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Zweitgutachter: Ass. Prof. Dr. Johannes Brandstetter

Drittgutachter: Dr. Djork-Arné Clevert
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Abstract

Discovering novel pharmaceutical drugs is a lengthy, complex, and resource-
intensive process. Traditional approaches in chemoinformatics have provided
valuable tools for predicting molecular properties, but these methods can fall
short in terms of efficiency and predictive accuracy. When used in molecular gen-
eration, these limitations become more pronounced, as inaccuracies in property
prediction can lead to the design of suboptimal candidates. This dissertation
explores innovative approaches to drug discovery through the application of
deep graph representation learning techniques, focusing on two areas: molec-
ular property prediction and molecular generation. We propose novel graph
neural network architectures designed to enhance expressiveness in 2D and 3D
molecular graphs. Our approach incorporates feature transformations inspired
by hypercomplex algebras or integrates group equivariance into the models,
facilitating data-efficient training. For 3D molecular data, we demonstrate that
rotation-equivariant networks can be scaled to process larger biomolecules and
outperform invariant networks while remaining computationally efficient. Addi-
tionally, we introduce generative models based on diffusion probabilistic models
that sample new 3D molecular structures with targeted properties, either for
ligands in isolation or within protein-ligand complexes, using rotation-equivariant
graph networks as denoisers. This aspect of our research aims to enhance the
drug discovery pipeline by improving the efficiency of identifying promising drug
candidates that meet multiple criteria. The results of this thesis suggest that
deep graph representation learning has the potential to advance drug discovery
by providing more accurate predictive tools and enhancing the ability to generate
novel molecular candidates. This work contributes to the development of com-
putational methods in drug discovery and may pave the way for further research
into applying graph representation learning to complex chemical problems.



Zusammenfassung

Die Entdeckung neuer pharmazeutischer Medikamente ist ein langwieriger, kom-
plexer und ressourcenintensiver Prozess. Traditionelle Ansätze in der Chemie-
informatik haben wertvolle Methoden zur Vorhersage molekularer Eigenschaften
bereitgestellt, doch diese Methoden können in Bezug auf Effizienz und Vorher-
sagegenauigkeit unzureichend sein. Bei der Generierung von Molekülen werden
diese Einschränkungen noch deutlicher, da Ungenauigkeiten bei der Vorhersage
in der Eigenschaftsvorhersage zu suboptimalen Kandidaten führen können. Diese
Dissertation untersucht innovative Ansätze zur Entdeckung von Arzneimittel
durch die Anwendung von Lerntechnicken von tiefen Graph Repräsentationen,
wobei der Schwerpunkt auf zwei Bereichen liegt: der Vorhersage molekularer
Eigenschaften und der molekularen Generierung. Wir schlagen neuartige Ar-
chitekturen von Graph Neuronalen Netzwerken vor, die entwickelt wurden, um
die Ausdruckskraft in 2D- als auch in 3D-Molekülgraphen zu verbessern. Unser
Ansatz integriert Transformationen, inspiriert von hyperkomplexen Algebren,
oder integriert Gruppenequivarianz in die Modelle, um ein daten-effizientes
Training zu ermöglichen. Für 3D-molekulare Daten zeigen wir, dass rotations-
equivariante Netzwerke auf die Verarbeitung größerer Biomoleküle skaliert werden
können und invariant Netzwerke übertreffen, während sie gleichzeitig rechenef-
fizient bleiben. Zusätzlich stellen wir generative Modelle vor, die auf Diffusions-
Wahrscheinlichkeitsmodellen basieren und neue 3D-molekulare Strukturen mit
gezielten Eigenschaften erzeugen, entweder für Liganden in Isolation oder in
Protein-Ligand-Komplexen, wobei rotatations-equivariante Graphnetzwerke in
der Diffusion verwendet werden. Dieser Aspekt unserer Forschung zielt darauf ab,
den Prozess zur Arzneimittelentdeckungs zu verbessern, indem die Effizienz bei
der Identifizierung vielversprechender Molekül Kandidaten, die mehrere Kriterien
erfüllen, erhöht wird. Die Ergebnisse dieser Dissertation deuten darauf hin, dass
Lerntechnicken von tiefen Graph Repräsentationen das Potenzial haben, die
Arzneimittelentdeckung voranzutreiben, indem es genauere Vorhersagewerkzeuge
bereitstellt und die Fähigkeit zur Generierung neuer molekularer Kandidaten
verbessert. Diese Arbeit trägt zur Entwicklung rechnerischer Methoden in der
Arzneimittelentdeckung bei und könnte den Weg für weitere Forschungen zur
Anwendung der Lerntechnicken von tiefen Graph Repräsentationen auf komplexe
chemische Probleme ebnen.
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Latent-Guided Equivariant Diffusion for Controlled Structure-Based De
Novo Ligand Generation. 1st Machine Learning for Life and Material
Sciences Workshop at ICML 2024

• Bertolini, Marco; Le, Tuan & Clevert, Djork-Arné (2025). Generative
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Chapter 1

Introduction

Drug design is a very long and expensive process involving extensive experiments
and multiple stages, taking over 10-15 years with an average cost of over 1-2
billion USD for each new drug to be approved for clinical use as a new medicine
to patients (Paul et al., 2010; Wouters et al., 2020). To accelerate the drug
discovery process and increase the success rate of compounds, the development
of machine and deep learning models has been a major research focus in recent
years to explore and navigate the vast drug-like chemical space of approximately
1060 molecules (Polishchuk et al., 2013) more efficiently. To explore the chemical
space, a multi-objective search is usually performed, while several in silico models
are used to score molecules concerning their pharmacological properties and to
narrow down the search space.

Graph representation learning has emerged as a powerful and flexible tool in
machine and deep learning gaining popularity in scientific domains such as
chemistry and structural biology for drug discovery. Representing molecules as
graphs has the advantage that local structures, such as the interaction between
bonded or non-bonded atoms can be encoded, enabling one to learn more
expressive and distinctive features to build a molecular descriptor that can
be leveraged for several tasks. Such tasks commonly found in computational
chemistry involve developing of methods for molecular property prediction, such
as internal energy, its synthetic accessibility, or the binding affinity to a biological
target. However, computers require the graph of molecules to be described with
ordered lists, such as the adjacency matrix, the chemical elements, and, if spatial
coordinates are available, the 3D conformation of the molecule. This poses
challenges for some tasks, e.g., the prediction of internal energy, the ordering of
the data, and the molecule’s orientation in Cartesian coordinates is irrelevant,
i.e., invariant, for the task at hand. These aspects are related to the symmetry
of data, and building neural network architectures that are symmetry-aware, i.e.,
equivariant, enables practitioners to extract richer representation from the data
while being model and data-efficient. Equivariant architectures are also required
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and beneficial in a de novo molecule design setting since generating molecules in
3D naturally includes an arbitrary ordering and orientation that requires their
preservation.

In the following, we describe how expressive molecular representations can
be extracted using neural network architectures suitable for either molecular
property prediction or de novo molecule design while preserving the symmetry
of the data. We study the expressiveness of molecular descriptors by learning
mappings between them, where the descriptors are constructed from the molecular
graph. For this reason, we use graph neural networks (GNNs) as a learning
framework for molecules to discuss the published works that are part of this
thesis and put them in the context of related works.

1.1 Molecular Property Prediction

The task of molecular property prediction is to develop a mathematical model
that describes a mapping fθ : X → Y from a molecule x ∈ X to a set of properties
y ∈ Y . The properties can combine various modalities, spanning discrete, integer,
or continuous-valued observables/endpoints. In the field of cheminformatics, this
task is often described as quantitative structure-activity/property relationship
(QSAR/QSPR) modeling, which aims to find the relationship between molecular
structure and property, such as the biological activity of a molecule towards a
biological target of interest to regulate its mechanism in a known disease path-
way. However, the hit identification of an active compound does not necessarily
make it an attractive candidate for drug development. In fact, the estimation
of a compound’s absorption, distribution, metabolism, excretion, and toxicity
(ADME/T) profiles is nowadays conducted in the early discovery stage to reduce
attrition rates of potential drug candidates as they progress through development
(Kassel, 2004; Shih et al., 2018; Göller et al., 2020). The labels y ∈ Y, can be
either obtained through (high-throughput) experiments in the lab or computa-
tional methods from first principle, where the latter is often time-consuming
and expensive. By learning fθ through supervision on acquired ground-truth
labels y, the goal is to apply the property model fθ on new molecules in silico,
circumventing the usage of physical experiments, e.g., in vivo ADME assays. At
this point, it is important to mention that the acquisition of labels is very often
dependent on the context, e.g., in vivo experimental settings in the laboratory,
which are not contained in the molecule structure itself. Therefore, building
predictive models that define a mapping solely from a molecule to properties is
very challenging in practice and requires more input in the form of metadata
(Bender and Cortes-Ciriano, 2021).
To build fθ a crucial component is the chosen representation of molecules x ∈ X
that the mathematical model can process, which we will discuss in Section 1.2.
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Figure 1.1: Molecular representations of Tryptophan. (a) Lewis/Kekulé 2D
structure of molecule with its SMILES representation below. (b) Molecular
graph with nodes and edges. (c) 3D conformer of molecule with atomic (xyz)-
coordinates and bonded atoms. (d) 3D conformer (shown in light red) placed
next to a protein, forming a complex.

1.2 Molecular Representations

Multiple ways exist to represent molecules in a computer-readable format for
property prediction or analysis. The chemical formula of a compound, e.g., C2H6

for ethane, is probably the first way students encounter molecules in chemistry,
followed by the Lewis/Kekule notation, where molecules are drawn as chemists
envision them, indicating an abstract representation of a 2D graph, where atoms
are displayed as nodes and bonds present the connectivity as illustrated in Figure
1.1a.

The choice of molecular representation often depends on the task in classical
QSAR modeling and practitioners have usually relied on fixed molecular descrip-
tors or fingerprints (Bender and Glen, 2004). Molecular descriptors are usually
composed of selected physicochemical properties such as the molecular weight,
the number of aromatic rings or topological indices, and geometric arrangements
that are computable based on the 2D molecular graph or its conformation in
3D space (Katritzky and Gordeeva, 1993), for example as implemented in the
PaDEL or Mordred -descriptors (Yap, 2011; Moriwaki et al., 2018). While such
an approach leads to a fixed-sized representation suitable for standard machine
learning (ML) algorithms, such as linear regression, random forest, or support
vector machines, this approach also has limitations. The descriptor is restricted
in the choice based on problem-specific user expertise, potentially biasing the
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outcome of model accuracy in the case of molecular property prediction. As an
alternative fixed representation, molecular fingerprints are often used, represent-
ing the presence or absence of particular substructures or other features in a bit
or integer array. Among those commonly used are key-based fingerprints and
circular fingerprints (Kassel, 2004; PubChem, 2009; Glen et al., 2006).

Extended-Connectivity Fingerprint (ECFP) The ECFP by Rogers and
Hahn (2010) is a modified version of the Morgan algorithm (Morgan, 1965) which
was initially designed as a graph isomorphism test for molecules to distinguish
whether two molecular graphs are different. The ECFP is obtained by first
assigning integer identifiers to atoms, initially collected into a fingerprint list.
Initial integers are obtained from daylight atomic invariants. Next, each atom
gathers its own integer identifier and those of its immediate local neighbors. A
hash function is applied to compress this array into a new integer identifier. This
process repeats for a predefined number of iterations. Once completed, duplicate
identifiers in the list are removed, leaving behind a list of unique integers that
define the ECFP fingerprint for the case of the binary ECFP. For count-based
ECFP, duplicated integers are kept. The fingerprint is called circular because
local neighborhoods for each atom are iteratively processed through several steps,
increasing the receptive field, i.e., radius, for each atom. To obtain a computer-
usable array of length k, the integers in the fingerprint list are folded into a
fixed-sized array. The populating index is obtained by modulo dividing % each
integer identifier by k, potentially causing bit collision because several different
integers are mapped onto the same index. The mechanism of bit collision induces
an information loss since for smaller sizes k, the initial fingerprint lists of two
different molecules might fold into the same ECFP binary fingerprint as analyzed
in Publication 1 listed in Section 2.1.

Simplified Molecular Input Line Entry System (SMILES) The SMILES
representation introduced by Weininger (1988) describes a line notation of the
2D molecular graph into a 1D string of alphanumeric characters. Constructing a
SMILES string involves sequentially traversing the connectivity of a 2D molecular
graph from a starting point so that each atom is visited exactly once. For rings,
a bond is temporarily broken and labeled with a number to denote closure,
while branch points with their atoms are enclosed within parentheses (Weininger,
1988). This structured approach allows for representing complex molecular
structures, including nested branches, in a linear format suitable for various
chemical applications, as shown at the bottom of Figure 1.1a. Since the SMILES
representation is obtained from an arbitrary starting atom followed by traversal of
the molecular graph, the representation is not unique for a molecule. Depending
on the computational chemistry toolkit, such as RDKit or OpenBabel, various
canonicalization algorithms exist (Landrum et al., 2024; O’Boyle et al., 2011).

Instead of relying on a fixed representation of molecules, deep neural networks
process molecules in some raw format, e.g., SMILES- or graph-based to learn
a hidden representation of the molecule tailored to the particular endpoint(s)
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that the network is meant to predict correctly. Deep neural networks are usually
optimized using gradient-descent in the backpropagation algorithm (LeCun
et al., 1998, 2015; Schmidhuber, 2015). Convolutional neural networks (CNNs)
(Fukushima, 1980; LeCun et al., 1995) consecutively apply local filter banks of
varying size to process neighboring pixels in a (high-dimensional) image to obtain
a spatially reduced hidden representation suitable in e.g., predicting the correct
image label. The inductive bias of CNNs lies in the locality assumption, which
states that neighboring pixels are more related to each other than distant. While
images can be regarded as 2D data with RGB values for each pixel location,
1D sequential data, including time-series, natural language, or amino acid
sequences, which all encompass a natural order, can be processed by recurrent
neural networks (RNNs) (Hopfield, 1982; Rumelhart et al., 1986; Hochreiter
and Schmidhuber, 1997). These networks implement a hidden memory when
processing the sequential data.

The pioneering work by Segler et al. (2018) proposed an RNN-based generative
model for molecules that operate on the (canonical) SMILES representation with
an LSTM network (Hochreiter and Schmidhuber, 1997). The model is trained
through a maximum-likelihood objective predicting the next SMILES token
given the previous sequence of tokens in an auto-regressive manner adapted
from language models. The training is performed on a large corpus of molecular
data extracted from the Chembl database. Focused library design is achieved
by fine-tuning the generative SMILES RNN model on a subset of compounds
for transfer learning. Meanwhile, Olivecrona et al. (2017) proposed to leverage
reinforcement learning for property-specific molecule design.

Concurrently, Gómez-Bombarelli et al. (2018) used the variational autoencoder
(VAE) model (Kingma and Welling, 2014) coupled with the (canonical) SMILES
representation to obtain a generative model with latent space that can be used
for multi-parameter optimization (MPO). In the SMILES VAE, the encoder
maps the discrete SMILES string into a continuous representation, while the
decoder takes this encoding as input to reconstruct the original SMILES. While
common VAEs are trained by the reconstruction loss from the encoder-decoder
architecture next to a Kullback-Leibler prior regularization loss to enforce a
smooth latent space, Gómez-Bombarelli et al. (2018) trained property predictors
on the latent space to correlate the encodings towards target properties of
interest, e.g., the quantitative estimate of drug-likeness (QED).

Winter et al. (2019) builds open the work of Gómez-Bombarelli et al. (2018) and
proposes a sequence-to-sequence autoencoder for molecules with the difference
that the autoencoder is tasked to translate between string-based representation
of molecules, e.g., translating between equivalent molecule representation such
as the InCHI representation to canonical SMILES representation. The molecule
embedding is called continuous data-driven descriptor (CDDD). Winter et al.
(2019) show that their machine-learned molecular descriptor outperforms hand-
crafted descriptors when taken as input to train support vector machines on
classification or regression-based QSAR tasks. From a representation perspective,
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the CDDD space indicates molecular expressivity that captures the essence of
the input, as the translation task, e.g., from InCHI representation to canonical
SMILES representation, also maintains high accuracy. This suggests that little
information loss occurs during translation, where both encoder as well as decoder
networks play a crucial role.

As mentioned at the beginning of this section, a molecular descriptor is a
computer-readable abstraction and mathematical model of a molecule that,
depending on the objective, should be as informative enough to solve user-
defined tasks, such as QSAR modeling, virtual screening and similarity search
within a database of compounds. Hence, a dataset of molecule descriptors can be
regarded as tabular data, where ECFPs have been a popular choice for QSAR,
ADME/T, or reaction prediction tasks (Göller et al., 2020; Mayr et al., 2016; Wei
et al., 2016) using multilayer perceptrons (MLPS). The advantage of MLPs lies
in being structure agnostic, that is, no particular assumptions are needed about
the input. MLPs operate by stacking fully-connected layers where each neuron
from the previous layer is connected to every neuron in the next layer. Hence,
no spatial structure for neuron connectivity is made, and the model can complex
non-linear relationships. However, the high number of trainable parameters can
lead to fast over-fitting for high-dimensional data (Zhang et al., 2017).

Publication 1: Neuraldecipher – reverse-engineering extended - connec-
tivity fingerprints (ECFPs) to their molecular structures As indicated
earlier, a molecular descriptor is a mathematical model of a molecular structure
with potential information loss, depending on how the descriptor was created
in the first place. For example, a simple ring count as a descriptor cannot
distinguish cyclohexane C6H12 from benzene C6H6 because both molecules con-
tain one ring. For this reason, ECFPs have been a popular choice for analysis
and have also been exchanged between research groups in academia or private
sectors, such as pharmaceutical companies. Different levels of collaboration are
possible, balancing privacy concerns and computational demands. Protecting
sensitive data, including intellectual property, is crucial, but this can lead to
higher computational overhead for tasks like authentication and encryption.
Centralizing data for joint model building could optimize computation but raises
privacy risks as partners may access each other’s data, such as fingerprints and
activity data.

In publication 1 (Le et al., 2020), we show how the folded ECFP can be reverse-
engineered to reconstruct the input molecular structure. It was often thought
that the ECFP is non-invertible due to the large integer co-domain of the hashing
function applied during fingerprint creation, spanning ≈ 232 values. When folded
into a fixed-sized vector of length k, the fingerprint values depend on the radius
r and fingerprint length k, with possible bit collision and information loss. To
showcase that the exchange of ECFP endangers the loss of intellectual property,
we formulate the reverse-engineering task as a supervised regression problem by
learning a mapping fθ : X → Z between folded ECFP and the unsupervised
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learned CDDD representation of the autoencoder by Winter et al. (2019). Since
the in- and output aim to describe the same molecule in different representation
spaces, we introduce Neuraldecipher, an MLP trained to learn the relation
between the two representations formulated as a supervised regression task.
We used the ChEMBL25 dataset (Davies et al., 2015; Gaulton et al., 2016)
including 1.8M compounds to train and validate the Neuraldecipher model
using cluster splits to separate the chemical spaces from training and validation
sets. Our experiments show that ECFP count fingerprints are better suited to
reverse-engineer the molecular structure than the ECFP bit fingerprints. This
is expected as the count ECFP describes how often a substructure is present
in a molecule as opposed to the bit ECFP, which states that a substructure
is available. Hence, ECFP count fingerprints retain more information about
the molecule, enabling better behaved learning for Neuraldecipher, since there
are more unique input ECFPs mapping to distinct CDDDs. Through multiple
ablation studies, e.g., varying the fingerprint length k and/or the radius r for
bit and count ECFPs, we observed that larger fingerprint sizes with small radii
lead to less bit collision and therefore improved reconstruction of the original
molecular structure, by accurately predicting the CDDD representation, followed
by using the CDDD decoder network, to retrieve the SMILES representation.

We concluded that ECFPs are partially reversible and the exchange of ECFPs
among institutions or private sectors should be avoided. Our work raised
awareness about the potential risk of losing intellectual property (IP) when
sharing data among partners, such that consortia rather pursue federated learning
approaches (McMahan et al., 2017; Zhang et al., 2021b). The MELLODDY
project (Oldenhof et al., 2023; Heyndrickx et al., 2024) was the first industry-scale
platform developing a global federated deep learning model for drug discovery
involving 10 large pharmaceutical companies and multiple academic research
labs, ensuring the confidentiality of each partner’s datasets without sharing
them.

In context to other related works, Kotsias et al. (2020) leverages conditional
RNNs (cRNNs) to predict the SMILES representation in an end-to-end fashion
using teacher-forcing when the ECFP is input as context, while Kwon et al.
(2021) combines cRNNs with a genetic algorithm. Recent work by Ucak et al.
(2023) uses the Transformer neural network architecture to predict the molecular
structure as SMILES in an end-to-end fashion based on the structural fingerprints.
While a direct prediction of molecular structure is feasible, as shown by the
related works, our proposed approach has the advantage of simplicity by only
regressing the machine-learned latent CDDD representation and subsequently
using the frozen decoder network for SMILES retrieval, achieving comparable
reconstruction accuracies.
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Figure 1.2: A general GNN pipeline starts with node and edge featurization,
followed by L rounds of message passing. The latent node and edge embed-

dings (x
(L)
i , e

(L)
ij ) can be used for atom or bond property prediction, or further

aggregated to obtain a graph representation z suitable for molecular property
prediction. Adapted from Atz et al. (2021).

1.3 Supervised 2D Topological Deep Learning

In the previous Section 1.2, we discussed the Neuraldecipher model, which
reconstructs the molecular structure in terms of SMILES string given an input
ECFP. Both representations have in common that they are derived from the 2D
molecular graph of a chemical structure, see Figure 1.1a-b. A molecular graph
is an abstract structure G = (V, E) whose N vertices (vi ∈ V) represent atoms,
and whose edges (eij ∈ E) describe the connectivity, e.g., through an adjacency
matrix A ∈ RN×N , or edge-type array E ∈ RN×N×ke which can describe single,
double, triple or aromatic bonds. Usually, each node and edge also contain
an initial feature, such as the chemical element as node- or the bond type as
edge feature. The collection of initial node feature can also include multiple
atom-level attributes X ∈ RN×kv , e.g., the number of attached hydrogens, the
molecular weight of the atom, or an indicator of whether or not the atom is in
a ring, in similar fashion to the daylight atomic invariant features used in the
initialization for the ECFP.

Graph neural networks (GNNs) are formulated as functions that take a graph
as input and output a representation of the graph in some feature space. The
pivotal work by Duvenaud et al. (2015) introduced a neural network architecture
fθ : G → Z that directly operates on the molecular graph and produces latent
embeddings for each node in the molecular graph which can be aggregated to
obtain a differentiable neural fingerprint optimized in an end-to-end fashion for
solubility, drug efficacy or photovoltaic efficiency prediction. GNNs allow for
feature extraction and operate in an iterative manner, similar to the ECFP
algorithm, where each atom collects information from bonded atoms followed by
an update function to obtain distinct new features when exploring the molecular
environment, mimicking the ECFP algorithm.

The general framework of GNNs (Scarselli et al., 2009; Bruna et al., 2013;
Defferrard et al., 2016; Kipf and Welling, 2017) falls under the umbrella of
Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017; Battaglia
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et al., 2018). In MPNNs, each layer updates each node by aggregating messages
sent from neighboring nodes, where the messages are usually computed through
neural networks that input hidden node and edge features. Specifically, message
and update functions are usually constructed using neural networks involving
pairwise interactions to obtain intermediate messages from vertices vj to vi,
which are aggregated/pooled together in the l-th layer as

m
(l+1)
i =

∑

j∈N (i)

M
(l)
θ (x

(l)
i , x

(l)
j , eij),

x
(l+1)
i = U

(l)
θ (x

(l)
i ,m

(l+1)
i ), (1.1)

where N (i) denotes the neighbor set of node vi and Mθ, Uθ characterize the
message and update functions. One fundamental property of most MPNNs is
the equivariance or invariance with respect to permutations of the input. As the
input is a (molecular) graph represented through X and A with arbitrary order
along the row-index i = 1, . . . , N , an action of permutation can be described with
a permutation matrix Π ∈ SN ⊂ RN×N , where SN is the symmetric group. If a
permutation acts on a graph, the input representations for node- and adjacency
matrices (X,A) change to

Xπ = ΠX and Aπ = ΠAΠ⊤. (1.2)

Permutation equivariance for a function h : G → X that inputs and outputs
a set in the form of matrices with an arbitrary node order, e.g., the hidden
embeddings for the nodes, can informally be defined as

h(Xπ, Aπ) = Πh(X,A). (1.3)

This means that we can first apply function h and then permute the output, or
apply h to the permuted input. The inductive bias of permutation equivariance
is preserved because first, the message and update functions are shared among
all nodes, and second, the aggregation function is chosen to be a permutation-
invariant function such as a summation as shown in the first equation in 1.1.
Furthermore, a composition of permutation equivariant functions hL ◦ hL−1 ◦
· · · ◦ h0 such as a stack of MPNN layers is again permutation equivariant.

Permutation invariance property for a function g : G → Z means that the output
for a given set is the same regardless of the order of objects in the set, informally
as

z = g(Xπ, Aπ) = g(X,A). (1.4)

The output space is usually a lower-dimensional space independent of the graph
size. A size-independent global descriptor can be accomplished through a
permutation-invariant pooling function, such as summation of all hidden node
embeddings from the last layer. The neural descriptor z ∈ Z can be processed
with another MLP k : Z → Y for molecular property prediction in an end-to-end

model f : G h−→ X g−→ Z k−→ Y (Duvenaud et al., 2015; Kearnes et al., 2016;
Gilmer et al., 2017; Yang et al., 2019) as illustrated in Figure 1.2.
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Publication 2: Parameterized Hypercomplex Graph Neural Networks
for Graph Classification While graphs fall into the domain of unstructured
non-Euclidean data (Bronstein et al., 2017, 2021), generalizing images (rectan-
gular 2D-grids) or text (1D line-graph), the hidden representations processed
through a CNN, RNN or MPNN are often assumed to be embedded in the
D-dimensional vector space of real numbers RD. Real numbers are described by
one scalar value without any imaginary unit. In contrast, hypercomplex numbers,
like complex C or quaternions H enrich the numerical representation with their
additional imaginary dimensions (one for complex and three for quaternions)
enabling them to capture more information more efficiently, e.g., in signal pro-
cessing for audio or video data, where multi-dimensional signals are treated
as one entity, or point cloud data, for which quaternions naturally describe
rotations.

Data processing with neural networks heavily relies on multiplication when
computing weighted sums, e.g., in fully-connected layers or 2D convolutions,
for which complex and quaternion algebras lay down different multiplication
rules, naturally enabling the interplay between the number components. For
example, given two complex numbers w = w0 + w1i and x = x0 + x1i, where
w0, w1, x0, x1 are real coefficients and i describes the imaginary unit, the product
reads wx = (w0 + x0) + (w1 + x1)i, by distributivity and leveraging the fact
that i2 = −1 with the additional property that the complex product commutes,
i.e. wx = xw. The advantage of coefficient mixing has led to the introduction
of hypercomplex-valued neural networks (Danihelka et al., 2016; Trabelsi et al.,
2018; Parcollet et al., 2019; Comminiello et al., 2019; Tay et al., 2019) which
enjoy parameter efficiency, e.g. up to four times in a linear layer, e.g. in the case
of quaternions with the Hamilton product defined as

wx =




1
i
j
k




⊤ 


w0 −w1 −w2 −w3

w1 w0 −w3 w2

w2 w3 w0 −w1

w3 −w2 w1 w0







x0

x1

x2

x3


 . (1.5)

Since the Hamilton product does not commute, i.e., wx ̸= xw for two quaternions
w, x ∈ H, this property can be exploited in quaternion fully-connected (FC) layers
in biasing the learning process, encouraging the model to capture interactions
and relationships that are influenced by the non-commutativity. In contrast to
this, a real-valued (FC) layer would include 16 degrees of freedom for the weights
{wi}16i=1 if x was treated as real-valued array with four components in Eq. (1.5).

Inspired by the quaternion algebra introduced by Hamilton (1844), we generalize
the concept of hypercomplex layers suitable for GNNs in publication 2 (Le et al.,
2021) allowing variable (n−1) pseudo imaginary units. Specifically, we propose to
learn the multiplication rule, which enables the interplay between the coefficients
of the real and imaginary units using the sum of Kronecker/Tensor products (⊗)
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Figure 1.3: Hypercomplex GNN workflow for molecular property prediction.
Multidimensional node features (here 4 channels) are treated as single hypercom-
plex number with one real and 3 imaginary units that are processed within the
GNN that leveraged the PHM layer for linear transforming hidden embeddings.

between matrices when parameterizing the linear layer as PHM-layer defined as

U =

n∑

i=1

Ci ⊗Wi , (1.6)

where Ci ∈ Rn×n are denoted contribution matrices and Wi ∈ R k
n× d

n are the
component weight matrices and k, d denote in- and output channels and the final
weight matrix U lies in Rk×d. Most of the parameters are stored in the {Wi}ni=1

matrices, allowing up to 1
n less trainable parameters (Zhang et al., 2021a).

To show that the adaption of PHM-layer benefits in graph learning tasks, we
adopt message passing functions from the graph isomorphism network (GIN)
by Xu et al. (2019) due to its simplicity and expressivity and replace any lin-
ear transformation found in the MLPs of the message or aggregation function
with the PHM layer whose weight matrix is constructed following Eq. (1.6) as
visualized in Figure 1.3. We performed extensive studies and ablated variants
of our proposed PHC-GNN on 2D molecular property prediction datasets from
the OGB and BenchmarkingGNNs frameworks (Hu et al., 2020; Dwivedi et al.,
2020) and observed that within the same model class with an equal number of
trainable parameters, PHC-GNN with n ≥ 2 adapting learnable hypercomplex
multiplication, achieves superior performance on the Mol-HIV and Mol-PCBA
compared to the real-valued PHC-GNN with n = 1, on the validation set cre-
ated through scaffold splits. Both tasks are formulated as binary classification
problems, while Mol-HIV is a single-task aiming to identify if a molecule inhibits
HIV replication, and Mol-PCBA is a multi-task with 128 endpoints extracted
from high-throughput screening measuring biological activity. Particularly on
Mol-PCBA, which aims to predict a ‘biofingerprint’ indicated by the activity
on 128 assays, the proposed PHC-GNN achieved SOTA results at the time of
publication compared to other GNNs with sophisticated message-passsing func-
tions, indicating stronger generalization capabilities. Since PHC-GNN enables
parameter efficiency by exploiting interaction within the algebra components,
i.e., real and pseudo-imaginary units, the embeddings can be richer and stronger
regularized as in the real-valued case, desired in out-of-distribution settings.
Since the Mol-PCBA dataset often does not contain a full 128-dimensional
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bio-assay readout for a molecule, predictive models should learn a rich internal
representation of a molecule to learn non-linear relations between compound
and endpoints by exploiting the fact that learning on multiple tasks enhances
the representation (Ramsundar et al., 2015, 2017; Montanari et al., 2020), which
PHC-GNNs incorporate by design through their inductive bias of embedding
composition realized in the Hamilton-like product.

Outside the realm of GNNs, parameterized hypercomplex neural networks (PHC-
NNs) have been used in NLP tasks by Mahabadi et al. (2021) for fine-tuning large-
scale language models with an improved trade-off between task performance and
the number of trainable parameters, or for image classification or sound detection
(Grassucci et al., 2022) and explainability (Lopez et al., 2024). Hypercomplex
algebras including complex numbers or quaternions can be generalized into the
framework of Clifford Algebras, which are defined by a basis set {e1, e2, . . . , en},
commonly represented as geometric vectors (Clifford, 1871; Dorst and Mann,
2002). Geometric Clifford Algebra GNNs have been proposed by Ruhe et al.
(2023) to model dynamical systems and partial differential equations (PDEs) as
an extension to the work of Brandstetter et al. (2023) who introduced Clifford
neural layers in CNNs on grid-like data for PDE modeling.

