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Introduction

This dissertation consists of four independent chapters in the field of contract theory. I study the influence

of private information of different parties (be it static or dynamic information) on the optimal contracts

depending on the context. Chapters 1 and 2 deal with a crowdfunding model, which usually illustrates

a static direct exchange between a seller and potential buyers contributing to the production of a good.

Chapters 3 and 4 are on delegated expertise, where a firm (a principal) delegates information acquisition

about a quality of a risky project to an expert (an agent) before investing.

In the first chapter (Crowdfunding platforms, E. Gorbunova) I study crowdfunding platforms, which

are becoming more present in numerous domains (education, the energy sector, creative work). In order to

explain contribution schemes found on such platforms, I enrich the crowdfunding model by introducing a

platform / a broker between the seller and the potential buyers. I then derive the optimal direct incentive-

compatible mechanism which maximizes the platform’s expected profit and offer an implementation of the

optimal mechanism.

In the second chapter (Sequential screening in the presence of fixed costs, E. Gorbunova, based on

joint work with P. Pillath) we consider a direct interaction between the seller and the buyers but introduce

dynamic formation of the buyers’ valuations for the good and study its influence on the crowdfunding

procedures. Doing so allows us, in particular, to address the case where the seller faces the decision on

whether or not to incur production costs and what pricing scheme to offer long before the buyers have full

information about their demand for the good. We first characterize the optimal selling mechanism for this

case and later address the case where the seller can postpone production until the buyers have learned their

true valuations.

In the third chapter (Dynamic information collection: two-sided tests, E. Gorbunova, based on joint

work with D. Gromb and F. de Vericourt) we consider an information collection problem with symmetric

two-sided tests, which are informative about the project quality, with no false positives and no false negatives;

whereas in the forth chapter (Search order in delegated data analytics, E. Gorbunova, based on joint

work with D. Gromb and F. de Vericourt) we consider the tests with no false positives but allow for false

negatives, and we tailor the model to the domain of data analytics specifically. Distinctiveness of these

papers compared to the literature on delegated testing / delegated search lies in the research question itself

(the optimal order of the available information sources) and in the fact that we consider heterogeneous

information sources (two tests / data sets differing in the precision of their findings and the cost of analysis).

We tackle two building blocks of delegated expertise: optimal compensation - characterizing optimal incentive

contracts for each order of the tests under a combined moral hazard and adverse selection problem; and task

design - finding the optimal order.
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Crowdfunding Platforms∗

Ekaterina Gorbunova

FU Berlin

December 2024

Abstract

This paper derives a platform-optimal selling procedure for a non-rival but excludable good.

The good is yet to be produced and selling it is only possible via a platform. The seller of

the good is privately informed about the fixed production costs, multiple potential buyers are

privately informed about their valuations for the good before contracting. The platform designs

the contract which specifies when the good will be produced (production rule), how much to

pay the seller, which buyers get access to the good (allocation rule) and how much the buyers

pay the platform. I derive the optimal direct incentive-compatible mechanism which maximizes

the platform’s expected profit. I then propose an implementation which resembles contractual

features found on reward-based crowdfunding platforms such as Patreon.

∗I thank Microeconomic Colloquium participants at the HU Berlin for helpful comments. I am grateful for detailed sugges-
tions and advice from Andreas Asseyer.
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Introduction

Crowdfunding platforms currently emerge in many domains. Such platforms are wide-spread in education,

e.g. DonorsChoose and RallyUp Schools; and even in the energy sector, e.g. Citizenergy, GreenCrowding

and Bettervest. Prominent examples for the platforms accommodating creative work are Kickstarter, Artist-

Share and Patreon (for more examples see Belleflamme et al. (2015), who provide an extensive review on

different types of crowdfunding platforms and their business models). Very often in the case of reward-based

crowdfunding platforms a so-called club good is created. This is a non-rival but excludable good: e.g. once

created, a particular online comic book from an author on Patreon does not depreciate or become more

scarce if many people read it, but it is only possible to get access to the comic if a reader has contributed to

its creation through a pledge towards the crowdfunding campaign.

This paper takes a closer look at the selling mechanism for such a good on a crowdfunding platform, who

acts as a broker between the seller and potential buyers. Although selling mechanisms are more intricate

in reality, with this work I try to address the following two features which are present e.g. on Patreon: the

plaform sets a platform-wide minimum pledge amount for the buyers1 and asks the sellers for a percentage

fee from the collected pledges2. More generally, I derive the optimal direct mechanism which maximizes the

platform’s expected profit in a case of one seller, who is privately informed about the (fixed) production

costs, and multiple potential buyers, who are privately informed about their valuations for the good. The

good is yet to be produced, and selling the good is only possible via the platform. I also propose an indirect

implementation of the optimal direct mechanism.

The case of one seller and multiple buyers interacting directly, as well as the production costs being public

information has been discussed in detail by Cornelli (1996). She explains why price dispersion may occur

when it comes to club goods: the buyers are willing to contribute different amounts towards the same good

out of fear of the good not being produced. She characterizes the seller-optimal direct mechanism and

provides examples for implementation, which incorporate a minimum price for the buyers. Naturally, I make

use of her derivation techniques in this paper, adjusting them to the setting with the platform and the seller’s

private information about the production costs3.

Another paper, upon which this work expands, is Myerson & Satterthwaite (1983), who consider a case of

one seller, one buyer and a broker. They derive the broker-optimal direct mechanism and provide examples

for implementation, to which I relate when expanding the model by introducing a club good with multiple

potential buyers, as the payment to the seller will depend on the buyers’ payments. Hence, this paper can

also be related to the literature which explains the seller fee structure on platforms often observed in practice:

e.g. Wang & Wright (2017), who explain the optimality of ad valorem fees on the platforms through the fact

that the value of a transaction is proportional to the costs.

Other papers which are related to this work are Barbieri & Malueg (2010), where the authors derive profit-

maximizing selling procedures for discrete public goods in subscription games with two buyers; Ellman &

Hurkens (2019), who derive seller-optimal ex-ante selling mechanisms with binary buyers’ types, within which

the seller decides on a minimum price and a funding threshold; Strausz (2017), who also considers direct

1See https://support.patreon.com/hc/en-us/articles/360044376211-Managing-members-with-custom-pledges.
2See https://support.patreon.com/hc/en-us/articles/11111747095181-Creator-fees-overview.
3The case of one seller and one buyer interacting directly when the seller offers the contract and also has private information

when contracting is discussed in Maskin & Tirole (1990).
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interaction between the seller and the buyers with binary types incorporating the seller’s private information

on the costs and moral hazard; and Loertscher & Niedermayer (2023), who model the seller-buyers interaction

happening via a platform, where a small number of buyers arrives in each period, the seller chooses the price

(English auction with reserve price), and the platform, which can be competitive, chooses the seller fee. This

paper also captures the indirect interaction between the seller and the buyers via a crowdfunding platform,

but it preserves the set-up with fixed costs and a non-rival but excludable good as in Cornelli (1996), which

matches e.g. digital products quite well. I also study the case where the platform fully designs the contract,

since in reality the platforms tend to have a say in who gets access to the good once it is produced, e.g.

through a platform-wide minimum pledge amount as on e.g. Patreon. Hence, this paper is distinct from the

literature in one or more of the following modeling choices.

In this model I consider a non-rival but excludable good (a club good), which is yet to be produced. The

seller, who is privately informed about the continuous (fixed) production costs4 before contracting, faces

multiple potential buyers, who are privately informed about their continuous valuations for the good before

contracting, on the platform. The platform is the designer, who maximizes expected profit and offers the

seller and the buyers a contract, specifying when the good will be produced (call this production rule), how

much to pay the seller, which buyers get access to the good (call this allocation rule) and how much the

buyers pay the platform.

According to the optimal incentive-compatible direct mechanism, the optimal allocation rule is standard:

only buyers with positive virtual valuations should obtain the good in case it is produced. Whether or not the

good will be produced depends on whether the sum of positive virtual valuations surpasses the virtual costs.

When it comes to implementation (indirect mechanism), there are many ways in which one could construct

the actual transfers depending on the desired structure: one can consider e.g. contribution resp. subscription

schemes, defined in Admati & Perry (1991) as games, in which players’ contributions are not refunded if

the project is not completed resp. those in which they are refunded. The actual transfers should satisfy the

conditions for the expected transfers, which make the optimal direct mechanism incentive-compatible and

individually rational.

I concentrate on the contribution schemes, for which there is no reimbursement in case the good is not

produced, and propose the following implementation (illustrated first by a two-buyer case with uniform

distributions, although a more general case with multiple buyers and general distributions is also considered).

According to the indirect mechanism, the seller is to announce his production costs to the platform. The

buyers are to choose a payment to the platform above a minimum price. The platform states that the good

will be produced if the composition of the buyers’ payments exceeds the seller’s announced costs by the

platform fee. The platform offers to pay the composition of the buyers’ payments minus the platform fee to

the seller for the production of the good. If the good is produced, the buyers who pay above the minimum

price receive the good. If the good is not produced, the buyers do not receive their payments back.

The paper proceeds as follows. Section 1 presents the setup. Section 2 characterizes the optimal direct

mechanism. Section 3 provides an implementation of the optimal direct mechanism for a two-buyer case with

uniform distributions as well as a case with more than two buyers and general distributions. The last section

concludes. The Appendix contains examples with uniform distributions from Myerson & Satterthwaite

(1983) and Cornelli (1996).

4Assume zero marginal costs.
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1 Setup

Consider a non-rival but excludable good, which is yet to be produced. This type of good is appropriate

in the context of reward-based crowdfunding-platforms: once produced, such good does not depreciate or

become more scarce if many buyers consume it, but not everyone will get access to the good (in contrast to

a pure public good which is non-rival and non-excludable).

Consider a model with universal risk-neutrality. A seller of a non-rival but excludable good is privately

informed about the fixed costs of production, denoted by M , which are distributed with a c.d.f. G(M)

over the interval [M,M ]. Assume zero marginal costs5. Assume that selling the good, which is yet to be

produced, is only possible via a platform. The platform decides whether the good will be produced, denote

this production rule by m ∈ {0, 1}6; and how much to pay the seller, denote this transfer by tps. Hence, the

seller’s ex-post utility is: tps −M ·m.

On the platform, the seller faces the set N = {1, ..., n} of symmetric buyers with private information about

the individual valuations for the good, denoted by θi, which are distributed with a c.d.f. F (θi) over the

interval [θ, θ]. The buyers’ valuations are uncorrelated and each buyer only knows his own valuation. For

θ ≡ (θj)j∈N , define F̄ (θ) ≡
∏

j∈N F (θj). Further define Θ ≡ [θ, θ]N . The platform decides whether each

buyer receives the good once it is produced, denote this allocation probability by pi ∈ [0, 1]; and how much

the buyer has to pay, denote this trasfer by tbis. Hence, the buyer’s ex-post utility is: θi · pi − tbis and the

platform’s ex-post profit is
∑

i tbip − tps.

The timing is as follows:

1. The seller privately learns M , each buyer privately learns θi.

2. The platform offers a contract specifying when the good is produced, what transfer the seller receives,

whether each buyer gets access to the good and how much each buyer has to pay.

For instance, in the case of a direct mechanism the platform makesm(θ′,M ′), tps(θ
′,M ′), pi(θ

′,M ′) and

tbip(θ
′,M ′) for all i dependent on the announced costs by the seller M ′ and the announced valuations

by the buyers θ′7.

3. The seller accepts or rejects the contract. Each buyer accepts or rejects the contract.

4. The seller produces the good according to the production rule m. Allocation payoffs are realized.

This paper characterizes the optimal direct mechanism maximizing the platform’s expected profit and pro-

poses an indirect implementation of the optimal direct mechanism.

5Not restrictive, the model could accommodate strictly positive marginal costs.
6Deterministic for simplicity, but not restrictive.
7Direct mechanism is defined in the next section.
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2 Direct Mechanism

By the Revelation Principle we can concentrate on direct incentive-compatible mechanisms, without loss of

generality. Consider a direct mechanism within which the seller reports her costs and each buyer reports

his valuation simultaneously to the platform. Based on the announced costs and valuations, the platform

follows the mechanism (full commitment), which states whether the good will be produced, how much to

pay the seller, which buyers get access to the good and how much the buyers pay the platform. Hence, the

direct mechanism is characterized by the following functions:

1. Production rule m(θ′,M ′), which maps buyers’ announced valuations and the seller’s announced costs

onto {0, 1};

2. Transfer from the platform to the seller tps(θ
′,M ′), which maps buyers’ announced valuations and the

seller’s announced costs onto R;

3. Allocation rule pi(θ
′,M ′), for all i, which maps buyers’ announced valuations and the seller’s announced

costs onto [0, 1], i.e. this is the probability with which buyer i gets the good;

4. Transfer from buyer i to the platform tbip(θ
′,M ′), for all i, which maps buyers’ announced valuations

and the seller’s announced costs onto R.

Production and allocation rules are technically connected through a feasibility constraint, i.e. the good can

be allocated to the buyers only if it is produced:

pi(θ
′,M ′) ≤ m(θ′,M ′) (FC)

The seller does not know the buyers’ valuations when she decides whether to accept or reject the platform’s

mechanism. Assuming that the buyers report their valuations truthfully, her expected utility is:

Us(M) =

∫
Θ

[tps(θ,M)−M ·m(θ,M)] dF̄ (θ),

Each buyer also does not know other buyers’ valuations or the seller’s production costs and builds an

expectation. Assuming that other buyers report their valuations truthfully and that the seller reports her

production costs truthfully, his expected utility is:

Ubi(θi) =

∫
Θ−i

∫ M

M

[θi · pi(θ,M)− tbip(θ,M)] dG(M)dF̄−i(θ−i),

where Θ−i ≡ [θ, θ]N−1, θ−i ≡ (θj)j∈N,j ̸=i, and F̄−i(θ−i) ≡
∏

j∈N,j ̸=i F (θj).

When offering the mechanism, the platform makes sure that it is incentive-compatible (in the Bayesian sense)

and individually rational. We start by laying out incentive-compatibility constraints.

The seller should report her production costs truthfully instead of misreporting them as M ′:

Us(M) ≥
∫
Θ

[tps(θ,M
′)−M ·m(θ,M ′)] dF̄ (θ) ∀M,M ′ ∈ [M,M ] (ICs)

11



Each buyer should report his valuation truthfully instead of misreporting it as θ′i:

Ubi(θi) ≥
∫
Θ−i

∫ M

M

[θi · pi(θ′i, θ−i,M)− tbip(θ
′
i, θ−i,M)] dG(M)dF̄−i(θ−i) ∀θi, θ′i ∈ [θ, θ] (ICbi)

We turn to individual rationality constraints. The seller and each buyer should obtain non-negative expected

utilities from accepting the mechanism:

Us(M) ≥ 0 ∀M ∈ [M,M ] (IRs)

Ubi(θi) ≥ 0 ∀θi ∈ [θ, θ] (IRbi)

Thus, the platform chooses the production and allocation rules as well as the respective transfers as to

maximize its expected profit, i.e. the sum of the expected transfers from the buyers minus the expected

transfer to the seller, subject to feasibility, incentive-compatibility and individual rationality constraints:

max
{m,tps,(pi,tbip)i∈N}

∫
Θ

∫ M

M

[∑
i

tbip(θ,M)− tps(θ,M)

]
dG(M)dF̄ (θ)

s.t. (FC) & (ICs) & (ICbi) ∀i & (IRs) & (IRbi) ∀i

We can rewrite the platform’s optimization problem in terms of the buyers’ virtual valuations and the seller’s

virtual costs, and state how to construct individually rational and incentive-compatible expected transfers.

Proposition 1. The optimization problem is equivalent to:

max
{m,(pi)i∈N}

∫
Θ

∫ M

M

[∑
i

Cbi(θi) · pi(θ,M)− Cs(M) ·m(θ,M)

]
dG(M)dF̄ (θ)− Us(M)−

∑
i

Ubi(θ)

s.t.

∫
Θ−i

∫ M

M

pi(θi, θ−i.M)dG(M)dF̄−i(θ−i) - increasing in θi

and

∫
Θ

m(θ,M)dF̄ (θ) - decreasing in M,

where Cbi(θi) ≡ θi −
1− F (θi)

f(θi)
- is the virtual valuation; and Cs(M) ≡M +

G(M)

g(M)
- are the virtual costs.

Optimally, Us(M) = 0 and Ubi(θ) = 0 ∀i. Expected transfers which satisfy incentive-compatibility are:

∫
Θ

tps(θ,M)dF̄ (θ) =

∫
Θ

(
M ·m(θ,M) +

∫ M

M

m(θ, x)dx

)
dF̄ (θ), (1)

∫
Θ−i

∫ M

M

tbip(θ,M)dG(M)dF̄−i(θ−i) =

∫
Θ−i

∫ M

M

(
θi · pi(θ,M)−

∫ θi

θ

pi(x, θ−i,M)dx

)
dG(M)dF̄−i(θ−i).

(2)
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Proof: the proof follows Myerson (1981) and Myerson & Satterthwaite (1983) with appropriate adjustments.

Define mexp(M) ≡
∫
Θ
m(θ,M)dF̄ (θ) and pexpi (θi) ≡

∫
Θ−i

∫M

M
pi(θi, θ−i,M)dG(M)dF̄−i(θ−i).

From (ICs) forM and (ICs) forM
′ we obtain: (M ′−M)·mexp(M) ≥ Us(M)−Us(M

′) ≥ (M ′−M)·mexp(M ′).

If M ′ > M , then mexp(M) is decreasing in M , hence, U ′
s(M) = −mexp(M), and we have:

Us(M) = Us(M) +

∫ M

M

mexp(x)dx. (3)

From (ICbi) for θi and (ICbi) for θ
′
i we obtain: (θ′i − θi) · pexpi (θ′i) ≥ Ubi(θ

′
i)−Ubi(θi) ≥ (θ′i − θi) · pexpi (θi). If

θ′i > θi, then p
exp
i (θi) is increasing in θi, hence, U

′
bi
(θi) = pexpi (θi), and we have:

Ubi(θi) = Ubi(θ) +

∫ θi

θ

pexpi (θi)dx. (4)

Make use of the fact that the expected gains from trade minus the platform’s expected profit, i.e. Up ≡∫
Θ

∫M

M
[
∑

i tbip(θ,M)− tps(θ,M)] dG(M)dF̄ (θ), equals to the expected gains to the seller and the buyers.

Using standard techniques we obtain:

Up =

∫
Θ

∫ M

M

(∑
i

θi · pi(θ,M)−M ·m(θ,M)

)
dG(M)dF̄ (θ)

−
∫ M

M

Us(M)dG(M)−
∑
i

(∫ θ

θ

Ubi(θi)dF (θi)

)
(3),(4)
=

∫ θ

θ

∫
Θ−i

∫ M

M

∑
i

θi · pi(θ,M)dG(M)dF̄−i(θ−i)dF (θi)−
∫
Θ

∫ M

M

M ·m(θ,M)dG(M)dF̄ (θ)

− Us(M)−
∫ M

M

∫ M

M

mexp(x)dxdG(M)−
∑
i

Ubi(θ)−
∑
i

(∫ θ

θ

∫ θi

θ

pexpi (x)dxdF (θi)

)

=
∑
i

(∫ θ

θ

θi

∫
Θ−i

∫ M

M

pi(θi, θ−i,M)dG(M)dF̄−i(θ−i)dF (θi)

)
−
∫ M

M

M

∫
Θ

m(θ,M)dF̄ (θ)dG(M)

− Us(M)−
∫ M

M

G(M) ·mexp(M)dM −
∑
i

Ubi(θ)−
∑
i

(∫ θ

θ

(1− F (θi)) · pexpi (θi)dθi

)

=
∑
i

(∫ θ

θ

θi · pexpi (θi)dF (θi)

)
−
∑
i

(∫ θ

θ

(1− F (θi)) · pexpi (θi)dθi

)
−
∫ M

M

M ·mexp(M)dG(M)

−
∫ M

M

G(M) ·mexp(M)dM − Us(M)−
∑
i

Ubi(θi)

Applying definitions of mexp(M) and pexpi (θi) again and rearranging the terms gives us:

Up =

∫
Θ

∫ M

M

[∑
i

(
θi −

1− F (θi)

f(θi)

)
· pi(θ,M)−

(
M +

G(M)

g(M)

)
·m(θ,M)

]
dG(M)dF̄ (θ)−Us(M)−

∑
i

Ubi(θ).

Us(M) decreases in M , so it suffices to ensure that (IRs) is satisfied for M . Optimally, (IRs) for M will

bind. Analogously, Ubi(θi) increases in θi, need to ensure that (IRbi) is satisfied for θ. Optimally, (IRbi) ∀i
for θ will bind. Then, (1) resp. (2) is implied by def. of Us(M) and (3) resp. def. of Ubi(θi) and (4). ■
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We can now derive production and allocation rules maximizing the platform’s expected profit. For that, I

impose a standard assumption on F (θi) and G(M) that is satisfied for many distributions (see Myerson &

Satterthwaite (1983)).

Assumption 1. Cbi(θi) and Cs(M) are strictly increasing.

Proposition 2. The following production and allocation rules are optimal under assumption 1:

m(θ,M) =

1 if
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

0 otherwise

pi(θ,M) =

1 if Cbi(θi) ≥ 0 and
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

0 otherwise

where I∗ ≡ {i ∈ N : Cbi(θi) ≥ 0}.

Proof: the proof follows Cornelli (1996) with appropriate adjustments.

Given that the good is produced, it is optimal to give access to the good to those buyers, who have a positive

virtual valuation, i.e. for m(θ,M) = 1 we must have:

pi(θ,M) =

1 if Cbi(θi) ≥ 0 and m(θ,M) = 1

0 otherwise

Define the set of the buyers with positive virtual valuations as I∗ ≡ {i ∈ N : Cbi(θi) ≥ 0}. We can now show

that it is optimal to produce the good if the sum of positive virtual valuations surpasses the virtual costs:

m(θ,M) =

1 if
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

0 otherwise

Under assumption 1, as θi increases / M decreases, it becomes easier to satisfy
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

and Cbi(θi) ≥ 0, meaning that monotonicity conditions for mexp(M) and pexpi (θi) from proposition 1 are

satisfied. ■

There are many ways in which one could construct the actual transfers tps and tbip ∀i, depending on the

desired structure: e.g. contribution or subscription schemes, see Admati & Perry (1991). As long as these

transfers satisfy the expressions for the expected transfers (1) and (2) with the optimalm(θ,M) and pi(θ,M),

the direct mechanism will be incentive-compatible and individually rational.
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3 Indirect Mechanism

The optimal direct mechanism described in Propositions 1 and 2 can be implemented via a crowdfunding

scheme which combines features of Myerson & Satterthwaite (1983) and Cornelli (1996). I concentrate on

the so-called contribution schemes (see Admati & Perry (1991)) for which there is no reimbursement in case

the good is not produced: the buyers’ actual transfers will correspond to their expected transfers.

I start with a two-buyer case and the seller’s costs and each buyer’s valuation being uniformly distributed

over [0, 1] to make a clearer point. The proposed selling mechanism can be conveniently compared to the

examples of the indirect mechanisms described by Myerson & Satterthwaite (1983) and Cornelli (1996), see

Appendix. After the proof, I also discuss this scheme in more detail. I then characterize a case of N buyers

and general distributions F (θi) and G(M), which nonetheless satisfy assumption 1.

Proposition 3. The seller is to announce his production costs M to the platform. The buyers are to choose

a payment to the platform Ti above the minimum price T ∗ = 1/16. The platform states that the good will be

produced if the composition of the buyers’ payments exceeds the seller’s announced costs by the platform fee,

namely, the following must hold:

2
∑
i∈JT

[2 (Ti + 1/16)]
1/2 − s ≥ 2M,

where JT is the set of buyers with payments above T ∗ and s is the number of buyers with payments above

T ∗. The platform offers to pay the composition of the buyers’ payments minus the platform fee to the seller

for the production of the good. If the good is produced, the buyers who pay at least T ∗ receive the good. If

the good is not produced, the buyers receive neither the good not their payments back8.

Proof: The buyers: the minimum price for the buyers T ∗ = 1/16 is derived similarly to Cornelli (1996),

by using the optimal production and allocation rules from proposition 2:

m(θ,M) =

1 if
∑

i∈I∗(2θi − 1) ≥ 2M

0 otherwise

pi(θ,M) =

1 if θi ≥ 1/2 and
∑

i∈I∗(2θi − 1) ≥ 2M

0 otherwise

where I∗ ≡ {i ∈ I : θi ≥ 1/2}; and the expression for the expected payment (2):

∫
Θ−i

∫
M

tbip(θ,M)dMdθ−i =

∫
Θ−i

∫
M

(
θi · pi(θ,M)−

∫ θi

θ

pi(x, θ−i,M)dx

)
dMdθ−i.

8A similar scheme but with reimbursement to the buyers in case the good is not produced can be constructed following a
readjustment as in Cornelli (1996).
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The buyers’ actual payments Ti’s correspond to their expected payments in the case of no reimbursement:

1. For buyers with θi < 1/2 we have pi = 0 and Ti = 0, i.e. these buyers never receive the good, since

their virtual valuations are negative.

2. For buyers with θi ≥ 1/2 we have pi = 1 if the good is produced.

If buyer i is the only one with a positive virtual valuation, the good is produced as long as θi ≥M+1/2

(“one seller, one buyer and a broker” case as in Myerson & Satterthwaite (1983)). If both buyers have

positive virtual valuations, the good is produced as long as θ1+ θ2 ≥M +1. Meaning that the buyers’

valuations have to exceed the seller’s announced costs by the platform fee (in this case 1/2 per buyer).

Hence, we have:

Ti =

∫
Θ−i

∫
M

tbip(θ,M)dMdθ−i

=

∫ 1/2

0

∫ θi−1/2

0

(
θi · 1−

∫ θi

1/2

pi(x, θ−i,M)dx

)
dMdθ−i

+

∫ 1

1/2

∫ θi+θ−i−1

0

(
θi · 1−

∫ θi

1/2

pi(x, θ−i,M)dx

)
dMdθ−i

= 1/2 · θ2i − 1/16

The minimum price is T ∗ ≡ Ti(θi = 1/2) = 1/16.

Ti is strictly increasing and invertable:

θi = [2 (Ti + 1/16)]
1/2

.

Thus, the optimal production rule as a function of the buyers’ payments and the seller’s announced costs is:

2
∑
i∈JT

[2 (Ti + 1/16)]
1/2 − s ≥ 2M,

where JT is the set of buyers with payments above T ∗ and s is the number of buyers with payments above

T ∗.

The seller: the payment from the platform to the seller for producing the good is derived similarly to

Myerson & Satterthwaite (1983): from a second-price auction with a reserve price (for a detailed derivation,

see Appendix).

If only one buyer has a positive virtual valuation (pays above T ∗), then the offered payment to the seller is θi−
1/2 (“one seller, one buyer and a broker” case as in Myerson & Satterthwaite (1983)), or [2 (Ti + 1/16)]

1/2−
1/2. If both buyers have positive virtual valuations (both pay above T ∗), then the offered payment to the

seller is θ1+θ2−1 (arrive at this value by solving
∑

i∈I∗ Cbi(θi) = Cs(M) or in this case (2θ1−1)+(2θ2−1) =

2M for M) or [2 (T1 + 1/16)]
1/2

+ [2 (T2 + 1/16)]
1/2 − 1. Meaning that the platform offers to pay the

composition of the buyers’ payments minus the platform fee (in this case 1/2 per buyer) to the seller for the

production of the good. In other words, the platform pays the seller the highest production costs she could

have announced that would still lead to the production of the good, given the buyers’ valuations (inverse

functions of their payments Ti’s). ■
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The proposed scheme resembles contractual features which can be found on reward-based crowdfunding

platforms, such as Patreon, i.e. a combination of a minimum pledge for the “patrons” and a percentage

fee for the creators. To recognize that the payment to the seller from proposition 4 is set in relation to

the buyers’ contributions Ti’s (although it has a more complex structure than a percentage-fee), let us

differentiate between the case where only one buyer pays above the minimum price T ∗ and the case where

both buyers contribute above T ∗.

According to the contract, if the seller announces M and only one buyer pays Ti above T ∗, the good is

produced as long as [2(Ti + 1/16)]1/2 ≥ M + 1/2, i.e. the transformed payment by the buyer exceeds the

seller’s announced costs by the platform fee of 1/2, which could be understood as a processing fee, for

instance. The seller is offered a payment of [2(Ti + 1/16)]1/2 − 1/2 for the production of the good, i.e. she

receives the transformed buyer’s payment net of the platform fee of 1/2 (processing fee of 1/2).

If the seller announces M and both buyers pay Ti’s above T ∗, the good is produced as long as [2(T1 +

1/16)]1/2 + [2(T2 + 1/16)]1/2 ≥M + 1, i.e. the sum of the transformed payments by the buyers exceeds the

seller’s announced costs by the platform fee of 1/2 per buyer, which could be understood as a processing

fee per transaction, for instance. The seller is offered a payment of [2(T1 + 1/16)]1/2 + [2(T2 + 1/16)]1/2 − 1

for the production of the good, i.e. she receives the sum of the transformed buyers’ payments net of the

platform fee of 1/2 per buyer (processing fee of 1/2 per transaction).

Finally, let us consider a more abstract case of N buyers with general distributions F (θi) and G(M) (as-

sumption 1 still holds).

Proposition 4. The seller is to announce his production costs M to the platform. The buyers are to choose

a payment Ti to the platform above the minimum price T ∗. The platform states that the good will be produced

if the the following condition is fulfilled: ∑
i∈JT

ψi(Ti) ≥ ξs(M),

where JT is the set of buyers with payments above T ∗, ψi(·) and ξs(·) are defined in the proof.

The platform offers to pay the seller the highest production costs she could have announced that would still

lead to the production of the good, given the buyers’ payments. If the good is produced, the buyers who pay at

least T ∗ receive the good. If the good is not produced, the buyers receive neither the good not their payments

back.

Proof: The buyers: the minimum price for the buyers T ∗ is derived similarly to Cornelli (1996), by using

the optimal production and allocation rules from proposition 2:

m(θ,M) =

1 if
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

0 otherwise

pi(θ,M) =

1 if θi ≥ θ∗ and
∑

i∈I∗ Cbi(θi) ≥ Cs(M)

0 otherwise
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where θ∗ solves Cbi(θi) = 0, I∗ ≡ {i ∈ N : θi ≥ θ∗}; and the expression for the expected payment (2):

∫
Θ−i

∫ M

M

tbip(θ,M)dG(M)dF̄−i(θ−i) =

∫
Θ−i

∫ M

M

(
θi · pi(θ,M)−

∫ θi

θ

pi(x, θ−i,M)dx

)
dG(M)dF̄−i(θ−i).

