublattice-odd potentials. Tunneling disorder corresponds to a local variation in the strength of
the interlayer tunneling amplitudes and thus in the parameters entering T (r). Consequently,
tunneling disorder inherits the P transformation properties of H0 and Anderson’s theorem
applies. Finally, a layer-even vector potential (homostrain) is even under P , while a layer-odd
vector potential (heterostrain) is odd. We therefore find that Anderson’s theorem applies to
(local) heterostrain only.

Anderson’s theorem for the K-IVC state can be tested by introducing impurity potentials
with different behavior underPT . LocalPT -even perturbations will in general induce subgap
states, which can be probed directly using scanning tunneling microscopy.
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4.5 Abrikosov-Gor’kov treatment of disorder in the K-IVC
state – a toy model

In this final Section we illustrate on a simple model how disorder can lead to the destruction of
K-IVC order. We use methods originally developed for disordered superconductors developed
by Abrikosov and Gor’kov [149], which are reviewed in Ref. [135]. The remarkable result of that
treatment of magnetic impurities in an s-wave suprconductor is that in addition to completely
destroying superconductivity for large disorder strength, for intermediate disorder strength, it
leads to a peculiar regime of "gapless" superconductivity, in which the gap of the superconduc-
tor is filled with bound states, but it still exhibits superconducting properties.

Given the analogy of the K-IVC with an s-wave superconductor, it is natural to extend this
approach to the K-IVC state. Here we summarize the main results, which are published as
Ref. [1].

To allow for analytical understanding, we use a simplified toy model form of the K-IVC
Hamiltonian, Htoy(k), expanding the single-particle dispersion of Eq. (4.5) around the Dirac
points (two for each valley):

Htoy(k) = u(kxσxτz + kyσy) + ∆ivcσxτxρz., (4.19)

where in addition to sublattice σ and valley τ degrees of freedom, we need to consider the mini-
valley degree of freedom ρ, corresponding to the Dirac points originating from the two layers in
twisted bilayer graphene. Importantly, u in this theory is the renormalized TBG Dirac velocity
u≪ vF , andk is only defined up to a cutoff, which leads to slight complications as follows. We
take a cutoff kmax, corresponding to cutoff energy W = ukmax, which is the flat band band-
width. If we have a system with NUC unit cells, we require that for each unit cell there is one
state per valley and sublattice, sampling uniformly among the phase space volume 2π(kmax)2

(factor of two for mini-valley). This is important when converting sums over momenta to inte-
grals, which can be done by replacing

∑
k → NUC

2π(kmax)2

∫
dk. Note also that in this expansion,

the K-IVC order parameter has a slightly different form than above. However, the crucial prop-
erty that it anticommutes with the kinetic (Dirac) term, is preserved. Arguably, this toy model
is just a caricature of the real problem, but it has the advantage of being easily solvable.

The clean Green’s function for this system is simply

Gclean(k, ωn) =
(
iωn −Htoy(k)

)−1 (4.20)

= −iωn + u(kxσxτz + kyσy) + ∆ivcσxτxρz

(u|k|)2 +∆ivc
2 + ωn2

, (4.21)

where ωn is a fermionic Matsubara frequency.
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In this model, homostrain disorder couples as

Uhomo
q = u(Ax,qσx + Ay,qσyτz), (4.22)

while heterostrain couples as

Uhetero
q = u(Ax,qσxρz + Ay,qσyτzρz), (4.23)

in line with the interpretation that ρmicroscopically corresponds to layer. We now immediately
see the consequence of the Anderson’s theorem derived above in that heterostrain anticom-
mutes with the order parameter, and does not decrease the single-particle gap. Homostrain, on
the other hand, commutes, and can reduce the gap.

We assume a white noise distribution for the disorder, defining the disorder energy scale Γ as

Γ =
NUCu

2

W

〈
A†

q ·Aq

〉
dis.
, (4.24)

where as usual, the Fourier components have to scale inversely with system size, and the x and
y-components of A are independent. The Abrikosov-Gor’kov method uses the self-consistent
Born approximation (SCBA) for the disorder potential. The Green’s function in this approach
reads

G(k, ωn) =
(
iωn −H toy(k)− Σ̂SCBA(k, ωn)

)−1

, (4.25)

where the disorder in the SCBA contributes a self-energy term:

Σ̂SCBA(k, ω) =

〈∑
p

Uk−pG(p, ωn)Up−k

〉
dis.

, (4.26)

where ⟨·⟩dis. denotes disorder averaging.

At this point an important simplification occurs. Plugging inGclean(k, ωn) into Eq. (4.26),
we see that Σ̂SCBA(k, ωn) as a matrix only contains terms proportional to the identity and
the matrix of the K-IVC pairing term σxτxρz . The terms arising due to the kinetic term, pro-
portional to u in Eq. (4.21), cancel from the sum upon disorder averaging for the white noise
distribution, Eq. (4.24). The Green’s function can therefore be written as

G(k, ωn) = −iω̃n + u(kxσxτz + kyσy) + ∆̃σxτxρz

(u|k|)2 + ∆̃2 + ω̃2
n

, (4.27)
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4 Anderson Thoerem for twisted bilayer graphene

where the parameters ω̃n, ∆̃ are related to ωn,∆ivc by the self-consistency equationsω̃n
∆̃

 =

 ωn

∆ivc

+
Γ

W

∫ W

0

dϵϵ
1

ϵ2 + ∆̃2 + ω̃2
n

 ω̃n

∓∆̃

, (4.28)

where the minus sign holds for homostrain and the plus sign for heterostrain. We see that for
heterostrain disorder, (ω̃n, ∆̃) are simply proportional to (ωn,∆ivc) with the same constant of
proportionality.

The value of the K-IVC order parameter ∆ivc is given by the mean-field gap equation

∆ivc = −2
kbT U

NUC

∑
ωnk

Tr{σxτxρzG} = −2
kbT U

NUC

∑
ωnk

∆̃

(u|k|)2 + ∆̃2 + ω̃2
n

, (4.29)

where kB is the Boltzmann constant, T is the temperature, andU is an interaction energy scale.
Together, Eq. (4.29) and Eq. (4.28) have to be solved self-consistently.

As shown in Figure 2b of Ref. [1], increasing the strength of homostrain quickly reduces
the value of the order parameter and the spectral gap. Strikingly, for certain values of disorder,
the spectral gap vanishes, even though the inter-valley coherence order parameter ∆ivc is still
nonzero. This situation is analogous to the phenomenon of gapless superconductivity in s-
wave superconductors with magnetic impurities [135]. In contrast, for heterostrain disorder, we
have the Anderson theorem, protecting the K-IVC state from disorder.
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5 Superconducting pockets in
alternating twistedN -layer graphene

The results of this Chapter have been published as Ref. [3], co-authored by Yiran Zhang, Stefan
Nadj-Perge, Felix von Oppen, and Cyprian Lewandowski. The research was conducted by the
author of this thesis and was discussed with the other coauthors. Yiran Zhang and Stefan Nadj-
Perge provided the experimental data in Fig. 5.2 and insights regarding the experiments.

In this Chapter, we study the interacting physics of alternating twistedN -layer graphene, in-
troduced in Sec. 2.4. Our study is motivated by recent experiments on twistedN -layer graphene
with up to five layers [31, 32]. As for twisted bilayer graphene, the phase diagrams of the mul-
tilayer systems featured prominent superconducting domes in the temperature-doping plane.
However, while in TBG superconductivity typically terminates at filling |ν| = 3, Ref. [31] ob-
served that for N = 5, superconductivity persists up to a filling of five electrons per unit cell.
Strikingly, such an extended superconducting pocket is at odds with a picture of decoupled
sectors [78, 79, 150].

To understand the results of Refs. [31, 32] we employ mean-field theory to obtain analytical
estimates and perform fully self-consistent Hartree-Fock calculations. While mean-field the-
ory has inherent drawbacks and is an approximate technique, it has proven remarkably success-
ful in the study of TBG [76, 110, 142, 143, 151], with certain models of TBG exhibiting Slater-
determinant ground states at integer filling [77]. For a larger number of layers, the Hartree-Fock
approximation accounts well for the screening of classical charge distributions, which we will
argue play a crucial role in the physics of TNG.

Having understood the experimental results of Refs. [31, 32] for N = 3, 4, 5 layers, we ap-
ply the developed framework to study the twisted N -layer problem for larger values of N . We
show that both in- and out-of-plane electrostatics play a crucial role in shaping the phase dia-
grams of TNG systems, providing a simple picture in terms of sector shifts in Sec. 5.2. For larger
layer numbers, we show that electrostatically doping the moiré system requires a larger charge
density on the metallic gates. This behaviour arises because it is necessary for the metallic gates
to compensate for the charge redistribution due to interactions. This effect makes it increas-
ingly prohibitive to electrostatically dope N > 5 multilayer structures into the regime where
the magic flat band is optimally filled for superconductivity. This is shown in Fig. 5.1, where
we also indicate estimates for the gate charge densities. Interestingly, we find that while going
beyond N = 5 layers to study interaction effects of the k = 1 flat band presents little advan-
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Figure 5.1: Band filling of the magic sector at different total gate densities. 25 · 1012 cm−2 is the threshold of
dielectric breakdown in current hBN-based samples [152].

tage, focusing on the second-harmonic bands (k = 2) for N ≥ 5 overcomes the prohibitive
electrostatic barrier and yields very flat bands conducive to correlation effects.

This Chapter is structured as follows. Section 5.1 opens with a discussion of the experimental
puzzle that this Chapter wishes to answer. Section 5.2 presents the main results of this chapter
at an intuitive physical level. Section 5.3 outlines the formal description of theN -layer problem
and introduces the Hartree-Fock machinery. In Sec. 5.4, we present Hartree-Fock calculations
for N = 3, 4, 5, connecting with physical understanding of Sec. 5.2. Section 5.5 discusses the
electronic properties ofN > 5 devices in more detail. The concluding Sec. 5.6 presents a final
discussion of the results.

5.1 Experimental motivation

An important physical effect in twisted alternating-angle graphene multilayers is the cascade of
“resets” close to integer fillings of the flat bands. The resets already occur at relatively high tem-
peratures, well above those required for the correlated superconducting and insulating states,
and are deduced from measurements of the chemical potential [153, 154] as well as the Hall con-
ductivity [30, 33]. The cascade of transitions can be explained in different ways [131, 151, 153–157],
with Ref. [153] interpreting it as Stoner-like flavor (spin and valley) polarization. Within this
picture, flat-band superconductivity is unlikely to exist when three of the four flavors are fully
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5.1 Experimental motivation

Figure 5.2: (a) Experimental data of the Hall density vs. total filling showing the cascade transitions (arrows) for
N = 3, 4, 5. Data measured by the Nadj-Perge group and published in Ref. [31]. (b) Correspond-
ing experimental data for TC domes for N = 3, 4, 5. Data measured by the Nadj-Perge group and
published in Ref. [31].

occupied and time-reversed partners at the Fermi level are absent. In TBG, this happens beyond
ν = ±3 (see further discussion in Sec. 5.3 regarding intervalley coherent orders). Irrespective
of the detailed theoretical symmetry-breaking mechanism, this expectation is in line with exper-
imental trends. In TBG, a cascade transition near ν = ±3 typically serves as an upper filling
bound for superconductivity [23, 30, 33, 158]. Similarly, a lower filling bound for superconduc-
tivity is the cascade transition at ν = ±2.

Cascade phenomenology has also been reported for TNG systems with N = 3, 4, 5 layers
[23, 31–33], cf., Fig. 5.2a. There, we show the experimentally measured Hall density data, high-
lighting the cascade transitions which manifest as dips in Hall density.

As discussed in Sec. 2.4, the band structure of TNG decomposes into decoupled sectors of
TBG-like and (forN odd) monolayer-graphene (MLG)-like bands. When one of the TBG-like
sectors is effectively at the magic angle, the cascade features can be understood as occurring in
the magic sector, with the other sectors being filled uniformly [31, 32].

Startlingly, as shown in Fig. 5.2b and reported in Refs. [31, 32], superconductivity persists to
higher total fillings (νtotal) in TQG (twisted quadrilayer graphene, N = 4) and TPG (twisted
pentalayer graphene,N = 5), extending up to νtotal = 5 for theN = 5 case of TPG. Simulta-
neously the cascade “resets” also set in at higher filling fractions.

Assuming that doping of the magic sector (νmagic) is in the optimal range for superconductiv-
ity, i.e., approximately 2-3 electrons per moiré cell, these observations would imply substantial
filling of the nonmagic sectors at odds with a simple band-structure picture. The nonmagic sec-
tors are strongly dispersive, so that their noninteracting band structure would predict almost no
filling. Specifically, complete filling of the magic bands (νmagic = 4) would be accompanied by
a filling of less than ≈0.06 electrons per moiré unit cell in the nonmagic bands for TPG and
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5 Superconducting pockets in alternating twisted N -layer graphene

less than ≈0.02 electrons per moiré unit cell for TQG. (We measure fillings relative to charge
neutrality.)

In order to obtain these estimates, we use the fact that the ⌊N/2⌋TBG-like electronic sectors
(k = 1, 2, . . . , ⌊N/2⌋) have effective twist angles (see Section 2.4):

θeff
k =

θ

2 cos[ πk
N+1

]
, (5.1)

which differ from the physical twist angle θ, shown in Fig. 5.3. This formula reveals the advan-
tage of multilayers – one can obtain a sector effectively at the magic angle for devices at a larger
twist angle θ. This is best exploited by choosing the k = 1 sector to lie effectively at the magic
angle, which maximizes the physical twist angle. All the current experiments on multilayer al-
ternating twist angle systems make this choice, and we shall also make it our default choice for
analysis. However, we note that for large N , the choice kmagic = 2 also becomes feasible. We
will return to this possibility in Sec. 5.5. Approximating the nonmagic sectors as Dirac cones,
their filling is (see App. A.1.3)

νnon-magic =
∑

k∈nonmagic

νk ≈
∑

k∈nonmagic

AucNfck

4π(ℏv(k)D )2
µ2
k. (5.2)

Here, ck = 2 (ck = 1) if the sector k is TBG-like (MLG-like), µk is the effective chemical
potential in sector k, Nf = 4 is the number of flavors, and v(k)D is the Dirac velocity in sector
k. In the absence of interactions, µk = µmagic with µmagic the magic sector Fermi energy. A
filled magic sector corresponds to µmagic ≈ W/2, where W is the noninteracting bandwidth.
This bandwidth varies with strain, taking values W ≲ 20meV. Even at the upper limit for
W , we then find νnon-magic ≲ 0.06 for TPG (using v(k=2)

D ≈ 0.35vD). For TQG, the k = 2

sector has an even larger detuning from the magic angle (θeff
k=2 = 2.9◦), so that v(k=2)

D ≈ 0.6vD
and νnon-magic ≲ 0.02. Therefore, the enhanced nonmagic-sector filling [31, 32] must be an
interaction effect.

5.2 Physical understanding

Electron-electron interactions alter the above considerations predominantly through two terms
in the Hamiltonian, as can be seen by examining the mean-field decomposition (see Sec. 5.3.2
and Sec. 5.3.3 for details)

HMF = Hkin +HHartree +HFock +Hlayer, (5.3)

where Hkin is the single-particle (kinetic) Hamiltonian, HHartree is the mean-field Hartree term,
HFock is the Fock term, and Hlayer is the mean-field layer potential term.
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Top gate

Bottom gate

Figure 5.3: Device schematics. We considerN -layer graphene with alternating twist angles in a double-gated setup.
Here θ is the physical twist angle.

First, interactions represented by the Hartree and Fock mean-field terms broaden the non-
interacting magic bands, promote the onset of symmetry-breaking order, and, crucially for our
analysis, induce filling-dependent upward shifts of the quasiparticle energies relative to non-
magic sectors. This Hartree-dominated shift arises because the electron density of the TBG-like
sectors is spatially inhomogeneous in the 2D plane, which is associated with a cost in Coulomb
energy [151, 159–163]. Importantly, the inhomogeneity is particularly strong in the magic sector
and decreases with detuning from the magic angle. Second, the contribution Hlayer is new to
N > 2 layers and arises because the sectors have different vertical charge distributions across
layers [31, 32] as shown in Fig. 2.4 of Sec. 2.4, which are given by the layer dependence of the
wave functions, taking the form of standing waves analogous to a particle-in-a-box problem.
The sector with lowest effective twist angle, k = 1, corresponds to the first harmonic, which is
singly peaked at the center of the stack. The k = 2 sector is the second harmonic with a doubly-
peaked structure, and so on. The different layer-dependent charge distributions imply that the
sectors have different energies due to the electric potential produced by the gate charges.

For the devices investigated experimentally (magic sector k = 1), both HHartree and Hlayer

effects enhance the occupation of the non-magic sectors relative to the non-interacting band-
structure scenario described above. The first mechanism postpones the occupation of the magic
sector as it is broadened and shifted upward in energy as it is filled. A similar shift in energy also
occurs for the second mechanism. The potential produced by the gate charges in combination
with the induced charges in TNG has a maximum in the central layer. (Note that in the absence
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5 Superconducting pockets in alternating twisted N -layer graphene

of a displacement field, the electric field vanishes at the center by symmetry. Moreover, the
potential drops towards the, say, positively charged gate electrodes above and below the TNG
stack.) Due to this potential maximum, the energy is higher for sectors, in which charge is
more localized near the central layer. Thus, this mechanism also predicts that the magic sector
is pushed up in energy relative to the nonmagic sectors.

We can provide an estimate of this electrostatically induced band shifting, which will be ver-
ified in later Sections through extensive Hartree-Fock calculations. First we assume that in the
presence of interactions, the overall band structure of each sector remains fixed (i.e., given by
the non-interacting band structure) and only the chemical potential of each sector µk shifts as

µk = µ− U (k) −G(k) . (5.4)

Here,U (k) andG(k) quantify the shifts due toHlayer andHHartree, andµ is the chemical potential
of the whole system. We take G(k) = 0 for all sectors except the magic sector (k = 1) as it has
the largest in-plane inhomogeneity (see App. A.1.1). In the magic sector [151, 159, 160, 164], the
Hartree shift is approximately G(k) ∼ e2/(4πϵ∥ϵ0LM), where LM is the moiré period. For
TPG, depending on dielectric constant, G(k) can be as large as 30meV, giving a filling of up
to νnon-magic ≈ 1.1 of the nonmagic sectors at full filling of the magic sector, νmagic = 4. This
should be compared to the non-interacting estimate of νnon-magic ≈ 0.06 given above.

Inclusion of the shift U (k) induced byHlayer can further increase the filling of νnon-magic. The
termHlayer contributes nontrivially due to imperfect screening of the gate electrodes by the layers
and becomes increasingly important as N grows. The energy shift U (k) of a sector k can be
approximated by (see App. A.3.2)

U (k) = e2
dl

AUCϵ0ϵ⊥

∑
k′

(C−1)k,k′νk′ (5.5)

for given sector fillings νk. Here, AUC is the unit-cell area, dl is the layer distance, and ϵ⊥ the
out-of-plane dielectric constant of the graphene layers. The matrix C in sector space is a di-
mensionless capacitance-like matrix, which we tabulate for TQG, TPG, as well as large N in
Table 5.1 (see App. A.3.2 for formulas for arbitrary N and derivations). For TPG, we obtain a
shift of up to 45meV, allowing for a filling of up to νnon-magic ≈ 2.5 for full filling of the magic
sector, νmagic = 4 (see Sec. 5.3.2 for further discussion).

Modifications of the quasiparticle dispersion by HFock would tend to reduce the above esti-
mates. However, we also highlight that the effects of the layer potential Hlayer and the Hartree
correction HHartree mutually reinforce each other. To illustrate this, consider the sector shift
U (1) − U (2) = 10meV and G(1) = 10meV and small bandwidth W/2 = 2meV. Taken
separately, each term would only yield a tiny νnon-magic ≈ 0.07. On the other hand, taking
µ2 = 22meV in Eq. (5.2) yields a four times larger νnon-magic ≈ 0.3. This highlights the impor-
tance of considering both shift mechanisms simultaneously.
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5.3 Model of alternating twisted N -layer graphene

N (C−1)1,1 (C−1)1,2 = (C−1)2,1 (C−1)2,2

4 0.262 0.1 0.0382

5 0.403 0.208 0.125

N → ∞ 0.147N 0.115N 0.099N

Table 5.1: Inverse capacitance (C−1)k,k′ for k, k′ ∈ {1, 2}, evaluated for layer numbers N = 4, N = 5, and
N → ∞.

To conclude the qualitative analysis of this Section, we comment on the relative role the three
interaction terms in Eq. (5.3) play as the layer number N increases. The inverse capacitance
matrix (C−1)k,k′ is a decreasing function of k and k′. Physically, larger-k sectors screen the gate
field better, therefore generating smaller layer potentials. This monotonic decrease implies that
U (magic) − U (k) > 0 for any (nonmagic) k > 1. Thus, the effective chemical potentials µk
of the nonmagic sectors increase, enhancing their occupations. Secondly, for fixed k and k′,
(C−1)k,k′ scales linearly with the vertical extent (as the inverse capacitance of a parallel-plate
capacitor) and thus with the number of layers N . This suggests that the layer potential grows
in importance with N , eventually dominating over other contributions for large N . Indeed,
other contributions to the mean-field Hamiltonian do not grow with the number of layers.
This suggests that the layer potentials become dominant at large N and doping of the central
k = 1 sector by gating will be preempted by dielectric breakdown [152], as shown in Fig. 5.1.
We return to this analysis using Hartree-Fock calculations in subsequent Sections.

5.3 Model of alternating twistedN -layer graphene

In this Section, we recall the noninteracting model, specify the interaction, and discuss the
mean-field decoupling. While we largely follow standard procedures for the mean-field descrip-
tion of moiré graphene [76, 110, 143, 151, 165–167], we allow for layer dependence of the interaction
and include the layer potential term that is usually ignored.

5.3.1 Twisted graphene multilayers

We consider N -layer alternating angle twisted graphene, using the minimal model introduced
in Sec. 2.4, which we recall here for convenience:

HK
kin = HK

TNG =


vFk · σ T (r) 0 · · · 0

T †(r) vFk · σ T †(r)

0 T (r) vFk · σ
... . . .

. (5.6)
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5 Superconducting pockets in alternating twisted N -layer graphene

Neglecting possible layer dependence, we account for lattice relaxation by choosing wAA =

80meV, wAB = 110meV [150]. This model is a minimal description of N -layer systems, ne-
glecting relative layer displacements [78, 168], next-nearest-layer hoppings [78], periodic strain
[70], and layer dependence of lattice corrugation [150]. While these additional ingredients mod-
ify the quantitative details of the electronic spectrum, they do not alter the two key features,
namely the inhomogeneous charge distribution and the inhomogeneous distribution of elec-
tronic sectors across layers. Both ingredients are crucial to capture the effect of interactions on
the properties of theN -layered structure.

We recall that the single-particle Hamiltonian transforms into block-diagonal form using the
basis outlined in Chapter 2, Section. 2.4. There are ⌊N/2⌋ TBG-like blocks with effective in-
terlayer hoppings rescaled by a coefficient Λk. We can equivalently think of the sectors as corre-
sponding to TBG with unscaled hoppings, but an effective twist angle

θeff
k = θ/Λk. (5.7)

In this picture, the sector Hamiltonian is multiplied by an overall scale factorΛk. ForN odd, in
addition to the ⌊N/2⌋TBG-like sectors, there is an additional sector, in which the band derives
from the underlying graphene Dirac cone folded into the moiré Brillouin zone (BZ). We will
denote this sector as the monolayer-graphene (MLG)-like sector. In what follows, we choose
the physical angle θ such that there is one TBG-like sector – termed magic sector – at the magic
angle, θeff

k = θmagic ≈ 1.1◦. In experiments to date, this would be the k = 1 sector, but in
Sec. 5.5 we also consider the possibility of choosing kmagic = 2 as the magic sector. The weight
distribution in Eq. (2.72) quantifies the charge distributions across layers for the various sectors,
see Fig. 2.4. As discussed above, this is important for the electrostatic properties of the problem.

5.3.2 Layer-dependent Coulomb interaction

We assume a symmetric double-gated setup, shown in Fig. 5.3, as typically employed in experi-
ment. For simplicity, we only consider symmetric gating, working at gate charge densities en/2
per gate, so that−en is the charge density in TNG. This correspond to setting the displacement
fieldD = 0. At a microscopic level, we use the standard Coulomb interaction

Hbare
int =

1

2

∫
drdr′V (r− r′) : ρ(r)ρ(r′) :, (5.8)

where V (r − r′) = 1
4πϵϵ0

1
|r−r′| , and where the density ρ(r) includes free charges in both the

graphene system and on the gates with the positive background subtracted (: ... : denotes nor-
mal ordering).

To obtain the effective interaction for TNG, we consider the charges to be constrained inN+

2 layers labeled by an indexL going from 0 toN + 1 at vertical positions zL. This corresponds
to the physical situation of a sample withN graphene layers and two gate layersL = 0, N + 1.
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5.3 Model of alternating twisted N -layer graphene

We take z0 = −ds, zN+1 = ds, and zl = dl(l −N/2) for l = 1, . . . , N corresponding to the
graphene layers, where ds is the gate sample distance and dl is the constant interlayer distance
of the TNG sample.