1.4 Supervised 3D Geometric Deep Learning

In the previous Section 1.3, we proposed a simple 2D GNN model for processing
the topological graph containing a molecule’s initial node and edge features
without using 3D spatial coordinates represented in the conformer of a molecule.
The representation of a molecular graph G = (V, E) can be extended to have
a coordinate matrix R ∈ RN×3, next to the node and adjacency matrix X ∈
RN×ka , A ∈ RN×N with optional edge-feature array E ∈ RN×N×ke . We call
this graph a geometric or molecular conformer graph, as visualized in Figure
1.1c. Since atoms are embedded in 3D space, a natural question about invariance
and equivariance concerning global rotations and translations for the point cloud
arises. How can we design efficient neural network architectures fθ that respect
these symmetries? Many physical properties have well-defined transformation
properties under translation, reflections, and rotation of a set of atoms, which
can be summarized as actions from the Euclidean Group E(3). For example, if a
molecule is rotated in space, the vectors of its atomic velocities or forces also
rotate accordingly. On the other hand, the potential energy y ∈ R of a molecule
G is invariant with respect to global roto-translations and permutation of atoms.
In similar spirit to permutation invariance stated in Eq. (1.4), this invariance
can be described as

y = fθ((Q(ΠR)⊤)⊤ + 1N t⊤,ΠX,ΠAΠ⊤) = fθ(R,X,A) , (1.7)

where Q ∈ SO(3) is a rotation matrix, t ∈ R3 a translation vector, Π ∈ SN a
permutation matrix and 1N = (1, . . . , 1)⊤ ∈ RN .

When modeling such quantity, invariance can be enforced by only operating on
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Figure 1.4: Left: Geometric graph embedded in 3D Cartesian space. The
green vertex illustrated as carbon (C) atom aggregates information from the
neighbouring atoms (O,H,N) that are within a radius cutoff. Scalar and vector
embeddings are shown for the carbon (C) and nitrogen (N) atoms. The vectors
r⃗C , r⃗N describe the spatial coordinates of the Carbon and Nitrogen atoms. Right:
Equivariant vector features can be constructed based on scalar products or using
the cross product as indicated in the lower row. Output vectors are colored in
light blue. The carbon and nitrogen atoms lie on the (x, y) plane and by using
the vector cross product, the features on the z axis can be constructed.

invariant representation in neural architectures, e.g., in the form of distances or
angles (Schütt et al., 2017; Schütt et al., 2017; Gasteiger et al., 2020) which im-
plement MPNNs as machine learning force fields suitable for molecular dynamics
simulations. Restricting the model class to invariant representations in GNN
was shown to be incomplete for some geometric graphs (Garg et al., 2020; Schütt
et al., 2021; Pozdnyakov and Ceriotti, 2022), potentially limiting the model
expressiveness for the learning tasks. For this reason, another line of research
has made use of irreducible representations (irreps) of the rotation group SO(3)
through spherical harmonics combined with Clebsch-Gordan tensor products
(⊗cg) to build E(3) equivariant GNNs (Thomas et al., 2018; Anderson et al.,
2019; Fuchs et al., 2020; Batzner et al., 2022; Brandstetter et al., 2022) that are
able to design higher-order equivariant features using spherical tensors. While
the mathematical machinery allows these models for increased expressiveness,
one disadvantage is the high computational cost of their training, resulting in
slow convergence time. Furthermore, the highest order of (hidden) equivariant
representation is unclear for a learning task, especially on larger biomolecular
systems, where symmetric structures are less likely. As an alternative avenue of
investigation, a number of works adopt a generic approach to modeling E(3)-
equivariance directly on Cartesian tensors using scalarization as proposed in
GVP-GNN, E(n)-GNN and PaiNN (Jing et al., 2021; Satorras et al., 2021b;
Schütt et al., 2021). These works model invariant scalar (rank-0) and equivariant
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vector (rank-1) through tensor products (⊗) of scalars with vectors, to establish
equivariant rank-1 features. While simple, this approach also applies for higher
dimensions in Rn, considering SO(n) as advocated by Villar et al. (2021).

Publication 3: Representation Learning on Biomolecular Structures
Using Equivariant Graph Attention We propose an SE(3) equivariant
GNN, termed EQGAT, in publication 3 (Le et al., 2022) which scales well on large
biomolecular systems such as protein-protein or protein-ligand complexes (see
Figure 1.1d), while maintaining high expressivity through rotation equivariance.
We follow the scalarization approach that implements rank-0 scalar and rank-1
vector features. Distinct from other scalarized models at the time of publication,
EQGAT allows the interaction between vector features by using the cross product
between vectors, enabling higher expressivity, while keeping the computational
cost low. Geometrically, the cross-product c = a× b between two vectors returns
a vector c ∈ R3 that is perpendicular to the plane spanned by (a, b) and its
computation follows

c =



a1
a2
a3


×



b1
b2
b3


 =



a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1


 . (1.8)

Methods that only operate on linear combinations of vector features are restricted
when modeling this geometric aspect. For example, consider a molecule whose
atomic coordinates reside in the canonical (x, y)-plane. Suppose no cross-product
in the equivariant network is modeled. In that case, all hidden vectors remain in
the plane, not occupying the z−axis, which restricts the representation capacity
as illustrated in Figure 1.4 for the two carbon and nitrogen atoms. It can be
shown that the cross-product contains elements from a rank-2 Cartesian tensor.
A Cartesian rank-2 tensor C = a ⊗ b = ab⊤ ∈ R3×3 has 9 degrees of freedom
and can be decomposed into

C =
1

2
Tr(C)I +

1

2
(C − C⊤) +

1

2
(C + C⊤ − Tr(C)I) ,

where Tr() is the trace operation and I ∈ R3×3 the identity matrix. The
three matrices each reveal 1, 3 and 5 degrees of freedom in terms of irreducible
representations. It turns out that the second skew-symmetric matrix contains
the elements that are computed in the cross-product a× b shown in Eq. (1.8),
since the skew-symmetric matrix has the expression

C − C⊤ =




0 a1b2 − a2b1 a1b3 − a3b1
a2b1 − a1b2 0 a2b3 − a3b2
a3b1 − a1b3 a3b2 − a2b3 0


 . (1.9)

Although EQGAT only features scalar- and vector components, i.e., 1- and
3-dimensional representations, by using the cross-product, the model extracts
(vector) components that are present in a rank-2 Cartesian tensor. Next to
the geometric interpretation, this argument provides an additional algebraic
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reason for enhanced expressivity when including the cross-product. However,
it is important to note that the output of the cross product undergoes an
additional sign flip in case the transformation is an improper rotation matrix
with determinant −1, e.g., a reflection, which must be considered when the
goal is to implement an E(3)-equivariant GNN, where the quantity to predict is
sensitive to reflections.

To regulate the information flow for scalar and vector features in the message
passing layers, we propose an attention-based mechanism that leverages invariant
and equivariant features to obtain non-linear filters suitable for the final prediction
task. The proposed EQGAT model was trained and evaluated on the Atom3D
benchmark (Townshend et al., 2021) on molecular property prediction tasks
that are permutation-, rotation-, and translation invariant. We compared our
model against modern equivariant GNNs, including GVP-GNN (Jing et al.,
2021), PaiNN (Schütt et al., 2021), which are both operating on rank-0 and
rank-1 equivariant features by means of scalarization. Furthermore, we compared
EQGAT against SEGNN (Brandstetter et al., 2022) up to rotation order l = 2,
which is a recent equivariant GNN that operates on irreducible representations
of SO(3) employing spherical harmonics and Clebsch-Gordan tensor products to
enable the interaction between various equivariant features. We demonstrate the
expressiveness of EQGAT by outperforming PaiNN, GVP-GNN and SEGNN
in 4 out of 5 tasks, where GVP-GNN is an E(3)-equivariant GNN designed for
processing biomolecular structures while PaiNN and SEGNN are specifically
designed to model smaller dynamical systems. We ablate the design choices of
EQGAT and remove the vector cross-product or attention-based filters in the
message passing layers to investigate their effects. The ablation studies show
the best performance for the full model, when evaluated on synthetic data as
well as the LBA (Ligand-Pocket Binding Affinity) and PSR (Protein-Structure
ranking) tasks from Atom3D.

Related work by Morehead and Cheng (2024) also implements the vector cross
product but on raw input coordinates in the message passing layer of their
equivariant GNN as opposed to EQGAT, which implements the vector cross-
product in the hidden equivariant vector features. Similar to our ablation study,
they identify improved model performance when the cross-product is included
in their model architecture.

While EQGAT was proposed as an SE(3)-equivariant graph encoder network for
molecular property prediction on biomolecules, its architecture is also applicable
to smaller molecules, including ligands or peptides. In the next section, we
discuss how geometric graph representation learning can be used for the targeted
generation of small molecules that satisfy multiple user properties of interest.
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1.5 Generative Models

Geometric GNNs that preserve E(3)-equivariance have shown to be powerful data
encoders (Zhang et al., 2023) while new architectures have been developed with
the motivation to better represent the molecular environment in a data-efficient
manner for supervised learning tasks. Although developed for discriminative
tasks, these expressive encoders also facilitate the generation of new complex
geometric structures, including small molecules, commonly known as de novo
molecule generation. Depending on the data representation, some works only
generate atomic coordinates R ∈ RN×3 and chemical elements from a chosen
subset of the periodic table, e.g., heavy atoms including carbon, nitrogen, oxygen,
and chlorine represented as one-hot encodings in X ∈ RN×ka . Once the atomic
coordinates have been generated, external software such as OpenBabel (O’Boyle
et al., 2011) can be used to infer the 2D molecular graph, completing the data
representation M = (X,R,A), originating from the probabilistic model pθ(M).

One class of 3D generative models for unconditional de novo molecule design
utilized autoregressive models trained through maximum likelihood objective
(Gebauer et al., 2019; Luo and Ji, 2022), which were further adapted for property
conditioned molecule generation (Gebauer et al., 2022). These models define an
order-dependent factorized probability distribution from which atoms with their
coordinates and chemical elements are sampled sequentially. Models related to
sequential sampling can also be framed within Reinforcement Learning (RL)
as a sequential decision-making problem, in which an agent interacts with an
environment to maximize a reward (Simm et al., 2020, 2021).

1.5.1 Diffusion Models for 3D Molecule Generation

An alternative category of generative models are transport-based methods,
including continuous normalizing flows (CNFs) (Chen et al., 2018) or denoising
probabilistic diffusion models (DDPMs) (Ho et al., 2020). These models are
trained through maximum likelihood objective and iteratively generate the full
atomic system by traversing a reverse (learned) dynamics in a latent space
to map from a prior distribution to the data distribution. CNFs are known
to be computationally expensive to train since they involve the integration
of an ordinary differential equation (ODE) to compute the entire likelihood
of a datapoint, making them difficult to scale on larger molecular structures
(Satorras et al., 2021a). DDPMs, instead, are favored due to their efficient and
scalable training objective by optimizing a component of the likelihood bound
to approximate the generative diffusion process.

Diffusion models have been applied for 3D molecule design by (Hoogeboom
et al., 2022) in the EDM model, which jointly generates atomic coordinates
and their chemical elements using Gaussian diffusion (Sohl-Dickstein et al.,
2015). In essence, diffusion models consist of two components. The first is the
tractable forward inference (noising) model q that perturbs the data point to a
corrupted version, while the second component is the denoising model pθ, tasked
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Figure 1.5: Training of 3D diffusion model is achieved by predicting the original
data point based on a noisy datapoint. During inference, the molecule is sampled
from a prior distribution and refined in multiple steps, here T = 500 total steps.

in reversing the process, e.g., by predicting the original data point or as an
alternative, the noise added during the corruption, as visualized in the top row
in Figure 1.5.

Diffusion models maximize a variational lower bound of the data likelihood,
which can be decomposed through multiple loss terms as

log pθ(x) ≥ L0 + Lprior +

T−1∑

t=1

Lt ,

where Lt = −DKL (q(xt−1|xt, x0)|pθ(xt−1|xt)) is the diffusion loss, while the
first two terms are reconstruction and prior loss (Luo, 2022). During training,
instead of optimizing all timesteps, it is common practice to sample a timestep
t ∼ U(1, T ) and optimize the diffusion loss Lt, which exhibits a closed-form
since q(xt−1|, xt, x0) is tractable. Therefore, diffusion models are compared to
continuous normalizing flows more efficient to train, since diffusion models are
simulation-free and intermediate points xt ∼ q(xt|x0) are easy to sample due to
construction of the forward noising process.

At inference, a random sample is obtained from a Gaussian prior, e.g., xT ∼
N(0, I), and a less noisy version sampled through denoising model pθ(xt−1|xt), as
visualized at the bottom row in Figure 1.5 for atomic coordinates. As indicated,
the diffusion loss is perfectly optimized if pθ(xt−1|xt) matches q(xt−1|x0, xt),
that is, iff. the model can predict the original data x̂0 accurately, and less
corrupted (latent data) points can be sampled through

xt−1 ∼ pθ(xt−1|xt) = q(xt−1|x̂0 = fθ(xt), xt) . (1.10)
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Figure 1.6: Categorical and Gaussian diffusion with forward transitions q and
learnable reverse transitions pθ.

The intuition with the reverse process is to move into the direction of state space
that is more likely under the data distribution.

An essential requirement of diffusion models for 3D molecules is the equivariance
with respect to permutation on the atoms as well as global roto-translations,
which has to be baked in when designing fθ : M → M .

Publication 4: Navigating the Design Space of Equivariant Diffusion-
Based Generative Models for De Novo 3D Molecule Generation Dif-
fusion models have become a very popular research field in the image generation
community (Karras et al., 2022) and have been adapted to molecule design to
correctly handle the symmetries of the data while applying common training
strategies from the image domain. In the fourth publication (Le et al., 2024),
we propose an equivariant diffusion model, termed EQGAT-diff, that generates
the entire 3D molecule, including bond topology in an iterative manner through
multiple denoising steps as shown in the lower panel in Figure 1.5. We use the
EQGAT architecture proposed by Le et al. (2022) and modify it slightly so it is
suitable as a denoising neural network. Since the model operates on multiple
data modalities, including product spaces of continuous positions, discrete atom
and bond types, we systematically explore the design choices for 3D molecular
diffusion models through novel components and analyze their effects through
extensive ablation studies, while keeping the EQGAT-diff architecture fixed.

We demonstrate that 3D molecule diffusion models achieve faster convergence
and better generation quality when using our proposed loss weighting. As the
diffusion model can be trained by predicting the original data point, i.e., the 3D
coordinates, atom, and bond types, our weighting amplifies the learning signal for
reconstructing the original molecule from a perturbed version when the timestep
is closer to the data distribution. In contrast, the loss signal for timesteps closer
to the prior states is decreased. Furthermore, we show that respecting the data
modalities and applying categorical diffusion for discrete data modalities, see

27



Figure 1.6, such as atom and bond types led to better sample quality when
EQGAT-diff was evaluated on the QM9 and GEOM-Drugs benchmark datasets
with explicit hydrogens, overall reaching superior performance over the MiDi
architecture (Vignac et al., 2023) which at the time of publication was the state
of the art. Because EGAT-diff also operates on the bond graph of a molecule,
no external software such as OpenBabel or empirical bond distances from a
lookup table is required to infer the edge types for the molecule compared to
previous works (Hoogeboom et al., 2022). Including bond diffusion also results
in improved generation quality in terms of molecular stability, which involves
the sanity check that correct chemical valencies for bonded atoms are preserved.

Because diffusion models can learn the data distribution they were trained
on, we further show that this model class is suitable for learning distribution
shifts. Since structural molecular data with a high level of theory are sparse and
computationally expensive to produce, we created a 3D dataset with a lower level
of theory from PubChem3D for pre-training the EQGAT-diff architecture. The
rationale behind pre-training lies in building a strong base model that has learned
general chemistry from a vast space involving 95.7M samples. We show that
pre-training greatly expedites model convergence when fine-tuned on benchmark
datasets like GEOM-Drugs, even when a subset of the original dataset is used
for training.

Equipped with the findings from our study, we demonstrate that these also hold
when EQGAT-diff is trained in a protein-ligand (PL) complex, where the protein
pocket is fixed as a condition, and the diffusion model is tasked with generating
a small molecule into the pocket, paving the way for target-aware ligand design.
The pre-training strategy proposed on large-scale 3D molecular data notably
accelerates EQGAT-diff’s convergence. It enhances evaluation metrics, including
high diversity and low docking scores, when applied to PL complexes, indicating
a significant distribution shift.

Other related work on 3D molecule generation with diffusion models implements
local and global encoder networks to differentiate close and distant interactions
that can help optimize the denoising objective as in MDM (Huang et al., 2023).
Apart from the de novo 3D molecule design, where an entire structure is generated
from scratch, Igashov et al. (2024) proposed DiffLinker, a fragment-based 3D
equivariant diffusion model that generates linkers between disconnected fragments
to form the product molecule. Instead of training diffusion models from scratch,
others leveraged pre-trained diffusion models and modified the reverse sampling
process for conditioned molecule design, either through inpainting, which fixes
atomic components of a molecule during generation (Runcie and Mey, 2023), or
gradient guidance (Bao et al., 2023; Weiss et al., 2023) to steer the generation of
molecules that satisfy defined properties. Guidance is a significant advantage of
diffusion models. It enables iterative adjustments to steer sampled data towards
desired properties. This is achieved by modifying the probability distribution of
the sampled space without needing to retrain the diffusion model.
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1.5.2 Structure-Based Drug Design

Structure-based drug design (SBDD) is a fundamental task in drug discovery
and focuses on developing valid ligands that display robust binding affinity
and specificity for a particular receptor protein pocket using the 3D structure
(Anderson, 2003). While the ligand should be tailored to fit the binding site
(e.g., as shown in Figure 1.1d), other essential chemical properties such as
synthesizability and drug-likeness must be considered in the design stage. This
can be regarded as a multi-objective sampling problem over a vast chemical space.
A standard workflow in SBDD consists of two stages, including screening and
scoring. During the first screening phase, a protein target and its binding site,
i.e., the pocket, are selected, and an enumerated search over a large database
of ligands is performed to find promising candidates. The second scoring phase
involves high-throughput experimental techniques or computational methods
such as molecular docking or free energy perturbation (FEP) (Lionta et al.,
2014). This conventional virtual screening encounters several challenges because
experimental and in-silico methods, especially FEP, are time-consuming and
computationally expensive. Furthermore, the enumerated search over a chemical
library does not allow the creation of new chemical matter and suggests de novo
ligands.

Recent advances in machine learning, especially in generative modeling, offer
a computationally efficient alternative to traditional Structure-Based Drug De-
sign (SBDD) methods. These innovations address the limitations of extensive
ligand screening databases used in conventional SBDD. Deep generative models
start with the protein pocket and design ligands from scratch by modeling the
underlying distribution of ligand-protein pairs. Early work by Ragoza et al.
(2022) employ variational autoencoders with 3D convolutional neural networks
(3D-CNNs) in voxel space to encode the atomic density grids of protein-ligand
complexes into a latent space that can be used for sampling novel ligands. A
similar approach was pursued by Green et al. (2021), which focused on fragment-
based ligand optimization. Unlike VAEs, Wang et al. (2022) combined 3D
CNNs in voxel space on density grids, changed the generative algorithm and
trained generative adversarial networks (GANs) end-to-end. Since voxelized
grid representations are large and have sparse values, 3D CNNs suffer from high
memory consumption. Treating protein-ligand complexes as atomic point clouds
can circumvent this problem and, combined with graph neural networks, enable
the generative modeling of ligands bound to protein pockets. SBDD with autore-
gressive models were used in combination with SE(3)-invariant GNNs (Luo et al.,
2021; Liu et al., 2022) or SE(3) equivariant GNNs such as in Pocket2Mol (Peng
et al., 2022), which places individual atoms one after the other during generation.
Autoregressive models can suffer from error accumulation and require an order
to sample new atomic points in 3D space sequentially. On the contrary, diffusion
models have the advantage of generating entire molecules in one shot but allow
for iterative refinement of the entire structure through successive denoising steps
as proposed in models like DiffSBDD (Schneuing et al., 2023) and TargetDiff
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(Guan et al., 2023b).

Publication 5: PILOT: Equivariant diffusion for pocket conditioned de
novo ligand generation with multi-objective guidance via importance
sampling While diffusion models are able to generate ligands conditioned
on a protein pocket, further constraints are necessary to find a suitable ligand.
Often, the binding affinity or selectivity on a protein target is insufficient since
criteria such as synthesizability, pharmacokinetics, and toxicity play a vital role
in narrowing down the search space of possible drug candidates to reduce failure
cases at later stages. Since diffusion models often only learn a distribution of
molecules conditioned on protein pocket, i.e., pθ(M |P ), real-world applications
require the generation of ligands that satisfy multiple criteria c ∈ X that can
be ligand M or ligand-pocket (M,P ) dependent such as synthesizability or the
docking score. In publication 5 (Cremer et al., 2024), we leverage the EQGAT-diff
architecture from publication 4 (Le et al., 2024) and propose a sampling algorithm
to generate pocket-conditioned ligands that also reveal favorable properties, i.e.,
M ∼ pθ(M |P, c) through importance sampling guidance. This is achieved by
leveraging Bayes’ theorem and decomposing the probability into

pθ(M |P, c) ∝ pθ(M |P )pδ(c|M,P ), (1.11)

and using surrogate models pδ that can score molecules based on the property
of interests c.

First, we show that our base EQGAT-diff model with additional modification
achieves SOTA performance in unconditional ligand generation on the Cross-
Docked dataset, with higher molecule validity and improved geometries regarding
the training set compared to TargetDiff, the SOTA model at the time of pub-
lication. While the amount of protein structures has increased over the years,
surpassing 200K experimental protein structures, the amount of complexes with
bound ligands in a protein combined, including binding affinity data, is smaller as
in the PDBBind v2021 database with approximately 22.9K PL complexes (Wang
et al., 2004). Therefore, a diffusion model trained from scratch only on these PL
complexes is limited in the chemical space it has observed. To circumvent this,
we pre-train our diffusion model on the Enamine Real Diversity subset, including
48.2M small molecules represented as SMILES, grounded by the fact that the
Enamine subset contains synthesizable molecules and fall into the category of
drug-like compounds. Similarly to publication 4 (Le et al., 2024), we observed
faster convergence for the fine-tuned EQGAT-diff model on the CrossDocked
dataset and enhanced evaluation metrics, including molecule validity that checks
for correct valencies, reduced number of disconnected components, and better
bond and angle distributions with respect to the training set. Based on this,
the fine-tuned diffusion model can serve as a strong basis for conditioned ligand
generation in the PILOT method.

Next, we condition on molecular synthesizability, the docking score of a ligand
with respect to a protein target, and pIC50. We demonstrate that we can
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efficiently bias the generation of ligands with both high synthesizability and
low docking scores compared to a set that was sampled unconditionally without
the importance sampling guidance. The main idea of filtering for samples that
maximize/minimize the selected properties during the reverse diffusion trajectory
is inspired by sequential Monte Carlo and evolutionary algorithms. Guidance
is in our approach achieved by sampling intermediate latent data points with
replacement from a finite set of points, i.e., a population, and evolving them
further using the standard reverse diffusion model as stated in Eq. 1.10. This
offers an efficient alternative to, e.g., gradient-based classifier guidance (Dhariwal
and Nichol, 2021), which requires backpropagation through another surrogate
model to compute spatial gradients that describe the direction in continuous
state space to maximize a property. Compared to gradient-based guidance,
our proposed importance sampling method achieves superior performance when
given the same computational budget.

By using an ensemble of surrogate models, we further demonstrate that we can
guide the generation of ligands that exhibit high predicted pIC50, a measure of
the binding affinity of a ligand to a protein target, in this case, kinases utilized
from the Kinodata-3D dataset. We observe that using only one surrogate model
for guided sampling can introduce bias in the importance weights if that model is
not well-calibrated. Therefore, ensemble models have the advantage of enhanced
generalization through lower calibration error and reduced variance, as we also
show in the paper. The test set generalization of the ensemble model is lower than
the average test set error for each single model. With the PILOT architecture,
we showcase how diffusion pre-training and the importance sampling algorithm
can efficiently generate property-conditioned ligands by querying a surrogate
model that acts as an oracle. While we use simple properties, the method is
applicable to other properties as long as labeled data is available to train the
surrogate models, which are not required to be differentiable.

Other related works proposed diffusion models trained from scratch for SBDD
with structured priors for scaffold or linker design (Guan et al., 2023c,a), which
both include a gradient-based guidance term avoid steric clashes with the protein
pocket during the reverse sampling process. Another line of work leverages pre-
trained diffusion models and proposes the use of classifier guidance to perform
optimization during the reverse trajectory on the latent space motivated by
constraining the ligand atoms to maintain pharmacophore features while avoiding
steric clashes by Ziv et al. (2024) or use external differentiable surrogate models
combined with the ADAM optimizer to perform gradient-based search in the
latent space to improve docking and SA scores by Kadan et al. (2024) similar to
our proposed PILOT architecture.
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2.1 Publication 1: Neuraldecipher – reverse-
engineering extended-connectivity fingerprints
(ECFPs) to their molecular structures

Full Reference: Le, Tuan; Winter, Robin; Noé, Frank; & Clevert, Djork-
Arné (2020). Neuraldecipher–reverse-engineering extended-connectivity finger-
prints (ECFPs) to their molecular structures. Chemical science, 2020, 11(38),
10378-10389.

DOI: 10.1039/D0SC03115A

Licence: CC-BY

Journal/Conference: Chemical Science

Source Code: https://github.com/bayer-science-for-a-better-life/

neuraldecipher

Paper’s main contributions:

• We analyze the information loss induced by folding ECFPs to fixed length
vectors with varying radii.

• We propose a neural network architecture, a fast method, that predicts the
molecular structure based on folded extended connectivity fingerprints.

• We evaluate to what extend molecular structures can be reverse-engineered
based on the folding settings, raising awareness that exchange of molecule
databases in terms of ECFPs should be considered thoroughly in agreement.

Author’s contribution to the paper:

• Conceptualization of the original idea and its application to molecular
representation learning.

• Development of the methodology and implementation.

• Design and evaluation of experiments, data curation and analysis.

• Preparation and creation of initial draft and visualizations.

• Revision of manuscript during the review phase at journal.

The manuscript was written by TL. RW provided access to the CDDD network
and the inference code. The work was supervised by FN and DAC.

Acknowledgement: Reproduced from Chemical science, 2020, 11(38), 10378-
10389 with permission from the Royal Society of Chemistry.
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Neuraldecipher – reverse-engineering extended-
connectivity fingerprints (ECFPs) to their molecular
structures†

Tuan Le, *ab Robin Winter, ab Frank Noé b and Djork-Arné Clevert *a

Protecting molecular structures from disclosure against external parties is of great relevance for industrial

and private associations, such as pharmaceutical companies. Within the framework of external

collaborations, it is common to exchange datasets by encoding the molecular structures into

descriptors. Molecular fingerprints such as the extended-connectivity fingerprints (ECFPs) are frequently

used for such an exchange, because they typically perform well on quantitative structure–activity

relationship tasks. ECFPs are often considered to be non-invertible due to the way they are computed. In

this paper, we present a fast reverse-engineering method to deduce the molecular structure given

revealed ECFPs. Our method includes the Neuraldecipher, a neural network model that predicts

a compact vector representation of compounds, given ECFPs. We then utilize another pre-trained model

to retrieve the molecular structure as SMILES representation. We demonstrate that our method is able to

reconstruct molecular structures to some extent, and improves, when ECFPs with larger fingerprint sizes

are revealed. For example, given ECFP count vectors of length 4096, we are able to correctly deduce up

to 69% of molecular structures on a validation set (112 K unique samples) with our method.

1 Introduction

The data protection and privacy of molecular structures are of
crucial importance for industrial and private sectors, especially
for the pharmaceutical industry. As the process of drug
discovery is known to last at least a decade (10–20 years),2,3

pharmaceutical companies have utilized computational
methods in the early stage to accelerate the generation of
promising drug candidates that are active against a biological
target, and the enrichment of chemical libraries for subsequent
screening and analysis.

Molecular descriptors and ngerprints play a central role in
computer-aided drug discovery, i.e. in silico de novo drug design,
as they capture chemical information of the molecular structure
as a vector of numbers that can be utilized for predictive
modeling in several cheminformatic tasks.4 In quantitative
structure–activity (QSAR) modeling, the aim is to model the
relationship between compound and biological or physico-
chemical endpoints. One biological endpoint is usually the

binding affinity of a drug candidate against a protein target.
Because drug candidates with high binding affinity can still fail
in later phases of clinical trials due to poor pharmacokinetic
and toxicological (ADMET) proles, modeling ADMET
endpoints such as solubility or melting point, is nowadays also
considered in in silico de novo drug design at early stages.5

Securely exchanging chemical data without revealing the
molecular structure is especially nowadays of great importance,
as sharing data such as ngerprints and/or measured endpoints
between research groups within academia or private sectors
through collaborations is oen accomplished to improve drug
discovery.

An example for a large-scale collaboration is the MELLODDY
(Machine Learning Ledger Orchestration for Drug Discovery)
project,6 an Innovative Medicine Initiative (IMI) project by the
European Union with a total funding of 18.4m EUR (2019–2022)
including collaborations between pharmaceutical companies,
research groups from universities but also small and medium-
sized enterprises (SMEs).

Reconstructing the molecular structure that matches given
chemical property values is a traditional (optimization) problem
and oen referred to as inverse-QSAR. One of the most
commonly used molecular ngerprints in QSAR is the circular
extended-connectivity ngerprint (ECFP).7 The ECFP has found
many scientic applications starting from virtual screening and
similarity search8,9 to biological target prediction,10 proteoche-
mometric modeling11 and ADMET endpoint modeling.12

aDepartment of Digital Technologies, Bayer AG, Berlin, Germany. E-mail: tuan.le2@

bayer.com; djork-arne.clevert@bayer.com
bDepartment of Mathematics and Computer Science, Freie Universität Berlin, Berlin,

Germany

† Electronic supplementary information (ESI) available: Detailed information
regarding the model architectures and computation time, degeneracy analysis
for the ECFPs as well as the information loss due to hash collision. See DOI:
10.1039/d0sc03115a

Cite this: Chem. Sci., 2020, 11, 10378

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 3rd June 2020
Accepted 10th September 2020

DOI: 10.1039/d0sc03115a

rsc.li/chemical-science

10378 | Chem. Sci., 2020, 11, 10378–10389 This journal is © The Royal Society of Chemistry 2020

Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 6

/1
2/

20
24

 1
2:

33
:2

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue



The topological ECFP representation is a renement of the
Morgan algorithm13 and usually hashed and folded into a xed
size 1024, 2048 or 4096 sparse bit or count vector to further
utilize for predictive modeling tasks. During the ngerprint
creation, the ECFP algorithm considers the atom environment,
based on the maximum number of atomic neighbors, i.e. bond
diameter d, and iteratively hashes the concatenated (unique)
features to a new integer feature. Since the hash function is
mapping randomly and uniformly to a 232-size space of integers,
the ECFPs are oen considered to be non-invertible.14

In a study published by Kogej et al.15 in 2013 between the two
large pharmaceutical companies AstraZeneca and Bayer AG, the
extended-connectivity ngerprints (ECFP4) were exchanged
among the two companies to subsequently do a nearest-
neighbor search to enrich chemical libraries by the explora-
tion of chemical space for prospective high-throughput-
screening experiments. The choice for using the 2D binary
molecular ngerprint was mainly referenced to the loss of
intellectual property and competition issues in case a direct
comparison of the two large collections of 1.41 M (AstraZeneca)
and 2.75 M (Bayer AG) compounds was opted. It was thought
that the ECFP4 ‘kept the molecular structures of both parties
condential, and in combination with a joint assessment
workshop [they] could mitigate any concerns around intellec-
tual property, reverse engineering or structure disclosure that
would restrict individual scientists in project work’.15

The Joint European Compound Library (JECL)16 between
2013 and 2018 is another IMI collaboration accomplishment of
seven pharmaceutical companies as well as academic research
groups and SMEs to accelerate drug discovery on a pre-
competitive stage which resulted in a compound library of
approximately 500 K small molecules for further screening.
Among the 500 K compounds, 312 K non-commercial unique
samples originate from pharmaceutical companies which were
converted to ECFP6 and shared among the contributing phar-
maceuticals as analyzed by Besnard et al.17 Similar to Kogej
et al., the ECFP6 was chosen by means of structure-free
comparison without disclosure of proprietary information.