The buyers’ actual payments Ti’s correspond to their expected payments in the case of no reimbursement:

1. For buyers with θi < θ∗ we have pi = 0 and Ti = 0, i.e. these buyers never receive the good, since their

virtual valuations are negative.

2. For buyers with θi = θ∗ we have pi = 1 if the sum of the remaining positive virtual valuations surpasses

virtual costs, and the good is produced.

Define ∆−i ≡ {θj |j ∈ I∗, j ̸= i} and let M∗(∆−i, θi) be the solution to
∑

i∈I∗ Cbi(θi) = Cs(M) when

solving for M . Then, we obtain:

T ∗ =

∫
Θ−i

∫ M

M

tbip(θ,M)dG(M)dF̄−i(θ−i)

=

∫
Θ−i

∫ M∗(∆−i,θ
∗)

M

θ∗ · 1 dG(M)dF̄−i(θ−i) = θ∗ Pr

∑
j∈I∗

Cbj (θj) ≥ Cs(M)

 .

3. For buyers with θi > θ∗, we obtain:

Ti =

∫
Θ−i

∫ M

M

tbip(θ,M)dG(M)dF̄−i(θ−i)

=

∫
Θ−i

∫ M∗(∆−i,θi)

M

(
θi · 1−

∫ θi

θmin
i

1dx

)
dG(M)dF̄−i(θ−i)

=

∫
Θ−i

∫ M∗(∆−i,θi)

M

θmin
i dG(M)dF̄−i(θ−i) ≡ ϕi(θi),

where θmin
i ≥ θ∗ is the lowest value of θi, for which the good will be produced given the other buyers’

valuations and the seller’s costs, i.e. the lowest θi ≥ θ∗ which solves
∑

i∈I∗ Cbi(θi) ≥ Cs(M).

Due to assumption 1, ϕi(θi) is strictly increasing and invertable. Hence, θi = ϕ−1
i (Ti).

Define ψi(Ti) ≡ ϕ−1
i (Ti)−

1− F (ϕ−1(Ti))

f(ϕ−1(Ti))
(from Cbi(θi)), and ξs(M) ≡M +

G(M)

g(M)
(from Cs(M)).

Then the optimal production rule as a function of the buyers’ payments and the seller’s announced costs is:∑
i∈JT

ψi(Ti) ≥ ξs(M), where JT is the set of the buyers with the payments above T ∗.

The seller: the payment from the platform to the seller for producing the good is derived similarly to

Myerson & Satterthwaite (1983): from a second-price auction with a reserve price (for a detailed derivation,

see Appendix). We solve
∑

i∈I∗ Cbi(θi) = Cs(M) forM - these will be the highest production costs for which

the good will be produced according to the optimal production rule given the buyers’ valuations (inverse

functions of their payments Ti’s). ■
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Conclusion

This paper derived the platform-optimal direct mechanism and proposed an implementation for this direct

mechanism. The results combine features of Cornelli (1996) and Myerson & Satterthwaite (1983): in fact, for

the number of buyers being equal to one, one arrives at Myerson & Satterthwaite (1983) exactly. Comparing

the results with Cornelli (1996) requires a different setup. In this paper, it was the platform which designed

the contract specifying the production and allocation rules. In reality, even on Patreon, the sellers can

have more degree of freedom. It would be worthwhile to model the case where the seller decides upon

the production and allocation rules, whilst the platform chooses the transfers (similar to Loertscher &

Niedermayer (2023)), whilst still considering a club good.

One could enrich the model in other ways, i.e. by introducing dynamic valuation formation for the buyers

and/or the seller; by considering platform competition; or by incorporating platform-specific benefits which

might provide an even better match to the existing payment schemes.

A planned model extension is keeping the setup as it is and introducing multiple sellers, either to have

competing sellers, each of whom could produce the good alone; or to be in a situation where multiple sellers

are needed for the production of the good, and there are different constellations of the sellers which might

work. Symmetrically to the buyers, the sellers will most likely need to choose the payment below a certain

maximum price this time and not merely receive a payment which is equal to the highest costs they could

have announced which would still lead to the production of the good given the buyers’ valuations.
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Appendix

Myerson & Satterthwaite (1983)

This paper considers the case of one seller, one buyer and a broker, the good has already been produced.

Broker’s optimal direct mechanism is derived. In case of the seller’s and the buyer’s valuations being

uniformly distributed over [0, 1], it is implemented via the following selling procedure which resembles a

second-price auction:

1. The seller and the buyer are to submit sealed bids. The broker states that the good will be transferred

from the seller to the buyer if the buyer’s bid exceeds the seller’s bid by 1/2 (this could be interpreted

as the broker’s fee). If trade occurs, the broker charges the buyer the seller’s bid + 1/2; and offers to

pay the buyer’s bid - 1/2 to the seller.

2. The seller and the buyer submit their bids.

3. Payments are realized (if there is no trade, the payments are 0).

Derivation: the payments can be derived from a second-price auction with a reserve price.

The buyer: in the standard case (no broker) and with only one potential buyer, whose valuation is dis-

tributed with the c.d.f. F (·), the optimal reserve price r set by the seller is derived from:

max
r

(1− F (r)) · r + F (r) · vS

r∗ =
1− F (r∗)

f(r∗)
+ vS ,

where vS is the value of the good to the seller.

The value of the good to a broker, however, is the virtual valuation of the seller :

vS +
G(vS)

g(vS)
= 2vS

in case of uniform G(·). The broker charges the buyer the following reserve price (uniform F (·) over [0, 1]):

r∗ =
1− F (r∗)

f(r∗)
+ 2vS

r∗ = 1− r∗ + 2vS

r∗ = vS + 1/2.

The seller: in the standard case (no broker) and with only one potential seller, whose valuation is distributed

with the c.d.f. G(·), the optimal reserve price r set by the buyer is derived from:

max
r

G(r) · (vB − r) + (1−G(r)) · 0
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r∗ = vB − G(r∗)

g(r∗)
,

where vB is the value of the good to the buyer.

The value of the good to a broker, however, is the virtual valuation of the buyer :

vB − 1− F (vB)

f(vB)
= 2vB − 1

in case of uniform F (·) over [0, 1]. The broker charges the seller the following reserve price (uniform G(·)):

r∗ = (2vB − 1)− G(r∗)

g(r∗)

r∗ = (2vB − 1)− r∗

r∗ = vB − 1/2

Cornelli (1996)

This paper considers the case of one seller and N buyers interacting directly, without a broker,

the good is yet to be produced. Seller’s optimal direct mechanism is derived. In a two-buyer case with

each buyer’s valuation uniformly distributed over [0, 1] and the seller’s costs of M (public information), it is

implemented by the following pay-what-you-want scheme, with a minimum price:

1. The seller announces a minimum price T ∗ = 1/4−M/4 and asks the buyers to pay an amount above

the minimum price.

2. The buyers who pay at least T ∗ will receive the good if it is produced. The seller commits to producing

the good if the composition of the buyers’ payments Ti’s exceeds the costs, namely:

2
∑
i∈JT

[2 (Ti − 1/8 +M/4)]
1/2 − s ≥M,

where JT is the set of buyers with payments above T ∗ and s is the number of buyers with payments

above T ∗.

3. The buyers choose how much to pay.

4. If the good is produced, the buyers receive the good. If the good is not produced, the buyers receive

neither the good nor their payments back.
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Sequential Screening in the Presence of Fixed Costs∗

Ekaterina Gorbunova
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Abstract

This paper characterizes optimal production and selling procedures when fixed costs are

present and buyers’ valuations for the good are learned over time. We study situations in

which many potential buyers contribute to the production of a non-rival but excludable

good (e.g. private members club facilities, art exhibitions). We formally decouple

the production and allocation decisions of a monopolistic seller. We stress the role of

dynamic information in such settings: oftentimes, the buyers’ true valuations for the

good are revealed after the contracts are signed and after the seller has to produce

the good. Additionally, we address the case where the seller can postpone production

until the buyers have learned their true valuations. We derive profit maximizing sales

mechanisms for both cases. These could be implemented as buy-option and “contribute-

option” contracts.

∗Based on joint work with Pascal Pillath (HU Berlin).
We thank Microeconomic Colloquium participants at the HU Berlin for helpful comments. We are grateful for detailed
suggestions from Andreas Asseyer, Lorenzo Bozzoli, Vincent Meisner and Roland Strausz.
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Introduction

Fixed costs of production often tend to be presented as neglectable in the literature. In this

paper we take a closer look at the situations where a seller has to incur fixed costs and multiple

potential buyers can contribute to the production of a good by agreeing to certain pricing schemes

(memberships, subscriptions, etc.).

In particular, we consider goods which are characterised by the following aspects: first, the cost of

production is not tied to individual consumption, i.e. once produced, such goods can be provided

to buyers at no marginal cost. Second, these goods are non-rival, i.e. their supply is unaffected by

consumption. Third, exclusion from consumption is possible (for example, through entry tickets).

This is the case in a variety of contexts: gym members agreeing to membership fees as to make sure

that the gym continues to operate and possibly offers new courses / equipment; theater enthusiasts

buying membership cards to support potential theater plays over the course of the season; or

supporters subscribing to the channels of their favourite artists and, thus, contributing to the

production of their future content.

Oftentimes, however, the seller faces the decision on whether or not to incur production costs and

what pricing scheme to offer long before the buyers have full information about their demand for

the good. Think of a gym owner deciding on prolonging the opening hours: schedule for the staff

has to be planned before customers will know for sure if the new training hours work for them. A

museum has to plan a temporary exhibition while visitors might not yet know for sure if they will

be interested or able to visit.

In other situations production and the buyers’ valuation formation might be even more intertwined.

Consider again a gym owner deciding on buying new equipment for the gym. Only by seeing a

demonstration of the new equipment might customers learn how much they will value it. Imagine

buyers who want to take part in a crowd-funding campaign for which a prototype has to be produced

first for the buyers to understand how much they might value the new product.

Producing and selling such goods is a risky endeavour, potentially leading to misinvestments. De-

ciding on the optimal procedure is a difficult task. Using a mechanism design approach we find

the optimal direct mechanism for a monopolist who is selling a non-rival but excludable good to

multiple buyers at a point in time when the buyers only observe an imprecise signal about their true

valuations for the good. We thereby contribute to the literature on optimal sales mechanisms in

the presence of fixed costs as in Cornelli (1996) by incorporating sequential screening as in Courty

& Li (2000).

We find that when it comes to the allocation decision, i.e. who gets access to the good, the standard

result holds: optimally, buyers with positive virtual valuations1 will get access to the good, since

1Virtual valuations expressions are of dynamic nature, see Courty & Li (2000).
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marginal costs are zero. As the production decision has to take place before the allocation decision,

it will be optimal to produce the good if the sum of expected positive virtual valuations surpasses

fixed costs of production.

Furthermore, we show that the optimal production and selling procedure can be implemented by

the so-called buy-option contracts. In fact, the type of contracts we characterise is often found in

practice: at private members clubs (e.g. the Soho House) and museums (e.g. the Metropolitan

Museum of Arts). They offer different membership tiers which require varying membership fees

and are associated with different sets of perks and prices for their facilities and events. We show

that membership fees serve a dual purpose in such contracts: the higher the membership fee, the

higher is the possibility that existing facilities are maintained and future events take place; but also

the lower are the entrance fees.

Additionally, we offer a potential explanation for why in some cases such membership fees are

strictly positive and without paying them it is impossible to get access to facilities (e.g. the Soho

House); and in other cases membership fees can be zero and access to the facilities can be granted

if mere entrance fees are paid (e.g. the Metropolitan Museum of Arts). We find that if it is unlikely

that fixed costs are covered through the collected membership fees (e.g. fixed costs are particularly

high or the number of buyers is low), then the minimum membership fee is likely to be zero.

Further contributions of this paper are twofold. Firstly, we analyse the importance of observability

of production. In case production is observable, the buyers might gain additional information

which intensifies incentive issues and complicates revenue extraction. We show that this is indeed

not the case and that the optimal direct mechanism coincides with the one where production is not

observable.

Secondly, we extend our main model by allowing the seller to wait until the buyers have learned their

true valuations before making the production decision. We find that the allocation decision remains

the same but the production decision takes into account actual and not expected positive virtual

valuations. Optimal transfers are also altered by flexible production and a possible implementation

which we offer can be described as “contribute-option” contracts. After collecting initial fees from

the buyers (e.g. membership fees), the seller now offers an option to contribute to the production

of the good, once the buyers learn their true valuations. In particular, it is optimal for the seller

to ask the buyers to pay as much as they want when the production decision takes place.

The paper proceeds as follows. Section 1 is dedicated to literature on selling procedures for non-rival

but excludable goods and contribution and subscription games in particular. Section 2 presents the

setup. Section 3 defines the dynamic direct mechanism for our setting. The optimal mechanism

is characterized in Section 4. Section 5 studies a particular contribution scheme implementing

the optimal direct mechanism. Section 6 extends the main model by allowing for a more flexible

production, where the seller can postpone production till the buyers’ true valuations are realized.

The last section concludes. The appendix contains all the proofs.
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1 Related Literature

Non-rival but excludable goods have been well-studied in the literature, starting with the efficiency

analysis in case of the monopolist being informed about the buyers’ valuations, as in Brennan &

Walsh (1985); and moving to the case of private information, with the most prominent contribution

by Cornelli (1996). She consideres multiple buyers with private valuations who need to contribute

to production of a good first before they can consume. In particular, Cornelli explains why we

might observe price dispersion in practice: buyers are willing to contribute different amounts to

consume the same good in the end, out of fear of the good not being produced otherwise.

Schmitz (1997) also investigates profit-maximizing provision of a non-rival but excludable good

to multiple buyers whose valuations for the good are static private information. In addition to

production costs, he considers distribution costs. Ellman & Hurkens (2019) illustrate the crucial

role of pre-production sales and the threat of not producing the good as a rent-extracting instrument

of the seller by considering discrete buyers’ types.

In contrast to other contributions, this paper enriches Cornelli’s setup by introducing dynamic

private information: we consider buyers whose valuations are revealed to them over time. There

are different approaches to this dynamic nature of information in the literature such as Battaglini

(2005) which uses Markov, Pavan et al. (2014) or Eső & Szentes (2007). We model dynamic

information by following Courty & Li (2000), who derive optimal contracts under dynamic private

information and argue why offering a contract before true valuations are realized is optimal. We

adapt their definition of dynamic direct mechanism to our setting with fixed costs.

We are also interested in possible implementations of the optimal direct mechanism that we find.

There are many papers on different selling procedures and pricing structures. Commonly found

schemes are the so-called contribution and subscription games, see Admati & Perry (1991). They

define contribution games (e.g. public radio, TV fundraising campaigns) as such in which players’

contributions are not refunded if the project is not completed; and subscription games as such

where contributions are refunded. Many authors make use of this terminology and analyse optimal

contracts for pre-specified contribution and subscription schemes.

Vega-Redondo (1995) studies reputation formation / bargaining in multistage binary contribu-

tion games, where players with continuous valuations contribute either a pre-specified irreversible

amount or nothing at each stage. Menezes et al. (2001) analyzes efficient private provision of dis-

crete public goods in form of contribution and subscription games with continuous contributions.

Barbieri & Malueg (2010) derive profit-maximizing selling mechanisms for public goods in subscrip-

tion games with two buyers, where the seller states a contribution threshold which is different than

the cost of production. In contrast to all these papers, ours does not impose any particular payment

structure (binary or continuous contributions) but rather derives profit-maximizing contribution

schemes.
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2 Setup

Consider a seller (she), who can produce a non-rival but excludable good. Her production decision

is denoted by m ∈ {0, 1}2. She can sell the good to a set of buyers indexed by i ∈ I = {1, ..., N} who

will get access to the good with probabilities qi ∈ [0, 1]. The transaction also involves a payment

ti from each buyer to the seller. Hence, the economic allocation is defined by: {m, (qi, ti)i∈I} ∈
{0, 1} × [0, 1]N × RN .

Buyers: Prior to meeting the seller, symmetric buyers do not know their exact valuations for the

good. They do, however, observe a private signal τi, their so called “ex-ante type”. This signal is

distributed with the cumulative distribution function G(τi) and density g(τi) > 0 on the support

[τ , τ ]. It is informative about their true valuation for the good θi, their so called “ex-post type”,

in the following sense: conditional on τi, the ex-post type θi is distributed with the cumulative

distribution function F (θi|τi) and density f(θi|τi) > 0 on the support [θ, θ]. Hence, the utility of

buyer i is:

θi · qi − ti

Note that the utility does not depend directly on whether the good was produced. The utility of

the buyers is solely determined by whether they get access to the good, although production and

allocation are connected in a sense that the good can only be accessed in case it was produced.

We assume first-order stochastic dominance (FOSD) for F (·|τi), τi ∈ [τ , τ ]: ∂F (θi|τi)/∂τi < 0 ∀
θi ∈ (θ, θ). This captures the idea that a higher ex-ante type indicates a higher ex-post type. We

denote τ = (τ1, ..., τN ) and T = [τ , τ ]N . Analogously, θ = (θ1, ..., θN ) and Θ = [θ, θ]N . For the

products of distributions we write Ḡ(τ) =
∏

iG(τi) for the ex-ante types and F̄ (θ|τ) =
∏

i F (θi|τi)
for the ex-post types.

Seller: The seller incurs fixed costs C in case she decides to produce the good regardless of how

many buyers will access the good. There are no marginal costs of providing the good to a buyer.

Thus, her payoff is: ∑
i

ti − C ·m

Moreover, there is no constraint on how many people can consume the good. This is in contrast to

a unit private good setting which would be constrained by the fact that the good can’t be allocated

to more than one person, i.e.
∑

i qi ≤ 1.

An important characteristic of the good is whether or not its production is observable to the buyers.

We start by assuming that production is not observable, e.g. it is not easy for museum attendees

to know whether preparations for a new exhibition are taking place. In the analysis we later argue

that whether production is observable or not will not change the optimal solution for the seller.

2Deterministic for simplicity, but not restrictive.
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Timing: Before stating the timing of the entire game, it is important to discuss when production

decision takes place. We first assume that the seller has to decide whether or not to produce the

good before the buyers learn their true valuations for the good. The seller cannot produce after true

valuations are learned. This can be thought of in different but analytically identical ways. It could

be the case that production is needed for the true valuations to be learned, e.g. via prototypes or

trailers; or buyers could learn their valuations regardless but there is no way for the good to be

produced anymore, e.g. organizing art exhibitions. In section 6 we then assume that the seller can

wait until after the buyers learn their ex-post types to decide whether to produce or not.3

Hence, the timing of the game is as follows:

1. The buyers privately learn their own ex-ante types τi

2. The seller offers each buyer i a contract: (m, (qi, ti))

3. Each buyer i decides whether to accept or reject

4. The seller produces the good (and incurs C) or not according to the terms of the contract

5. The buyers learn their own ex-post types θi and do not observe whether the good was produced

or not

6. Allocation payoffs are realized

We will refer to the stage between the buyers learning their τi and θi as interim, and the stage after

the buyers learn their θi as ex-post.

Goal: The goal of this paper is to find a contract which maximizes expected profit for the seller.

We begin by narrowing the class of games we need to look at in the next section.

3In fact, if the timing of the production decision was endogenous, this case is desirable for the seller as it leads
to higher expected profits: it is always worthwhile to wait for more information about the buyers’ valuations to be
revealed before producing the good.
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3 Dynamic Direct Mechanism

In this section we formulate the family of mechanisms that we can focus on in our search for the

optimal contract. We proceed in the standard way: first, we define the dynamic direct mechanism

in our setting; second, we define incentive compatibility and individual rationality to make use of

the Revelation Principle.

As the production decision has to be taken at the interim stage, the seller can only make the

decision at a point in time when the buyers only know their ex ante types τi. She cannot wait until

buyers have learned their ex-post types. This is captured by m mapping only the possible ex-ante

types space T onto a decision, i.e. 0 or 1.

Mechanism 1 (Dynamic Direct Mechanism). The dynamic direct mechanism consists of functions

m, qi and ti for all i, where

m :T →{0, 1}

qi :T×Θ →[0, 1]

ti :T×Θ →R

m(τ): discrete decision of producing the good

qi(τ, θ): probability that buyer i gets access to the good

ti(τ, θ): monetary transfer of buyer i to the seller

Since the good can only be sold if it was produced we have the following feasibility constraint.

Definition 1 (Feasibility). A mechanism is “feasible” if

qi(τ, θ) ≤ m(τ) ∀τ ∈ T, θ ∈ Θ ∀i (FC)

Following the literature, we adjust the Revelation Principle by Myerson (1981) to our dynamic

setting with multiple buyers which allows us to focus on dynamic direct mechanisms which induce

truthful reporting by the buyers for both of their types when searching for the expected profit

maximizing contract.4 In order to define incentive compatibility (IC) and individual rationality

(IR) we introduce some additional notations regarding the utility and expectations of the buyers.

The utility of the buyers is solely determined by whether they receive access to the good or not.

They do not derive any direct utility from the good being produced in itself.

4The full formulation of the Revelation Principle in our setting can be found in the appendix.
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Therefore, we define their utility as follows:

θi · qi(τ, θ)− ti(τ, θ)

Note that this utility depends on all reported τ and θ. At a point when a buyer has to report

his ex-ante type, he does not know the types of other buyers. Assuming that other buyers report

truthfully, he will form expectations about his allocation probability and transfer, denoted by:

Qi(τi, θi) =

∫
T−i

∫
Θ−i

qi(τi, θi, τ−i, θ−i)dF̄−i(θ−i|τ−i)dḠ−i(τ−i)

Ti(τi, θi) =

∫
T−i

∫
Θ−i

ti(τi, θi, τ−i, θ−i)dF̄−i(θ−i|τ−i)dḠ−i(τ−i)

where Ḡ−i(τ−i) =
∏

j∈I\{i}G(τj) and F̄−i(θ−i|τ−i) =
∏

j∈I\{i} F (θj |τj).

Using these expectations we define the following on-path expected utilities at the interim stage,

i.e. between the first and the second reporting stages: ui(τi, θi) = θi ·Qi(τi, θi)− Ti(τi, θi); and at

the ex-ante stage, i.e. before the first reporting stage: Ui(τi) =
∫ θ
θ ui(τi, θ̂)dF (θ̂|τi). Note that our

definition at the ex-ante stage implicitly assumes truth-telling of the ex-post type. This formulation

will be needed for our analysis.

We now turn to the formulation of incentive compatibility (IC) and individual rationality (IR).

Incentive Compatibility: The Revelation Principle allows us to focus on mechanisms where

truth-telling for each agent about both types is optimal. However, it does not specify anything

about the reporting strategies off the equilibrium path. This is reflected by our definition of

incentive compatibility, which is divided into two parts:

1. At the second reporting stage, reporting the true θi must be optimal when the true τi has

been reported in stage one;

2. At the first reporting stage, reporting the true τi must be optimal for any possible combination

of alternative reports about τi and θi (possibly combining lies).
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Definition 2. A direct mechanism is “incentive-compatible” if:

With respect to ex-post type θi:

ui(τi, θi) ≥ θi ·Qi(τi, θ
′
i)− Ti(τi, θ

′
i) ∀θi, θ′i (θ-IC)

With respect to ex-ante type τi:

Ui(τi) ≥
∫ θ

θ
θ̂ ·Qi(τ

′
i , θ

r
i (θ̂))− Ti(τ

′
i , θ

r
i (θ̂))dF (θ̂|τi) (τ -IC)

∀τi, τ ′i , ∀θri : [θ, θ] → [θ, θ]

If a direct mechanism satisfies this definition of incentive compatibility, truth-telling is indeed

optimal, even though in general truth-telling might not be optimal off the equilibrium path, i.e.

it might be optimal to lie about θi in case τi was already misreported. In our model truth-telling

off the equilibrium path still holds true due to the agent’s ex-post type being equal to their payoff

type. This insight will be useful for our technical analysis.

Observability of production: An important aspect of the model is whether the production

decision taken by the seller is observable to the buyers at the interim stage, namely before the

second reporting stage. Observability or its absence could potentially lead to different optimal

mechanisms: assuming a buyer can observe whether the good was produced or not before they

have to report their ex-post types, they would update their belief about the other buyers’ ex-ante

types. This would need to be reflected in the incentive constraints. However, we prove that this

has no effect on the optimal solution. We prove this in section 4.3 by solving the problem assuming

unobservability and then showing that the solution also solves the problem assuming observability.

Individual Rationality: Since the contract is offered at a point in time when the buyers do

not yet know their true valuations, we require their expected utility of participating in the game

based only on their ex-ante types to be non-negative, motivating the following notion of individual

rationality.

Definition 3. A direct mechanism is “individual rational” if

Ui(τi) ≥ 0 ∀τi ∈ [τ , τ ] (IR)

Having defined the game we now turn to the profit-maximization problem of the seller in the next

section.
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4 Optimal Mechanism

We begin by stating the seller’s maximization problem. We then solve the problem and finish this

section by turning to the problem of observability.

4.1 The Seller’s Optimization Problem

The seller maximizes her expected revenues (expected payments collected from the buyers) net of

expected costs (expected costs of producing the good) by choosing {m, (qi, ti)i∈I}. She builds expec-
tations about the buyers’ ex-ante types τi and ex-post types θi, which are related through F (θi|τi).
The seller must set {m, (qi, ti)i∈I} such that incentive-compatibility and individual rationality (IR)

constraints are satisfied. As discussed in section 3, due to dynamic information we introduce two

types of incentive-compatibility constraints: (τ -IC) and (θ-IC). Moreover, the seller has to satisfy

feasibility constraint (FC), as the good can only be offered access to if it was produced.

Thus, the optimization problem is as follows:

max
{m,(qi,ti)i∈I}

∑
i

∫
T

∫
Θ
[ti(τi, θi)− C ·m(τ)] dF̄ (θ|τ) dḠ(τ)

s.t. (τ -IC) & (θ-IC) & (IR) & (FC)

(OP)

By following Courty & Li (2000) and adjusting the expressions for our setting with fixed costs and

multiple buyers we can arrive at a reformulated problem. In particular, necessary and sufficient

conditions for (θ-IC) are standard and are presented in lemma 1 (the proof is omitted).

Lemma 1. (θ-IC) are satisfied if and only if:

1. ∂ui(τi, θi)/∂θi = Qi(τi, θi),

2. Qi is increasing in θi for every τi.

From lemma 1 and the definition of ui(τi, θi), for every τi and every θi we have:

Ti(τi, θi) = Ti(τi, θ) + (θiQi(τi, θi)− θQi(τi, θ))−
∫ θi

θ
Qi(τi, θ̂)dθ̂ (1)

Using analogous properties w.r.t. τi, we cannot find necessary and sufficient conditions for (τ -IC).

This happens due to the the multi-dimentionality of our problem: a buyer’s utility at the first

reporting stage includes expectation over his utility at the second reporting stage. Nevertheless,

we are able to obtain the following:
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Lemma 2. If (θ-IC) and (τ -IC) are satisfied, then we have:

∂Ui(τi)/∂τi = −
∫ θ

θ
Qi(τi, θ̂)

∂F (θ̂|τi)
∂τi

dθ̂.

From lemma 2 and the definition of Ui(τi), for every τi we have:

∫ θ

θ
Ti(τi, θ̂)f(θ̂|τi)dθ̂ =

∫ θ

θ
θ̂Qi(τi, θ̂)f(θ̂|τi)dθ̂ +

∫ θ

θ
(Ti(τ , θ̂)− θ̂Qi(τ , θ̂))f(θ̂|τ)dθ̂ (2)

+

∫ τi

τ

∫ θ̂

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

In the case of FOSD, however, Qi increasing in τi for every θi is sufficient for (τ -IC).

Lemma 3. If Qi is increasing in θi and τi, expected transfers Ti(τi, θi) can be found such that

(θ-IC) and (τ -IC) are satisfied.

Due to our assumption of FOSD, Ui(τi) is increasing in τi by lemma (2), and so (IR) are satisfied

if and only if Ui(τ) ≥ 0.

Using standard techniques we can now restate the seller’s expected profits as a function of (m, qi)i∈I

only:

∫
T

[∫
Θ

∑
i

[
θi +

1−G(τi)

g(τi)

∂F (θi|τi)/∂τi
f(θi|τi)

]
qi(τ, θ) dF̄ (θ|τ)− C ·m(τ)−

∑
i∈I

Ui(τ)

]
dḠ(τ)

We then optimally set Ui(τ) = 0, as the reformulated objective is decreasing in these terms and

(IR) will bind.

Proposition 1. The objective of the optimization problem (OP) can be reformulated as

∫
T

[∫
Θ

∑
i

Ψ(τi, θi)qi(τ, θ) dF̄ (θ|τ)− C ·m(τ)

]
dḠ(τ)

where Ψ(τi, θi) =
[
θi +

1−G(τi)
g(τi)

∂F (θi|τi)/∂τi
f(θi|τi)

]
is the virtual valuation.

We can find expected transfers such that DDM is incentive-compatible:

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx
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where

Ti0(τi) = Ti(τ , θ)− θQi(τ , θ) +

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂

and Ti(τ , θ) is pinned down by Ui(τ) = 0.

Note how the virtual valuation’s expression reflects “informativeness measure” (the last term in

the second summand) as introduced by Courty & Li (2000), since the seller has to not only extract

information about the buyers’ ex-ante types but also ex-post types.

4.2 Optimal Mechanism

To derive the solution of the maximization problem (OP), it is instructive to understand:

1. Who should get the good in case it is produced: by pointwise maximization all buyers with

a positive virtual valuation (Ψ(τi, θi) ≥ 0) should get the good in order to maximize the

expected profit. Let I∗ be the set of all buyers with a positive virtual valuation: I∗ ≡ {i ∈
I : Ψ(θi, τi) ≥ 0}.

2. When should the good be produced: produce, i.e. m = 1, iff

∫
Θ

∑
j∈I∗

Ψ(τj , θj)dF̄ (θ|τ) ≥ C (⋆)

As stated earlier, Ti makes the allocation rule qi incentive-compatible if Qi is increasing in θi and

τi. Given the optimal allocation rule we derive, we ensure that Qi is indeed increasing in both

arguments by introducing the following assumption.

Assumption 1. Ψ(τi, θi) is increasing in τi and θi.

The solution to the (OP) is as follows:

Proposition 2. The mechanism {m, (qi, ti)i∈I} is optimal if and only if:

m(τ) =

1 if
∫
Θ

∑
j∈I∗Ψ(τj , θj)dF̄ (θ|τ) ≥ C

0 otherwise

qi(τ, θ) =

1 if Ψ(τi, θi) ≥ 0 and
∫
Θ

∑
j∈I∗ Ψ(τj , θj)dF̄ (θ|τ) ≥ C

0 otherwise
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where I∗ ≡ {i ∈ I : Ψ(τi, θi) ≥ 0}, and

Ti(τi, θi) =


0 if τi < τ̃min

i

Ti0(τi) if τ̃min
i ≤ τi and θi < v(τi)

Ti0(τi) + v(τi)H(τi) if τ̃min
i ≤ τi and θi ≥ v(τi)

where v(τi) = {θi|Ψ(θi, τi) = 0} and H(τi), defined in the proof, is the probability that given τi the

ex-ante types of other buyers are great enough for (⋆) to hold (i.e. for the good to be produced).