We decompose ρ(r) =
∑

L ρL(r)δ(z − zL), where ρL(r) is the (2-dimensional) density in
layer L. In Fourier space, we have

Hbare
int =

1

2A

∑
q,L,J

V bare
LJ (q) : ρq,Lρ−q,J :, (5.9)

where ρq,L is the electron density in layer L at in-plane momentum q, A is the 2-dimensional
area of the sample, and where we sum also over layers 0 andN + 1 corresponding to the gates.
V bare
LJ is the bare Fourier-transformed 2D Coulomb interaction with vertical separation dLJ =

|zL − zJ |, which reads

V bare
LJ (q) =

e2

2ϵϵ0q
exp(−dLJq). (5.10)

For q = 0, we separate the divergent and finite parts as follows

V bare
LJ (q → 0) =

e2

2ϵϵ0

[
O

(
1

q

)
− dLJ

]
. (5.11)

The divergent part is canceled if the total charge adds up to zero
∑

L ρq=0,L = 0, and what
remains of the q = 0 term is − e2

2ϵϵ0
dLJ . Therefore we obtain, separating q = 0:

Hbare
int =

1

2A

[ ∑
q ̸=0,L,J

V bare
LJ (q) : ρq,Lρ−q,J : −

∑
L,J

e2

2ϵϵ0
dLJ : ρq=0,Lρq=0,J :

]
. (5.12)

which still includes the gate charges. We can simplify the second term by using that the charge
on the gates and in the sample are fixed, allowing us to replace ρq=0,0

A
→ −n

2
, ρq=0,N+1

A
→ −n

2
,

and
∑N

l=1 ρq=0,l

A
→ n. Then the second term can be (up to a n dependent constant) more

physically rewritten as the electrostatic energy of the perpendicular electric field between the
layers

∑N−1
l=1 Aϵ⊥ϵ0dl

(E⊥
l,l+1)

2

2
, where the electric field is given by Gauss’ law as:

E⊥
l,l+1 = − e

ϵ0ϵ

{
1

A

l∑
l′=1

⟨ρ̂q=0,l′⟩ −
n

2

}
. (5.13)

Note that if we had not assumed symmetric gating, we would replace −n
2

by the charge on the
bottom gate, as will be done in Chapter 6.

For the q ̸= 0 term, we assume the two gates are at positions z = ±ds and integrate out the
gate electrons, ending up with an effective screened interaction for the N layers. The effective
interaction is obtained by solving the Poisson equation, where the gate electrons impose that the
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gate positions z = ±ds are equipotentials. This can be obtained using the method of images,
as we now show.

First, we investigate the potential due to point charges. Consider the positions of image
charges when a positive unit charge is placed at z0. Due to the presence of two gates, there
will be infinitely many image charges in the regions above ds and below −ds. We denote the
z-coordinate of the position of the n-th image charge in the top gate (z > ds) as dtop

n , while the
z-coordinate of the position of the m-th image charge in the bottom gate will be dbottom

m . The
first image charge in the top gate will be at dtop

1 = 2ds − z0, while the first image charge in the
bottom gate at dbottom

1 = −2ds−z0, and they have negative unit charge. Next, the bottom gate
is affected by the image charge in the top gate and vice versa, implying we need to place more and
more charges. We, obtain the intertwined recurrence relation for the positions of the n+ 1-th
image charges

d
top
n+1 = 2ds − dbottom

n (5.14)
dbottom
n+1 = −2ds − dtop

n , (5.15)

where the charge of the n-th image charge is (−1)n. This recurrence is solved by :

dtop
n = 2nds + (−1)nz0 (5.16)

dbottom
n = −2nds + (−1)nz0. (5.17)

The potential at vertical position z and an in-plane distance r away from the unit test charge is
given by the sum of the potentials of the charge and all the image charges generated. We have

V (r, z, z0) =
1

4πϵϵ0

[
1√

r2 + (z − z0)2
+

∞∑
j=1

(−1)j√
r2 + (2jds + (−1)jz0 − z)2

+

+
∞∑
j=1

(−1)j√
r2 + (2jds + z − (−1)jz0)2

]
. (5.18)

In Fourier space, we obtain:

V (q, z, z0) =
1

2ϵϵ0

1

q

{
exp(−q|z − z0|) +

∞∑
j=1

(−1)j exp
[
−q(2jds + (−1)jz0 − z)

]
+

+
∞∑
j=1

(−1)j exp
[
−q(2jds − (−1)jz0 + z)

]}
, (5.19)
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where we removed the absolute value in the image charge potentials since we are interested in
the potential inside the sample, assuming |z| < ds, |z0| < ds. The sum over j can be easily
performed by separating into j odd and even, leading to the result:

V (q, z, z0) =
1

2ϵϵ0

1

q
·

(
e−q(z+z0)

(
−e2q(ds+z+z0) − e2dsq + e2qz + e2qz0

)
e4dsq − 1

+ e−q|z−z0|
)
.

(5.20)

For z = z0 = 0, V (q, z, z0) reduces to the tanh(qds)/q form usually used for double-gate
screened interaction. On the other hand, with no screening (ds → ∞) we recover the bare
interaction in Eq. (5.10). For an N -layer system with layers at positions zl = dl(l − N/2), we
obtain the effective q ̸= 0 layer-dependent screened interaction:

Vl,l′(q) =
1

2ϵϵ0

1

q
·

(
e−q(zl+zl′ )

(
−e2q(ds+zl+zl′ ) − e2dsq + e2qzl + e2qzl′

)
e4dsq − 1

+ e−q|zl−zl′ |
)
.

(5.21)

Using this, the final result, our interacting Hamiltonian for the system reads:

Hint =
1

2A

∑
q ̸=0

∑
l,l′

Vl,l′(q) : ρq,lρ−q,l′ : +
N−1∑
l=1

Aϵ⊥ϵ0dl
(E⊥

l,l+1)
2

2
. (5.22)

Note that here we allow the dielectric constant of the q = 0 term (ϵ⊥) to differ from the dielec-
tric constant entering Vl,l′(q) (ϵ∥). Physically, the out-of-plane interaction reflects the out-of-
plane response of graphene, while theq ̸= 0 component is governed by the dielectric properties
of the substrate. For graphene layers, ϵ⊥ has been estimated to be around 2 [169, 170], while ϵ∥
is around 5 for hBN substrates [77, 160, 171, 172]. Larger values, accounting for remote band
screening, have also been investigated [142, 143, 160]. We treat the dielectric constants as param-
eters. Without the second term, Eq. (5.22) is the standard in-plane Coulomb interaction of a
2D system with screening due to metallic gates. The second term is not usually included, but is
important for multilayer systems as discussed in Sec. 5.2.

5.3.3 Mean-field decoupling

We perform our numerical calculations by restricting the full Hilbert space to a finite number
of Nactive bands with Nflavor spin/valley flavors, having single-particle wavefunctions |uk,f,β⟩,
where the discretized momentum k lies in the first moiré Brillouin zone. Specific details of the
numerical simulation are provided in Appendix A.4. We search for a Nactive × Nactive density
matrix [Pf (k)]αβ = ⟨c†k,f,αck,f,β⟩, where ⟨Ô⟩ denotes the expectation value of an operator Ô,
and where ck,f,β annihilates a flavor-f electron in the single-particle band β at momentum k.
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5 Superconducting pockets in alternating twisted N -layer graphene

Note that each single-particle state can be assigned to a sector k ∈ {1, . . . , ⌈N/2⌉}, as a result
of the sector decomposition detailed in Sec. 2.4. We keepNremote remote bands, which generate
additional Hartree and Fock interaction terms. In projecting onto a finite set of bands, we are
assuming frozen completely filled bands below and completely empty bands above this set. To
avoid overcounting of interactions already present in monolayer graphene and thus included
in the BM model [76, 142, 167], we subtract a mean-field Hamiltonian corresponding to a refer-
ence density matrixP 0

f (k). This is implemented in the mean-field equations by replacing every
Pf (k) with

δPf (k) = Pf (k)− P 0
f (k). (5.23)

We choose the subtraction scheme [76, 110, 142, 167] in whichP 0
f (k) is the ground density matrix

at charge neutrality with the interlayer hoppings switched off. For bands far below the charge-
neutrality point, interlayer hoppings are ineffective and this density matrix approximates that
of fully filled TNG bands. It therefore cancels with the remote-band-interaction term to a good
approximation [76, 77], justifying retaining only a finite numberNremote of remote bands.

For the in-plane term, the mean-field decoupling extends the usual procedure detailed in pre-
vious studies [76, 78, 142, 143, 151, 165, 166] to include the layer dependence of Vl,l′(q). The result-
ing Hartree term reads

HHartree =
1

A

∑
l,l′

∑
G

ρ̂G,lVl,l′(G)⟨ρ̂−G,l′⟩, (5.24)

where we introduce the projected layer density operator, ρ̂G,l =
∑

fk c
†
k,fΛ

fl
G(k)ck,f , where[

ΛflG(k)
]
α,β

=
〈
uk,f,α

∣∣ eiG·rIl
∣∣uk,f,β〉 is the overlap matrix between the Bloch wavefunc-

tions of bands α and β at momentum k on layer l and in flavor f , where Il is the projector on
layer l. Note that we consider ck,f as a column vector. The mean-field expectation of the density
operator is

⟨ρ̂−G,l′⟩ =
∑
f

∑
k

⟨c†k,fΛ
fl′
−G(k)ck,f⟩

=
∑
f

∑
k

Tr
[
δP T

f (k)Λ
fl′
−G(k)

]
. (5.25)

Here, the trace runs over the space of active bands. Similarly, the Fock term reads

HFock = − 1

A

∑
f

∑
l,l′

∑
q,k

Vl,l′(q)

× c†k,f

[
Λflq (k)δP

T
f (k+ q)Λfl

′
−q(k+ q)

]
ck,f , (5.26)

where in contrast to the Hartree term, each flavor interacts only with itself.
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5.3 Model of alternating twisted N -layer graphene

At the mean-field level, the charge distribution across the layers enters the Hamiltonian through

Hlayer = −e
∑
l

ρ̂q=0,lVl, (5.27)

where Vl is the electrostatic potential and ρ̂q=0,l the electron number (i.e., the q = 0 Fourier
component of the electron density ρ̂q,l) of layer l projected onto the active bands. The term
Hlayer contributes nontrivially due to imperfect screening of the gate electrodes by the layers and
becomes increasingly important as N grows. App. A.2 details a formal derivation of Hlayer in
Eq. (5.27) by decoupling the out-of-plane term in Eq. (5.22). The difference of layer potentials

Vl+1 − Vl = −dlE⊥
l,l+1 (5.28)

is related to the electric field, which is given by Gauss’ law in Eq. (5.13). We fix the arbitrary
constant of Vl by setting V1 + VN = 0.

DefiningUl = −eVl and Il as the projector onto layer l, Hlayer can be written more simply as
follows

Hlayer =
N∑
l=1

Ul Il, (5.29)

with the potential difference given simply as

Ul+1 − Ul = −e2dl
−n/2 +

∑
j≤l nj

ϵ⊥ϵ0
, (5.30)

where
nj =

1

A
⟨ρ̂q=0,j⟩ (5.31)

is the net electron density on layer j.
We note in passing that Ref. [150] similarly considers interaction effects on the electronic spec-

trum ofN > 3 systems. The nonmagic sectors are described as a set of equal Dirac cones with
the chemical potential set by that of the flat bands. Their role in the mean-field calculation is
reduced to providing static RPA screening for the magic sector as given by Refs. [173, 174]. This
procedure focuses solely on describing interaction effects in the magic bands, but misses the im-
pact of the nonmagic sectors on hybridizing the sectors and shifting their relative energies with
the concomitant changes in filling.

Our analysis assumes that the symmetry breaking preserves the flavor index, precluding in-
tervalley coherent states [76, 110, 147, 172] , which are likely the actual ground states [107, 133] of
twisted bilayer graphene [175–177]. This limits our analysis to qualitative features of the phase
diagram of N -layer alternating twisted bilayer graphene. This approach has been shown to re-
produce experimental trends [131, 153]. As we will see, the phase diagram of TNG is mainly
controlled by the interplay of the in-plane Hartree and layer potentials, which on the moiré
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Figure 5.4: Colormap of νtotal needed to reach filling νmagic = 3 of the magic sector in the ϵ∥-ϵ⊥ plane.

scale, are insensitive to the subtle details of flavor-symmetry breaking [151]. We thus expect our
results to apply even when different candidate ground states [76, 110, 147, 172] (such as intervalley
coherent states) are considered for the magic sector.

Experimental samples are, to some extent, always strained [80, 178–182]. Strain increases the ki-
netic energy of the bands, suppressing interaction effects, and breaksC3 symmetry, preventing
gap opening by C2T symmetry breaking. We incorporate strain as a constant vector potential,
which alternates between layers (heterostrain [146]) as described in App. A.1.2. This simpli-
fied description of strain is sufficient to capture the broadening of the noninteracting bands
as well as the C3 symmetry breaking. Not considering intervalley coherence, we also preclude
the incommensurate-Kekulé-spiral state [110, 167], for which there is some experimental support
[106, 107]. Again, this is justified since electrostatic effects have larger energy scales and contribute
over a wider temperature range.

5.4 Mean-field results forN ≤ 5

We now apply the mean-field approach detailed above to alternating twistedN -layer structures
with N = 3, 4, 5, confirming the qualitative reasoning discussed in Sec. 5.2. Figures 5.2a,b
showed the experimental results for the filling dependence of the Hall density and of the su-
perconducting TC , respectively. Taken together, these data indicate a substantial filling of the
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Figure 5.5: (a) Interacting structures and densities of states for TPG at νmagic ≈ 4, including in-plane Hartree
and Fock (HFX) terms from Eq. 5.3. Shown are the k = 1 magic sector (red) and k = 2 nonmagic
TBG-like sector (blue). Dashed red lines denote the location of the Fermi level. (b) Same as (a) but with
layer Hartree potentials and Fock (XFL) (c) Same as (a) but including all terms, that is, HFL. (d) Total
magic sector filling (top) and flavor-resolved magic filling (bottom), showing the cascade with in-plane
Hartree and Fock (HFX) for N = 3, 4, 5. (e) Same as (d), but with out-plane Hartree and Fock (XFL)
(f) Same as (d), but including all the terms (HFL).

nonmagic sectors. As originally proposed in Refs. [31, 32], this enhanced filling can arise because
of both, Hlayer or HHartree.

To disentangle the effects of Hlayer and HHartree, we first consider the total filling required for
νmagic = 3 (taken here as a tentative upper bound for superconductivity) for TPG as a function
of the dielectric constants ϵ∥ and ϵ⊥, see Fig. 5.4. To focus on the cascade physics, we include
moderate strain (ϵstrain = 0.2%), which explicitly breaks C3 symmetry and suppresses the ap-
pearance of correlated insulating states. For strong interactions (small dielectric constants), the
entire k = 2 nonmagic sector fills first before the magic sector starts to fill, incompatible with
the onset of superconductivity for ν ≈ 2 in Fig. 5.2b. In the opposite, weakly interacting limit,
only negligible filling of the nonmagic sectors is induced, precluding an extended supercon-
ducting pocket. Therefore, we use moderate ϵ∥ = 14 and ϵ⊥ = 6 in this Section. We refer the
interested reader to the publication, Ref. [3], for other parameter choices.
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5 Superconducting pockets in alternating twisted N -layer graphene

To probe the interplay ofHlayer andHHartree, Figs. 5.5a,d show numerical results retaining only
the in-plane Hartree and Fock terms (“HFX”) and Figs. 5.5b,e display corresponding results
retaining only the out-of-plane (Hlayer) and Fock terms (“XFL”). Finally, Figs. 5.5c,f include all
terms (“HFL”). We first consider the band structures at full filling of the magic sector, plotted in
Figs. 5.5a-c. Excluding the Hartree or layer potentials (HFX, Fig. 5.5a and XFL, Fig. 5.5b), we
obtain only a minimal shift of the magic (red) vs. the nonmagic (blue) sectors. Interestingly, we
find that in these approximations, the shifts due to HHartree and Hlayer are largely compensated
by the effects of HFock. However, there is a substantial shift when including all terms (HFL,
Fig. 5.5c). This highlights the importance of considering all of the terms together.

These trends are also reflected in the cascade plots in Figs. 5.5d-f for N = 3, 4, 5, which
exhibit the flavor-resolved fillings as a function of νtotal. Figures 5.5d,e show results for XFL
and HFX, respectively, and exhibit little effect of the nonmagic sectors on the cascade. This is
consistent with the absence of a shift in Figs. 5.5a and b. In contrast, Fig. 5.5f shows increasingly
delayed cascade transitions as the number of layersN grows. This again reflects the importance
of incorporating the effects of both, Hlayer and HHartree.

Numerically, for our choice of dielectric constants and N = 5, the νmagic = 3 cascade is
pushed to νtotal ≈ 5, while the νmagic = 2 cascade happens at νtotal ≈ 3. While the νmagic = 3

cascade is consistent with experiment, the superconductivity data (Fig. 5.2b) suggest that the
νmagic = 2 cascade already appears at νtotal ≈ 2. Fully reproducing the experimental data may
require more accurate modeling of the devices or more accurate approximations, e.g., allowing
for the appearance of intervalley correlated ground states[76, 106, 107, 110, 147, 172].

5.5 Large-N analysis

We now consider the interplay of the in-plane Hartree, Fock, and layer potentials in the experi-
mentally unexplored cases ofN > 5 and kmagic = 2. The key question we would like to explore
is to what extent TNG reproduces the phenomenology of TBG, when charge-inhomogeneity-
induced band shifts are included?

Figure 5.6 presents the main results of this Section for ϵ∥ = 10 and ϵ⊥ = 6. In Fig. 5.6a and
Fig. 5.6b, we consider the νtotal needed to achieve complete filling of the magic sector, νmagic = 4.
We compare the cases of kmagic = 1 (spectral weight peaked in the central layers, Fig. 5.6a) and
kmagic = 2 sector (spectral weight predominantly away from the central layers, Fig. 5.6b). Each
figure shows plots including (i) the in-plane Hartree and Fock (HFX), (ii) the layer potentials
and Fock (XFL), and (iii) all terms combined (HFL). For kmagic = 1 (Fig. 5.6a), we see that
the total filling required to completely fill the magic sector increases dramatically withN . This
confirms our expectation that gating the kmagic = 1 sector becomes prohibitively difficult as the
layer number increases.

Interestingly, when choosingk = 2 as the magic sector (Fig. 5.6b), the magic sector fills much
more easily. This is a result of the fact that the potential due to the gate charges is maximal at
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Figure 5.6: (a) νtotal as a function of layer number N at νmagic = 4 choosing k = 1 as the magic sector at ϵ∥ = 10,
ϵ⊥ = 6, ϵstrain = 0%. (b) Same as (a) for kmagic = 2. (c) Bandwidth at νmagic = 4 for the choice of
kmagic = 1 (red) and kmagic = 2 (blue). Dashed curves are for finite strain ϵstrain = 0.2%. (d) Effective
interaction parameter rs at νmagic = 4 for kmagic = 1 (red) and kmagic = 2 (blue). Dashed lines are at
finite strain ϵstrain = 0.2%.

the central layers, so that the k = 1 sector is more strongly shifted than the k = 2 sector. As
a result, kmagic = 2 circumvents the electrostatic barrier present for gating the k = 1 sector,
providing a promising platform to study TBG-like physics in TNG samples with largerN .

In Fig. 5.6c, we consider the bandwidth of the magic sector. We compute the interacting
bandwidth of the completely filled magic bands at νmagic = 4 (see Ref. [3] for other parameter
choices) defined as

BW = max
k

E+
k −min

k
E−

k , (5.32)

whereE+
k (E−

k ) are the band energies of the upper (lower) magic sector band. Choosing k = 1

(red) as the magic sector, we observe a substantial increase in bandwidth due to the in-plane
Hartree and layer potentials. This suggests that even if the bands could be filled, the increased

71



5 Superconducting pockets in alternating twisted N -layer graphene

bandwidth will suppress correlated physics associated with the flat-band regime. Choosing k =

2 (blue) as the magic sector, the bandwidth also increases withN , but less so than forkmagic = 1.
This can be partially explained by the fact that much of the bandwidth is interaction driven
and for a given N , kmagic = 1 has a smaller unit cell than kmagic = 2. To accurately gauge
the importance of interactions in the magic bands, we need to compare the bandwidth to the
interaction scale. The effective interaction scale depends on the vertical spread of charges in the
sector of interest. Using that the interaction between charge distributions with wave vectorq in
two layers separated by a distance d is (e2/2ϵ∥ϵ0q)e−qd (cf. Eq. (5.10)), the effective interaction
energy per flat-band electron can be estimated as

e2

4πϵ∥ϵ0LM
⟨exp(−λG|z − z′|)⟩ =

=
e2

4πϵ∥ϵ0LM

∑
i,j

W
(k)
i exp(−λGdl|i− j|)W (k)

j . (5.33)

Here, the average in the first line is over the pairs of layers (located at z and z′) accounting for
the charge distribution of sector k over layers as described byW (k)

i . We also used that the char-
acteristic wave-vector scale G is given by the magnitude of the shortest reciprocal lattice vector
G = 4π/(

√
3LM), i.e., the inverse of the moiré lengthLM . In the exponent,λ accounts for the

fact that the characteristic wave vector depends somewhat on the interaction effect of interest.
We choose λ = 1 for Hartree effects, and λ = 1

2
for correlation (Fock) effects.

We can now use the computed bandwidth to define a dimensionless measure of the interac-
tion strength in the flat bands,

rs = e2⟨exp
{
(
1

2
G|z − z′|)

}
⟩/(4πϵ∥ϵ0LMBW). (5.34)

While this is still an oversimplified measure of interaction effects in flat bands [183], it serves as a
useful metric in comparison to a similar analysis for TBG [184]. In Fig. 5.6d we plot the effective
rs as a function of layer number N . For kmagic = 1 (red full line) and zero strain, rs decreases
with increasing N , suggesting that devices with N < 5 are most likely to exhibit correlation
effects. Strained kmagic = 1 data (red dashed line) highlight the advantage of N > 2. The
importance of a given nominal value of strain diminishes with N . For this reason, rs is larger
for strained N = 3 than N = 2. Interestingly, we find that rs is larger for kmagic = 2 (blue)
than for kmagic = 1. This holds even for strained devices. For increasing N , again, there is a
decrease in rs, which nevertheless stays above the kmagic = 1 value.

To understand this peculiar behavior of rs, we considerN = 5 and kmagic = 2 at zero strain.
For k = 2 at the magic angle, the k = 1 sector is nominally below the magic angle, but still very
flat. This results in a cascade-like transition, at which the k = 2 sector becomes almost com-
pletely filled, while the k = 1 sector has negative (hole) filling. Consequently, we find νtotal < 4
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at νmagic = 4. This transition is encouraged by the central charge distribution over layers, larger
inhomogeneity (see App. A.1.1), and larger bandwidth of the nonmagic, k = 1 sector (whose
effective twist angle is below the magic angle). After the cascade, the inhomogeneity of the holes
from k = 1 partially cancels against the inhomogeneity of the k = 2 electrons, yielding a filled
magic band with anomalously small Hartree broadening.

The behavior of rs, together with the required doping dependence shown in Fig. 5.6a,b, sug-
gest that to realize strongly interacting bands for large N multilayer devices, it is necessary to
focus on sectors k ̸= 1 such that the spectral weight is not localized near the center of the de-
vice structure. For example, for the k = 2 sector to be at the effective magic angle of θeff

2 = 1.1◦,
this would correspond to physical twist angles of 1.1◦, 1.37◦ forN = 5, 6-layer devices, respec-
tively (see App. A.4 for further analysis).

Finally, we comment on the role of dielectric constants in large-N multilayers. In the litera-
ture, these constants are taken as fitting parameters and frequently vary between experiments.
Thus, it is helpful to discuss the behavior of Fig. 5.6 as a function of the dielectric constants.
The effect of a decreasing interaction strength on Fig. 5.6a is to shift all the curves downward.
At zero strain, changing ϵ∥ from 10 to 14 leaves the cascade physics unchanged, since it comes
from two sets of very flat single-particle bands (k = 1 and k = 2). At nonzero strain, decreas-
ing interaction strength lowers rs, as the strain-induced broadening becomes more relevant. We
refer the interested reader to Ref. [3] for other parameter choices.

5.6 Summary and Discussion

In this Chapter, we demonstrated how in-plane Hartree and layer potentials control the phase
diagram of alternating-angle twisted multilayer graphene. Compared with the experimental
results of Ref. [31, 32], we showed that it is the interplay of these two effects that accounts for
the filling enlargement of the superconducting pocket with layer number. In fact, we find that
small-N devices are the preferred layered structures to study k = 1 flat-band physics. ForN >

5, the magic sector present in the decoupling introduced in Ref. [78] becomes strongly modified
by the presence of Hartree effects to the extent that electrostatic doping of that sector becomes
challenging. In addition, the interacting bandwidth is enlarged by the in-plane and out-of-plane
(layer) Hartree effects, likely precluding Fock-driven correlated phenomena.