The initial combined library of pharmaceutical companies
was further utilized for focused library design by academic
institutions and SMEs to add in silico generated compounds to
increase and reach the nal library size of 500 K compounds.18

In this paper, we describe a method to reverse-engineer the
extended-connectivity ngerprint and deduce the molecular
structure of the compound. A simple approach to counteract the
reverse-engineering could be obtained by permuting all the
indices of the ECFP representation of a dataset with an arbitrary
indexing, on which any predictive model or analysis on that
dataset can still be trained and achieved. However, when
working in a collaboration, such as the MELLODDY project, or
the previous study by Kogej et al. between AstraZeneca and
Bayer AG or the JECL, combining several databases of
(permuted) shared ngerprint descriptors to do successive
analyses inevitably requires to share the permutation matrix as
well. By sharing the reindexing scheme, we return to our initial
position of our motivation on the reverse-engineering of
compounds based on ECFPs.

Related work analyzes to what extent chemical descriptors
can be shared until molecular structures can be reverse-
engineered. Those studies focused on the disclosure of
physico-chemical properties and topological indices. In Masek
et al.,19 the authors use an iterative genetic algorithm (GA) to
suggest molecular structures that have the same chemical
descriptor value(s) as a target compound. The genetic algorithm
proceeds with suggested structures that match the descriptor
value(s), i.e. minimize a total tness function, which takes
several descriptor values into account. The authors, however,
test their method only on 100 selected target compounds and
merely consider descriptors describing molecules that adhere
to the Lipinski rule of ve, or combination of BCUT descriptors
and the MACCSkey ngerprint.20,21 Using their genetic algo-
rithm, they obtained a high number of false positives – molec-
ular structures that match the descriptor values but are in fact
not the real molecular structure. A similar approach to Masek
et al., but not in the context of deducing molecular structures, is
done by Winter et al.22 In their work for optimizing compounds
in a drug discovery endeavor, the authors combine in silico
prediction of molecular properties with an in silico optimization
algorithm to suggest molecules that satisfy, or even positively
improve, the desired characteristics dened by the user.

Faulon et al.23 proposes a stochastic and deterministic
reverse-engineering algorithm to deduce the molecular struc-
ture from simple topological indices such as shape24 and
connectivity25 indices, the Wiener26 and Balaban J and Jt
distance indices27 as well as their developed atomic signature
descriptor.28 In their analyses, the authors dene the degen-
eracy as the number of structures having the same descriptor
value in a given chemical database. From a computational point
of view, descriptors with a high degeneracy are assumed to be
safe to exchange, as those descriptors correspond to an 1-to-N
mapping. This intuition becomes clear when the molecular
weight (MW) is exchanged. Given the molecular weight, many
possible molecular structures can be deduced. Similar to the
work of Masek et al., combining more chemical descriptors can
improve the success rate of deciphering the true molecular
structure. In their studies however, only 1000 compounds out of
PubChem29 were randomly selected for reverse-engineering and
their best method achieves a reconstruction accuracy of 12.2%
with drawbacks in computation time on (local) CPUs.

Recent work from Kotsias et al.30 and Maragakis et al.31 in
conditional de novo drug design utilize the ECFP representation
of compounds as input (seed) with additional bioactivity labels
to narrow and navigate the generative process towards chemical
regions of interest. They train a generative model to sample
novel compounds that satisfy the bioactivity condition and are
to some degree similar to the input ECFP seed. Their study
reveals that the trained generative models are able to sample
compounds that correspond to the input seed.

The motivation of our work differs from Kotsias et al. and
Maragakis et al., as we want to train a model that learns the
relationship between ECFP and its corresponding molecular
structure, in contrast to the aforementioned work, that aims to
generate new compounds, and by chance can reconstruct the
compound that corresponds to the input ECFP.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 10378–10389 | 10379
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One common evaluation approach for de novo molecular
design methods is the rediscovery task of selected compounds
based on their extended-connectivity ngerprints. The redis-
covery task is methodologically different from our approach, as
the rediscovery task aims to evaluate whether a generative
model, trained on a given dataset, can sample selected (target)
compounds that have been intentionally excluded from the
training set. By successfully achieving the rediscovery of target
compounds by the generative model, its goodness among the
ability to sample accessible real-world compounds is strength-
ened. The GuacaMol benchmark by Brown et al. implements the
rediscovery task as one benchmark among many goal-directed
benchmarks, to assess the quality of SMILES-based generative
models to retrieve the three target compounds Celecoxib, Tro-
glitazone and Thiothixene.

Our main contributions are two fold. First, we describe the
Neuraldecipher (illustrated in Fig. 1), a fast method to decipher
the circular extended-connectivity ngerprint (ECFP)7 to their
molecular structure as SMILES representation33 by formulating
the reverse-engineering task as a machine learning (ML)
problem. Next, we show how our method is performing on
several congurations for the ECFP, based on selected length k
of the ngerprint and bond diameter d. These studies attempt
to answer the question, to what extent ECFP can be securely
shared, until our proposed method can fully reconstruct the
molecular structure on unknown ngerprints. We want to
emphasize the importance for the protection of intellectual
property and raise awareness that exchanging possibly invert-
ible ngerprints can cause damage on a competitive level for
private institutions, such as pharmaceutical companies. Since it
is nowadays common for private and public institutions to work
in joint collaboration to accelerate drug discovery as seen in
JECL or MELLODDY, the development of secure and appro-
priate molecular ngerprints for common downstream tasks in

computational chemistry is desired. Our study shows how to
reverse-engineer extended-connectivity ngerprints and should
motivate research groups to start of a new eld in cryptographic
chemistry.

2 Methods

One computational way to achieve the reconstruction would be
to compare the given ECFP sample against a large accessible
chemical library, where the mapping from ECFP to SMILES
representation is known. The molecular structure could then be
deduced by either performing an identity check of a given ECFP
and the corresponding chemical library, and then returning
those samples which match the target ECFP. If the ECFP
representation cannot be found in the chemical library, the
ECFP should be screened against that chemical library by
computing pairwise similarities between the target ECFP and
each sample of the reference library. A similarity measure could
be the Tanimoto similarity of the respective ECFP pair.
Deducing the molecular structure is then achieved by returning
those pairs with highest Tanimoto similarity s satisfying
a dened treshold, e.g. s > 0.90.

We formulate the reverse-engineering task as a machine
learning problem with the goal to predict the molecular struc-
ture given an observed ECFP sample. Our reverse-engineering
method is a two-step approach and utilizes the continuous
and data-driven molecular descriptor (cddd), a neural network
model for the generation of lower-dimensional vector repre-
sentation of molecular structures.1 This model utilizes a recur-
rent autoencoder trained on the task of translating SMILES
representation of compounds into their canonical form.
Translation works as follows: rst, the encoder model translates
the input SMILES representation into the cddd-representation,
a 512-dimensional vector representation for compounds, that
have been shown to be effective on QSAR prediction and virtual

Fig. 1 Illustration of the reverse-engineering workflow. Given an ECFP representation (here exemplary as bit-vector), we predict the corre-
sponding cddd-representation and utilize the fixed decoder network from Winter et al. to obtain the SMILES representation. Therefore the
Neuraldecipher learns the mapping between the two encoded molecular representations. Trainable parameters for the Neuraldecipher are
displayed as green arrows, while black arrows correspond to operations that are fixed and not optimized during training.

10380 | Chem. Sci., 2020, 11, 10378–10389 This journal is © The Royal Society of Chemistry 2020
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screening tasks.1 Second, the decoder network translates the
cddd into the canonical SMILES representation. The SMILES
notation is a representation that encodes the topological
molecular graph into a linear string of symbols.

Our goal for reverse-engineering is to predict the corre-
sponding cddd vector, given an input ECFP sample. Once we
have predicted the cddd vector, we can deduce the molecular
structure by utilizing the xed decoder network, which returns
the SMILES representation. Our proposed method has the
advantage that we obtain a regression model that is able to
predict the molecular structures of ECFP samples more effi-
ciently in a one-shot scenario, as opposed to an autoregressive
model that predicts the SMILES representation given an input
ECFP. By utilizing the pretrained CDDD model, the Neu-
raldecipher does not have to learn its own representation of
chemical structures and to reconstruct SMILES strings with the
correct syntax as illustrated in Fig. 1.

To obtain the SMILES representation, the decoder recurrent
neural network (RNN) from Winter et al. takes the predicted
cddd vector as input and feeds it into a fully-connected layer
whose output is split into three parts to initialize three stacked
recurrent layers. The output of the decoder network's RNN is
a sequence of probability distributions of the different possible
characters over the dened SMILES token by Winter et al. The
deterministic decoder RNN applies a le-to-right beam search34

with a beam-width of 10 to obtain the nal SMILES
representation.

2.1 Neuraldecipher model

The Neuraldecipher model is a standard feedforward neural
network with fully connected layers. Let F3ℤk be the ECFP-
space with dimension k, where k is the length of the folded
extended-connectivity ngerprint. Depending on bit or count
extended-connectivity ngerprints, the entries of the ECFP are
either populated with {0,1} or positive integers ℤ. The CDDD-
space C is a bounded and compact 512-dimensional space,
i.e. C3½�1; 1�512. The Neuraldecipher fq is a regression model,
mapping from ECFP-space to the corresponding CDDD-space,
i.e. fq : F/C , where q is the set of trainable model parame-
ters. Fig. 1 illustrates the general reverse-engineering workow.

The training of the Neuraldecipher is done via minimizing
the distance l(d) ¼ l(cdddtrue � cdddpredicted), where l is the
logarithmic cosine–hyperbolic function, which is a similar loss
function as the L2 squared-error loss. The logarithmic cosine–
hyperbolic function is dened as

lðdÞ ¼ log

�
expðdÞ þ expð�dÞ

2

�
;

where d ¼ cdddtrue � cdddpredicted:

(1)

The number of hidden layers and corresponding hidden
neuron units depend on the length of the input ECFP, i.e. k and
will be discussed in the results Section 3.

We used ADAM optimizer with initial learning rate of 10�4

and 5 � 10�4 as weight decay coefficient. We trained the Neu-
raldecipher model for 300 epochs with a batch-size of 256. The

learning rate was updated and multiplied by 0.7 according to
a plateau scheduler with a patience of 10 epochs with respect to
the validation metric. Additionally, we applied early stopping
with a patience of 50 epochs with respect to the validation
metric. Throughout all training experiments, the validation
metric was the loss on a validation set.

2.2 Datasets

The data used in this study were extracted from the ChEMBL25
database35 and consists of 1, 870, 461 molecular structures. We
used RDKit36 to retrieve the canonical SMILES representation
and removed stereochemistry. We also removed duplicates and
ltered with RDKit using the same criteria as done by Winter
et al.: only organic molecules, molecular weight between 12 and
600 Da, more than 3 heavy atoms and a partition coefficient
log P between – 7 and 5. Furthermore, we stripped the salts and
only kept the largest fragments. Aer this procedure, our pro-
cessed dataset contains 1, 526, 990 unique canonical SMILES
representation. Yet, across many applications, machine
learning models oen fail to generalize when tested on data
distributions different from training data.37 In order to check
whether our model is not overtting and motivate a real-world
scenario, we clustered the processed SMILES dataset into 10
groups. The clusters were obtained by rst computing the
MACCSkey ngerprint21 for each SMILES representation using
RDKit, and then utilizing sklearn's KMeans clustering imple-
mentation38 on the MACCSkey ngerprints. To obtain training
and validation set, we computed the average pairwise distances
between each of the 10 cluster centroids. The validation cluster
was then selected by retrieving the cluster (in our case, cluster 7)
whose centroid was on average the most distant to the other
cluster centroids. Finally, our training set consist of 1, 414, 658
samples and validation set of 112, 332 samples. We call this
splitting procedure cluster split. To evaluate how our model
performs on a random split, we randomly divided the processed
dataset into training and validation set with the same validation
set size as in the cluster split scenario. Training of the model is
done with the training set and model selection is based on the
evaluation on the validation set.

We also test our model on two unseen sets that have no
overlap with the training set. The rst set is the ltered
ChEMBL26 temporal split (with 55, 701 unique compounds)
and the second set consists of compounds from one of our
internal databases (with 478, 536 unique compounds). The
ChEMBL26 temporal split contains compounds that are novel
in the ChEMBL26 database,39 when compared to ChEMBL25.
For the internal set, we randomly sampled 500, 000 compounds
from one of our processed databases that have no overlap with
the ChEMBL25 set. We applied the same preprocessing lter as
done before for both datasets. Dataset statistics for the pro-
cessed, internal and temporal sets are listed in Table 1 and
distribution plots displayed in Fig. 2.

2.2.1 ECFP data. To analyze to which extend folded ECFPs
can be securely exchanged, we created ECFP bit and count
vectors for the lengths k ˛ {1024, 2048, 4096, 8192, 16 384,
32 768}. The bond diameter d was selected as d ¼ 6, leading to

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 10378–10389 | 10381
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ECFP6,k bit- and count ngerprints. Since the collision of bits/
counts with increasing ngerprint size decreases, more infor-
mation about the molecular structure is preserved in the ECFP.
Following this thought, our hypothesis is that deciphering
molecular structures on larger ECFP size becomes more accu-
rate, as the folded ECFP adheres a smaller information loss. To
gain insight on how the model is performing on ngerprints
created with different bond diameters and folded onto a xed
length, we calculated ECFPs of length 4096 and bond diameters
{4, 8, 10}.

2.2.2 CDDD data. To train and validate our method, we
obtained the cddd vector representation by utilizing the
encoder network of Winter et al. for each unique SMILES
representation in our processed datasets, i.e. training and
validation set (Table 1).

3 Results

For each ECFP setting introduced earlier, we conducted
a hyperparameter search by dening possible parameters and
searched for the optimal parameters using grid- and random
search with amaximal number of 200 trials. We refer to the ESI†
for description of the hyperparameter optimization and report
the general model architecture and training procedure in the
following. Each hidden layer consists of three consecutive
operations: affine linear transformation, batch-normalization,
and ReLU activation. We tested other activation functions like
leaky ReLU, ELU and SoPlus in the initial experiments, but
found ReLU to be superior to the aforementioned non-
linearities.

We applied at least 3 hidden layers and decreased the hidden
neuron units to 512, followed by the output layer with 512
neurons and applied tanh non-linearity as output activation,

since the cddd-vectors are bounded within [�1, 1]. All models
were implemented in PyTorch.40

3.1 Degeneracy analysis

One natural question that arises with any molecular descriptor
or ngerprint is the degeneracy. Recall that molecular weight as
descriptor has a high degeneracy, since many compounds can
correspond to a certain molecular weight. As the ECFP algo-
rithm iteratively maps atomic environments to features, we
believe that the computed ECFP sets from our processed dataset
(1.4 M compounds) contains many unique samples with
increasing bond-diameter d. Generally speaking, the larger the
bond-diameter d is selected, the more local features of
a compound are used to create the nal ngerprint. To analyze
the uniqueness of ECFPs, we computed the degeneracy for each
ECFP dataset obtained with increasing bond-diameter d and
show the analysis for the bit ECFPs with length 4096 in Fig. 3.

The horizontal axis states the degeneracy, i.e. it ags the
presence of duplicate, triplicate, and so on. Since we want to
count the number how oen duplicates, triplicates, and so on,
occure, we excluded the degeneracy of 1, i.e. the number of
unique ECFP samples that occure only one time in the pro-
cessed dataset.

A degeneracy of 3 means that 3 different structures have the
same ECFP. Since this can happen multiple times, the vertical
axis counts the occurence of each degeneracy within the pro-
cessed dataset. As the bond diameter d increases for the
ECFPd,4096 bit-vectors, the number of unique samples increases,
i.e. the degeneracy counts for duplicates, triplicates, etc.
decrease. A higher bond diameter in the ECFP algorithm leads
to more uniqueness as more structural information is captured
when iterating over larger atom environments (see Table 2).

Table 1 Dataset statistics for the processed, internal and temporal datasets. The values listed are the mean (standard deviation) values for each
descriptor. The descriptor values were computed with RDKit. The last column displays the number of unique samples in each dataset

Dataset Mol. weight Num. atoms Num. bonds Num. rings Number of samples

Processed (train/valid.) 380.70 (90.76) 48.18 (12.98) 50.53 (12.64) 3.37 (1.24) 1, 414, 658/112, 332
Internal 418.85 (82.89) 51.73 (12.04) 54.48 (12.62) 3.76 (1.06) 478, 536
Temporal 401.75 (91.53) 50.38 (12.54) 53.03 (14.21) 3.66 (1.29) 55, 701

Fig. 2 Distribution of molecular properties (molecular weight, number of atoms, number of bonds, number of aromatic rings) in the different
datasets.

10382 | Chem. Sci., 2020, 11, 10378–10389 This journal is © The Royal Society of Chemistry 2020
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The number of non-unique samples for a xed diameter d ¼
6 and increasing vector length k does not differ much, as the
ECFPs (folded into xed-length vectors of size k) represent the
same structure in a larger ngerprint vector.

We refer to the ESI† for a detailed list of non-unique samples
in each setting.

Since the encoded cddd-representation benets from an
injective mapping given SMILES in contrast to the ECFPs, an
interesting bound to analyze is the distance between encoded
cddd-representations, where the mapping from ECFP to
SMILES is non-unique (we call that set of SMILES tuples Sd).
Generally, the impact of the non-uniqueness from ECFPs can
compromise the training of the Neuraldecipher in two
scenarios. In the rst preferable scenario, the (average) distance
between cddd's encoded from Sd tuples is low. That means low
distortion in the corresponding CDDD-space when learning the
mapping from ECFP-space to CDDD-space. The second scenario
includes a larger average distortion and could degrade the

training of the Neuraldecipher, since learning the mapping
from ECFP-space to CDDD-space is perturbed as the model
encounters ECFP samples that map to diverse cddd-
representations. To analyze the two possible scenarios, we
retrieved the set of SMILES Sd that includes tuples (i.e. dupli-
cates, triplicates, etc. see Fig. 3), of SMILES representation that
map to the same ECFP. We retrieved the corresponding cddd's
for each tuple set of Sd, and calculated the average cosine
distance of each pair in the tuple sets.

Fig. 4 illustrates the results for the ECFP6,1024 bit-vector
setting. The ambiguity of binary ECFPs with different SMILES
representation does not cause a large distortion in the corre-
sponding CDDD-space, as the unsupervised learned represen-
tation maps structurally very similar SMILES into close space as
indicated in the average cosine distance of 0.0417. The right
plot in Fig. 4 illustrates two randomly selected pair of molecules
for the rst scenario (low distortion, i.e. cosine distance #0.05)
and second scenario (high distortion, i.e. cosine distance $

0.20). However in the second scenario, the binary ECFP can
misleadingly map to a representation, where the molecules are
more different (the molecule pair in the second row of Fig. 4 has
a cosine distance of 0.3335). Since the binary-ECFP only
captures presence of certain atomic environments (and not
counts, as opposed to count-ECFP) the molecules in the second
row of the right plot in Fig. 4 correspond to the same ECFPs but
refer to different cddd-representations with larger distortion.

3.2 Results and discussion

We trained separate Neuraldecipher models on a cluster and
random split, for each ECFP setting. The ECFP setting was
determined by bond diameter d, ngerprint length k and
exposure of bit- or count ECFPs.

Aer training, for the nal evaluation on the validation,
internal and temporal dataset, we predicted the corresponding
cddd-vectors and retrieved the SMILES representation by
utilizing the decoder network from Winter et al.

3.3 Varying the length k for xed diameter d ¼ 6

The results for the ECFP6,k bit-vectors with increasing length k,
trained on cluster and random split are listed in Table 3.

The reconstruction columns in Table 3 correspond to the
accuracy of binary string matching between true input SMILES
representations and deduced SMILES representations. Hence,
the reconstruction refers to the accuracy of correctly deducing
the exact molecular structure given the ECFP6-bit vectors. The
Tanimoto columns state the average Tanimoto similarity
between true input SMILES and deduced SMILES representa-
tions. To compute the Tanimoto similarity, we retrieved the
ECFP6,1024 bit ngerprints of true and deduced SMILES and
utilized RDKit's Tanimoto similarity implementation. We
included the Tanimoto similarity as proxy for the goodness of
reverse-engineering, since our model might fail to fully deduce
the exact molecular structure, but is still able to reconstruct
(structurally) similar compounds that resemble the true
compound, which could be optimized in a subsequent task.

Fig. 3 Frequency count for each degeneracy. As the bond diameter
d increases, the count for each degeneracy decreases, i.e. there are
more unique ECFP samples. The barplot displays the counts for the
degeneracies [2, 3, 4, 5]. Degeneracies larger than 6 are not displayed,
since the frequency that 6 different structuresmap to the same ECFP is
small.

Table 2 Illustration of non-unique samples for the ECFPs created with
length 4096 and increasing bond diameter d. The first column
describes the ECFP setting with bond diameter d and length k. The
second column states the number of non-unique samples for ECFP-
bit vectors, whereas the third column reveals the number of non-
unique samples for ECFP-count vectors. To illustrate that the number
of non-unique ECFPs is mainly influenced by the bond diameter d (for
variable length k), the results for ECFP6,1024 with length 1024 and bond
diameter 6 is also listed

ECFP
# non-unique
bit

# non-unique
count

ECFP4,4096 14, 382 2, 671
ECFP6,1024 4, 569 232
ECFP6,4096 4, 481 232
ECFP8,4096 2, 509 14
ECFP10,4096 1, 005 6

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 10378–10389 | 10383
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Considering that we are using the decoder network to
retrieve the reconstructed SMILES representations of predicted
cddd-representations, the validity of reconstructed SMILES, i.e.
if the string representation follows the SMILES grammar, is of
great importance, especially in generative modeling.32

In all experiments, the SMILES validity on the test datasets
(validation, internal, temporal), was most of the time around
98%. We refer to the ESI† for a detailed view of the validity for
each conguration. All metrics were computed using the vali-
dation (Val.), temporal (Temp.) and internal (Inter.) datasets,
which the models have not seen during training.

As expected, models trained on the random split perform
better than models trained on the cluster split, when deducing
molecular structures from the validation dataset. For example,
the model for the ECFP6,1024 is able to correctly deduce 12.14%
from the validation dataset when trained on the cluster split.
The reconstruction for the cluster split is smaller because the
validation dataset contains compounds which likely lie in
a chemical space, the model has not seen before during
training. When the model is trained on a random split, 28.70%
of the validation dataset can be correctly reverse-engineered.
For the internal and temporal datasets, the performance for
cluster split and random split are almost similar along all
models. This insight is normal and expected, as the data
distributions from the internal and temporal sets generally
differ from the processed ChEMBL25 dataset.

One of our hypotheses was that the probability of reverse-
engineering molecular structures from folded ECFPs increases
with larger size, as the ECFPs are less prone to information loss
due to hash collision. This is conrmed by our experiments
(Table 3), as models trained with larger ECFP6 input bit-vectors
are more capable to correctly deduce the molecular structure in
all evaluation datasets. Increasing the ECFP size from 16, 384 to
32, 768 does not improve the performance very much, as the
information loss through the hash collision is small. For an
analysis on the hash collision for the analyzed ngerprint
lengths, we refer to ESI.†

Our reverse-engineering workow has the benet of fast
computation for the intermediate cddd-representation. The
elapsed time for one forward pass of 1 M compounds, when
predicting the cddd-representation given varying ECFP-
representations, amounts to approximately 5 seconds given
ECFPs of length 1024, and up to 100 seconds for ECFPs of size
32, 768. Using the cddd-decoder RNN model to obtain the
SMILES representation requires more time due to the nature of
sequential models and integration of beam-search. Decoding
1 M cddd-representations back to SMILES representations
requires around 38 minutes. The complete reverse-engineering
workow of 1 M compounds takes about 39 minutes and 40
seconds in case the ECFP-representation of length 32, 768 is
used as input for the Neuraldecipher. All computations were
performed on a single modern Nvidia Tesla V100 GPU.‡

Fig. 4 Mean cosine distance between cddd-representations that belong to the same set of SMILES that map to the same ECFP representation.
On average, the cosine distance is small with 0.0417.

Table 3 Results for reverse-engineering molecular structures based on ECFP6-bit vectors. To compute the average Tanimoto similarity for all
lengths, we first calculated the ECFP6,1024 bit-vectors for the true and reconstructed SMILES and then parsed the tuple into RDKit's Tanimoto
similarity implementation. We selected a fixed ECFP configuration across all lengths k, to have a proper and comparable evaluation on the
validation (Valid.), internal (Inter.) and temporal (Temp.) datasets. Larger values up to 100 are better

k

Cluster split Random split

Reconstruction [%] Tanimoto [%] Reconstruction [%] Tanimoto [%]

Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp.

1, 024 12.14 11.32 13.34 47.08 45.31 46.84 28.70 12.11 14.14 60.64 40.30 47.60
2, 048 18.85 15.85 18.04 53.65 49.68 51.17 37.87 16.34 18.81 67.11 50.26 51.87
4, 096 32.90 25.08 28.12 63.02 57.06 59.11 57.35 25.30 28.43 79.36 57.39 59.55
8, 192 48.83 37.14 39.98 74.25 66.45 68.24 72.91 36.84 39.81 88.01 66.57 68.33
16, 384 57.85 44.64 47.38 79.80 71.86 73.46 79.79 46.22 48.86 91.30 72.96 74.34
32, 768 59.04 45.81 48.31 80.77 72.84 74.21 80.02 46.92 49.66 91.40 73.35 74.76

10384 | Chem. Sci., 2020, 11, 10378–10389 This journal is © The Royal Society of Chemistry 2020
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In the next study, we trained the models from Table 3 with
the same network architectures for each ngerprint length on
the ECFP6-count vectors. As the ECFP6-count vector preserves
more information about a molecular structure than the corre-
sponding ECFP6-bit vector, the models trained on the ECFP6-
count vectors are expected to perform better than models
trained on bit vectors only. Table 4 shows the results of this
study. Training the Neuraldecipher models on ECFP6-count
vectors yields better performance metrics as seen in Table 4
compared to Table 3. For the model trained on 1024 length
ECFP, the correct reconstruction of molecular structures in the
validation dataset improves to 22.49% for the cluster split
model when trained on count vectors as opposed to 12.14%
when trained on bit vectors. The conclusions made earlier for
better performance with increasing ngerprint size are also
reected in the results in Table 4. With our reverse-engineering
method, we are able to correctly deduce around 150 K
compounds from the Bayer internal dataset (478 K samples)
with 31.73% accuracy, when ECFP-count vectors of length 4096
are shared (see Table 4, random split). Considering that we only
used publicly available data from ChEMBL to train the Neu-
raldecipher model, extra caution has to be paid when
exchanging ECFPs with legitimate partners, as the protection of
molecular structures is of importance for pharmaceutical
companies. The validity of SMILES for all models is as before on
average 98%. Since the learning rate scheduler and early stop-
ping mechanism for model selection during training is only
affected by the validation loss per epoch, we only computed the
evaluation metrics in Tables 3 and 4 based on the nal selected
model. To observe the progress of evaluation metrics (i.e.
reconstruction accuracy and Tanimoto similarity), we trained
the Neuraldecipher on ECFP6,4096-count vectors on the cluster
split for 300 epochs without early stopping and computed the
corresponding metrics aer each training epoch. Fig. 5 shows
the progress of the reconstruction accuracy and Tanimoto
similarity over epochs compared with the validation loss.

Fig. 5 shows that with decreasing validation loss, the recon-
struction accuracy and mean Tanimoto similarity on the valida-
tion dataset increase. However, the reconstruction accuracy on
the validation data (112, 332 samples) seems volatile and reaches
on average 41%. Although the model is not capable to fully

deduce the molecular structure, it is able to reconstruct on
average compounds that have mean Tanimoto similarity of 72%.

A positive relationship between (1 – Tanimoto similarity) and
validation loss in Fig. 5b is also shown in the analysis when
plotting the Euclidean distance in the corresponding CDDD-
space for true cddd and predicted cddd and plot it against (1
– Tanimoto similarity). We refer to ESI for more details.†

3.4 Varying the bond diameter d for xed length k ¼ 4096

The results in Tables 3 and 4 show that the performance on
successfully reconstructing molecular structures improves,

Table 4 Results for reverse-engineering molecular structures based on ECFP6-count vectors. To compute the average Tanimoto similarity for
all lengths, we first calculated the ECFP6,1024 count-vectors for the true and reconstructed SMILES and then parsed the tuple into RDKit's
Tanimoto similarity implementation. We selected a fixed ECFP configuration across all lengths k, to have a proper and comparable evaluation on
the validation (Valid.), internal (Inter.) and temporal (Temp.) datasets. Larger values up to 100 are better

k

Cluster split Random split

Reconstruction [%] Tanimoto [%] Reconstruction [%] Tanimoto [%]

Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp.

1, 024 22.27 16.92 19.41 61.39 57.59 59.06 38.29 17.85 20.90 71.11 58.13 59.42
2, 048 30.45 22.35 25.94 66.25 61.32 62.90 47.73 22.22 25.77 76.36 61.34 62.99
4, 096 41.02 29.98 34.61 72.58 66.43 68.52 66.61 31.73 36.22 85.98 67.61 69.59
8, 192 55.01 39.63 44.56 80.49 72.77 74.85 77.07 40.89 44.97 90.98 73.60 75.29
16, 384 62.42 46.47 50.61 84.30 76.83 78.44 80.02 46.02 49.48 92.45 76.69 78.05
32, 768 64.03 48.52 52.32 85.07 78.01 79.30 83.52 50.35 54.25 93.85 79.09 80.44

Fig. 5 Progress of the ECFP6,4096-count model during training for the
reconstruction accuracy and Tanimoto similarity over epoch. Each
plot shows the corresponding metric and the validation loss (cluster
split validation) after each training epoch.

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 10378–10389 | 10385
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when the ngerprint length k increases and count-vectors
instead of bit-vectors are shared. Our next study analyzes how
our model performs on a xed ECFP input length k ¼ 4096 and
varying bond diameter d.

As the bond diameter d in the ECFP algorithm determines
the number of iterations per atom to capture structural infor-
mation of atom environments, an ECFP generated with bond
diameter d0 > d is a superset of the ECFP, that was created with
bond diameter d. At each diameter, the ngerprint is the
combination of features from the previous diameter, plus any
new features discovered by that step.7 In other words, ECFP bit-
or count vectors with a higher bond diameter d0 can capture
more information and the entries of the ngerprint can bemore
populated with 1's or integers for bit- or count vectors, as
opposed to ECFPs created by smaller bond diameter d. We
selected the same network architecture from the ECFP6,4096
model and trained the model on ECFPd,4096 bit- and count
vectors, where d ˛ {4, 8, 10}. The results for the experiments
trained on cluster split and random split are listed in Table 5.

The results in Table 5 go along with the nding that models
trained on the random split (rs) perform better on the validation
dataset, compared to models trained on the cluster split (cs).
There seems to be no substantial difference between the
performance on the internal and temporal datasets, when the
model was trained on the cluster or random split. Models
trained with count-vectors as input perform better than models
trained with bit-vectors, as count-vectors preserve more infor-
mation about the molecular structure.

However, we observe that the performance decreases with
increasing bond diameter, regardless of which split the model
was trained on. Recall that the unfolded ECFP with a larger
bond diameter d0 is a superset of the unfolded ECFP with
smaller bond diameter d, because more substructures are
captured with higher bond diameter (d0 > d) during the nger-
print algorithm. So generally, the unfolded ECFPd0 captures
more information than the unfolded ECFPd. Folding the ECFPd0
to a xed length of 4096, i.e. to ECFPd0,4096, comprises a higher
information loss due to hash collision. Note that we concluded

a similar observation when studying the behavior for increasing
ngerprint length k: with increasing ngerprint length k, less
information was lost, and therefore the model performance
increased (see Tables 3 and 4) for the ECFPd,4096. As a result of
this, training the Neuraldecipher (with a xed network archi-
tecture) on ECFP4,4096 representation as input, leads to better
performance compared to the setting, when the input is
ECFP6,4096. The performance decrease from diameter 8 to 10 is
comparably small to the other differences (i.e. 4 to 6 and 6 to 8),
as the unfolded ECFP8 representations are in most cases the
same as the unfolded ECFP10 representations and folding these
representations into xed length of 4096 causes the same
collision. For a detailed analysis on the hash collision, we refer
to ESI.†

3.5 Comparison neuraldecipher against baseline

To further analyze the magnitude of Tanimoto similarity in the
cluster validation dataset (112 K samples), we compare our
method against a purely computation approach from virtual
screening (referred as “Library-Analysis Baseline” and explained
in the beginning of Section 2).