Let τ̃i(τ−i) be defined for a given τ−i, as the value of τi such that the expression (⋆) holds with

equality, so that τ̃min
i ≡ max{τ , τ̃i(τ ...τ)} is the minimum τi for which expression (⋆) holds with

equality.

The optimal allocation rule q states that only the buyers with a positive virtual valuation should

receive acces to the good. Since this is optimal once the good is produced, the decision of producing

the good (before the buyers’ true valuations are realized) depends on whether the sum of expected

positive virtual valuations surpasses production costs or not.

Those potential buyers, whose ex-ante types are so low, i.e. τi < τ̃min
i , that no matter the compo-

sition of other buyers’ ex-ante types the good would not be produced (the sum of expected positive

virtual valuations of all buyers would not cover production costs), pay nothing.

If a potential buyer’s ex-ante type is high enough, i.e. τi ≥ τ̃min
i , so that there is a chance that given

other buyers’ ex-ante types the good could be produced, he pays Ti0(τi), when his ex-post type is

too low, i.e. θi < v(τi), with v(τi) being his ex-post type leading to a positive virtual valuation;

or Ti0(τi) + v(τi)H(τi), when his ex-post type is high enough, i.e. θi ≥ v(τi), with H(τi) being the

probability of the good being produced. Note that Ti0(τ̃i
min) is 0 if τ̃i(τ ...τ) ≥ τ (see definition of

Ti0 in the proof).

Since it will be useful for the implementation in section 5, we further discuss the precise value of

Ti0(τi), which depends on the buyer i’s expected probability of receiving the good (see proposition

1).

35



Case A Case B
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τ
τ1

τ = τ̃min
B

T10(τ1)

τ

T10(τ)

Figure 1: Comparison sketch of Ti0(τi) for a two-buyer case
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We consider a two-buyer case to illustrate possible Ti0(τi) values (see figure 1):

• Case A: Ti0(τ̃i
min) is 0.

– This happens when there are values of τi for which the good will never be produced (i.e.

the other buyer’s τ−i might even be τ and this still will not suffice for the good to be

produced according to the optimal m).

– The threshold type τ̃A
min will have Ti0(τi) = 0.

• Case B: Ti0(τ̃i
min) is strictly positive.

– This happens when for all values of τi the good will be produced with a positive proba-

bility (i.e. the other buyer’s τ−i need not be τ).

– Even the lowest type τ̃B
min = τ will have Ti0(τi) > 0

There are multiple factors determining which case will be present. One of them is the cost of

production C. The higher the cost, the lower the probability that for a given τi the good will be

produced, making case A more likely. The lower the cost, the higher is the probability that the

good will be produced, making case B more likely.

So far, we have derived expected payments Ti’s although the optimal DDM requires the actual

payments ti’s. In fact, many different actual payments could be found (depending on the desired

structure: e.g. contribution or subscription schemes, see Admati & Perry (1991)). As long as the

expected payments’ expressions are satisfied they all solve our optimizaion problem. We talk about

this in more detail in section 5 on indirect mechanisms.

Next we show that even if the production decision is observable the same optimal mechanism as

defined above applies.

4.3 Observability

As mentioned above the analytical difference between observable and unobservable production lies

in the potential updating of beliefs of the buyers. In case the buyers can observe the production

decision and know the production rule m, they will potentially change their belief over the other

buyers’ ex-ante type at the second reporting stage. As we are looking at Bayesian Nash equilibrium

changing beliefs of a buyer over the other buyers’ true type might lead to a different optimal solution

for the seller. To illustrate the problem, we give a short example in binary types.

Example 1. Assume binary ex-ante type {l, h}. Let the production decision be:

m(τ1, τ2) =

1 if (τ1, τ2) = (h, h) or (τ1, τ2) = (l, l)

0 otherwise
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If production is:

• unobservable: buyer 1’s belief stays equal to his prior after production as he cannot observe

the production decision m.

• observable: buyer 1 knows:

– if the good is produced: τ1 = τ2

– if the good is not produced: τ1 ̸= τ2

Since the expectation of the true type is contingent on τ buyer 1 now has a different expectation

over buyer 2’s true valuation.

Impact: Second stage beliefs change, second stage IC changes and, therefore, expectations in first

period change.

The incentive constraints have to account for this, leading to different constraints of the opti-

mization problem. We denote the original problem without observability Punobs and the problem

with observability Pobs. Proposition 3 states that we do not have to worry about this aspect of

production as the optimal solution is the same in both cases.

Proposition 3. Solution to Punobs is optimal for Pobs.

We give a short sketch of the two-step proof (the full proof can be found in the Appendix).

First, we show that the problem with observability is more restrictive for the seller as the buyers

have weakly more information at the second reporting stage. And so every mechanism that that

satisfies the constraints of Pobs also satisfies Punobs.

Second, we show that the mechanism from proposition 2, optimal under Punobs, also satisfies the

constraints of Pobs. This is intuitive by looking at the mechanism’s second reporting stage where

allocation and transfer rules depend only the buyer’s own type and not on the types of others.

Additional information about the buyers’ ex-ante type does not benefit a buyer at this stage.

He could gain complete information about the other buyers’ type at the second reporting stage

and it would have no effect on his behaviour. Hence, the mechanism from proposition 2 can be

implemented in the Pobs and will be optimal.
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5 Indirect Mechanisms / Implementation

The optimal mechanism found above only defined expected payments / ex-ante transfer rule. Given

the expected payments Ti’s, it is possible to come up with many distinctive actual payments schemes

ti’s. As long as the conditions for the optimal mechanism from above are satisfied / the ex-ante

transfer rule is satisfied, all transfer rules will yield the same expected profit to the seller.

We focus on the case where consumers can acquire buy-option contracts without reimbursement

in case the good is not produced. The seller offers a menu of price pairs, consisting of an upfront

payment and an exercise price. If enough money is collected through the upfront payments, the

good will be produced. In case it is produced, everyone who payed an upfront payment gets the

option to buy the good at the corresponding prespecified exercise price. There is no reimbursement

of the upfront payment in case the good is not produced (similar to contribution schemes, see

Admati & Perry (1991)).

Focusing on contribution schemes (no reimbursement) has two advantages. First, understanding

how the expected payments can be translated into actual payments is quite straightforward in this

case. Second, it is a procedure that resembles payment schemes observed in practice, as we will

illustrate with two examples below. Proposition 4 formally defines such a contribution scheme.As

it can be noticed, it resembles Cornelli (1996) result but is adjusted to the dynamic nature of our

setup.

Proposition 4. The following selling procedure is optimal assuming that G(τi) and F (θi|τi) are

such that we obtain strictly increasing Ti.
5 The seller submits a menu of possible price pairs

{(Ti, pi)} with a minimum price T ∗ for Ti’s. The buyers who choose not to pay anything never

obtain the good. Those who choose a price pair from the menu pay Ti while only knowing their τi.

In case the good is not produced, i.e.
∑

ξi(Ti) < C (where ξi(Ti) is defined in the proof) they will

not get the good and will not be reimbursed. In case the good is produced they will get the option

to buy the good for the prespecified price pi. If they choose not to buy, they will not get the upfront

payment reimbursed.

The price menu in this proposition describes combinations of two payments which we will refer to

as the upfront payments (T ) and the exercise prices (p). For the upfront payment, there exists

a non-negative minimum price T ∗. This means that some ex-ante types might be excluded from

consumption even though there is a positive probability that they end up with a high true valuation.

The buyers also understand that choosing their upfront payments impacts the probability of whether

the good will be produced. In fact, this probability not only depends on the sum of the paid upfront

payments but also on their composition. By making the ξ function concave resp. convex, the seller

can put more importance on lower resp. higher upfront payments in order to make lower resp. higher

5This assumption is satisfied for many distributions (see proof of proposition 4 for examples).
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ex-ante types feel more pivotal in the production decision. This could be done by announcing that

contributions below resp. above a certain threshold will be matched by a third party. The optimal

ξ will be determined by the distributions G and F .

If a buyer chooses to pay the upfront payment, he will get the option of buying the good in case it

is produced for the price pi. This exercise price is determined as the threshold valuation that will

lead to a non-negative virtual valuation given the ex-ante type τi. Note that a higher τi leads to a

lower threshold type θi (due to assumption 1) and consequently lowers the exercise price pi.

Understanding this makes it clear that the upfront payment in our setting reflects two dynamics:

the higher the chosen Ti, the higher is the probability of production; and the lower is the exercise

price for buyer i. These two roles of the upfront payment are not separable.

Before turning to two examples, we note the following about the minimum price T ∗. As analysed in

section 4.2, the probability that the expected sum of virtual valuations covers the cost is crucial for

the determination of Ti0(τ̃i
min), which is exactly T ∗ (see the proof of propostion 4). This probability

is, for instance, decreasing in C and increasing in N . Therefore, the harder it is to cover the cost

(high C, low N), the lower is the minimum price T ∗ (the minimum price can even be equal 0). We

now discuss the two examples: private members clubs and museum memberships.

Example 1: Private members clubs

Private members clubs offer exclusive access to restaurants, hotels and events to their members. In

particular, if the membership fee is not paid, there is no opportunity to access facilities later on,

similar to the minimum upfront payment being strictly positive. Provision of such club goods in-

herently comes with fixed costs: building and maintaining new facilities, hiring the staff in advance,

etc.

There are many different clubs with different monetization schemes. We consider the Soho House

which is a private members club with 30 hotels worldwide. As of writing this paper the Soho house

offers three types of membership. Each tier offers benefits as the preceding one plus additional

benefits. The tiers are the following: “Soho Friends”, “Cities Without Houses”, and “Soho House”.

If you want to enter one of the Soho House hotels you need to be in tiers “Cities Without Houses”

or “Soho House”. If you want to enter as a “Soho Friend”, you need to book a bedroom for the

night. Non-members cannot enter at all6.

Meaning, the membership fee in this context could be interpreted using the two dynamics explained

above: first, those who pay higher membership fees (higher upfront payments) might value club

facilities more and are interested in the maintenance and possible expansion to new locations (want

to increase the probability of the good being produced); and second, they might want to lower the

prices for additional perks (want to decrease their exercise prices).

6See: https://www.sohohouse.com/terms-and-policies/soho-friends-terms-and-conditions
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Example 2: Museum memberships

We hereby consider membership possibilities at the Metropolitan Museum of Art (the Met). Similar

to the Soho House, the Met offers different membership tracks: “Membership”, “Patron Circles”,

“The Apollo Circle” and “The Met Family”, all associated with different sets of benefits, such as

free admissions to the upcoming exhibitions and certain events7. Organizing exhibitions comes at

high fixed costs and so supporters would like to make sure that the offers always take place by

contributing more via their membership fees. On top of this, higher membership fees come with

lower exercise prices for when exhibitions actually take place (sometimes in form of free admissions).

Hence, high upfront payment serves a dual purpose in this example as well.

The only difference to the Soho House scheme is that in case of the Met the minimum upfront

payment (membership fee) could be zero: one does not need to be a member or an official supporter

at the Met to attend their exhibitions, as these are open to the public. In that case, however, one

has to pay high entrance fees. This could be explained by how the minimum price is determined

as mentioned earlier: if it is harder to cover the costs of production, there might not be a positive

minimum upfront payment.

7See: https://www.metmuseum.org/join-and-give/membership
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6 Extension: Ex post production

In this section we will examine the case where the production decision can be taken after the buyers

have learned their true valuations, at the ex-post stage. For this we will need to introduce a new

timing, adapt some definitions and solve the new optimization problem. We will interpret and find

an implementation for the new optimal direct mechanism and compare it to the one found above

in the interim timing.

The only difference to the timing in the main model is that the production decision now takes

place after the buyers have learned their ex-post types. This timing can again be thought of as

exogenously given but as mentioned above it is also the optimal one if the seller can choose the

timing herself. The following is timing of the game with an ex-post production:

1. The buyers privately learn their own ex-ante types τi

2. The seller offers a contract: {m, (qi, ti)i∈I}

3. Each buyer i decides whether to accept or reject

4. The buyers learn their ex-post types θi

5. The seller produces the good (and incurs C) or not according to the terms of the contract

6. Allocation payoffs are realized

As the production decision now depends on both reporting stages we define a direct mechanism for

this timing as follows.

Mechanism 2 (Ex post production). The dynamic direct mechanism in the ex-post production

timing consists of functions m, qi and ti for all i, where

m :T×Θ →{0, 1}

qi :T×Θ →[0, 1]

ti :T×Θ →R

m(τ, θ): discrete decision of producing the good

qi(τ, θ): probability that buyer i gets the good

ti(τ, θ): monetary transfer of buyer i
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Note that the m function now also takes Θ as an input to determine the production decision.

Reflecting this idea we define the feasibility constraint for this timing as follows.

Definition 4 (Ex post feasibility). A mechanism in the ex-post production timing is “feasible” if

qi(τ, θ) ≤ m(τ, θ) ∀τ ∈ T, θ ∈ Θ (FCexp)

Observability is not relevant in this context since production happens after the last reporting stage

of the agents. Whether or not the production is observable cannot have any impact on the buyers

reporting strategies.

The optimization problem for the seller is the same as in the main model except for the changes

in the m function and the feasibility constraint. Using standard techniques, we can again rewrite

seller’s expected profits in terms of the virtual valuations of the buyers. Since the incentive com-

patibility and individual rationality constraints stay the same, we have the same expression for the

virtual valuation and the expected transfer rule (the proof is omitted).

Proposition 5. The objective for the optimization problem for the ex-post production timing can

be reformulated as

max
{m,(qi)i∈I}

∫
T

∫
Θ

[∑
i

Ψ(τi, θi)qi(τ, θ)− C ·m(τ, θ)

]
dF̄ (θ|τ) dḠ(τ)

where Ψ(τi, θi) =
[
θi +

1−G(τi)
g(τi)

∂F (θi|τi)/∂τi
f(θi|τi)

]
is the virtual valuation.

We can find expected transfers such that DDM is incentive-compatible:

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

where

Ti0(τi) = Ti(τ , θ)− θQi(τ , θ) +

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂

and Ti(τ , θ) is pinned down by Ui(τ) = 0.
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We arrive at the optimal mechanism by deciding who gets access to the good in case it is produced

(by pointwise maximization, all buyers with a positive virtual valuation, i.e. Ψ(τi, θi) ≥ 0, should

get the good in order to maximize the expected profit); and when the good should be produced

(m = 1 iff
∑

j∈I∗ Ψ(τj , θj) ≥ C, where I∗ ≡ {i ∈ I : Ψ(θi, τi) ≥ 0}). Assumption 1 applies.

Proposition 6. For the timing of ex-post production, the mechansim {m, (qi, ti)i∈I} is optimal if

and only if:

m(τ, θ) =

1 if
∑

i∈I∗ Ψ(τi, θi) ≥ C

0 otherwise

qi(τ, θ) =

1 if Ψ(τi, θi) ≥ 0 and
∑

j∈I∗ Ψ(τj , θj) ≥ C

0 otherwise

where I∗ ≡ {i ∈ I : Ψ(τi, θi) ≥ 0} and

Ti(τi, θi) =


Ti0(τi) if θi < v(τi)

Ti0(τi) + v(τi) + y(τi, θi) if v(τi) ≤ θi < V(τi)

Ti0(τi) + v(τi) + Y (τi) if θi ≥ V(τi)

where Ti0(τi), y(τi, θi) and Y (τi) are defined in the proof, v(τi) = {θi|Ψ(θi, τi) = 0} and V(τi) =

{θi|Ψ(θi, τi) = C}.

Since it is optimal to give access to the good to the buyers with positive virtual valuations once

the good is produced, the decision of producing the good depends on whether the sum of positive

virtual valuations surpasses production costs or not. This is the main difference to the interim

production case, where the sum of expected positive virtual valuations mattered for the production

decision.

Those potential buyers, whose ex-post types turn out to be too low, i.e. θi < v(τi), pay Ti0(τi).

This payment is strictly positive, except for when τi = τ , then it is 0 (see Ti0 definition in the

proof).

If a potential buyer’s ex-post type turns out to be high enough, i.e. v(τi) ≤ θi < V (τi), so that he

should get access to the good in case it is produced, but not high enough for him to cover the cost

alone, he pays Ti0(τi) + v(τi) + y(τi, θi), where y(τi, θi) is increasing in θi. If a potential buyer’s

ex-post type turns out to so high, that this buyer’s contribution can cover production costs alone,

i.e. θi ≥ V (τi), he pays Ti0(τi) + v(τi) + Y (τi). In contrast with the previous case, this buyer’s

payment no longer depends on θi: every θi ≥ V (τi) will pay the same expected amount.

44



With this the optimal direct mechanism for ex-post production is defined (DDM requires actual

payments ti’s, many such payments could be found as long as expected payments’ expressions

Ti’s we derived are satisfied). We now turn to implementation. Again we focus on the case where

consumers do not get reimbursed in case the good is not produced (similar to contribution schemes,

see Admati & Perry (1991)), however, proposed payment scheme differs from the one in propostion

4 substantially due to the difference in the timing of the game.

We focus on the case where consumers can acquire “contribute-option” contracts with the possibility

to contribute to the production of the good once their true valuations are realized and get access

to the good if it is produced. The seller offers a menu of price triplets, consisting of an upfront

payment and a suggested interval for contributions. If enough money is collected through the

upfront payments and the contributions, the good will be produced. In case it is produced, everyone

who has contributed gets access to the good. There is no reimbursement of either the upfront

payment or the contribution in case the good is not produced.

Proposition 7. The following selling procedure is optimal assuming that G(τi) and F (θi|τi) are

such that we obtain strictly increasing Ti.
8 The monopolist submits a menu of possible price triplets

{(Ti, p
min
i , pmax

i )}. The consumers who choose not to pay anything never obtain the good. Those

who choose a price triplet from the menu pay Ti while only knowing their τ . Then they learn their

θi and can choose to contribute any amount pi between pmin
i and pmax

i , if they paid Ti. In case∑
χi(Ti, pi) < C (where χi(Ti, pi) is defined in the proof) the good is not produced, no consumer

receives the good and there are no reimbursements. In case
∑

χi(Ti, pi) ≥ C the good is produced

and every consumer who contributed at least pmin
i receives the good.

The price menu in this proposition describes combinations of two payments which we will refer

to as the upfront payments (T ) and contributions (p), with the latter falling within the intervals

(pmin, pmax). If a buyer chooses to pay the upfront payment, he will get the option to contribute

pi after he learns his ex-post type. He will need to contribute at least pmin
i and will not want to

contribute more than pmax
i : pmax

i is defined for the case that the buyer’s virtual valuation is so high,

that he can cover production costs alone, contributing above pmax
i does not increase the chance of

the good being produced. Moreover, a higher upfront payment Ti allows to lower the minimum

required contribution pmin
i after θi is learned.

The buyers understand that choosing their upfront payments and contributions impacts the prob-

ability of whether the good will be produced. In fact, this probability not only depends on the sum

of the paid upfront payments and contributions but also on their composition. The optimal χ will

be determined by the distributions G and F .

The proposed payment scheme includes the “pay-as-much-as-you-want” stage: after the upfront

payments are collected, those buyers who have paid are asked to contribute as much as they want

8This assumption is satisfied for many distributions (see proof of proposition 7 for examples).
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within a prespecified interval. This happens after they have learned their true valuations, which

coincides with the timing of the production decision. The more they contribute at this stage, the

higher are the chances of production. In contrast, if we recall the interim production case, we can

see that these were only the higher upfront payments (see proposition 4) which lead to a higher

chance of producing the good.
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Concluding Remarks

We have derived the optimal dynamic direct mechanisms for interim and ex post production timings.

We characterized payment schemes (buy-option and “contribute-option” contracts) implementing

the optimal production and selling procedures and provided examples for interim production. We

discussed how production timing influences profit-maximizing pricing schemes.

Further aspects could make our setting even more realistic but at the same time might complicate

the analysis. When it comes to non-rival but excludable goods, the monopolist might naturally face

a capacity constraint (Ely et al. (2017) or Gale & Holmes (1993)), from which we have abstracted

so far. If not all potential buyers can be served, one could derive mechanisms which e.g. define

access priority to the good for the buyers based on their contributions, thus combining peak-load

pricing literature with sequential screening.

We have also assumed away any cash constraints by the seller. In case of interim production timing,

however, it could be interesting to see how the optimal mechanism changes if we want to make sure

that the seller does not make losses when in expectation fixed costs are covered, and so the good

is produced, but actual valuations in the next stage turn out to be too low.

Finally, one could question our set-up choices at the beginning and, for instance, consider alternative

ways to model dynamic information and / or signal structure. Especially in the section where we

discuss the influence of observability of production on the optimal direct mechanism, one could

consider correlated valuations of the buyers and study whether or not obersavability of production

remains irrelevant as we claim in the case of uncorrelated valuations.
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Appendix / Proofs

Revelation Principle

In our setting a dynamic mechanism is any arbitrary game Γ in which for each buyer i the strategy

γi is the mapping from his type in the action space defined by Γ. The game could be designed

arbitrarily complex and have arbitrarily many reporting stages. In contrast, a direct dynamic

mechanism in our setting induces only two reporting stages: first each buyer reports his ex-ante

type. After the buyers have learned their true valuations, there is a second reporting stage where

where given his true ex-ante type, true ex-post type and reported ex-ante type, each buyer reports

his ex-post type. We denote the respective strategies with σi : Ti → Ti and Σi : Ti×Θi×Ti → Θi.
9

Revelation Principle. For every dynamic mechanism Γ and Bayesian Nash equilibrium γ of Γ,

there exists a direct mechanism Γ′ and Bayesian Nash equilibrium γ′ = (σ,Σ) such that

(i) For every τi and every θi, the strategy vector γ′ satisfies

σi(τi) = τi

Σi(τi, θi, τi) = θi

that is, γ′ prescribes telling the truth about τi and, after the buyer reported τi truthfully, telling

the truth about θi

(ii) For every type vector (τ, θ), the distribution over outcomes that result under Γ if the agents

play γ is the same as the distribution over outcomes that result under Γ′ if the agents play

γ′, and the expected value of the transfer payments that result under Γ if the agents play γ is

the same as the transfer payments that result under Γ′ if the agents play γ′.

Proof of Lemma 2.

First, we show that Ui(τi) is increasing in τi if DDM is incentive-compatible. For that, we can use

lemma 1 and apply intergration by parts:

Ûi(τ
′
i |τi) ≡

∫ θ

θ
ui(τ

′
i , θ̂)f(θ̂|τi)dθ̂ =

∫ θ

θ
Qi(τ

′
i , θ̂)dθ̂ −

∫ θ

θ
Qi(τ

′
i , θ̂)F (θ̂|τi)dθ̂

=

∫ θ

θ
Qi(τ

′
i , θ̂)

[
1− F (θ̂|τi)

]
dθ̂

9In case the production is observable we would need Σi to also depend on the observation into the report, i.e.
Σi : Ti ×Θi × Ti × {0, 1} → Θi. The presented revelation principle would need to account for this. The argument,
however, still holds.

49



For τ ′i > τi we have:

Ui(τ
′
i)− Ui(τi)

(τ -IC)

≥ Ûi(τi|τ ′i)− Ûi(τi|τi) =
∫ θ

θ
Qi(τi, θ̂)

[
F (θ̂|τi)− F (θ̂|τ ′i)

]
dθ̂

FOSD
≥ 0

Hence, we can differentiate w.r.t. τi and by exchanging the order of differentiation and integration

we get:

∂Ûi(τ
′
i |τi)

∂τi
=

∂

∂τi

∫ θ

θ
Qi(τ

′
i , θ̂)

[
1− F (θ̂|τi)

]
dθ̂ = −

∫ θ

θ
Qi(τi, θ̂)

∂F (θ̂|τi)
∂τi

dθ̂

Proof of Lemma 3.

We first show that if (θ-IC) and

Ui(τi) ≥ Ûi(τ
′
i |τi) for all τi, τ ′i ∈ [τ , τ ]

are satisfied, then so are (τ -IC).

From (θ-IC), for any θri : [θ, θ] → [θ, θ] we have:

∫ θ

θ
θ̂ ·Qi(τ

′
i , θ̂)− Ti(τ

′
i , θ̂)dF (θ̂|τi) ≥

∫ θ

θ
θ̂ ·Qi(τ

′
i , θ

r
i (θ̂))− Ti(τ

′
i , θ

r
i (θ̂))dF (θ̂|τi)

Thus, together with Ui(τi) ≥ Ûi(τ
′
i |τi) =

∫ θ
θ θ̂ ·Qi(τ

′
i , θ̂)− Ti(τ

′
i , θ̂)dF (θ̂|τi), we obtain (τ -IC).

We can now show that if Qi(τi, θi) is increasing in both arguments, then we can find Ti(τi, θi) such

that DDM is incentive-compatible.

We can define Ti(τi, θi) using equations (1) and (2) together, and by substituting out relevant terms,

we obtain:

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

where

Ti0(τi) = Ti(τ , θ)− θQi(τ , θ) +

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂
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With this Ti(τi, θi) and Qi(τi, θi) increasing in θi, by lemma 1 (θ-IC) holds. It remains to verify

that Ui(τi) ≥ Ûi(τ
′
i |τi):

Ui(τi)−Ûi(τ
′
i |τi) =

∫ τi

τ ′i

[
∂Ui(τ̂)

∂τi
− ∂Ûi(τ

′
i |τ̂)

∂τi

]
dτ̂

lemma 2
=

∫ τi

τ ′i

∫ θ

θ

[
Qi(τ

′
i , θ̂)−Qi(τ̂ , θ̂)

] ∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

This expression is non-negative due to FOSD and Qi(τi, θi) being increasing in τi.

Proof of Proposition 1.

This follows immediately from equations (1) and (2), leaving one degree of freedom, Ti(τ , θ). This

expected payment is optimally pinned down by Ui(τ).

Proof of Proposition 2.

Allocation rule: Given that the good is produced it is easy to see that only buyers with a positive

virtual valuation should receive the good. Hence:

qi(τ, θ) =

1 if Ψ(τi, θi) ≥ 0 and m(τ) = 1

0 otherwise

Thus whether the good is produced or not should be decided upon whether the expected sum of

the positive virtual valuations surpasses the cost of production:

m(τ) =

1 if
∫
Θ

∑
i∈I Ψ(τi, θi)qi(τ, θ)dF̄ (θ|τ) ≥ C

0 otherwise

Transfer Rule: By proposition 1 we know it must hold that:

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

where

Ti0(τi) = Ti(τ , θ)−θQi(τ , θ)+

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂
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and Ti(τ , θ) is pinned down by Ui(τ) = 0.

Insert the optimal allocation into the expression for Ti(τi, θi). We have:

1. For τi < τ̃min
i , qi(τ, θ) = 0 ∀θi, hence:

Ti(τi, θi) = Ti0(τi)
qi(τ,θ)=0 ∀θi

= Ti(τ , θ)
Ui(τ)=0

= 0

2. For τi ≥ τ̃min
i and θi < v(τi), qi(τ, θ) = 0, hence:

Ti(τi, θi) = Ti0(τi)

3. τi ≥ τ̃min
i and θi ≥ v(τi), qi(τ, θ) = 1: For this case we let τ̃N (τ−N ) be the minimum τ of

buyer N given τ−N for which the good is produced. We first define the expectation of buyer

i to receive the good if he is of type (τi, θi):

Qi(τi, θi) =

∫
T−i

∫
Θ−i

qi(τ, θ)dF̄−i(θ−i|τ−i)dḠ−i(τ−i)

=

∫
T−i−N

∫ τ

τ

∫
Θ−i

qi(τ, θ)dF̄−i(θ−i|τ−i)dG(τN )dḠ−i−N (τ−i−N )

=

∫
T−i−N

∫ τ

τ̃N (τ−N )
1 dG(τN )dḠ−i−N (τ−i−N )

=

∫
T−i−N

(1−G(τ̃N (τ−N )))dḠ−i−N (τ−i−N ) ≡ H(τi)

We can now define the expected payment for this type by using the expected allocation from

above.

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

= Ti0(τi) + θiH(τi)−
∫ θi

v(τi)
H(τi)dx

= Ti0(τi) + v(τi)H(τi)
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Proof of Proposition 3.

We begin the proof by defining Punobs and Pobs.

Let Punobs be the maximization problem under unobservability as above:

max
q,m

∑
i

∫
T

∫
Θ
ti(τi, θi) dF̄ (θ|τ) dḠ(τ)− C

∫
T

∫
Θ
m(τ) dF̄ (θ|τ) dḠ(τ)

s.t. Ui(τi) ≥
∫ θ

θ
θ̂ ·Qi(τ

′
i , θ

r
i (θ̂))− Ti(τ

′
i , θ

r
i (θ̂))dF (θ̂|τi) τ -ICunobs

ui(τi, θi) ≥ θi ·Qi(τi, θ
′
i)− Ti(τi, θ

′
i) θ-ICunobs

Ui(τi) ≥ 0 IR

qi(τ, θ) ≤ m(τ) FC

In the optimization problem with observability the incentive constraints change because the buyers

observe the production decision before the second reporting stage. Hence:

• At the first reporting stage the buyers form expectations over whether the good will be

produced or not. We call this probability:

α(τi) = Pr(m(τ) = 1|τi)

• At the second reporting stage the buyers know whether the good was produced or not. Hence

we have two ICs at the θ-stage.