The suppression of exchange-driven correlated phenomena by the Hartree effect relies on the
mechanism of band shifting. Indeed this mechanism has been observed in the context of TTG,
where shifting of the flat band with respect to the Dirac cone can be seen spectroscopically [80].
However, to date no scanning tunneling microscope (STM) experiments were carried out on
N > 3 devices. Such experiments may allow one to verify the scenario developed here. This
may also allow one to assess whether alternative theoretical explanations of the enlarged super-
conducting pocket, such as the more exotic scenarios discussed in Ref. [31], are necessary. We
caution, however, that for STM measurements, one side of the sample is typically left uncov-
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ered, so that there is only one gate on the opposite side. In this single-gate setup, it is impossible
to vary displacement field and doping independently. Instead, varying gate voltage traces out
a line in the filling-displacement field plane. Nonetheless, we expect the qualitative physics of
band shifting to persist as it is a robust consequence of charge inhomogeneity. However, quan-
titative predictions must be adapted to the new device geometry.

Experiments on moiré graphene systems exhibit substantial particle-hole asymmetry, unlike
our theoretical analysis. Specifically, in TBG correlated insulators appear to be more robust
on the electron side than on the hole side. Similarly, superconductivity can also appear in a
particle-hole asymmetric manner [158]. In the TPG samples studied in Ref. [31], superconduc-
tivity persists up to νtotal = 5on the electron side, but only down to νtotal = −4on the hole side.
Particle-hole symmetry breaking can be incorporated into the BM model [71, 156, 185]. However
we find this to be insufficient to reproduce the observed experimental trends. The presence of
particle-hole symmetry is a common feature of theoretical efforts to date and requires further
investigation.

While our results suggest that correlated phenomena are likely precluded forN > 5 samples
with k = 1 magic sector, k = 2 flat bands appear more promising. We find that kmagic = 2

is subject to much weaker band reshuffling and thereby allows for effective electrostatic gating.
Moreover, thek = 2band can become unexpectedly flat. This suggests a resurgence of flat-band
physics for largeN in the k = 2 sector, which could in principle differ from that seen in TBG,
for instance because the multiple nearly flat bands may conspire to reduce the Hartree-driven
renormalizations that suppress the exchange effects.
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6 Single gate dependence in
Bernal-terminated graphene
multilayers

The results of this Chapter will be included in a publication in preparation, Ref. [6], co-authored
by Dacen Waters, Joshua Folk, Matthew Yankowitz, and Cyprian Lewandowski. The research
has been conducted by the author of this thesis while discussing with the other coauthors. The ex-
perimental data plotted in this Chapter in Figures 6.1,6.2 have been provided by the Yankowitz
lab.

In this chapter, motivated by surprising experimental observations, we study the interacting
properties of graphene multilayers featuring a Bernal termination.

The unprecedented tunability afforded by doubly-gated two-dimensional structures allows
for simultaneous in-situ control of charge density and perpendicular displacement field. These
two, nominally very simple, experimental parameters allow one to explore a rich phase space
realizing a wide variety of unexpected electronic phenomena. For example, in multilayer van
der Waals systems, this has led to an avalanche of recent discoveries. Already the possibility to
precisely tune the filling has led to remarkable results in moiré systems with large unit cells, in-
cluding correlated insulators and superconductivity in twisted bilayer graphene [20–30], as well
as fractional Chern insulators in twisted bilayer transition metal dichalcogenides [60–64]. The
ability to tune displacement field has unveiled new, displacement-field-driven phases, most re-
markably in systems based on rhombohedral or Bernal stacked graphene. In Bernal bilayer and
rhombohedral trilayer graphene, an applied displacement field generates pockets with extremely
high density of states, leading to flavor ferromagnetism [15, 186, 187] and unconventional super-
conductivity [14, 186, 188]. In rhombohedral pentalayer graphene under extreme displacement
fields, the fascinating anomalous Hall crystal and fractional Chern insulator phases emerged
recently [16, 189, 190]. Another fascinating class of systems are stacks of two Bernal multilayers
on top of each other with a twist, such as twisted double-bilayer graphene. Such systems are
strongly tunable by displacement field, leading to robust correlated insulating states [36–38, 67,
191, 192] and, very recently anomalous Hall crystal phases [193].

In this Chapter, we focus on a remarkable feature that has been visible since the earliest mea-
surements of doubly-gated moiré graphene multilayers, but received little attention until now.
This feature is the regular appearance of diagonal lines in the filling-displacement field (ν-D)
plane, tracking contours of constant values of the top or bottom gate voltages, Vt or Vb, or,
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equivalently, the top and bottom gate electron densities, nt and nb. This is a striking result, as
it challenges the common assumption that the displacement field D and filling ν, rather than
a single gate voltage, are the relevant parameters that define the boundaries of the experimental
phase diagram. Devices exhibiting this feature include twisted double bilayer graphene [36–38,
191, 192], its derivatives [67, 193, 194], and rhombohedral pentalayer graphene aligned with hBN
[16, 189, 190], where, most notably, the boundaries of the strongly correlated region of parameter
space supporting the anomalous Hall crystal and fractional Chern insulators are determined by
a single gate voltage only.

As we will show, the common microscopic denominator of these experiments is the presence
of perfectly layer and sublattice polarized states at the Dirac point (one for each spin and valley),
arising from the local Bernal stacking. As we will elucidate, these states, which we refer to as
"surface states", form an important part of the flat bands that give rise to correlation effects. In
particular, as our first finding, we reveal that the high density of states regions in parameter space
in these systems are delimited by curves along which the surface states are at the Fermi level.

Secondly, the surface states’ perfect layer polarization allows us to obtain an analytical un-
derstanding of their evolution in the ν−D plane. We uncover an electrostatic mechanism that
causes the position of these surface states relative to the Fermi level to be tuned by the proximate
gate only. Physically, this mechanism is rooted in the presence of other, vertically delocalized,
states, that screen the effect of the distant gate on the surface states.

This Chapter is structured as follows. In Section 6.1, we introduce the problem, presenting
experimental data on twisted double bilayer graphene and rhombohedral pentalayer graphene.
In the next Section 6.2, we clarify the important role of surface states in shaping the band struc-
tures of Bernal terminated systems. Subsequently, in Section 6.3, we introduce the machin-
ery to model systems under applied displacement field and present a simple electrostatic model
to analytically understand the factors influencing the evolution of surface states in the ν − D

plane, deriving conditions for the emergence of single-gate tracking behavior. We then apply
this framework to twisted double bilayer graphene (Section 6.4), and rhombohedral pentalayer
graphene (Section 6.5), utilizing self-consistent numerical simulations to confirm the physical
understanding and reproducing experimental observations. We conclude this Chapter with an
outlook and discussion in Sec. 6.6.

6.1 Experimental motivation

The paradigmatic system showing diagonal features in almost all devices is twisted double bi-
layer graphene (TDBG) [36–38, 67, 191, 192]. This system features two central moiré bands and
hosts correlated insulating states. In Figure 6.1a, we show the longitudinal resistance map in
the ν − D plane for one such device, highlighting with arrows the axes corresponding to the
bottom (nb, green), and top (nt, black dashed) charge densities, which are (up to quantum
capacitance corrections) proportional to the gate voltages. In addition to the vertical high resis-
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6.1 Experimental motivation

Figure 6.1: (a) Experimental Rxx map of twisted double bilayer graphene. The axes of bottom and top gates are
shown in green and black, respecively. The onset of symmetry breaking is tuned by nb. Data are pro-
vided by the Yankowitz Lab and are published in Ref. [36]. (b) Same as (a), but for Rxy . Data are
provided by the Yankowitz Lab and are published in Ref. [36].

tance features corresponding to the insulating states at filling ν = 0, 2, 4 (purple), there are two
different diagonal features. First, inside the low resistance region (red) at negative filling ν, there
is a high resistance line (yellow), which is almost perfectly independent of nb. Second, the high
resistance region of flavor symmetry breaking (green) appearing in proximity to the ν = 2 cor-
related insulating state appears approximately bounded by lines of constant nb. More insight
into the nature of the symmetry broken phases can be obtained from a transverse resistance
map, shown in Figure 6.1b. The entire region of flavor symmetry breaking is seen to consist
of phases characterized by one-fold, two-fold, or three-fold flavor degeneracy. The most promi-
nent one is the doubly-degenerate phase arising from the ν = 2 insulator. Its phase boundaries,
along whichRxy flips sign are seen to be primarily tuned bynb, althoughnt also has some effect.
Another notable phase is the three-fold degenerate phase around ν = 3 and D = 0.3V/nm.
The boundary of this phase to the phase with no flavor symmetry breaking is seen to be tuned
almost exclusively by nb.

A further fascinating example showing these features is rhombohedral pentalayer graphene
aligned with hBN. We show its experimental phase diagram in Fig. 6.2, highlighting the diagonal
features. The most striking one is the boundary of the high resistance (purple) region around
ν = 1 and D = 0.9V/nm, which appears to be largely tuned by nb. Excitingly, inside this
high resistance region, the topological electronic crystal and fractional Chern insulator phases
have been shown to occur [16, 190, 195].
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6 Single gate dependence in Bernal-terminated graphene multilayers

Figure 6.2: Experimental data on rhombohedral pentalayer graphene, provided by Yankowitz lab and presented in
Ref. [190].

We note that already for these two systems exhibiting single-gate tracking, a certain degree
of non-universality in the degree of single-gate tracking is apparent. Some phase boundaries
track a single gate direction perfectly, while others only approximately. Other devices show-
ing this single-gate tracking effect also exhibit diverse behaviors. In twisted monolayer-bilayer
[194], single-gate tracking, while still approximately present, is less perfect. On the other hand,
in twisted bilayer-trilayer graphene, the boundary of the ν = 1 phase in [67, 193] is perfectly
parallel to a single gate direction, similar to the ν = 1 phase in moiré rhombohedral graphene
multilayers [16, 190, 195], shown in Fig. 6.2. Intriguingly, both in twisted bilayer-trilayer, as well as
rhombohedral pentalayer grpahene, the robustly tracking ν = 1 phase is characterized by very
strong correlations, manifesting in the formation of the anomalous Hall crystal phase [16, 190,
193, 195]. This suggests a connection between strong correlations and robust single gate tracking,
which we will reexamine in what follows.
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6.2 Perfectly layer-polarized states in Bernal-terminated systems

6.2 Perfectly layer-polarized states in Bernal-terminated
systems

We focus on a class of 2D graphene multilayer systems featuring a Bernal termination, which
is a Bernal stacking configuration at one of the terminating ends of the device. Focusing on a
bottom termination and labeling the orbitals in the two terminating layers as 1A, 1B, 2A, 2B,
which denote the layer (l = 1, 2) and sublattice (A and B) degrees of freedom, local Bernal
stacking implies that only 1B → 2A tunneling is sizeable, and leads to a surface state at the
Dirac point that is perfectly polarized to the bottom layer and does not mix with other states.
Specifically, acting on wavefunctions expanded around the K-point

Ψ(r) = [Ψ1,A(r),Ψ1,B(r),Ψ2,A(r),Ψ2,B(r), . . .]T , (6.1)

the single-particle Hamiltonian of a Bernal-terminated device expanded around the K-point can
be written as

HK
kin +Hlayer =



U1 vFk −v4k −v3k 0 · · ·

vFk

· · ·
−v4k

−v3k

0
...


(6.2)

where HK
kin is the kinetic part, Hlayer encodes the different potentials on each layer (these are

independent of valley), k = kx + iky is the complex momentum operator, k = kx − iky is
its conjugate, vF is the graphene Dirac velocity, v3, v4 ≪ vF are the velocities for non-local
interlayer tunneling, and Ul is the layer potential on layer l. Note that we only explicitly list
matrix elements involving the 1A state, and treat the potentials Ul as parameters of the model
at this point. Crucially, at theK-point (k = 0), the 1A state is an exact eigenstate with energy
U1 that is completely decoupled from the other degrees of freedom. This state (one for each spin
and valley), which we denote the surface state, is the key to understanding the peculiar behavior
of graphene based systems, in which features are largely tuned by a single gate only. Its position
relative to the Fermi level µ is given simply as µ − U1, and is a natural proxy for band flatness.
So long as the surface state is part of the relevant band, |µ − U1| sets a lower bound on the
bandwidth. Conversely, if |µ− U1| ≈ 0, the density of states is enhanced. Furthermore, while
the surface state is strictly decoupled only at the K-point (k = 0), layer polarization remains
high even for small but finite k, leading to strongly layer-polarized pocket deriving from the
surface state. This pocket, while evolving largely independently at first, eventually has to merge
with the rest of the bands. At this merging point of independent parts of the band structure, a
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6 Single gate dependence in Bernal-terminated graphene multilayers

Figure 6.3: (a) Single-particle ∆U -ν map of the density of states per flavor ρf . The contour of the surface states
due to the Bernal termination µ = 0 is shown in orange. (b) Single particle band structures at the
position of the red square in (c). Colorcode shows the average distance d∗(k) from the bottommost
layer. Note the bottom layer surface state has d∗(KM ′) = 0. (c) Same as (b), but at the position of the
blue star of (a).

van Hove singularity necessarily develops. We note that for simplicity of notation, we will use
the gauge U1 = 0. In this gauge, the only quantity determining the surface state relevance to
Fermi level physics is µ.

We now illustrate the effect of the surface state in twisted double bilayer graphene, which
features two central moiré bands, where the conduction band is flatter than the valence band.
We use the following continuum model in theK-valley

HK
kin +Hlayer =


vFk · σ + U1σ0 t†(k) 0 0

t(k) vFk · σ + U2σ0 T (r) 0

0 T †(r) vFk · σ + U3σ0 t†(k)

0 0 t(k) vFk · σ + U4σ0

,
(6.3)

whereT (r) is the moiré tunneling term for twisted bilayer graphene given in Eq. (2.56) of Chap-
ter 2, and where the tunneling matrix for Bernal stacking is given as

t(k) =

−v4k t1

−v3k −v4k

, (6.4)
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with t1 the strength of AB hopping when A is on top of B. In what follows, we use use the
following parameters: vF = 542.1meV · nm, v3 = v4 = 34meV · nm, t1 = 355.16meV,
wAB = 110meV, andwAA = 0.7 · 110meV. Note that this model is precisely of the form of
Eq. (6.2).

In Fig. 6.3a, we plot a heatmap of the density of states per flavor ρf for the single particle
model as a function of filling factor ν and interlayer potential difference ∆U = Ul+1 − Ul,
which is how an applied displacement fieldD is typically modeled.

A striking feature of this diagram is a high density of states (van Hove singularity) line at
positive filling. Plotting also the µ = 0 contour (orange) reveals that this density of states
feature correlates with µ = 0, at which point the surface state is at the Fermi level. The van
Hove singularity curve also extends to negative filling, where it follows the µ = 0 contour less
closely. The correlation of µ = 0 with a van Hove singularity is a natural consequence of the
merging of the surface state pocket with the rest of the moiré bands.

To confirm this expectation, in Fig. 6.3b, we show the single particle band structure forν > 0,
colorcoded by the average distance from the bottom layer d∗(k). At this point in the phase di-
agram, the entire conduction band is strongly polarized to the bottom layer, so the van Hove
singularity arising from the merger of the surface state pocket happens already for small detun-
ing from the surface state. In contrast, for negative filling, shown Fig. 6.3c, the bulk bands are
localized in the middle of the structure (cf. the colormap), so the surface state pocket is more
robust, and the van Hove singularity consequently occurs further away from µ = 0.

We remark that while feature lines are already present at this single particle level, they were
obtained under the assumption of a constant interlayer potential difference ∆U . However, the
potentialsUl are not directly experimentally tunable. Rather, what is tuned is the displacement
field D. Therefore, in the following Section 6.3, we will introduce an accurate model relating
Ul to D and show that a straightforward linear rescaling of the y-axis in Fig. 6.3a, setting D ∝
∆U with some arbitrarily chosen proportionality constant, is an unjustified approximation and
misses the essential physics.

6.3 Electrostatic mechanism

In this Section set up the machinery to correctly describe the electrostatics of layered devices and
describe the phase diagram in the ν-D plane accurately. We then use this machinery to obtain
an analytical understanding of the evolution of surface states in doubly-gated multilayers.

6.3.1 Accurate model of doubly-gated systems

We consider a system withN layers labeled l = 1, . . . , N sandwiched between bottom and top
gates, see Fig. 6.4a. Denote the net electron number densities in layer l as nl, in the top gate
as nt, and in the bottom gate as nb. Neglecting the effect of quantum capacitance, these gate
densities are related to the top and bottom gate voltages as nt = −1

e
CtgVt and nb = −1

e
CbgVb,
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6 Single gate dependence in Bernal-terminated graphene multilayers

whereCtg/Cbg are the top/bottom gate capacitances per unit area (set by the device structure),
and e is the electron charge. By overall charge neutrality, the sum of the gates fixes the total net
electron density in the device as follows

n =
N∑
l=1

nl = −(nt + nb), (6.5)

while their difference corresponds to the experimentally accessible displacement field

D = e
nb − nt
2ϵ0

. (6.6)

We decompose the full, second-quantized, interacting system Hamiltonian as follows:

Ĥ = Hkin +Hlayer +Hint,q ̸=0, (6.7)

where Hkin is the kinetic part including the valley and spin degrees of freedom. Hlayer describes
the layer potentials

Hlayer =
N∑
l=1

Ul Il, (6.8)

with Il being the projector onto layer l. Importantly, in order to model the system accurately,
the layer potentialsUl are self-consistent potentials, obtained by integrating Gauss’ law between
the layers:

Ul+1 − Ul = −e2dl
nb +

∑
j≤l nj

ϵ⊥ϵ0
, (6.9)

with dl the interlayer distance and ϵ⊥ the out-of-plane dielectric constant. This equation is a
simple generalization of Eq. (5.30) to the case of non-symmetric gating nt ̸= nb. Crucially,
these potentials have contributions due to both the gate charges and to the charges inside the
sample. Finally,Hint,q ̸=0 is the finite-momentum Coulomb interaction

Hint,q ̸=0 =
1

2A

∑
q ̸=0

∑
i,j

Vij(q) : ρq,iρ−q,j :, (6.10)

where Vij(q) is the Coulomb interaction at momentum q between layers i and j, which we
will model using Eq. (5.21) derived in the previous Chapter 5, A is the system area, :: denotes
normal ordering, and ρq,j is the charge density in layer j at momentum q.

This way of writing the Hamiltonian treats out-of-plane electric fields due to different charges
(in the gates or in the sample) on the same footing, as indeed, the same Gauss’ law relates them.
It is readily seen that the conventional way of including displacement field D = enb−nt

2ϵ0
as

a constant potential difference ∆U = −dleD/ϵ⊥ between the layers (as done in the single
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6.3 Electrostatic mechanism

Figure 6.4: (a) Sketch of the theoretical setup, showing the gates and a layered material. We assume a Bernal ter-
mination at the bottom, where the bottom two layers have Bernal (AB) stacking, leading to surface
states. The average distance of carriers from the bottom layer d∗ and the average vertical spread ∆d are
shown. (b) Illustration of the behaviors expected for different values of α. (c) Map of α [Eq. (6.20)] as
a function of d∗/∆d and e2∆d

ϵ⊥ϵ0
ρ. Contours of |α| = 3 are shown in red.

particle calculation above) is inadequate by comparing with the full expression of Eq. (6.9).
It misses contributions both due to the charges in the system, as well as due to the additional
charges that accumulate on the gates upon doping (changing ν).

6.3.2 Physical understanding of the model: single sector

To gain a physical understanding of the forces at play in determining the chemical potential
contours, we now consider the effect of the single particle terms Hkin and Hlayer in Eq. (6.7). To
analyze the chemical potential contours, we consider the change in chemical potential upon
varying the gate charges

dµ =
∂µ

∂nb
δnb +

∂µ

∂nt
δnt, (6.11)

where δnt/b are the increments in top/bottom gate densities, and where ∂µ
∂nt

and ∂µ
∂nb

are the
compressibilities relative to the top and bottom gates, respectively. We assume a Fermi level
density of states at constant layer potentials ρ and a distribution of chargesWl at the Fermi level
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6 Single gate dependence in Bernal-terminated graphene multilayers

across the layers (
∑

lWl = 1), as illustrated Fig. 6.4a. Note that both ρ andWl depend on the
instantaneous gate configurations, and that δnl = −(δnt + δnb)Wl.

Upon varying the gate charges, the chemical potential changes (i) due to the compressibility
1
ρ

at constant Ul and (ii) due to the change in layer potentials δUl, which give additional shifts.
Assuming all the states at the Fermi level to have the same distribution of charges Wl, the ad-
ditional Fermi level shift due to the change in layer potentials is equal to the expectation of the
change in the potentials δUl upon doping:

− ∂µ

∂nb
=

1

ρ
−
∑
l

Wl
∂Ul
∂nb

(6.12)

− ∂µ

∂nt
=

1

ρ
−
∑
l

Wl
∂Ul
∂nt

, (6.13)

where ∂Ul

∂nb
and ∂Ul

∂nt
can be evaluated using Eq. (6.9). The change in the layer potentials upon

changing the bottom gate charge by δnb is

δUl =
∂Ul
∂nb

δnb = − e2dl
ϵ⊥ϵ0

[
(l − 1)−

∑
l′<l

(l − l′)Wl′

]
δnb, (6.14)

while the change in the layer potentials upon changing the top gate charge by δnt is

δUl =
∂Ul
∂nt

δnt =
e2dl
ϵ⊥ϵ0

[∑
l′<l

(l − l′)Wl′

]
δnt. (6.15)

Defining the average distance from the bottom layer d∗ and layer spread ∆d as

d∗ = dl

N∑
l=1

(l − 1)Wl (6.16)

∆d =
dl
2

N∑
l,l′=1

|l′ − l|WlWl′ , (6.17)

the compressibility for a single sector at the Fermi level can be written as

− ∂µ

∂nb
=

1

ρ
− e2∆d

ϵ⊥ϵ0
+
e2d∗

ϵ⊥ϵ0
(6.18)

− ∂µ

∂nt
=

1

ρ
− e2∆d

ϵ⊥ϵ0
. (6.19)
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d∗ and ∆d the average distance of the charges at the Fermi level from the bottommost (l = 1)
layer and their average vertical spread across the layers, respectively, see Fig. 6.4a for an illustra-
tion. Note that d∗ ≥ ∆d.

These expressions can be physically understood as follows: in addition to the standard com-
pressibility 1

ρ
, the states at the Fermi level experience electrostatic shifts due toHlayer of Eq. (6.8).

Both gates induce the same layer distribution δnl, leading to the self-interaction term propor-
tional to ∆d. The bottom gate, however, causes an additional shift proportional to the average
distance from the bottom layer d∗. Note that this asymmetric behavior arises due to the choice
U1 = 0, which is natural for the bottom layer surface states. Importantly, for 1

ρ
≈ e2∆d

ϵ⊥ϵ0
, the

effect of the top gate is screened by the system.

For small changes in the gating, the chemical potential changes according to Eq. (6.11). Writ-
ten in terms of

α ≡ ∂µ

∂nb
/
∂µ

∂nt
= 1 +

d∗

∆d

(
ϵ⊥ϵ0
e2∆d

1

ρ
− 1

)−1

, (6.20)

it follows that constant chemical potential lines (dµ = 0) satisfy

δnt = −αδnb. (6.21)

The qualitative behavior of chemical potential contours is illustrated in Fig. 6.4b. Provided
|α| ≫ 1, constant chemical potential lines correspond approximately to lines of constant bot-
tom gate density, nb. In other words, the chemical potential is predominantly tuned by nb, so
the surface states due to Bernal termination are primarily tuned by the bottom gate. Forα > 1,
the contours tend towards verticality, while for α < −1, they tend towards horizontality, cf.
Fig. 6.4b.