For each validation sample, we calculated all pairwise Tani-
moto similarities§ to each sample from the reference (library)
training set (1.4 M samples). We then computed the average
Tanimoto similarity for each validation samples by computing
the mean of the aforementioned pairwise similarities (“All-
Average”). For the baseline, we selected the top-5 references
(training) samples with highest Tanimoto similarity (from the
pairwise similarities) and computed the mean of the top-5
references for each validation sample (“Top-5-Average”). The
“Top-5-Average” approach demonstrates a weak{ baseline from
compound-library analysis. The “All-Average” procedure aims to
show, how similar a validation sample is on average to all
samples from reference set, while the “Top-5-Average” proce-
dure aims to show, how similar a validation sample is on
average to the top-5 most similar samples from a reference set.
Fig. 6 displays the Tanimoto similarity distributions between

Table 5 Results for reverse-engineering molecular structures for ECFPs with fixed length of 4096 and increasing bond diameter d on the
cluster- (cs) and random (rs) split. The results for ECFP6,4096 from Tables 3 and 4 are listed for completeness. To compute the Tanimoto similarity,
we always computed the ECFP6,1024 count/bit-vectors for true SMILES and reconstructed SMILES representation in order to have a proper and
comparable evaluation for all bond diameters. The first column states the ECFP with the bond diameter d and the flag for cluster (cs) or random
(rs) split. Higher values up to 100 are better

ECFP

ECFP-count ECFP-bit

Reconstruction [%] Tanimoto [%] Reconstruction [%] Tanimoto [%]

Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp. Valid. Inter. Temp.

ECFP4,cs 43.60 33.19 37.44 74.27 68.93 70.77 34.62 27.21 29.70 65.72 59.72 61.53
ECFP4,rs 68.92 34.23 38.78 87.40 69.76 71.60 60.98 28.22 30.98 82.01 60.32 62.20
ECFP6,cs 41.02 29.98 34.61 72.58 66.43 68.52 32.90 25.08 28.12 63.02 57.06 59.11
ECFP6,rs 66.61 31.73 36.22 85.98 67.61 69.59 57.35 25.30 28.43 79.36 57.39 59.55
ECFP8,cs 36.56 26.72 30.56 70.10 64.20 66.34 27.27 21.91 25.14 59.90 54.53 56.75
ECFP8,rs 60.21 27.09 31.17 83.09 64.59 66.50 53.03 22.22 25.52 76.70 54.83 57.15
ECFP10,cs 34.37 25.52 29.51 68.88 63.37 65.27 23.95 19.82 22.92 57.73 52.89 55.15
ECFP10,rs 59.52 26.56 30.98 82.58 64.18 66.33 51.52 21.42 24.55 75.41 53.96 55.94
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the “All-Average”, “Top-5-Average” and our Neuraldecipher
model (trained on ECFP6,4096 count-vectors).

As expected and intended through the cluster split, the
Tanimoto similarity between the validation and training
(reference) set is small on average with 0.1255. The “Top-5-
Average” baseline (shaded in red in Fig. 6) obtains a mean
Tanimoto similarity of 0.5053 with fat tails approaching the
Tanimoto similarity of 0.8. However, the baseline (and even
Top-1-Averagek) cannot reconstruct the validation samples, i.e.
reconstruction accuracy of 0. This means that the training
(reference) set does not contain the “true” validation samples.
This insight goes along with Table 2, displaying 232 non-unique
samples for the ECFP6,4096 count-dataset. In that case, all non-
unique samples are represented in the training (reference) set.
Our Neuraldecipher however, achieves a reconstruction of
0.4102 and mean Tanimoto similarity of 0.7218. The fat tail of
the Neuraldecipher Tanimoto similarity distribution along the
horizontal axis between 0.4 and 0.7 (green curve in Fig. 6) is
likely caused by the contribution of Top-5-Average samples.
This means that our Neuraldecipher reconstructs structurally
similar molecular compounds of that Tanimoto similarity
range, because on average the best structures the model can
learn from, also share this Tanimoto similarity of 0.5053.
Therefore, there is less probability mass in the Tanimoto range
of [0.8–0.9]. To compare the performance between the baseline
and our method, we plotted the Top-5-Average Tanimoto simi-
larities against the Tanimoto similarities of our reconstructions
in Fig. 7.

Fig. 7a and b show that our proposed method performs on
average better than the baseline method. Out of 112 K valida-
tion samples, our method can reconstruct 85 K samples that
have a higher Tanimoto similarity than the baseline model, i.e.
in 75.89% of all cases. This is illustrated in the contour plot in
Fig. 7a and more clearly in the distribution plot in Fig. 7b for s2
� s1 > 0.0. To analyze the role of approximate reconstruction we
retrieved the subset of samples where our reverse-engineering
workow returned compounds with Tanimoto similarity less
than 1.0. We applied the non-parametric paired Wilcoxon rank-
sum test with the null hypothesis that the sample distributions
of Tanimoto similarities for our reverse-engineering workow is

equal to the baseline, and the alternative hypothesis that the
sample distributions are not equal, i.e. H0: s2¼ s1 vs. H1: s2s s1.
The Wilcoxon rank-sum test is highly statistically signicant
with a p-value of p ¼ 1.1921 � 10�7 < a ¼ 0.05, rejecting H0 at
the 5 – % signicance level and indicating that the sample
distributions are not equal. The mean Tanimoto similarity of
(0.5363 � 0.1512) from our method suggests that it performs on
average better than the baseline (0.4925 � 0.1105) on the
selected subset with around 66.7 K samples.

Furthermore, our reverse-engineering workow benets
from faster computation. Recall that the baseline model
requires the computation of N � m pairwise similarities, where
N¼ 1, 414, 658 andm¼ 112, 332, which subsequently have to be
sorted in decreasing order. The elapsed time for the baseline
model approximately amounts to 3.75 hours using all cores of
a 96-core CPU-machine. Our reverse-engineering workow only
requires approximately 5 minutes using one single Nvidia Tesla
V100 GPU and achieves a better reconstruction accuracy.**

One could argue to preserve a stronger baseline by
increasing the size of reference library where the overlap
between target set and reference library is potentially larger.
However, computing pairwise similarities between target and
reference library is computationally expensive and does not
scale well. Additionally, one should consider that in real-life
scenarios, the target dataset consists of in-house compounds
from a private institution, that are of interest for reverse-
engineering. In general, the baseline method is not able to
infer the true compound, based on ECFP. However, if there is an
overlap between target and reference library, this overlap is
oen caused by publicly available molecules, which are also

Fig. 6 Histogram to illustrate the distributions for the Tanimoto
similarity between true SMILES representations and retrieved SMILES
representations from the average training (blue), baseline model (red)
and our reconstruction (green) on the validation set (112 K samples).

Fig. 7 Comparison between the Neuraldecipher and baseline model
wrt. the Tanimoto similarity on the validation dataset (112 K samples).

This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 10378–10389 | 10387

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 6

/1
2/

20
24

 1
2:

33
:2

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online



present in open databases, as explored by Kogej et al. when
screening the overlap between the AstraZeneca and Bayer AG
libraries or other related work.41,42

4 Conclusion

In this work we proposed a reverse-engineering method to
deduce the molecular structure given the extended-connectivity
ngerprint (ECFP). To identify to what extend structures can be
reconstructed, we tested our method on several ngerprint
settings with varying length k and bond diameter d for the ECFP
creation. In general, with increasing ngerprint size and count-
vectors being revealed, our method is capable of better recon-
structing molecular structures from large sets that our method
has not seen before. We selected the ECFP to reverse-engineer
from, as the ECFP is a commonly used ngerprint in QSAR
and ADMET modeling and oen considered as non-invertible.
In case ECFP-count representations of length 4096 are
exchanged (see Table 5), our method is able to correctly
reconstruct up to 68.92% from a random subset of ChEMBL25
(112, 332 unique compounds), 38.78% from the ChEMBL26
temporal set (55, 701 unique compounds) and 34.23% from
a random subset of one of our internal databases (478, 723
unique compounds). Although, and somehow fortunately, we
did not reach a complete reconstruction on the test sets, due to
information loss when folding the unfolded ECFP into xed-
length vectors, there might be small improvements by
changing the training procedure. Since we have formulated the
reverse-engineering task as a machine learning problem, and
utilize neural networks as model class, nding the optimal
network architecture and formulating different loss function for
training entails the chance for better performance. We suggest
that extended-connectivity ngerprints should be exchanged
with precaution as this yields the potential to harm intellectual
property and loss of competitive advantages since our method is
capable to reconstruct molecular structures to some extent.

We hope we raised awareness about the danger when
exchanging ECFP representations andmotivated a new research
eld in cryptographic chemistry for the development of secure
and appropriate ngerprints for cheminformatics.

Availability

Source code of the proposed method is openly available at
https://github.com/bayer-science-for-a-better-life/
neuraldecipher.
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‡ This computation would cost around 3.06 $ per h�40

60
, h ¼ 2.04 per $ on a p3.2�

large AWS instance on demand.

§ Based on ECFP6,4096 count-vectors.

{ The baseline is weak because we are using the training set as reference library.

k This would be the retrieved sample from the reference training set that is the
most similar to a target sample.

** The computation on 96-cores would cost around 4.128 $ per h � 3.75, h ¼
15.48 per $ on a m5a.24� large AWS instance on demand while our reverse-
engineering workow would only cost around 3.06 $ per h� 5

60
, h ¼ 0.255 per $

on a p3.2� large AWS instance on demand.
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Model architecture for varying fingerprint size

Table 1 displays the neural network architecture for each Neuraldecipher model. We

applied at least 3 hidden layers and no dropout regularization throughout all of ours

experiments. We tested dropout regularization with varying settings1, but found that

using dropout leads to inferior performance on the validation set, compared to models

without dropout regularization. For hyperparamter tuning, we used the asynchronous

Hyperband implementation of the open-source python library tune.1 Figure 1 shows our

selected logarithmic cosine-hyperbolid loss function (see Equation 1) and the standard

L2-loss.
1E.g., constant dropout probability of 0.1 for all hidden layers, applying dropout on further hidden

layers as the input ECFP is sparse and dropping hidden units in the beginning might degrade the
performance much, or exponentially decaying the dropout probability up 0.

1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020



Table 1: Architecture for each Neuraldecipher model. Each hidden layer consists of the
composition of three operations, namely affine linear transformation, batch-normalization
followed by ReLU activation. Each integer within the hidden layers bracket, indicates
the number of hidden neurons in the hidden layer. The output layer consists of 512
neurons and is activated with Tanh. The last column (elapsed time) states the average
duration of one forward pass of 1M compounds through the network for 10 forward
passes.

ECFP input-size Hidden layers Output-size Elapsed time [s]

1024 [1024, 768, 512] 512 5.46
2048 [1024, 768, 768] 512 7.39
4096 [2048, 1024, 768, 512] 512 10.61
8192 [4096, 2048, 1024, 512] 512 22.68
16384 [8192, 4096, 2048, 1024] 512 52.58
32768 [8192, 4096, 2048, 1024] 512 101.11

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
d

0.0

0.2

0.4

0.6

0.8

1.0

lo
ss

Possible loss functions for regression
Log-Cosine-Hyperbolic
Squared-Error

Figure 1: The logarithmic cosine-hyperbolic function and the classical L2 loss function
for regression. The first loss function penalizes stronger for |d| ≥ 0.25.

l(d) = log

(
exp(d) + exp(−d)

2

)
, where d = cdddtrue − cdddpredicted. (1)

2



Degeneracy analysis for ECFP6 settings

The number of non-unique ECFPs for the processed dataset for training depends on the

set bond diameter d. For the ECFP6, i.e. generated with bond diameter d = 6 with

increasing fingerprint length k, we computed the number of non-unique ECFP samples

for the bit- and count vectors. The results are shown in Table 2. Given fixed bond

Table 2: Number of non-unique samples within each ECFP6 dataset. As the bond
diameter d is always the same with d = 6, the unfolded ECFPs are in all cases the same,
and when folded into the fixed-vector length still remain "unique". The bond diameter
is the decisive factor for a high number of degeneracy.

ECFP setting # Non-unique Bit-ECFP # Non-unique Count-ECFP

ECFP6,1024 4569 232
ECFP6,2048 4494 232
ECFP6,4096 4481 232
ECFP6,8192 4454 232
ECFP6,16384 4454 232
ECFP6,32768 4445 232

diameter d, the number of non-unique samples does face large changes with increasing

fingerprint length k. However, folding the ECFPs into smaller fingerprint sizes leads to

more information loss, as explained in Section in detail.

3



Validity on reconstructed SMILES in all experiments

Table 3: Validity [%] of reconstructed SMILES representation for the validation- (112, 322
unique samples), internal- (478, 536 unique samples) and temporal set (55, 701 unique
samples) for the models trained on cluster and random split. In general, the validity of
reconstructed SMILES is almost perfect with approximately 98− 99%.

ECFP-Count ECFP-Bit
ECFP Cluster split Random split Cluster split Random split

Valid Inter Temp Valid Inter Temp Valid Inter Temp Valid Inter Temp

ECFP6,1024 98.81 97.32 97.09 98.13 97.27 97.06 98.27 96.98 96.91 97.66 96.62 96.38
ECFP6,2048 98.99 97.44 97.21 98.36 97.24 97.03 98.58 97.02 96.88 98.11 97.05 96.93
ECFP4,4096 99.11 97.79 97.70 99.01 97.60 97.39 98.85 97.23 97.10 98.79 97.28 97.09
ECFP6,4096 99.05 97.53 97.16 98.89 97.40 97.14 98.75 97.03 96.84 98.55 97.06 96.88
ECFP8,4096 98.98 97.28 97.01 98.74 97.28 97.10 98.68 97.08 96.92 98.44 97.08 96.83
ECFP10,4096 98.89 97.16 96.95 98.64 97.19 97.02 98.64 96.83 96.74 98.39 97.00 96.79
ECFP6,8192 99.31 97.93 97.76 99.31 97.98 97.79 99.19 97.76 97.82 99.12 97.73 97.62
ECFP6,16384 99.45 98.33 98.17 99.41 98.12 98.06 99.38 98.15 97.96 99.41 98.17 98.09
ECFP6,32768 99.55 98.39 98.23 99.51 98.33 98.26 99.38 98.19 98.12 99.42 98.17 98.12

Analysis CDDD-space vs. ECFP-space
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Figure 2: Dependency between Euclidean (L2) distance and (1 – Tanimoto similarity)
as well as Cosine similarity and Tanimoto similarity.

The ECFP6,4096-count cluster-split model reports a reconstruction accuracy of 41.02%

and mean Tanimoto similarity of 72.58% on the validation dataset (112, 332 samples). To

illustrate the dependency between CDDD- and ECFP-space for the predicted deduced

molecular structures, we computed the Euclidean distance and the Cosine similarity

between predicted and true from the validation set. The dependency between Cosine

similarity and Euclidean distance against Tanimoto similarity is shown in Figure 2. Since

4



we formulated the reverse-engineering task as machine learning problem of predicting a

close sample, if not the correct sample, during training we aim to obtain a model fθ, that

minimizes the empirical loss function on the training set. Since the empirical loss function

contains the deviance d, see Equation (1), the Euclidean distance is implicitly minimized

as well. Figure 2a displays the positive correlation (pearson correlation coefficient of

0.7295) between L2-distance and (1−Tanimoto similarity). As the Euclidean distance

increases, the (1−Tanimoto similarity) increases. Interpreting the Euclidean distance

and its magnitude in a high-dimensional space is difficult and not straightforward. The

Cosine similarity benefits from its property being bounded within −1 and 1. Figure 2b

shows the positive correlation (pearson correlation coefficient of 0.6970) between Cosine

similarity and Tanimoto similarity. The red lines in Figure 2a and 2b display the linear

functions, when regressing the y-axis on the x-axis, indicating the positive trend as well

for both plots.

Analysis of hash collision

The classical ECFP is an unfolded fingerprint with no pre-defined size and its length

depends on the input molecular structure. Since the ECFP algorithm iteratively uses

a hash function that maps a list of atom environments (represented as integers) to a

new atom environment i ∈ 232 and concatenates the result with the earlier list, the

components of the final fingerprint can be large integers due to the target space of the

hash function. To obtain folded binary or count-vectors from the unfolded fingerprint, the

integer entries act as identifier for presence/counts and non-presence in the corresponding

binary/count fingerprint. For example, consider a structure where the ECFP algorithm

returns an unfolded fingerprint [10, 10, 80, 999, 999999]. This leads to an unfolded binary

ECFP of length 99999, where the entries {10, 80, 999, 999999} are populated with 1

and 0 elsewhere. The unfolded count fingerprint would have the component-value of

2 for the 10-th position, 1 in position {80, 999, 999999} and 0 elsewhere. Now the

“unfolded” binary/count-fingerprints are still variable in length, namely determined by
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the maximum value of the unfolded ECFP, i.e. in the earlier example 999999. Since

machine learning algorithms mostly require a fixed length feature input, the unfolded

binary/count fingerprints are folded into fixed length k. The folding operation is usually

applied with the modulo operation, by modulo-diving the "on"-positions/keys with k.

Applying that, the folded bit/count fingerprint has length k. Assume we set k = 10 such

that our bit/count fingerprints have fixed length of 10. Since the unfolded fingerprint is

[10, 10, 80, 999, 999999], indicating i-th’s entries being "on", we now obtain the entries

[0, 0, 0, 9, 9, 9] being "on". For the binary ECFP this would mean that entries {0, 9}

are populated with 1 and 0 elsewhere. The count ECFP would be populated with the

entry 3 in the components {0, 9}. Folding the fingerprint has led to a fixed fingerprint

where only 2 unique keys {0, 9} are on, whereas the original unfolded fingerprint had 4

unique keys {10, 80, 999, 9999}. Therefore, some information is lost. Here, we define the

collision degree c as the difference of the number original unique keys and number of

new unique keys, i.e. c = 4− 2 = 2. Note that a collision degree of c = 0 means, that

no information is lost after folding ECFP. Increasing k reduces the chance of collision

and therefore the information loss.

For our ECFP6 configurations, we computed the unfolded ECFP6 vectors for all

compounds in our processed dataset, obtained the number of unique keys and subtracted

these values with the number of unique keys for the folded ECFP6 vectors. Figure 3a

shows the results for increasing size k. As the fingerprint size k increases, the collision

degree of larger than 1 decreases (or in other words, the collision degree of c = 0

increases).

Since our studies also include the analyses on the Neuraldecipher performance on a

fixed fingerprint length k = 4096 but varying bond diameter d ∈ {4, 6, 8, 10}, we also

computed the collision degrees for each of the five ECFP datasets with varying bond

diameters. The results are shown in Figure 3b.

Figure 3a illustrates that the collision degree of c = 0, i.e. no information loss due to the

folding operation, is highest for the ECFP6 that was folded into length 32768, followed

6



0 1 2 3 4 5 6 7 8
Collision degree c

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

1.4M
Co

llis
io

n 
de

gr
ee

 c
ou

nt
s

Collision degree counts for ECFP6, k

k = 1024 : c = 2.1756
k = 2048 : c = 1.1970
k = 4096 : c = 0.4827
k = 8192 : c = 0.2498
k = 16384 : c = 0.1190
k = 32768 : c = 0.0531

(a) Hash collision analysis for fixed d = 6 and
increasing k

0 1 2 3 4 5
Collision degree c

0.0M

0.2M

0.4M

0.6M

0.8M

1.0M

1.2M

Co
llis

io
n 

de
gr

ee
 c

ou
nt

s

Collision degree counts for ECFPd, 4096

d = 4 : c = 0.2174
d = 6 : c = 0.4827
d = 8 : c = 0.7066
d = 10 : c = 0.8939

(b) Hash collision analysis for fixed k = 4096
and increasing d

Figure 3: Hash collision analysis for varying fingerprint length k and bond diameter d.

by 16384. The larger the fingerprint size, the smaller the average collision degree µc is

for each setting. A higher average collision degree µc corresponds to more information

loss.

When fixing the fingerprint length to k = 4096 and increasing the bond diameter d, we

observe that the information loss also increases (see increasing average mean collision

µc for increasing bond diamter d in Figure 3b). Since the unfolded ECFPd′ with higher

bond diameter d′ > d is a superset of the unfolded ECFPd, the number of unique keys

for the ECFPd′ has at least the value of the number of unique keys for the ECFPd.

Since the two ECFPs are folded onto the same fixed length of k = 4096, it is natural

that the ECFP with higher bond diameter suffers from more information loss. This

information loss is shown in the higher number of counts for collisions degrees larger

than 1, i.e. counts for c ≥ 1.
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Figure 4: Comparison between the Neuraldecipher and Baseline model wrt. the Tanimoto
similarity when trained on random split.
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Abstract. Despite recent advances in representation learning in hypercomplex (HC) space, this
subject is still vastly unexplored in the context of graphs. Motivated by the complex and quaternion
algebras, which have been found in several contexts to enable effective representation learning
that inherently incorporates a weight-sharing mechanism, we develop graph neural networks that
leverage the properties of hypercomplex feature transformation. In particular, in our proposed class
of models, the multiplication rule specifying the algebra itself is inferred from the data during
training. Given a fixed model architecture, we present empirical evidence that our proposed model
incorporates a regularization effect, alleviating the risk of overfitting. We also show that for fixed
model capacity, our proposed method outperforms its corresponding real-formulated GNN, providing
additional confirmation for the enhanced expressivity of HC embeddings. Finally, we test our
proposed hypercomplex GNN on several open graph benchmark datasets and show that our models
reach state-of-the-art performance while consuming a much lower memory footprint with 70% fewer
parameters. Our implementations are available at
https://github.com/bayer-science-for-a-better-life/phc-gnn.

Keywords: Graph Neural Networks · Graph Representation Learning · Graph Classification

1 Introduction

Geometric deep learning, broadly considered, refers to deep learning methods in the non-Euclidean domain.
Although being just in its infancy, the field has already achieved quite remarkable success [3]. The prime
example is perhaps constituted by data naturally represented as graphs, which poses significant challenges
to Euclidean-based learning [44,5]. This difficulty resides in the topological properties of a graph, which
is defined by a pair of sets G = (V,E), where V is the set of vertices and E is the set of edges between
vertices, that is, eij = (vi, vj) ∈ E is the edge between nodes vi, vj ∈ V . This structure is inherently
discrete and does not possess a natural continuous metric, both fundamental properties for defining the
Euclidean topology. These issues have cost the machine learning practitioner time and effort to develop
feature engineering techniques to represent the data suitably for Euclidean-based learning methods. For
instance, circular fingerprints encode a molecule’s graph-like structure through a one-hot-encoding of
certain pre-established chemical substructures. The steadily increasing number of applications in which
graphs naturally represent the data of interest has driven the development of proper graph-based learning
[44]. A prime source of applications stems from chemistry, where predictive models for bioactivity or
physicochemical properties of a molecule are rapidly gaining relevance in the drug discovery process [30].
Other applications arise in the context of social and biological networks, knowledge graphs, e-commerce,
among others [48,44].

A crucial step for defining graph-based learning is to extend the above definition of a graph by
considering each element of the sets V,E as feature vectors, that is, xv, eij ∈M, where M is a suitable
manifold. In this context, the field of graph representation learning (GRL) is often divided into spectral
[4,17,25] and non-spectral/spatial approaches [8,14,41]. The latter class, to which this works belong, is
based on the idea of local message passing, where vector messages between connected nodes are exchanged
and updated using neural networks [12]. Most of the literature on GNNs has focused on M = Rn, that
is, vertex and edge embeddings are into Euclidean space. Therefore, it is natural to ask whether this
choice is again a restriction imposed by history or simplicity and to which extent GRL could benefit from
greater freedom in choosing the manifoldM. As first step we considerM = Rn as a topological space, but
generalize its algebra structure, that is, a vector space equipped with a bilinear product, beyond the real
numbers. Example of these are the familiar complex and quaternion algebras, and these and more general
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algebras are often referred to as hypercomplex number systems. In mathematics, a hypercomplex algebra
is defined as a finite-dimensional unital algebra over the field of real numbers [23], where unital refers to
the existence of an identity element eI such that eI · q = q · eI = q for all elements q in the algebra. Such
property imposes strong constraints on the algebra structure and dimensionality, which turns out to be
2n for n ∈ Z>0. Although hypercomplex number systems crucially inspired our proposed framework, the
algebras learned by our models do not satisfy, in general, such constraints. While we are fully aware of
this distinction, we will often loosely refer in the following to our models/embeddings as “hypercomplex”
to better align with existing literature and avoid introducing additional unnecessary terminology.

2 Related Work

The present work lies at the intersection of three active research areas: (1) geometric approaches to GNNs,
(2) hypercomplex/algebraic generalizations of deep learning methods, and (3) regularization/parameter
efficiency techniques. This section illustrates how our work relates to these areas and which new aspects
we introduce or generalize.

Geometric deep learning is the discipline that comprises the formalization of learning of data embed-
dings as functions defined on non-Euclidean domains [3]. Hyperbolic manifolds, for example, constitute an
important class of non-Euclidean spaces which has been successfully deployed in deep learning. Here, basic
manifold-preserving operations such as addition and multiplication in the context of neural networks have
been extended to hyperbolic geometry [10]. Such advances led to the development of hyperbolic GNNs.
The works [29,6] have empirically shown that the hyperbolic setting is better suited for representation
learning on real-world graphs with scale-free or hierarchical structure.
As mentioned above, another defining property of the embedding function learned by a neural network is
its underlying vector space structure. Complex- and hypercomplex-based neural networks have received
increasing attention in several applications, from computer vision to natural language processing (NLP)
tasks [40,11,33,32,43,39]. Hypercomplex representation learning offers promising theoretical properties
and practical advantages. It has been argued that, as in the complex case [1], networks possess a richer
representational capacity, resulting in more expressive embeddings. Hypercomplex models encompass
greater freedom in the choice of the product between the algebra elements: in the case of the quaternion
algebra, the Hamilton product naturally incorporates a weight-sharing within the component of the quater-
nion representation, yielding an additional form of regularization. This approach is, however, virtually
unexplored in the graph setting. [31] recently introduced a quaternion based graph neural network, where
they showed promising results for node and graph prediction tasks.
The characteristic of the hypercomplex product just mentioned, responsible for heavily reducing the
number of parameters (for fixed model depth and width), can be generalized to yield more generic algebras.
As a consequence, it is possible to train deeper models, avoiding to overfit the data while supplying
more expressive embeddings. The crucial adaption in complex- and hypercomplex-valued neural networks,
compared to their real-valued counterpart, lies in the reformulation of the linear transformation, i.e., of
the fully-connected (FC) layer. Recent work in the realm of NLP by [47] introduces the PHM-layer, an
elegant way to parameterize hypercomplex multiplications (PHM) that also generalizes the product to
n-dimensional hypercomplex spaces. The model benefits from a greater architectural flexibility when
replacing fully-connected layers with their alternative that includes the interaction of the constituents of a
hypercomplex number.
Due to the pervasive application of FC layers in deep learning research, there exists rich literature of
methods that aim to modify such transformation in neural networks with the goal to obtain improved
parameter efficiency as well as generalization performance. Some examples include low-rank matrix
factorization [35], knowledge distillation of large models into smaller models [18], or some other form
of parameter sharing [36]. In this work, we embark on the first extensive exploration of hypercomplex
graph neural networks. We benchmark our models in graph property prediction tasks in the OGB and
Benchmarking-GNNs datasets [20,9].
The reader might wonder whether our models’ performance gain is sufficient to justify the additional
formalism of (parametrized) hypercomplex algebras. The answer is that, under many aspects, our models
are less involuted than several of the current best-performing graph learning algorithms. For instance, we
do not employ any unusually sophisticated aggregation method or message passing function. Moreover,
we did not need any extensive amount of hyperparameter engineering/tuning for reaching state-of-the-art
(SOTA) performance in the benchmark datasets. This motives our conclusion that the hypercomplex
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representations are “easier to learn” and expressive enough to be adaptive to various types of graph data.

In summary, we make the following contributions:

– We propose Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs), a class of graph
representation learning models that combine the expressiveness of GNNs and hypercomplex algebras
to learn improved node and graph representations.

– We study the learning behavior of the hypercomplex product as a function of the algebra dimensions
n. We introduce novel initialization and regularization techniques for the PHM-layer, based on our
theoretical analyses, and provide empirical evidence for optimal learning at large n.

– We demonstrate the effectiveness of our PHC-GNNs, reaching SOTA performance compared to other
GNNs with a much lower memory footprint, making it appealing for further research in GRL to develop
even more powerful GNNs with sophisticated aggregation schemes that use the idea of hypercomplex
multiplication.

3 Hypercomplex Neural Networks

In this section, we introduce a few elemental concepts and useful terminology in hypercomplex representa-
tion learning for our upcoming generalization effort on graphs. We begin by reviewing basic facts about
representation learning in complex and quaternion space from literature. We then turn to describe the
building blocks and the key features of our class of GNNs in the next Section 4.

3.1 Review of Complex and Quaternion NNs

Complex numbers define an algebraic extension of the real numbers by an imaginary unit i, which satisfies
the algebraic relation i2 = −1. Since a complex number z = a+ bi ∈ C is specified by two real components
a, b ∈ R, complex numbers are a bi-dimensional algebra over the real numbers. The real components
a, b ∈ R are called real and imaginary part, respectively. An extension of the same procedure of adding
additional (but distinct!) imaginary units, give rise to higher dimensional algebras, known as hypercomplex
number algebras. With three imaginary units we recover the most famous hypercomplex algebra, the
quaternion algebra: quaternion numbers assume the form q = a+ bi + cj + dk ∈ H with a, b, c, d ∈ R and
they define a four-dimensional associative algebra over the real numbers. The quaternion algebra is defined
by the relations i2 = j2 = k2 = ijk = −1, which determine the non-commutative Hamilton product, named
after Sir Rowan Williams [15], who first discovered the quaternions in 1843. Crucial for neural network
applications is the representation of the quaternions in terms of 4× 4 real matrices, given by

Qr =




a −b −c −d
b a −d c
c d a −b
d −c b a


 . (1)

This representation3, although not unique, has several advantages. First, the quaternion algebra operations
correspond to the addition and multiplication of the corresponding matrices. Second, the first column
of Qr encodes the real and imaginary units’ coefficients, simplifying the extraction of the underlying
component-based quaternion representation. Finally, (1) is directly generalised as follows to represent
linear combinations in higher-dimensional quaternion space Hd. Given a quaternion vector q = qa +
qbi + qcj + qdk ∈ Hd, where qa,qb,qc,qd ∈ Rd, the quaternion linear transformation associated to the
quaternion-valued matrix W = Wa + Wbi + Wcj + Wdk ∈ Hk×d is defined as

W ⊗ q =




1
i
j
k




> 


Wa −Wb −Wc −Wd

Wb Wa −Wd Wc

Wc Wd Wa −Wb

Wd −Wc Wb Wa







qa

qb

qc

qd


 . (2)

3 The same reasoning holds for the complex case, which is recovered by setting the j,k components to zero.
However, although H includes C, the quaternions are not an associative algebra over the complex numbers.
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This constitute one of the main building blocks for quaternion-valued neural networks [11,33]. The matrix
version of the Hamilton product, denoted by the symbol ⊗ in Equation (2), encodes the interaction
between the real part and three imaginary parts and introduces weight-sharing when performing the
matrix-vector multiplication. A simple dimension counting shows this: the embedding vector q of (real)
dimension dimR Hd = dimR R4d = 4d is assigned to a weight matrix of dimension dimR Hk×d = 4kd,
instead of 16kd as we would expect from the usual matrix product. Thus, the Hamilton product benefits
from a parameter saving of 1/4 learnable weights compared to the real-valued matrix-vector multiplication.
Since the largest body of work in complex- and quaternion-valued neural networks merely utilizes the
weight-sharing property just described, it is natural to ask whether the product (2) can be extended
beyond the quaternion algebra, thereby allowing us to consider algebras of arbitrary dimensions.