Let Pobs be the maximization problem under observability:

max
q,m

∑
i

∫
T

∫
Θ
ti(τi, θi) dF̄ (θ|τ) dḠ(τ)− C

∫
T

∫
Θ
m(τ) dF̄ (θ|τ) dḠ(τ)

s.t. Ui(τi) ≥ α(τi)

∫ θ

θ
[θ̂ ·Qi(τ

′
i , θ

r
i1(θ̂)|m = 1)− Ti(τ

′
i , θ

r
i1(θ̂)|m = 1)]dF (θ̂|τi)+

+ (1− α(τi))

∫ θ

θ
[θ̂ ·Qi(τ

′
i , θ

r
i0(θ̂)|m = 0)− Ti(τ

′
i , θ

r
i0(θ̂)|m = 0)]dF (θ̂|τi) τ -ICobs

ui(τi, θi|m = 1) ≥ θi ·Qi(τi, θ
′
i|m = 1)− Ti(τi, θ

′
i|m = 1) θ-ICobs

m=1

ui(τi, θi|m = 0) ≥ θi ·Qi(τi, θ
′
i|m = 0)− Ti(τi, θ

′
i|m = 0) θ-ICobs

m=0

Ui(τi) ≥ 0 IR

qi(τ, θ) ≤ m(τ) FC
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Having defined the two problems we continue in two steps. First we show that every mechanism

which is implementable under Pobs is also implementable under Punobs. Second, we show that the

optimal mechanism of the Punobs is implementable under Pobs, i.e. θ-IC in the Pobs:

First part:

• Start from Punobs

– Take any mechanism γ′ = {m, q, t}

– Then γ′ is θ-ICunobs iff:

u(τi, θi) =

∫ θi

θ
Q(τi, θ̃)dθ̃ + u(τi, θ) (⋆)

– Call β(τi) = Pr(m = 1|τi), according to γ′

– Note that Q(τi, θi) = β(τi)Q(τi, θi|m = 1) ∀τi, θi so we can rewrite equation (⋆) as:

u(τi, θi) = β(τi)

[∫
θi

Q(τi, θi|m = 1)dθi + u(τi, θ|m = 1)

]
+ (1− β(τi))u(τi, θ|m = 0))

(A)

• Now consider the Pobs

– Take any mechanism γ

– Call α(τi) = Pr(m = 1|τi) according to γ

– γ is θ-IC iff ∀(τi, θi)

u(τi, θi|m = 1) =

∫ θi

θ
Q(τi, θ̃|m = 1)dθ̃ + u(τi, θ|m = 1) (B)

– Meaning that, here, the IC must hold conditionally on m = 1 being visible

– Write ∀(τi, θi),

u(τi, θi) = α(τi)u(τi, θi|m = 1) + [1− α(τi)]u(τi, θ|m = 0) (C)

• If u(τi, θi|m = 1) respects B then C becomes identical to A

– Namely, mechanism γ is also θ-IC ∀(τi, θi) in the unobservable case

• It can be shown that the relation extends to the whole set of incentive constraints

– Then Pobs is weakly more constraint then Punobs
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Second part: show that the optimal mechanism of the Punobs is θ-IC in the Pobs:

• If m = 1:

– For all θi such that Qi(τi, θi, τ−i, θ−i) = 0 (since θi < v(τi)) we have:

ui = 0− Ti0(τi) = −Ti0(τi)

Misreporting θi as θ
′
i such that Qi(τi, θ

′
i, τ−i, θ−i) = 1 gives:

θi − (Ti0(τi) + v(τi)) < −Ti0(τi)

– For all θi such that Qi(τi, θi, τ−i, θ−i) = 1 (since θi ≥ v(τi)) we have:

ui = θi − (Ti0(τi) + v(τi))

Misreporting θi as θ
′
i such that Qi(τi, θ

′
i, τ−i, θ−i) = 0 gives:

−Ti0(τi) ≤ θi − (Ti0(τi) + v(τi))

– θi, θ
′
i both such that q = 0: misreporting does not change utility

– θi, θ
′
i both such that q = 1: misreporting does not change utility

• If m = 0: qi = 0 for all i - misreporting θi does not change utility.

Proof of Proposition 4.

First, let the probability for the good to be produced for a given τi be denoted as

Pr(τi) ≡
∫
∆T−i(τi)

dḠ−i(τ−i)

where ∆T−i(τi) is the set of the ex-ante types of all other players that allow the good to be produced:

∆T−i(τi) ≡ {τj |j ̸= i,

∫
Θ

∑
j∈J∗

Ψ(τj , θj)dF̄ (θ|τ) ≥ C −
∫
Θi

Ψ(τi, θi)dF̄ (θi|τi)}

with J∗ ≡ {j|Ψ(τj , θj) ≥ 0} the set of positive virtual valuations.

We rewrite Ti0(τi) using the optimal allocation rule from proposition 2 and Pr(τi):
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Ti0(τi) =Ti(τ , θ)− θQi(τ , θ) +

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂+

+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂

=Ti(τ , θ)− θQi(τ , θ) +

∫ τi

τ̃min
i

∫ θ

v(τ̂)
Pr(τ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂

+ Pr(τi)

∫ θ

v(τi)
f(θ̂|τi)(θ̂ − v(τi))dθ̂ + Pr(τ)

∫ θ

v(τ)
f(θ̂|τ)(θ̂ − v(τ))dθ̂

Using these expressions we now begin to define the price menu (Ti,pi) and the minimum price T ∗.

Let τ̃min
i be defined as in proposition 2.

• Ti and T ∗: To define these we look at the following three cases.

– Case 1: τi < τ̃min
i : then qi = 0 (because m = 0) for any τ−i and therefore the

corresponding Ti is null. Therefore, if a buyer does not pay anything he will never

receive the good.

– Case 2: τi = τ̃min
i :

Since we know that U(τ) = 0 it follows that:

T ∗ ≡ Ti0(τ̃
min
i ) =

∫ θ

v(τ̃min
i )

[θ̂ − v(τ̃min
i )]f(θ̂|τ̃min

i )dθ̂ × Pr(τ̃min
i )

Note:

∗ If τ̃min
i = τ̃i(τ ...τ) ≥ τ then the last term is zero (Pr(τ̃min

i ) = 0) and hence:

T ∗ = 0

∗ If for τ there is a positive probability that the good will be produced then the lowest

type τ will pay :

T ∗ > 0

– Case 3: τi > τ̃min
i :

∗ Define:

Ti = Ti0(τi) ≡ ϕi(τi)
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∗ And let ξi(Ti):∫ θ

θ
Ψ(τi, θ̂)dF (θ̂|τi) =

∫ θ

θ
Ψ(ϕ−1

i (Ti), θ̂)dF (θ̂|ϕ−1
i (Ti)) ≡ ξi(Ti)

∗ Note: ϕi(τi) needs to be strictly increasing and invertable. We can verify that this

is indeed the case for many distributions. We chose two examples:

i = 1, 2 τi, θi ∈ [0, 1] M = 1 G(τi) = τi

FA(θi|τi) = θi + τi

(
(θi − 1/2)2 − 1/4

)
FB(θi|τi) = 1/2− 1/4 · τi + θi(1/2 + 1/4 · τi)

Whilst FA(θi|τi) generates positive virtual valuations only, negative valuations are

possible with FB(θi|τi), which assigns a strictly positive, τ -dependent probability

mass to θi = 0 values. In fact, many distributions with the properties similar to

FB(θi|τi) can be found.

• Let pi = v(τi) from proposition 2.

• What is left to show is that the menu (Ti, pi) in combination with the minimum price T ∗

implements the optimal allocation: at the second stage where the buyer has to decide whether

to buy the good or not (given the good was produced) he will do so only in the case that his

valuation exceeds the price, which is equivalent to his virtual valuation being positive. At the

first stage when choosing the the price pair the buyers know the function ξi(Ti) and hence

know how the payment of Ti will influence the probability of production. Choosing the Ti

which corresponds to their true τi is optimal as it gives the same expected utility as reporting

the true τi under the optimal direct mechanism.

Proof of Proposition 6.

Optimal allocation Given that the good is produced it is easy to see that only buyers with a

positive virtual valuation should receive the good. Hence:

qi(τ, θ) =

1 if Ψ(τi, θi) > 0 and m(τ, θ) = 1

0 otherwise

Thus whether the good is produced or not should be decided upon whether the sum of the positive

virtual valuations surpasses the cost of production:
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m(τ, θ) =

1 if
∑

i∈I Ψ(τi, θi)qi(τ, θ) > C

0 otherwise

Optimal transfer: By standard procedure we know it must hold that:

Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

where

Ti0(τi) = Ti(τ , θ)−θQi(τ , θ)+

∫ τi

τ

∫ θ

θ
Qi(τ̂ , θ̂)

∂F (θ̂|τ̂)
∂τi

dθ̂dτ̂+

∫ θ

θ

∫ θ̂

θ
[Qi(τi, x)f(θ̂|τi)−Qi(τ , x)f(θ̂|τ)]dxdθ̂

and Ti(τ , θ) is pinned down by Ui(τ) = 0.

Insert the optimal allocation into the expression for Ti(τi, θi). We have:

• For θi < v(τi), qi(τ, θ) = 0, hence:

Ti(τi, θi) = Ti0(τi)

• For v(θi) ≤ θi < V(τi), first define θ̃N (θ−N |τ) as follows: for a given τ and θ−N , it is the

minimum value of θN such that
∑

i∈I∗ Ψ(τi, θi) = C holds. We start by defining Qi(τi, θi) for

this case:

Qi(τi, θi) =

∫
T−i

∫
Θ−i

q(τ, θ) dF̄−i(θ−i|τ−i)dḠ−i(τ−i)

=

∫
T−i

∫
Θ−i−N

∫ θ

θ
q(τ, θ) dF (θN |τN )dF̄−i−N (θ−i−N |τ−i−N )dḠ−i(τ−i)

=

∫
T−i

∫
Θ−i−N

∫ θ

θ̃N (θ−N |τ)
1 dF (θN |τN )dF̄−i−N (θ−i−N |τ−i−N )dḠ−i(τ−i)

=

∫
T−i

∫
Θ−i−N

(1− F (θ̃N (θ−N |τ)))dF̄−i−N (θ−i−N |τ−i−N )dḠ−i(τ−i) ≡ H(τi, θi)
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Ti(τi, θi) = Ti0(τi) + θiQi(τi, θi)−
∫ θi

θ
Qi(τi, x)dx

= Ti0(τi) + θi[1− (1−H(τi, θi))]−
∫ θi

v(τi)
[1− (1−H(τi, x))]dx

= Ti0(τi) + v(τi)−θi[1−H(τi, θi)] +

∫ θi

v(τi)
[1−H(τi, x)]dx︸ ︷︷ ︸

≡y(τi,θi)

• For θi ≥ V(τi), qi(τ, θ) = 1

Ti(τi, θi) = Ti0(τi) + θi −
∫ V(τi)

v(τi)
Qi(τ, x)dx−

∫ θi

V(τi)
1 dx

= Ti0(τi) + V(τi)−
∫ V(τi)

v(τi)
H(τi, x)dx

= Ti0(τi) + v(τi) + (V(τi)− v(τi))−
∫ V(τi)

v(τi)
H(τi, x)dx

= Ti0(τi) + v(τi) +

∫ V(τi)

v(τi)
(1−H(τi, x))dx︸ ︷︷ ︸

≡Y (τi)

Proof of Proposition 7.

First, let the probability for the good to be produced for a given (τi, θi) be denoted as

Pr(τi, θi) ≡
∫
T−i

∫
∆exΘ(τ ,θi)

dF̄−i(θ−i|τ−i)dḠ−i(τ−i)

and ∆exΘ(τ , θi) is the set of ex-post types of all other players for which the good will be produced

depending on the given ex-ante types:

∆exΘ(τ , θi) ≡ {θj |j ̸= i,
∑
j∈J∗

Ψ(τj , θj)) ≥ C −Ψ(τi, θi)}

with J∗ ≡ {j|Ψ(τj , θj) ≥ 0} the set of positive virtual valuations.
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• Let Ti be:

Ti =

∫ τi

τ

∫ θ

v(τi)
Pr(τ̂ , θ̂)

∂F (θ̂, τ̂)

∂τi
dθ̂dτ̂ +

∫ θ

v(τi)

∫ θ

v(τi)
Pr(τi, x)f(θ̂|τi)dxdθ̂

−
∫ θ

v(τ)

∫ θ

v(τ)
Pr(τ , x)f(θ̂|τ)dxdθ̂ ≡ ϕi(τi)

and v(τi) as in proposition 6.

• In order to define pmin
i , pi, p

max
i and the function χi(Ti, pi) we look at three cases for θi

– For θi = v(τi):

pmin
i = v(τi)H(τi, θi)

with H(τi, θi) as in the proof of proposition 6.

– For v(τi) < θi < V (τi):

pi = v(τi)− θi[1−H(τi, θi)] +

∫ θi

v(τi)
[1−H(τi, x)]dx ≡ κi(τi, θi)

– For θi ≥ V (τi):

pmax
i = v(τi) +

∫ V (τi)

v(τi)
(1−H(τi, x))dx

with V (τi) as in proposition 6.

• For a given τi, κi(τi, θi) is strictly increasing and invertable in θi.

ϕi(τi) needs to be strictly increasing and invertable. We can verify that this is indeed the

case for many distributions. We chose the following example:

i = 1, 2 τi, θi ∈ [0, 1] M = 1 G(τi) = τi F (θi|τi) = 1/2− 1/4 · τi + θi(1/2 + 1/4 · τi)

F (θi|τi) assigns a strictly positive, τ -dependent probability mass to θi = 0 values. In fact,

many distributions with the properties similar to F (θi|τi) can be found.

• Let χi(Ti, pi) ≡ Ψ(ϕ−1
i (Ti), κ

−1
i (pi|Ti)).

• What is left to show is that the menu (Ti, p
min
i , pmax

i ) implements the optimal allocation

from the direct mechanism: at the second stage a buyer has to decide which price to pay

from the interval [pmin
i , pmax

i ]. Since we assume no reimbursement a buyer with θi < v(τi)

60



will never buy as the minimum price is v(τi)H(τi, θi) and he will only get the good if it is

actually produced which happens with probability H(τi, θi). For θi > v(τi) the knows that

his payment will directly affect the probability of production through the function κ−1
i (pi|Ti)

and χi(Ti, pi) given his first stage payment Ti. He will choose the pi which maximizes his

expected utility which is equivalent to reporting his true θi under the direct mechanism. If

his valuation exceeds V (τi) he will always pay pmax
i as production is then guaranteed and he

has no incentive to pay more.

At the first stage when choosing a triple from the price menu the buyers know the functions

κi(τi, θi) and ϕi(τi) and hence know how the payment Ti will influence the probability of pro-

duction at the second stage. Choosing the Ti which corresponds to their true τi is optimal as

it gives the same expected utility as reporting the true τi under the optimal direct mechanism.
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Dynamic Information Collection: Two-Sided Tests∗

Ekaterina Gorbunova

FU Berlin

December 2024

Abstract

Principal-agent framework is used to model delegation of information collection. Before deciding

whether to invest in a project, a firm can learn about its quality by running up to two tests

differing in efficiency defined as precision-to-cost ratio. These tests generate no false positives

and no false negatives, so the firm can stop after one conclusive result to make an informed

investment decision and save the cost of the second test. To do so, however, the firm must hire

and incentivize an expert to run the tests and report their outcomes. We characterize incentive

contracts and find the optimal order in which the tests should be performed. We find that the

optimal order under agency differs from that in the first-best: while it is first-best optimal to

start with the most efficient test, agency considerations imply that it is always optimal to start

with the least efficient test.

∗Based on joint work with Denis Gromb (HEC Paris) and Francis de Vericourt (ESMT Berlin).
In memory of Denis Gromb, whose continuous dedication, optimism and competence made this project possible.
We thank Faculty Research Seminar participants at ESMT Berlin and Microeconomic Colloquim participants at HU Berlin for
helpful comments.
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Introduction

Decision-makers can sequentially collect costly information about a risky project, namely, by running tests,

before committing to an investment. Information collection problems such as this correspond to a variety of

tasks in organisations, including new product development (Schlapp & Schumacher (2022), Nikpayam et al.

(2023)), innovation and research project management (McCardle et al. (2016)), and technology adoptions

(McCardle (1985); Ulu & Smith (2009)).

Due to the lack of in-house capabilities, firms typically rely on experts to run the tests and interpret their

results: in case testing requires extensive data analytics, for instance, firms make use of a vast crowdsourcing

market with platforms such as Twine AI, Appen, Scale AI. Delegating expertise, however, gives rise to

incentive issues (Feldman et al. (2017)). In particular, experts may not complete the task they have been

assigned (moral hazard) or misreport results of the tests they have performed (adverse selection).1

Several approaches have been proposed to reduce these agency frictions, including financial incentives

(Haefner & Taylor (2022)), the use of multiple experts (Gromb & Martimort (2007), Schlapp & Schu-

macher (2022)), the use of deadlines (Gerardi & Maestri (2012)), or scoring rules (Choi & Han (2020)), or

simply performing the tests internally - provided the firm has required expertise (Zorc et al. (2022)). The

dynamic nature of information collection and its influence on incentive provision have been addressed in the

literature as well (Bergemann & Hege (1998), Halac et al. (2016)).

This paper studies another crucial feature of the information collection problem, which can be used to

mitigate incentive issues via an appropriate task design: the order in which information is elicited. Distinc-

tiveness of our paper lies in the fact that we study tests which differ in precision and cost. This is a realistic

scenario: research departments, for instance, can often develop and test several prototypes using various

technologies and designs of different quality (Erat & Kavadias (2008)), which in turn provide information of

different accuracy and come at different costs.

The order in which these different tests are performed affects the expert’s incentives. For instance, if a test

with sufficiently high precision is performed early on in the information collection process, the expert can

have an incentive to extrapolate its results onto the subsequent tests and not run them to avoid further

cost, leaving the firm without refined information about the project. In contrast, if a test with low precision

and/or high cost is offered early on, the expert may prefer not to run it and wait for a subsequent test with

better precision and/or lower cost.

Our model is as follows. We consider a principal, who, before deciding whether to invest in a project, can

learn about its quality from two tests differing in precision and cost. Each of these tests generates a signal

that is either conclusive (positive or negative2) or inconclusive. We assume no false positives and no false

negatives. Hence, a positive signal can be interpreted as “good news” about the project and a negative

signal as “bad news”, which is indicative of project failure. Thus, it is optimal to run the tests sequentially:

the firm can stop after one conclusive result, make an informed investment decision and avoid the cost of

the second test. If the first test generates an inconclusive result, we assume that it is still worthwhile to run

the second test.

1The more decision-makers lack the skills to run the tests, the more they need to rely on external expertise, and the stronger
the agency frictions are since decision-makers are less able to verify the work of experts.

2We consider symmetric two-sided tests.
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The first-best optimal order of the tests (if the principal were to run the tests himself) is to start with the

most efficient test, i.e. the one with the highest precision-to-cost ratio. In particular, starting with a more

precise test is attractive because more precise tests are more likely to generate a conclusive signal, which in

turn helps to avoid the cost of the second test. Starting with the least costly test is also attractive because

it opens a possibility of avoiding the high cost of the second test.

The principal, however, must hire an expert who has to be incentivized to run the tests (moral hazard) and

report the signals they generate truthfully (adverse selection). This paper tackles two building blocks of

delegated expertise: optimal compensation - characterizing optimal incentive contracts for each order of the

tests under a combined moral hazard and adverse selection problem; and task design - finding the optimal

order.

We find that the optimal order of the two tests under agency considerations differs from that in the first-

best: agency frictions imply that it is optimal to start with the least efficient test, i.e. the one with the

lowest precision-to-cost ratio. When the agent has to be motivated to actually run the tests and to report

the generated signals truthfully with the help of corresponding transfers from the principal, starting with

the least efficient test results in a cheaper incentive provision. Namely, the interplay of dynamic incentive

constraints implies that it is cheaper to make the expert run the least efficient test first than to ensure that

he does not skip the least efficient test in the second round if he starts with the most efficient test.

The paper proceeds as follows. Section 1 presents the model, finds the first-best, and discusses agency

frictions under delegated expertise. Section 2 characterizes optimal incentive contracts and agency rents

they imply. Section 3 finds the optimal order of the tests under agency frictions. The last section concludes.
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1 Model

We consider a model with universal risk-neutrality and no discounting.

1.1 Decision Problem

A principal must decide whether to undertake a risky project at cost I > 0. The project yields a payoff

X > 0 if it succeeds and 0 if it fails. The project’s quality Q can be good (Q = G), in which case it succeeds,

or bad (Q = B), in which case it fails. The prior probability that the project is good is ν and on that basis,

the principal would reject it:

νX − I < 0.

However, before deciding, the principal can hire an agent to assess the project’s quality. The agent is

unbiased, i.e. a priori indifferent about whether to undertake the project. His reservation utility is zero, i.e.

he accepts employment by the principal provided his utility is non-negative. The agent can run up to two

tests, A and B, generating signals, σA and σB , for which he incurs a cost, ψA and ψB .
3 For test i = A,B,

signal σi can be either conclusive: σi (positive) / σi (negative); or inconclusive, ∅i. We consider symmetric

two-sided tests and define precision as:

θi ≡ Pr[σi = σi|Q = G] = Pr[σi = σi|Q = B] > 1/2,

with no false positives, i.e.

Pr[σi = σi|Q = B] = 0,

and no false negatives, i.e.

Pr[σi = σi|Q = G] = 0.

Thus, both tests are informative about the project’s quality, and σi = σi resp. σi = σi constitute positive

resp. negative news.

Let p(ω) be the probability of an event ω and ν(ω) the probability of success conditional on the event

ω. For instance, p(σA) ≡ Pr[σA = σA] = νθA + (1 − ν)0 = νθA and ν(∅B) ≡ Pr[Q = G|σB = ∅B ] =
ν(1− θB)/[ν(1− θB) + (1− ν)(1− θB)] = ν. Due to symmetry, we have ν(∅A) = ν(∅B) = ν(∅A, ∅B) = ν.

We assume that running up to two tests dominates running only one test or none, irrespective of the order

of the tests.

Assumption 1.

min
i=A,B; i ̸=j

{p(σi ∨ (∅i, σj))(X − I)− ψi − p(∅i)ψj} ≥ max{ max
i=A,B

{p(σi)(X − I)− ψi}, 0}

3Since there is no discounting, it is (at least weakly) optimal to collect the signals sequentially.
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Let σ1 and σ2 denote the first and second test. For (σ1, σ2) ∈ {(σA, σB), (σB , σA)}, the efficient decision

rule is as follows: run test 1; if σ1 = σ1, undertake the project and do not run test 2; if σ1 = σ1 reject the

project and do not run test 2; otherwise, run test 2 and undertake the project if and only if σ2 = σ2.

1.2 First-Best

The principal maximizes the project’s expected payoff net of the expected cost of running up to two tests:

p(σ1 ∨ (∅1, σ2))(X − I)− ψi − p(∅1)ψ2

= [νθ1 + ν(1− θ1)θ2] (X − I)− ψ1 − (1− θ1)ψ2,

which can be written as:

[νθ1 + νθ2 − νθ1θ2] (X − I)− (ψ1 + ψ2) + θ1ψ2.

Note that only the last term depends on the order of the tests. Indeed, the order matters only in that a

conclusive first signal, which occurs with probability θ1, allows the principal to avoid the cost ψ2 of test 2.

Thus, starting with σi, i = A,B, is optimal if and only if:

θiψj ≥ θjψi.

Definition 1. Efficiency of test i is defined as its precision-to-cost ratio θi/ψi.

Proposition 1. The first-best is to start with the most efficient test.

In particular, starting with a more precise test is attractive because more precise tests are more likely to

generate a conclusive signal, which in turn helps to avoid the cost of the second test. Starting with the least

costly test is also attractive because it opens a possibility of avoiding the high cost of the second test.

Without loss of generality, we assume that test A is more efficient than test B:

Assumption 2. (θA/ψA)/(θB/ψB) ≥ 1.

1.3 Delegation

The principal and the expert are in an agency relationship: the expert enters a contract with the principal

to run the tests and receive transfers in return, under some constraints:

Assumption 3. Principal-agent contracts are subject to the following constraints:

• Moral hazard: whether the agent runs a test or not (information collection) is not observable.

• Limited liability: transfers from the principal to the agent must be non-negative.

• Asymmetric information: the signals generated by the tests are only observable by the agent.
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The first point implies that the agent must be provided with incentives to run the tests. The second point

implies that incentive provision is costly for the principal. Indeed, without limited liability, the agent could

be made residual claimant to the project. In particular, if the project failed, the agent would have to pay

the principal. Instead, under limited liability, that is not possible and incentive provision requires leaving an

information rent to the agent. The third point implies that the agent has private information. In particular,

he can claim having run a test and report a signal even if he has not run the test. Therefore, the contract

must resolve a combined moral hazard and adverse selection problem.

We study the optimal order of the tests as implied by agency costs and, in particular, whether and when

the optimal order might deviate from the first-best. To do so, we first characterize the optimal incentive

contract implementing the efficient decision rule for a given order of the tests, as well as and the agency cost

it implies. Second, we find the optimal order of the tests taking agency costs into account.

67



2 Incentive Contracts

For a given order of signals, (σ1, σ2) ∈ {(σA, σB), (σB , σA)}, we characterize the optimal contract imple-

menting the efficient decision rule, i.e. run test 1; if σ1 = σ1, undertake the project and do not run test 2; if

σ1 = σ1 reject the project and do not run test 2; otherwise, run test 2 and undertake the project if and only

if σ2 = σ2.

By the Revelation Principle, we can concentrate on direct incentive-compatible mechanisms. A direct mech-

anism consists of transfers from the principal to the agent conditional on his reports and, if the project is

implemented, on its outcome. Since the project’s outcome is observed only if it is implemented, a contract

consists of the following transfers {ts1, t
f
1 , t1, t

s
2, t

f
2 , t2, t}: if the agent reports σ1 = σ1, the project is

implemented and the agent is paid ts1 if it succeeds or tf1 if it fails; if he reports σ1 = σ1, the project is

rejected and the agent is paid t1; if the signal is inconclusive, σ1 = ∅1, the agent runs test 2; if the agent

reports σ2 = σ2, the project is implemented and the agent is paid ts2 if it succeeds or tf2 if it fails; if he reports

σ2 = σ2, the project is rejected and the agent is paid t2; is the signal is inconclusive, σ2 = ∅2, the project is

rejected and the agent gets t. Incentive-compatible mechanisms ensure that the agent has the incentive to

run the tests as per the efficient decision rule and to report any signal generated truthfully.

2.1 Optimization Problem

The principal’s expected payoff equals the project’s expected payoff net of the expected transfer to the

agent. Since we focus on contracts implementing the efficient decision rule, the project’s expected payoff is

a constant equal to

p(σ1 ∨ (∅1, σ2))(X − I) = [νθ1 + νθ2 − νθ1θ2] (X − I),

maximizing the principal’s expected payoff amounts to minimizing the expected transfer to the agent E[t̃]:

min
{ts1, tf1 , t1, ts2, tf2 , t2, t}

p(σ1)t
s
1 + p(σ1)t1 + p(∅1, σ2)t

s
2 + p(∅1, σ2)t2 + p(∅1, ∅2)t

Indeed, if the first test reveals the project to be good, which occurs with probability p(σ1), it is implemented.

Good project succeeds and the agent receives ts1. If the first test reveals the project to be bad, which occurs

with probability p(σ1), it is rejected and the agent receives t1. If the first test is inconclusive but the second

test reveals the project to be good, which occurs with probability p(∅1, σ2), the project is implemented after

the second test. The project succeeds and the agent receives ts2. If the first test is inconclusive but the

second test reveals the project to be bad, which occurs with probability p(∅1, σ2), the project is rejected and

the agent receives t2. If both tests are inconclusive, which happens with probability p(∅1, ∅2), the project is

rejected and the agent receives t.

The objective, i.e. the expected transfer to the agent E[t̃], can be written as:

min
{ts1, tf1 , t1, ts2, tf2 , t2, t}

θ1[νt
s
1 + (1− ν)t1] + (1− θ1)A2 + (1− θ1)ψ2, (1)

with A2 ≡ θ2[νt
s
2+(1−ν)t2]+(1−θ2)t−ψ2, the agent’s payoff from test 2 after the first inconclusive signal.
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This optimization is subject to a number of constraints – the agent’s participation constraint, the constraints

that limited liability imposes on the contract, as well as incentive compatibility constraints – which we now

detail.

The agent must agree to the contract, i.e. his participation constraint must be satisfied:

Pa ≥ 0, (2)

with Pa ≡ E[t̃] − ψ1 − (1 − θ1)ψ2 = θ1[νt
s
1 + (1 − ν)t1] + (1 − θ1)A2 − ψ1, which is the agent’s payoff from

running up to two tests and reporting the signals truthfully.

Limited liability requires that all transfers are non-negative:

(i) ts1 ≥ 0, (ii) tf1 ≥ 0, (iii) t1 ≥ 0, (iv) ts2 ≥ 0, (v) tf2 ≥ 0, (vi) t2 ≥ 0, (vii) t ≥ 0. (3)

The contract must also satisfy several incentive compatibility constraints, i.e. motivate the agent to actually

run the tests and to report the generated signals truthfully. We start by laying out adverse selection

incentive constraints.

After test 1 is performed, the agent should not postpone revealing conclusive signals he finds:

ts1 ≥ ts2, (4)

t1 ≥ t2. (5)

Having observed the second signal the agent should report truthfully:

t2 ≥ t, (6)

t ≥ t2. (7)

(6) and (7) together imply t = t2. Indeed, a second negative signal or a second inconclusive signal both

result in the project being rejected. We use t = t2 to simplify the objective and the constraints further.

ts2 ≥ t = t2, (8)

t ≥ νts2 + (1− ν)tf2 . (9)

Having observed the first signal, the agent should report truthfully:

ts1 ≥ t1, (10)

ts1 ≥ t = t2. (11)

Note that (8) and (4) together imply (11). Indeed, making sure that the second positive signal is reported

truthfully and that the first positive signal is not postponed also ensures that the first positive signal is not

misreported as a second negative signal.

69



We now proceed with laying out moral hazard incentive constraints.

The agent should not skip both tests and bet:

Pa ≥ t1, (12)

Pa ≥ t = t2, (13)

Pa ≥ νts1 + (1− ν)tf1 , (14)

Pa ≥ νts2 + (1− ν)tf2 . (15)

Note that (13) is implied by (12) and (5). Indeed, ensuring that a negative signal from test 1 is not postponed

requires the respective payment after test 1 to be higher than that after test 2.

The agent should not skip test 1 by blindly reporting an inconclusive signal and run test 2 only:

Pa ≥ A2. (16)

Having run test 1 and found an inconclusive signal, the agent should not skip test 2 and bet:

A2 ≥ νts1 + (1− ν)tf1 , (17)

A2 ≥ νts2 + (1− ν)tf2 , (18)

A2 ≥ t1, (19)

A2 ≥ t = t2. (20)

Note that (20) is implied by (19) and (5). Indeed, ensuring that a negative signal from test 1 is not postponed

requires the respective payment after test 1 to be higher than that after test 2. Moreover, (12) resp. (14)

is implied by (16) and (19) resp. (16) and (17). By making sure that test 1 and subsequently test 2 are

performed, the agent is ensured to run up to two tests and report the signals instead of simply betting.

Finally, (8) resp. (10) is implied by (20) resp. (16) and (19): if the agent anticipates misreporting a signal, he

will not incur the cost of running the respective test but would simply bet instead. To arrive at the former,

rewrite (20) as: ts2 ≥ t2 + ψ2/(νθ2) > t2. To arrive at the latter, rewrite (16) as: νts1 + (1− ν)t1 − ψ1/θ1 ≥

A2

(19)

≥ t1, hence, t
s
1 ≥ t1 + ψ1/(νθ1) > t1.