It is instructive to analyze the parameter α as a function of the dimensionless parameters
d∗
∆d

≥ 1 and e2∆d
ϵ⊥ϵ0

ρ, shown in Fig. 6.4c. In the non-interacting regime (ϵ⊥ = ∞), we have
α = 1. Physically, for ϵ⊥ = ∞, the gates are unable to induce any potential difference on
the layers, so the chemical potential only depends on the filling ν. Increasing the strength of
interaction, α increases and become large in a region in which the top gate is screened by the
system electrons, characterized by the following condition

e2∆d

ϵ⊥ϵ0
ρ ≈ 1, (6.22)

where we expect e2∆d
ϵ⊥ϵ0

to have a similar value across different graphene based systems. The range
of ρ that gives a sizeableα is determined by the ratio d∗

∆d
, with a larger ratio giving a more robust

region, as seen by the diverging dashed red lines marking |α| = 3 in Fig. 6.4c. Increasing the
interaction even further,α flips sign and its absolute value steadily decreases. In this regime, the
system overscreens the gate.
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6 Single gate dependence in Bernal-terminated graphene multilayers

6.3.3 Physical understanding of the model: multiple sectors

Having analyzed a single sector, in this Subsection, we derive the dependence of the chemical
potential on the two gates for multiple sectors. Consider different sectors labeled with an index
k, where each sector has a layer distribution W (k)

l , and density of states ρ(k). We now define a
density of states matrix ρ as

ρkk = ρ(k), (6.23)

the matrix of layer spreads

∆Dij =
e2

ϵ⊥ϵ0

∑
l′<l

W
(i)
l (l − l′)W (j)

l′ , (6.24)

where∆Dii =
e2

ϵ⊥ϵ0
∆d(i) where∆d(i) is defined using the single-sector definition above, given

in Eq. (6.17). The matrix of sector distances from the bottom layer is defined as

d∗
kj =

e2

ϵ⊥ϵ0
d∗(k) =

e2

ϵ⊥ϵ0

∑
l

(l − 1)W
(k)
l , (6.25)

with d∗(k) being the distance from the bottommost layer of the sector k. Following a similar
analysis as for the case of a single sector above, we obtain the following results for the compress-
ibilities

−
(
∂µ

∂nb

)−1

=
∑
i,j

[
(ρ−1 −∆D + d∗)−1

]
i,j

(6.26)

−
(
∂µ

∂nt

)−1

=
∑
i,j

[
(ρ−1 −∆D)−1

]
i,j
. (6.27)

In the weakly the weakly interacting limit |d∗| ≪ |ρ−1|, |∆D| ≪ |ρ−1|, we can obtain the
inverses in Eqs. (6.26), (6.27) in a perturbative expansion. For example, expanding the matrix
inverse in Eq. (6.27) obtains

(ρ−1 −∆D)−1 = ρ+ ρ∆Dρ+O[ρ(∆Dρ)2], (6.28)

such that the compressibility is in this limit equal to

− ∂µ

∂nt
≈ 1∑

k ρ
(k)

− 1∑
k ρ

(k)

∑
ij

ρi(∆D)i,jρj =
1

ρ
− e2∆d

ϵ⊥ϵ0
, (6.29)

recovering the result of Eq. (6.19) upon identifying the total density of states ρ =
∑

k ρ
(k) and

∆d as the average over the Fermi surface over all the sectors with sector k weighted by ρ(k)∑
k ρ

(k) .
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An analogous manipulation on Eq. (6.26) recovers Eq. (6.18) in the limit |d∗| ≪ |ρ−1| and
|∆D| ≪ |ρ−1|.

We now apply this general framework to understand the evolution of the µ = 0 contour,
at which the surface state is at the Fermi level. This situation is naturally modeled using two
sectors. One corresponding to the surface states, fully polarized to the bottom layer, having
W

(1)
l=1 = 1. The second sector corresponds to all the other states at the Fermi level, and has some

layer-delocalized distribution W (2)
l . In this limit, evaluating the compressibilities in Eq. (6.26)

and Eq. (6.27) is straightforward, and we obtain

− ∂µ

∂nb
=

1

C

[
1

ρ(2)
− e2∆d(2)

ϵ⊥ϵ0
+
e2d∗(2)

ϵ⊥ϵ0

]
(6.30)

− ∂µ

∂nt
=

1

C

[
1

ρ(2)
− e2∆d(2)

ϵ⊥ϵ0

]
, (6.31)

where C = 1 + ρ(1)

ρ(2)
+ e2ρ(2)

ϵ⊥ϵ0
(d∗(2) −∆d(2)). Remarkably, up to a rescaling by C, these are the

same results as for a single sector, but now all the quantities refer to sector k = 2 only. This
implies that α for the µ = 0 contour is

α ≡ ∂µ

∂nb
/
∂µ

∂nt
= 1 +

d∗(2)

∆d(2)

(
ϵ⊥ϵ0

e2∆d(2)
1

ρ(2)
− 1

)−1

, (6.32)

which is the same as Eq. (6.32), but with all quantities defined with respect to sector k = 2.
Physically, this result arises since along the µ = 0 contour, the surface states’ occupation does
not change – their position with respect to the Fermi level is constant. Therefore, along the
µ = 0 contour, all the charge enters the k = 2 sector, meaning α should be defined with
quantities referring to sector k = 2 only.

6.3.4 Role ofHint,q ̸=0

We conclude this Section by commenting on the role of the term Hint,q ̸=0 in Eq. (6.7), which
we neglected above. The effect of this term is twofold. Firstly, there is the classical effect of the
Hartree in-plane inhomogeneity, present in most moiré systems [179, 182, 196]. Its effect is to
increase 1

ρ
by a fixed amount due to an approximately constant Hartree shift energy scale G.

The effect of this on the possible parameters in Fig. 6.4c is to put an upper cut-off on possible
ρ ≲ 1

G
for a given system.

Secondly, Hint,q ̸=0 leads to all the strongly correlated physics observed experimentally. Al-
ready at the Hartree-Fock level, this obtains additional interaction induced shifts of the surface
state, so that their position relative to the Fermi level is not determined purely by the Fermi
level µ. Nevertheless, both the surface state and the Fermi level experience some shift due to the
Fock term. However, it is a natural assumption that these two shifts are of similar size, so we ex-
pect the surface state properties to still be determined by the electrostatic mechanism above. In
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6 Single gate dependence in Bernal-terminated graphene multilayers

Figure 6.5: (a) Numerical ν − D colormap of the log of the density of states ρ (per spin-valley flavor) together
with contours of µ = −5, 0, 5meV. We work in the Hartree approximation with dielectric constant
ϵ = ϵ⊥ = 6, see Supplement for details. (b) µ = 0 line for three values of ϵ⊥ at ϵ = 6. (c) Toy model
cascade for U = 5.9meV and ϵ = ϵ⊥ = 6, together with surface state occupation. (d) Same as (c)
but showing ρf for the flavor with maximal density of states maxf (ρf ).

fact, for a toy model Fock term that we will consider in the following Section, the Fock-induced
surface state shift and Fock-induced Fermi level shift are the same.

6.4 Application to twisted double-bilayer graphene

We now illustrate these ideas on twisted double-bilayer graphene by solving Eq. (6.7) self-consistently,
treating the finite q interaction in the Hartree approximation with in-plane dielectric constant
ϵ = 6. Specifically, we self-consistently solve the mean-field Hamiltonian Ĥ = Hkin + H⊥ +

HHartree, where the Hartree term reads

HHartree =
1

A

∑
i,j

∑
G

ρG,iVi,j(G)⟨ρ−G,j⟩, (6.33)
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where G are moiré reciprocal lattice vectors, and where ⟨ρ−G,j⟩ denotes the expectation value
of the momentum −G density in the mean-field state. Only simulating one spin-valley flavor,
we recover results for Nflavor = 4 spin-valley flavors by multiplying the mean-field densities by
Nflavor, modelling unbroken flavor symmetry. To avoid displacement field dependent bias, we
choose at each momentum k on a Brillouin zone grid a basis of NG plane waves per layer and
sublattice. In this way, we expect the bands not included in our calculation to simply renormal-
ize the dielectric constants ϵ⊥ and ϵ.

6.4.1 Results of self-consistent calculations

In Fig. 6.5a, we plot the resulting numerical ν −D map of the density of states, together with
chemical potential contours for µ = 5, 0,−5meV, using an out-of-plane dielectric constant
ϵ⊥ = 6, which is chosen to account for the remote degrees of freedom not included in our
numerics. A first important observation is that for ν < 0, chemical potential contours very
closely follow lines of constant nb. This can be understood by noting that at negative filling,
the surface state is part of the bottom moiré band, which is localized further away from the
surface state. This band has d∗/∆d ≈ 3, cf. Fig. 6.3c, giving a more robust region of large |α|
in Fig. 6.4c.

At positive filling, the states are much more polarized to the outermost layer, cf. Fig. 6.3d,
giving a small d∗/∆d. Consequently, the tracking is less robust, with the µ = 0meV contour
being almost horizontal (α ≈ −1), consistent with the large density of states due to the proxi-
mate van Hove singularity. In contrast, the µ = ±5meV contours are more vertical as a result
of their lower density of states, in line with our analytical expectation of Eq. (6.20).

To further confirm our physical analysis above, it is instructive to compare the results for the
surface state µ = 0 contour for different ϵ⊥, shown in Fig. 6.5b. There, it is seen that at ν < 0,
large |α| robustly persists for all the parameters studied, in line with the large width of the white
region in Fig. 6.4b for d∗/∆d ≈ 3. On the other hand, at positive filling, the behavior of the
contour changes from being almost horizontal (α = −1) for ϵ⊥ = 2 to having positive α for
ϵ⊥ = 20, converging towards verticality (α = 1) for ϵ⊥ = ∞, so it does not seem to robustly
track a single gate.

The robust tracking at ν < 0 explains the negative filling diagonal feature seen in Fig. 6.1a,
which we interpret as the point at which the surface state pocket is at the Fermi level. On the
other hand, we do not observe robust gate tracking of the surface state at ν > 0 in this Hartree
calculation. However, since around the µ = 0 contour there is a van Hove singularity in a flat
band, we expect that the flavor degenerate phase currently considered will be unstable towards
flavor symmetry breaking, which we consider in the following Subsection.
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6 Single gate dependence in Bernal-terminated graphene multilayers

6.4.2 Role of flavor symmetry breaking

To study flavor symmetry breaking, we use a minimal mean-field model for flavor symmetry
breaking, which simply shifts each flavor according to its current filling [197]

HFock = −UFockDiag(νK↑, νK↓, νK′↑, νK′↓), (6.34)

with νf the filling of flavor f relative to charge neutrality andUFock an energy scale quantifying
the strength of interactions. To simplify even further, we only consider spin-degenerate sym-
metry breaking, imposing νK′↓ = νK′↑ and νK↓ = νK↑. By optimizing the division of charges
among the two valleys at UFock = 5.9mev for different ν and D, we obtain obtain the phase
diagram of Fig. 6.5c, highlighting the boundary of the region where cascade occurs. We also
colorcode the surface state occupation Nsurf , defined as the total number of electrons in the
bottom layer surface states across all the four spin-valley flavors. We see that the cascade bound-
ary closely tracks changes in the surface state occupation. As we have seen above, the point at
which surface state filling changes is proximate to the density of states peak. Reaching this peak
in the symmetry broken phase, then, leads to an instability towards the symmetry unbroken
phase. To confirm this intuition, in Fig. 6.5d, we plot the density of states of the dominant
flavor, maxf (ρf ), showing that the cascade transitions from the symmetry broken phases are
preceded by an increase in the density of states due to the van Hove singularity, which arises
when the surface state is close to the Fermi level.

Importantly, the surface state evolution in this model is still described by our framework
above, but with a reduced density of states in the symmetry broken phase due to the reduced
number of flavors at the Fermi level. In the diagram of Fig. 6.4c, this means that symmetry
breaking causes a flow of the system parameters towards the left side of the plot, where α > 0.
And indeed,UFock turns the negative α in the symmetry unbroken phase (Fig. 6.5a) into a large
and positive α in the symmetry broken phase, in line with the experimental phenomenology,
cf. Fig. 6.1b.

6.5 Application to rhombohedral pentalayer graphene aligned
with hexagonal boron nitride

We now consider rhombohedral pentalayer graphene aligned with hBN, whose experimental
phase diagram we showed in Fig. 6.2. While at large D all the states in this system are strongly
layer polarized, there is still a Bernal termination, and therefore decoupled surface-layer polar-
ized states must exist that are only sensitive to the chemical potential. In this system, the anoma-
lous Hall crystal, whose origins are presently hotly discussed, forms for displacement field val-
ues corresponding to electrons localizing at the side far from the moiré interface. On the other
hand, insulators exist even at the single particle level for displacement field values corresponding
to electrons localizing on the hBN-proximate side. Since the single gate dependence of phase
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Figure 6.6: (a) Numerical ν−D contour map of chemical potential µ in the single particle regime for rhombohe-
dral pentalayer graphene aligned with hexagonal boron nitride. (b) Plot of the band structures at the
red square point of (b). Fermi level µ is shown by the red dashed line. (c) Plot of the band structures at
the blue star point of (b).

boundaries occurs for both sides equally well, we focus on the moiré proximate side, allowing
us to neglect the complex role exchange effects play.

As basis of our analysis, we use the single-particle model of Ref. [198] for hBN graphene ori-
entation ξ = 1 and twist angle θ = 0.77◦. The parameters of this model are listed in Table I of
Ref. [198].

In Fig. 6.6a, we show the single particle density of states, together with the µ = 0 contour,
which is seen to be approximately diagonal. As for twisted double bilayer graphene, this µ = 0

contour tracks a high density of states region, this time forming its boundary.
In Figs. 6.6b,c, we plot the band structures at two points in the map of Fig. 6.6a, where,

similarly to TDBG, the high density of states region arises from the joining of the states arising
from the surface state pocket and the rest of the bands.

Focusing on the moiré proximate side justifies an approach based on the single particle bands
Hkin and Hlayer, while treating the interaction at the Hartree level, as introduced in Sec. 6.4.
Working in this approximation, we plot the interacting density of states in Fig. 6.7, together with
chemical potential contours. It is seen that the constant µ contours, which form the boundary
of the high density of states region, are tracking a single gate. This suggests that the gate screen-
ing mechanism is also relevant for rhombohedral pentalayer graphene.

We now speculate on the interplay of surface states, screening effects and the anomalous Hall
crystal. It is an experimental fact that features with α < 0 are not observed, while according to
Fig. 6.4c, α tends to be larger in more strongly correlated devices with higher density of states.
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6 Single gate dependence in Bernal-terminated graphene multilayers

Figure 6.7: Numericalν−D contour map of chemical potentialµ in the Hartree approximation for rhombohedral
pentalayer graphene aligned with hexagonal boron nitride.

Since correlation effects in the anomalous Hall crystal phase are of paramount importance, we
expect a large α, as seen in Fig. 6.2.

6.6 Discussion

To conclude, motivated by unexplained experimental trends, we uncovered a powerful approach
to study multilayer graphene structures with a Bernal termination. Using the analytical prop-
erties of the decoupled "surface states" allows their evolution in the ν −D plane to be tracked,
providing an understanding for the experimentally observed diagonal features.

We focused on the regime in which the bottom layer surface states are relevant, which occurs
for positive displacement field, for which electrons tend to reside in the lower layers. The same
effect occurs with regards to the top layer surface states, but at opposite sign of displacement
field.

It is worth noting that in our analysis of Sec. 6.2, the surface state is completely decoupled
from other states. However, a periodic potential will induce a coupling between the surface
state at theK-point and other states at different momenta offset by a reciprocal lattice vector g,
leading to an additional shift of the surface state. Nevertheless, we expect this effect to be small,
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6.6 Discussion

being suppressed by a factor Vg
vF |g| ≪ 1, where Vg is the strength of the periodic potential at

wavevector g.
An interesting further direction is to consider the role of the surface states in the recently dis-

cussed ratchet effect, in which hysteretic gating behavior is observed in graphene based devices
[199, 200].
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7 Real-space textures of wavefunctions

In this Chapter, we study the real-space wavefunctions of moiré materials, with a focus on
twisted bilayer graphene and twisted bilayer transition metal dichalcogenides. We are motivated
by the fact that the real-space textures of moiré wavefunctions are directly experimentally acces-
sible in local tunneling experiments as a result of the large moiré unit cell. The results of this
Chapter will be included in a publication in preparation, Ref. [7].

Wavefunctions of layered moiré systems typically possess multiple components, and there-
fore define smooth maps from the real-space moiré unit cell into CN , where N is the number
of components. Furthermore, these wavefunctions are periodic in real-space unit cell at zero
applied magnetic field, and quasiperiodic when a nonzero integer number Φ of magnetic flux
quanta per unit cell is applied.

Two important examples of systems possessing multicomponent wavefunctions are twisted
bilayer graphene (TBG) and twisted transition metal dichalcogenides (TMDs). TBG wavefunc-
tions have four components in each valley – two for each sublattice and layer, while wavefunc-
tions of twisted bilayer TMDs have two – one for each layer. Interestingly, for both these sys-
tems, there is a limit, in which their low energy wavefunctions are given in terms of Landau
levels. For twisted bilayer graphene, this is the chiral limit [73], in which interlayer hopping
within the same sublattice is neglected. In this limit, the flat band wavefunctions have an exact
Landau level representation. For twisted bilayer transition metal dichalcogenides (TMDs), it is
the adiabatic approximation [201, 202], in which the Hamiltonian is projected onto the direction
of the effective Zeeman field defined by the tunneling and potential terms. Because this Zeeman
field defines a skyrmion texture in the unit cell, the ensuing effective Hamiltonian is character-
ized by an emergent magnetic field of one flux quantum per unit cell, and the wavefunctions
are therefore given as linear combinations of Landau levels.

In what follows, we study the connection between real space textures of multicomponent
wavefunctions and their representability in terms of Landau levels. To characterize the textures
of wavefunctions, we first focus on nowhere vanishing wavefunctions, defining an associated
real-space Berry connection, Berry curvature, and Chern number. Surprisingly, we find that at
zero applied magnetic field, any wavefunction without zeroes in the unit cell has to have zero
real-space Chern number. More generally, the real-space Chern number of nowhere vanishing
wavefunctions is tied to the number of applied flux quanta per unit cell Φ.

Further, we find that the real-space Chern number can still be defined for some wavefunctions
with zeroes in the unit cell, characterizing those for which this is possible as a product of a
nowhere vanishing spinor wavefunction and a scalar wavefunction. Crucially, the two factors
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can experience different magnetic fields, Φ1 and Φ2, which are nevertheless tied to the applied
field as Φ1 + Φ2 = Φ. The real-space Chern number of such wavefunctions is then given by
the flux experienced by the spinor part, Φ1, and, crucially, is no longer necessarily equal to the
applied flux. In particular, we obtain that a nonzero real-space Chern number at Φ = 0 is
possible exactly when the scalar part experiences a nonzero magnetic field, meaning Φ2 ̸= 0,
and implying that it is expressible in terms of Landau levels, which necessarily have a zero in the
unit cell.

For twisted bilayer TMDs, we find that a nonzero real-space Chern number is realized pre-
cisely in the adiabatic approximation, in which the wavefunctions map onto Landau levels, and
the wavefunction exactly follows the real-space skyrmion defined by the effective Zeeman field.
In this regime, the wavefunctions necessarily possess zeroes in the unit cell. However, we find
that these zeroes are generically removed when going beyond the adiabatic approximation, lead-
ing to a vanishing real-space Chern number in any realistic situation.

For twisted bilayer graphene in the chiral limit, we find as well that in the regime in which
its wavefunctions map onto Landau levels, the real-space Chern number is nonzero. However,
similarly to twisted TMDs, we find that going beyond the ideal chiral limit the real-space zeroes
are removed and the real-space Chern number evaporates.

This Chapter is structured as follows. In Section 7.1, we present a general theory of real-space
topology of multicomponent wavefunctions. In Section 7.2, we introduce the ideal band wave-
functions, which have an exact Landau level representation, and discuss an example in the form
of twisted bilayer graphene in the chiral limit. In Section 7.3, we introduce the wavefunctions of
twisted bilayer TMDs, focusing on the adiabatic approach in which they can be related to Lan-
dau levels, interpreting this relation in light of the theory introduced in Sec. 7.1. In Section 7.4,
we present arguments in support of the generic vanishing of the real-space Chern number at
zero applied magnetic field, and illustrate on examples of twisted bilayer TMDs and TBG in
the chiral limit. We conclude with a discussion in Section 7.5, emphasizing the experimental
relevance of our results.

7.1 Real-space textures of wavefunctions

Consider a general N -by-N continuum Hamiltonian in two spatial dimensions, where the N
components typically correspond to layer, sublattice, spin (pseudospin), or any additional de-
grees of freedom. We consider a situation when an integer number of flux quanta per unit cell
Φ are applied. In this situation, the system retains the original lattice periodicity with lattice vec-
torsa1, a2, and the eigenstates of its Hamiltonian are (magnetic) translation eigenstates labelled
by a band index and a momentum k in the Brillouin zone.

The eigenstates are given in terms ofN -component Bloch spinors:

uk(r) = [u1k(r), u
2
k(r), . . . , u

N
k (r)]

T , (7.1)
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which are (quasi) periodic functions in the unit cell, satisfying

uk(r+ a1) = uk(r) (7.2)
uk(r+ a2) = eiγ(r)uk(r) (7.3)

for lattice vectors a1, a2. The additional phase γ(r) arises in a finite magnetic field in a general-
ized Landau gauge. In this gauge, in which the electromagnetic vector potential is translation-
ally invariant in the a1 direction, this phase takes the form 1

γ(r) =
2πΦ

|a1|2
r · a1. (7.4)

We note that γ(r) satisfies
∫ R+a1

R
dr · ∂rγ(r) = 2πΦ, encoding the magnetic field enclosed.

We further note that the full wavefunction is obtained from uk(r) as eik·ruk(r).
Away from the zeroes of uk(r), we define the normalized function χk(r) as

χk(r) =
uk(r)

|uk(r)|
. (7.5)

This normalized function χk(r) allows us to define a real-space Berry connection correspond-
ing to the wavefunction uk(r), treating r as a parameter:

Ak(r) = −i χ†
k(r)∂rχk(r), (7.6)

which corresponds to the additional geometric phase obtained upon adiabatically following
χk(r) in real space. The associated Berry curvature is defined in the usual way

Bk(r) = ∇r × Ak(r), (7.7)

and is invariant under gauge transformations χ → eiθ(r)χ, where θ(r) an arbitrary function.
Note that physically, multiplying by eiθ(r) is not a gauge transformation as the resulting wave-
function is physically different. Nevertheless, they all lead to the same real-space Berry curva-
ture. The Berry curvature upon integrating gives the real space Chern number

C(k) =
1

2π

∫
UC

drBk(r) ∈ Z, (7.8)

where UC denotes the unit cell.

1The generalized Landau gauge has the electromagnetic vector potential A(r) = ℏ
e
(G2 · r)a1/|a1|2. Here G2 is the

reciprocal basis vector satisfying G2 · a1 = 0 and G2 · a2 = 2π. This vector potential is periodic in the a1 direction,
leading to the periodic boundary conditions of Eq. (7.2). Upon translation by a2, on the other hand, A(r) changes as
A(r+ a2)−A(r) = ℏ

e|a1|2 (G2 · a2)a1 = 2π ℏ
e|a1|2 a1 = 2π ℏ

e
1

|a1|2 ∂r(a1 · r). The last equality allows γ(r) to be
determined, giving the result of Eq. (7.4).
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The (quasi) periodicity expressed in Eq. (7.3) fixes the integrated Berry connection along the
boundary of the unit cell as ∮

∂UC

dr · Ak(r) = 2πΦ, (7.9)

corresponding to the Aharonov-Bohm phase when going around the unit cell, which encloses
Φ flux quanta.

We now distinguish between scalar (N = 1) and spinor (N > 1) cases.
For scalar wavefunctions, which are complex numbers, the condition Eq. (7.9) implies that

the argument of the wavefunction winds by 2πΦ when going around the unit cell. This phase
winding necessarily leads to zeroes (vortices) inside the unit cell with total vorticity Φ. Math-
ematically, these zeroes arise due to homotopy constraints 2. A natural basis for these scalar
wavefunctions is given by Landau levels.

For spinor wavefunctions, first consider the case where the wavefunction is nowhere vanish-
ing. In this case, the normalized spinor χk(r) is well defined inside the entire unit cell, permit-
ting the application of Stokes’ theorem to determine the Chern number. Eq. (7.9) then obtains
the value of the real space Chern number for non-vanishing spinors as

C(k)
uk(r)̸=0
= Φ, (7.10)

so that the real-space Chern number is tied to the number of flux quanta per unit cell. In par-
ticular, it has to vanish at zero magnetic field.