3.2 Parameterized Hypercomplex Layer

The parameterized hypercomplex multiplication (PHM) layer introduced by [47] aims to learn the
multiplication rules defining the underlying algebra, i.e., the interaction between the real and imaginary
components of the algebra’s product. One obvious advantage of the PHM layer is lifting the restriction on
the (predefined) algebra dimensionality, otherwise being limited to n = {2, 4, 8, 16, ...} as in the case of
the algebra of complex, quaternion, octonion, and sedenion numbers, respectively.
The PHM layer takes the same form as a standard affine transformation, that is,

y = PHM(x) = Ux + b . (3)

The key idea is to construct U as a block-matrix, as in (2), through the sum of Kronecker products.
The Kronecker product generalizes the vector outer product to matrices: for any matrix X ∈ Rm×n and
Y ∈ Rp×q, the Kronecker product X⊗Y is the block matrix

X⊗Y =



x11Y . . . x1nY

...
. . .

...
xm1Y . . . xmnY


 ∈ Rmp×nq ,

where xij = (X)i,j . Now, let n be the dimension of the hypercomplex algebra, and let us suppose that
k and d are both divisible by a user-defined hyperparameter m ∈ Z>0 such that m ≤ n. Then, the
block-matrix U in Equation (3) is given by a sum of n Kronecker products

U =
n∑

i=1

Ci ⊗Wi , (4)

where Ci ∈ Rm×m are denoted contribution matrices and Wi ∈ R k
m× d

m are the component weight
matrices. In the rest of our discussion, we make the simplifying assumption that m = n, for which (4)
yields n( kd

n2 + n2) = kd
n + n3 degrees of freedom. Since k and d correspond to the output- and input-size

for a linear transformation, and n determines the user-defined PHM-dimension, the overall complexity of
the matrix U is O(kdn ) under the mild assumption that kd� n4. This shows that the PHM-layer enjoys a
parameter saving factor of up to 1

n compared to a standard fully-connected layer [47].

4 Hypercomplex Graph Neural Network

In this section, we introduce our novel hypercomplex graph representation learning model with its
fundamental building blocks.

4.1 Initialization of Linear Independent Contributions

While the authors [47] introduced the PHM layer, no further details on the initialization of the contribution
matrices {Ci}ni=1 have been elucitated. In the case of known hypercomplex algebras, these matrices can
be chosen to be of full rank – that is, the rows/columns are linearly independent –, and whose elements
belong to the set {−1, 0, 1}. Following the same logic, let Ĩn be a diagonal matrix with alternating signs
on the diagonal elements

Ĩn = diag(1,−1, 1,−1, . . . ) . (5)
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In our work, we initialize each contribution matrix Ci as a product between the matrix Ĩn and a power of
the cyclic permutation matrix Pn that right-shifts the columns of Ĩn, that is,

Ci = ĨnPi−1
n , (6)

where (Pn)i,j = 0 except for j − i = 1 and i = n, j = 1 where it has value 1. It is immediate to verify that
the columns of the constructed Ci’s are linearly independent, as desired. Note that the above construction
is not the only one yielding contribution matrices with such properties. In fact, for n ∈ {2, 4} we do
not implement (6), but instead we initialize the contribution matrices as in the complex and quaternion
algebra.

Learning Dynamics for Larger n With the initialization scheme defined above, each Ci in (6) contains
n non-zero elements versus n(n− 1) zero entries. Hence, the sparsity for each contribution matrix scales
quadratically as a function of n, while the number of non-zero entries only linearly. While it is still possible
for our model to adjust the parameters of the contribution matrices during training, it is conceivable that
initializing too sparsely the fundamental operation of algebra, will deteriorate training. To overcome this
issue, we also implement a different initialization scheme

Ci ∼ U(−1, 1) , (7)

by sampling the elements from the contributions matrices uniformly from U(−1, 1). We will show in
Section 5 that this initialization strategy greatly benefits the training and test performance for models
with larger n.

4.2 Tensor Representation

In our work we make heavy use of the reshaping operation to flatten/vectorize the hypercomplex
embeddings. This enables us to apply operations such as the PHM-layer, batch-normalization or the
computation of “real” logits. Explicitly, let H ∈ Rb×k be a real embedding matrix, where the two axes
correspond to the batch and feature dimension, respectively. In terms of hypercomplex embeddings, the
second dimension has the size of k = nm, that is, where each component of the m-dimensional algebra
embedding is concatenated as shown for the Hamilton product in (2). The reshape operation reverts the
vectorization of the second axis, i.e., we reshape the embedding matrix as 3D tensor to H ∈ Rb×n×m.

4.3 Batch Normalization

Batch normalization [22] is employed almost ubiquitously in modern deep networks to stabilize training by
keeping activations of the network at zero mean and unit variance. Prior work [40,11] introduced complex
and quaternion batch normalization, which uses a general whitening approach to obtain equal variance
among the n = {2, 4} number constituents. The whitening approach, however, is computationally expensive
compared to the common batch normalization, as it involves computing the inverse of a (n×n) covariance
matrix through the Cholesky decomposition, which has a complexity of O(mn3) for an embedding of size m.
In our experiments, we found that applying the standard batch normalization for each algebra-component
after 2D→3D reshaping is faster and achieves better performance.

4.4 Regularization

Regularization is one of the crucial elements of deep learning to prevent the model from overfitting the
training data and increase its ability to generalize well on unseen, possibly out-of-distribution test data
[27]. In what follows, we introduce a few concepts adapted from real-valued neural networks and we extend
their applicability to our models.
Let A ∈ Rl×n×m be a reshaped 3D tensor, where A could be a hidden embedding or a weight tensor of
our model. We employ further regularization techniques on the second axis, which refers to the algebra
dimension n. This is motivated by the idea to decouple the interaction between algebra components when
performing the multiplication.
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Weight Regularization Recall that an element of a n-dimensional algebra is specified by n real
components, that is, Let us recall that the lp-norm of an element w = w1 + w2i1 + · · · + wnin−1 of a
n-dimensional algebra is defined as

lp(w) =

(
n∑

i=1

|wi|p
)1/p

. (8)

Now, given the set of weight matrices for a PHM-layer, i.e., {W1, . . . ,Wn}, where each Wi ∈ Rk×d, we
compute the Lp norm on the stacked matrix W ∈ Rk×n×d along the second dimension resulting to:

Lp(W) =
1

kd

k∑

a=1

d∑

b=1

lp(W[a,···,b]) . (9)

This regularization differs from the commonly known regularization of weight tensors, where the lp norm
is applied to each element, such as the Frobenius-norm for p = 2:

||W||F = (
∑

a,b,c

|W[a,b,c]|2)
1
2 .

Sparsity Regularization on Contribution Matrices. In our model implementation, we enable further
regularization on the set of contribution matrices C = {Ci}ni=1 by applying the l1-norm on each flattened
matrix:

L(C) =
1

n3

n∑

i=1


∑

a,b

|Ci,[a,b]|


 . (10)

4.5 Computation of Real Logits

Given an embedding matrix H ∈ Rb×k = Rb×n×m there are several options to convert a hypercomplex
number (along the second axis i = 1, . . . , n) to a real number, such that the result lies in Rb×m. In our
work, we utilize a fully-connected layer (FC) that maps from Rb×nm to Rb×m, i.e.,

Real-Transformer(H) : Rb×nm −→ Rb×m,

Real-Transformer(H) = HAr + br .
(11)

Other possible choices of conversion are the sum or norm operations along the second axis of the 3D-tensor
representation of H.

4.6 Hypercomplex Graph Neural Network

Input Featurization. We implement hypercomplex input-feature initialization in GNNs by applying an
encoder on the real-valued input features. For continuous features, we apply a standard linear layer to

real-valued features xv ∈ RF to obtain the hypercomplex zero-th hidden embedding h
(0)
v ∈ Rk = Rnm

for each node v. According on the algebra dimension n, we then split the k-dimensional vector h
(0)
v

into n sub-vectors, each of size m, yielding m dimensional hypercomplex features. Consequently, each
hypercomplex (embedding) vector can be reshaped into size (n,m). The same procedure is applied to
continuous raw edge-features euv ∈ RB for every connected pair of nodes (u, v) ∈ E. In case of molecular
property prediction datasets, raw node- and edge-features are often categorical variables, e.g., indicating
atomic number, chirality and formal charges of atoms. Categorical edge-features identify instead the bond
type between two connected atoms. Categorical input node- and edge-features are transformed using an
learnable embedding lookup table [21] that is commonly used in natural language processing. This lookup

table maps word entities of a dictionary to continuous vector representations in e
(0)
uv ∈ Rnm.
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Message Passing We build our PHC message passing layer based on the graph isomorphism network
(GIN-0) introduced by [45] with the integration of edge features [21]. The GIN model is a simple, yet
powerful architecture that employs injective functions within each message passing layer, obtaining
representational power as expressive as the Weisfeiler-Lehman (WL) test [42].
Before any transformations on the embeddings are made, neighboring node representations are aggregated,

m(l)
v =

∑

u∈N (u)

αuv(h(l−1)
u + e(l)

uv) , (12)

where the edge-embeddings e
(l)
uv are obtained through the same encoding procedure as for the l = 0

representations described above. The aggregation weights αuv can be computed using different mechanisms
[25,14,41,28]. The GIN model, for instance, utilizes the sum-aggregator, i.e., all weights αuv = 1. In our
class of models we implement several common aggregation strategies, namely, αuv ∼{sum, mean, min,
max, softmax}. Such flexibility is crucial for our models, as different aggregators learn different statistical
property of a graph [45]. Often, datasets differ regarding the topological properties of graphs, such as
density and size, and as a consequence, optimal embeddings for a given dataset are notably sensitive to
the choice of message passing aggregation strategy [7]. The interpretation of Equation (12) is that the
message received by node v is a variable aggregation of the sum of the neighboring node embeddings and
its corresponding edge-embeddings. This message is then the key ingredient in the update strategy of the
node v embedding through a Multi-Layer-Perceptron (MLP)

h̃(l)
v = MLP(l)

(
h(l−1)
v + m(l)

v

)
. (13)

It is in this step that the PHM-layer from Equation (3) is implemented.
Our model differs from complex- and quaternion-based models by the fact that the multiplication rule to
construct the final weight-matrix for the linear transformation is learned through the data, see. Eq. (4).
Note that the multiplication rule for the quaternion-based model is fixed as shown in Equation (2).

The iterative application of the aggregation function (12) (when α ∼ sum) on hidden node embeddings
updated through (13) turns out to define an injective function. Our proposed message passing layer
is therefore a simple generalization of the GIN module, but uses the parameterized hypercomplex
multiplication layer from Equation (3). For the case we set the hyperparameter n = 1, our model reduces
to a modified version of GIN-0, where the (block) weight-matrix for each affine transformation consists of
the sum of Kronecker products from only one matrix, as shown in Equation (4).

Skip Connections We apply skip-connection (SC) after every message passing layer by including either

the initial h
(0)
v or the previous layer h

(l−1)
v embedding information of node v,

h(l)
v = SC(h(a)

v , h̃(l)
v ) = h(a)

v + h̃(l)
v , a = 0, l − 1 (14)

Graph Pooling The graph-level representation hG is obtained by soft-averaging the node embeddings
from the final message passing layer, i.e.,

hG =
∑

v∈G
wv � h(L)

v , (15)

where wv is a soft-attention weight-vector and � denotes element-wise multiplication. We follow the
proposal of Jumping-Knowledge GNNs [46] and assign attention scores to each hidden node embedding
from the last embedding layer. Let H(L) ∈ R|V |×kL denote the node embedding matrix, where kL = n ·mL

is the size of the final message passing layer L. We compute the soft-attention weights in (15) by calculating
the real logits as defined in (11), followed by a sigmoidal activation function σ(·), that is,

Wsa = σ(Real-Transformer(H(L))) . (16)

The rows of the soft-attention matrix Wsa ∈ (0, 1)|V |×mL are the (broadcasted) vectors entering in the
graph pooling (15).
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Table 1. Results on the OGB graph classification datasets. The PHC-GNN can reduce the total number of model
parameters and obtains improved averaged test performance over 10 (ogbg-molhiv) and 5 runs (ogbg-molpcba).

Model
ogbg-molhiv ogbg-molpcba

# Params ROC-AUC (%) ↑ # Params PR (%) ↑
PHC-1 313K 78.18± 0.94 3.15M 29.17± 0.16
PHC-2 178K 79.25± 1.07 1.69M 29.47± 0.26
PHC-2-C 178K 79.13± 0.87 1.69M 29.41± 0.15
PHC-3 135K 79.07± 1.16 1.19M 29.35± 0.28
PHC-4 111K 79.34± 1.16 0.99M 29.30± 0.16
PHC-4-Q 111K 79.04± 1.89 0.99M 29.21± 0.23
PHC-5 101K 78.34± 1.64 0.87M 29.13± 0.24

Downstream Predictor The graph-level representations (15) are further passed to a task-based down-
stream predictor, which can (but does not have to) be a Neural Network. For example, a 3-layer MLP
is applied in the Benchmarking-GNNs framework [9], while the baseline models from OGB [20] deploy a
simple 1-layer MLP. In our work, we implement a 2-layer MLP that processes the graph embeddings
through the PHM-layer (3), followed by an additional linear layer to compute the logits as described in (11).

Although we define our GNN as graph classification model, the model can in fact also be utilized for
node classification tasks. Such a model can be obtained, by not applying the graph pooling as described
in Equation (15), and instead use the last hidden layer nodes embedding HL to compute the real logits
with (11) before applying the Softmax activation.

5 Experiments

We evaluate the effectiveness of parameterized hypercomplex GNNs on six datasets from two recent graph
benchmark frameworks [9,20]. We discuss our fundings by displaying results for three datasets in the
main text, and we refer to the Supplementary Information (SI) for further evidence. The two recent
graph benchmark frameworks address the inadequacy of past benchmark datasets, which are rather small
in size, and thus not suitable for proper model evaluation. These issues become even more relevant for
real-life graph-based learning applications, where often the datasets are fairly extensive and the issue
of out-of-distribution samples is key in assessing the true predictive performance of the algorithm. To
demonstrate the architectural advantage and effectiveness of the hypercomplex multiplication, we evaluate
the performance of our GNNs for increasing algebra dimension n. We recall that in our framework, this
hyperparameter controls the amount of parameter sharing in the PHM layer (3). In all our experiments,
we report the test performance evaluated on the model saved from the epoch with the best validation
performance.

Increasing n for a Fixed Network Architecture Table 1 shows results on two molecular property
prediction datasets from OGB [20], where all the models share the same fixed network architecture. Note
that, due to the inherent weight-sharing mechanism, the number of parameters decreases as n increases.
We observe an improved performance of our GNN when we adopt the (parameterized) hypercomplex
multiplication layers. In fact, all models that were trained with PHM-layer, with the exception of the
PHC-5 model, performed better than the “real” baseline PHC-1. This result supports our hypothesis
that the employment of hypercomplex multiplication acts as regularizer and aids to better generalization
performance on the test set.

For the medium-scale ogbg-molpcba dataset, our models include 7 message passing layers as stated
in (13), each of a fixed size of 512. We refer to the SI for further details regarding architecture and
hyperparameters. In deep learning, it is often observed that parameter-heavy models tend to outperform
parameter-scarce models, but incur the risk of overfitting the training data, as the high number of
degrees of freedom tempts the model to simply “memorize” the training data, with the consequential
detrimental effect of poor generalization on unseen test data. Consequently, significant effort needs to be
invested in regularizing the model, often in an ad-hoc manner. This experiment showed that HC-based
models offer an elegant and universally-applicable approach to regularization that does not require any
extensive hyperparameter tuning. As our baseline PHC-1 model in the ogbg-molpcba benchmark seems
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Table 2. Results of the PHC-GNNs on the ZINC graph property prediction dataset. Our model can increase its
embedding size for a fixed-length network through the inherent weight-sharing component. All shown models are
constraint to a capacity budget of approximately 100K (L=4) and 400K (L=16) parameters and the performances
are averaged over 4 runs [9]. Models with †-suffix are initialized with (7).

Model
ZINC, L=4 ZINC, L=16

# Params MAE ↓ # Params MAE ↓
PHC-1 102K 0.198± 0.010 403K 0.178± 0.007
PHC-2 99K 0.197± 0.007 403K 0.170± 0.005
PHC-3 101K 0.191± 0.005 407K 0.169± 0.001
PHC-4 107K 0.188± 0.003 399K 0.167± 0.006
PHC-5 106K 0.185± 0.008 408K 0.164± 0.003

PHC-8 104K 0.201± 0.005 401K 0.177± 0.009
PHC-10 104K 0.218± 0.010 395K 0.184± 0.005
PHC-16 110K 0.225± 0.009 412K 0.199± 0.008

PHC-8-† 104K 0.193± 0.006 401K 0.166± 0.005
PHC-10-† 104K 0.195± 0.004 395K 0.165± 0.005
PHC-16-† 110K 0.210± 0.013 412K 0.172± 0.003

to overfit the training data (see SI for learning curves), having more parameter efficient models with
the same architecture led to overall better performance. To further study the relation between n and
model regularization, we trained the same model-architecture but with a much smaller embedding sizes
of 64. Within this setting of under-parameterized models, the GNN with n = 1 performs best on the
train/val/test dataset, followed by the model with increasing PHM-dim. This shows that, in a heavily
underfitting setting, merely increasing the HC algebra dimension proves to be detrimental. Additionally,
we empirically observe that models that can learn the multiplication rule from the training data (PHC-2
and PHC-4) outperform the complex- and quaternion-valued models (PHC-2-C and PHC-4-Q) in the OGB

benchmarks.

Increasing n for a Fixed Parameter Budget For our next experiment we examine the test perfor-
mance of our models with increasing hyperparameter n, while constraining the parameter budget to
approximately 100K and 400K parameters [9]. We design a fixed parameter-budget experiment to explore
the expressiveness of the hypercomplex embeddings independently of the regularization effect investigated
above, as all models possess the same overfitting capacity. This also constitutes a realistic scenario on the
production level, where a constrained and low model memory footprint is crucial [37].
A feature of our proposed PHC-GNN is the ability to increase the embedding size of hidden layers for
larger hyperparameter n without increasing the parameter count. Table 2 shows the results of experiments
conducted on the ZINC dataset for a fixed-length hypercomplex GNN architecture, with L={4,16} message
passing- and 2 downstream-layers. The models differ merely in the embedding sizes, which are chosen
so that the total parameter count respects the fixed budget. We observe that the models making use of
the PHM-layer outperform the “real”-valued baseline, that uses standard FC layers. Particularly, being
able to increase the embedding size seems to strengthen the performance of PHC-models on the test
dataset. Nevertheless, we discover that above a certain value for the PHM-dimension n the performance
deteriorates. One possible explanation for this behaviour lies in the learning dynamics between the set of
contribution and weight matrices {Ci,Wi}ni=1 through the sum of Kronecker products in each PHM-layer
(4). With increasing n, the initialization rule in (6) returns n (increasingly) sparse contribution matrices,
which seem to negatively affect the learning behaviour for the PHC-{8, 10, 16} models.

For example, in the n = 16 scenario, exactly 16 elements from each Ci matrix are non-zero, in
comparison to the remaining 16 · 15 = 240 zero elements. This aggravates the learning process as the
weight-sharing achieved by the ith Kronecker product in (4) is not fully exploiting the interaction between
all “algebra components”. Using the initialization described in (7) enhanced the performance as shown
in the undermost part of Table 2 and displayed in Figure 1 across the datasplits. Moreover, we are able
to further improve performance of large-n models by adopting the sparse weight-decay regularization
described in (10). We refer to the SI for a more thorough discussion.
Another reason for the performance decline of models with larger n, even when utilizing the different
initialization scheme, is related to the complexity ratio of the PHM weight matrix Ui in (4). Recall that
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Fig. 1. Boxplot distribution from the datasplits over 4 runs of the 400K PHC-models with n = 8, 10, 16. Models-†
that utilize the initialization strategy from (7) obtain better performance on the splits. Outliers are marked as a
red points.

Table 3. Performance results of our model on molecular property prediction datasets against: DGN [2], PNA [7],
GIN, GCN, and DeeperGCN [28] and DeeperGCN/GIN-FLAG [26]. The results for GIN and GCN are reported
from [20,9]. Model performances marked with ∗ include a virtual-node [12] in their underlying method.

ogbg-molhiv ogbg-molpcba ZINC

Model ROC-AUC ↑ (%) # params AP ↑ (%) # params MAE ↓ # params

DGN 79.70± 0.97 114K 28.85± 0.30 6,732K 0.168± 0.003 98K
PNA 79.05± 1.32 326K 28.38± 0.35 6,550K 0.188± 0.004 95K
GIN 77.07± 1.49∗ 3,336K 27.03± 0.23∗ 3,374K 0.387± 0.015 103K
GCN 76.06± 0.97 537K 24.24± 0.34∗ 2,017K 0.459± 0.006 103K
DeeperGCN 78.58± 1.17 532K 27.81± 0.38∗ 5,550K − −
GIN+FLAG 77.48± 0.96∗ 3,336K 28.34± 0.38∗ 3,374K − −
DeeperGCN+FLAG 79.42± 1.20∗ 531K 28.42± 0.43∗ 5,550K − −
PHC-GNN (ours) 79.34± 1.16 111K 29.47± 0.26 1,169K 0.185± 0.008 106K

Ui consists of kd
n + n3 = k2

n + n3 trainable parameters, where we assume k = d, the two contributions
reflecting the trainable weight and contribution matrices, respectively. Now, given a fixed parameter
budget, the allocation for the contribution matrices grows on a cubic scale with n, limiting the ability
to increase the embedding size k, which plays a crucial role in the feature transformation through the
weight matrices. As n grows, an increasingly higher share of parameters are allocated to the contribution
matrices, and for large enough n, this negatively affects the learning behaviour of our models, as in the
100K case for n = {8, 6, 10} in Table 2.

Finally, we compare our models with the current best performing algorithms on the datasets analyzed
above. Table 3 shows that our GNNs are among the top-3 models in all datasets, and it defines a
new state-of-the-art on ogbg-molpcba. Particularly significant is the comparison with the GIN+FLAG
model. FLAG [26] is an adversarial data augmentation strategy which accomplishes a data-dependent
regularization. Since, as we remarked in Section 4.6, our models can be considered as a generalization
of GIN, we observe that our GNNs outperform the FLAG regularization strategy applied on the same
underlying learning strategy.

6 Conclusion

We have introduced a model class we named Parameterized Hypercomplex Graph Neural Networks. Our
class of models extends to the graph setting the expressive power and the flexibility of (generalized)
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hypercomplex algebras. Our experiments showed that our models implement a powerful and flexible
approach to regularization with a minimal amount of hyperparameter tuning needed. We have empirically
shown that increasing the dimension of the underlying algebra leads to memory-efficient models (in terms
of parameter-saving) and performance benefits, consistently outperforming the corresponding real-valued
model, both for fixed architecture and fixed parameter budget. We have studied the learning behaviour for
increasing algebra-dimension n, and addressed the sparsity phenomenon that manifests itself for large n,
by introducing a different initialization strategy and an additional regularization scheme. Finally, we have
shown that our models reach state-of-the-art performance on all graph-prediction benchmark datasets.

In this work, we have undertaken the first thorough study on the applicability of higher dimensional
algebras in the realm of GNNs. Given the very promising results we have obtained with a relatively simple
base architecture, it would be worthwhile to extend to the hypercomplex domain the recent progresses
that have been achieved in “real” graph representation learning. For example, it would be interesting to
improve the expressivity of our model by learning the aggregation function for the local message passing.

Code Availability

Source code of the proposed method is openly available on GitHub at
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Appendix

A Additional Model Implementation Details

In this section we report further details regarding the implementation of our class of graph neural network
models.

A.1 Dropout

Dropout [19,38] is a simple, yet very effective regularization technique to prevent hidden neuron units from
excessively co-adapting. Randomly excluding certain units in a neural network during training leads to
more robust features, which are meaningful in conjunction with several random subsets of neurons. In our
work we implement two dropout strategies. First, in the spirit of the hypercomplex approach, we randomly
zero-out entire hidden units with their n algebra components. Explicitly, given an embedding matrix
Hb×n×m, we randomly sample (during training) a Bernoulli-mask B of shape (b, 1,m) with probability
(1− p) and multiply the mask element-wise with H using broadcasting. The dropped tensor is further
multiplied element-wise by a factor of 1

1−p to maintain the expected output values when dropout is turned
off at inference time. As an alternative, we also implemented the commonly used dropout by randomly
sampling the dropout mask from the flattened embedding 3D tensor, i.e., H ∈ Rb×nm.
In our experiments, for fixed probability p, we did not observe a performance difference between the two
approaches.

A.2 Parameter Initialization for Weight Matrices

We initialized the component weight matrices as initially described in complex- and quaternion Neural
Networks [40,33]. Both works start with the decomposition of a variance term as

Var(W ) = E(|W |2)− [E(|W |)]2 , (17)

where [E(|W |)]2 = 0 since the weight distribution is symmetric around 0. As derived in [33], W follows a
Chi-distribution with n = 4 degrees of freedom in the quaternion case, and n = 2 degrees of freedom in
the complex case. To adapt the initialization procedure from [13], the standard deviation in our cases is
defined as

σ =

√
2

n× (nin + nout)
. (18)

We follow Algorithm 1 described in [33] with our defined standard deviation σ to initialize the weight
matrices {Wi}ni=1 of a PHM-layer. As an alternative, our implementations also include the initialization
of each weight matrix Wi seperately using the Glorot or He initialization scheme [13,16].

A.3 Loss Function

Given a dataset of N graphs, specified by node and edge features, with their corresponding target labels
D = {(Xi,Ei,yi)}Ni=1, we define the loss function as

Ltotal =
1

N

N∑

i=1

[Ltask (yi, fΘ(Xi,Ei))

+ λ1L2(ΘW ) + λ2L(ΘC)] . (19)

Here, Ltask is the task-dependent loss function, fΘ is the output function learned by our GNN, y represent
the target label and L(ΘC) is defined in Equation (10) in the main text, which controls the sparsity
regularization on all the contribution matrices [{Ci}ni=1]. Finally, L(ΘW ) is the regularization term applied
to all weight matrices [{Wi}ni=1] of our GNN and defined in Equation (9).
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Table 4. Network architectures and hyperparameters for different models/datasets. The α column describes the
aggregation method for gathering neighboring node embeddings. The sc-type column indicates which embedding
are used for the skip-connection (see Eq. (14) in the main text). “Previous” means that the skip-connection is
done with the embedding from the previous layer, i.e., (l − 1) and “initial” refers to the embedding from hidden
layer 0. Abbreviations are as follows: MP = message passing, DN = downstream network. The column MP-MLP
describes whether a 2-layer MLP is used in the message passing layer, as described in Eq. (13) in the main
text. If MP-MLP=False, only a 1-layer MLP is used for feature transformation. We recall that the PHM-layer is
used throughout the network (both MP and DN). The tuple (γ, p) deschribe the decay factor for adjusting the
learning rate after p patience epochs if the validation performance has not improved. The tuple (λ1, λ2) refers to
the regularization coefficients for the weight and contribution matrices, respectively, as described in (19). The
(maximum) number of epochs for ZINC, MNIST, CIFAR10 was set to 1000, but the training would be interrupted if
the minimal learning rate of 10−6 was reached or if the execution time exceeded 72 hours.

Dataset Model α sc-layer MP-layers MP-MLP MP-dropout DN-layers DN-dropout lr (λ1, λ2) (γ, p) epochs

ogbg-molhiv PHC-n softmax initial [200] ∗ 2 True [0.3] ∗ 2 [128, 32] [0.3, 0.1] 1 · 10−3 (10−1, 0) (0.75, 5) 50

ogbg-molpcba
PHC-n-default sum initial [512] ∗ 7 False [0.1] ∗ 7 [768, 256] [0.3, 0.2] 5 · 10−4 (10−4, 0) (0.75, 5) 150
PHC-n-shallow sum initial [64] ∗ 7 True [0.1] ∗ 7 [64, 32] [0.3, 0.2] 5 · 10−4 (0, 0) (0.75, 5) 150

ogbg-molppa PHC-6 softmax initial [900] ∗ 5 True [0.2] ∗ 5 [600, 300] [0.2, 0.1] 1 · 10−3 (0, 0) (0.75, 10) 250

ZINC

PHC-1 sum previous [104] ∗ 14 True [0.0] ∗ 14 [100, 50] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-2 sum previous [144] ∗ 14 True [0.1] ∗ 14 [180, 100] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-3 sum previous [177] ∗ 14 True [0.1] ∗ 14 [180, 102] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-4 sum previous [202] ∗ 14 True [0.1] ∗ 14 [224, 124] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-5 sum previous [225] ∗ 14 True [0.1] ∗ 14 [225, 115] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-8 sum previous [272] ∗ 14 True [0.1] ∗ 14 [280, 160] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-10 sum previous [290] ∗ 14 True [0.1] ∗ 14 [330, 220] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000
PHC-16 sum previous [304] ∗ 14 True [0.1] ∗ 14 [304, 176] [0.2, 0.1] 1 · 10−3 (10−2, 0) (0.5, 10) 1000

MNIST / CIFAR10

PHC-1 mean previous [84] ∗ 4 False [0.1] ∗ 4 [256, 128] [0.2, 0.1] 1 · 10−3 (10−3, 0) (0.5, 10) 1000
PHC-2 mean previous [140] ∗ 4 False [0.1] ∗ 4 [256, 128] [0.2, 0.1] 1 · 10−3 (10−3, 0) (0.5, 10) 1000
PHC-3 mean previous [195] ∗ 4 False [0.1] ∗ 4 [256, 128] [0.2, 0.1] 1 · 10−3 (10−3, 0) (0.5, 10) 1000
PHC-4 mean previous [224] ∗ 4 False [0.1] ∗ 4 [256, 128] [0.2, 0.1] 1 · 10−3 (10−3, 0) (0.5, 10) 1000
PHC-5 mean previous [250] ∗ 4 False [0.1] ∗ 4 [256, 128] [0.2, 0.1] 1 · 10−3 (10−3, 0) (0.5, 10) 1000

B Architecture, Hyperparameter and Training Strategy

Table 4 lists the architectures and the hyperparameter setting for all the experiments presented in the
main text and in the Supplementary Information (SI). In the remainder of this section we report some
additional training strategy details specific to each dataset. In all our experiments we used ReLU as an
activation function and ADAM optimizer [24] with decreasing learning-rate based on a plateau-scheduler
or step-scheduler. In each dataset, we execute t runs, where the first run starts with the random seed 0.
Subsequent runs are then executed with an increasing random seed.

B.1 Open Graph Benchmark (OGB)

Network Architectures ogbg-molpcba For the medium-scale ogbg-molpcba dataset, our default models
include 7 message passing layers.In our experiments, we found that employing a MLP with 2 layers, as
deployed in [45], results in inferior validation performance. Therefore, we only included 1 PHM-layer, but
set a larger embedding size of 512. After the softattention graph-pooling , we employ a 2-layer MLP with
786 and 256 units, respectively. In each of the 5 runs, we trained for 150 epochs with an initial learning
rate of 0.005 and weight-decay regularization λ1 = 10−5 but no sparsity regularization on the contribution
matrices, i.e., λ2 = 0 . We used ADAM optimizer [24] and multiplied the learning rate with 0.75 after 5
epochs of patience if the validation performance did not improve. Additionally, we used gradient clipping
with maximum l2-norm of value 2.0. The α-function, i.e., the aggregation schema, such as {min, max,
mean, sum, softmax} was set to “sum”.

The models in Table 5 were trained with the same setting, but the embedding sizes for the 7 message
passing layers were set to 64, and the 2 layers in the downstream network consists of 64 and 32 units,
respectively. Additionally, the shallow models utilize a 2-layer MLP in each message passing layer, as
opposed to the default models reported in Table 1.
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Table 5. Results of the GNN on the ogb-molpcba graph property prediction dataset for a shallow model with
embedding size 64. The number of message passing and downstream layers is set to 7 and 2, respectively.

Model # Params
Precision-Recall (%) ↑

Training Validation Test

PHC-1 112K 20.47± 0.18 21.56± 0.18 20.88± 0.18
PHC-2 92K 18.08± 0.32 20.26± 0.31 19.80± 0.29
PHC-3 100K 17.35± 0.22 19.72± 0.32 19.30± 0.20
PHC-4 109K 16.08± 0.15 18.74± 0.12 18.31± 0.14
PHC-5 124K 16.17± 0.42 18.55± 0.40 18.28± 0.34

Table 6. Results of the PHC-1 on the ogbg-molpcba graph classification. The model with larger dropout (PHC-1-∗)
is prevented from overfitting the training data but also obtains lower test performance metric. Nonetheless, the
best performing model is the PHC-2 model (as reported in the main article) without additional regularization.