As it can be seen, the payments in case a positive signal is reported and the project is implemented and

fails, i.e, tf1 and tf2 , do not appear in the objective (under the “no-false-positives” assumption and because

a good project always succeeds) but only on the RHS of incentive constraints (9), (14), (15), (17) and (18).

Reducing tf1 and tf2 relaxes these constraints, so optimally we set tf1 = tf2 = 0. Hence, it is optimal not to

reward the agent for advising to undertake a project which eventually fails. A contract should incentivize

the agent with rewards when the project’s outcome aligns with the agent’s advice. Rewarding the agent

otherwise would be useless at best and increase the cost of incentive provision at worst.

With tf1 = tf2 = 0 we are able to simplify constraints further: (15) is implied by (14) and (4); (18) is implied

by (17) and (4). Indeed, ensuring that a positive signal from test 1 is not postponed requires the respective
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payment after test 1 to be higher than that after test 2.

Lemma 1. Optimally, t = t2 and tf1 = tf2 = 0. The simplified optimization problem is as follows:

min
{ts1, t1, ts2, t2}

θ1[νt
s
1 + (1− ν)t1] + (1− θ1)A2 + (1− θ1)ψ2 s.t.

ts1 ≥ ts2 (4)

t1 ≥ t2 (5)

t2 ≥ νts2 (9)

νts1 + (1− ν)t1 − ψ1/θ1 ≥ A2 (16)

A2 ≥ νts1 (17)

A2 ≥ t1 (19)

With A2 ≡ νθ2t
s
2+(1−νθ2)t2−ψ2, which is the agent’s payoff from running test 2 given that the first signal

is inconclusive.

2.2 Optimal Contracts

First, consider the case that only one test is performed. We characterize the optimal contract and show that

the least efficient test – test B (assumption 2) – requires higher transfers to the agent.

2.2.1 Single Test

For a given test i = {A,B}, the principal minimizes the expected transfer to the agent subject to participation

constraint, limited liability constraints, moral hazard and adverse selection constraints. The contract consists

of the following payments: if a positive signal is reported, the project is implemented and the agent receives

tsi if it succeeds and tfi if it fails; if a negative signal is reported, the project is rejected and the agent receives

ti; if a signal is inconclusive, the project is rejected and the agent receives t∅i .

The objective (the expected transfer to the agent) is as follows:

min
tsi ,t

f
i ,ti,t

∅
i

θi[νt
s
i + (1− ν)ti] + (1− θi)t

∅
i

Adverse selection constraints ensure that the signals found are reported truthfully:

ti ≥ t∅i , (21)

t∅i ≥ ti. (22)
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Hence, optimally, t∅i = ti. We use this to simplify the objective:

min
tsi ,t

f
i ,ti

νθit
s
i + (1− νθi)ti

and constraints further:

tsi ≥ t∅i = ti, (23)

t∅i ≥ νtsi + (1− ν)tfi . (24)

Moral hazard constraints ensure that the agent runs the test instead of simply betting:

νθit
s
i + (1− νθi)ti − ψi ≥ νtsi + (1− ν)tfi , (25)

νθit
s
i + (1− νθi)ti − ψi ≥ t∅i = ti. (26)

The transfer tfi only appears on the RHS of (24) and (26), optimally tfi = 0. We need only find the optimal

tsi and ti.

Proposition 2. The optimal contract for a given single test i = A,B is unique and it is defined by (24),

(25) and (26) binding. The optimal transfers are as follows:

tsi =
ψi

ν(1− ν)θi
,

tfi = 0,

ti = t∅i =
ψi

(1− ν)θi
.

The rent to the agent is ti.

Proof: with ti = t∅i and tfi = 0, the four remaining constraints simplify to:

tsi ≥ ti (23)

ti ≥ νtsi (24)

(1− νθ)ti ≥ ν(1− θ)tsi + ψi (25)

tsi ≥ ti +
ψi

νθi
> tsi (26)

(26) binds and (23) is slack; then (24) and (25) are equivalent and bind also as the only constraints with

ti on the LHS. Participation and limited liability constraints are satisfied. The rent to the agent is defined

by (26) binding - the agent could report a negative or an inconclusive signal without running the test and

secure a payment ti. ■

Corollary 1. Under assumption 2, transfers to the agent and his rent for i = B are higher than for i = A.

If the optimal transfers for i = B are used together with test A, the agent’s payoff is higher than his rent

with test B.
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2.2.2 Most Efficient Test First

We proceed with the case of running up to two tests. If the order of collected signals is (σ1, σ2) = (σA, σB),

the most efficient test comes first, and we refer to this order as AB. If the order of collected signals is

(σ1, σ2) = (σB , σA), the least efficient test comes first, and we refer to this order as BA.

At first, one might try to simply have the optimal contract from proposition 2 for signal 1 followed by

the optimal contract for signal 2. However, three additional constraints must be satisfied. Constraint (4):

ts1 ≥ ts2 needs to hold – otherwise, postponing a positive signal is attractive; constraint (5): t1 ≥ t2 as well

– otherwise, postponing a negative signal is attractive; and, finally, constraint (19): A2 ≥ t1 – otherwise the

agent would rather report a negative signal than an inconclusive signal after test 1 and run test 2.

Consider the AB order. Test 2 is the least efficient test and it is the test that is most problematic in terms

of incentive provision. Incentives to skip test 2 are high and respective moral hazard constraints (17) and

(19) will bind, resulting in high transfers after test 2: ts2 and t2. Since these transfers are high, incentives to

postpone conclusive signals found after test 1 are intensified and respective adverse selection constraints (4)

and (5) will bind, resulting in high transfers after test 1: ts1 and t1. With transfers this high, the agent is

more that ensured not to skip test 1 – moral hazard constraint (16) is slack.

Proposition 3. The optimal contract for the AB order is unique and it is defined by (4), (5), (9), (17) and

(19) binding. The optimal transfers are as follows:

ts1 = ts2 =
ψB

ν(1− ν)θB
,

tf1 = tf2 = 0,

t1 = t2 = t =
ψB

(1− ν)θB
.

The expected transfer to the agent is E[t̃] =
ψB

θB

(
θA + θB − θAθB +

1

(1− ν)

)
.

Proof: consider lemma 1 which states the simplified optimization problem of the principal. First, ignore (9)

and (16), check these afterwards. Constraint (4) resp. (5) will bind as the only constraint with ts1 resp. t1

on the LHS. Then, (19) resp. (17) binds as the only constraint with ts1 resp. t1 on the LHS. Hence, νts1 = t1

and (9) binds. Check (16):

νts1 + (1− ν)t1 − ψ1/θ1 ≥ A2
(19)
= t1

With ts1 = t1 +ψ2/(νθ2) from (4), (5) and (19) binding, (16) is satisfied for ψ2/θ2 ≥ ψ1/θ1, which is true for

the AB order under assumption 2. Moreover, (16) is slack for ψ2/θ2 > ψ1/θ1. ■

Corollary 2. All optimal transfers for the AB order correspond to the respective optimal transfers for a

single test i = B.

Test B is test 2, its optimal contract, i.e. ts2 and t2, is, in fact, the optimal contract for a single test i = B.

Test B is less efficient than test A, so the agent extracts more rent from this contract than from the optimal

contract with the single test being test A. If the principal would start with the single test contract i = A for

test 1, the agent has an incentive to move to test 2 irrespective of what he actually observes. As a result,
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the principal has no choice but to offer the same payments for test 1 as for test 2. Thus, the contract for

test 1, i.e. ts1 and t1, is also the single test contract for test B.

2.2.3 Least Efficient Test First

Now consider the BA order. Test 1 is the least efficient test and it is the test that is most problematic in

terms of incentive provision. Incentives to skip test 1 are high and the respective moral hazard constraint

(16) will bind, resulting in high transfers after test 1: ts1 and t1. Since these transfers are high, incentives to

skip test 2 and bet are intensified and respective moral hazard constraints (17) and (19) will bind. There

is, however, little incentive to postpone a conclusive signal from test 1, the respective adverse selection

constraint (4) will be slack and we assume that (5) will bind – this represents one possible solution.

Proposition 4. The optimal contract for the BA order is not unique but it can be defined by (5), (16), (17)

and (19) binding. The optimal transfers are as follows:

ts1 =
ψB

ν(1− ν)θB
,

ts2 =
ψB

(1− ν)θB
+

ψA

νθA
< ts1,

tf1 = tf2 = 0,

t1 = t2 = t =
ψB

(1− ν)θB
.

The expected transfer to the agent is E[t̃] =
ψB

θB

(
θB +

1

(1− ν)

)
+ (1− θB)ψA.

Proof: consider lemma 1 which states the simplified optimization problem of the principal. First, ignore (4)

and (9), check these afterwards. Constraint (16) binds as the only constraint with ts1 on the LHS. We can

find such a contract where (5) is binding: we can increase t2 till (5) binds, whilst decreasing ts2 as to keep A2

constant. Then, (19) resp. (17) binds as the only constraint with ts1 resp. t1 on the LHS. Constraint (4) is

satisfied for ψ1/θ1 ≥ ψ2/θ2, which is true for the BA order. Moreover, (4) is slack for ψ1/θ1 > ψ2/θ2. With

νts1 = t1 and (4) slack, constraint (9) is satisfied and slack. ■

Corollary 3. All optimal transfers for the BA order but ts2 correspond to the respective optimal transfers

for a single test i = B.

This time, test B is test 1, its optimal contract, i.e. ts1 and t1, is the optimal contract for a single test i = B.

The agent does not want to move to test 2 because the rent is lower if we use the single test contract for test

A. The agent does not have an incentive to postpone any conclusive signals either but the agent may claim

to have found a negative signal in test 1 when the first signal was inconclusive. Hence, the principal needs

to increase the agent’s rent for test 2, and there are many ways to do it. One possible way is to increase t2

up to t1, which is the optimal single test payment for a negative signal from test B. Notice, however, that

we need not increase ts2 all the way up to ts1, the latter being equal to the optimal single test payment for a

positive signal from test B.

74



3 Optimal Order of the Tests

Having characterized the optimal contracts for both test orders: for the most efficient test first (AB) in

proposition 3 and the least efficient test first (BA) in proposition 4, we find the optimal order of the tests.

The principal’s problem is to find the order of the test which maximizes the project’s expected payoff net of

the expected transfer to the agent:

p(σ1 ∨ (∅1, σ2))(X − I)− E[t̃]

= [νθ1 + ν(1− θ1)θ2] (X − I)− E[t̃],

which can be written as:

[νθ1 + νθ2 − νθ1θ2] (X − I)− E[t̃].

Note that only the last term (the expected transfer to the agent) differs across test orders. Indeed, whether

the project is undertaken and the likelihood of its success do not depend on the order of the tests. Hence,

the optimal solution minimizes the expected transfer E[t̃].

Theorem 1. While it is first-best optimal to start with the most efficient test, agency considerations imply

that it is optimal to start with the least efficient test – BA is optimal.

Proof: consider propositions 3 and 4, and calculate the difference between the optimal expected transfers

to the agent under the AB order and under the BA order:

∆ ≡ ψB

θB

(
θA + θB − θAθB +

1

(1− ν)

)
−

[
ψB

θB

(
θB +

1

(1− ν)

)
+ (1− θB)ψA

]
= θA(1− θB)

ψB

θB
− θA(1− θB)

ψA

θA

= θA(1− θB)

(
ψB

θB
− ψA

θA

)
≥ 0

The inequality holds under assumption 2. ■

Resolving a combined moral hazard and adverse selection problem when delegating running up to two tests

to the expert leads to a deviation from the first-best optimal order, where the principal’s objective was

merely to avoid the cost of test 2. When the agent has to be motivated to actually run the tests and to

report the generated signals truthfully with the help of corresponding transfers from the principal, starting

with the least efficient test results in a cheaper incentive provision. In fact, all transfers under the BA order

are less-or-equal to those under the AB order, hence, the expected transfer is always lower.

75



Conclusion

If the principal runs up to two tests himself, it is first-best optimal to start with the most efficient test in

order to avoid the cost of the second test. However, if running up to two tests is delegated to an expert,

we show that the optimal test order is reverse: due to agency frictions, it is optimal to start with the least

efficient test. The interplay of dynamic incentive constraints implies that it is cheaper to make the expert

run the least efficient test first than to ensure that he does not skip the least efficient test in the second

round if he starts with the most efficient test.

We arrive at this result by first defining optimal compensation to the agent such that he is incentivized to

actually run the tests and report the generated signals truthfully under both test orders. Despite having to

take care of multiple possible deviations from the part of the agent, we are able to substantially simplify this

combined moral hazard and adverse selection problem. When the optimal expected transfers are defined for

both test orders, we compare the two and find which test order results in the cheapest incentive provision.

It is worthwhile to study the optimal number of tests, since so far we have assumed that running up to two

tests is indeed desirable: it could be the case that incentive provision becomes so costly, that the principal

would be better off by delegating to run one test only (the one that results in the highest expected payoff

net of the expected transfer to the agent).

Richer signal structures could be interesting, too, although according to our attempts, extending the model

to a general case seemes to be intractable. Nonetheless, we believe that our model provides a suitable

framework to study neighbouring questions with regards to delegated expertise: introducing multiple agents

to study collusion or thinking about the set-up costs for the testing procedures, which are born by the

experts, to name a couple.
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Abstract

A firm faces the following search problem: before deciding whether to invest in a project, it can

find some evidence for the project’s potential success by analyzing up to two data sets differing in

the cost of analysis and the precision of their findings. The firm can stop the search after a positive

result. We characterize the order of the data sets in which the search should be performed. The

first-best is to start with the data set that has the highest precision-to-cost-of-analysis ratio.

However, if the firm delegates analyses to a data scientist, we find that starting with the data

set that has the lowest precision-to-cost-of-analysis ratio is optimal when the project is a priori

sufficiently likely to be of bad quality. This result holds even if analyses findings are correlated.
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Introduction

Data analytics is used extensively when it comes to assessing the risks of potential investments. Before

introducing a new drug, its safety and efficacy are tested, very often this happens in multiple facilities (as

a part of multi-site clinical trials1); before scaling up a new marketing strategy, its effect is studied on the

basis of a small sample of stores2; even policy experiments take place on a small scale before a larger scale

roll-out takes place3.

Data resulting from such studies can vary across the sites from which it was collected: data size might differ

(e.g. the number of participating patients in a new drug testing), diverse control variables might have been

chosen for a particular study (e.g. when assessing a new policy various data on the participants’ background

may have been collected via questionnaires); data may be encoded using different software. Nonetheless, it

is to be expected that the results coming from different sources still reveal similar causalities, i.e. the results

are correlated.

Analyzing these heterogeneous data sets can be challenging and requires a certain set of technical skills,

especially in the case of fine-grained data (George et al. (2014), De Mauro et al. (2018)), that is why

statisticians or data scientists are often involved. Be it in-house expertise or an outside consultancy, the

work of the experts and their interpretation of the results are often not easily or cheaply verifiable. In fact,

when data analytics is delegated, both moral hazard and adverse selection incentive issues seem to arise

(Feldman et al. (2017)). This paper addresses the peculiarities of delegated data analytics mentioned above

and frames them as a part of a search problem.

Search problems and their applications in general have been vastly studied (see e.g. McCall (1970), Weizman

(1979), McCardle (1985)). Delegated search in particular seems to be a frequent topic in the more recent

literature as well. Bergemann & Hege (2005) derive optimal contracts for relationship and arm’s-length

financing, where the entrepreneur controls the allocation of funds over time (these investments can be under-

stood as experiments providing information on the project’s quality). Lewis & Ottaviani (2008) characterize

a sequence of short-term contracts in both a monitored and a delegated search for the best alternative.

Lewis (2012) characterized optimal contract under delegated search for a better alternative which generates

additional surplus to the principal. Xiao et al. (2022) find the optimal information policy for a delegated

search when only the principal observes search outcomes.

Ulbricht (2016) derives optimal compensation for a combined moral hazard and adverse selection problem

with an expert who is ex-ante better informed about search prospects than the principal. Gerardi & Maestri

(2012) model dynamic information acquisition by the agent, using symmetric tests for each period and

characterizing the optimal length of the information acquisition process and the appropriate optimal contacts.

Choi & Han (2023) consider a continuous time setting and study delegated information acquisition with both

moral hazard and adverse selection as well but they introduce noisy signals. Distinctiveness of our paper

lies in the fact that we study the optimal order of the data sets which are offered for the analysis as means

to resolve incentive issues. Additionally, we focus on heterogeneous data sets.

1Defined by the NIH as: https://www.nhlbi.nih.gov/grants-and-training/funding-opportunities/foa-Investigator-Initiated-
Multi-Site-Clinical-Trials-FAQ

2E.g. Uniqlo trying out their print service at a limited number of stores: https://www.uniqlo.com/us/en/special-
feature/utme?srsltid=AfmBOoq-YlJkAK8Q6ypXDK013wZ1TH9qjD5l49GCeyGR4LTuUpL8riJ

3See policy experimentation examples on https://peep.pt/policy-experimentation/
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We model two-period delegated search in the following fashion: a risk-neutral principal offers up to two data

sets to a risk-neutral agent for sequential analysis. He does so in attempt to learn about a risky project’s

quality before investing. The data sets differ in the cost of analysis and in the precision of their findings, i.e.

in how likely are the data sets to reveal that the project is of good quality. Even good quality projects can,

however, fail with an exogenous probability, i.e. it is not possible to assure project’s success through data

analytics alone. The principal must decide which data set to offer first. At the beginning of each period, the

agent then decides whether or not to run the analysis, skip it or stop the search altogether. In particular,

once a positive result is found, the search can terminate. In the baseline model we consider analyses findings

which are independent conditional on the project’s quality. In the extended model we introduce positive

correlation.

Absent of incentive provision issues, it is first-best optimal to always start with the data set which has the

highest precision-to-cost-of-analysis ratio: this way it is possible and potentially cheap (in terms of the cost of

analysis) to encounter a positive signal early on and stop the search as to avoid running the second analysis.

However, due to the delegation of data analytics, the agent must be incentivized to run the analyses and

report the findings truthfully. In order to find the optimal search order in the presence of this combined

moral hazard and adverse selection problem, we first characterize appropriate compensation schemes for

both data set sequences, and then find the order which results in the cheapest incentive provision.

We find that it is optimal to start with the data set that has the lowest precision-to-cost-of-analysis ratio

if the project is a priori sufficiently likely to be of bad quality. This result holds even if analyses findings

are positively correlated. It is optimal to deviate from the first-best because if the data set with the highest

precision-to-cost-of-analysis ratio is offered early during the search process, the incentive to skip the second

analysis is very high, since the project potentially being of bad quality is not likely to generate a positive

result during the second analysis if it hasn’t generated one during the first analysis. Making sure that

the second analysis in not skipped requires high payments for analysing the second data set. In this case,

however, adverse selection issues intensify: the agent might want to postpone announcing having found a

positive result during the first analysis. Altogether, incentive provision becomes too expensive under the

first-best search order if the project is a priori sufficiently likely to be of bad quality.

The paper proceeds as follows. Section 1 defines the set-up and characterizes heterogeneous data sets.

Section 2 finds the optimal search order in the absence of incentive provision issues. Section 3 characterizes

optimal compensation for the two possible data set sequences in the presence of moral hazard and adverse

selection. Section 4 finds the optimal search order. Section 5 discusses the extended model when analyses

findings are positively correlated. The last section concludes. The appendix contains all the proofs.
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1 Model

A risk-neutral principal must decide whether to undertake a risky investment requiring an outlay I > 0.

The project can either succeed or fail: it generates a single payoff X̃ equal to X > 0 if it succeeds and 0 if

it fails. The project’s quality Q can be good (Q = G), in which case it succeeds with probability q, or bad

(Q = B), in which case it fails with certainty. Based on the prior probability that the project is good ν, the

principal rejects the project, i.e. νqX − I < 0.

Before making a decision, the principal can delegate the assessment of the project’s quality to an agent. The

agent is risk-neutral and unbiased. The agent can search for evidence that the project is good from different

sources of information, i.e. data sets. Specifically, we assume that the agent can analyze up to two data sets

A resp. B at a cost ψA resp. ψB (depending on data size or how the data is encoded). The data sets are

imperfect such that if the project is good, data set S ∈ {A,B} reveals this with probability θS ∈ (1/2, 1),

referred to as analysis precision (which could, for instance, in case of regression represent the explanatory

power of the model or the quality and quantity of control variables).

Denote “good news” from data set S by σS = σS and “bad news” (no positive signal) by σS = σS . We have:

θS ≡ Pr[σS = σS |Q = G] > 1/2,

and we assume no false positives, i.e.

Pr[σS = σS |Q = B] = 0.

In contrast with the previous paper “Dynamic information collection: Two-sided tests”, we allow for false

negatives, i.e. Pr[σS = σS |Q = G] = 1− θS . Thus, if a negative result is observed, the firm does not know

for sure whether a bad quality project generated it or a good quality project, so the firm rejects the project

based on soft information:

Figure 1: Signal structure.

In the baseline model, the findings are independent conditional on the project’s quality, and without loss of

generality, we assume that data set A has a higher precision-to-cost-of-analysis ratio than data set B:

Assumption 1. θA/ψA ≥ θB/ψB.
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The principle chooses the order in which to analyze the data sets sequentially,4 and we refer to the sequence

AB resp. BA as the sequence in which the principal starts with data set A resp. B. Given a sequence,

the agent essentially faces a two period search problem. At the beginning of each period, the agent decides

whether or not to run the analysis, skip it or stop the search altogether. The agent updates his belief about

the quality of the project according to Bayes’ rule as the analyses fail to find evidence that the project is

good.

Specifically, for i ∈ {1, 2} we denote by pi the probability that the ith data set reveals the project to be

good, given that no previous data set has revealed it thus far. Similarly, we denote by νi the agent’s belief

that the project is good, given that no previous data set has revealed it thus far5. We have pi = θiνi−1 and

νi =
νi−1(1− θi)

[νi−1(1− θi) + 1− νi−1]
for i ∈ {1, 2}, where ν0 = ν and θi ∈ {θA, θB} depending on the sequence.

4There is no discounting, hence, it is (at least weakly) optimal to search sequentially.
5As the firm conducts analyses sequentially and fails to find positive results, it gets more pessimistic about the project

quality (in line with the literature on search models).
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2 First-Best Search Order

At first best, the objective of the principal is to maximize the project’s expected payoff net of search costs.

To focus on the more interesting situations, we assume that both analyses are valuable:

Assumption 2.

p2(qX − I)− ψ2 ≥ 0

This means in particular that if the first data set fails to reveal that the project is of good quality, analyzing

the second one is valuable irrespective of the sequence. The findings being conditionally independent,

assumption 2 also implies that analyzing the first data set is valuable.6

Given a sequence, the optimal decision rule corresponds to a classical two-period optimal search policy: the

principal continues the search as long as analysis fails, but stops the search altogether and implements the

project if an analysis finds the project to be of good quality. If all analyses fail at the end of the search, the

principal rejects the project.

Now, consider the optimal search order. The principal maximizes the project’s expected payoff net of search

cost:

[p1 + (1− p1)p2] · (qX − I)− ψ1 − (1− p1)ψ2,

which can be written as:

[1− (1− p1)(1− p2)] · (qX − I)− (ψ1 + ψ2) + p1ψ2.

Note that only the last term depends on the order in which the data sets are analyzed. Indeed, the order

matters only in that the first successful analysis saves the cost ψ2 of running the second analysis if it reveals

the project to be good which occurs with probability p1. Thus, starting with data set A is better if and only

if νθAψB ≥ νθBψA.

We therefore obtain the following first-best:

Proposition 1. The first-best search order is AB: starting with the data set that has the highest precision-

to-cost-of-analysis ratio.

6The latter implication only requires that the findings are not negatively correlated so p2 ≤ νθ2 for both sequences.
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3 Optimal Contracts

The agent enters a contract with the principal to analyze the data sets sequentially and receive transfers

in return. The agent must be provided with incentives to run the analyses (moral hazard) and report the

findings truthfully (adverse selection), since we assume that neither the analyses themselves, nor the findings

are observable to the principal. We assume limited liability as well: in this case the agent can no longer be

made a residual claimant to the project and pay to the principal in case the project is implemented and fails.

We begin by characterizing the optimal incentive contract for a given sequence, i.e. AB and BA. The

efficient decision rule is as follows: analyze data set 1; if it reveals the project to be good, stop the search,

undertake the project and do not analyze data set 2; otherwise, run analysis 2 and undertake the project

only if it reveals the project to be good.

By the Revelation Principle, we can concentrate on direct incentive-compatible mechanisms. A direct mech-

anism consists of transfers from the principal to the agent conditional on his reports and, if the project is

implemented, on its outcome. Since the project’s outcome is observed only if it is implemented, a contract

consists of five transfers {ts1, t
f
1 , t

s
2, t

f
2 , t}: if the agent reports that data set 1 revealed the project to be

good, the search stops, the project is implemented and the agent is paid ts1 if the project succeeds or tf1 if it

fails. Otherwise, the agent continues the search and analyses data set 2. If he then reports that analysis 2

revealed the project to be good, the project is implemented and the agent is paid ts2 if the project succeeds

or tf2 if it fails. Otherwise, the project is rejected and the agent is paid t. Incentive-compatibility ensures

that the agent has the incentive to run the analyses as per the efficient decision rule and to report findings

truthfully.

The principal’s expected payoff equals the project’s expected payoff net of the expected transfer to the

agent. Since we focus on contracts implementing the efficient decision rule, the project’s expected payoff is

a constant equal to

[p1 + (1− p1)p2] · (qX − I) = (1− (1− p1)(1− p2)) · (qX − I),

maximizing the principal’s expected payoff amounts to minimizing the expected transfer to the agent:

min
{ts1, t

f
1 , t

s
2,t

f
2 ,t}

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t. (1)

Indeed, if the first data set reveals the project to be good, which occurs with probability p1, the project is

implemented. Good project succeeds with probability q, in which case the agent receives ts1. Otherwise, the

project fails and the agent receives tf1 . If the first analysis does not reveal the project to be good, but the

second does, which occurs with probability (1− p1)p2, the project is implemented after the second analysis.

The project succeeds with probability q, in which case the agent receives ts2. Otherwise, the project fails and

the agent receives tf2 . If neither analysis revealed the project to be good, which happens with probability

(1− p1)(1− p2) the project is rejected and the agent receives t.

This optimization is subject to a number of constraints – the agent’s participation constraint, the constraints

that limited liability imposes on the contract, as well as incentive compatibility constraints – which we detail.
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The agent must agree to the contract, i.e., his participation constraint must be satisfied:

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2 ≥ 0. (2)

Limited liability requires that all transfers be non-negative:

(i) ts1 ≥ 0, (ii) tf1 ≥ 0, (iii) ts2 ≥ 0, (iv) tf2 ≥ 0, (v) t ≥ 0. (3)

The contract must also satisfy several incentive compatibility constraints, i.e., motivate the agent to actually

run the analyses and to report the findings truthfully.

Having run analysis 1, which did not reveal the project to be good, and having then run analysis 2, the

agent should report the second finding truthfully, be it “good news”, i.e. the second analysis revealed the

project to be good, or “bad news”, i.e. the second analysis did not reveal the project to be good:

qts2 + (1− q)tf2 ≥ t, (4)

t ≥ ν2qt
s
2 + (1− ν2q)t

f
2 . (5)

Having run analysis 1, which did not reveal the project to be good, the agent should run analysis 2 instead

of making an uninformed second report, be it “good news” or “bad news”:

−ψ2 + p2[qt
s
2 + (1− q)tf2 ] + (1− p2)t ≥ ν1qt

s
2 + (1− ν1q)t

f
2 , (6)

−ψ2 + p2[qt
s
2 + (1− q)tf2 ] + (1− p2)t ≥ t. (7)

Having run analysis 1, which did not reveal the project to be good, the agent should report it truthfully and

run analysis 2, instead of misreporting the first finding as “good news”:

−ψ2 + p2[qt
s
2 + (1− q)tf2 ] + (1− p2)t ≥ ν1qt

s
1 + (1− ν1q)t

f
1 . (8)

Having run analysis 1, which revealed the project to be good, the agent should not misreport it as “bad

news”, followed by an uninformed second report, be it “good news” or “bad news”7:

qts1 + (1− q)tf1 ≥ qts2 + (1− q)tf2 , (9)

qts1 + (1− q)tf1 ≥ t. (10)

7The agent has nothing more to learn about the project following a positive finding. Hence, we do not need to consider the
possibility that he runs analysis 2.
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The agent should not skip analysis 1, make an uninformed “bad news” report, to run analysis 2 and make

a recommendation based only on the second finding:

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2

≥ −ψ2 + νθ2[qt
s
2 + (1− q)tf2 ] + (1− νθ2)t.

(11)

The agent should not skip both analyses and make an uninformed report, be it “good news” coming from

the first analysis, “bad news” from analysis 1 and “good news” from analysis 2 or “bad news” from both

analyses:

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2

≥ νqts1 + (1− νq)tf1 ,
(12)

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2

≥ νqts2 + (1− νq)tf2 ,
(13)

p1[qt
s
1 + (1− q)tf1 ] + (1− p1)p2[qt

s
2 + (1− q)tf2 ] + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2 ≥ t. (14)

We first note that it is (weakly) optimal not to reward the agent for having advised to undertake a project

which eventually failed. Indeed, a contract incentivizes the agent with rewards when the project’s outcome

aligns with his advice.

Lemma 1. An optimal contract exists such that tf1 = tf2 = 0.

A number of the other constraints can be shown to be slack. The agent’s participation constraint (2) is

implied by the limited liability constraints (3.v) and, for instance, incentive compatibility constraint (14).

Indeed, irrespective of the contract, the agent can always opt to incur no cost and collect non-negative

transfers, thus ensuring himself a non-negative expected payoff. Constraints (4), (5) and (8) ensuring the

agent does not misreport his findings are implied by constraints (6), (7) and (12) ensuring he runs the

corresponding analysis. Indeed, if the agent intends to misreport a finding, he will not incur the cost of

running the analysis in the first place.

The transfer for reporting “good news” after analysis 1 must exceed that for reporting “good news” after

analysis 2 to avoid postponement of the report (constraint (9)). Together with the fact that the latter

has to be non-negative (constraint (3.iii)), this implies that the former is non-negative (constraint (3.i)).

Moreover, if the agent runs no analysis, making an uninformed report about “good news” after analysis 1 is

more tempting than making an uninformed report about “good news” after analysis 2: constraints (9) and

(12) imply constraint (13).

The transfer ts2 for advising to implement the project after “good news” from analysis 2 must exceed that for

rejecting the project - otherwise the agent would always reject the project (constraint (4)). Together with

the fact that the latter has to be non-negative (constraint (3.v)), this implies that the former is non-negative

(constraint (3.iii)). Moreover, constraint (4) together with constraint (9) imply constraint (10).