Let us now consider spinor wavefunctions that have zeroes in the unit cell. The real space
Chern number can still be defined provided a well defined spinor can be assigned to the wave-
function. The most general such wavefunction can be written as a product of a nonzero spinor
part and a possibly vanishing scalar part

uΦk (r) = χΦ1
k (r)ψΦ2

k (r), (7.11)

where Φ = Φ1 + Φ2 and χΦ1
k is a spinor wavefunction at flux Φ1 [satisfying Eq. (7.3) at flux

Φ1], that is normalized at every point r in the unit cell, and ψΦ2
k is a scalar (single-component,

N = 1) wavefunction at fluxΦ2 [satisfying Eq. (7.3) at fluxΦ2]. The real-space Chern number
of this wavefunction is determined by its spinor component χΦ1

k only and is given by

C(k) = Φ1, (7.12)

2This can be proved as follows. The function u0,k(r) defines a map (not periodic) from the unit cell to complex numbers
C. If this function is non-vanishing everywhere, it becomes a map from the unit cell to non-zero complex numbers C× =
C − {0}. The latter has nontrivial fundamental group π1(C×) = Z, describing the phase rotation of u0,k(r) along a
loop. Since we can deform a loop along the unit cell boundary to a single point by shrinking the loop through the interior
of the unit cell, this loop must belong to the trivial element 0 ∈ π1(C×) = Z, contradicting the non-trivial phase winding
due to the magnetic translation.
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which differs from Eq. (7.10) for Φ2 ̸= 0. In this case, the wavefunction necessarily has a zero
in the unit cell as a result of the nonzero flux Φ2 experienced by the scalar part ψΦ2

k (r).
To prove Eq. (7.11), suppose that a smooth normalized spinor χk(r) can be assigned to a

smooth wavefunction uk(r). The existence of such a spinor in the unit cell is a necessary condi-
tion to define a real space Chern number. We further require that χk(r) ∝ uk(r)/|uk(r)|
wherever uk(r) ̸= 0. Crucially, to be well defined at the zeroes of uk(r), χk(r) will pos-
sibly have to differ from uk(r)/|uk(r)| by a non-trivial phase factor around them. Defining
ψk(r) = χ†

k(r)uk(r), which is smooth as the product of two smooth functions, we can write

uk(r) = χk(r)ψk(r). (7.13)

Now consider the integral of the Berry connection of χk(r) across the boundary of the unit
cell. This has to be equal to an integer multiple of 2π, because χk(r) can only change by a
phase upon translating by a lattice vector 3. We denote the value of this integral as 2πΦ1, where
Φ1 is an integer. We now define

χΦ1
k (r) = eiΓ(r)χk(r), (7.14)

where the smooth function Γ(r) is chosen in order for χΦ1
k (r) to satisfy the (quasi) periodic

boundary conditions of Eq. (7.2) and Eq. (7.3) at flux Φ1. Such a function can always be found
as the Berry connection of χk(r) integrated across the boundary of the unit cell evaluates to
2πΦ1. We further define ψΦ2

k (r) with Φ2 = Φ− Φ1 as

ψΦ2
k (r) = e−iΓ(r)ψk(r), (7.15)

which is obtained by multiplying the wavefunction ψk(r) scalar with the opposite phase to
χk(r). We finally obtain the decomposition of Eq. (7.11) when noting thatψΦ2

k (r) now satisfies
the Bloch boundary conditions of Eq. (7.2) and Eq. (7.3) at flux Φ2 = Φ − Φ1. This follows,
since the product with χΦ1

k (r) has to recover the boundary conditions of uk(r).
As an application, we see that a finite real-space Chern number at zero applied field is possible

if we allow the wavefunction to have zeroes, which arise due to the scalar part ψΦ2
k (r) Namely,

if C(k) = Φ1 ̸= 0, we have Φ2 = −Φ1 ̸= 0. In this case, the scalar part of the wavefunction
ψΦ2
k (r) is experiencing an effective magnetic field of flux Φ2. It is therefore naturally expressed

in terms of Landau levels and, according to our discussion of scalar (N = 1) wavefunctions
above, nonzero Φ2 implies zeroes in the unit cell, with total vorticity Φ2.

We reiterate that if the wavefunction is everywhere nonzero, the Chern number at Φ = 0

has to vanish, by merit of Eq. (7.10). On the other hand, at finite applied flux, a nonzero Chern
number is possible even without zeroes in the wavefunction, as demonstrated in Eq. (7.10).

3Note that we assume the zeroes of uk(r) are away from the unit cell boundary, which can always be achieved by an appro-
priate choice of unit cell.
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7.2 Landau level-like wavefunctions: Ideal bands

We now introduce a class of wavefunctions that naturally yield Landau-level like states – the
ideal band wavefunctions. Ideal bands are believed to be well suited for hosting fractional Chern
insulator phases [203–210], allowing Laughlin-like trial states to be constructed [205]. At zero
applied magnetic fieldΦ = 0, their wavefunctions possess an exact Landau level representation
[204]

uIDEALk (r) = NkB(r)uΦ=1
0,k (r), (7.16)

where uΦ=1
0,k (r) is the zeroth Landau level wavefunction at momentum k for magnetic field

of one flux quantum per unit cell, Nk is a normalization constant and B(r) is a scalar or vec-
tor function. Note that the Landau level wavefunction uΦ=1

0,k (r) is quasiperiodic, satisfying
Eq. (7.3) with Φ = 1. This Landau level quasiperiodicity implies that B(r) is necessarily also
quasiperiodic, experiencing flux Φ = −1. For a spinor B(r), we see that this wavefunction is
of the form of Eq. (7.11) with the identification

ψΦ2=1
k (r) = Nk|B(r)|uΦ=1

0,k (r) (7.17)
χΦ1=−1(r) = B(r)/|B(r)| (7.18)

and therefore possesses real space Chern numberC(k) = −1.
An important example of ideal bands is twisted bilayer graphene [described by the Hamilto-

nian of Eq. (2.57)] in the chiral limit, in which intrasublattice tunneling wAA in Eq. (2.56) is
set to zerowAA = 0 [73]. In this regime, there is a new chiral antisymmetry σz .

In this chiral limit, it is advantageous to rewrite the Hamiltonian in a basis which groups
states with the same σz eigenvalue. Acting on the following four-component wavefunctions
Ψchiral(r) = [Ψb,A(r),Ψt,A(r),Ψb,B(r),Ψt,B(r)]T , the Hamiltonian for chiral TBG in theK
valley reads

HK
chiral =

 0 D†(r)

D(r) 0

, (7.19)

where the operator on the off-diagonal is given by

D(r) =

 vFk wAB

[∑3
j=1 e

i2πj/3eiqj ·r
]

[∑3
j=1 e

−i2πj/3eiqj ·r
]

vFk

, (7.20)

where k = k|x + ik|y = −i(∂x + i∂y) is the complex momentum, where vF is the graphene
Dirac velocity, wAB is the strength of intersublattice tunneling, and the vectors q1,q2,q3 are
defined in Eqs. (2.48),(2.49), and (2.50), and shown in Fig 2.3a.

In this system, ideal flat bands emerge at certain magic angles. To see how this occurs, consider
any zero-energy solution polarized to theA-sublattice. Importantly, these zero-energy solutions
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are zero modes of the operator D(r). An important property of this operator is that if it has a

sublattice polarized zero mode

Ψb,A(r)

Ψt,A(r)

, satisfying

D(r)

Ψb,A(r)

Ψt,A(r)

 = 0. (7.21)

Then also the zero mode wavefunction multiplied by z = x+ iy is a zero mode

D(r)z

Ψb,A(r)

Ψt,A(r)

 = 0, (7.22)

which follows because the operator of Eq. (7.20) contains only anti-holomorphic derivatives.

In fact, two such zero-energy solutions are guaranteed to exist at the mini-Dirac points KM

and KM ′ by using the sublattice antisymmetry C = σz and C2zT , with opposite sublattice
polarizations – these arise from the original Dirac points of the two layers forming the twisted
structure. At the magic angles of chiral TBG, the two-component KM wavefunction has a
zero in the unit cell. This allows the property expressed in Eq. (7.22) to be used to construct
zero energy wavefunctions at different momenta, leading to an exactly flat band [73], with a
second flat band obtainable by the application of C2zT . In this construction, the mapping to
Landau levels of Eq. (7.16) arises quite naturally, since the zeroth Landau level wavefunctions
in the symmetric gauge have the same property as Eq. (7.22). For a rigorous derivation of the
representation Eq. (7.16) for chiral twisted bilayer graphene, we refer to the literature [73, 205].

7.3 Landau level-like wavefunctions: TMDs

Another class of wavefunctions which are naturally expressed in terms of Landau levels are
twisted transition metal dichalcogenides, whose continuum model was introduced in Sec.2.2.
These systems can be intuitively understood as parabolically dispersing holes moving in a pseu-
dospin Zeeman field denoted ∆(r) and a scalar potential ∆0(r). In theK-valley, the Hamilto-
nian reads:

HK
tTMD = −(ℏk)2

2m∗ σ0 +∆(r) · σ +∆0(r)σ0, (7.23)

wherem∗ is the effective mass of the holes, and where σ0,x,y,z are the Pauli matrices, and where
in contrast to Sec. 2.2 we are working in a convention where momentum in each layer is mea-
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Figure 7.1: (a) Unit cell map of the in-plane angle of the texture n = ∆/|∆| (Eq. (7.29)). (b) Same as (a) but for
the z-component.

sured with respect to itsK-point. In terms of the layer potentials and interlayer tunneling from
Eq. (2.36) of Sec. 2.2, we have

∆0 =
1

2
[Vt(r) + Vb(r)] (7.24)

∆x = Re
[
ei(K

t−Kb)·rT (r)
]

(7.25)

∆y = −Im
[
ei(K

t−Kb)·rT (r)
]

(7.26)

∆z =
1

2
[Vb(r)− Vt(r)], (7.27)

where T (r) is given in Eq. (2.35), and where the additional factor ei(Kt−Kb)·r is due to measur-
ing momenta in each layer with respect to its respectiveK-point.

Importantly, the texture of the pseudo-Zeeman field typically has a nonzero real-space Pon-
tryagin index:

C[∆(r)] =
1

4π

∫
UC

dr n̂(r) · ∂xn̂(r)× ∂yn̂(r), (7.28)

which is defined using the unit vector

n̂(r) = ∆(r)/|∆(r)|. (7.29)

We show the texture corresponding to WSe2 of the model of Ref. [68] in Figs. 7.1a,b. This texture
has C[∆(r)] = −1, since as the unit cell is traversed, the vector n̂(r) covers the entire unit
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7.3 Landau level-like wavefunctions: TMDs

sphere once. For the two-component TMD wavefunctions, the real space Chern number of
Eq. (7.8) can be also written in terms of the direction of the vector defined by the location of
the wavefunction on the Bloch sphere

m̂(r) = χ†
k(r)σχk(r), (7.30)

with the Chern numberC(k) given by the integral of the Pontryagin index as in Eq. (7.28). As
we will see, this value is not necessarily equal to the value obtained for the textureC[∆(r)].

The adiabatic approach [201, 202] performs a rotation aligning the z-direction of the layer
pseudospin at every r with the direction of ∆(r), achieved by a unitary transformation U(r),
which satisfies

U †(r)∆(r)U(r) = |∆(r)|σz, (7.31)

where the columns ofU(r) are two orthogonal normalized spinors, denotedχ+(r) andχ−(r),
satisfying

∆(r) · σ χ+(r) = |∆(r)|χ+(r) (7.32)
∆(r) · σχ−(r) = −|∆(r)|χ−(r), (7.33)

so that the unitary can be written as U(r) = [χ+(r) χ−(r)]. The rotated Hamiltonian reads:

U †(r)HK
tTMDU(r) = −

ℏ2
(
k− iU †∂rU

)2
2m∗ + |∆(r)|σz +∆0(r)σ0, (7.34)

where the non-Abelian Berry connection −iU †∂rU arises from the kinetic term due to the
spatial dependence of the transformation U(r). This term has three consequences.

The first consequence is an emergent magnetic vector potential Ã(r) for the low-energy
[aligned, (1,1)] block. It is explicitly given by the Berry connection of χ+(r) as

Ã(r) =
ℏ
e
i
[
U †∂rU

]
1,1

=
ℏ
e
i
[
χ+(r)

]†
∂rχ

+(r), (7.35)

which leads to an effective magnetic field

B̃(r) = ∇× Ã(r) = − ℏ
2e

n̂(r) · ∂xn̂(r)× ∂yn̂(r), (7.36)

proportional to the Pontryagin index density. The total flux enclosed per unit cell is∫
UC

dr B̃(r) = −h
e
C[∆(r)], (7.37)

giving one flux quantum per unit cell [201, 202] for the texture of WSe2 in Figs. 7.1a,b. The high-
energy (2,2) block experiences an opposite magnetic field. Using this, a natural basis of wave-
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7 Real-space textures of wavefunctions

functions at momentum k for the original Hamiltonian of Eq. (7.28) is then given by Landau
levels in positive and negative magnetic fields multiplying the spinor χ±(r) [211]. Explicitly, for
χ+(r), we have the wavefunctions χ+(r)uΦ=1

l,k (r) for l = 0, 1, . . ., while for χ−(r), we have
the wavefunctions χ−(r)uΦ=−1

l,k (r) for l = 0, 1, . . ..

The second consequence is an additional scalar potential −D(r) for both the aligned and
antialigned sector, denoted the kinetic potential

D(r) = −
∑
i=x,y

ℏ2
[
U †∂iU

]
1,2

[
U †∂iU

]
2,1

2m∗ (7.38)

=
ℏ2

8m∗

∑
i=x,y

[∂in̂(r)]
2, (7.39)

where in the second line, we expressed the potential in terms of the Zeeman field direction n̂(r).

The third consequence is a coupling between the aligned and antialigned sectors due to the
off-diagonal components of U †(r)∂rU(r).

The adiabatic approximation projects onto the low-energy subspace which is at every posi-
tion aligned with the Zeeman field ∆(r), optimizing the Zeeman part of the energy. In the
rotated Hamiltonian, Eq. (7.34), this amounts to only considering the (1,1) block, and gives the
following adiabatic approximation Hamiltonian [201, 202]

HK
Adiabatic = −(ℏk− eÃ(r))2

2m∗ −D(r) + |∆(r)|+∆0(r). (7.40)

At a wavefunction level in the unrotated Hamiltonian of Eq. (7.23), the adiabatic approxima-
tion amounts to approximating the full wavefunction as

uAdk (r) = χ+(r)
∑
l

ckl u
Φ=1
l,k (r) (7.41)

with some coefficients ckl . We see that this is again of the form of Eq. (7.11), provided we identify
χΦ1=−1
k (r) = χ+(r) and ψΦ2=1

k (r) =
∑

l c
k
l u

Φ=1
l,k (r). In this adiabatic approximation, n̂(r)

of Eq. (7.29) andm̂(r)of Eq. (7.30) coincide and the wavefunction precisely follows the texture
of ∆(r), having the same invariant as the textureC(k) = −1 = C[∆(r)].

We note that even when the adiabatic approximation fails due to a ∆(r) that has fast varia-
tions in the unit cell, the writing in Eq. (7.41) can still be relevant for states that approximate
zeroth or higher Landau levels [65, 212–216], possibly replacing χ+(r) with a spinor that is ob-
tained variationally [211].
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7.4 Stability of nonzero real-space Chern number to perturbations

Figure 7.2: (a) Unit cell map of the in-plane angle of the texture of m̂(r) defined by the top KM wavefunction of
WSe2 at θ = 1◦, defined in in Eq. (7.30). (b) Same as (a) but for the z-polarization in the unit cell. (c)
Real space Berry curvature at the KM point at θ = 1◦. (d) Same as (c), but at θ = 2.2◦.

7.4 Stability of nonzero real-space Chern number to
perturbations

Having introduced two examples where a nonzero real-space Chern number naturally emerges,
we now connect these examples to our considerations in Sec. 7.1, where we showed that a nonzero
real-space Chern number is only possible if the wavefunction has a zero in the unit cell.

We therefore consider the stability to perturbations of the zeroes of the wavefunction in
Eq. (7.11). To that end, let us write a general perturbed wavefunction as

uk(r) = χΦ1
k (r)ψΦ2

k (r) + ϵ∆uk(r), (7.42)
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7 Real-space textures of wavefunctions

where ∆uk(r) is a perturbing wavefunction and ϵ is a small perturbation parameter. Impor-
tantly, we expect ∆uk(r) to be a generic wavefunction, which is not necessarily aligned with
χΦ1
k (r). We decompose ∆uk(r) into two orthogonal components as follows

∆uk(r) = ∆u
∥
k(r) + ∆u⊥k (r), (7.43)

where the aligned component is

∆u
∥
k(r) = χΦ1

k (r)
{[
χΦ1
k (r)

]†
∆uk(r)

}
, (7.44)

and the orthogonal component is

∆u⊥k (r) = ∆uk(r)−∆u
∥
k(r), (7.45)

which is orthogonal to the spinor of the ideal wavefunction at every point in space[
χΦ1
k (r)

]†
∆u⊥k (r) = 0. (7.46)

A first observation is that the admixture of ∆u∥k(r) preserves the structure of Eq. (7.11), and
therefore also the real-space Chern number. In particular, we can absorb ϵ∆u∥k(r) into the un-
perturbed wavefunction. On the other hand, the admixture of ∆u⊥k (r) will generically remove
any zeroes. To see that, consider the norm squared of the perturbed wavefunction

|uk(r)|2 = |ψΦ2
k (r)|2 + ϵ2|∆u⊥k (r)|2, (7.47)

which was obtained using orthogonality property of ∆u⊥k (r). We see that the full wavefunc-
tion can only have a zero if both ψΦ2

k (r) and ∆u⊥k (r) are simultaneously zero. Since we do not
generically expect the zeroes of a perturbing wavefunction to coincide with the original wave-
function, zeroes of ψΦ2

k (r) will typically be removed.
We therefore find that zeroes of the wavefunction Eq. (7.11) are generically removed upon

admixing generic wavefunctions, which contain spinors orthogonal toχΦ1
k (r). This removal of

zeroes in turn leads to the real-space Chern number collapsing to the behavior for non-vanishing
wavefunctions, given in Eq. (7.10), in which it is tied to the applied magnetic flux. We remark
that at high symmetry points in the Brillouin zone, zeroes of wavefunctions can be protected
by symmetries, rendering them stable to symmetry-preserving perturbations.

7.4.1 Illustration 1: TMDs

The removal of zeroes by admixture is best illustrated for twisted bilayer TMDs. There, the adia-
batic approximation assumes a wavefunction of the form of Eq. (7.41), effectively projecting on
the Hilbert space of wavefunctions with spinor components given byχ+(r). Going beyond the

106



7.4 Stability of nonzero real-space Chern number to perturbations

adiabatic approximation by allowing the admixing of wavefunctions with spinors proportional
to χ− is, according to our general arguments, generically bound to remove zeroes. Therefore
we expect that generically, the real-space Chern number of the wavefunctions of twisted bilayer
TMDs is will vanish, even when the adiabatic wavefunction suggests otherwise.

To illustrate this, in Figs. 7.2a,b we show the real-space texture m̂(r) of the full wavefunction
at theKM point for the topmost band for WSe2 at θ = 1◦. Note that nominally, the adiabatic
approximation is expected to be very accurate at these small twist angles [201, 202]. And in-
deed, the texture m̂(r) largely follows the texture n(r) defined by the Zeeman field, shown in
Figs. 7.1a,b. However, exactly at the BA stacking point, rather than being fully polarized to the
top layer like the underlying texture n(r), it has the opposite layer polarization.

As expected on general grounds, this arises due to the admixing of a perpendicular spinor in
the full wavefunction. At the adiabatic wavefunction zeroes, the perpendicular spinor domi-
nates, leading to a sudden flipping of the spinor direction close to those zeroes. Plotting the
real-space Berry curvature Bk(r) in Fig. 7.2c reveals that the flip in the spinor direction leads
to a strongly concentrated Berry curvature at the AB stacking points. For larger twist angles
(θ = 2.2◦), the adiabatic approximation becomes less accurate, with wavefunctions character-
ized by a large admixing of the χ−(r) component. In this regime, the sharp feature at the AB
stacking point is smeared out, as seen in Fig. 7.2d.

While we illustrated the fragility of the real-space Chern number at the KM point, we have
checked that this vanishing of Chern number is generic for states across the Brillouin zone. Only
at the high-symmetry Γ point, we obtainC(Γ) = −1, which arises because at the Γ point, the
zero in the adiabatic approximation is symmetry protected in the full model.

7.4.2 Illustration 2: Ideal bands in chiral TBG

For ideal bands, we expect similarly that the real-space Chern number will vanish due to the
admixing of other wavefunctions, which happens in any realistic system. We now illustrate this
for chiral twisted bilayer graphene. We recall that at the magic angle, there are two degenerate
ideal flat bands of opposite Chern number, which have opposite sublattice polarization. To
split the degeneracy and obtain ideal detached flat Chern bands, it is enough to apply a stag-
gered mass, introducing a polarizing term σzms. In Fig. 7.3a, we illustrate the real-space Berry
curvature for theKM B-sublattice wavefunction for TBG in the chiral limit at the magic angle
θ = 1.09◦, where the degeneracy between the two flat bands was lifted by a large sublattice
potential ms = 60meV. We see that the Berry curvature is everywhere positive and find that
it integrates to C(k) = 1. This reflects the ideality of the bands of chiral TBG, being given in
terms of Landau levels.

Since the ideal wavefunctions are fully sublattice polarized, a natural way to remove the zero
is to admix states in the other sublattice. This happens naturally when going beyond the chiral
limit, introducing a small nonzero intrasublattice tunneling wAA = 5meV, but keeping a
strong polarizing potentialms = 60meV. We show the resulting Berry curvature distribution
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7 Real-space textures of wavefunctions

Figure 7.3: (a) Unit cell map of the real-space Berry curvature for the flat band KM wavefunction of TBG at the
magic angle of the chiral limit (wAA = 0) with a sublattice potential mass termmsσz ,ms = 60meV.
(b) Same as (a) but slightly perturbed away from the chiral limit with wAA = 5meV.

for theKM , mostlyB-polarized, state in Fig. 7.3b, showing that at the BA point, a sharp peak of
negative Berry curvature emerges, leading to the vanishing of the total real-space Chern number.

7.5 Discussion

To conclude, we found that the real-space Chern number of spinor wavefunctions is generically
tied to the magnetic flux, satisfyingC(k) = Φ. It is only in fine tuned cases that the real-space
Chern number can differ from the applied flux. Having identified two such fine-tuned exam-
ples, the chiral limit of twisted bilayer graphene and the adiabatic approximation to transition
metal dichalcogenides, we showed how the real-space Chern number at zero flux Φ = 0 van-
ishes when perturbing away from these ideal limits.

We note that this generic vanishing of real-space Chern number should be experimentally
observable [217], in particular for bands far away from the ideal/adiabatic limits. On the other
hand, for bands close to the ideal/adiabatic limits, experimental observation of the generic van-
ishing of the real-space Chern number is challenging. This is because the cancellation of the
real-space Chern number happens in a region where the ideal wavefunction has a zero, so the
full wavefunction density is very small when the perturbation parameter ϵ, characterizing the
deviation from ideality in Eq. (7.42), is small. This renders the explicit observation of the fea-
tures shown in Figs. 7.2b,7.3b experimentally difficult.
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8 Hofstadter butterfly in twisted
transition metal dichalcogenides

The results of this Chapter have been published as Ref. [4], co-authored by Kang Yang, Felix von
Oppen and Christophe Mora. The research was conducted by the author of this thesis while dis-
cussing with the coauthors.

When magnetic flux of the order of a flux quantum Φ0 = h/e threads the unit cell of a lat-
tice, the energy spectrum exhibits a remarkable fractal structure, referred to as the Hofstadter
butterfly [218]. Reaching this regime for standard materials requires unrealistically large applied
magnetic fields B. The advent of moiré materials which feature large unit cells enabled the
Hofstadter regime to be probed experimentally, with signatures observed in bilayer graphene
on hBN [219], twisted bilayer graphene [220–222], and transition metal dichalcogenide hetero-
bilayers [223].

The experimental realization of twisted bilayer graphene [20] spearheaded these developments
[22–30, 153, 154]. Twisted bilayer graphene exhibits flat bands at twist angles close to the magic
angle of θ = 1.05◦ [19], providing additional interest in its Hofstadter physics. The band struc-
ture at large magnetic fields was shown to exhibit rich structure [224–227], with salient features
appearing at magnetic fields corresponding to an integer number of flux quanta threading the
unit cell. At these points, the Hofstadter problem retains the periodicity of the underlying
lattice [226], and the system displays reentrant flat bands, resulting in an interaction-driven phe-
nomenology, which is similar to that at zero magnetic field [222]. Shortly after twisted bilayer
graphene, twisted transition metal dichalcogenide (TMD) bilayers emerged as another remark-
able moiré platform, featuring flat topological bands [55, 68, 228, 229] and permitting the obser-
vation of Mott insulators [56], superconductivity [57, 58], quantum criticality [59], and, most
remarkably, the integer and fractional quantum anomalous Hall effects [60–64]. Very recently,
a TMD bilayer has been proposed to exhibit a fractional quantum spin Hall effect of holes
[65] and shown to feature multiple flat bands of equal Chern number in a given valley [65, 66].
These experimental findings were accompanied by intense theoretical efforts. Due to flavor po-
larization, topological bands exhibit an anomalous Hall effect at integer fillings [230–233], with
magnetic field tuning the fine balance between competing states [234]. The fractional quantum
anomalous Hall effect can form in partially filled Chern bands and is now firmly established in
exact diagonalization studies [232, 235–240], greatly broadening the scope of fractional states in
twisted graphenes [241].
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Ṽ [meV]

KM′ KM M Γ M

25

30

35

E
[m

eV
]

C=1
C=-1

(c)

θ = 1◦

KM′ KM M Γ M

15

20

25
C=1

C=1

(d)

θ = 1.67◦

0

2

4

30

40

50

Figure 8.1: (a) Effective magnetic field B̃(r) = ∇ × Ã(r) entering the adiabatic model in Eq. (8.1), measured
in units of flux quanta (Φ0 = h/e) per unit cell (AUC). The moiré unit cell with the AA, AB, and
BA stacking locations is highlighted in red. The effective magnetic field is peaked at the midpoints
between AB and BA stacking. (b) Effective moiré potential Ṽ (r) entering the adiabatic model. (c)
Band structure of twisted bilayer WSe2. Plots in panels (a-c) are for a twist angle of θ = 1◦ using model
parameters from Ref. [68]. (d) Same as (c) but at a twist angle of θ = 1.67◦.