Model # Params
Precision-Recall (%)

Training Validation Test

PHC-1 3.15M 56.01± 0.76 30.38± 0.28 29.17± 0.16
PHC-1-∗ 3.15M 39.09± 0.34 29.99± 0.13 29.12± 0.26
PHC-2 1.69M 50.08± 0.29 30.68± 0.25 29.47± 0.26

B.2 Benchmarking GNNs

In this case, we strove to meet the parameter budgets of 100K for the two Computer Vision datasets,
as well as of 100/400K for the molecular property prediction dataset. We did not perform any extensive
hyperparameter search, but we limited ourselves to adapt the default configurations provided by [9].

C Additional Details about Experiment Section

In this section we present further details concerning the experiments presented in Section 5 in the main
text. Figure 2 reports the train/validation curves for the experiment described at the beginning of Section
5, in the setting of “increasing n for a fixed network architecture”. Figure 2(a) shows that in a heavily
underparameterized setting increasing the algebra dimension n without correspondingly increasing the
embedding size leads to a worse perfomance, as the corresponding models are even more parameter-scarce.
We list the train/validation/test performance of the models in Table 5. On the contrary, we observe in
2(b) that increasing the algebra dimension n prevents overfitting, which can be observed for the PHC-1
model, and yields a performance improvement.

D Further Experiments

In this section we present results of further experiments that, for space constraint, were not included in
the main text.

D.1 PHC is a Better Regularizer than Dropout

In this work, we provided evidence that our graph implementation of the PHM-layer acts as an effective
and versatile regularizer. From this perspective, it is then natural to ask how the PHM-layer performs in
comparison to other regularization techniques. Although we do not fully answer this question – which
probably would require a dedicated work – we begin addressing it here. Namely, we examine whether a
PHC-1 model regularized with a higher dropout value will outperform the PHC-(n > 2) models. Table 6
and Figure 3(a) show that indeed increasing dropout does regularize model. In fact, the validation loss for
the regularized PHC-1-∗ model reaches a lower value as compared to PHC-1 (see bottom-left plot in Figure
3(a)). However, the overall test performance does not improve, and as a consequence PHC-1-∗ cannot
match the performance of the hypercomplex models. We increased the dropout in the message passing
layers, i.e., MP-dropout=[0.4] ∗ 14 and in the downstream layers, i.e., DN-dropout=[0.5, 0.2], following the
scheme presented in Table 4.
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(a) Learning curves of the shallow PHC models (one
run, seed= 0). The embedding size for every hidden
layer is set to 64. The PHC-1 model performs best
in the underparamterized setting (see also Table 5).
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(b) Learning curves of the reported (in the main
text) PHC models (one run, seed=0). The embed-
ding sizes are set to 512 for every hidden layer. The
PHC-1 model is overfitting the training data in
this overparamezerized setting, while the PHC−n
models with n > 1 obtain better generalization
performance.

Fig. 2. Learning curves for the PHC-models trained on the ogbg-molcpba dataset. In the overparameterized setting,
using hypercomplex multiplication aids in better generalization and prevents from overfitting the training data.
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(a) Learning curves for PHC-1 models trained
with default settings, and one with larger
dropout. The model with larger dropout is not
overfitting the training data.
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(b) Learning curves for PHC-8 models trained
with default initialization of contribution matri-
ces (PHC-8) and random initialization (PHC-
8-†). The PHC-8-† model outperforms the de-
fault model on the validation set, as well as test
dataset (see Table 7).

Fig. 3. Learning curves for the PHC-1 and PHC-8 trained on the ogbg-molcpba dataset.

D.2 Initialization Strategy for Large n

As mentioned in the main text, we observed that the PHC-n model performance deteriorates when n
is above a certain value. This value highly depends on the dataset and the task at hand, but from our
experience, the performance loss occurs already when n is at least 8. We address this phenomenon through
a different initialization strategy (in Eq. (7)) for the algebra’s multiplication, which aims at compensating
the sparsity in the hypercomplex product introduced by the standard initialization strategy (Equation (6)
in the main text). Table 7 shows the performance improvement of model PHC-8-† (non-sparse initialization)
compared to model PHC-8 (sparse initialization) on the ogbg-molpcba dataset. Since this dataset is
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Table 7. Results of the PHC-8 on the ogbg-molpcba graph classification. Displayed are the model performances
with default (PHC-8) and random initialiaztion strategy (PHC-8-†) for the contribution matrices.

Model # Params
Precision-Recall (%)

Training Validation Test

PHC-8 689K 41.89± 0.34 28.10± 0.18 27.00± 0.14
PHC-8-† 689K 39.42± 0.45 29.59± 0.13 28.73± 0.39

Table 8. Sample sizes for the splits in each dataset used in our experiments. For more details about split strategy
and graph statistics, we refer to [20,9].

Dataset Training Validation Test Domain

ogbg-molhiv 32,901 4,113 4,113 Chemistry
ogbg-molpcba 350,343 43,793 43,797 Chemistry
ogbg-molppa 78,200 45,100 34,800 Biology
ZINC 10,000 1,000 1,000 Chemistry
MNIST 55,000 5,000 10,000 Computer Vision
CIFAR10 45,000 5,000 10,000 Computer Vision

considered as medium-scale benchmark with 350,343 training samples as listed in Table 8, and we only
reported performances for the random initialization strategy on the small ZINC dataset with 400K model
parameters, we provide further evidence that leveraging the random initialization scheme is also beneficial
for models with more than 400K (learnable) parameters and trained on larger datasets.

Furthermore, we show the learning curves for the PHC-10 and PHC-16 models trained on the (smaller)
ZINC dataset in Figure 4. The learning curves display better learning ability for the PHC-GNN when the
contribution matrices are uniform randomly initialized, leading to denser contribution matrices, which
subsequently allow more interaction between the hypercomplex components in the sum of Kronecker
products.

Table 9. Results of the PHC-10-† and PHC-16-† on the ZINC graph regression (400K parameters). With increasing
sparse regularization factor λ2, the performance across the datasplits improve. In total, 4 runs are executed and
the mean performance measures are displayed. The entries in row 1st to 6th, correspond to the PHC-10-† model.
The entries afterwards refer to the PHC-16-† model.

λ2 Mean Absolute Error (MAE) ↓
Training Validation Test

0 0.152± 0.009 0.193± 0.010 0.165± 0.005
10−5 0.155± 0.004 0.187± 0.015 0.165± 0.002
10−4 0.152± 0.005 0.186± 0.012 0.164± 0.004
10−3 0.154± 0.003 0.188± 0.015 0.163± 0.002

10−2 0.148± 0.010 0.184± 0.009 0.163± 0.001
10−1 0.156± 0.008 0.193± 0.012 0.166± 0.007

0 0.160± 0.011 0.192± 0.013 0.172± 0.003
10−5 0.163± 0.015 0.191± 0.013 0.165± 0.005
10−4 0.162± 0.010 0.197± 0.012 0.172± 0.007
10−3 0.158± 0.004 0.197± 0.005 0.170± 0.002

10−2 0.151± 0.012 0.181± 0.007 0.164± 0.006
10−1 0.168± 0.006 0.200± 0.006 0.174± 0.007

D.3 Additional Regularization Strategy for Large n

The large-n initialization addresses the issue of sparsity in the algebra’s multiplication that arises for
large n. As briefly noted in the main body of the work, the resulting model might suffer from some
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(a) ZINC performance of the PHC-10 and PHC-10-†
models.
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(b) ZINC performance of the PHC-16 and PHC-16-†
models.

Fig. 4. Model performance increases if the random initialization is used (PHC-n-†) compared to the default
initialization (PHC-n). The improved performance difference due to the random (dense) initialization of contribution
matrices is especially noticeable in the case of n = 16, where denser contribution matrices alleviate training by
allowing more weight-sharing in the final weight matrix that will be used for the affine transformations. (See also
Figure 6).

degree of overfitting. We address this by including a new regularization term (Equation (10) in the main
text). The effect of this term is to control the sparsity of the contribution matrices defining the algebra’s
product, allowing us to find the optimal amount of product sparsity for a given task. Table 9 lists the
performance on the ZINC dataset of PHC-n models for n = 10, 16, for several values of the coefficient λ2
of the additional regularization term. For n = 10, we observe an essentially constant performance of the
differently regularized models. For n = 16, instead, we note a performance improvement of the regularized
models. In Figure 5 we report the learning curves for these experiments.

For the PHC-16 model, we visualize the effect of the sparsity regularization coefficient λ2 on the matrix
defining the algebra’s product (defined in Equation (4) in the main text). Figure 6 depicts a heat map for
the coefficients of the 304× 304 matrix defining the weight matrix U obtained after applying the sum
of Kronecker products. Recall that this weight matrix U is utilized for the affine transformation in the
PHM-layer.
Here, we define the sparsity s of the matrix U ∈ Rk×d as follows:

s(U) = 1− 1

kd

k∑

i=1

d∑

j=1

∣∣U[i,j]

∣∣ . (20)

Values of s closer to 1 indicate that the weight-matrix U is more sparse.

Table 10. Execution time [ seconds
epoch

] from the models reported in the main article. The models for hiv,pcba were
trained on a single NVIDIA Tesla V100-32GB GPU and the models for ZINC (400K) were trained on a single
NVIDIA Tesla V100-16GB GPU.

Model Dataset
ogbg-molhiv ogbg-molpcba ZINC

PHC-1 15.64 111.60 8.07
PHC-2 21.34 150.24 17.55
PHC-3 27.42 196.85 22.16
PHC-4 24.62 239.49 31.82
PHC-5 37.92 312.75 33.03
PHC-8 60.30 388.93 62.00
PHC-10 − − 66.97
PHC-16 − − 117.38

We see that when the contribution matrices of the model are sparsily initialized, only the diagonal terms
are activated. That is, the model collapses to a quasi-real-valued network, in which the hypercomplex
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Table 11. PHC-GNNs results on computer vision graph datasets. The performance measure is the accuracy on
the test dataset.

Model
MNIST CIFAR10

# Params Acc. (%) ↑ # Params Acc. (%) ↑
PHC-1 101.3K 97.08± 0.10 101.5K 66.32± 0.15
PHC-2 99.4K 97.32± 0.08 99.7K 66.79± 0.10
PHC-3 111.2K 97.32± 0.05 111.6K 66.80± 0.23
PHC-4 106.8K 97.36± 0.06 107.3K 66.47± 0.46
PHC-5 104.4K 97.24± 0.17 104.9K 66.42± 0.27

components do not mix with each other. When the contribution matrices of the model are instead
uniformely initiated, the distribution of activated values is less concentrated, and more interaction between
the hypercomplex components is present. Finally, turning on λ2 causes the model to zero-out some matrix
coefficients, while preserving the component-mixing.

D.4 Computing Performance

We report in Table 10 the execution time in s/epoch for several PHC-n models in three datasets. We
observe an increasing computational time cost when n increases. This is due to the linearly increasing
number of Kronecker products necessary to be computed (n for PHC-n). Our models were implemented in
PyTorch version 1.7.1 [34] which does not provide a CUDA implementation of the Kronecker product.
We used our customized PyTorch implementation of the Kronecker product.

For the above reason, it is also important to mention that although our method is memory-efficient and
enables us to reduce model parameters by using the PHM-layer, it involves more floating point operations
(FLOPS) by computing n Kronecker products, which is reflected in an increase of the execution time.

D.5 Computer Vision Graph Datasets

For completeness, we report in Table 11 the performance of our PHC-n models on the computer vision
graph datasets MNIST and CIFAR10. All the models satisfy a budget constraint of approximatively 100K
parameters, and are trained following the guidelines of [9]. Once again, we observe that hypercomplex
models achieve a higher accuracy in the classification tasks than the real-valued PHC-1 model.

Table 12. Result of our PHC-GNN on the ogb-molppa graph property prediction dataset. We only conducted one
run on this dataset and we reported the model on the validation set (PHC-6). We compare our model against other
methods from the literature. The results for GIN, GIN+VN and GCN are taken from [20]. The FLAG method [26]
is applied to GIN and DeeperGCN [28].

Model # Params
Acc. (%) ↑

Validation Test

DeeperGCN+Flag 2.34M 74.84± 0.52 77.52± 0.69
DeeperGCN 2.34M 73.13± 0.78 77.12± 0.71
GIN+VN+Flag 3.29M 67.89± 0.79 72.45± 1.14
GIN+VN 3.29M 66.78± 1.05 70.37± 1.07
GIN 1.84M 65.62± 1.07 68.92± 1.00
GCN 480K 64.97± 0.34 68.39± 0.84

PHC-GNN (ours) 1.84M 71.35 75.61
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D.6 Experiments on Protein-Protein Association Networks

Finally, we also trained our PHC-GNN on the ogbg-ppa dataset, which consists of undirected association
neighborhoods. The nodes in each association graph represent proteins, and the prediction task is to
classify each association graph into 37 taxonomic groups [20]. In Table 12 we compare our method against
models reported in the literature. Also for this dataset, our model shows a strong performance with a lower
parameter budget. As the association graphs are densely connected (avg. # edges=2, 266 and avg. node
degree=18.3), choosing an appropriate aggregation function α in the message passing layer is crucial for
training and generalization performance of the model. We selected the aggregation schema based on the
best performing models, in this case, DeeperGCN [28], which adopted the softmax-aggregation function
with learnable temperature factor τ . The softmax aggregation function can be regarded as a combination
between the “max” and “mean” aggregation functions, depending on the value of τ . In the ogbg-ppa

dataset, an aggregation function that tends to select the maximum value of connected neighboring nodes
seems to boost the training and generalization performance. We tested the standard aggregation functions,
such as “sum” and “mean”, but have found that “max” and “softmax” perform better on the validation
sets.
For the above reason, models like GCN or GIN, which utilize the “mean” and “sum” aggregators, cannot
reach a validation accuracy of 70% even with the inclusion of a virtual node. Such aggregators seem to
be non-optimal in very dense association graphs, where most likely only representative mode values of
neighboring nodes are required to propagate messages to contribute to the final prediction task [45]. The
“max” aggregator, on the other hand, is designed to achieve exactly this type of selected node propagation.

The choice of (appropriate) aggregation function α, as illustrated in Table 4, is a deciding component
in every GNN and can vary for each dataset/task. In our work, we focused on the development of a
GNN that utilizes feature transformations motivated by the idea of hypercomplex multiplications. For
future research, it would be exciting to combine the benefits of hypercomplex feature transformations
with learnable aggregation functions to develop even more powerful GNNs, suitable for a larger variety of
graph datasets.
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(a) ZINC performance of the PHC-10-† model over
4 runs.
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(c) ZINC performance of the PHC-16-† model over 4
runs.
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Fig. 5. Model performance for PHC-10-† (a-b) and PHC-16-† (c-d) models (400K parameter budget) with varying
sparsity regularization factor λ2.

(a) Weight matrix in an initial layer of of the PHC-16 and PHC-16-† networks.

(b) Weight matrix in a deeper layer of the PHC-16 and PHC-16-† networks.

Fig. 6. Weight matrix U =
∑n

i=1 Ci ⊗Wi used in the affine transformation. The default initialization for the
contribution matrices Ci in the PHC-16 model (first column) leads to a sparser weight-matrix, due to a too
restrictive interactions between the matrices Wi.
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technical report (2019)

38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research 15(56), 1929–1958 (2014),
http://jmlr.org/papers/v15/srivastava14a.html

39. Tay, Y., Zhang, A., Tuan, L.A., Rao, J., Zhang, S., Wang, S., Fu, J., Hui, S.C.: Lightweight and efficient neural
natural language processing with quaternion networks (2019)

40. Trabelsi, C., Bilaniuk, O., Zhang, Y., Serdyuk, D., Subramanian, S., Santos, J.F., Mehri, S., Rostamzadeh,
N., Bengio, Y., Pal, C.J.: Deep complex networks. In: International Conference on Learning Representations
(2018), https://openreview.net/forum?id=H1T2hmZAb

41. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In:
International Conference on Learning Representations (2018), https://openreview.net/forum?id=rJXMpikCZ

42. Weisfeiler, B.a.L.A.: A reduction of a graph to a canonical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsia 2(9), 12–16 (1968)

43. Wu, J., Xu, L., Wu, F., Kong, Y., Senhadji, L., Shu, H.: Deep octonion networks. Neurocomputing 397, 179 –
191 (2020). https://doi.org/https://doi.org/10.1016/j.neucom.2020.02.053, http://www.sciencedirect.com/
science/article/pii/S0925231220302435

44. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neu-
ral networks. IEEE Transactions on Neural Networks and Learning Systems 32(1), 4–24 (Jan 2021).
https://doi.org/10.1109/tnnls.2020.2978386, http://dx.doi.org/10.1109/TNNLS.2020.2978386

45. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference
on Learning Representations (2019), https://openreview.net/forum?id=ryGs6iA5Km

46. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs
with jumping knowledge networks. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International
Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 5453–5462. PMLR,
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Abstract

Learning and reasoning about 3D molecular structures with varying size is an
emerging and important challenge in machine learning and especially in the de-
velopment of biotherapeutics. Equivariant Graph Neural Networks (GNNs) can
simultaneously leverage the geometric and relational detail of the problem domain
and are known to learn expressive representations through the propagation of infor-
mation between nodes leveraging higher-order representations to faithfully express
the geometry of the data, such as directionality in their intermediate layers. In this
work, we propose an equivariant GNN that operates with Cartesian coordinates to
incorporate directionality and we implement a novel attention mechanism, acting
as a content and spatial dependent filter when propagating information between
nodes. Our proposed message function processes vector features in a geometrically
meaningful way by mixing existing vectors and creating new ones based on cross
products. We demonstrate the efficacy of our architecture on accurately predicting
properties of large biomolecules and show its computational advantage over recent
methods which rely on irreducible representations by means of the spherical har-
monics expansion.

1 Introduction
Predicting molecular properties is of central importance to applications in pharmaceutical research
and protein design with the incentive to establish accurate computational methods to accelerate the
overall process of finding better molecular candidates in a faster and cost-efficient way. Learning
on 3D environments of molecular structures is a rapidly growing area of machine learning with
promising applications but also domain-specific challenges. While Deep Learning (DL) has replaced
hand-crafted features to a large extent, many advances are crucially determined through inductive
biases in deep neural networks. Developed neural models should maintain an efficient and accurate
representation of structures with even up to thousand of atoms and correctly reason about their 3D
geometry independent of orientation and position. A powerful method to restrict a neural network
to the functions of interest, such as a molecular property, is to exploit the symmetry of the data by
constraining equivariance with respect to transformations from a certain symmetry group [1, 2].

3D Graph Neural Networks (GNNs) have been applied on a broad field involving molecular structures,
such as in the prediction of quantum chemistry properties of small molecules [3, 4] and also on
macromolecular structures like proteins [5–8] due to the natural representation of structures as
graphs, with atoms as nodes and edges drawn based on bonding or spatial proximity. These networks

∗Work was done during time at Bayer AG.

T. Le et al., Representation Learning on Biomolecular Structures using Equivariant Graph Attention. Proceedings
of the First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.
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(b) Proposed equivariant message function Ml(·).

Figure 1: (a) Visualization of the local neighbourhood of central carbon atom i. Directed edges
illustrate the message flow from neighbour j to central atom i, where scalar and vector features are
propagated along the edges. Grey boxes R represent the side-chain atoms of each residue and serve
here as visual compression that include many more atoms. Here, nodes comprise scalar and vector
features with 7 and 2 channels, respectively. (b) Proposed equivariant message function that computes
a geometric and content related feature attention filter for scalar features, while vector messages are
created based on a weighted combination of newly constructed vectors.

generally encode the 3D geometry in terms of rotationally invariant representations, such as pairwise
distances to model local interactions which leads to a loss of directional information, while including
angular information into network architecture has shown to be beneficial in representing the local
geometry [9–11].

Neural models that preserve equivariance on point clouds in 3D space have been proposed [12–15]
which can be described as Tensorfield Networks. These group-theoretic inspired models leverage
higher-order representations by means of the spherical harmonics expansion of normalized relative
positions to initially create equivariant features. While these models enable the interaction between
different-order representations, (often referred to as type-l representation), many data types are often
restricted to scalar values (type-0 e.g., temperature or energy) and 3D vectors (type-1 e.g., velocity or
forces). Another design choice is to define equivariant functions that directly operate on Cartesian
coordinates [16–19], instead on the basis provided by the spherical harmonics. Following this
approach, one could define (equivariant) transformations on Cartesian tensors, like rank 0 scalar(s)
and rank 1 vector(s), which is the scope of this work and conceptually simpler and does not require
Clebsch-Gordan tensor products of irreducible representations as commonly used in Tensorfield
Network-like architectures.

In this work, we introduce Equivariant Graph Attention Networks (EQGAT) that operate on large point
clouds such as proteins or protein-ligand complexes and show its superior performance compared to
invariant models as well as our proposed model‘s faster training time compared to recent architectures
that achieve equivariance through the usage of irreducible representations. Our model implements a
novel feature attention mechanism which is invariant to global rotations and translations of inputs
and includes spatial- but also content related information which serves as powerful edge embedding
when propagating information in the Message Passing Neural Networks (MPNNs) [4] framework.
Since we define equivariant functions on the original Cartesian space while restricting ourselves to
tensor representations up to rank 1, i.e., scalars and vectors, we aim to capture as much geometrical
information as possible through a geometrically motivated message function.
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In summary, we make the following contributions:

• We introduce a computationally efficient equivariant Graph Neural Network that leverages
geometric information by operating on vector features in Cartesian space.

• We implement a novel feature attention mechanism to propagate neighbouring node features and
we define equivariant operations to combine vector features in a geometrically meaningful way.

• We benchmark our proposed architecture on large molecular systems such as protein complexes
and show its efficacy mostly relevant to industrial applications.

2 Background
2.1 Message Passing Neural Networks (MPNNs)

MPNNs [4] generalize Graph Neural Networks (GNNs) [1, 2, 20] and aim to parameterize a mapping
from a graph to a feature space. That feature space can either be defined on the node- or graph
level. Formally, a graph G = (V, E) contains nodes i ∈ V and edges (j, i) ∈ E which represent
the relationship between nodes j and i. Since MPNNs utilize shared trainable layers among nodes,
permutation equivariance is preserved.

In this work, we consider graphs representing molecular systems embedded in 3D Euclidean space,
where atoms represent nodes and the edges are described through covalent bonds and/or by atom pairs
within a certain cutoff distance c as illustrated in Figure 1(a). In the case of protein point clouds, a
common design choice is the construction of residue graphs, where the nodes are represented through
the Cα-atom of each amino acid residue [5, 6, 18].

We refer x(l)
i = (ai, pi, s

(l)
i , v

(l)
i ) to the state of the i−th atom, where ai ∈ Z+ and pi ∈ R3 denote

atom i‘s chemical element and its spatial position, while h
(l)
i = (s

(l)
i , v

(l)
i ) ∈ R1×Fs × R3×Fv are

the hidden scalar and vector features that are iteratively refined through L message passing steps. We
distinguish between scalar and vector features because scalars can be transformed without functional
restrictions, e.g., with standard MLPs, and their domain spans the entire R, while vector features that
reside in R3 can only be transformed in certain ways to preserve rotation equivariance. In theory,
one could also only rely on vector features (with a number of Fv channels), and perform a self-dot
product reduction to make that representation invariant. This step however, restricts the domain space
of scalars onto R+ only.

A general MPNN implements a learnable message and update function denoted as Ml(·) and Ul(·) to
process atom i−th‘s hidden feature by considering its local environment N (i) through

m
(l+1)
i =

∑

j∈N (i)

Ml(x
(l)
i , x

(l)
j ), and x

(l+1)
i = (ai, pi, Ul(x

(l)
i ,m

(l+1)
i )), (1)

where N (i) = {j : ||pij ||2 = ||pj − pi||2 = dij < c} denotes central atom‘s i−th neighbour set that
is obtained through a distance cutoff c > 0.

For our 3D GNN, we wish to implement simple, yet powerful rotation equivariant transformations in
the message and update functions, to accurately describe the local environment of nodes in the point
cloud.

2.2 Invariance and Equivariance

In this work, we consider the special orthogonal group SO(3), i.e. the group of proper rotations in
three dimensions. A group element of SO(3) is commonly represented as matrix R ∈ R3×3 satisfying
R⊤R = RR⊤ = I and detR = 1.
For a node feature h = (s, v) ∈ RFs × R3×Fv , an SO(3)-equivariant function f(h) = h′ = (s′, v′)
must obey the following equation

f(g.h) = g.(s′, v′) = (Is′, Rv′) = (s′, Rv′) = g.f(h), (2)
where g.o in this work means, a group element g of SO(3) acting on the object o. As shown in
(2), invariance can be regarded as special case of equivariance, where equivariance for a scalar
representation means that the trivial representation, i.e. the identity, acts on the scalar embedding,
while vectors are transformed with R, i.e., a change of basis is performed, where the new basis is
determined by the columns in R.
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3 Related Work

Neural networks that specifically achieve E(3) or SE(3) equivariance have been proposed in Ten-
sorfield Networks (TFNs) [12] and its variants in the covariant Cormorant [13], NequIP [15] and
SE(3)-Transformer [14] which includes the attention mechanism in their architecture. With TFNs,
equivariance is achieved through the usage of equivariant function spaces such as spherical har-
monics combined with Clebsch-Gordan tensor products in their intermediate layer to allow the
multiplication of different ordered representations, while others resort to lifting the spatial space
to higher-dimensional spaces such as Lie group spaces [21]. Since no restriction on the order of
representations is imposed on these methods, sufficient expressive power of these models is guaran-
teed, but at a cost of enlarged computational calculations with increased time and memory. It was
recently analyzed by Brandstetter et al. [22] that the implementation of non-linear equivariant Graph
Neural Networks in their model, which they term Steerable E(3) Equivariant Graph Neural Networks
(SEGNN) achieves strong empirical results on small point clouds like the N-Body experiment or QM9
dataset, but also larger systems as in the OC20 dataset. One of their insights is that the construction
of their (non-linear) SEGNN-layer, allows the model to better capture the local environment and
enables the reduction of radius cutoff when constructing the neighbour list for each central atom i,
since the Clebsch-Gordan tensor products between neighbouring nodes is computationally expensive.
To circumvent the expensive computational cost, another line of research proposed to implement
equivariant operations in the original Cartesian space, providing and efficient approach to preserve
equivariance as introduced in the E(n)-GNN [16], GVP [18, 23], PaiNN [17] and ET-Transformer
[24] architectures without relying on irreducible representation of the orthogonal group by means
of the spherical harmonics basis as originally introduced in TFN and implemented in the e3nn
framework [25]. Aside of 3D atomistic GNNs, the attention mechanism has also been implemented
in the GAT [26] and GATv2 [27] architectures, where GATv2 achieves superior performance over
GAT due to the implementation of attention coefficients using a multilayer perceptron (MLP).

Our proposed model implements equivariant operations in the original Cartesian space and includes
a continuous filter through the self-attention coefficients which serve as spatial- and content based
edge embedding in the message propagation, as opposed to the PaiNN model where the filter solely
depends on the distance. Additionally, our model constructs vector features from the given point
cloud and leverages geometrical products that are efficient to compute. The E(n)-GNN architecture
does not learn vector features with several channels, but only updates a single vector feature2 through
a weighted linear combination, where the (learnable) scalar weights are obtained from invariant
embeddings. The GVP model which was initially designed to work on macromolecular structures
includes a complex message functions of concatenated node- and edge features composed with a
series of GVP-blocks that enables information exchange between scalar and vector features, through
dot product reduction of vectors, with a potential disadvantage of discontinuities through non-smooth
components for distances close to the cutoff.

4 Proposed Model Architecture

4.1 Input Embedding

We initially embed atoms of small molecules or proteins based on their element/amino acid type
using a trainable look-up table through s

(0)
i = embed(ai), which provides a starting (invariant) scalar

representation of the node prior to the message passing. As in most cases, no initial vector features
for atoms are available, we initialize them as zero tensor v(0)i = 0 ∈ R3×Fv .

4.2 Edge Filter through Feature Attention

For the two-body interaction between neighbouring node(s) j to central node i, we implement a
non-linear edge filter that depends on content related information stored in the scalar features (sj , si)
and a radial basis expansion of the Euclidean distance dji ≤ c. We choose the (orthonormal) Bessel
basis Gd : R −→ RK that projects the distance into K basis values as introduced by Gasteiger et al.
[9] and their polynomial envelope function κ : [0, c] −→ (0, 1] that smoothly transitions from 1 to 0 as

2In the E(n)-GNN architecture, Cartesian coordinates of particles p ∈ R3 are updated.
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the cutoff value c is approached. The computation of the attention edge-filter is obtained through

e
(l+1)
ji = [s

(l)
i ||s(l)j ||κ(dji)Gd(dji)] ∈ R2Fs+K

f
(l+1)
ji = MLP(e(l+1)

ji ) ∈ RFs+3Fv , (3)

where MLP refers to an 1-layer Multilayer-Perceptron with SiLU activation function [28]. The input
to the MLP is a concatenation of scalar features as well as a by κ scaled radial basis expansion of
the distance between nodes j and i. The SO(3)-invariant embedding f

(l+1)
ji represents the Fs + 3Fv

attention logits which are further split into f
(l+1)
ji = [aji, bji]

(l+1) to be used as a non-linear filter
when propagating neighbouring features. A novelty of our approach is that the attention coefficient
between two vertices j and i is in fact obtained per feature-channel instead for the entire embedding
as commonly achieved through a single scalar value, as done in GATv2 [27], albeit we also include
edge-features through distances. The feature attention for the scalar embeddings is computed using
the standard softmax activation function

αji =
exp(aji)∑

k∈N (i) exp(aki)
∈ (0, 1)Fs , (4)

where the normalization in the denominator runs over all neighbours k and the exponential function
is applied componentwise. We choose to compute a non-linear intermediate edge-filter fji due to
increased expressivity through an 1-layer MLP. The embedding bji ∈ R3Fv is processed to create
coefficients that serve as weights for a linear combination of vector quantities to compute the vector
message from j to i, which we will describe in the following subsection.

4.3 Equivariant Message Propagation

We follow the idea of standard convolution, which is a linear transformation of the input, and compute
the scalar features message for central node i as

m
(l+1)
i,s =

∑

j∈N (i)

α
(l+1)
ji ⊙W (l+1)

s s
(l)
j , (5)

where W
(l+1)
s ∈ RFs×Fs is a trainable weight matrix shared among all nodes and α

(l+1)
ji the non-

linear attention filter obtained in (4).

In context of atomistic neural network potentials (NNPs), the filter α(l+1)
ji is commonly implemented

as an MLP that only inputs the distance dji (by means of a radial basis expansion) as in SchNet
[3], PaiNN [17], NequIP [15], while recent NNPs such as Allegro [29] and BOTNet [30] implement
edge-filters that depend on the distance as well as node content, e.g., the chemical elements, unifying
the idea of MPNNs in the context of machine learning force fields.

The recent work by Brandstetter et al. [22] analyzes modern 3D equivariant GNNs with the insight
that non-linear message and non-linear update functions combined with their proposed steerable
features space leads to an improved model, which they term SEGNN. The SEGNN, in similar spirit
to Tensorfield Networks, can leverage higher-order equivariant representations up to a maximal
rotation order lmax through the spherical harmonics expansion of relative positions, which they take
as steerable feature basis. Their proposed model implements steerable MLPs into the message-
and update function to leverage non-linearity and geometric covariant information of the steerable
features that go beyond l = 0, i.e., scalar features while our architecture is only restricted to scalar
information, albeit vector information is still processed in the layers but then reduces to a scalar by
a dot product operation. Our proposed message function for scalar features in Eq. (5) can also be
formulated as a linear transformation where the weight matrix depends on distances but also hidden
scalar information. To see this, we rewrite α

(l+1)
ji ∈ (0, 1)Fs as matrix using the diagonal operator

A
(l+1)
ji = diag(α(l+1)

ji ) ∈ (0, 1)Fs×Fs and observe that the filter scales the (independent) weight

matrix W
(l+1)
s leading to the message propagation

m
(l+1)
i,s =

∑

j∈N (i)

A
(l+1)
ji W (l+1)

s s
(l)
j =

∑

j∈N (i)

W
(l+1)
ji s

(l)
j ,
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where W
(l+1)
ji defines the linear transformation matrix which depends on SO(3)-invariant informa-

tion through (s(l)i , s
(l)
j , dji). The scalar message propagation can still be interpreted as non-linear

convolution as the A(l+1)
ji weight matrix is obtained through an MLP and softmax activation function.