Finally, if the agent anticipates skipping analysis 2, reporting “bad news” and rejecting the project, he will

not incur the cost of running any analyses and instead advise against the project - constraint (14) is slack.
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Lemma 2. Constraints (2), (3.i), (3.iii), (3.v), (4)-to-(6), (8), (10), (13) and (14) are slack.

The problem simplifies to:

min
{ts1, ts2, t}

p1qt
s
1 + (1− p1)p2qt

s
2 + (1− p1)(1− p2)t

subject to

(1− p1)p2qt
s
2 ≥ (1− p1)ψ2 + (1− p1)(1− p2)t (7)

qts1 ≥ qts2 (9)

p1qt
s
1 + (1− p1)p2qt

s
2 + (1− p1)(1− p2)t− ψ1 − (1− p1)ψ2 ≥ −ψ2 + νθ2qt

s
2 + (1− νθ2)t (11)

(1− p1)p2qt
s
2 + (1− p1)(1− p2)t ≥ ψ1 + (1− p1)ψ2 + (1− p1)ν1qt

s
1 (12)

The remaining constraints are as follows: constraint (7) ensures the agent does not skip analysis 2, which

requires ts2 to be large enough; constraint (9) ensures he does not postpone reporting “good news” after

analysis 1 as “good news” after analysis 2, which requires ts1 to exceed ts2; constraint (11) ensures he does not

skip analysis 1, which requires ts1 to be large enough; constraint (12) ensures he does not skip both analyses

making an uninformed report about “good news” after analysis 1, which requires t to be large enough.

Proposition 2. The optimal contract is such that constraints (7) and (12) bind. Moreover:

If
θ2/ψ2

θ1/ψ1
≤ ν + (1− ν)

(1− θ2)

(1− θ1)
, constraint (9) binds, the optimal transfers are:

ts⋆1 = ts⋆2 =
1

q
·
[
ψ1

θ1
· θ1
ν(1− ν)

+
ψ2

θ2
· (1− νθ1)

2

ν(1− ν)(1− θ1)

]
,

tf⋆1 = tf⋆2 = 0,

t⋆ =
ψ1

θ1
· θ1
(1− ν)

+
ψ2

θ2
· 1− νθ1

1− ν
,

and the expected transfer is:

E
[
t̃⋆
]
= [ψ1 + (1− p1)ψ2] + νqts⋆1 .

Otherwise, constraint (11) binds, the optimal transfers are:

ts⋆1 =
1

q
·
[
ψ1

θ1
· 1

ν(1− ν)
+
ψ2

θ2
· θ2(1− νθ1)

ν(1− θ1)

]
,

ts⋆2 =
1

q
·
[
ψ1

θ1
· 1

(1− ν)
+
ψ2

θ2
· 1− νθ1 + νθ2(1− θ1)

ν(1− θ1)

]
,

tf⋆1 = tf⋆2 = 0,

t⋆ =
ψ1

θ1
· 1

(1− ν)
+
ψ2

θ2
· θ2,

and the expected transfer is:

E
[
t̃⋆
]
= [ψ1 + (1− p1)ψ2] + νqts⋆1 .
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Note that the exogenous probability of a good project succeeding, i.e. q, is only relevant as a scaling factor

of the transfers ts1 and ts2. Morevoer, the expected transfer consists of two parts. The terms [ψ1+(1−p1)ψ2]

compensate the agent for the cost of running the analyses. The other term is the agency rent, i.e., an

additional payoff due to incentive issues, which ensures that the agent gets a strictly positive expected

payoff, at a cost to the principal. Since it stems from incentive problems, its expression depends on which

constraints bind.
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4 Optimal Search Order

We have characterized the optimal contract for both possible sequences, i.e. AB and BA. We now charac-

terize the optimal search order, and, in particular, whether and when it deviates from the first-best.

The optimal sequence of data sets maximizes:

[p1 + (1− p1)p2] · (qX − I)− E[t̃⋆] = (1− (1− p1)(1− p2)) · (qX − I)− E[t̃⋆].

Note that only the expected transfer differs across sequences. Indeed, whether the project is undertaken and

the likelihood of its success do not depend on the order of the data sets. Hence, the optimal order is that

which minimizes the expected transfer E[t̃⋆].

Theorem 1. A unique threshold ν⋆ ∈ [0, 1) exists such that sequence BA is optimal if and only if ν ≤ ν⋆.

Further, ν⋆ = 0 if and only if
ψB/θB
ψA/θA

<
(1− θA)

(1− θB)
and ν⋆ solves the following equation otherwise:

(1− ν)


ψB/θB
ψA/θA
(1− θA)

− 1

(1− θB)

− θAν

(
1

(1− ν)
− (1− θB)

)(
ψB/θB
ψA/θA

− 1

)
= 0.

When the agent has to be motivated to actually run the analyses and report the findings truthfully, starting

with the data set with the lowest precision-to-cost-of-analysis ratio is optimal provided that the project is a

priori sufficiently likely to be of bad quality.

Corollary 1. If ν ≤ ν⋆, constraint (9) binds for sequence AB, whilst constraint (11) binds for sequence

BA.

When deviating from the first-best is optimal, transfer ts⋆1 is defined by constraint (9) for sequence AB: it

ensures that the agent does not postpone reporting “good news” from analysis 1; and by constraint (11) for

sequence BA: it ensures that the agent does not skip analysis 1 to run analysis 2.

For sequence AB, data set 2 is the one with the lowest precision-to-cost-of-analysis ratio, and so the temp-

tation for the agent to extrapolate from data set 1 and not run analysis 2 is high. For sequence BA, data set

2 is the one with the highest precision-to-cost-of-analysis ratio, and so the temptation for the agent to skip

analysis 1 and run analysis 2 only is high. Ensuring that the former deviation is not pursued by the agent

for the AB sequence is more costly for the principal than ensuring that the latter deviation is not pursued

by the agent for the BA sequence, if we expect the project to be a priori of bad quality.

Corollary 2. If ν ≤ ν⋆, transfer ts⋆1 is higher for sequence AB than for sequence BA.

If the project is a priori likely to be of bad quality, i.e. if ν is low, “good news” are unlikely. Consider

sequence AB and assume that the agent has analyzed data set 1 and it did not reveal the project to be

good. The agent’s temptation to skip analysis 2 is high for two reasons: first, data set 2 has the lowest

precision-to-cost-of-analysis ratio; and second, analysis 2 is unlikely to reveal that the project is good.
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Thus, the agent must be incentivized to run analysis 2, which, in particular, requires a high ts⋆2 for potentially

reporting “good news”. At the same time, ts⋆1 needs to match ts⋆2 to satisfy constraint (9), i.e. for the agent

not to postpone reporting “good news” after analysis 1. The resulting transfer ts⋆1 for the AB sequence is

higher than what would have been needed to incentivize the agent to run analysis 1, and it is also higher

than the value of ts⋆1 required for the BA sequence to incentivize the agent not to skip analysis 1.

In fact, not only is the transfer ts⋆1 is higher for sequence AB than for sequence BA, the difference between

these transfers surpasses the difference in the expected cost of analysis, i.e. ψ1+(1−p1)ψ2, between sequence

AB and sequence BA. The latter is always negative since data set A has a higher precision-to-cost-of-analysis

ratio than B. The difference in the expected cost of analysis alone would always lead to optimality of the

AB sequence - as in the first-best.
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5 Extension: Correlated Findings

We now consider the case where the findings from analyses can be correlated, which is a likely scenario in

the context of data analytics. Even if the data sets are heterogeneous, they sometimes reveal similar results

(be it two data sets coming from two different hospitals testing the efficacy of the same drug; or two districts

testing the efficacy of the same communal policy).

We model correlation in the following fashion: for θj ≥ θi (data set j is more likely to reveal the project to

be good than data set i), define χ ∈ [θj , 1] as the conditional probability that data set j reveals the project

to be good given that data set i has revealed the project to be good. For χ = θj , analyses findings are

conditionally independent (as in the baseline model). For χ = 1, the data set which is least likely to reveal

the project to be good is redundant.

As the findings from the analyses are now interdependent, we need to adjust the expressions for p2 (probability

that data set 2 reveals the project to be good, given that data set 1 has not revealed it) and ν2 (the agent’s

belief that the project is good, given that neither of the analyses have revealed it thus far) in the constrained

optimization from the baseline model, accounting for the role of the correlation parameter.

Expressions for p1, ν1 and the first-best remain unchanged; no additional incentive constraints appear due

to the correlated analyses findings. We redefine p2 and ν2 to account for correlation:

p2 =

νθ2

(
1− χ · min [θ1, θ2]

θ2

)
1− p1

,

ν2 =
ν(1− θ1)(1− θ2)

1− p1 − νθ2

(
1− χ · min [θ1, θ2]

θ2

) .

The optimal search order is similar to the baseline model although its derivation becomes more tedious:

Theorem 2. Threshold ν⋆ ∈ [0, 1) exists such that: if ν ≤ ν⋆, sequence BA is optimal; otherwise, sequence

AB is optimal.

ν⋆ solves



(1−νθB)(χ−νθA)θA
(1−ν)(θA−θBχ)

ψA

θA
+ 1

(1−ν)
ψB

θB
− νθBψA

−
(

ν
(1−ν)ψA + (1−νθA)2

(1−χ)(1−ν)
ψB

θB
− νθAψB

)
= 0 if θA ≥ θB

θA(1−νθB)
(1−χ)(1−ν)θB [(1− νθB)− (1− χ)] ψA

θA
+ 1

(1−ν)
ψB

θB
− νθAθB

ψA

θA

−
(

νθA
(1−ν)

ψA

θA
+ (1−νθA)2(

1− θA
θB
χ
)
(1−ν)

ψB

θB
− νθAθB

ψB

θB

)
= 0 if θA < θB

To study how the threshold ν⋆ changes if we increase the correlation between the two analyses findings from

χ = max{θA, θB} to χ = 1, we distinguish between two cases: data set A being more precise than B and

vice versa. Data set A’s precision-to-cost-of-analysis ratio still exceeds that of B per assumption 1.
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Conjecture 1. For θA ≥ θB, ν
∗ is increasing in χ. For θA < θB, ν

∗ is non-monotone in χ.

(a) θA = 0.65 ≥ θB = 0.55 (b) θA = 0.55 < θB = 0.65

Figure 2: Effect of χ on ν⋆.

If data set B is less precise than A, as the correlation between the findings increases and data set B

becomes more redundant, incentive provision issues, which made the principal deviate from the first-best

order in the baseline model, intensify. Starting with the data set with the lowest precision-to-cost-of-analysis

ratio becomes more likely compared to the scenario with conditionally independent analyses findings when

minimizing the expected transfer to the agent.

If data set B is more precise than A, then the two opposing effects are at play. On the one hand, as in

the case above, as the correlation between the findings increases and the second analysis becomes more

redundant, incentive provision issues intensify. On the other hand, offering the AB sequence may not be as

problematic in terms of incentives because data set B is now more precise and it is likely to provide positive

evidence for the project’s good quality. The overall effect is unambiguous.
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Conclusion

Resolving a combined moral hazard and adverse selection problem with dynamic interdependencies results

in the deviation from the first-best optimal search order if the project is a priori sufficiently likely to be

of bad quality. This “threshold” result holds even if analyses findings are positively correlated. Based on

numerical studies we were able to show that changing the correlation parameter had a non-monotone effect

on the optimal threshold. The next step would be to arrive at this result analytically and provide deeper

intuition for its nature.

Another natural variation of our model is considering the search for a negative result, after which the search

can terminate, instead of a positive one. We solved this specification as well (with and without correlation)

and, as expected, the result mirrors that of the current paper, i.e. deviating from the first-best becomes

optimal if the project is a priori sufficiently likely to be of good quality. A more general framework which

combines imperfect positive and negative results seems to be intractable according to our attempts.

We believe that our model could be enriched in a number of ways. One could consider delegated search

with a higher number of periods (although a two-period search with heterogeneous data sets already results

in an intricate optimization problem). One could also study the optimal number of data sets to analyze

(one vs. up-to-two data sets vs. up-two-three data sets), which would basically depend on the investment

costs and the project’s reward. Lastly, one could discuss the set-up costs born by the data scientist, as data

preparation plays an essential role in data analytics, to see how the results of our model would change.
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Appendix

Proof of Lemma 1

For i = 1, 2, make the change of variable Ti = qtsi + (1 − q)tfi and eliminate ts1 and ts2 in the optimization

problem. Objective (1) is rewritten as follows:

min
{T1,T2,t

f
1 ,t

f
2 ,t}

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t

Because tf1 and tf2 do not appear in the objective, the proof consists in showing that they only appear, if at

all, on the RHS of the constraints. This holds true for the limited liability constraints (3) which are rewritten

as:

T1 ≥ (1− q)tf1 , tf1 ≥ 0, T2 ≥ (1− q)tf2 , tf2 ≥ 0, t ≥ 0

and for the agent’s participation constraint (2) which is rewritten as:

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ 0

This also holds for constraints (12), (13), and (14) which are rewritten as:

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT1 + (1− ν)tf1

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT2 + (1− ν)tf2

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ t

Constraints (7) and (11) are rewritten as:

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)t

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νθ2T2 + (1− νθ2)t− ψ2

Constraints (8), (9), (10), and (6) are rewritten as:

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)[ν1T1 + (1− ν1)t
f
1 ]

T1 ≥ T2

T1 ≥ t

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)[ν1T2 + (1− ν1)t
f
2 ]

And, finally, constraints (4) and (5) are rewritten as:

T2 ≥ t

t ≥ ν2T2 + (1− ν2)t
f
2
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Proof of Lemma 2

(10) is implied by (9) and (4) and can, therefore, be eliminated. (4) is implied by (7) and can also be

eliminated. Following Lemma 1, we can simplify constraints further.

The limited liability constraints (3) can be rewritten as:

T1 ≥ 0, tf1 ≥ 0, T2 ≥ 0, tf2 ≥ 0, t ≥ 0

Constraints (12) and (13) can be rewritten as:

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT1

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT2

Note that (13) is implied by (9) and (12) and, therefore, can be eliminated.

Constraints (8) and (6) can be rewritten as:

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)ν1T1

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)ν1T2

Note that (6) is implied by (9) and (8) and, therefore, can be eliminated.

Constraints (5) can be rewritten as:

t ≥ ν2T2

Note that (5) is implied by (6) and can be eliminated.

We can now lay out still remaining constraints:

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT1 (12)

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ t (14)

(1− p1)p2[T2 − t] ≥ (1− p1)ψ2 (7)

p1T1 + (1− (1− p1)p2)T2 − νθ1(1− θ2)t ≥ ψ1 − p1ψ2 (11)

(1− p1)p2T2 + (1− p1)(1− p2)t− (1− p1)ψ2 ≥ (1− p1)ν1T1 (8)

T1 ≥ T2 (9)

Note that the participation constraint (2) is implied by (3) and (14). Furthermore, (7) and (5) imply ts2 ≥ 0;

(9) implies t ≥ 0; (5) implies ts1 ≥ 0.
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Constraint (8) is implied by (12):

(1− p1)p2T2 + (1− p1)(1− p2)t ≥ (ν − p1)T1 + (ψ1 + (1− p1)ψ2) > (1− p1)ν1T1 + (1− p1)ψ2

Constraint (14) is always slack due to (7) and (11): the LHS’s of (14) and (11) are the same. The RHS of

(11) is, however, larger than that of (14):

νθ2T2 + (1− νθ2)t− ψ2 ≥ νθ2[t+
(1− p1)

(1− p1)p2
ψ2] + (1− νθ2)t− ψ2+

= t+ ψ2 · [
(1− p1)νθ2 − (1− p1)p2

(1− p1)p2
] > t

Thus, the limited liability constraints, the participation constraint and a number of incentive constraints are

all implied by the following four constraints:

p1T1 + (1− p1)p2T2 + (1− p1)(1− p2)t− (ψ1 + (1− p1)ψ2) ≥ νT1 (12)

(1− p1)p2[T2 − t] ≥ (1− p1)ψ2 (7)

p1T1 − νθ1θ2T2 − νθ1(1− θ2)t ≥ ψ1 − p1ψ2 (11)

T1 ≥ T2 (9)

Proof of Proposition 2

Following Lemma 1, we can rewrite the principal’s objective as:

min
{ts1, ts2, t}

p1qt
s
1 + (1− p1)p2qt

s
2 + (1− p1)(1− p2)t

Define δi ≡ qtsi − t for i = 1, 2. Then the principal’s problem can be rewritten as:

min
{δ1, δ2, t}

p1δ1 + (1− p1)p2δ2 + t

subject to

p1δ1 + (1− p1)p2δ2 + t− (ψ1 + (1− p1)ψ2) ≥ νqts1 (12)

(1− p1)p2δ2 ≥ (1− p1)ψ2 (7)

p1δ1 ≥ νθ1θ2δ2 + (ψ1 + (1− p1)ψ2)− ψ2 (11)

δ1 ≥ δ2 (9)

Note that constraint (12) binds as the only constraint with t on the LHS. Constraint (7) then binds as the

97



only constraint with δ2 on the LHS. Hence, we can rewrite constraints (11) and (9) as:

ν (1− θ1) δ1 ≥ (1− θ1)
ψ1

θ1
+ (1− ν) θ2

ψ2

θ2

ν (1− θ1) δ1 ≥ [(1− ν) + ν (1− θ1)]
ψ2

θ2

The difference in the RHS’s between (9) and (11) is

∆12 = [(1− ν) + ν (1− θ1)]
ψ2

θ2
− (1− θ1)

ψ1

θ1
− (1− ν) θ2

ψ2

θ2

= [(1− ν) (1− θ2) + ν (1− θ1)]
ψ2

θ2
− (1− θ1)

ψ1

θ1

= (1− ν) (θ1 − θ2)
ψ2

θ2
− (1− θ1)

(
ψ1

θ1
− ψ2

θ2

)
(9) binds and (11) is slack iff:

∆12 ≡ (1− ν)(θ1 − θ2)
ψ2

θ2
− (1− θ1)(

ψ1

θ1
− ψ2

θ2
) ≥ 0

x12≡
ψ2/θ2
ψ1/θ1⇔ (1− νθ1 − (1− ν)θ2)x12 ≥ 1− θ1

⇔ x12 ≥ 1− θ1
ν(1− θ1) + (1− ν)(1− θ2)

If constraints (12), (7) and (9) are binding, we obtain the following contract:

δ1 =
[(1− ν) + ν (1− θ1)]

ν (1− θ1)

ψ2

θ2

δ2 =
[(1− ν) + ν (1− θ1)]

ν (1− θ1)

ψ2

θ2

t =
[(1− ν) + ν (1− θ1)]

(1− ν)

ψ2

θ2
+

ψ1

(1− ν)

The expected transfer then is:

E [t(9)] = [(1− ν) + ν (1− θ1)]

(
[θ1 + (1− θ1) θ2]

(1− θ1)
+

1

(1− ν)

)
ψ2

θ2
+

θ1
(1− ν)

ψ1

θ1

If constraints (12), (7) and (11) are binding, we obtain the following contract:

δ1 =
1

ν

ψ1

θ1
+

(1− ν) θ2
ν (1− θ1)

ψ2

θ2

δ2 =
[(1− ν) + ν (1− θ1)]

ν (1− θ1)

ψ2

θ2

t =
ψ1

(1− ν) θ1
+ θ2

ψ2

θ2
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The expected transfer then is:

E [t(11)] =

(
θ1 +

1

(1− ν)

)
ψ1

θ1
+

(
1 +

(1− ν)

(1− θ1)
+ ν (1− θ1)

)
θ2
ψ2

θ2

Proof of Theorem 1

Denote x ≡ ψB/θB
ψA/θA

, x ≥ 1 by assumption 1.

For AB, (9) binds and (11) is slack iff:

x ≥ 1− θA
ν(1− θA) + (1− ν)(1− θB)

(∗)

For BA, (9) binds and (11) is slack iff:

x ≤ ν(1− θB) + (1− ν)(1− θA)

1− θB
(∗∗)

We show that RHS(∗) ≤ RHS(∗∗) for all ν: firstly, RHS(∗) = RHS(∗∗) for ν = 0 and ν = 1; secondly,

RHS(∗)−RHS(∗∗) is convex in ν:

∂(RHS(∗)−RHS(∗∗))
∂ν

= (θA − θB)
2(2ν − 1).

We proceed by going through all possible cases of binding constraints for the AB and BA contracts. For each

case we evaluate the sign of the difference between the expected transfers for AB and BA. If the difference

is negative, AB order is optimal. Otherwise, BA is optimal.

1. If θA ≥ θB , (9) binds for AB and (11) binds for BA:

∆ ≡ E[t(9)AB ]− E[t(11)BA] =

= θA (1− ν)

(
1

(1− θA)

ψB
θB

− 1

(1− θB)

ψA
θA

)
− θAν

(
1

(1− ν)
− (1− θB)

)(
ψB
θB

− ψA
θA

)
=

= (1− ν)

[
1

(1− θA)
x− 1

(1− θB)

]
− ν

[
1

(1− ν)
− (1− θB)

]
(x− 1)

Note that ∆ is decreasing in ν; for ν = 0, ∆ =

[
1

(1− θA)
x− 1

(1− θB)

]
> 0; for ν → 1, ∆ →

−
[

1

(1− ν)
− (1− θB)

]
(x− 1) < 0.

2. If θA < θB , we need to consider further subcases.

If x ≥ (1− θA)

(1− θB)
, (9) binds for AB and (11) binds for BA:

∆ is decreasing in ν; for ν = 0, ∆ =

[
1

(1− θA)
x− 1

(1− θB)

]
> 0; for ν → 1, ∆ → −

[
1

(1− ν)
− (1− θB)

]
(x−

1) < 0.
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If x <
(1− θA)

(1− θB)
, ∃ ν̂, ˆ̂ν with ν̂ < ˆ̂ν such that:

• If ν ≤ ν̂, (11) binds for AB and (9) binds for BA:

E[t(11)AB ]− E[t(9)BA] = −(E[t(9)BA]− E[t(11)AB ]) =

= (1− ν)

[
1

1− θA
− 1

1− θB
· 1
x

]
− ν

[
1

1− ν
− (1− θA)

]
(1− 1/x) < 0.

• If ν ∈ [ν̂, ˆ̂ν], (9) binds for both AB and BA. For BA, if (9) is removed, (11) binds and the

optimum improves: E[t(11)BA] < E[t(9)BA].

Since ∆ = (1 − ν)

[
1

(1− θA)
x− 1

(1− θB)

]
− ν

[
1

(1− ν)
− (1− θB)

]
(x − 1) < 0, E[t(9)AB ] <

E[t(11)BA] < E[t(9)BA].

• If ν > ˆ̂ν, (9) binds for AB and (11) binds for BA: ∆ < 0.

Proof of Theorem 2

We start the proof by defining precision again (as in the Model section). For this we denote “good news”

from data set i = 1, 2 by σi and “bad news” (no positive signal) by σi. Probability of the project being

of good quality is Pr [Q = G] = ν, and Pr [σi = σi | Q = G] ≡ θi. For θj ≥ θi, we define correlation as

Pr [σj = σj | Q = G ∩ σi = σi] = Pr [σj = σj | σi = σi] ≡ χ ∈ [θj , 1]. Let p(ω) be the probability of an event

ω and ν(ω) the belief about the project being good conditional on the event ω.

We further outline and simplify incentive constraints. This proof contains own constraint enumeration.

We are facing the following optimization problem, where Ti ≡ qtsi + (1− q)tfi , i = 1, 2:

min p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t

subject to a participation constraint and limited liability constraints:

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p(σ1)ψ2 ≥ 0 (A1)

ts1 ≥ 0 (A2)

tf1 ≥ 0 (A3)

ts2 ≥ 0 (A4)

tf2 ≥ 0 (A5)

t ≥ 0 (A6)

If (σ1, σ2), report truthfully:

t ≥ ν(σ1, σ2)T2 + (1− ν(σ1, σ2))t
f
2 (A7)

If (σ1, σ̄2), report truthfully:

T2 ≥ t (A8)
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If σ1, report and acquire σ2:

−ψ2 + p(σ̄2|σ1)T2 + p(σ2|σ1)t ≥ t (A9)

−ψ2 + p(σ̄2|σ1)T2 + p(σ2|σ1)t ≥ ν(σ1)T2 + (1− ν(σ1))t
f
2 (A10)

−ψ2 + p(σ̄2|σ1)T2 + p(σ2|σ1)t ≥ ν(σ1)T1 + (1− ν(σ1))t
f
1 (A11)

If σ̄1, then report:

T1 ≥ t (A12)

T1 ≥ T2 (A13)

Acquire σ1:

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p(σ1)ψ2 ≥ t (A14)

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p(σ1)ψ2 ≥ νT1 + (1− ν)tf1 (A15)

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p(σ1)ψ2 ≥ νT2 + (1− ν)tf2 (A16)

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p(σ1)ψ2 ≥ −ψ2 + p(σ̄2)T2 + p(σ2)t (A17)

Elimination of constraints is similar to the baseline model and is as follows: (A3) and (A5) bind (weakly)

because they are on the RHS of all constraints; (A1) is implied by (A6) and (A14); (A2) is implied by (A6)

and (A12); (A4) is implied by (A6) and (A8); (A6) is implied by (A7) and (A9); (A7) is implied by (A10);

(A8) is implied by (A9); (A10) is implied by (A11) and (A13); (A11) is implied by (A15); (A12) is implied

by (A9) and (A13); (A14) is implied by (A9) and (A17); and (A16) is implied by (A13) and (A15).

Thus, the problem boils down to:

min p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t

subject to

p (σ1, σ2)T2 ≥ p (σ1)ψ2 + p (σ1, σ2) t (A9)

T1 ≥ T2 (A13)

p (σ1, σ2)T2 + p (σ1, σ2) t ≥ ψ1 + p (σ1)ψ2 + p (σ1) ν (σ1)T1 (A15)

p (σ1)T1 + p (σ1, σ2)T2 + p (σ1, σ2) t− ψ1 − p (σ1)ψ2 ≥ −ψ2 + p (σ2)T2 + p (σ2) t (A17)

(A15) is the only constraint on t (because p (σ2) ≥ p (σ1, σ2) in (A17)). Therefore, (A15) is binding.

Eliminating t, we can rewrite the problem as:
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min νT1 + ψ1 + p (σ1)ψ2

subject to

p (σ1, σ2) p (σ1, σ2)T2 ≥ p (σ1, σ2) p (σ1)ψ2 + p (σ1, σ2) [ψ1 + p (σ1)ψ2 + p (σ1) ν (σ1)T1 − p (σ1, σ2)T2]

(A9)

T1 ≥ T2 (A13)

p (σ1, σ2) νT1 ≥ −p (σ1, σ2)ψ2 + p (σ1, σ2) p (σ2)T2 + p (σ2)

[
ψ1 + p (σ1)ψ2

+p (σ1) ν (σ1)T1 − p (σ1, σ2)T2

]
(A17)

or, after simplification:

min νT1 + ψ1 + p (σ1)ψ2

subject to

p (σ1) p (σ1, σ2)T2 ≥ p (σ1, σ2) p (σ1)ψ2 + p (σ1, σ2)ψ1 + p (σ1) p (σ1, σ2)ψ2 + p (σ1) ν (σ1) p (σ1, σ2)T1

(A9)

T1 ≥ T2 (A13)[
p (σ1, σ2) ν

−p (σ1) ν (σ1) p (σ2)

]
T1 +

[
p (σ1, σ2)

−p (σ1) p (σ2)

]
ψ2 ≥ p (σ2)ψ1 +

[
p (σ1, σ2) p (σ2)

−p (σ1, σ2) p (σ2)

]
T2 (A17)

(A9) is the only constraint on T2 (because no-negative correlation implies p (σ2) ≥ p (σ1, σ2) on the RHS of

(A17)). Therefore, (A9) is binding. Eliminating T2, we can rewrite the problem as:

min νT1 + ψ1 + p (σ1)ψ2

subject to

p (σ1) p (σ1, σ2)T1 ≥ p (σ1, σ2) p (σ1)ψ2+p (σ1, σ2)ψ1+p (σ1) p (σ1, σ2)ψ2+p (σ1) ν (σ1) p (σ1, σ2)T1 (A13)

p (σ1) p (σ1, σ2) [p (σ1, σ2) ν − p (σ1) ν (σ1) p (σ2)]T1 + p (σ1) p (σ1, σ2) [p (σ1, σ2)− p (σ1) p (σ2)]ψ2

≥ p (σ1) p (σ1, σ2) p (σ2)ψ1 +

[
p (σ1, σ2) p (σ2)

−p (σ1, σ2) p (σ2)

][
p (σ1, σ2) p (σ1)ψ2 + p (σ1, σ2)ψ1

+p (σ1) p (σ1, σ2)ψ2 + p (σ1) ν (σ1) p (σ1, σ2)T1

]
(A17)

or, after simplification:

min νT1 + ψ1 + p (σ1)ψ2

subject to

p (σ1, σ2) (1− ν)T1 ≥ p (σ1, σ2)ψ1 + p (σ1)
2
ψ2 (A13)

p (σ1, σ2) (1− ν) p (σ1, σ2) p (σ1)T1 ≥ p (σ1) p (σ1, σ2) [p (σ1) p (σ2)− p (σ1, σ2)]ψ2 + p (σ1, σ2) p (σ1, σ2)ψ1

(A17)
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Thus, (A13) is binding iff

p (σ1, σ2) p (σ1, σ2) p (σ1)ψ1 + p (σ1)
2
p (σ1, σ2) p (σ1)ψ2

≥ p (σ1) p (σ1, σ2) [p (σ1) p (σ2)− p (σ1, σ2)]ψ2 + p (σ1, σ2) p (σ1, σ2)ψ1

or

p (σ1) p (σ1)ψ2 ≥ [p (σ1) p (σ2)− p (σ1, σ2)]ψ2 + p (σ1, σ2)ψ1

or
[p (σ1) p (σ1) + p (σ1, σ2)− p (σ1) p (σ2)] p (σ2)

p (σ1, σ2) p (σ1)
≥ ψ1/p (σ1)

ψ2/p (σ2)

or expressing everything with p (σi):[
p (σ1) + p (σ1) p (σ2)− p (σ1)

2 − p (σ1, σ2)
]
p (σ2)

[p (σ2)− p (σ1, σ2)] p (σ1)
≥ ψ1/p (σ1)

ψ2/p (σ2)

• If θ1 ≥ θ2 : (A13) is binding iff[
νθ1 + νθ1νθ2 − ν2θ21 − νθ2χ

]
νθ2

[νθ2 − νθ2χ] νθ1
≥ ψ1/p (σ1)

ψ2/p (σ2)

or [
1− θ2

θ1
χ− ν (θ1 − θ2)

]
(1− χ)

≥ ψ1/θ1
ψ2/θ2

• If θ1 ≤ θ2 : (A13) is binding iff[
νθ1 + νθ1νθ2 − ν2θ21 − νθ1χ

]
νθ2

[νθ2 − νθ1χ] νθ1
≥ ψ1/p (σ1)

ψ2/p (σ2)

or
[1− χ+ ν (θ2 − θ1)][

1− θ1
θ2
χ
] ≥ ψ1/θ1

ψ2/θ2

As in the baseline model, we proceed by considering all possible cases for binding constraints for the

AB and BA sequences. We then consider the difference in the expected transfers across AB

and BA to define the optimal order. Be begin with the case where data set A has a higher precision.