Motivated by these exciting developments, we study the effects of a strong magnetic field on
topological bands in twisted TMDs. We employ a continuum model [55, 68] for each valley
of the twisted-TMD band structure and develop a gauge-independent framework to compute
the spectrum as a function of magnetic field (Hofstadter butterfly). While our framework is
generally applicable, we focus specifically on models of twisted bilayer WSe2 and MoTe2 .

We first investigate a minimal model of WSe2, pointing out a remarkable similarity between
the Hofstadter butterflies for WSe2 at small twist angles and the celebrated Haldane model [242,
243], and shedding light on the various topological phase transitions as a function of magnetic
flux. We find that in many ways, the model with an external magnetic field corresponding to
Φ = −1 flux quanta per moiré unit cell can be viewed as a natural parent model for under-
standing the TMD band structures. In particular, we find that up to a twist angle of ∼ 2◦,
the band structure at Φ = −1 is robustly described by a Haldane model. This contrasts with
the zero-flux case, where a topological phase transition [68] already occurs at a twist angle of
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∼ 1.5◦. Beyond this transition, the two topmost bands acquire equal Chern numbers, which
is no longer compatible with the two-band approximation of the Haldane model. We show
that these equal-Chern bands arise from the parabolic band top at flux Φ = −1. Notably, the
entire topmost band at Φ = −1 resembles a free-particle dispersion, allowing a single Landau
level to develop into a detached flat Chern band at zero flux, and providing ideal conditions for
fractional quantum Hall liquids to form.

We then apply our framework to a more elaborate model, which provides a realistic descrip-
tion of the band structure of twisted bilayer MoTe2 at twist angle θ = 2.1◦, close to the value in
a recent experiment [65]. This model features three low-lying bands of equal Chern number per
valley, in agreement with experiment. It has been proposed to feature non-Abelian topological
order in the second topmost band, analogous to the first Landau level [65, 212–216]. We show
that at Φ = −1, the band structure is remarkably close to that of a backfolded free-electron
dispersion for a large range of energies, allowing its two lowest Landau levels to persist all the
way to Φ = 0. In this picture, the lowest two bands at Φ = 0 are Landau levels of the nearly
free electrons at Φ = −1, so that the Φ = −1 band structure may serve as a natural parent
model to understand the appearance of non-Abelian phases [65, 212–216].

Beyond twisted bilayer TMDs, our results for twisted bilayer MoTe2 establish the Hofstadter
spectra as a valuable general characterization method for Chern bands and their connection to
Landau levels, complementing earlier approaches focusing on their quantum geometry [203–
210]

The special role played by the Φ = −1 band structure is best motivated by the adiabatic
picture of twisted bilayer TMDs [201, 202], which we introduced in Section 7.3 of the preceding
Chapter 7.

This model describes the band structure of one valley using a model of electrons with effective
mass m∗ subject to a potential Ṽ (r) = −D(r) + |∆(r)| + ∆0(r) and an effective magnetic
field B̃(r) = ∇× Ã(r), both of which are moiré periodic. The corresponding Hamiltonian
for theK-valley takes the form

HK
Adiabatic = −(ℏk− eÃ(r))2

2m∗ + Ṽ (r). (8.1)

The valley-odd effective magnetic field emerges after projecting to the low-energy states of the
potential and tunneling terms of the full continuum Hamiltonian, exploiting their slow spatial
variation. These can be written as an effective Zeeman field acting on the layer degree of free-
dom, with the direction n̂(r) describing a moiré periodic texture. The effective magnetic field,
shown in Fig. 8.1a, is given by the Pontryagin-index density associated with this skyrmion-like
texture,

B̃(r) = − ℏ
2e

n̂(r) · ∂xn̂(r)× ∂yn̂(r), (8.2)
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

and corresponds to an average of one flux quantum per unit cell. The moiré-periodic scalar
potential Ṽ (r) experienced by the electrons, shown in Fig. 8.1b, combines the effective Zeeman
energy and a scalar potential originating from the adiabatic approximation,

D(r) =
ℏ2

8m∗

∑
i=x,y

[∂in̂(r)]
2, (8.3)

which is proportional to the trace of the quantum geometric tensor of the adiabatically polar-
ized states as a function of r.

Within the adiabatic model, the external magnetic field simply adds to the effective field,
B̃(r) → Btot(r) = B̃(r) + B [202]. This immediately implies that on average, an externally
applied field corresponding to Φ = −1 flux quanta per unit cell cancels the effective magnetic
field. At this point of net zero flux, the model in a single valley reduces to a band structure with-
out average magnetic field and can be solved using a Bloch basis for the original lattice unit cell.
This simplification makes Φ = −1 a natural starting point to understand the magnetic-field-
dependent spectrum. Note that in the other valley, the effective magnetic field B̃(r) carries the
opposite sign, so a cancellation in that valley occurs for opposite applied flux Φ = 1 .

Within the adiabatic picture, it is natural to describe the band structure of twisted bilayer
WSe2 at Φ = −1 in terms of a Haldane model. The periodic potential Ṽ (r) localizes particles
into site orbitals on a hexagonal lattice, cf. Fig. 8.1b. The next-nearest neighbor hopping be-
tween these orbitals will have nonzero phases due to the inhomogeneous part of the emergent
magnetic field. The departure of the external magnetic flux from Φ = −1, i.e., the net flux,
tunes these phases. Indeed, for sufficiently low twist angles, we find very good agreement be-
tween the exact magnetic-field spectra obtained from the original continuum model and those
computed from the Haldane model. Specifically, both models exhibit a similar sequence of
topological phase transitions, which are expected whenever the phase of the next-nearest neigh-
bor hopping amplitude changes sign. The site orbitals delocalize with increasing twist angle. As
a result, the Haldane model must be extended to include longer-range hoppings and becomes
more sensitive to the net flux. A direct consequence is that the Haldane model at net zero flux
(Φ = −1) is much more robust against an increase in the twist angle than at Φ = 0.

For larger twist angles, the adiabatic model suggests an alternative description at Φ = −1.
The kinetic term in Eq. (8.1) becomes dominant, corresponding to holes in a weak periodic
potential. The resulting band structure naturally resembles backfolded free particle bands with
small gaps. Even though the adiabatic picture breaks down upon increasing the twist angle [201,
202, 244], we still find good agreement with a parabolic band for the topmost band of WSe2 at
θ = 1.67◦. For MoTe2 , fast oscillations in the effective Zeeman field direction n̂(r) render the
adiabatic approximation inapplicable, yet the two topmost bands at the point of net zero flux
(Φ = −1) are nearly parabolic.

This Chapter is structured as follows. In Sec. 8.1, we recall the continuum TMD model and
outline its solution in the presence of an external magnetic field. In Sec. 8.2, we analyze the
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model for WSe2 in the small twist angle regime, which is well approximated within a tight-
binding approach. Larger twist angles are considered in Sec. 8.3. Section 8.4 investigates a cor-
responding model for MoTe2 , featuring Chern bands that are akin to the first Landau level. We
conclude with a discussion, highlighting the general applicability and experimental relevance of
our findings.

8.1 Band structures in a magnetic field

8.1.1 TMD continuum model

Let us recall from Sec. 2.2 that the band structure of twisted homobilayer TMDs in valley K
can be described by the continuum Hamiltonian [55, 68]

HK
sp =

−ℏ2(k−Kb)2

2m∗ + Vb(r) T (r)

T †(r) −ℏ2(k−Kt)2

2m∗ + Vt(r)

, (8.4)

where m∗ is the effective mass of the valence band, Kt/b = (0,±4π sin(θ/2)/(3a0)) are the
momenta of the band extrema of the top and bottom layers with a0 the TMD lattice constant,
Vt/b(r) are the potentials in the top/bottom layers, and T (r) describes interlayer tunneling. In
the first harmonic approximation, these take the form

Vb(r) = V eiψ(eig1·r + eig3·r + eig5·r) + h. c. (8.5)
Vt(r) = Vb(−r) (8.6)
T (r) = w(1 + eig5·r + eig6·r), (8.7)

with tunneling strength w, potential strength V , the phase ψ, and the six reciprocal vectors
gj defined as the j − 1 counterclockwise C6z rotations of g1 = (4πθ/(

√
3a0), 0), shown in

Fig. 2.1. The moiré lattice constant aM = a0
2 sin(θ/2)

is much larger than the bare TMD lattice
constant a0.

The form of the Hamiltonian is fixed by the C3z , C2y, and time-reversal (T ) symmetries of
a twisted TMD homobilayer, as shown in Sec. 2.2. In the first harmonic approximation, there
is an additonal 3D inversion symmetry acting as σxHK

sp (r)σx = HK
sp (−r), which, however,

is broken by higher harmonic terms 1 [232, 245]. Note that C2yT remains a good symmetry in
the presence of an externally applied magnetic field, even though C2y and T are both broken
individually.

Many different parameter choices have been proposed in the literature for relevant twisted
TMDs [55, 68, 239]. For most of this work, we consider a minimal model of twisted WSe2 in
the first harmonic approximation from Ref. [68] as an illustrative example. The parameters of

1C2y fixes Vb(x, y) = Vt(−x, y) only. If only first harmonics are considered, this turns out to be the same as V (r) =
V (−r), see Eq. (8.6) in the text.
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

this model are (a0,m∗, V, ψ, w) = (0.332 nm, 0.43me, 9meV,−128◦, 18meV), with me

the bare electron mass. The band structure of twisted WSe2 depends sensitively on twist angle.
At small twist angles, it has two low-energy Chern bands of opposite Chern number separated
from other bands by a large gap, as shown for θ ≈ 1◦ in Fig. 8.1c. In this regime, the two
bands are accurately described by a Haldane model [55, 246]. As the twist angle is increased, the
lower of the two bands approaches the remote bands, while the upper band flattens, reaching
the magic angle at θ ≈ 1.43◦ [68]. After a band crossing at θ ≈ 1.5◦, the Chern number of
the lower band switches sign, so that the two topmost bands have equal Chern number. We
illustrate the band structure in this regime in Fig. 8.1d for θ = 1.67◦.

In Sec. 8.4, we extend our discussion to a realistic model of MoTe2 at θ = 2.1◦, which
includes higher harmonics for the tunneling and layer potential terms [212, 216]. Specifically, we
add the second harmonic potential

V
(2)
b (r) = V

(2)
t (r) = V2

[
ei(g1+g2)·r + ei(g3+g4)·r + ei(g5+g6)·r]+ h. c. (8.8)

to Vb(r) and Vt(r) as well as the second harmonic tunneling

T (2)(r) = w2

[
eig1·r + eig4·r + ei(g3+g2)·r] (8.9)

to T (r). We use parameters (a0,m∗, V, ψ, w, V2, w2) = (0.3472 nm, 0.62me, 20.51meV,

−61.49◦, −7.01meV,−9.08meV, 11.08meV) [212], which fit the band structure obtained
from ab initio calculations [216].

8.1.2 Gauge-independent calculation of magnetic Bloch bands

We introduce an external magnetic field B into the continuum model in Eq. (8.4) by substi-
tuting momentum with kinetic momentum, k → Π = k − eA/ℏ. The kinetic momentum
obeys

[Πx,Πy] = ieB/ℏ =
i

l2B
, (8.10)

where lB =
√
ℏ/eB is the magnetic length satisfying 2πl2BB = Φ0. Working at a rational flux

Φ = p
q

per moiré unit cell (measured in units of Φ0), we have 1
l2B

= 2π p
q

1
AUC

, where AUC =

|a1×a2| is the area of the moiré unit cell with elementary lattice vectors ai. We denote the basis
vectors of the corresponding reciprocal lattice asG1 andG2, which satisfy ai ·Gj = 2πδij . (In
our numerics, we useG1 = g5 andG2 = g1.) We express the Hamiltonian in the Landau level
basis [224, 225], working in a gauge-independent formalism. We recall the magnetic translation
operators

Ta = exp

[
ia ·

(
Π+

1

l2B
ẑ × r

)]
(8.11)
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8.1 Band structures in a magnetic field

(ẑ is the unit vector in the z-direction), which satisfy

TaTa′ = exp

(
i
a× a′

l2B

)
Ta′Ta. (8.12)

where a× a′ stands for the (oriented) area spanned by the two in-plane vectors. The operators
Ta and Ta′ commute if this area is threaded by an integer number of flux quanta. We now
choose translations by qa1 and 1

p
a2, which enclose precisely one flux quantum, to define our

basis. Specifically, we choose a Landau-level basis of simultaneous eigenstates of Π2, Tqa1 , and
Ta2/p [247]. The basis states |n,k⟩ are characterized by a Landau level index n and momentum
k, defined through

(Π2
x +Π2

y) |n,k⟩ = (n+
1

2
)
1

l2B
|n,k⟩ (8.13)

Tqa1 |n,k⟩ = exp(iqa1 · k) |n,k⟩ (8.14)

Ta2/p |n,k⟩ = exp

(
i
1

p
a2 · k

)
|n,k⟩ . (8.15)

We expand the momentum k in the basis vectors G1 and G2 of the reciprocal lattice as

k = k1
1

q
G1 + k2pG2, (8.16)

with coefficients k1, k2 ∈ [0, 1) defining the Landau-level Brillouin zone. (Note that, as de-
fined, the Landau-level Brillouin zone is p times larger than the conventional magnetic Brillouin
zone.)

We now construct this basis starting from the state invariant under magnetic translations,
|n, 0⟩ .To that end, we use that the exponential of the guiding center operator

R = r− l2B(ẑ ×Π) (8.17)

implements a momentum boost [204], and is related to magnetic translations through

Tl2B(ẑ×q) = eiq·R. (8.18)

We use these operators acting on |n, 0⟩ to explicitly construct states for any k in the Landau-
level Brillouin zone,

|n,k⟩ = eik2pG2·Reik1
1
q
G1·R |n, 0⟩ , (8.19)

where Eqs. (8.14) and (8.15) follow using Eqs. (8.18) and (8.12). We define states with k out-
side the Landau-level Brillouin zone by the periodic extension |n,k⟩ = |n,k+ pG2⟩ =

|n,k+ 1
q
G1⟩. With this convention, the states at the Landau-level Brillouin zone boundaries
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

are not continuous. This reflects the topology of Landau levels as states translated across the
entire Landau-level Brillouin zone are related by an irremovable U(1) phase.

The solution now proceeds by expressing the Hamiltonian in the above basis. The kinetic
term only acts on the Landau level index and is independent of momentum k. On the other
hand, the moiré potential and tunneling terms depend on the momentum, requiring us to eval-
uate the matrix element of exp(ig · r),

⟨n′k′ | exp(ig · r) |nk⟩ =
〈
n′
∣∣∣∣ exp(iΠ× g

B

) ∣∣∣∣n〉⟨k′ | exp(ig ·R) |k⟩, (8.20)

where we separated the position operator into its kinetic momentum and guiding center com-
ponents. The vector g is an element of the moiré reciprocal lattice.

The first term in Eq. (8.20) is a standard expectation value in Landau levels, and is given in
terms of Laguerre polynomials [248]. For n′ ≤ n:〈

n′
∣∣∣∣ exp(iΠ× g

B

) ∣∣∣∣n〉 = (z∗)n
′−n
√
n′!

n!
Ln−n

′
n′ (|z|2) exp

(
−|z|2/2

)
, (8.21)

with z = [(g)x+i(g)y]
lB√
2

andLn−n′
n′ (|z|2) is the associated Laguerre polynomial. Forn′ > n,

we use ⟨n′| exp
(
iΠ×g
B

)
|n⟩ =

[
⟨n| exp

(
−iΠ×g

B

)
|n′⟩
]∗.

To evaluate the second term in Eq. (8.20), we expand the vectorg using a basis of the recipro-
cal lattice, g = m1G1 +m2G2, with integersm1,m2. Using this, we separate the exponential

exp(ig ·R) = c1 exp(im1G1 ·R) exp(im2G2 ·R), (8.22)

where c1 = exp
(
−πim1m2

q
p

)
is the commutator from the Baker–Campbell–Hausdorff for-

mula, which states that eX+Y = eXeY e−
1
2
[X,Y ] for operators X and Y whose commutator

[X, Y ] is a number. At this point our basis definition, Eq. (8.19) facilitates the evaluation. For
one, exp(im2G2 ·R) changes k → k + m2G2. If this momentum lies outside the Lan-
dau level Brillouin zone, compared to the basis definition of Eq. (8.19), there is an extra factor
exp(i⌊k2 +m2/p⌋pG2 ·R), where ⌊x⌋ denotes the integer part of the number x. This oper-
ator is in fact proportional to a translation by −qa1 (using the relation of Eq. (8.18)), and can
be easily evaluated using the translation properties of our basis states, Eq. (8.14). We have

eim2G2·R |k⟩ = ei⌊k2+m2/p⌋pG2·R |k+m2G2⟩
= (T−qa1)

⌊k2+m2/p⌋ |k+m2G2⟩
= e−i2πk1⌊k2+m2/p⌋ |k+m2G2⟩ . (8.23)
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8.2 Twisted WSe2 in a magnetic field: tight binding regime

Next, we apply exp(im1G1 ·R) leading to

eim1G1·R |k+m2G2⟩ = T q
p
m1a2

|k+m2G2⟩

= ei2π(k2p+m2)
q
p
m1 |k+m2G2⟩ , (8.24)

where we used Eq. (8.18) in the first line. Putting everything together:

⟨k′ | exp(ig ·R) |k⟩ = δk′,k+m2G2 exp

(
−iπm1m2

q

p

)
exp(−i2πk1⌊k2 +m2/p⌋) exp

{
i2π(k2p+m2)

q

p
m1

}
, (8.25)

so that momentum is conserved up to multiples of G2. The orbit consists of p momenta k,
k +G2, . . ., k + (p − 1)G2, which need to be kept in the calculation. In total, therefore, at
flux p/q per unit cell, at a given momentum keepingNLL Landau levels, we obtain a matrix of
dimension 2 ·NLL · p, where 2 is the number of layers.

We emphasize that our approach is completely independent of the electromagnetic gauge
chosen. Going beyond Ref. [249], which also works in a gauge-free manner, we obtain the ma-
trix element [Eq. (8.25)] in closed form in a much simpler fashion, owing to the advantageous
basis construction of Eq. (8.19). We note that for small fluxes, as well as for fluxes close to simple
fractions, the hybrid Wannier function approach of [234, 250] can be used to improve perfor-
mance.

8.2 Twisted WSe2 in a magnetic field: tight binding regime

Our first main result, the magnetic field dependent energy spectrum for the continuum model
of WSe2 at a twist angle θ = 1◦, is shown in Fig. 8.2a, focusing on the two topmost detached
bands. It has been argued that the spectrum at zero flux is well reproduced by the Haldane
model [55, 68],

Figure 8.2a shows that the point of net zero flux (Φ = −1) plays a special role. First, the
net effective magnetic field vanishes on average at Φ = −1. This is reflected in the fact that
the spectrum attains its global maximum at this point. Second, due to the absence of an av-
erage magnetic field, the spectrum at this point can be modelled by a Haldane model in its
originally envisaged form [242]. The Haldane model emerges in the adiabatic approximation
from orbitals forming a hexagonal lattice localized in the AB and BA regions of the unit cell
(Fig. 8.1b), with hopping phases arising due to the remnant inhomogeneous part of the effec-
tive magnetic field. By fitting the two topmost bands with Chern number sequence (1,−1),
we obtain a Haldane model with nearest-neighbor hopping t1 = 0.75meV and next-nearest-
neighbor hopping |t2| = 0.045meV with phase ϕTB ≈ −40◦, where t2 = −eiϕTB |t2|.
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

Figure 8.2: (a) Energy level diagram for twisted bilayer WSe2 vs. applied magnetic field at twist angle θ = 1◦. The
topmost C = 1 band is highlighted in red and the second topmost C = −1 band in blue. (b) Energy
level diagram for the topological Haldane model with next-nearest-hopping phase ϕTB = −π/6 at
Φ = −1.

Longer range hoppings decay quickly and have little effect on the band structure at this twist
angle.

In the Haldane model, Peierls substitution implies that the next-nearest-neighbor hopping
phase ϕTB changes as ϕTB → ϕTB − 2π/6 as an additional flux quantum is threaded, Φ →
Φ + 1. Topological phase transitions occur at ϕTB = 0, π. For our Φ = −1 fit, this line
of reasoning would suggest the Chern number sequence to remain (1,−1) for Φ = −1, 0, 1

and switch to (−1, 1) for Φ = −3,−2, 2, which agrees with the full continuum-model calcu-
lation. We caution, however, that while the topology agrees with the prediction of the Peierls
substitution, the actual best-fit tight binding phases do not follow the predictions of the Peierls
substitution, except between Φ = −1 and Φ = −2. This breakdown of the Peierls substitu-
tion was highlighted in Ref. [251] in the context of cold atoms. Nevertheless, we find that the
magnetic field dependent energy spectrum of a tight-binding Haldane model [243], shown in
Fig. 8.2b, exhibits a striking qualitative resemblance to Fig. 8.2a.

The behavior between integer fluxes can be understood using the Středa formula [252]

dν

dΦ
= C, (8.26)

which relates Chern number C to the change in the number of states per unit cell ν inside a
band upon varying flux Φ. We illustrate the Středa formula by tracking the two bands at zero
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Figure 8.3: (a) Scheme of the hexagonal lattice model used to fit the two topmost bands of twisted bilayer WSe2
at the point of net zero flux (Φ = −1), showing the hoppings t1, t2, t3, t4, t5. (b) Two topmost bands
of twisted bilayer WSe2 at twist angle θ = 1◦ and flux Φ = −1. Full band structure is shown in red,
adiabatic approximation in blue, and a tight-binding fit to the full band structure in dashed green.

flux, highlighting the C = 1 band in red and the second highest C = −1 band in blue in
Fig. 8.2a. AtΦ = 1, the topC = 1 band expands to ν = 2, whereas the bottomC = −1 band
goes extinct, necessitating a gap closing since the two bands are detached [253]. The situation
is reversed at Φ = −1, where the C = −1 band expands to ν = 2, while the C = 1 band
disappears, forcing a gap closing. The energy level diagram also shows that the Chern bands at
zero flux in fact emerge as lowest Landau levels from parabolic band edges, as can be clearly seen
near flux Φ = 1 for theC = −1 band (blue) and near flux Φ = −1 for theC = 1 band (red).

Another interesting region is between fluxes Φ = −1 and Φ = −2, since the Chern number
sequence is opposite at these two fluxes. This leads to tension at flux Φ = −3/2 at which the
bottom C = 1 band emerging from Φ = −2 collides with the C = −1 band emerging from
Φ = −1. More precisely, the Středa formula predicts the bottom bands at both Φ = −2

and Φ = −1, with opposite Chern numbers, to expand to ν = 3/2 states per unit cell. This
necessitates a gap closing. In the continuum model, the gap emerging from Φ = −1 is closing
at Φ = −3/2. In the Haldane model, we used a symmetric value of ϕTB = −π/6 at Φ = −1,
leading to the simultaneous closing of the gaps arising from both Φ = −2 and Φ = −1,
cf. Fig. 8.2b.

Remarkably, while at small twist angles, a Haldane description is possible at any applied flux,
at the point of net zero flux (Φ = −1), this description remains valid for an extended range
of twist angles. Longer-range hoppings become necessary to fit the topmost two bands of the
adiabatic band structures, but the character of a hexagonal lattice remains as does the topological
character of the Haldane model. In contrast, at zero flux Φ = 0, the emergent magnetic field
induces a topological phase transition after which the bands develop a topology incompatible
with a two-band model [246], resulting in two bands of equal Chern number.

119
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Figure 8.4: (a) Left axis: Twist angle dependence of the hoppings obtained from the tight-binding fit to the top-
most two bands at flux Φ = −1. Right axis: Phase of next-nearest hopping ϕTB = arg(−t2). (b)
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Φ = −1 (blue) and Φ = 0 (red).

To illustrate this point, we fit the band structure at net zero flux (Φ = −1) using a hexagonal
tight-binding model, illustrated in Fig. 8.3a, retaining up to fifth-nearest-neighbor hoppings.
We present the fit at θ = 1◦ in Fig. 8.3b, with the full continuum bands shown in red and
the tight-binding fit depicted in dashed green. We also show the adiabatic band structure in
blue, confirming that at this twist angle, the adiabatic approximation is well within its regime
of validity. In Fig. 8.4a, we plot the hoppings obtained by fitting the bands to the tight-binding
model, showing the increase in hopping integrals with twist angle. Nevertheless, the model
remains relatively short-range. In contrast, at zero flux, Φ = 0, the two-band tight binding
description becomes invalid at θ ≈ 1.5◦ [68, 246]. This sharp difference in locality between
Φ = −1 and Φ = 0 is further brought out by looking at the integrated trace of the quantum
metricχ = 1

2π

∫
dkTr(g) of the two topmost bands, shown in Fig. 8.4b. The average quantum

metric measures the localization of wavefunctions [254] and shows that for larger twist angles,
the two topmost bands are more localized at net zero flux (Φ = −1) than at Φ = 0. In fact, at
Φ = 0, upon crossing the topological phase transition, χ diverges logarithmically [255, 256].