Building Equivariant Features. In many cases, no initial vector features are provided in raw
point cloud data. However, when working with a protein backbone, i.e., the sequence of atoms
(Cα, C,O,N)i, initial vectorial (node) features that describe the local environment of each backbone
atom can be pre-computed as described by Ingraham et al. [6] and Jing et al. [18]. In a full-atom
model, initial vector features for a node i can be obtained by averaging over relative position vectors
vi,0 = 1

|N (i)|
∑

j∈N (i) pji ∈ R3 which satisfies Eq. (2) due to linearity. In our work, we initialize
the vectors as zero tensor as described in Subsection 4.1 and calculate equivariant features by utilizing
normalized relative positions pji,n in the first layer to describe the directional interaction between
central node i and its neighbour j. In the subsequent layers, we extend the set of vectors by (1)
constructing vectors based on normalized relative positions again, (2) mixing existing vector channels
from the previous iteration, and (3) creating new vector quantities by making use of the cross product.

(1) We create equivariant vector features based on normalized relative position pji,n = 1
dji

(pi − pj)

as those provide directional information. Since we explicitly model scalar and vector features, each
equipped with Fs and Fv channels, respectively, the tensor product offers a natural way to obtain a
vector feature, by simply combining a vector and a scalar. Equivariant interactions between node j
and i are computed through

v
(l+1)
ji,0 = pji,n ⊗ b

(l+1)
ji,0 = pji,nb

(l+1)⊤
ji,0 ∈ R3×Fv , (6)

which preserves SO(3) equivariance, due to the linearity of the tensor product. We note that the
creation of ‘initial’ equivariant features in such manner is also performed in architectures, like
[12, 13, 15, 22] just to name a few, that make use of irreducible representations of the SO(3) group
by means of the spherical harmonics and implement the Clebsch-Gordan tensor product (⊗cg) that
allows the mixing of possibly higher-order embedding representations of type l > 1, while we restrict
ourselves to vector representations only, i.e. features of order l = 1 or equivalently Cartesian rank 1
tensors. The representation in Eq. (6) can be interpreted as Fv scaled relative position vectors.

(2) In similar fashion to the (independent) linear transformation of scalar channels, we mix the vector
channels using a learnable weight matrix W

(l)
v ∈ RFv×Fv which preserves SO(3) equivariance due

to the linearity property

v(l+1)
n = v(l)W (l+1)

v ,

and is shared among all nodes. For a particular neighbouring node j, we scale the linearly transformed
vectors

v
(l+1)
ji,1 = b

(l+1)
ji,1 ⊙ v

(l+1)
n,j , (7)

which can be interpreted as a gating of previously mixed vectors.

(3) To capture more geometric information, while restricting the representation to be of rank 1, we
utilize the vector cross product c = (a × b) ∈ R3 between two vectors a and b that satisfy the
following rotation invariance property

Ra×Rb = R(a× b).

The output of the cross product a × b defines a vector c that is perpendicular to plane spanned by
a and b. Here, we calculate the cross product on the same channels from the previous layer vector
features of node i and j as

ṽ
(l+1)
ji,2 = (v

(l)
i × v

(l)
j ) ∈ R3×Fv ,

to reduce the computational complexity.

We highlight that recent equivariant GNNs which work with rank 1 Cartesian tensors, such as GVP,
PaiNN or ET-Transformer do not include the cross product in their architecture and are restricted in
the creation of vector features that may span the entire R3. These architecture make use of step (1)
and (2) only. For example, when all atoms are placed on the xy-plane, using step (1) and (2) would
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always create vectors on the xy plane, while the coordinate on z axis is always 0. By leveraging the
cross product, vectors in the z direction can be computed, without increasing the rank order3.

We note that our assumption on SO(3) equivariance is attributed to the fact of using the cross product
in our architecture. For the case that practitioners care about O(3) equivariance, our proposed EQGAT
might be suboptimal for usage since we do not distinguish polar or pseudo vectors in the internal
network representation. If O(3) equivariance is desired, special care on the selection between input
vectors in the cross product have to be made, in order to correctly assign the output parity type. E.g.,
a cross product of two polar vectors will return a pseudo vector, while a cross product of a polar and
pseudo vector will return a polar vector.

In similar fashion to Eq. (6) and (7), each channel of the representation ṽ
(l)
ji,2 is weighted by the SO(3)

non-linear filter b(l)ji,2 ∈ RFv to obtain

v
(l+1)
ji,2 = b

(l+1)
ji,2 ⊙ ṽ

(l+1)
ji,2 , (8)

Finally, we define the vector message from node j to central node i as the sum of the three components
in (6) to (8) and aggregate it across all neighbouring nodes j ∈ N (i) to obtain the vector message

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ), (9)

which results into new weighted geometric vectors by utilizing the (static) relative positions as well
as neighbouring vector features and lastly, normal vectors obtained through the cross product. Since
we combine the three vector components through a gating mechanism, we do not use an attention
mechanism on vector features to avoid additional computational steps and the fact that the calculation
of attention logits had to be done using some SO(3) invariant input, which would make the model
more complicated. We provide the full proof of SO(3) equivariance of Eq. (9) in Appendix C.

�̃�!(#$%) 𝑣$!(#$%)

𝑊 ⋅

𝑊 ⋅

⋅ !concat

SiLU

split ⊙

𝑊 ⋅

𝑠!
(#$%) 𝑣!

(#$%)

𝑊 ⋅ +	𝑏

𝑊 ⋅ +	𝑏

Figure 2: A gated equivariant MLP
that transforms scalar and vector
features into a new representation.
Here we used this block as update
function Ul(·).

Equivariant Update Function. After obtaining the aggre-
gated message for central node i in the representation m(l+1) ∈
RFs × R3×Fv , we implement a residual connection as interme-
diate update step

s̃i
(l+1) = s

(l)
i +m

(l+1)
i,s , and ṽi

(l+1) = v
(l)
i +m

(l+1)
i,v

while in the update layer, we implement an equivariant non-
linear transformation inspired by gated non-linearities proposed
by [31] and used in [17] with minor modification as shown in
Figure 2. Notably, the scalar features receive geometric infor-
mation by concatenating the norm of linear transformed vector
features, while the 1-layer scalar MLP is tasked to transform the
combined embeddings to update the scalar states and retrieve
non-linear weights that are used to reweight vector features. We
apply these weights by element-wise multiplying with linearly
transformed vector features as shown on the right which can
also be interpreted as variants of the Gated Linear Unit [32, 33],
followed by a linear layer to implement an equivariant MLP for
vector features.

5 Experiments and Results
We test the efficacy of our proposed EQGAT model on five publicly available molecular benchmark
datasets which pose significant challenges for the development of efficient and accurate prediction
models in protein design.

3Two rank 1 Cartesian tensors, i.e., two vectors can also be combined by computing the tensor product of the
two, which results into a rank 2 Cartesian tensor with 9 elements in the matrix. This rank 2 Cartesian tensor
contains 3 unique elements of the cross product in its antisymmetric part after a sum decomposition.
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Table 1: Benchmark results on ATOM3D tasks. We report the results for the Baseline models from
[34] and GVP-GNN [23]. We run our own experiments with the SchNet, PaiNN, SEGNN and our
EQGAT model and report averaged metrics over 3 runs. For the SEGNN model we only report the
results on a single run due longer training time. RS stands for Spearman Rank Correlation, RMSE
abbreviates Root Mean Square Deviation and ROCAUC the area under ROC curve.

Tasks PSR (↑) RSR (↑) LBA (↓) RES (↑) PPI (↑)
Metric Mean RS Global RS Mean RS Global RS RMSE Accuracy ROCAUC
CNN 0.431± 0.013 0.789± 0.017 0.264± 0.046 0.372± 0.027 1.416± 0.021 0.451± 0.002 0.844± 0.002
GNN 0.515± 0.010 0.755± 0.004 0.234± 0.006 0.512± 0.049 1.570± 0.025 0.082± 0.002 0.669± 0.001
GVP-GNN 0.511± 0.010 0.845± 0.008 0.211± 0.142 0.330± 0.054 1.594± 0.073 0.527± 0.003 0.866± 0.004
SchNet 0.448± 0.016 0.784± 0.013 0.247± 0.029 0.273± 0.017 1.522± 0.015 0.326± 0.003 0.839± 0.005
PaiNN 0.462± 0.015 0.809± 0.003 0.270± 0.062 0.462± 0.064 1.507± 0.033 0.370± 0.004 0.884± 0.002
SEGNN 0.474 0.833 −0.099 0.252 1.450± 0.011 0.454 0.854
EQGAT 0.491± 0.008 0.847± 0.006 0.316± 0.029 0.404± 0.096 1.440± 0.027 0.540± 0.017 0.908± 0.001

5.1 ATOM3D

The ATOM3D benchmark [34] provides datasets for representation learning on atomic-level 3D
molecular structures of different kinds, i.e., proteins, RNAs, small molecules and complexes. Since
proteins perform specific biological functions essential for all living organisms and hence, play a key
role when investigating the most fundamental questions in the life sciences, we focus our experiments
on the learning problems often encountered in structural biology with different difficulties due to
data scarcity and varying structural sizes. We use provided training, validation and test splits from
ATOM3D and refer the interested reader to the original work of Townshend et al. [34] for more details.
For all benchmarks, we compare against the Baseline CNN and GNN models provided by Townshend
et al. [34] from ATOM3D, GVP-GNN reported in [23] and we run experiments for SchNet [3], an
SO(3) invariant GNN architecture that has shown strong performance on small molecule prediction
tasks, PaiNN [17] as SchNet‘s improved SO(3) equivariant architecture and the recently proposed
SEGNN [22] that leverages higher-order representations by means of the irreducible representations
and Clebsch-Gordan tensor products using their official code base.

For SchNet, PaiNN and our proposed EQGAT architecture, we implement a 5-layer GNN with
Fs = 100 scalar channels and Fv = 16 vector channels for the PSR, RSR, RES and PPI benchmark, as
these benchmarks consists of more training samples and comprise larger biomolecules. For the Ligand
Binding Affinity (LBA) task, we utilize a 3-layer GNN with the same number of scalar- and vector
channels. For the SEGNN architecture, we implement a 3-layer GNN with (100, 16, 8) channels for
the embeddings of type l = (0, 1, 2) that transform according to the irreducible representation of
that order preserving SO(3) equivariance. The edges in the point clouds are constructed based on a
radius cutoff of 4.5Å. All graphs are considered as full-atom graphs, i.e., the initial node feature is
determined by the chemical element.

The Protein and RNA Structure Ranking tasks (PSR / RSR) in ATOM3D are both regression tasks
with the objective to predict the quality score in terms of Global Distance Test (GDT_TS) or Root-
Mean-Square Deviation (RMSD) for generated Protein and RNA models wrt. to its experimentally
determined ground-truth structure. The ability to reliably rank a biopolymer structure requires a model
to accurately learn the atomic environments such that discrepancies between a ground truth states
an its corrupted version can be distinguished. We evaluated our model on the biopolymer ranking
and obtained good results on the current benchmark, as reported in Table 1 in terms of Spearman
rank correlation. Our proposed model performs particularly well on the PSR task outperforming the
GVP-GNN [23] on the Global Rank Spearman correlation on the test set, while our model is more
parameter efficient (383K vs. 640K). We believe our model could be further improved by additional
hyperparameter tuning, e.g., by increasing the number of scalar or vector channels, which we did not
do in our study to compare against the baseline models.

We noticed that the RSR benchmark was particularly difficult to validate as only a few dozen
experimentally determined RNA structures are existent to date, and the structural models generated
in the ATOM3D framework are labeled with the RMSD to its native structure, which is known to be
sensitive to outlier regions, for exampling by inadequate modelling of loop regions [35], while the
GDT_TS metric might be a better suited target to predict a ranking for generated RNA structures as
in the PSR benchmark.
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Another challenging and important task for drug discovery projects is estimating the binding strength
(affinity) of a candidate drug atomistic’s interaction with a target protein. We use the ligand binding
affinity (LBA) dataset and found that among the GNN architectures, our proposed model obtains the
best results, while also being computationally cheap and fast to train. The best performing model
in the LBA-task is a 3D CNN model which works on the joint protein-ligand representation using
voxel space and enforcing equivariance through data augmentation. The inferior performance of
all equivariant GNNs might be caused by the need of larger filters to better capture the locality and
many-body effects, where 3D CNNs have an advantage when using voxel representations, while
GNNs commonly capture 2-body effects. Furthermore, as all GNN models jointly represent ligand-
and protein as one graph by connecting vertices through a distance cutoff of 4.5Å, we believe that
such union leads to an information loss of distinguishing the atom identity from the ligand and protein.
A promising direction to investigate is to incorporate a ligand and protein GNN encoder seperately
and merge the two embeddings prior the binding affinity prediction, similar to Graph Matching
Networks [36] and recently realized by Stärk et al. [37] in a slightly different context.

EQGAT outperforms the current SOTA GVP-GNN model on the Residue and Protein-Protein-
Interaction benchmarks which are both node classification tasks and require a model to accurately
capture the local environment of a selected Cα atom to serve as expressive input for a downstream
(decoder) network to obtain the final prediction.

Notably, our proposed EQGAT architecture performs on par with the SEGNN that implements
internal representations of higher order, i.e., of rotation order up to l = 2. We believe that including
the cross product in our vector message in (9) allows the model to capture more geometric detail
in a possible protein ligand binding pose for accurately predicting the binding affinity, which is
investigated in the following ablations.

5.2 Ablation Studies

To evaluate the benefits of our designed EQGAT architecture, we perform ablation studies and remove
architectural components to isolate the effect of each design choice on performance.

Table 2: Results of the ablation studies.
LBA [RMSE ↓] PSR [Mean | Global RS ↑]

No-Cross-Product 1.458 (0.011) 0.477 (0.012) | 0.827 (0.010)
No-Feature-Attention 1.466 (0.040) 0.492 (0.007) | 0.820 (0.002)

Full Model 1.440 (0.027) 0.491 (0.008) | 0.847 (0.006)

Ablation study 1 (termed No-Cross-Product) removes the contribution of vector cross product
(denoted as vji,2 in Eq. (9)). This leads to the effect that the vector message is solely constructed
based on scaled versions of normalized relative positions (vji,0) and linear combinations of existing
vector features (vji,1).

Ablation study 2 (termed No-Feature-Attention) replaces the feature attention coefficient αji ∈
(0, 1)Fs through a single coefficient αji ∈ (0, 1).

We observe that the full EQGAT architecture obtains the best performance among the two datasets
compared to the ablated models although we note that the improved performance of the full model in
RMSE on the LBA benchmark and Global RS in the PSR benchmark is difficult to attribute to the
inclusion of architectural components due to the (larger) variance obtained through the 3 runs for
each experiment.

6 Conclusion, Limitations and Future Work
In this work, we introduced a novel attention-based equivariant graph neural network for the prediction
of properties of large biomolecules that achieves superior performance on the ATOM3D benchmark.
Our proposed architecture makes use of rotationally equivariant features in their intermediate layers to
faithfully represent the geometry of the data, while being computationally efficient, as all equivariant
functions are directly implemented in the original Cartesian space without changing the representation
through the spherical harmonics basis as commonly done in Tensorfield networks. As our proposed
model operates on Cartesian tensors and we restrict the representation to be of rank 1 only, a general
promising future direction of investigation is the implementation of Cartesian equivariant GNNs that
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leverage higher-rank tensors in their layers, that are specifically implemented for learning purposes
involving large biomolecules. As it is up to date not clear, how much improvement higher-order
Cartesian tensors benefit for learning tasks that involve large biomolecular systems, we hope that
our work and open-source code will be useful for the graph learning and computational biology
community.

Code Availability
We provide the implementation of our model and experiments on https://github.com/
Bayer-Group/eqgat. We use PyTorch [38] as Deep Learning framework and PyTorch Geometric
[39] to implement our GNNs.
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A Appendix

Full Model Details and Hyperparameters

All EQGAT models in this paper were trained on a single Nvidia Tesla V100 GPU.

Table 3: Description of architectural parameters on the ATOM3D benchmarks.
Parameter LBA PSR RSR
Learning rate (lr.) 10−4 10−4 10−4

Maximum epochs 20 30 30
Lr. patience 10 10 10
Lr. decay factor 0.75 0.75 0.75
Batch size 16 16 16
Num. layers 3 5 5
Num. RBFs 32 32 32
Cutoff [Å] 4.5 4.5 4.5
Scalar channels Fs 100 100 100
Vector channels Fv 16 16 16

Num. parameters 238k 383k 383k

We used the ADAM optimizer [40] apart from the defined learning rate all other standard hyperpa-
rameter setting from the PyTorch library.

B Model Efficiency

Table 4: Comparison on model efficiency when passing
a batch of 10 macromolecular structures.

Dataset Model (# Param.) Inference Time [ms]

LBA EQGAT (238K) 11.94
SchNet (240K) 8.25
PaiNN (379K) 10.66
SEGNN (238K) 89.53

PSR EQGAT (383K) 49.96
SchNet (240K) 18.36
PaiNN (379K) 18.58
SEGNN (238K) 255.44

RSR EQGAT (383K) 75.45
SchNet (240K) 27.27
PaiNN (379K) 26.98
SEGNN (238K) 390.69

Model Efficiency. We assess the model
efficiency of EQGAT in terms of compu-
tation time as well as trainable parameters
and compare against SchNet, PaiNN and
SEGNN on the LBA, PSR and RSR bench-
marks. These datasets have on average 408,
1624, and 2390 nodes per graph with 9180,
26756 and 44233 directed edges, respec-
tively for the training set of LBA, PSR and
RSR.

As these datasets consist of graphs with
up to thousands of atoms, computationally-
and memory efficient models are preferred
such that batches of graphs can be stored
on GPU memory and processed fast during
training. We measure the inference time
of a random batch comprising 10 macro-
molecular structures on an NVIDIA V100
GPU. As shown in Table 4, SchNet and
PaiNN are both parameter efficient and both achieve the fastest inference time on a forward pass,
while our proposed EQGAT is slower mainly due to the softmax attention normalization in the
denominator in Eq. (4) which could be improved when the softmax attention with its normalization is
replaced by a sigmoid activation function, to obtain soft-attention weights. This step however, results
into a edge-filter αji that does not sum up to 1 when iterating over all neighbours j. The SEGNN
model has the longest runtime on the forward pass across the 3 datasets. This is mostly attributed
to the Clebsch-Cordan tensor products which can be very expensive in learning tasks that involve
proteins, as the CG product is always performed on edges.
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C Proof Equivariance
We prove the rotation equivariance in Eq. (9) which consists of the sum of three vector components,
and displayed here again

m
(l+1)
i,v =

1

|N (i)|
∑

j∈N (i)

(v
(l+1)
ji,0 + v

(l+1)
ji,1 + v

(l+1)
ji,2 ).

As the sum is a linear function, we require to show that each summand (vji,0, vji,1, vji,2) is equivari-
ant. For brevity, we omit all top indices. The first term is computed as tensor product of an l = 1
representation and l = 0 representation through

vji,0 = pji,n ⊗ bji,0 = pji,nb
⊤
ji,0 ∈ R3×Fv ,

where bji,0 ∈ RFv is an SO(3)-invariant representation, i.e. a scalar representation with Fv channels,
and pji,n ∈ S2 ⊂ R3 a normalized relative vector, which lies on the 2-dimensional sphere.
If the point cloud is rotated, as defined in Eq. (2), (relative) position as well as vector features change
to

p
R−→ Rp ,

v
R−→ Rv ,

while the cross product between two vector features v0, v1 is invariant to rotation, resulting to the
property

(Rv0 ×Rv1) = R(v0 × v1) .

In case a rotation is acting on the system, from Eq. (2) we know how vector and scalar quantities
transform, resulting into:

R.vji,0 −→ Rpji,n ⊗ bji,0 = R(pji,n ⊗ bji,0) = Rvji,0.

due to the linearity of the tensor product which proves SO(3) equivariance for the first term.
For the second term, we calculate

vji,1 = bji,1 ⊙ (vi × vj),

where bji,1 ∈ RFv is an SO(3)-invariant representation and the output of the cross product is a vector
representation ∈ R3×Fv . To be precise, the elementwise multiplication from the left with the bji,1
has to be rewritten, to match the shape, i.e. unsqueeze a new dimension to scale each of the Fv vector
by the scalar value, resulting into:

vji,1 = (1⊗ bji,1)⊙ (vi × vj),

where 1 is the one-vector in 3 dimensions. For a rotation acting on the system, we conclude that

R.vji,1 −→ (1⊗ bji,1)⊙ (Rvi ×Rvj)

= (1⊗ bji,1)⊙R(vi × vj) = R(1⊗ bji,1)⊙ (vi × vj)

= Rvji,1,

which proves SO(3) equivariance for the second term.
The third term is obtained through

vji,2 = (1⊗ bji,2)⊙ (vjWn),

where bji,2 ∈ RFv is a scalar representation with Fv channels and Wn a linear transformation of
shape (Fv × Fv). Due to linearity, we can see that

RvjWn = (Rvj)Wn = R(vjWn)

is SO(3) equivariant. As we elementwise multiply with a unsqueezed/expanded scalar representation,
we conclude for the last term SO(3) equivariance

R.vji,2 −→ (1⊗ bji,1)⊙ (Rvj)Wn

= (1⊗ bji,1)⊙R(vjWn) = R(1⊗ bji,1)⊙ (vjWn)

= Rvji,2.
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Since all three components in the sum are SO(3) equivariant, we conclude that the final sum is also
SO(3) equivariant.

As the reader might have noticed, we build equivariant features based on linear functions and
weighting l = 1 representations through l = 0 representations. This typical scaling is achieved
through the tensor product ⊗. Our architecure however, also performs a multiplication between two
l = 1 representations, through the cross product, which has the pleasant SO(3) invariance property
that we can exploit to prove SO(3) equivariance, when scaling the output with an l = 0 representation.

A Note on Translation Equivariance. Our proposed model is translation invariant, as all vector
features are initially created by means of a tensor product of (normalized) relative position pji,n.
To see that, for any translation vector t ∈ R3 for relative positions, we can see that the calculation of
such vectors4 pji = pj − pi, are inherently translation invariant due to

t.pji −→ (pj + t)− (pi + t) = pj − pi + t− t = pj − pi = pji.

Since we do not model absolute Cartesian coordinates, e.g., by updating the spatial coordinates
through our layers, our model is not SE(3)-equivariant, i.e. next to rotation equivariance, also
translation equivariant. We note that translation equivariance, however can be achieved through a
simple operation such as the addition of an SE(3) representation with an SO(3) representation, e.g.

pi = pi + pji,n ⊗ s,

where s ∈ R and reminiscent in the E(n)-GNN architecture, albeit the authors are not using the
notation of the tensor product.

D Synthetic Dataset
We adopt the synthetic dataset from GVP [18] with slight modifications to make it a more challenging
task. We create 50,000 ‘structures’ where each ‘structure’ consists of n = 100 random points in
R3, distributed uniformly in the ball of radius r = 10 with the constraint that no two points are less
than distance d = 2 apart. Three points are randomly chosen and are labelled as ‘special’ which will
define the vertices of a triangle. The learning task is a multitask regression of 3 targets, where the
first target is to predict the distance between the center of mass (COM) of the entire structure and the
COM of the triangles spanned by the three special points. The second and third task is the prediction
of the perimeter and surface area of the triangle. The choice of the 3 targets refers to a structural
learning task, where the model requires to learn about the global shape of the structure, while the
second and third targets are relational. An example structure is depicted in Figure 3. The evaluation
metric is the MSE of the three tasks. We split the dataset into 80% training, 10% validation and 10%
test sets.

Table 5: Evaluation of our proposed EQGAT architecture on Triangle benchmark.
Model Triangle [MSE ↓] No. Params [103]

SchNet 37.545 (1.838) 16.8
PaiNN 10.259 (0.949) 27.1

SEGNN 3.875 (0.879) 60.9
GVP 10.115 (1.210) 61.6

EQGAT-Full 6.003 (0.432) 27.4

EQGAT-No-Cross-Product 6.835 (1.066) 27.4

EQGAT-No-Feature-Attention 6.808 (0.326) 27.4

For the synthetic task of multitask regression we notice that the SEGNN architecture equipped with
higher-order equivariant features up to rotation order 2, obtains the best performance, followed by
our proposed EQGAT model that only incorporates rank 1 (vector) features. For the synthetic dataset,
we did not perform any hyperparameter tuning and set the number of layers to 3 with Fs = 32 scalar

4We omit the normalization to unit vectors for brevity.
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Figure 3: An example structure of the synthetic dataset. Three random points in the structure
determine the vertices of a triangle, which is colored in red.

and Fv = 8 vector channels and train for 50 epochs. The number of trainable parameters for SchNet,
PaiNN, SEGNN and EQGAT on the synthetic Triangle dataset are listed in the last column of Table
5.
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Frank Noé2,3, Djork-Arné Clevert1, Kristof Schütt1
1Pfizer Research & Development, 2Freie Universität Berlin
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ABSTRACT

Deep generative diffusion models are a promising avenue for 3D de novo molec-
ular design in materials science and drug discovery. However, their utility is still
limited by suboptimal performance on large molecular structures and limited train-
ing data. To address this gap, we explore the design space of E(3)-equivariant dif-
fusion models, focusing on previously unexplored areas. Our extensive compara-
tive analysis evaluates the interplay between continuous and discrete state spaces.
From this investigation, we present the EQGAT-diff model, which consistently
outperforms established models for the QM9 and GEOM-Drugs datasets. Signifi-
cantly, EQGAT-diff takes continuous atom positions, while chemical elements and
bond types are categorical and uses time-dependent loss weighting, substantially
increasing training convergence, the quality of generated samples, and inference
time. We also showcase that including chemically motivated additional features
like hybridization states in the diffusion process enhances the validity of gener-
ated molecules. To further strengthen the applicability of diffusion models to lim-
ited training data, we investigate the transferability of EQGAT-diff trained on the
large PubChem3D dataset with implicit hydrogen atoms to target different data
distributions. Fine-tuning EQGAT-diff for just a few iterations shows an efficient
distribution shift, further improving performance throughout data sets. Finally,
we test our model on the Crossdocked data set for structure-based de novo ligand
generation, underlining the importance of our findings showing state-of-the-art
performance on Vina docking scores.

1 INTRODUCTION

The enormous success of machine learning (ML) in computer vision and natural language process-
ing in recent years has led to the adaptation of ML in many research areas in the natural sciences,
such as physics, chemistry, and biology, with promising results. Specifically, modern drug discov-
ery widely utilizes ML to efficiently screen the vast chemical space for de novo molecule design
in the early-stage drug discovery pipeline. An important aspect is the structure-based or target-
aware design of novel molecules in 3D space (Schneuing et al., 2023; Guan et al., 2023; Stärk et al.,
2022; Corso et al., 2023). However, incorporating the 3D geometries of molecules for rational and
structure-based drug design is challenging, and the development of ML models in this domain is
anything but easy, as these models need to function with just a limited amount of data to learn
physical rules in 3D space accurately. Fortunately, applying geometric deep learning to molecule
generation has gained attention in the scientific community in recent years, paving the way for in-
novative approaches. These result in diffusion models quickly becoming state-of-the-art in this area
due to their ability to effectively learn complex data distributions (Hoogeboom et al., 2022; Igashov
et al., 2022; Schneuing et al., 2023; Vignac et al., 2023; Guan et al., 2023). While this has enabled
researchers to develop generative models for molecular design that can sample novel molecules in
3D space, several drawbacks and open questions remain prevalent for practitioners. Molecule gener-

∗Equal contribution. Correspondence to {tuan.le, julian.cremer}@pfizer.com

1



Published as a conference paper at ICLR 2024

ative models are required to both generate realistic molecules in 3D space and preserve fundamental
chemical rules, i.e., correct bonding and valencies. Various design decisions have to be taken into
account that heavily impact the performance and complexity of those models. Hence, there is a high
need to better understand the design space of diffusion models for molecular modeling. Moreover,
the availability of molecular data is not as abundant, confronting ML models with relatively narrow
and specific data distributions. That is, ML models are usually trained explicitly for each data set,
which is unfavorable regarding the efficient use of training data and computing resources.

This work introduces the E(3)-equivariant graph attention denoising neural network EQGAT-diff.
We systematically explore the design space of 3D equivariant diffusion models, including various
parameterizations, loss weightings, data, and input feature modalities. Beyond that, we explore an
efficient pre-training scheme on molecular data with implicit hydrogens. This enables a data- and
time-efficient training and fine-tuning procedure leading to higher molecule stability. Our contribu-
tions are the following:

• We propose EQGAT-diff – a fast and accurate 3D molecular diffusion model that employs
E(3)-equivariant graph attention. Our proposed model achieves SOTA results in shorter
training time and with less trainable parameters than previous architectures.

• We systematically explore various design choices for 3D molecular diffusion models and
provide a thorough ablation study across the popular benchmark sets QM9 and GEOM-
Drugs. We propose a time-dependent loss weighting as a crucial component for fast training
convergence, better inference speed, and sample quality.

• We demonstrate the transferability of an EQGAT-diff model pre-trained on the PubChem3D
dataset to smaller but complex molecular datasets. After a short fine-tuning on the target
distribution, we show that the model outperforms models trained from scratch on the target
data by only training on subsets.

• We extend the diffusion process by modeling chemically motivated additional features and
show a further significant increase in performance.

In summary, we found the following ingredients to be crucial: E(3)-equivariant graph attention,
time-dependent loss weighting, unconditional pretraining on large databases comprising 3D con-
formers like PubChem3D, and adding chemical features like aromaticity and hybridization state as
feature input to the denoising diffusion model.

2 RELATED WORK

Denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Kingma et al., 2021; Song et al., 2021b) have achieved great success in various generation tasks
due to their remarkable ability to model complicated distributions in the image and text processing
community (Popov et al., 2021; Kong et al., 2021; Salimans & Ho, 2022; Rombach et al., 2022;
Karras et al., 2022; Li et al., 2022; Kingma & Gao, 2023). Deep generative modeling in the life
sciences has become a promising research area, e.g., conditional conformer generation based on the
2D molecular graph, in which (Mansimov et al., 2019; Simm & Hernandez-Lobato, 2020) leverage
the idea of variational autoencoders, while recent work by (Xu et al., 2022; Jing et al., 2022) use
DDPMs, to predict the 3D coordinates with the help of 3D equivariant graph neural networks. In
the de novo setting, another line of research focuses on directly generating the atomic coordinates
and elements, using either autoregressive models (Gebauer et al., 2019; 2022; Luo & Ji, 2022),
where atomic elements are generated one by one sequentially, or neural learning algorithms based
on continuous normalizing flows (Satorras et al., 2021) that are computationally expensive due to
the integration of an ordinary differential equation, leading to limited performance and scalability
on large molecular systems. Diffusion models offer efficient training by progressively applying
Gaussian noise to transform a complex data distribution to approximately tractable Gaussian prior,
intending to learn the reverse process. Hoogeboom et al. (2022) introduced E(3) equivariant dif-
fusion model (EDM) for de novo molecule design that simultaneously learns atomic elements next
to the coordinates while treating chemical elements as continuous variables to utilize the formal-
ism of DDPM. Follow-up works leverage EDM and develop diffusion models for linker design
(Igashov et al., 2022) or ligand-protein complex modeling (Schneuing et al., 2023). Another line of
work leverages the formalism of stochastic differential equations (SDEs) (Song et al., 2021b) and
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Schroedinger Bridges with extension to manifolds (De Bortoli et al., 2021; 2022) to generating 3D
conformer of a fixed molecule into a protein pocket (Corso et al., 2023), while (Wu et al., 2022)
modifies the forward diffusion process to incorporate physical priors.