• θA ≥ θB

Lemma 3. If θA ≥ θB, constraint (A13) is binding for all ν for the AB sequence.

Proof: (A13) is binding iff [
1 + νθB − νθA − θB

χ
θA

]
(1− χ)

≥ ψA/θA
ψB/θB
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or

x ≡ ψB/θB
ψA/θA

≥ (1− χ)[
1 + νθB − νθA − θB

χ
θA

] .
The RHS of this condition increases with ν. Moreover:

1−RHS(1) = 1− (1− χ)[
1 + θB − θA − θB

χ
θA

] =
1 + θB − θA − θB

χ
θA

− (1− χ)

1 + θB − θA − θB
χ
θA

=
(χ− θA) (θA − θB)

θA

(
1 + θB − θA − θB

χ
θA

) =
(χ− θA) (θA − θB)

((1− θA) (θA − θB) + θB (1− χ))
> 0

Hence, RHS (ν) < 1 < x for all ν. Hence, (A13) is binding for all ν. ■

Lemma 4. If θA ≥ θB, constraint (A17) is binding for all ν for the BA sequence.

Proof: (A13) is binding iff
[1 + νθA − νθB − χ][

1− θB
χ
θA

] ≥ x

The RHS of this condition increases with ν. Moreover:

1−RHS(1) = 1− [1 + θA − θB − χ][
1− θB

χ
θA

] =
−θB χ

θA
− θA + θB + χ[

1− θB
χ
θA

]
=

(χ− θA) (θA − θB)

θA

[
1− θB

χ
θA

] > 0

Hence, RHS (ν) < 1 < x for all ν. Hence, (A13) is slack and (A17) is binding for all ν. ■

Lemma 5. Comparing expected transfers across AB and BA amounts to comparing T1 − θ1ψ2.

Proof: Expected transfers are equal to

νT1 + ψ1 + p (σ1)ψ2 = νT1 + ψ1 + (1− p (σ1))ψ2 = νT1 + ψ1 + (1− νθ1)ψ2 = ν (T1 − θ1ψ2) + (ψ1 + ψ2) .

The terms (ψ1 + ψ2) cancel out in the comparison. ■

For BA, TBA1 is given by (A17) binding:

p (σB , σA) (1− ν) p (σB , σA) p (σB)T
BA
1 = p (σB) p (σB , σA)

[
p (σB) p (σA)

−p (σB , σA)

]
ψA+p (σB , σA) p (σB , σA)ψB

(A17)

TBA1 =
p (σB)

p (σB , σA) (1− ν) p (σB)
[p (σB) p (σA)− p (σB , σA)]ψA +

1

(1− ν) p (σB)
ψB

=
(1− νθB)

[νθA − νθBχ] (1− ν) νθB
[(1− νθB) νθA − (νθA − νθBχ)]ψA +

1

(1− ν) νθB
ψB

=
(1− νθB) (χ− νθA) θA
ν (1− ν) (θA − θBχ)

ψA
θA

+
1

(1− ν) ν

ψB
θB
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E [tBA(A17)] = νTBA1 + ψB + p (σB)ψA = ν
(
TBA1 − θBψA

)
+ (ψA + ψB)

=
(1− νθB) (χ− νθA) θA
(1− ν) (θA − θBχ)

ψA
θA

+
1

(1− ν)

ψB
θB

− νθBψA + (ψA + ψB)

For AB, TAB1 is given by (A13) binding:

p (σA, σB) (1− ν)TAB1 = p (σA, σB)ψA + p (σA)
2
ψB (A13)

TAB1 =
1

(1− ν)
ψA +

p (σA)
2

p (σA, σB) (1− ν)
ψB

=
1

(1− ν)
ψA +

(1− νθA)
2

ν (1− χ) (1− ν)

ψB
θB

E [tAB(A13)] = νTAB1 + ψA + p (σA)ψB = ν
(
TAB1 − θAψB

)
+ (ψA + ψB)

=
ν

(1− ν)
ψA +

(1− νθA)
2

(1− χ) (1− ν)

ψB
θB

− νθAψB + (ψA + ψB)

Define ∆1 ≡ E [tBA(A17)]− E [tAB(A13)]. BA is optimal iff ∆1 < 0.

∆1 =
(1− νθB) (χ− νθA) θA
(1− ν) (θA − θBχ)

ψA
θA

+
1

(1− ν)

ψB
θB

− νθBψA −

(
ν

(1− ν)
ψA +

(1− νθA)
2

(1− χ) (1− ν)

ψB
θB

− νθAψB

)

∆1 has the same sign as (1−ν)∆1

ν =

=
(1− νθB) (χ− νθA) θA

ν (θA − θBχ)

ψA
θA

+
1

ν

ψB
θB

− (1− ν) θBψA −

(
ψA +

(1− νθA)
2

ν (1− χ)

ψB
θB

− (1− ν) θAψB

)

=
(1− νθB) (χ− νθA) θA

ν (θA − θBχ)

ψA
θA

+
1

ν

ψB
θB

− ψA − (1− νθA)
2

ν (1− χ)

ψB
θB

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)
=

(1− νθB) (χ− νθA)− ν (θA − θBχ)

ν (θA − θBχ)
ψA +

(1− χ)− (1− νθA)
2

ν (1− χ)

ψB
θB

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)
=

χ− 2νθA + ν2θAθB
ν (θA − θBχ)

ψA +
(1− χ)− (1− νθA)

2

ν (1− χ)

ψB
θB

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)
=

χ− 1 + (1− νθA)
2 − ν2θA (θA − θB)

ν (θA − θBχ)
ψA +

(1− χ)− (1− νθA)
2

ν (1− χ)

ψB
θB

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)
= −ν

2θA (θA − θB)

ν (θA − θBχ)
ψA − (1− χ)− (1− νθA)

2

ν
(
1− θB

θA
χ
) ψA

θA
+

(1− χ)− (1− νθA)
2

ν (1− χ)

ψB
θB

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)

= −νθA (θA − θB)

(θA − θBχ)
ψA +

(1− χ)− (1− νθA)
2

ν

 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)

= −νθA (θA − θB)(
1− θB

θA
χ
) ψA

θA
− (1− νθA)

2 − (1− χ)

ν

 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)

105



When ν → 0:

(1− ν)∆1

ν
→ −χ

ν

 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA

 < 0 ⇒ BA is optimal for all χ

When ν → 1:

(1− ν)∆1

ν
→ −θA (θA − θB)

(θA − θBχ)
ψA +

(
(1− χ)− (1− θA)

2
) 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA



when χ = θA (baseline model):

(1− ν)∆1

ν
→ − (θA − θB)

(1− θB)
ψA + θA (1− θA)

[
1

(1− θA)

ψB
θB

− 1

(1− θB)

ψA
θA

]
→ θA

(
ψB
θB

− ψA
θA

)
> 0 ⇒ AB is optimal

when χ→ 1:
(1− ν)∆1

ν
→ − (1− θA)

2

(1− χ)

ψB
θB

< 0 ⇒ BA is optimal

∂

∂ν

(
(1− ν)∆1

ν

)
=

(
χ− ν2θ2A

)
ν2

 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA

− θAθB

(
ψB
θB

− ψA
θA

)
− θA (θA − θB)

(θA − θBχ)
ψA

=
1

ν2

(χ− ν2θ2A
)

(1− χ)

ψB
θB

−
(
χ− ν2θAθB

)(
1− θB

θA
χ
) ψA

θA


︸ ︷︷ ︸

>0

− θAθB

(
ψB
θB

− ψA
θA

)
︸ ︷︷ ︸

>0

The term in squared brackets is positive:(
χ− ν2θ2A

)
(1− χ)

−
(
χ− ν2θAθB

)(
1− θB

θA
χ
) ∝

(
χ− ν2θ2A

)
(χ− ν2θAθB)

− (1− χ)(
1− θB

θA
χ
)

∝
(
χ− ν2θAθB + ν2θAθB − ν2θ2A

)
(χ− ν2θAθB)

−

(
1− θB

θA
χ+ θB

θA
χ− χ

)
(
1− θB

θA
χ
)

∝ −ν
2θA (θA − θB)

(χ− ν2θAθB)
+
χ (θA − θB)

(θA − θBχ)

∝ − ν2θA
(χ− ν2θAθB)

+
χ

(θA − θBχ)
∝ −ν2θA (θA − θBχ) + χ

(
χ− ν2θAθB

)
∝ −ν2θ2A + ν2θAθBχ+ χ2 − χν2θAθB

∝ χ2 − ν2θ2A > 0

∂2

∂ν2

(
(1− ν)∆1

ν

)
= −2χ

ν3

 1

(1− χ)

ψB
θB

− 1(
1− θB

θA
χ
) ψA
θA

 < 0
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For ν = 1, we have

∂

∂ν

(
(1− ν)∆1

ν

)
=

(χ− θ2A
)

(1− χ)

ψB
θB

− (χ− θAθB)(
1− θB

θA
χ
) ψA
θA

− θAθB

(
ψB
θB

− ψA
θA

)

=

(
χ− θ2A

)
(1− χ)

ψB
θB

−
(
χ− θ2A

)
(1− χ)

ψA
θA

+

(
χ− θ2A

)
(1− χ)

ψA
θA

− (χ− θAθB)(
1− θB

θA
χ
) ψA
θA

− θAθB

(
ψB
θB

− ψA
θA

)

=

(χ− θ2A
)

(1− χ)
− (χ− θAθB)(

1− θB
θA
χ
)
 ψA
θA

+

[(
χ− θ2A

)
(1− χ)

− θAθB

](
ψB
θB

− ψA
θA

)

We know the first bracket to be positive because we have shown it to be positive for all ν and thus it is

positive for ν = 1. The second bracket is also positive because(
χ− θ2A

)
(1− χ)

− θAθB

increases with χ and is thus minimum for χ = θA, where it equals(
θA − θ2A

)
(1− θA)

− θAθB = θA (1− θB) > 0

Therefore, ∂
∂ν

(
(1−ν)∆1

ν

)
> 0 for ν = 1. Since we have shown that ∂2

∂ν2

(
(1−ν)∆1

ν

)
< 0, we have ∂

∂ν

(
(1−ν)∆1

ν

)
>

0 for all ν.

Lemma 6. For θA ≥ θB, there exists ν∗ ∈ (0, 1] such that BA is optimal iff ν ≤ ν∗.

Proof: We have shown that ∆1 (ν = 0) < 0 and ∂
∂ν

(
(1−ν)∆1

ν

)
> 0. ■

We now turn to the case where data set B has the higher precision. This is the more intricate case.

• θA < θB

Sequence AB

(A13) is binding iff
[1− χ+ ν (θB − θA)][

1− θA
θB
χ
] ≥ ψA/θA

ψB/θB

or

x ≥
1− θA

θB
χ

[(1− χ) + ν (θB − θA)]

We have

RHS (ν = 0) =
1− θA

θB
χ

[1− χ]
> 1

RHS (ν = 1) =
1− θA

θB
χ

[1− χ+ (θB − θA)]
> 1
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Indeed,

1− θA
θB
χ

[1− χ+ (θB − θA)]
− 1 ∝

(
1− θA

θB
χ

)
− [1− χ+ (θB − θA)]

∝
(
−θA
θB
χ

)
− [−χ+ (θB − θA)]

∝ (−θAχ)− θB [−χ+ (θB − θA)]

∝ (χ− θB) (θB − θA) > 0

Moreover, ∂
∂νRHS < 0 hence:

• If x ≥ RHS (ν = 0) =
1− θA

θB
χ

[1−χ] then (A13) is binding for all ν.

• If x ≤ RHS (ν = 1) =
1− θA

θB
χ

[(1−χ)+(θB−θA)] then (A17) is binding for all ν.

• Otherwise, ∃ν̂ ∈ (0, 1), such that RHS (ν = ν̂) = x and (A13) is binding iff ν ≥ ν̂.

Sequence BA

(A13) is binding iff [
1 + νθA − νθB − θA

θB
χ
]

(1− χ)
≥ ψB/θB
ψA/θA[(

1− θA
θB
χ
)
− ν (θB − θA)

]
(1− χ)

≥ x

We have

LHS (ν = 0) =

[
1− θA

θB
χ
]

(1− χ)
> 1

LHS (ν = 1) =

[
1− θA

θB
χ− (θB − θA)

]
(1− χ)

> 1

Indeed, [
1− θA

θB
χ− (θB − θA)

]
(1− χ)

− 1 ∝
[
1− θA

θB
χ− (θB − θA)

]
− (1− χ)

∝
[
−θA
θB
χ− (θB − θA)

]
+ χ

∝ [−θAχ− θB (θB − θA)] + χθB

∝ (χ− θB) (θB − θA) > 0

Moreover, ∂
∂νLHS < 0 hence:

• If x ≥ LHS (ν = 0) =

[
1− θA

θB
χ
]

(1−χ) then (A17) is binding for all ν.
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• If x ≤ LHS (ν = 1) =

[
1− θA

θB
χ−(θB−θA)

]
(1−χ) then (A13) is binding for all ν.

• Otherwise, ∃̂̂ν ∈ (0, 1), such that LHS
(
ν = ̂̂ν) = x and (A13) is binding iff ν ≤ ̂̂ν.

We have

LHS −RHS =

[(
1− θA

θB
χ
)
− ν (θB − θA)

]
(1− χ)

−
1− θA

θB
χ

[(1− χ) + ν (θB − θA)]

∝
[(

1− θA
θB
χ

)
− ν (θB − θA)

]
[(1− χ) + ν (θB − θA)]− (1− χ)

(
1− θA

θB
χ

)
∝ − (1− χ) +

(
1− θA

θB
χ

)
− ν (θB − θA)

∝ (χ− νθB) (θB − θA) > 0

Because by definition RHS (ν = ν̂) = LHS
(
ν = ̂̂ν) = x, and because LHS decreases with ν, LHS ≥ RHS

implies that ̂̂ν ≥ ν̂.

• If x ≥ LHS (ν = 0) = RHS (ν = 0) =

[
1− θA

θB
χ
]

(1−χ) then

– AB: (A13) is binding

– BA: (A17) is binding

• If LHS (ν = 0) =

[
1− θA

θB
χ
]

(1−χ) ≥ x ≥ LHS (ν = 1) =

[
1− θA

θB
χ−(θB−θA)

]
(1−χ) then

– AB: ∃ν̂ ∈ (0, 1), such that RHS (ν = ν̂) = x and (A13) is binding iff ν ≥ ν̂.

– BA: ∃̂̂ν ∈ (0, 1), such that LHS
(
ν = ̂̂ν) = x and (A13) is binding iff ν ≤ ̂̂ν.

• If LHS (ν = 1) =

[
1− θA

θB
χ−(θB−θA)

]
(1−χ) ≥ x ≥ RHS (ν = 1) =

1− θA
θB
χ

[1−χ+(θB−θA)] then

– AB: ∃ν̂ ∈ (0, 1), such that RHS (ν = ν̂) = x and (A13) is binding iff ν ≥ ν̂.

– BA: (A13) is binding (i.e. ̂̂ν = 1)

• If RHS (ν = 1) =
1− θA

θB
χ

[1−χ+(θB−θA)] ≥ x then

– AB: (A17) is binding

– BA: (A13) is binding

We further study all of these cases.
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• x ≥
(
1− θA

θB
χ
)

(1−χ)

If x ≥ LHS (ν = 0) = RHS (ν = 0) =

(
1− θA

θB
χ
)

(1−χ) then

• AB: (A13) is binding

• BA: (A17) is binding

Lemma 7. If x ≥ LHS (ν = 0) = RHS (ν = 0) =

(
1− θA

θB
χ
)

(1−χ) , we have BA optimal for ν ≤ ν∗.

Proof: for BA, TBA1 is given by (A17) binding:

p (σB , σA) (1− ν) p (σB , σA) p (σB)T
BA
1 = p (σB) p (σB , σA)

[
p (σB) p (σA)

−p (σB , σA)

]
ψA+p (σB , σA) p (σB , σA)ψB

(A17)

TBA1 =
p (σB)

p (σB , σA) (1− ν) p (σB)
[p (σB) p (σA)− p (σB , σA)]ψA +

1

(1− ν) p (σB)
ψB

=
(1− νθB)

(νθA − νθAχ) (1− ν) νθB
[(1− νθB) νθA − (νθA − νθAχ)]ψA +

1

(1− ν) νθB
ψB

=
(1− νθB)

(1− χ) (1− ν) νθB
[(1− νθB)− (1− χ)]ψA +

1

(1− ν) ν

ψB
θB

E [tBA(A17)] = νTBA1 + ψB + p (σB)ψA = ν
(
TBA1 − θBψA

)
+ (ψA + ψB)

=
θA (1− νθB)

(1− χ) (1− ν) θB
[(1− νθB)− (1− χ)]

ψA
θA

+
1

(1− ν)

ψB
θB

− νθAθB
ψA
θA

+ (ψA + ψB)

For AB, TAB1 is given by (A13) binding:

p (σA, σB) (1− ν)TAB1 = p (σA, σB)ψA + p (σA)
2
ψB (A13)

TAB1 =
1

(1− ν)
ψA +

p (σA)
2

p (σA, σB) (1− ν)
ψB

=
θA

(1− ν)

ψA
θA

+
(1− νθA)

2(
1− θA

θB
χ
)
ν (1− ν)

ψB
θB

E [tAB(A13)] = νTAB1 + ψA + p (σA)ψB = ν
(
TAB1 − θAψB

)
+ (ψA + ψB)

=
νθA

(1− ν)

ψA
θA

+
(1− νθA)

2(
1− θA

θB
χ
)
(1− ν)

ψB
θB

− νθAθB
ψB
θB

+ (ψA + ψB)

Define ∆2 ≡ E [tBA(A17)]− E [tAB(A13)]. BA is optimal iff ∆2 < 0.
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∆2 =
θA (1− νθB)

(1− χ) (1− ν) θB
[(1− νθB)− (1− χ)]

ψA
θA

+
1

(1− ν)

ψB
θB

− νθAθB
ψA
θA

−

 νθA
(1− ν)

ψA
θA

+
(1− νθA)

2(
1− θA

θB
χ
)
(1− ν)

ψB
θB

− νθAθB
ψB
θB


=

θA (1− νθB)

(1− χ) (1− ν) θB
[(1− νθB)− (1− χ)]

ψA
θA

+
1− νθA
(1− ν)

ψA
θA

− (1− νθA)
2(

1− θA
θB
χ
)
(1− ν)

ψB
θB

+

(
νθAθB +

1

(1− ν)

)(
ψB
θB

− ψA
θA

)

=
1

(1− χ) (1− ν) θB
[θA (1− νθB) (1− νθB)− θA (1− νθB) (1− χ) + (1− νθA) (1− χ) θB ]

ψA
θA

− (1− νθA)
2(

1− θA
θB
χ
)
(1− ν)

ψB
θB

+

(
νθAθB +

1

(1− ν)

)(
ψB
θB

− ψA
θA

)

=
1

(1− χ) (1− ν) θB

[
θA (1− νθB)

2
+ (θB − θA) (1− χ)

] ψA
θA

− θB (1− νθA)
2(

1− θA
θB
χ
)
(1− ν) θB

ψB
θB

+

(
νθAθB +

1

(1− ν)

)(
ψB
θB

− ψA
θA

)

∆2 = − 1

(1− ν) θB

θB (1− νθA)
2(

1− θA
θB
χ
) ψB

θB
− θA (1− νθB)

2

(1− χ)

ψA
θA


+

(θB − θA)

(1− ν) θB

ψA
θA

+

(
νθAθB +

1

(1− ν)

)(
ψB
θB

− ψA
θA

)

∆2 has the same sign as (1−ν)∆2

ν =

= − 1

νθB

θB (1− νθA)
2(

1− θA
θB
χ
) ψB

θB
− θA (1− νθB)

2

(1− χ)

ψA
θA

+
(θB − θA)

νθB

ψA
θA

+

(
(1− ν) θAθB +

1

ν

)(
ψB
θB

− ψA
θA

)

= − 1

νθB

θB (1− νθA)(
1− θA

θB
χ
) ψB

θB
− νθAθB (1− νθA)(

1− θA
θB
χ
) ψB

θB
− θA (1− νθB)

(1− χ)

ψA
θA

+
νθAθB (1− νθB)

(1− χ)

ψA
θA


+

(θB − θA)

νθB

ψA
θA

+

(
(1− ν) θAθB +

1

ν

)(
ψB
θB

− ψA
θA

)

= − 1

νθB

θB (1− νθA)(
1− θA

θB
χ
) ψB

θB
− θA (1− νθB)

(1− χ)

ψA
θA

+ θA

 (1− νθA)(
1− θA

θB
χ
) ψB
θB

− (1− νθB)

(1− χ)

ψA
θA


+

(θB − θA)

νθB

ψA
θA

+

(
(1− ν) θAθB +

1

ν

)(
ψB
θB

− ψA
θA

)
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= − θA (χ− νθB)

νθB

(
1− θA

θB
χ
)
ψB
θB

−

(
1− θA

θB
χ
)

(1− χ)

ψA
θA

+
θA(

1− θA
θB
χ
)
(1− νθA)

ψB
θB

− (1− νθB)

(
1− θA

θB
χ
)

(1− χ)

ψA
θA


+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)

=

νθBθA − θA (χ− νθB)

νθB

(
1− θA

θB
χ
)

ψB
θB

−

(
1− θA

θB
χ
)

(1− χ)

ψA
θA


− νθAθB(

1− θA
θB
χ
)
θA
θB

ψB
θB

−

(
1− θA

θB
χ
)

(1− χ)

ψA
θA

+ (1− ν) θAθB

(
ψB
θB

− ψA
θA

)

∂

∂ν

(1− ν)∆2

ν
=

∂

∂ν
− 1

νθB

 θB(
1− θA

θB
χ
) ψB
θB

− θA
(1− χ)

ψA
θA

− θA

 νθA(
1− θA

θB
χ
) ψB
θB

− νθB
(1− χ)

ψA
θA


+
(θB − θA)

νθB

ψA
θA

+

(
(1− ν) θAθB +

1

ν

)(
ψB
θB

− ψA
θA

)

=
1

ν2θB

 θB(
1− θA

θB
χ
) ψB
θB

− θA
(1− χ)

ψA
θA

− θA

 θA(
1− θA

θB
χ
) ψB
θB

− θB
(1− χ)

ψA
θA


− (θB − θA)

ν2θB

ψA
θA

−
(
θAθB +

1

ν2

)(
ψB
θB

− ψA
θA

)

∂2

∂ν2
(1− ν)∆2

ν
=

∂

∂ν

1

ν2θB

 θB(
1− θA

θB
χ
) ψB
θB

− θA
(1− χ)

ψA
θA

− (θB − θA)

ν2θB

ψA
θA

− 1

ν2

(
ψB
θB

− ψA
θA

)

=
∂

∂ν

1

ν2θB

 θB(
1− θA

θB
χ
) ψB
θB

− χθA + (1− χ) θB
(1− χ)

ψA
θA

− 1

ν2

(
ψB
θB

− ψA
θA

)

∝

− 1(
1− θA

θB
χ
) ψB
θB

+
χ θAθB + (1− χ)

(1− χ)

ψA
θA

+

(
ψB
θB

− ψA
θA

)

∝

(
1− θA

θB
χ
)
− 1(

1− θA
θB
χ
) ψB

θB
+

χ θAθB
(1− χ)

ψA
θA

∝
− θA
θB
χ(

1− θA
θB
χ
) ψB
θB

+
χ θAθB

(1− χ)

ψA
θA

∝ − θA

θB

(
1− θA

θB
χ
)χψA

θA

x−

(
1− θA

θB
χ
)

(1− χ)


< 0 because x ≥

(
1− θA

θB
χ
)

(1− χ)
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We now study the sign of ∂
∂ν

(1−ν)∆2

ν (ν = 1) =

=

 1(
1− θA

θB
χ
) ψB
θB

−
θA
θB

(1− χ)

ψA
θA

− θAθB

 θA
θB(

1− θA
θB
χ
) ψB
θB

− 1

(1− χ)

ψA
θA


+

θA
θB

(1− χ)

(1− χ)

ψA
θA

−
(
ψB
θB

)
− θAθB

(
ψB
θB

− ψA
θA

)

=

 θA
θB
χ(

1− θA
θB
χ
) ψB
θB

−
θA
θB
χ

(1− χ)

ψA
θA

− θAθB

 θA
θB(

1− θA
θB
χ
) ψB
θB

− 1

(1− χ)

ψA
θA

− θAθB

(
ψB
θB

− ψA
θA

)

∝

 θA
θB
χ(

1− θA
θB
χ
)x−

θA
θB
χ

(1− χ)

− θAθB

 θA
θB(

1− θA
θB
χ
)x− 1

(1− χ)

− θAθB (x− 1)

∝
θA
θB
χ(

1− θA
θB
χ
)
x−

(
1− θA

θB
χ
)

(1− χ)

− θAθB

 θA
θB(

1− θA
θB
χ
)x+ x− 1

(1− χ)

+ θAθB

∝
θA
θB
χ(

1− θA
θB
χ
)
x−

(
1− θA

θB
χ
)

(1− χ)

− θAθB(
1− θA

θB
χ
)
(θA

θB
+

(
1− θA

θB
χ

))
x−

(
1− θA

θB
χ
)

(1− χ)

+ θAθB

∝ χ

θB

x−

(
1− θA

θB
χ
)

(1− χ)

− θB

(θA
θB

+

(
1− θA

θB
χ

))
x−

(
1− θA

θB
χ
)

(1− χ)

+ θB

(
1− θA

θB
χ

)

∝

( χ

θB
− θB

(
θA
θB

+

(
1− θA

θB
χ

)))
x−

(
χ

θB
− θB

) (1− θA
θB
χ
)

(1− χ)

+ θB

(
1− θA

θB
χ

)

∝

( χ

θB
− θA − θB + θAχ

)
x−

(
χ

θB
− θB

) (1− θA
θB
χ
)

(1− χ)

+ θB

(
1− θA

θB
χ

)

∝
(
χ

θB
− θB

)x−

(
1− θA

θB
χ
)

(1− χ)

+ θA (χ− 1)x+ θB

(
1− θA

θB
χ

)

> 0 because x ≥

(
1− θA

θB
χ
)

(1− χ)

This implies that ∂
∂ν

(1−ν)∆2

ν > 0 for all ν. As ν → 0:

(1− ν)∆2

ν
→ − 1

νθB

 θB(
1− θA

θB
χ
) ψB
θB

− θA
(1− χ)

ψA
θA

+
(θB − θA)

νθB

ψA
θA

+
1

ν

(
ψB
θB

− ψA
θA

)

→ − 1

νθB

 θB(
1− θA

θB
χ
) ψB
θB

− θA
(1− χ)

ψA
θA

− θA
νθB

ψA
θA

+
θB
νθB

ψB
θB

→ − θAχ

νθB

(
1− θA

θB
χ
) ψA
θA

x−

(
1− θA

θB
χ
)

(1− χ)

 < 0
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As ν → 1:

(1− ν)∆2

ν
→ − 1

θB

θB (1− θA)
2(

1− θA
θB
χ
) ψB
θB

− θA (1− θB)
2

(1− χ)

ψA
θA

+
(θB − θA)

θB

ψA
θA

+

(
ψB
θB

− ψA
θA

)

→ −

 (1− θA)
2(

1− θA
θB
χ
) ψB
θB

−
θA
θB

(1− θB)
2

(1− χ)

ψA
θA

− θA
θB

ψA
θA

+
ψB
θB

→ −

 (1− θA)
2(

1− θA
θB
χ
) − 1

 ψB
θB

− θA
θB

(
(1− θB)

2

(1− χ)
− 1

)
ψA
θA


→

1− (1− θA)
2(

1− θA
θB
χ
)
 ψB
θB

− θA
θB

(
1− (1− θB)

2

(1− χ)

)
ψA
θA


If χ→ 1: ∆2 > 0. If χ→ θB : ∆2 > 0

(1− ν)∆2

ν
→ −

[(
(1− θA)

2

(1− θA)
− 1

)
ψB
θB

− θA
θB

(
(1− θB)

2

(1− θB)
− 1

)
ψA
θA

]

→ θA

[
ψB
θB

− ψA
θA

]
> 0 ■

• x ≤
(
1− θA

θB
χ
)

(1−χ)

First, we focus on:

• AB: (A17) is binding

• BA: (A13) is binding

For BA, TBA1 is given by (A13) binding:

p (σB , σA) (1− ν)TBA1 = p (σB , σA)ψB + p (σB)
2
ψA (A13)

TBA1 =
1

(1− ν)
ψB +

p (σB)
2

p (σB , σA) (1− ν)
ψA

=
1

(1− ν)
ψB +

(1− νθB)
2

(νθA − νθAχ) (1− ν)
ψA

E [tBA(A13)] = νTBA1 + ψB + p (σB)ψA = ν
(
TBA1 − θBψA

)
+ (ψA + ψB)

=
ν

(1− ν)
ψB +

(1− νθB)
2

(1− χ) (1− ν)

ψA
θA

− νθBψA + (ψA + ψB)
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For AB, TAB1 is given by (A17) binding:

TAB1 =
p (σA)

p (σA, σB) (1− ν) p (σA)
[p (σA) p (σB)− p (σA, σB)]ψB +

1

(1− ν) p (σA)
ψA

=
(1− νθA)

(νθB − νθAχ) (1− ν) νθA
[(1− νθA) νθB − (νθB − νθAχ)]ψB +

1

(1− ν) νθA
ψA

=
(1− νθA)(

1− θA
θB
χ
)
(1− ν) ν

[χ− νθB ]
ψB
θB

+
1

(1− ν) ν

ψA
θA

E [tAB(A17)] = νTAB1 + ψA + p (σA)ψB = ν
(
TAB1 − θAψB

)
+ (ψA + ψB)

=
(1− νθA)(

1− θA
θB
χ
)
(1− ν)

[χ− νθB ]
ψB
θB

+
1

(1− ν)

ψA
θA

− νθAψB + (ψA + ψB)

Define ∆3 ≡ E [tBA(A13)]− E [tAB(A17)]. BA is optimal iff ∆3 < 0. We have

∆3 =
ν

(1− ν)
ψB +

(1− νθB)
2

(1− χ) (1− ν)

ψA
θA

− νθBψA

−

 (1− νθA)(
1− θA

θB
χ
)
(1− ν)