8.3 Larger twist angles: towards nearly free electrons

The Hofstadter spectrum at a larger twist angle of θ = 1.67◦ (see Fig. 8.5a) differs dramatically
from the one at θ = 1◦ in Fig. 8.2a. The two topmost bands at zero flux now have the same
Chern numberC = 1 (cf. Fig. 8.1d), so that the Středa formula, Eq. (8.26), predicts their filling
ν to vary in the same way. Both disappear at Φ = −1 and the topmost band (shown in red)
expands to two states per unit cell at flux Φ = 1 without any enforced gap closing as in the
tight-binding regime discussed above.
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8.3 Larger twist angles: towards nearly free electrons

We now focus on net zero flux (Φ = −1), from which the zero-flux Chern bands emerge.
We plot the band structure (red) in Fig. 8.5b, together with the adiabatic approximation bands
(blue). The adiabatic approximation becomes less accurate for increasing twist angle [202].
However, it still captures essential features of the full band structure at θ = 1.67◦. For increas-
ing twist angle, the electrons can escape the potential traps formed by the adiabatic potential
Ṽ (r) and the kinetic energy term in Eq. (8.1) becomes the dominant energy scale. As a result,
the adiabatic band structure becomes describable in the nearly-free electron (weak periodic po-
tential) approach. Indeed, the adiabatic bands (blue) are close to the backfolded bare kinetic
energy −ℏ2k2

2m∗ (dashed green in Fig. 8.5b), with degeneracies lifted by the periodic potential and
the remnant effective magnetic field.
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

Figure 8.5: (a) Energy level diagram as a function of an applied magnetic field for twisted bilayer WSe2 at twist angle
θ = 1.67◦, showing the topmost C = 1 band in red and second topmost C = 1 band in orange. (b)
Band structure at θ = 1.67◦ and flux Φ = −1. The full band structure is shown in red, adiabatic in
blue, and a backfolded free electron dispersion in dashed green. Note that the topmost branch of the
backfolded free electron bands are doubly degenerate along the KM ′ −KM −M line in the Brillouin
zone, cf. the discussion in Appendix B.1. (c) Same as (b), but at θ = 2.2◦.
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8.4 Twisted MoTe2 at θ = 2.1◦: emergent nearly free electrons at flux Φ = −1.

Figure 8.6: (a) Zero field band structure for a realistic model of twisted bilayer MoTe2 at twist angle θ = 2.1◦. We
include second harmonic terms following [212, 216]. (b) Energy spectra as a function of magnetic field
for the same system, highlighting the topmost C = 1 band in red and second topmost C = 1 band
in orange. (c) Band structure at Φ = −1 (red) and backfolded free parabolic bands of the underlying
MoTe2 (dotted green), shifted by a constant in energy. Note that the topmost branch of the backfolded
free electron bands are doubly degenerate along the KM ′ − KM − M line in the Brillouin zone, cf.
the discussion in Appendix B.1.

Like in the tight-binding regime, the Chern bands atΦ = 0 emerge as Landau levels from the
parabolic band maximum at Φ = −1. However, as understood above, at Φ = −1, the band
structure in fact resembles backfolded free-electron bands, valid up to a filling of ν = 1 electron
per unit cell. This provides enough states for the zeroth Landau level to persist to zero flux,
Φ = 0, and create a band suitable for fractional quantum Hall liquids. For the second Chern
band, on the other hand, the deviations of the Φ = −1 band structure from pure parabolic
lead to a notable dispersion at Φ = 0.

To connect the present discussion to that of Section 8.2, we use the nearly-free electron pic-
ture to confirm that the Haldane-like topology of the topmost two bands at flux Φ = −1

remains stable up to large twist angles. In App. B.2, we obtain the topology of the topmost
bands using symmetry indicators [257] in the adiabatic picture. We find that the Haldane se-
quence of Chern numbers (+1,−1) is remarkably robust, persisting up to θ ≈ 1.96◦. At this
twist angle, there is a band crossing of the second and third bands at the KM and KM ′ points,
which changes the Chern number of the second band to C = −3. We find that in the full
continuum model, this topological phase transition occurs at θ ≈ 2.02◦, in surprisingly good
agreement given the worsening of the adiabatic approximation for increasing twist angles. We
show the bands in the (+1,−3) regime in Fig. 8.5c for a twist angle of θ = 2.2◦, exhibiting
strong deviations between the full (red) and the adiabatic bands (blue).
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

8.4 Twisted MoTe2 at θ = 2.1◦: emergent nearly free electrons
at flux Φ = −1.

Very recently, twisted bilayer MoTe2 has been argued to host first Landau level analogs with
non-Abelian states [65, 212–216]. At θ = 2.1◦, density functional theory [212, 216] predicts the
three topmost bands to have the same Chern number, with the two top bands well detached
from the remainder of the spectrum, see Fig. 8.6a for a continuum band structure. In order to
fit the ab initio band structure, second-harmonic terms need to be included [212, 215, 216], see
Sec. 8.1 for details. The energy level diagram as a function of magnetic field, shown in Fig. 8.6b,
is qualitatively similar to that of WSe2 at larger twist angles (cf. Fig. 8.5a), with the two topmost
Chern bands (highlighted in red and orange) clearly emerging from fluxΦ = −1. Importantly,
the second Chern band (shown in orange) is clearly detached for MoTe2 .

As for WSe2, we can obtain insight into the origin of these topological bands by studying the
Φ = −1 band structure. As shown in red in Fig. 8.7, the band structure exhibits a distinct non-
degenerate parabolic band maximum. Remarkably, a comparison to the bare TMD dispersion
−ℏ2k2

2m∗ (dashed green lines) reveals a striking similarity with the full band structure for the two
topmost bands. Note that the double degeneracy of the topmost branch of the free-electron
bands along theKM ′ −KM −M path in the Brillouin zone is lifted in the full band structure.

Since the bands at flux Φ = −1 are almost parabolic up to a filling of ν = 2, we expect
at least two Landau-level-like bands when adding one flux quantum per unit cell. This is in
agreement with recent arguments for the band structure at zero applied flux [212]. We note that
due to the rapidly varying potential profile, the adiabatic approximation breaks down for this
model. Nevertheless, the bands at net zero flux (Φ = −1) remain describable within the nearly
free electron model similar to Eq. (8.1). It is this feature of the Φ = −1 band structure that
implies that the two topmost bands at zero flux (Φ = 0) can be understood as the two lowest
Landau levels of a nearly free electron system. As a consequence, many remarkable phenomena
associated with the fractional quantum Hall effect are likely to carry over.

The most important difference from the fractional quantum Hall effect is the presence of
a time-reversed partner in the K ′-valley. This allows the possibility of time-reversal-symmetry
preserving topological order, which has recently been proposed [65].

We comment on Ref. [214], which used the adiabatic approximation bands for a model with-
out higher harmonics to argue for first-Landau level physics. As we have seen, the adiabatic
approximation for larger twist angles naturally predicts Landau levels, as the Φ = −1 band
structure becomes nearly free. However, the approximation itself breaks down for these large
twist angles. We have shown however, without invoking the adiabatic approximation, that a
realistic model of MoTe2 leads to nearly free bands at Φ = −1.
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Figure 8.7: Band structure of twisted bilayer MoTe2 at Φ = −1 (red), and backfolded free parabolic bands of
the underlying MoTe2 (dotted green), shifted by a constant in energy. Note that the topmost branch
of the backfolded free electron bands are doubly degenerate along the KM ′ − KM − M line in the
Brillouin zone, cf. the discussion in Appendix B.1.

8.5 Discussion

In summary, we studied twisted transition metal dichalcogenide bilayers in an out-of-plane mag-
netic field. We first studied a minimal model of twisted WSe2 in the localized, Haldane regime,
in which the magnetic field spectra qualitatively match those of the Haldane model in a mag-
netic field. We showed that compared to the zero flux case, the bands at the point of net zero
flux (Φ = −1) admit a Haldane description for an extended range of twist angles. The zero
flux C = 1 bands emerge as Landau levels from the bands at negative unit flux quantum per
unit cell (Φ = −1). At larger twist angles, the bands at Φ = −1 resemble electrons in a weak
periodic potential, a fact naturally explained in the adiabatic approximation.

For a realistic model of MoTe2 , we found that the bands at Φ = −1 are essentially obtained
by backfolding a parabolic dispersion, giving a clear physical picture for the second topmost
band at zero flux as the first Landau level of this dispersion. This finding is of immediate rele-
vance for the study of fractionalized states, as it provides a simple picture for the zeroth and first
Landau level nature of the bands atΦ = 0. This allows the phenomenology from the fractional
quantum Hall effect to be translated into the present context, with the crucial enrichment that
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8 Hofstadter butterfly in twisted transition metal dichalcogenides

in TMDs, there are two time-reversed copies, rendering the fractional quantum spin Hall effect
a possibility [65].

For half filled TMD bands, experiment suggests an interpretation in terms of a composite
Fermi liquid [61]. In fact, to lowest order, the mean-field band structure of composite fermions
at half filling is precisely the Φ = −1 band structure. Thus, our results imply that they have
a strongly dispersive nature, which is a necessary condition for a composite fermion liquid to
occur [258–262].

We now comment on the experimental relevance of our findings. In actual samples both, the
K andK ′ valleys coexist and doped holes distribute among them by optimizing the single par-
ticle and interaction energies. At finite applied flux, the single particle spectra of the two valleys
differ drastically – the energy levels in the K ′-valley at flux Φ are the same as the energy levels
in the K-valley at flux −Φ. While immaterial for and hence not included in our single-valley
calculations, Zeeman splitting is significant when considering both valleys of TMDs [263], giv-
ing an additional energy splitting between the valleys at finite magnetic field. Thus, the precise
way holes distribute among the two valleys is a subtle interplay of orbital, Zeeman, and inter-
action effects [234]. In the small twist angle regime with valley polarization, the Haldane-like
Hofstadter spectrum should be observable in magnetotransport, with Landau fans emerging
from integer applied fluxes. A tantalizing possibility would be the observation of the topolog-
ical phase transition between fluxes Φ = −1 and Φ = −2 per unit cell, at which two Landau
fans collide. For larger twist angle WSe2 and MoTe2 at θ = 2.1◦, we recover a parabolic disper-
sion in the K-valley at flux Φ = −1 coexisting with a flat detached C = 1 band in valley K ′.
The reentrant free electron band of valleyK should be observable when the chemical potential
is inside a gap for valleyK ′.

Our study paves the way to analyze arbitrary Chern bands and establish their connection to
Landau levels by studying the Hofstadter spectra. For C = ±1 bands, one has to trace their
evolution between Φ = −1 and Φ = 0. Provided the band of interest can be traced all the way
to Φ = −1, the way it emerges from the band structure at Φ = −1 allows it to be identified
as a Landau level. The ideality of this level at Φ = 0 can be obtained from the similarity of the
Φ = −1 band structure with an elementary band structure, such as a Dirac cone or parabolic
free electron band. This provides a powerful complement to analytical approaches [204, 205,
207, 208].

As an interesting application, let us compare TMD band structures with those of twisted
bilayer graphene in the chiral limit. For a given spin and valley flavor, there are two sublattice
polarized zero-energy bands with opposite Chern numbers, aC = 1 band on theA-sublattice
and a C = −1 band on the B-sublattice. Thus, at Φ = 1, the A-sublattice band gains one
state per unit cell, while the B-sublattice band disappears. Particle-hole symmetry necessitates
this vanishing of theC = −1 band to be accompanied by a gap closing with the remote bands
[227, 264, 265]. This enforces a Dirac cone in the band structure at Φ = 1. For fluxes Φ < 1,
the B-sublattice band emerges as the zeroth Landau level of this Dirac cone. For Φ > 1, there
is a Chern number C = 1, A-sublattice polarized zeroth Landau level, so that the zero-energy
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8.5 Discussion

bands have a total Chern number ofC = 2with ν = 2Φ states per unit cell, similar to the Lan-
dau level spectrum in the absence of a moiré tunneling term. The particle-hole symmetry and
the ensuing emergence of the low-lying Chern bands from a Dirac cone explain why no analogs
of higher Landau levels for a quadratic dispersion are present in twisted bilayer graphene. In
contrast, for twisted TMDs, particle-hole symmetry is absent, allowing for a parabolic band
extremum and enabling higher Landau levels to emanate from it.
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Conclusions

This thesis has explored the diverse world of layered materials, with a particular focus on moiré
systems and their emergent phenomena. The author hopes that by now the reader will be con-
vinced of the fascinating richness of this field.

This thesis started with introducing moiré models in Chapter 2, which are derived based on
only few underlying principles. Yet, most of the essential physics of moiré systems is already
contained at this simple level of description. For twisted transition metal dichalcogenides, it
is the physics of flat Chern bands, which emerge as a result of a skyrmionic real-space layer-
pseudospin texture. For twisted bilayer graphene, it is the physics of magic angles, arising from
interference between interlayer tunneling and kinetic terms, wherein the bandwidth abruptly
drops at the special twist angle of θ = 1.1◦. An interesting extension was to add more layers,
forming a structure with alternating twist angles, which obtains flat bands at larger physical
twist angles.

The next Chapter 3 showed how scanning tunneling microscopy could reveal signatures of
exciton-induced interband coherence in monolayer and bilayer TMDs, opening a pathway to
experimentally observe these elusive quantum states. Studying exciton condensates accurately
using surface probes such as scanning tunneling microscopy was only made possible by the lay-
ered nature of the materials, harnessing the fruits of the revolution that has been underway for
the last twenty years.

This thesis then transitioned in Chapter 4 to study the interplay between disorder and the
Kramers intervalley coherent state in twisted bilayer graphene. This study is particularly press-
ing, as disorder is ubiquitous in moiré devices. By deriving an Anderson theorem for this state,
we provided insights into the robustness of the Kramers intervalley coherent state against dis-
order, drawing a parallel to s-wave superconductors.

Expanding to larger numbers of layers, in Chapter 5, we explored the emergent effects that
arise for alternating twist arrangements when more layers are added. The crucial insight was
that for larger number of layers, the three-dimensional nature of the material dominates the
electronic properties. Importantly, it was found that three-dimensionality is important already
forN = 5 layers, shaping the experimental phase diagram.

The next Chapter 6 explored the effects of three-dimensionality for another class of systems,
including twisted double bilayer graphene and rhombohedral pentalayer graphene. It uncov-
ered the remarkable underlying physics of the experimentally observed diagonal features in the
filling-displacement field plane, achieving so by linking these phenomena to the local Bernal
stacking common to these systems.
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Conclusions

In the next Chapter 7, we studied multi-component moiré wavefunctions in real space, with
applications to twisted graphene devices and to twisted bilayer transition metal dichalcogenides.
Multi-component wavefunctions allow an integer real-space Chern number to be defined. Our
main finding was that this real-space Chern number generically vanishes, being nonzero in fine-
tuned, but important, examples.

Finally, in Chapter 8, we uncovered the rich structure of twisted transition metal dichalco-
genides under applied magnetic fields. Here again, two dimensional materials are of particular
interest, since electrons in a magnetic field are confined to a single plane. In one dimension,
the magnetic field is only a boundary condition, while in three dimensional materials, the third
(out-of-plane) direction only adds an unnecessary complication. Twisted bilayers greatly en-
hance the material unit cell, allowing the strong-field regime to be probed.

This thesis illustrates the profound richness of moiré systems, demonstrating their capacity
to provide a fascinating arena to explore fundamental physics.
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Appendix A

A.1 Properties of the single-particle TNG Hamiltonian

A.1.1 Twist angle dependence of the in-plane charge inhomogeneity

In Fig. A.1, we plot the dependence of the average wavefunction overlap

⟨uk+G,f,α|uk,f,α⟩ =
1

Nk

1

NG

∑
k,G

1

2

∑
α=1,2

|⟨uk+G,f,α|uk,f,α⟩| (A.1)

on twist angle for N = 2 (this result applies to any TBG-like sector) for the two central flat
bands. Here the sum over G runs over the NG = 6 shortest nonzero reciprocal lattice vectors
and k are in the first Brillouin zone, with Nk = 144 the number of k points in the numerical
calculation grid. This average overlap increases with decreasing twist angle. Its meaning can be
understood from Eq. (5.24). The larger the wavevector G overlap, the more strongly a sector
couples to the in-plane inhomogeneity at wavevector −G. Conversely, sectors with a larger
overlap at wavevector G generate a larger mean-field inhomogeneity at −G. This implies that
for kmagic = 1, the magic sector feels the in-plane potential most strongly and is most effective
at generating it.
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Figure A.1: Dependence of ⟨uk+G,f,α|uk, f, α⟩, a quantity that controls the in-plane Hartree correction, on twist
angle for N = 2
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A.1.2 Strain

In TBG, heterostrain drastically increases the single particle bandwidth [146], changes the na-
ture of correlated states [110, 147], and can induce in-gap states, see Chapter 4. The procedure
for implementing heterostrain in TBG involves adding vector potentials due to the changes
in graphene hoppings and distorting the moiré Brillouin zone, altering the momentum space
distance between the two layers of Dirac cones and the moiré reciprocal vectors. Since, for a
bilayer, any layer-dependent strain can be decomposed as the sum of hetero and homostrain,
and homostrain has negligible effect, including heterostrain in this way is a generic procedure
that captures qualitative physical trends. In systems with more than two layers, there are more
nongeneric layer dependencies possible. As the purpose of our modeling is to introduce a mech-
anism for broadening the single-particle bandwidth, we consider a simple procedure and only
add the vector potentials induced by the graphene hoppings, choosing an antisymmetric layer
structure:

Al = (−1)lA0, (A.2)

where the single-layer vector potential is given by

A0 =

√
3

2a
β(ϵxx − ϵyy,−2ϵxy), (A.3)

with a being the monolayer graphene lattice constant and β ≈ 3.12 the hopping modulus
factor [146]. We choose ϵxx = ϵstrain, ϵxy = 0 and ϵyy = −0.16 · ϵstrain (0.16 is the Poisson
ratio for graphene), varying ϵstrain from 0 to 0.2 · 10−2. This layer structure is motivated by
the fact that it acts just like a heterostrain vector the potential within each bilayer-like sector at
zero displacement field. The above-defined vector potentials couple via minimal coupling to
the momentum operator [146].

A.1.3 Density of states for nonmagic sectors in the Dirac cone
approximation

In this Section, we evaluate the numerical constants that appear in the expression for density of
states (DOS) for a Dirac cone dispersion to obtain estimates for the DOS of the nonmagic sec-
tors, as used in Section II of the main text. To this end, let us evaluate the prefactor of Eq. (5.2)
with vD instead of v(k)D :

Auc

4π(ℏvD)2
=

√
3(0.246nm)2/(8 sin2(θ/2))

4π(6.582 · 10−16eVs · 106ms−1)2
= 31.6/θ2eV−2, (A.4)

where in the last equality, the twist angle θ should be expressed in degrees. For the k = 2

nonmagic sector in TPG, we haveNf = 4, ck=2 = 2,θ = 1.9◦, v(k=2)
D = 0.35vD. We note in

passing that Ref. [19] finds a smaller Dirac velocity. This is because here we account for lattice
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A.2 Mean-field decoupling of out-of-plane electric field term

corrugation by takingwAA/wAB = 8
11

, while in Ref. [19] the unrelaxed value,wAA/wAB = 1,
is taken. Plugging into Eq. (A.4), we obtain

νTPGk=2 = (5.71 · 10−4meV−2)µ2
2. (A.5)

As an example, for µ2 = 10meV, using Eq. (5.2) we obtain filling ν2 ≲ 0.06. As noted in the
main text, for ν2 ≳ 0.5, we use the numerically computed full non-interacting density of states
which involves a DOS peak at the van Hove singularity.

A.2 Mean-field decoupling of out-of-plane electric field term

Here we detail the mean-field decoupling the out-of-plane (q = 0) term. For notational sim-
plicity, we work out the general form before projecting onto a fixed number of active bands. We
perform the mean-field decoupling of H(q=0)

int :

H
(q=0)
int = − 1

2A

∑
L,J

e2

2ϵ⊥ϵ0
dLJρq=0,Lρq=0,J =

N−1∑
l=1

Aϵ⊥ϵ0dl
(E⊥

l,l+1)
2

2
+ Const , (A.6)

which was derived assuming a fixed amount of charge on the gates, but still includes it explicitly
(by summing I, J from 0 to N + 1). We dropped the normal ordering symbol since it only
matters for I = J , for which the vertical distancedIJ vanishes. Let us recall the three constraints

• ρ0,0 = −An
2

• ρ0,N+1 = −An
2

•
∑N

l=1 ρ0,l = An

For the mean-field decoupling, we use the q = 0 layer density form of the interaction. Follow-
ing standard procedures, there will be the Hartree term, which corresponds to classical electro-
statics

HHartree
layer = −

∑
L̸=J

e2

2ϵ⊥ϵ0A
dLJρq=0,L⟨ρq=0,J⟩ =

N∑
l=1

ρ0,l(−eVl) , (A.7)

where we changed sum overL (from 0 toN +1, including gates) to a sum over l (from 1 toN )
since the gates have a fixed charge. Therefore, the potentials are given by

Vl =
e

2ϵ⊥ϵ0A

N+1∑
J=0

dlJ⟨ρq=0,J⟩. (A.8)
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It is insightful to consider the potential difference between two neighboring layers

Vl+1 − Vl =
e

2ϵ⊥ϵ0A

∑
J

(dl+1,J − dl,J)⟨ρq=0,J⟩ , (A.9)

where

dl+1,J − dl,J =

{
dl for l ≥ J

−dl for l < J.
(A.10)

With this relation, we can rewrite Eq. (A.9)

Vl+1 − Vl = dl
e

2ϵ⊥ϵ0A

[∑
J≤l

⟨ρq=0,J⟩ −
∑
J>l

⟨ρq=0,J⟩

]
. (A.11)

Since ρ0 = ρN+1 = −nA/2, the gate charge terms cancel. Further, since the total charge on
the sample is fixed, we also have

−
∑

l<J≤N
⟨ρq=0,J⟩ =

∑
1≤J≤l

⟨ρq=0,J⟩ − nA. (A.12)

which yields

Vl+1 − Vl = dl
e

ϵ0ϵ

{
1

A

l∑
l′=1

⟨ρ̂0,l′⟩ −
n

2

}
= −dlE⊥

l,l+1. (A.13)

In the above expression, we identified that the interlayer electric field is given by Gauss’ law,
Eq. (5.13).

Next we consider the q = 0 Fock term. As the Fock term involves an integral over a range
momenta and is intensive, if we fix a single momentum term q = 0 (as we do for the interlayer
potential term), it will vanish in the thermodynamic limit. Therefore we only need to keep the
q = 0Hartree term. Finally, in our numerics, we project on a finite number of bands replacing
ρl,0 by ρ̂l,0.

A.3 Analytical results on the layer potentials

A.3.1 Layer potentials in sector basis

In this Section, we consider the mean-field layer potential term, and rewrite it in the sector basis.
We use the unprojected form of the layer Hamiltonian:

H
unprojected
layer =

∑
l

ρ0,l(−eVl), (A.14)
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but the conclusions will also hold after projection. To proceed, we need to write

ρ0,l =
∑
f,k,z

d†f,l,k,zdf,l,k,z, (A.15)

where d†f,l,k,z creates an electron in flavor f , layer l, momentum k and a joint sublattice/spin
index z. Since the transformation into sectors does not affect flavor, momentum, or sublattice
and spin, we will in the following omit their labels. Using the sector decomposition we can go
from layer basis to sector basis using the unitary basis transformationVTNG, defined in Eq. (2.71)
as follows:

f †
s =

∑
l

d†l (VTNG)ls, (A.16)

where f †
s , s ∈ {1, . . . , N} creates an electron in the effective layer s, which can either have

support in the odd physical layers or even. We therefore rewrite∑
l

ρl,0(−eVl) =
∑
s,s′

f †
sfs′

∑
l

(VTNG)ls(VTNG)ls′(−eVl). (A.17)

To emphasize the sector (recall forN layers there are ⌈N/2⌉ sectors labeled by index k) diagonal
and off-diagonal terms, we now switch s for a multi-index k, i, where k ∈ {1, . . . , ⌈N/2⌉}
labels the sector, and i labels the effective odd or even layer of that sector. For an MLG-like
sector, this index is trivial. With this rewriting, we write suggestively∑

l

ρl,0(−eVl) =
∑
k,i

f †
k,ifk,i

∑
l

(VTNG)l,ki(VTNG)l,ki(−eVl)+

+
∑
k ̸=k′,i

f †
k,ifk′,i

∑
l

(VTNG)l,ki(VTNG)l,k′i(−eVl), (A.18)

where we used the fact that (VTNG)l,ki(VTNG)l,k′i′ ∝ δi,i′ , so that there are no layer index (i, i′)
off-diagonal terms. On the other hand, odd and even layer index preserving terms are allowed.