[χ− νθB ]
ψB
θB

+
1

(1− ν)

ψA
θA

− νθAψB


=

ν

(1− ν)
ψB +

(1− νθB)
2

(1− χ) (1− ν)

ψA
θA

− (1− νθA)(
1− θA

θB
χ
)
(1− ν)

[χ− νθB ]
ψB
θB

− 1

(1− ν)

ψA
θA

+ νθAθB

(
ψB
θB

− ψA
θA

)
Lemma 8. Define ∆3 ≡ E [tBA(13)]− E [tAB(17)]. We have

(1− ν)∆3

ψA/θA
≡ αν2 + βν + γ

with α ≥ 0, γ ≥ 0 and

β ∝ x−

(
2

(1−χ) + θA

)
(

2(
1− θA

θB
χ
) + θA

)

Proof: From previous calculations we have:

∆3 =
ν

(1− ν)
ψB+

(1− νθB)
2

(1− χ) (1− ν)

ψA
θA

− (1− νθA)(
1− θA

θB
χ
)
(1− ν)

[χ− νθB ]
ψB
θB

− 1

(1− ν)

ψA
θA

+νθAθB

(
ψB
θB

− ψA
θA

)
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(1− ν)∆3

ψA/θA
= xθBν +

(1− νθB)
2

(1− χ)
− (1− νθA)(

1− θA
θB
χ
) [χ− νθB ]x− 1 + ν (1− ν) θAθB (x− 1)

= xθBν +
1− 2νθB + θ2Bν

2

(1− χ)
− (1− νθA)(

1− θA
θB
χ
) [χ− νθB ]x− 1 +

(
ν − ν2

)
θAθB (x− 1)

=

 θ2B
(1− χ)

− θAθBx(
1− θA

θB
χ
) − θAθB (x− 1)

 ν2
+

xθB − 2θB
(1− χ)

+
(θB + χθA)(
1− θA

θB
χ
) x+ θAθB (x− 1)

 ν
+

 1

(1− χ)
− χx(

1− θA
θB
χ
) − 1


=

θB
(1− χ)

θB − (1− χ)(
1− θA

θB
χ
)θAx− (1− χ) θA (x− 1)

 ν2

+

θBx− 2θB
(1− χ)

+

(
1 + θA

θB
χ
)

(
1− θA

θB
χ
)θBx+ θAθB (x− 1)

 ν
+

χ(
1− θA

θB
χ
)

(
1− θA

θB
χ
)

(1− χ)
− x


=

θB
(1− χ)

θB + (1− χ) θA −

 1(
1− θA

θB
χ
) + 1

 (1− χ) θAx

 ν2

+ θB

x
1 +

(
1 + θA

θB
χ
)

(
1− θA

θB
χ
) + θA

−
(

2

(1− χ)
+ θA

) ν
+

χ(
1− θA

θB
χ
)

(
1− θA

θB
χ
)

(1− χ)
− x


=

θB
(1− χ)

θB + (1− χ) θA −

 1(
1− θA

θB
χ
) + 1

 (1− χ) θAx

 ν2
+ θB

x
 2(

1− θA
θB
χ
) + θA

−
(

2

(1− χ)
+ θA

) ν
+

χ(
1− θA

θB
χ
)

(
1− θA

θB
χ
)

(1− χ)
− x


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Therefore:

α
θB

(1−χ)
≡ θB + (1− χ) θA −

 1(
1− θA

θB
χ
) + 1

 (1− χ) θAx

≥ θB + (1− χ) θA −

 1(
1− θA

θB
χ
) + 1

 (1− χ) θA

(
1− θA

θB
χ
)

(1− χ)

≥ θB + (1− χ) θA −
(
1 +

(
1− θA

θB
χ

))
θA

≥ θB − χ
θA
θB
θB −

(
θA − θA

θB
χθA

)
≥

(
1− χ

θA
θB

)
(θB − θA)

≥ 0

γ ≡ χ(
1− θA

θB
χ
)

(
1− θA

θB
χ
)

(1− χ)
− x

 ≥ 0

β ≡ θB

x
 2(

1− θA
θB
χ
) + θA

−
(

2

(1− χ)
+ θA

)
∝ x−

(
2

(1−χ) + θA

)
(

2(
1− θA

θB
χ
) + θA

)
■

Lemma 9. Recall that we are in the case

(
1− θA

θB
χ
)

(1−χ) ≥ x ≥ 1: We have

(
1− θA

θB
χ
)

(1− χ)
≥

(
2

(1−χ) + θA

)
(

2(
1− θA

θB
χ
) + θA

) ≥ 1

Hence, as x decreases from

(
1− θA

θB
χ
)

(1−χ) to 1, β decreases from positive to negative.
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Proof:

Ω =

(
1− θA

θB
χ
)

(1− χ)
−

(
2

(1−χ) + θA

)
(

2(
1− θA

θB
χ
) + θA

)

∝

(
1− θA

θB
χ

) 2(
1− θA

θB
χ
) + θA

−
(

2

(1− χ)
+ θA

)
(1− χ)

∝

(
2 + θA

(
1− θA

θB
χ

))
− (2 + θA (1− χ))

∝ χ

(
1− θA

θB

)
≥ 0

Because θA
θB

≤ 1, we have (
2

(1−χ) + θA

)
(

2(
1− θA

θB
χ
) + θA

) ≥ 1

■

Lemma 10. For x such that

(
1− θA

θB
χ
)

(1−χ) ≥ x ≥ ( 2
(1−χ)

+θA) 2(
1− θA

θB
χ

)+θA

 , we have α ≥ 0, β ≥ 0 and γ ≥ 0.

Hence, both roots are negative and ∆3 > 0. If (A17) binds for AB and (A13) binds for BA, then AB is

optimal.

Proof: α ≥ 0 and β ≥ 0 imply that the sum of the roots is negative and γ ≥ 0 implies that their product

is positive. Hence, both roots are negative. Therefore, ∆3 > 0 for ν ∈ [0, 1]. ■

Lemma 11. β2 − 4αγ is a convex function of x.

Proof: The second derivative of β2 − 4αγ w.r.t. x is 2

(
∂β

∂x

)2

− 8

(
∂α

∂x

∂γ

∂x

)
=

= 2θ2B

 2

(1− θA
θB
χ)

+ θA


2

− 8
θB

(1− χ)

−
 1

(1− θA
θB
χ)

+ 1

 (1− χ)θA


− χ

(1− θA
θB
χ)


∝

(
2 + θA(1−

θA
θB
χ)

)2

− 4
θA
θB
χ

(
2− θA

θB
χ

)
∝ 4 + 4θA(1−

θA
θB
χ) + θ2A(1−

θA
θB
χ)2 − 4

θA
θB
χ(1− θA

θB
χ)− 4

θA
θB
χ

∝ (1− θA
θB
χ) ·

[
4 + 4θA + θ2A(1−

θA
θB
χ)− 4

θA
θB
χ

]
∝ (1− θA

θB
χ) ·

[
4θA + (1− θA

θB
χ)(4 + θ2A)

]
≥ 0

■
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Lemma 12. There exists a x∗ with 1 ≤ x ≤
1− θA

θB
χ

(1− χ)
such that β = 0 for x = x∗.

Proof: By inspection, β is increasing in x and equal to zero for x =

(
2

(1− χ)
+ θA)

(
2

(1− θA
θB
χ)

+ θA)
■

Lemma 13. β2 − 4αγ is negative over [1, x∗].

Proof: For x = x∗, β = 0 so β2 − 4αγ ≤ 0 because α ≥ 0 and γ ≥ 0. For x = 1, we have:

β2 − 4αγ[x→ 1] = θ2B


 2

(1− θA
θB
χ)

+ θA

−
(

2

(1− χ)
+ θA

)
2

−4
θB

(1− χ)

θB + (1− χ)θA −

 1

1− θA
θB
χ

+ 1

 (1− χ)θA

 χ

(1− θA
θB
χ)

 (1−
θA
θB
χ)

(1− χ)
− 1


=

4θ2Bχ
2

(1− θA
θB
χ)2(1− χ)2

[
1− θA

θB

]2
− 4θ2Bχ

2

(1− θA
θB
χ)2(1− χ)2

[
1− θA

θB

]2
= 0

Since β2 − 4αγ ≤ 0 for x = 1 and x = x∗, and it is convex over [1, x∗], it is negative over [1, x∗]. ■

Conclusion: Either (i) β ≥ 0 or (ii) β < 0 and there are no roots. Either way, ∆3 is positive.

Now we focus on:

• AB: (A13) is binding

• BA: (A17) is binding

Lemma 14. For ∆2 ≡ E [tBA(A17)] − E [tAB(A13)], we have
(1− ν)∆2

ψA/θA
= α1ν

2 + β1ν + γ1, with α1 ≥ 0

and γ1 ≥ 0.

Proof:

α1 ≡ θA

(
− θA

1− θA
θB
χ
x+

θB
1− χ

− (x− 1) θB

)

≥ θA

(
− θA

1− θA
θB
χ

1− θA
θB
χ

1− χ
+

θB
1− χ

−

(
1− θA

θB
χ

1− χ
− 1

)
θB

)

≥ θA

− θA
1− χ

+
θB

1− χ
−

(
1− θA

θB

)
χ

1− χ
θB


≥ θAθB

(
1− θA

θB

)
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γ1 ≡ x− 1 +

(
1− θA

θB

)
+

θA
θB

1− χ
− x

1

1− θA
θB
χ

≥
1− θA

θB
χ

1− χ
− 1 +

(
1− θA

θB

)
+

θA
θB

1− χ
−

1− θA
θB
χ

1− χ

1

1− θA
θB
χ

≥
1− θA

θB
χ

1− χ
− 1 +

(
1− θA

θB

)
+

θA
θB

1− χ
− 1

1− χ

≥
− θA
θB
χ

1− χ
− θA
θB

+
θA
θB

1− χ

≥
− θA
θB
χ− θA

θB
(1− χ) + θA

θB

1− χ
≥ 0

β1 ≡ 2θA

(1− θA
θB
χ)

x− 2θA
(1− χ)

+ θAθB(x− 1)

■

Lemma 15. Recall that we are in the case

(
1− θA

θB
χ
)

(1−χ) ≥ x ≥ 1: We have

(
1− θA

θB
χ
)

(1− χ)
≥

(
2

(1−χ) + θB

)
(

2(
1− θA

θB
χ
) + θB

) ≥ 1

Hence, as x decreases from

(
1− θA

θB
χ
)

(1−χ) to 1, β1 decreases from positive to negative.

Proof:

Ω1 =

(
1− θA

θB
χ
)

(1− χ)
−

(
2

(1−χ) + θB

)
(

2(
1− θA

θB
χ
) + θB

)

∝

(
1− θA

θB
χ

) 2(
1− θA

θB
χ
) + θB

−
(

2

(1− χ)
+ θB

)
(1− χ)

∝

(
2 + θB

(
1− θA

θB
χ

))
− (2 + θB (1− χ))

∝ χ

(
1− θA

θB

)
≥ 0

Because θA
θB

≤ 1, we have (
2

(1−χ) + θB

)
(

2(
1− θA

θB
χ
) + θB

) ≥ 1

■
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Lemma 16. For x such that

(
1− θA

θB
χ
)

(1−χ) ≥ x ≥ ( 2
(1−χ)

+θB) 2(
1− θA

θB
χ

)+θB

 , we have α1 ≥ 0, β1 ≥ 0 and γ1 ≥ 0.

Hence, both roots are negative and ∆2 > 0. If (A13) binds for AB and (A17) binds for BA, then AB is

optimal.

Proof: α1 ≥ 0 and β1 ≥ 0 imply that the sum of the roots is negative and γ1 ≥ 0 implies that their product

is positive. Hence, both roots are negative. Therefore, ∆2 > 0 for ν ∈ [0, 1]. ■

Lemma 17. β2
1 − 4α1γ1 is a convex function of x.

Proof:

Ω2 =

 2θA

(1− θA
θB
χ)

x− 2θA
(1− χ)

+ θAθB(x− 1)


2

−4θAθB

 −θA
θB

(1− θA
θB
χ)

+
1

(1− χ)
− (x− 1)


θA
θB
χ

(1− θA
θB
χ)

 (1− θA
θB
χ)

(1− χ)
− x



∂2Ω2

∂x2
= 2

 2θA

(1− θA
θB
χ)

+ θAθB


2

− 8θAθB


θA
θB

(1− θA
θB
χ)

+ 1


θA
θB
χ

(1− θA
θB
χ)

=
8θ2A

(1− θA
θB
χ)2

(
1 +

θB
2
(1− θA

θB
χ)

)2

− 8θ2A

(1− θA
θB
χ)2

χ

[
θA
θB

+ (1− θA
θB
χ)

]

∝

(
1 +

θB
2
(1− θA

θB
χ)

)2

− χ

[
1 +

θA
θB

(1− χ)

]
∝ ≥

(
1 +

θB
2
(1− χ)

)2

− χ [1 + (1− χ)]

∝ (1 + θB(1− χ) +
θ2B
4
(1− χ)2)− χ [1 + (1− χ)]

∝ (1− χ) + θB(1− χ) +
θ2B
4
(1− χ)2 − χ(1− χ)

∝ (1− χ) + θB +
θ2B
4
(1− χ) ≥ 0

■

Lemma 18. There exists a x∗ with 1 ≤ x ≤
1− θA

θB
χ

(1− χ)
such that β1 = 0 for x = x∗.
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Proof: By inspection, β1 is increasing in x and equal to zero for x =

(
2

(1− χ)
+ θB)

(
2

(1− θA
θB
χ)

+ θB)
. ■

Lemma 19. β2
1 − 4α1γ1 is negative over [1, x∗].

Proof: For x = x∗, β1 = 0 so β2
1 − 4α1γ1 ≤ 0 because α1 ≥ 0 and γ1 ≥ 0. For x = 1, we have

β2
1 − 4α1γ1[x→ 1] =

=

 2θA

(1− θA
θB
χ)

− 2θA
(1− χ)


2

− 4θAθB

 −θA
θB

(1− θA
θB
χ)

+
1

(1− χ)


θA
θB
χ

(1− θA
θB
χ)

 (1− θA
θB
χ)

(1− χ)
− 1


=

4θ2Aχ
2

(1− θA
θB
χ)2(1− χ)2

[
1− θA

θB

]2
− 4θ2Aχ

2

(1− θA
θB
χ)2(1− χ)2

[
1− θA

θB

]2
= 0

Since β2
1 − 4α1γ1 ≤ 0 for x = 1 and x = x∗, and it is convex over [1, x∗], it is negative over [1, x∗]. ■

Conclusion: Either (i) β1 ≥ 0 or (ii) β1 < 0 and there are no roots. Either way, ∆2 is positive.

Lemma 20. If (A13) binds for both AB and BA, then AB is optimal.

Proof: For BA, if (A13) is removed, (A17) binds and the optimum improves, E[tBA(A17)] < E[tBA(A13)].

As shown above, ∆2 > 0, hence, E[tBA(A13)] > E[tBA(A17)] > E[tAB(A13)]. ■
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Summary

In the first chapter (Crowdfunding platforms, E. Gorbunova) I derive a platform-optimal selling procedure

for a non-rival but excludable good, which is yet to be produced. The seller, who is privately informed about

fixed production costs, faces multiple potential buyers, who are privately informed about their valuations for

the good. Selling the good is only possible on the platform. The platform designs the contract specifying

when the good will be produced (call this production rule), how much to pay the seller, which buyers

get access to the good (call this allocation rule) and how much the buyers pay the platform. I derive the

optimal direct incentive-compatible mechanism which maximizes the platform’s expected profit. The optimal

allocation rule is standard: only buyers with positive virtual valuations should obtain the good in case it

is produced. Whether or not the good will be produced depends on whether the sum of positive virtual

valuations surpasses the virtual costs.

When it comes to implementation, there are many ways to construct the actual transfers depending on the

desired structure: I concentrate on the so-called contribution schemes, for which there is no reimbursement

to the buyers in case the good is not produced. I then propose a scheme which combines features of the

implementation of the optimal mechanism in Cornelli’s “Optimal selling procedures with fixed costs” (1996)

and Myerson and Satterthwaite’s “Efficient mechanisms for bilateral trading” (1983), and indeed resembles

contractual features found on reward-based crowdfunding platforms such as Patreon.

The second chapter (Sequential screening in the presence of fixed costs, E. Gorbunova) is based

on joint work with P. Pillath where we combine techniques used in Cornelli’s “Optimal selling procedures

with fixed costs” (1996) and Courty and Li’s “Sequential screening” (2000). We describe how a monopolist

optimally sells a club good if buyers learn their valuations for the good over time. We first characterize

the optimal selling mechanism when the seller has to produce before the buyers have perfectly learned their

valuations for the good. The optimal selling mechanism can be implemented as a “buy-option” contract: the

seller first collects upfront payments and decides whether to produce; the buyers then learn their valuations

perfectly and if they made an upfront payment and if the good was produced, they have an option to buy

the good for a pre-specified exercise price. We show that the upfront payments serve a dual purpose: the

higher the upfront payment, the higher the probability that a good will be produced, but also the lower the

exercise price. Additionally, the optimal selling mechanism when the seller can produce after the buyers have

perfectly learned their valuations for the good is derived. The optimal mechanism can be implemented as

a “contribute-option” contract: after collecting upfront payments from the buyers, the seller now offers an

option to contribute to the production of the good, once the buyers learn their true valuations. In particular,

it is optimal for the seller to ask buyers to pay as much as they want when the production decision takes

place.

The third chapter (Dynamic information collection: two-sided tests, E. Gorbunova) is based on joint

work with D. Gromb and F. de Vericourt where we considers a firm which can learn about a risky project’s

quality before investing by running up to two tests differing in efficiency defined as precision-to-cost ratio.

These tests generate no false positives and no false negatives, in other words, it is possible for the firm

to accept or reject the project based on hard information / evidence. The signal structure is such that

if a positive signal is observed, the firm knows for sure that a good quality project generated it (no false

positives); if a negative signal is observed, the firm knows for sure that a bad quality project generated it

(no false negatives). The firm collects signals sequentially and can stop the analysis after one conclusive
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result to save the cost of the second test. If the first test generates an inconclusive result, we assume that

it is still worthwhile to run the second test. Since we consider symmetric tests (it is as likely for a good

quality project to generate a positive signal as it is for a bad quality project to generate a negative signal),

encountering inconclusive results does not update the prior belief about the project’s success. It is first-best

optimal to start with the most efficient test.

The principal, however, must hire an expert who has to be incentivized to run the tests (moral hazard) and

report the signals they generate truthfully (adverse selection). In this paper we tackle two building blocks of

delegated expertise: optimal compensation - characterizing optimal incentive contracts for each order of the

tests under a combined moral hazard and adverse selection problem; and task design - finding the optimal

order. If running up to two tests is delegated to an expert, we show that the optimal test order is reverse: it

is optimal to start with the least efficient test. The interplay of dynamic incentive constraints implies that it

is cheaper to make the expert run the least efficient test first than to ensure that he does not skip the least

efficient test in the second round if he starts with the most efficient test.

The forth chapter (Search order in delegated data analytics, E. Gorbunova) is based on joint work with

D. Gromb and F. de Vericourt where we provide a narrower context for dynamic information collection by

focusing on delegated data analytics. We tailor the model accordingly, first, by allowing good quality projects

to fail with an exogenous probability (i.e. it is not possible to assure project’s success though data analytics

alone), and, second, by allowing analyses results to be correlated (even if the data sets are heterogeneous,

they sometimes reveal similar results / causalities). We keep the no false positives assumption but allow

for false negatives, i.e. this time, the firm can accept the project based on hard evidence but it rejects the

project based on soft information. If a positive result is observed, the firm knows for sure that a good quality

project generated it (no false positives); if a negative result is observed, the firm does not know for sure

whether a bad quality project or a good quality project generated it (false negatives). As the firm conducts

analyses sequentially and fails to find positive results, it gets more pessimistic about the project quality.

This signal structure corresponds to a standard search problem.

Due to signal asymmetry, the result obtained in the forth chapter differs from that in the third chapter;

exogenous probability of a good project failing does not play a significant role. We find that the deviation

from the first-best optimal search order happens if the project is a priori sufficiently likely to be of bad quality.

This “threshold” result holds even if analyses findings are positively correlated. A natural extension of this

model is a sister problem with no false negatives and false positives, where the firm gets more optimistic

about the project quality as it fails to find negative results, so it accepts the project based on soft information.

This specification was also solved by us but it is outside of the scope of this thesis; its result, however, is

briefly mentioned in the conclusion to the forth chapter.
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Zusammenfassung

Im ersten Kapitel (Crowdfunding platforms, E. Gorbunova) leite ich ein plattformoptimales Verkaufsver-

fahren für ein nicht-rivales, aber exklusives Gut her, das noch zu produzieren ist. Der Verkäufer, der

über private Informationen zu den fixen Produktionskosten verfügt, steht mehreren potenziellen Käufern

gegenüber, die über private Informationen zu ihrer eigenen Wertschätzung des Gutes jeweils verfügen. Der

Verkauf des Gutes ist ausschließlich über die Plattform möglich. Die Plattform gestaltet den Vertrag, der

festlegt, wann das Gut produziert wird (Produktionsregel), wie viel dem Verkäufer für die Produktion zu

zahlen ist, welche Käufer Zugang zum Gut erhalten (Allokationsregel) und wie viel die Käufer an die Plat-

tform zahlen. Ich leite den optimalen direkten anreizkompatiblen Mechanismus her, der den erwarteten

Gewinn der Plattform maximiert. Die optimale Allokationsregel ist standardmäßig: Nur die Käufer mit pos-

itiven virtuellen Wertschätzungen (“virtual valuations”) sollten das Gut im Falle einer Produktion erhalten.

Ob das Gut produziert wird, hängt davon ab, ob die Summe der positiven virtuellen Wertschätzungen die

virtuellen Kosten (“virtual costs”) übersteigt.

Bei der Implementierung gibt es viele Möglichkeiten, die tatsächlichen Zahlungen je nach gewünschter Struk-

tur zu konstruieren: Ich konzentriere mich auf die sogenannten Beitragsschemata (“contribution schemes”),

bei denen es keine Rückerstattung an die Käufer gibt, falls das Gut nicht produziert wird. Anschließend

schlage ich ein Schema vor, das Merkmale der Implementierung des optimalen direkten Mechanismus bei

Cornellis “Optimal selling procedures with fixed costs” (1996) und Myersons und Satterthwaites “Efficient

mechanisms for bilateral trading” (1983) kombiniert und dabei den Crowdfunding-Verfahren auf Plattformen

wie Patreon nahekommt

Das zweite Kapitel (Sequential screening in the presence of fixed costs, E. Gorbunova) basiert auf

einer gemeinsamen Arbeit mit P. Pillath, in der wir Techniken aus Cornellis “Optimal selling procedures

with fixed costs” (1996) und Courtys und Lis “Sequential screening” (2000) kombinieren. In diesem Kapi-

tel beschreiben wir, wie ein Monopolist ein Clubgut (“club good”) optimal verkauft, wenn die Käufer ihre

Wertschätzung für das Gut im Laufe der Zeit erfahren. Zunächst charakterisieren wir den optimalen Verkauf-

smechanismus, wenn der Verkäufer produzieren muss, bevor die Käufer ihre Wertschätzungen für das Gut

vollständig gelernt haben. Der optimale direkte Verkaufsmechanismus kann als ein Vertrag mit einer “Kauf-

Option” (“buy-option” contract) implementiert werden: Der Verkäufer erhebt zunächst Vorauszahlungen

und entscheidet, ob er produziert; die Käufer lernen dann ihre Wertschätzungen vollständig kennen, und

wenn sie eine Vorauszahlung geleistet haben und das Gut produziert wurde, haben sie eine Möglichkeit, das

Gut zu einem vorher festgelegten Preis (“exercise price”) zu kaufen. Wir zeigen, dass die Vorauszahlungen in

diesem Fall einen doppelten Zweck erfüllen: Je höher die Vorauszahlung, desto höher die Wahrscheinlichkeit,

dass ein Gut produziert wird, aber auch desto niedriger der Preis (“exercise price”).

Zusätzlich wird der optimale Verkaufsmechanismus hergeleitet, wenn der Verkäufer produzieren kann nach-

dem die Käufer ihre Wertschätzungen für das Gut vollständig gelernt haben. Der optimale direkte Mechanis-

mus kann als ein Vertrag mit einer “Beitrags-Option” (“contribute-option” contract) implementiert werden:

Nach Erhalt von Vorauszahlungen von den Käufern bietet der Verkäufer nun eine Option an, zur Produk-

tion des Gutes beizutragen, sobald die Käufer ihre wahre Wertschätzung kennen. Insbesondere ist es für den

Verkäufer optimal, den Käufer anzubieten, zum Zeitpunkt der Produktionsentscheidung so viel beizutragen,

wie sie möchten.
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Das dritte Kapitel (Dynamic information collection: two-sided tests, E. Gorbunova) basiert auf

eiener gemeinsamen Arbeit mit D. Gromb und F. de Vericourt und befasst sich mit einem Unternehmen,

das die Qualität eines risikobehafteten Projekts vor der Investition durch Durchführung von bis zu zwei

Tests lernen kann, die sich in ihrer Effizienz, definiert als Präzisions-Kosten-Verhältnis, unterscheiden. Diese

Tests generieren keine falsch-positiven und keine falsch-negativen Ergebnisse, das heißt, es ist dem Un-

ternehmen möglich, das Projekt basierend auf harten Informationen (“hard information”) / Beweisen zu

akzeptieren oder abzulehnen. Die Signalstruktur ist derart, dass bei Beobachtung eines positiven Signals

das Unternehmen sicher weiß, dass ein Projekt guter Qualität es generiert hat (keine falsch-positiven Ergeb-

nisse); bei Beobachtung eines negativen Signals weiß das Unternehmen sicher, dass ein Projekt schlechter

Qualität es generiert hat (keine falsch-negativen Ergebnisse). Das Unternehmen sammelt Signale sukzes-

sive und kann die Analyse nach einem eindeutigen Ergebnis stoppen, um die Kosten des zweiten Tests zu

sparen. Wenn der erste Test ein unklares Ergebnis liefert, nehmen wir an, dass es sich trotzdem lohnt, den

zweiten Test durchzuführen. Da wir symmetrische Tests betrachten (ein Projekt guter Qualität generiert

mit gleicher Wahrscheinlichkeit ein positives Signal wie ein Projekt schlechter Qualität ein negatives Signal

generiert), führen unklare Ergebnisse zu keiner Aktualisierung der Vorhersage (“belief”) zum Projekterfolg.

Es ist “first-best”-optimal, mit dem effizientesten Test anzufangen.

Der Prinzipal muss jedoch für die Analyse einen Experten beauftragen. Für ihn muss ein Anreiz beste-

hen, die Tests durchzuführen (moralisches Risiko) und die von ihnen erzeugten Signale wahrheitsgemäß zu

melden (adverse Selektion). Diese Arbeit behandelt zwei Bausteine der delegierten Expertise: optimale

Vergütung (Charakterisierung optimaler Anreizverträge für jede Reihenfolge der Tests unter der Kombina-

tion des moralischen Risikos und der adversen Selektion) und Aufgabengestaltung (Ermittlung der optimalen

Reihenfolge der Tests). Wenn die Durchführung von bis zu zwei Tests an einen Experten delegiert wird,

zeigen wir, dass die optimale Testreihenfolge umgekehrt ist: Es ist optimal, mit dem am wenigsten effizienten

Test anzufangen. Das Zusammenspiel dynamischer Anreizrestriktionen (“incentive constraints”) impliziert,

dass es günstiger ist, den Experten zuerst den am wenigsten effizienten Test durchführen zu lassen, als

sicherzustellen, dass er den am wenigsten effizienten Test in der zweiten Runde nicht auslässt, wenn er mit

dem effizientesten Test beginnt.

Das vierte Kapitel (Search order in delegated data analytics, E. Gorbunova) basiert auf einer gemein-

samen Arbeit mit D. Gromb und F. de Vericourt, in der wir einen engeren Kontext für die dynamische Infor-

mationssammlung bieten, indem wir uns auf delegierte Datenanalyse konzentrieren. Wir passen das Modell

entsprechend an: erstens lassen wir zu, dass Projekte guter Qualität mit einer exogenen Wahrscheinlichkeit

scheitern können (d.h. es ist nicht möglich, den Projekterfolg allein durch Datenanalyse zu gewährleisten),

und zweitens lassen wir positive Korrelation der Analyseergebnisse zu (selbst wenn die Datensätze heterogen

sind, offenbaren sie manchmal ähnliche Ergebnisse / Kausalitäten). Wir behalten die Annahme “keine falsch-

positiven Ergebnisse” bei, erlauben jedoch falsch-negative Ergebnisse, d.h. diesmal kann das Unternehmen

das Projekt auf Basis harter Beweise akzeptieren, es lehnt das Projekt jedoch auf Basis weicher Informa-

tionen (“soft information”) ab. Wird ein positives Ergebnis beobachtet, weiß das Unternehmen sicher, dass

ein Projekt guter Qualität es generiert hat (keine falsch-positiven Ergebnisse); wird ein negatives Ergebnis

beobachtet, weiß das Unternehmen nicht sicher, ob ein Projekt schlechter Qualität es generiert hat oder

ein Projekt guter Qualität (falsch-negative Ergebnisse). Während das Unternehmen Analysen sukzessive

durchführt und keine positiven Ergebnisse findet, wird es pessimistischer hinsichtlich der Projektqualität.

Diese Signalstruktur entspricht einem standardmäßigen “search”-Problem.
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Aufgrund der Signalasymmetrie unterscheidet sich das Ergebnis im vierten Kapitel von jenem im dritten

Kapitel. Die exogene Wahrscheinlichkeit des Scheiterns eines guten Projekts spielt dabei keine signifikante

Rolle. Wir stellen fest, dass die Abweichung von der “first-best”-optimalen Reihenfolge der Datensätze

auftritt, wenn das Projekt a priori hinreichend wahrscheinlich von schlechter Qualität ist. Dieses Schwellenwert-

Ergebnis (“threshold result”) gilt auch bei positiv korrelierten Analyseergebnissen. Eine natürliche Er-

weiterung dieses Modells ist ein Schwestermodell ohne falsch-negative Ergebnisse aber mit falsch-positiven

Ergebnissen, bei dem das Unternehmen optimistischer über die Projektqualität wird, wenn es keine negativen

Ergebnisse findet, sodass es das Projekt auf Basis weicher Informationen (“soft information”) akzeptiert.

Diese Spezifikation wurde ebenfalls von uns gelöst, liegt jedoch außerhalb des Umfangs dieser Doktorarbeit;

ihr Ergebnis wird jedoch kurz in der Schlussfolgerung des vierten Kapitels erwähnt.
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