Sector diagonal terms — In this Section, we focus on the sector diagonal terms, which corre-
spond to the first term in the Equation (A.18). For a TBG-like sector k, this term is a potential

V1 =
∑
l

(VTNG)l,k1(VTNG)l,k1(−eVl) (A.19)

on the effective odd layer and

V2 =
∑
l

(VTNG)l,k2(VTNG)l,k2(−eVl) (A.20)
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on the effective even layer. Decomposing the effective layer potential matrix

V1 0

0 V2

 into

layer-even and layer-odd components, we obtain that the effect of layer potentials within a sector
is twofold. It causes a shift of the whole sector by U (k) = V1+V2

2
and an interlayer potential

differenceDk = V1−V2 between the effective odd and even layers. We can obtain an analytical
formula for the sector shift in terms of the matrix (VTNG)l,ki and therefore also in terms of the
vectorsR(k), L(k).

U (k) =
1

2

∑
l,i

(VTNG)l,ki(VTNG)l,ki(−eVl). (A.21)

In the above, we identify

1

2

∑
i

(VTNG)l,ki(VTNG)l,ki = W
(k)
l (A.22)

as the layer distribution weights W (k)
l , plotted in Figure 2.4. The final formula for the shift of

the sector U (k) therefore reads:

U (k) =
∑
l

W
(k)
l (−eVl). (A.23)

The derivation of the interlayer potential difference proceeds analogously, so we only give the
expression, which differs by an extra (−1)l in the sum over layers

Dk = 2
∑
l

(−1)lW
(k)
l (−eVl). (A.24)

This (−1)l leads to a cancellation when compared to U (k).
Sector off-diagonal terms — We now turn to the sector mixing terms, which correspond to

the k ̸= k′ term in Eq. (A.18). Given that the potential difference between layers can become
quite sizeable for large filling, sector mixing will become important for largeN . If sector mixing
is small, one can directly relate the physics to the TBG physics. On the other hand, for large
sector mixing, such direct mapping is no longer possible, and the bands become rather different
from bare TBG-like bands. However, these bands may still favor superconductivity and strong
correlation physics, as seen in TTG under a displacement field. One advantage arises forN odd.
In that case, opposite mirror symmetry eigenvalues forbid mixing between adjacent sectors (k
and k + 1, say).

A.3.2 Evaluation of sector shifts

Given the layer structure of the sectors, we can obtain a mean-field layer Hartree shift ∆U (k)

analytically. We start with the layer distributions for sector k, obtained in Sec. 2.4 we obtain
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A.3 Analytical results on the layer potentials

the sector shift U (k) in terms of the weights W (k)
l and the layer potentials Vl. We obtain the

layer potentials by using that a sector with filling νk has on average the following layer number
density distribution

⟨ρ̂0,l⟩ =
1

AUC
W

(k)
l νk. (A.25)

Knowing this, and using Eq. (5.13) the electric field between two layers caused by sector filling
νk (which causes an electron density eνk/(2AUC) on the gates) becomes

E⊥
i,i+1 = −e−1/2 +

∑i
l=1W

(k)
l

AUCϵ0ϵ⊥
νk. (A.26)

Using the formula in Eq. (2.72), we evaluate the sum of the weights

i∑
l=1

W
(k)
l =

1

N + 1

[
i+ 1/2− sin[πk(2i+ 1)/(N + 1)]

2 sin[πk/(N + 1)]

]
. (A.27)

As a check, for i = N , we obtain
∑N

l=1W
(k)
l = 1, while for N even, i = N/2, we get∑N

l=1W
(k)
l = 1/2, so that Ei,i+1 = 0 in the middle spacing. Using that Vl+1 − Vl =

−dlEl,l+1, we can now integrate the electric field to calculate the electron energy shift −eV (k)
l

in layer l due to the filling of sector k:

−eV (k)
l+1 = νk

e2dl
ϵ0ϵ⊥

{
l ·
[
N − l − 1

2(N + 1)

]
+

cos[2πk/(N + 1)]− cos[2πk(l + 1)/(N + 1)]

4(N + 1) sin2[πk/(N + 1)]

}
.

(A.28)
We note that the maximal potential magnitude is in the middle of the sample, which is intuitive,
given that charge of a single sign is being distributed across the layers.

Having obtained the layer shifts due to the filling of a single sector k, we can now add the
contributions due to all the sectors and obtain −eVl. Using this, we get the sector shifts U (k),
and therefore also the numerical coefficients

(
1
C

)
k,k′ giving the shifts of sectors in terms of the

sector fillings

U (k) =
∑
l

W
(k)
l (−eVl) (A.29)

=
∑
lk′

W
(k)
l νk′e

2dl
ϵ0ϵ⊥

l
[
N − l − 1

2(N + 1)

]
+

cos
[
2πk′
N+1

]
− cos

[
2πk′(l+1)
N+1

]
4(N + 1) sin2

[
πk′
N+1

]
.(A.30)
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N
(
1
C

)
1,1

(
1
C

)
1,2

=
(
1
C

)
2,1

(
1
C

)
2,2

4 2ϕ4/(2 + 2ϕ2)2 2ϕ2/(2 + 2ϕ2)2 2/(2 + 2ϕ2)2

5 29/72 15/72 9/72

N → ∞ N(1/12 + 5/(8π2)) N(1/12 + 5/(16π2)) N(1/12 + 5/(32π2))

Table A.1: Inverse capacitance
(
1
C

)
k,k′ for N = 4, 5 layers and large N for k, k′ ∈ {1, 2} in expression form.

Recalling the definition of
(
1
C

)
k,k′ from Equation (5.5), we can identify

(
1
C

)
k,k′ as(

1

C

)
k,k′

=
∑
l

W
(k)
l

{
l ·
[
N − l − 1

2(N + 1)

]
+

cos[2πk′/(N + 1)]− cos[2πk′(l + 1)/(N + 1)]

4(N + 1) sin2[πk′/(N + 1)]

}
.

(A.31)
This equation is used to generate the Table 5.1 in the main text for N = 4, 5. At fixed k, k′,
but taking N → ∞, we can obtain

(
1
C

)
k,k′ analytically by going from a sum to an integral in

Eq. (A.31). This immediately reveals a scaling withN . We get for the dominantO(N) terms:(
1

C

)
k,k′

= N

∫ 1

0

dy sin2(πky)

{
y(1− y) +

1− cos(2πk′y)

2π2(k′)2

}
. (A.32)

Note that the integral over y depends only on k and k′, with the entireN dependence factored
out in the front. Evaluating this integral for k, k′ = 1, 2, we obtain the large N entry in Ta-
ble 5.1. In Table A.1, we give the results for

(
1
C

)
k,k′ in expression form, rather than evaluated

numerically as in the main text.

For reference, we evaluate the numerical constants:

e2dl
Aucϵ0

=
e2 · 0.3nm

√
3·0.2432

2(π/180)2θ2
nm2 · e2 · 55.263 keV−1nm−1

= 32.34θ2physicalmeV, (A.33)

with θ in degrees and where we used vacuum permittivity ϵ0 = 55.263 e2keV−1nm−1 and
interlayer distance dl = 0.3nm.This yields

U (k) =

[
32.34

θ2physical

ϵ⊥

no∑
k′

(
1

C

)
k,k′
νk′

]
meV . (A.34)
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A.3.3 Application to TPG

For twisted pentalayer graphene, the weights of the k = 1, 2, 3 sectors are

W
(k=1)
l =

1

12
(1, 3, 4, 3, 1)l (A.35)

W
(k=2)
l =

1

4
(1, 1, 0, 1, 1)l (A.36)

W
(k=3)
l =

1

3
(1, 0, 1, 0, 1)l. (A.37)

Evaluating, using θ = 1.9◦, interlayer ϵ⊥ ∈ [2, 12], the nonmagic effective chemical potential
increases by

U (1) − U (2) = 3.24/ϵ⊥
[
3ν2 + 7νmagic

]
meV. (A.38)

Supposing that νmagic = 4, we obtain a range of U (1) − U (2) ≈ 7 − 45meV increase of the
effective nonmagic sector chemical potential due to Hartree layer potentials.

We now consider effects of the layer potentials beyond simple sector shifts, which are:

• Intrasector potential difference, both for k = 1 and k = 2

• A term mixing k = 1 and k = 3 – magic and MLG-like, acting like an external displace-
ment field in TTG

We can readily evaluate the magnitudes of all these terms assuming fixed sector filling using the
results from the previous Section. We evaluate −eVl in terms of ν1 = νmagic and ν2:

−eVl =
e2dl

ϵ0ϵ⊥AUC

[
ν2

(
0,

1

4
,
1

4
,
1

4
, 0

)
l

+ ν1

(
0,

5

12
,
7

12
,
5

12
, 0

)
l

]
. (A.39)

With this in hand, we can evaluate:

D1 = − e2dl
ϵ0ϵ⊥AUC

[
1

12
ν2 +

1

36
ν1

]
, (A.40)

for the magic sector and:

D2 = − e2dl
ϵ0ϵ⊥AUC

[
1

4
ν2 +

5

12
ν1

]
, (A.41)

for the nonmagic TBG-like sector, significantly larger thanD1. By mirror symmetry, the k = 2

sector does not mix any other sector. Let us however evaluate the mixing term of k = 1 and
k = 3. This is the term:

H13 = f †
k=1,i=1fk′=3,i=1

∑
l

(VTNG)l,k=1,i=1(VTNG)l,k′=3,i=1(−eVl) + h. c. (A.42)
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from Equation. (A.18), which we readily evaluate using −eVl:

H13 = − e2dl
ϵ0ϵ⊥AUC

[√
3

8
ν2 +

7
√
3

24
ν1

]
f †
k=1,i=1fk′=3,i=1 + h. c. (A.43)

H13 has exactly the same effect as a displacement field in TTG. However, rather than being
explicitly tunable in a doubly-gated setup, it is self-generated and doping dependent.

A.4 Methods
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Figure A.1: Physical twist angle for choosing kmagic = 1 (red) or kmagic = 2 (orange) as a function of the layer
number N .

To obtain the numerical results, we perform self-consistent Hartree-Fock. Our default choice
will be a 12 × 12 k-space grid. Our q ̸= 0 interaction is the double-gate screened, layer de-
pendent (see Sec. 5.3.2) Coulomb interaction, with gate distance ds = 40nm and interlayer
distance dl = 0.3nm. We choose our physical twist angles by the following formula:

θ = 2 cos

[
πkmagic

N + 1

]
· 1.1◦, (A.44)

chosen so that the effective twist angle of sector kmagic, is the magic angle, θeff
kmagic

= 1.1◦. In
Fig. A.1 we plot relation Eq. (A.44) for the different choices kmagic = 1, 2 (see also Ref. [78] for
an equivalent plot). This demonstrates that achieving the regime where k = 2 is in the magic
regime for N ≥ 5 is feasible due to the realistic physical twist angles of θ > 1◦ thus avoiding
lattice reconstruction effects.
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A.4 Methods

A.4.1 N ≤ 5

For the N ≤ 5 analysis, we consider Nactive = 10 bands and calculate the remote Hartree
and Fock contribution using Nremote = 14 bands below and above the active bands. For the
heatmap and cascade plots, Figs. 5.5d,e,f, we simulate all four spin/valley flavors, inducing fla-
vor symmetry-breaking by proposing symmetry-broken trial states at integer fillings. For the
illustrative band structure and density of states plots, Figs. 5.5a,b,c, we use a larger 24×24 grid,
but do not include flavor symmetry breaking. We show the band structures close to νmagic = 4.
The cascade and band structure plots are performed at ϵ∥ = 14 and ϵ⊥ = 6.

A.4.2 N ≥ 5

For the N ≥ 5 analysis, we consider Nactive = max[10, 2N ] bands and calculate the remote
Hartree and Fock contribution usingNremote = max[10, 3N ]bands below and above the active
bands. This dependence is motivated by the fact that adding a layer adds a band, which we want
to include in our analysis, to account for nonmagic sector screening. We caution, however, that
the precise choice is somewhat arbitrary.

For Fig. 5.1, we work at zero strain and ϵ∥ = 10, ϵ⊥ = 6. For Figs. 5.6, we also work at zero
strain and ϵ∥ = 10, ϵ⊥ = 6. In Figs. 5.6c,d we show both zero strain and ϵstrain = 0.2% results.

A.4.3 Stability of Hartree-Fock with Hlayer

In our Hartree-Fock numerics, we ran into an instability for large Hlayer terms (large filling of
largeN in combination with a small out-of-plane constant ϵ⊥). Our system oscillates between
states with vertical polarization to the top and to the bottom of the sample. Clearly such spon-
taneously polarized states fail at screening the gate electric field and are therefore high energy
(see Eq. (5.22)). We can understand the appearance of such oscillations by considering mean-
field Hlayer for a state polarized to the top layer in an infinite density of states system. In the
mean field of such a state, the lowest energy state is the state polarized to the bottom layer.
In this way, there appears an oscillation between opposing vertical polarizations upon iterat-
ing Hartree-Fock. Other terms in Eq. (5.3) make this instability weaker. For example, a finite
density of states induces an energy cost to filling one layer excessively. We find that explicitly
imposing V1 = VN = 0 by adding a constant gradient removes this instability, at the cost of a
slight inaccuracy. Numerically, we find that the gradient is small, typically below 1

ϵ⊥
meV.

143





Appendix B

B.1 Degeneracies of backfolded parabolic bands

The degeneracies of backfolded parabolic bands (Fig. B.1a) in the moiré Brillouin zone are best
understood by examining copies of the parabolic dispersion shifted by reciprocal lattice vectors
g. The value of that copy at a given pointk in the Brillouin zone is proportional to the square of
the distance from the shift vectorg. For example, around theKM ′ point, the three pointsΓ,g1,
and g2, shown in Fig. B.1b, are relevant for the topmost backfolded bands. There is a threefold
degeneracy at k = KM ′ . The distance of KM ′ from Γ, g1 and g2 is equal, being related by
C3 rotation around KM ′ . As pictured in Fig. B.1c, for a point k along the KM ′ − KM high-
symmetry line, the distances to Γ and Γ + g1 remain equal and decrease, while the distance to
Γ + g2 increases. As a result, the threefold degeneracy at the KM ′ point is lifted into a 2+1
degeneracy from top to bottom, see Fig. B.1a, alongKM ′ −KM . The same lifting occurs along
KM−M . At a generic pointk away from high symmetry lines (Fig. B.1d), there is no degeneracy
– the distances from Γ, g1, and g2 are all different.

B.2 Nearly free electrons at Φ = −1

We now turn to the nearly free electron approach for the adiabatic model of Eq. (8.1) in an ex-
ternally applied flux Φ = −1, where the dominant term is the kinetic energy, and the potential
Ṽ (r) and vector potential Ã(r) act as perturbations.

B.2.1 Definition of natural units and Fourier expansion

We define a natural energy unit for terms arising from the kinetic term, evaluating for WSe2:

Ry∗ =
ℏ2|KM |2

2m∗ = (θ[◦])24.3meV, (B.1)

where |KM | = 8π sin(θ/2)/(3a0) is the magnitude of the moiré KM point in the Brillouin
zone, which we use to define a dimensionless derivative ∂̃i = 1

|KM |∂i, such that |KM |∂̃i =

∂i, with the advantage that dimensionless derivatives of n̂ are twist angle independent. The
effective potential is given as

Ṽ (r) = −D(r) + |∆(r)|+∆0(r) (B.2)
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Figure B.1: (a) Illustration of the backfolding of a free electron dispersion into the Brillouin zone. (b) For a point
k = KM ′ at the moiré Brillouin zone corner, there is a threefold degeneracy of the topmost branch
of the backfolded bands, as the distances of k to Γ, g1 and g2, shown in purple, are all equal. (c) For a
pointk along theKM−KM ′ line, the degeneracy is partially lifted. The distances toΓ andg1 (purple)
are equal, while the distance to g2 (blue) is different. (d) For a generic point k in the Brillouin zone,
there is no degeneracy, as the distances are all different.

and we separate it into two parts. First, the kinetic potential termD(r) is written as:

D(r) = Ry∗
1

4

∑
i=x,y

(∂̃in̂)
2

= Ry∗
∑
g

δge
ig·r, (B.3)

where δg are twist-angle independent numbers depending only on model parameters. Second,
the Zeeman potentials can also be expanded:

|∆(r)|+∆0(r) =
∑
g

∆ge
ig·r, (B.4)

where∆g has no twist angle dependence. In total, the potential term can be written as a Fourier
series as:

Ṽ (r) =
∑
g

(−Ry∗δg +∆g)e
ig·r. (B.5)
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Note that in this way, the kinetic potential termD(r) has the twist angle dependence explicitly
pulled out in the form of a factor of Ry∗. The effective magnetic field is written as

∇× Ã(r) = B̃ = −|KM |2ℏ
e

1

2
n̂ ·
(
∂̃xn̂× ∂̃yn̂

)
, (B.6)

where the minus sign compared to [202] is because in our convention B > 0 gives C = 1 for
electrons. Writing as a Fourier series, we obtain

1

2
n̂ ·
(
∂̃xn̂× ∂̃yn̂

)
=
∑
g

βge
ig·r. (B.7)

At Φ = −1 the effective magnetic field is on average cancelled by the external one, meaning we
need to remove the g = 0 term in the sum to obtain the total magnetic field experienced by the
electrons:

Btot(r) = −|KM |2ℏ
e

∑
g ̸=0

βge
ig·r, (B.8)

where βg is twist angle-independent. This leads to the vector potential at Φ = −1:

Ã(r) = −|KM |2ℏ
e

∑
g ̸=0

ig × ẑ

|g|2
βge

ig·r. (B.9)

We now need to evaluate the vector potential terms in Eq. (8.1). As |βg| ≪ 1, we neglect the
diamagnetic term which contains factors ofβ2, obtaining for the paramagnetic [linear in Ã(r)]
matrix element

⟨k2|Hpara|k1⟩ =
eℏ
2m∗ ⟨k2|Ã(r) · k+ k · Ã(r)|k1⟩ (B.10)

= −iRy∗ (k1 + k2)× (k2 − k1)

|k2 − k1|2
βk2−k1 (B.11)

= −iRy∗ 2k1 × k2

|k2 − k1|2
βk2−k1 . (B.12)

We use the symmetry indicators of band topology [257], which for a C6z-symmetric system
give the Chern numberCi of a band i as:

eiπCi/3 = ηi(Γ)θi(KM)ζi(M), (B.13)

where ηi(k), θi(k) and ζi(k) are theC6z ,C3z andC2z eigenvalues of band i at momentum k.
In what follows, we evaluate the eigenvalues by considering the effective Hamiltonians inside
the highest energy degenerate subspaces at high symmetry momenta. Focusing on WSe2 use the
values of Fourier coefficients listed in Table B.1.
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i ∆i δi βi

1 −2.61meV −0.12 −0.11

2 1.34meV −0.06 −0.05

3 −1.13meV 0.14 0.14

Table B.1: Coefficients β,δ and ∆ of the adiabatic model of WSe2.
.

B.2.2 Hamiltonian at theM -point

At a givenM point there are only two relevant states, denotedM (1) andM (2) in Fig. B.2a. They
are connected by a lowest magnitude reciprocal vector, giving a hopping

t = ∆1 − δ1E0, (B.14)

which is necessarily real due toC2z . This gives energies

ϵ± = ±(∆1 − δ1E0), (B.15)

with C2z eigenvalues ±1. Above, we omitted a constant energy shift as it does not affect the
ordering of the states. For small twist angles (smallE0), the topmost band hasC2z eigenvalue−1

(note that both∆1 and δ1 are negative) and the second band+1. As twist angle increases, at the
point∆1−δ1E0 = 0, which happens at θ ≈ 2.25◦, the eigenvalues swap places. Summarizing,
for θ ⪅ 2.25◦:

ζ1(M) = −1 (B.16)
ζ2(M) = 1, (B.17)

while for larger angles:

ζ1(M) = 1 (B.18)
ζ2(M) = −1. (B.19)
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B.2.3 Hamiltonian at theKM -point: a three-site model

At theKM point, are only three relevant momenta, denotedK(1),K(2) andK(3) in Fig. B.2a.
They are connected by a hopping tK1 , and the Hamiltonian is

HKM
= −E0 +


0 (tK1 )

∗ tK1

tK1 0 (tK1 )
∗

(tK1 )
∗ tK1 0

, (B.20)

where tK1 is given as

tK1 = ∆1 + E0(−δ1 − i
1√
3
β1). (B.21)

The eigenstates are labeled by their C3z eigenvalues, 1, ω = e2πi/3, ω∗ = e4πi/3, and have
energies (omitting an overall constant):

ϵ1 = 2[∆1 − δ1E0] (B.22)
ϵω = −∆1 + E0(δ1 + β1) (B.23)

ϵω∗ = −∆1 + E0(δ1 − β1), (B.24)

that are equal to:

ϵ1[meV] = −5.22 + 0.24E0 (B.25)
ϵω[meV] = 2.61− 0.23E0 (B.26)
ϵω∗ [meV] = 2.61− 0.01E0. (B.27)

Therefore, for small twist angleω∗ andω states are the highest and second highest energy states,
respectively. The second highest state of eigenvalue ω crosses with the eigenvalue 1 state at θ ≈
1.96◦ Summarizing, for θ ⪅ 1.96◦:

θ1(KM) = e4πi/3 (B.28)
θ2(KM) = e2πi/3, (B.29)

while for larger angles

θ1(KM) = e4πi/3 (B.30)
θ2(KM) = 1, (B.31)
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Figure B.2: (a) Moiré Brillouin zone, showing two degenerate M points M (1) and M (2) coupled by a hopping t
and three degenerate |KM | points, coupled by hopping tK1 . (b) Six relevant momenta for the second
highest state at the Γ point. They are coupled by nearest neighbor hopping t1, next-nearest neighbor
hopping t2 and third nearest neighbor hopping t3.

B.2.4 Hamiltonian at the moiré Γ-point: a six-site model

The Γ point extremum itself, which is part of the topmost band trivial representation of C6z ,
givingη1 = 1 for all twist angle. For the second topmost state at the moiréΓpoint, six momenta
are relevant, given by g1, . . . ,g6, with |gi| =

√
3|KM | for i = 1, . . . 6. We plot them in

Fig. B.2b, together with the nearest, next-nearest and third-nearest neighbor hoppings t1, t2
and t3. The Hamiltonian at this point is:

H|KM | = −
√
3E0 +



0 t∗1 t∗2 t3 t2 t1

t1 0 t∗1 t∗2 t3 t2

t2 t1 0 t∗1 t∗2 t3

t3 t2 t1 0 t∗1 t∗2

t∗2 t3 t2 t1 0 t∗1

t∗1 t∗2 t3 t2 t1 0


, (B.32)

where t1 is given by
t1 = ∆1 + E0(−δ1 − i

√
3β1), (B.33)
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with the only difference to tK1 in Eq. (B.21) being the geometric factor
√
3 multiplying β1. The

other hoppings are:

t2 = ∆2 + E0(−δ2 − i
1√
3
β2) (B.34)

t3 = ∆3 + E0(−δ3), (B.35)

where we note that t3 is real due toC2z symmetry.

To solve, we use theC6z symmetry, so that solutions can be labelled byC6z eigenvalues eiπ3m,
where m is the angular momentum. Firstly, t3 causes a large splitting between different C2z

sectors, caused by the dip of Ṽ (r) at the midpoint between AB and BA sites of the unit cell,
and the magnitude of this splitting increases with twist angle. Since t3 is negative, the upper
branch has C2z eigenvalue −1, corresponding to angular momenta m = 1, 3, 5. The energies
of these states are (up to an overall constant):

ϵm=1 = −t3 + 2Re
[
(t1 − t∗2)e

iπ/3
]

(B.36)
ϵm=3 = −t3 + 2Re[−t1 + t2] (B.37)

ϵm=5 = −t3 + 2Re
[
(t1 − t∗2)e

−iπ/3], (B.38)

which we can numerically evaluate for WSe2 to be:

ϵm=1[meV] ≈ −t3 + 2 · [−1.97− 0.15E0] (B.39)
ϵm=3[meV] ≈ −t3 + 2 · [3.95− 0.06E0] (B.40)
ϵm=5[meV] ≈ −t3 + 2 · [−1.97 + 0.2E0], (B.41)

where we do not evaluate t3 as it is the same for all states. We see that the m = 3 state is by far
highest in energy up to θ = 2.5◦. Therefore, we have for realistic angles:

η1(Γ) = 1 (B.42)
η2(Γ) = −1, (B.43)

B.2.5 Topology

Putting the results together, we have for θ ⪅ 1.96◦ the Chern number sequence:

C1 = 1 mod 6 (B.44)
C2 = −1 mod 6. (B.45)
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For θ ⪆ 1.96◦, we have

C1 = 1 mod 6 (B.46)
C2 = −3 mod 6, (B.47)

predicting the correct phase transition and obtaining the twist angle of the transition to rea-
sonable accuracy compared with the full model, in which it happens at θ ≈ 2.02◦. From the
symmetry-indicator analysis, we also infer that the gap closing at θ ≈ 2.02◦ between the second
and the third band occurs through two Dirac cones atKM andKM ′ .
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