3 BACKGROUND

Problem Formulation and Notation We investigate the generation of molecular structures in a
de novo setting, where atomic coordinates, chemical elements, and the bond topology are sampled.
A molecular structure is given by , where the vertices V = (v1, . . . , vN ) refer to the N atoms. Each
vertex is a tuple vi = (ri, hi) comprised of the atomic coordinate in 3D space ri and chemical
element hi. The latter is one-hot encoded for K elements, i.e., hi = (0, 0, . . . , 1, 0)

⊤. The edges
E = (eij)

N
i,j=0 describe the connectivity of the molecule, where each edge feature can take five

distinct values, namely the existence of no bond or a single-, double-, triple- or aromatic bond
between atom i and j. Additionally, we exclude self-loops in our data representation. We write
node features as matrices X ∈ RN×3 and H ∈ {0, 1}N×K , while the bond topology is given by
E ∈ {0, 1}N×N×5. We aim to develop a probabilistic model that is invariant to the permutation of
atoms of the same chemical element and roto-translation of coordinates in 3D space. That means,
regardless of how atom indices in the node-feature matrix H are shuffled and coordinates X roto-
translated, the probability for a molecular structure X remains unchanged.

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Discrete-time diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are latent variable gen-
erative models characterized by a forward and reverse Markov process over T steps. Given a sample
from the data distribution x0 ∼ q(x0), the forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1) trans-

forms it into a sequence of increasingly noisy latent variables x1:T = (x1, x2, . . . , xT ) and xi ∈ X .
The learnable reverse Markov process pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt) is trained to gradually

denoise the latent variables approaching the data distribution. Sohl-Dickstein et al. (2015) initially
proposed a diffusion process for binary and continuous data, while the latter consists of Gaussian
transition kernels. The learning process for discrete data has been introduced by Hoogeboom et al.
(2021) and Austin et al. (2021), leveraging categorical transition kernels in the form of doubly
stochastic matrices. Crucially, both forward processes define tractable distributions determined by
a noise schedule {βt}Tt=1, such that the reverse generative model can be trained efficiently. As
molecular data consists of atoms, bonds, and 3D coordinates, recent work leverages a combination
of Gaussian and categorical diffusion for 3D molecular generation (Peng et al., 2023; Vignac et al.,
2023; Guan et al., 2023). A subtle property of tractable transition kernels is that the distribution of a
noisy state conditioned on a data sample is also tractable, and for continuous or discrete data follows
a multivariate normal or categorical distribution

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I) and q(ct|c0) = C(ct|ᾱtc0 + (1− ᾱt)c̃), (1)

where ᾱt =
∏t

k=1(1−βk) ∈ (0, 1), and (1−ᾱt) determine a variance-preserving (VP) noise sched-
uler Song et al. (2021b). The vector c̃ with c̃⊤1K = 1 determines the prior distribution of the cate-
gorical diffusion, as ᾱT −→ 0. Possible prior distributions are the uniform distribution over K-classes
or the empirical distribution of categories in a dataset. In this work, we perturb atomic coordinates
X, chemical elements H, and edge features E independently, using Gaussian and categorical diffu-
sion. To conserve the edge-symmetry between atoms i and j, we only perturb the upper-triangular
elements of E. Diffusion models are trained by maximizing the variational lower-bound of the data
log-likelihood (Sohl-Dickstein et al., 2015; Kingma et al., 2021; Austin et al., 2021) decomposed as
log p(x) ≥ L0 + Lprior +

∑T−1
t=1 Lt, where L0 = log p(x0|x1) and Lprior = −DKL(q(xT |p(xT ))

denote the reconstruction, and prior loss. These two loss terms are commonly neglected during op-
timization, while the diffusion loss Lt = −DKL[q(xt−1|xt, x0)|pθ(xt−1|xt)] has a closed-form ex-
pression since q(xt−1|xt, x0) is either a multivariate normal or categorical distribution, enabling ef-
ficient KL divergence minimization by predicting the corresponding distribution parameters. These
are defined as a function of xt and x0, implying that the diffusion model is tasked to predict the
clean data sample x̂0 to optimize Lt (Ho et al., 2020; Austin et al., 2021).
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4 EQGAT-DIFF

An essential requirement to obtain a data-efficient model is to reflect the permutational symmetry of
atoms of the same chemical element and the roto-translational symmetries of 3D molecular struc-
tures. In machine learning force fields, it has been shown that rotationally invariant features alone
do not accurately represent the 3D molecular structure and hence require higher-order equivariant
features (Schütt et al., 2021; Batzner et al., 2022; Thölke & Fabritiis, 2022; Batatia et al., 2022).

In short, a function f : X → Y mapping from input space X to output space Y is equivariant to
the group G iff f(g.x) = g.f(x), where g. denotes the action of the group element g ∈ G on an
object x, y ∈ X ,Y . As graph neural networks operate on graphs and map nodes into a feature space
through shared transformations among all nodes, permutation equivariance is naturally preserved
Bronstein et al. (2021). In contrast, point clouds are embedded in 3D space, so we additionally con-
sider the rotation, reflection, and translation group in R3, often abbreviated as E(3). For the atomic
coordinates, we require that f(XQ+ t) = f(X)Q+ t, where Q ∈ O(3) is a rotation or reflection
matrix and t ∈ R3 a translation vector added row-wise. Group equivariance of a function f in the
context of a diffusion model for molecular data is a requirement to preserve the group invariance
for a probability density, as shown by Köhler et al. (2020) and Xu et al. (2022). To better address
the challenge of molecular modeling, we propose a modified version of the EQGAT architecture
Le et al. (2022), coined EQGAT-diff, which leverages attention-based feature aggregation of neigh-
boring nodes. EQGAT-diff employs rotation equivariant vector features that can be interpreted as
learnable vector bundles, which the denoising networks of EDM Hoogeboom et al. (2022) and MiDi
Vignac et al. (2023) are lacking. Point clouds are modeled as fully connected graphs, so message
passing computes all pairwise interactions. Equivariant vector features are obtained through a tensor
product of scalar features with normalized relative positions x(ji,n) =

1
||xj−xi|| (xj−xi) as similarly

proposed in the works of Jing et al. (2021) and Schütt et al. (2021). We iteratively update hidden
edge features within the EQGAT-diff architecture to handle the edge prediction between two atoms.
To achieve this, we modify the message function of EQGAT as

m
(l)
ji = MLP([h(l)

j ;h
(l)
i ;W(l)

e0 e
(l)
ji ; d

(l)
ji ; d

(l)
j ; d

(l)
i ;p

(l)
j · p(l)

i ]),

where ; denotes concatenation of E(3) invariant embeddings and MLP is a 2-layer multi-layer per-
ceptron. The message embedding m

(l)
ji = (a

(l)
ji ,b

(l)
ji , c

(l)
ji ,d

(l)
ji , s

(l)
ji )

⊤ ∈ RK is further split into
sub-embeddings that serve as filter to aggregate node information from all other source nodes j.

h
(l+1)
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(l)
i +

∑

j

exp(a
(l)
ji )∑

j′ exp(a
(l)
j′i)

W
(l)
h h

(l)
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(l+1)
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e1 σ(e
(l)
ji + d

(l)
ji ),

v
(l+1)
i = v

(l)
i +

1

N

∑

j

xji,n ⊗ b
(l)
ji + (1⊗ c

(l)
ji ) ⊙ v

(l+1)
j W(l)

v ,

x
(l+1)
i = x

(l)
i +

1

N

∑

j

s
(l)
ji x

(l)
ji,n,

where 1 = (1, 1, 1)⊤ and σ is the SiLU activation function. The embeddings are further updated
and normalized with details explained in the Appendix A.1.

5 EXPLORING THE DESIGN SPACE OF 3D MOLECULAR DIFFUSION MODELS

The design space of diffusion models has many degrees of freedom concerning, among others,
the data representation, training objective, forward inference process, and the denoising neural
network. In de novo 3D molecular generation, Hoogeboom et al. (2022) (EDM) utilized the ϵ-
parameterization and proposed to model chemical elements as well as atomic positions continuously.
Vignac et al. (2023) proposed MiDi, which generates the molecular graph and 3D structure simulta-
neously. This model uses the x0-parameterization and employs the framework developed by Austin
et al. (2021) to model not only chemical elements but also formal charges and bond types in dis-
crete state space. Both parameterizations optimize the same objective, i.e., aiming to minimize the
KL divergence DKL[q(xt−1|xt, x0)|pθ(xt−1|xt)]. Ho et al. (2020) found that optimizing the dif-
fusion model in noise-space on images results in improved generation performance than predicting
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Table 1: Comparison of EQGAT-diff on QM9 and GEOM-Drugs trained with wu or ws(t) loss-
weighting. We report the mean values over five runs of selected evaluation metrics with the margin
of error for the 95% confidence level given as subscripts. The best results are in bold.

QM9 GEOM-Drugs
Weighting Mol. Stability ↑ Validity ↑ Connect. Comp. ↑ Mol. Stability ↑ Validity ↑ Connect. Comp. ↑
wu 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33

ws(t) 98.68±0.11 98.96±0.07 99.94±0.03 91.60±0.14 84.02±0.19 95.08±0.12

the original image from a noised version. While noise prediction might benefit the image domain,
this does not necessarily generalize to 3D molecular data. In fact, MiDi outperforms EDM across
all standard benchmark metrics and datasets. However, whether the improved performance stems
from the x0-parameterization, the employment of categorical diffusion for discrete features, or using
bond types and other chemical features has still been unclear, leaving researchers and practitioners
guessing which kind of diffusion model to deploy in their respective tasks.

In this section, we explore the design space of de novo molecular diffusion models in these three
aspects while consistently using EQGAT-diff as the denoising neural network to isolate the effect
of each change for better comparison. The diffusion models are evaluated on the QM9 dataset
(Ramakrishnan et al., 2014) containing molecules with up to 9 heavy atoms, and the GEOM-Drugs
dataset (Axelrod & Gómez-Bombarelli, 2022) containing up to 15 heavy atoms. We utilize the data
splits from Vignac et al. (2023) and benchmark all models on full molecular 3D graphs that include
explicit hydrogens.

5.1 TRAINING DETAILS

We either employ noise prediction (ϵ-parameterization) or data prediction (x0-parameterization)
to train EQGAT-diff , such that the group equivariant network fθ(xt) receives a noisy molecule
xt = (Xt,Ht,Et) and either outputs the applied noise ϵ̂t = (ϵ̂Xt , ϵ̂Ht , ϵ̂Et) or a prediction of the
clean data x̂0 = (X̂0, Ĥ0, Ê0) of coordinates, chemical elements as well as bonds. We draw a
random batch of molecules and uniformly sample steps t ∈ U(1, T ) and optimize the diffusion loss
Lt for each sample. While we use the mean squared error loss for the ϵ-model, the x0-model is
optimized using loss functions ld depending on the data modality d. Here, ld is a mean squared error
for continuous and the cross-entropy loss for categorical data. This leads to a composite loss

Lt,ϵ = w(t)||ϵt − ϵ̂θ(xt, t)||2 and Lt,x0
= w(t) · ld(x0, x̂θ(xt, t);λm), (2)

where λm denotes a modality-dependent weighting, which we adopt from Vignac et al. (2023) and
set to λx = 3, λh = 0.4, λe = 2. For noise learning, we adopt an atom-type feature scaling of 0.25
as in Hoogeboom et al. (2022). Notably, w(t) is a loss weighting commonly set to 1 across all time
steps, which has been previously found to work best (Ho et al., 2020). In contrast to this result, we
find this term to be crucial for molecular design, as discussed in Sec. A.4. Following Vignac et al.
(2023), we also employ an adaptive noise schedule (see Appendix A.1.1).

5.2 METRICS

Following (Hoogeboom et al., 2022), we measure validity using the success rate of RDKit sani-
tization over 10,000 molecules (pre-selecting connected components only) - with the caveat that
the RDKit sanitization might add implicit hydrogens to the system to satisfy the chemical con-
straints. Therefore, checking atomic and molecular stability for the correct valencies using a pre-
defined lookup table that complements the validation is essential. Further, we propose to include
diversity/similarity measures. We evaluate the diversity of sampled molecules using the average
Tanimoto distance and measure the similarity with the training dataset via Kullback-Leibler diver-
gence and the Tanimoto distance. Lastly, following Vignac et al. (2023), we use the atom and bond
total variations (AtomsTV and BondsTV) that measure the l1 distance between the marginal distri-
bution of atom types and bond types for the generated set and the test set, respectively. Moreover,
we employ the Wasserstein distance between valencies, bond lengths, and bond angles, with the
latter two being 3D metrics to evaluate conformer accuracy. For more details, we refer to Vignac
et al. (2023) and Appendix A.2.
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Kingma et al. (2021) have shown that the intermediate KL-divergence loss Lt in the variational
lower bound (VLB) for a Gaussian diffusion can be simplified to

Lt =
1

2
(w(t))||x0 − xθ(xt, t)||22 =

1

2
Eϵ∼N (0,I)[(SNR(t− 1)− SNR(t))||x0 − xθ(xt, t)||22],

where SNR(t) = ᾱt

1−ᾱt
refers to the signal-to-noise ratio. However, the weighting coefficients in

diffusion models for molecules are commonly set to 1, i.e., wu = 1 in EDM or MiDi (Hoogeboom
et al., 2022; Vignac et al., 2023).

We hypothesize that denoising requires high accuracy for timesteps close to the data distribution
to generate valid molecules, while errors close to the noise distribution are neglectable. Such loss
weighting has been proposed by Salimans & Ho (2022) as ’truncated SNR’, which we modify for
our use case. Specifically, we perform experiments with the loss weighting

ws(t) = max(0.05, min(1.5, SNR(t))), (3)

which matches our hypothesis about learning with higher weightings approaching the data distri-
bution (see A.4.1 and Fig. 5). We clip the maximum value of 1.5 to enforce larger weightings to
enhance learning compared to uniform weighting, followed by an abrupt exponential decay. We train
EQGAT-diff using Gaussian diffusion on atomic coordinates and categorical diffusion for chemical
elements, formal charges, and bond features following the parameterization proposed by Vignac
et al. (2023), predicting a clean data sample x̂0 given a noisy version xt. As shown in Table 1, train-
ing EQGAT-diff on GEOM-Drugs with ws(t) results in a better generative model that can sample
molecules preserving chemistry rules, measured in increased molecule stability of 91.60%, com-
pared to the EQGAT-diff which was trained with wu, only achieving 87.59%. As the ws(t) loss
weighting achieved better evaluation metrics and significantly faster training convergence on the
QM9 and GEOM-Drugs datasets, we choose it as default for the following experiments conducted
in this work. We provide further empirical evidence in Appendix A.3

Table 2: Overall performance of EQGAT-diff on QM9 and GEOM-Drugs for discrete and continuous
diffusion as well as noise (ϵ) and data learning (x0). Discrete or continuous diffusion is denoted as
’disc’ and ’cont’, respectively, given as subscripts, ϵ- and x0-parameterization as superscripts. We
report mean values over five sampling runs with 95% confidence intervals as subscripts. The best
results are in bold.

Dataset QM9 GEOM-Drugs

Model EQGATx0
disc EQGATx0

cont EQGATϵ
cont EQGATx0

disc EQGATx0
cont EQGATϵ

cont

Mol. Stab. ↑ 98.68±0.11 96.45±0.17 96.18±0.16 91.60±0.14 90.46±0.09 85.19±0.72

Atom. Stab ↑ 99.92±0.00 99.79±0.01 99.68±0.02 99.72±0.01 99.73±0.01 99.32±0.04

Validity ↑ 98.96±0.07 96.79±0.15 97.04±0.17 84.02±0.19 80.96±0.38 79.13±0.58

Connect. Comp. ↑ 99.94±0.03 99.82±0.05 99.71±0.03 95.08±0.12 93.30±0.21 94.10±0.48

Novelty ↑ 64.03±0.24 60.96±0.54 73.40±0.32 99.87±0.04 99.83±0.04 99.82±0.0

Uniqueness ↑ 100.00±0.00 100.0±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

Diversity ↑ 91.72±0.02 91.51±0.03 91.89±0.03 89.00±0.03 88.87±0.04 88.97±0.05

KL Divergence ↑ 91.36±0.29 91.41±0.54 88.97±0.31 87.17±0.34 87.35±0.35 87.70±0.58

Train Similarity ↓ 0.076±0.00 0.076±0.00 0.075±0.00 0.113±0.00 0.114±0.00 0.114±0.00

AtomsTV [10−2] ↓ 1.0±0.00 2.0±0.00 2.7±0.00 3.4±0.10 3.6±0.10 2.9±0.20

BondsTV [10−2] ↓ 1.2±0.00 1.8±0.00 1.2±0.00 2.4±0.00 2.4±0.00 2.4±0.00

ValencyW1 [10−2] ↓ 0.6±0.10 1.9±0.00 0.9±0.00 1.2±0.10 1.9±0.10 1.6±0.00

BondLenghtsW1 [10−2] ↓ 0.2±0.10 0.5±0.00 0.2±0.10 0.2±0.10 0.3±0.00 0.7±0.40

BondAnglesW1 ↓ 0.42±0.03 1.86±0.06 0.52±0.03 0.92±0.02 0.95±0.02 1.07±0.06

5.3 DIFFUSION PARAMETERIZATION: ϵ VS x0 AND DISCRETE VS CONTINUOUS

Diffusion models for continuous data are commonly implemented using the ϵ-parameterization Ho
et al. (2020), which is connected to denoising score matching models proposed by Song & Ermon
(2019). Diffusion models have quickly adapted this setting for 3D molecular design (Hoogeboom
et al., 2022; Igashov et al., 2022; Schneuing et al., 2023). However, no comparative study of x0

and ϵ-parameterization in this domain has been performed yet. To close this gap, we benchmark the
ϵ- vs. the x0-parameterization on data modalities subject to a Gaussian diffusion. That is, we treat
all node features (including atomic elements, charges, and coordinates) as well as the bond features
as continuous variables and optimize our diffusion model using either the ϵ- or x0-parameterization
with the loss functions defined in Eq. (2).
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Figure 1: Selected evaluation metrics for EQGAT-diff trained on GEOM-Drugs subsets (25, 50,
75%) from scratch or fine-tuned. We also report the results of the pre-trained, not fine-tuned model
(0%).

In the following, we abbreviate EQGAT-diff with EQGAT to keep the notation clear, depicting
the diffusion type subscripted and the parameterization superscripted. Table 2 shows that the x0-
parameterization (EQGATx0

cont) achieves higher molecule stability on QM9 and GEOM-Drugs than
the ϵ-parameterization (EQGATϵ

cont). The performance gap is pronounced on the GEOM-Drugs
dataset, which covers a broader range of larger and more complex molecules. On this more de-
manding benchmark, EQGATx0

cont outperforms the ϵ-model with 90.46% molecule stability against
85.19%. The lower molecule stability for the ϵ-model is due to the molecular graph not being ac-
curately denoised during the sampling. Thus, the final edge features do not preserve the valency
constraints of the chemical elements.

Next, we compare how the choice of categorical or Gaussian diffusion for modeling the chemical
elements, charges, and edge features affects the generation performance. Recall that the noising pro-
cess in the categorical diffusion perturbs the one-hot encoding of discrete features by jumping from
one class to another, or staying on the same class. Alternatively, noise from a multivariate normal
distribution is added to the (scaled) one-hot encodings, as described in Eq. (1). For both settings, the
diffusion models (EQGATx0

disc and EQGATx0
cont) are tasked with predicting the original data point

x0, as there is no ϵ-parameterization when employing categorical diffusion. The previous ablation
has shown that data prediction is superior to noise prediction when dealing with molecular data in
a continuous setting. We discover that EQGATx0

disc outperforms EQGATx0
cont in all evaluation met-

rics on the QM9 and GEOM-Drugs dataset as shown in Table 2. Hence, employing the categorical
diffusion for discrete state-space in the x0-parameterization is the preferred choice.

6 TRANSFERABILITY OF MOLECULAR DIFFUSION MODELS
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Figure 2: Comparing EQGATx0,ft
disc

with EQGATx0

disc, and EQGATx0
cont

regarding molecule stability of 600
generated molecules with an increas-
ing number of atoms. Standard devi-
ations are plotted in shaded areas.

In many molecular design scenarios, only a limited amount
of training data is available for a desired target distribution,
e.g., in structure-based drug design. However, 3D generative
molecular diffusion models require a lot of training data to
yield a high ratio of valid and novel molecules. This sec-
tion investigates how well a diffusion model pre-trained on
a general large set of molecules transfers to a target distri-
bution specified by a small training set of complex molecu-
lar structures. We use the PubChem3D dataset Bolton et al.
(2011) for pre-training, which consists of roughly 95.7 mil-
lion compounds from the PubChem database. It includes all
molecules with chemical elements H, C, N, O, F, Si, P, S, Cl,
Br, and I with less than 50 non-hydrogen atoms and a max-
imum of 15 rotatable bonds. The 3D structures have been
computed using OpenEye’s OMEGA software (Hawkins &
Nicholls, 2012). We train EQGAT-diff on PubChem3D on
four Nvidia A100 GPUs for one epoch (∼ 24 hours). In-
terestingly, we found that by reducing the size of molecular
graphs using only implicit hydrogens, we could reduce the
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Table 3: Comparison of EQGATdisc models trained for 800 epochs on GEOM-Drugs. The super-
scripts ’ft’ and ’af’ abbreviate fine-tuned and additional-features. The margin of error for the 95%
confidence level is given as subscripts. We also compare EDM and the current SOTA, MiDi. Train-
ing details for MiDi are given in Appendix A.6. The best results are in bold.

Dataset GEOM-Drugs

Model EQGATx0
disc EQGATx0,ft

disc EQGATx0,af
disc EQGATx0,af,ft

disc EDM MiDi

Mol. Stab. ↑ 93.11±0.31 93.92±0.13 94.51±0.18 95.01±0.37 40.3 89.7±0.60

Atom. Stab ↑ 99.79±0.01 99.81±0.01 99.83±0.01 99.84±0.00 97.8 99.7±0.01

Validity ↑ 85.86±0.33 88.04±0.17 87.89±0.31 88.42±0.26 87.8 70.5±0.41

Connect. Comp. ↑ 96.32±0.25 96.57±0.18 96.36±0.25 96.71±0.20 41.4 88.76±0.55

Novelty ↑ 99.82±0.05 99.84±0.02 99.82±0.05 99.82±0.03 100.00 100.00±0.00

Diversity ↑ 89.03±0.03 89.05±0.05 88.98±0.02 88.96±0.01 - -
KL Divergence ↑ 87.66±0.31 87.58±0.56 88.38±0.25 87.62±0.19 - -

Train Similarity ↓ 0.114±0.0 0.113±0.0 0.114±0.0 0.114±0.0 - -
AtomsTV [10−2] ↓ 3.02±0.08 3.02±0.10 2.88±0.10 2.91±0.10 21.2 5.11±0.19

BondsTV [10−2] ↓ 2.44±0.01 2.40±0.00 2.42±0.00 2.40±0.00 4.8 2.44±0.00

ValencyW1 [10−2] ↓ 1.18±0.09 1.20±0.00 0.85±0.12 0.90±0.10 28.5 2.48±0.52

BondLenghtsW1 [10−2] ↓ 0.56±0.38 0.10±0.00 0.50±0.51 0.20±0.10 0.2 0.2±0.10

BondAnglesW1 ↓ 0.83±0.03 0.79±0.02 0.65±0.01 0.62±0.01 6.23 1.73±0.32

pre-training time significantly without sacrificing performance in fine-tuning. For a comparison to
keeping explicit hydrogens in the pre-training, see Appendix A.5. During fine-tuning, the diffusion
model is tasked to adapt to the distribution of another dataset, now including explicit hydrogens.

To evaluate the effectiveness of pre-training, we fine-tune subsets of (25, 50, 75%) of the QM9 and
GEOM-Drugs datasets. Our results suggest that using a pre-trained model and subsequent fine-
tuning shows consistently superior performance across datasets, partly by a large margin (see Fig.
1). We demonstrate the importance of pre-training by evaluating molecule stability, validity, and
the number of connected components of a fine-tuned model compared to training from scratch on
the full data and its 25, 50, 75% subsets. As a reference point (0%), we show the pre-trained model
without fine-tuning evaluated on the aforementioned metrics. Interestingly, the fine-tuned model
shares similar (best) scores with EQGATx0

disc trained from scratch on 100% of the data when looking
at atom type variation and valency as well as angle distance metrics using a hold-out test set as a
reference. These metrics capture how well the model learns the underlying data distribution.

We find that the fine-tuned model effectively learns a distribution shift on GEOM-Drugs by only
being trained on small subsets of the data. We list more detailed evaluation metrics and the evalu-
ation on QM9 in Appendix A.3. Comparing the fine-tuned model EQGATx0,ft

disc with EQGATx0

disc,
and EQGATx0

cont, respectively, shown in Fig. 2, we can also observe that the fine-tuning leads to
significantly more stable predictions for larger molecules. We suspect that these findings might also
apply to learning building blocks on large databases like the Enamine REAL Space to bias the gen-
erative model towards, e.g., higher synthesizability while ensuring an efficient distribution shift on
the target distribution.

7 INSERTING CHEMICAL DOMAIN KNOWLEDGE

In the previous sections, we examined and outlined the importance of design choices when em-
ploying diffusion models for 3D molecular generation. Taking these results, we select the best two
models - with and without fine-tuning: EQGATx0,ft

disc and EQGATx0
disc - and train them to full con-

vergence, comparing with EDM and MiDi. We demonstrate in Tab. 3 that EQGATx0,ft
disc , and even

more so EQGATx0,af
disc and EQGATx0,af,ft

disc , outperform MiDi on all evaluation metrics by a large
margin, while, most notably, our models converge significantly faster and are twice as fast compu-
tationally (see Appendix A.6). Given the demonstrated ability of diffusion models to learn the data
distribution of complex molecular structures, we insert more chemical domain knowledge into the
diffusion model, going beyond bonding. We additionally utilize aromaticity, ring correspondence,
and hybridization states to provide a more comprehensive description of the molecular structure.
The new additional features are independently perturbed using the categorical transition kernels (see
Eq. (1)) and subsequently denoised by our model. We observe that these additional chemical fea-
tures again improve the performance of our models (EQGATx0,af

disc and EQGATx0,af,ft
disc ) compared

to our previous models as well as EDM and MiDi.
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8 STRUCTURE-BASED DE NOVO LIGAND DESIGN

We train EQGAT-diff on the Crossdocked dataset Francoeur et al. (2020) for de novo structure-based
ligand design. Following (Guan et al., 2023) and (Schneuing et al., 2023), we consider the protein
pocket as a condition to generate novel ligands. Here, the pocket is seen as a fixed 3D context, while
the ligand’s coordinates, atom and bond types get diffused and denoised. In Tab. 4, we report the
validity, number of connected components as well as the Wasserstein distances of bond lengths and
angles between generated set to the training set, respectively. We observe that the finetuned model
with timestep loss weighting significantly outperforms the models that are trained from scratch on
all metrics. For the models trained from scratch, using timestep weighting shows better performance
than no loss weighting. These results further underline the relevance of our findings allowing for an
effective transfer of our model to structure-based molecule generation.

Table 4: Comparison of EQGAT-diff models trained on the Crossdocked dataset for pocket-
conditioned de novo ligand generation. EQGATx0

disc and EQGATx0,ft
disc are compared with and with-

out loss weighting, each trained for 300 epochs. Mean values are reported over five runs of selected
evaluation metrics with the margin of error for the 95% confidence level given as subscripts and best
results in bold.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 [10−2] ↓ BondAngles W1 ↓
EQGATx0

disc(wu) 85.51±0.09 95.15±0.14 0.20±0.0 4.37±0.20

EQGATx0
disc(ws(t)) 89.62±0.08 97.65±0.11 0.12±0.0 2.12±0.26

EQGATx0,ft
disc (ws(t)) 95.65±0.12 99.66±0.10 0.11±0.0 1.55±0.21

Based on these results, we sample ligands from EQGATx0,ft
disc for docking. Following Luo et al.

(2021), Peng et al. (2022), we draw 100 valid ligands per protein pocket and evaluate them using
Vina (Hassan et al., 2017) as an empirical proxy of the ligand binding affinity. As shown in Tab. 5,
EQGATx0,ft

disc outperforms both TargetDiff Guan et al. (2023) and DiffSBDD Schneuing et al. (2023)
on the docking score and across all other metrics while generating more diverse ligands.

Table 5: Docking performance comparison between EQGATx0,ft
disc , TargetDiff and DiffSBDD trained

on the Crossdocked dataset for pocket-conditioned de novo ligand generation. Best results in bold.

Model Vina (All) ↓ Vina (Top-10%) ↓ QED ↑ SA ↑ Lipinski ↑ Diversity ↑
EQGATx0,ft

disc (ws(t)) -7.423±2.33 -9.571±2.14 0.522±0.18 0.697±0.20 4.66±0.72 0.742±0.07

TargetDiff -7.318±2.47 -9.669±2.55 0.483±0.20 0.584±0.13 4.594±0.83 0.718±0.09

DiffSBDD-cond -6.950±2.06 -9.120±2.16 0.469±0.21 0.578±0.13 4.562±0.89 0.728±0.07

9 CONCLUSIONS

In this work, we have introduced EQGAT-diff, a framework for fast and accurate end-to-end differ-
entiable de novo molecule generation in 3D space, jointly predicting geometry, topology, chemical
composition and optionally other chemical features like the hybridization. The findings presented
here are underpinned by comprehensive ablation studies, which address a previously scientific blank
spot by thoroughly exploring the design space of 3D equivariant diffusion models. We have specif-
ically designed an equivariant diffusion model that combines Gaussian and discrete state space
diffusion. Crucially, we have incorporated a timestep-dependent loss weighting that significantly
enhances the performance and training time of EQGAT-diff and, furthermore, showcased the trans-
ferability of our model being pre-trained on PubChem3D on small datasets. Our proposed models
have significantly surpassed the current state-of-the-art 3D diffusion models, particularly in gener-
ating larger and more complex molecules, as evidenced by their high molecule stability and validity,
which evaluate that chemistry rules are preserved. Most notably, we also showcased that our frame-
work seamlessly transfers to target-conditioned de novo ligand design superior docking scores while
ensuring high diversity in samples. Given these achievements, we anticipate our findings will open
avenues for ML-driven de novo structure-based drug discovery.
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CODE AVAILABILITY

Our source code and implementation will be released under https://github.com/
pfizer-opensource/eqgat-diff.

ACKNOWLEDGMENTS

This study was partially funded by the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie Innovative Training Network European Industrial Doc-
torate grant agreement No. 956832 ”Advanced machine learning for Innovative Drug Discovery.”

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=h7-XixPCAL.

Simon Axelrod and Rafael Gómez-Bombarelli. Geom, energy-annotated molecular conforma-
tions for property prediction and molecular generation. Sci. Data, 9(1):185, Apr 2022. ISSN
2052-4463. doi: 10.1038/s41597-022-01288-4. URL https://doi.org/10.1038/
s41597-022-01288-4.

Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. Gfn2-xtb—an accurate and broadly
parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics
and density-dependent dispersion contributions. J. Chem. Theory Comput., 15(3):1652–1671,
Mar 2019. ISSN 1549-9618. doi: 10.1021/acs.jctc.8b01176. URL https://doi.org/10.
1021/acs.jctc.8b01176.

Ilyes Batatia, David Peter Kovacs, Gregor N. C. Simm, Christoph Ortner, and Gabor Csanyi. MACE:
Higher order equivariant message passing neural networks for fast and accurate force fields. Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=YPpSngE-ZU.

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Ko-
rnbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neu-
ral networks for data-efficient and accurate interatomic potentials. Nat. Commun., 13(1),
may 2022. doi: 10.1038/s41467-022-29939-5. URL https://doi.org/10.1038%
2Fs41467-022-29939-5.

Evan E. Bolton, Jie Chen, Sunghwan Kim, Lianyi Han, Siqian He, Wenyao Shi, Vahan Simonyan,
Yan Sun, Paul A. Thiessen, Jiyao Wang, Bo Yu, Jian Zhang, and Stephen H. Bryant. Pub-
Chem3D: a new resource for scientists. Journal of Cheminformatics, 3(1):32, September 2011.
ISSN 1758-2946. doi: 10.1186/1758-2946-3-32. URL https://doi.org/10.1186/
1758-2946-3-32.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velivckovi’c. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478, 2021. URL https:
//api.semanticscholar.org/CorpusID:233423603.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
kKF8_K-mBbS.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger
Bridge with Applications to Score-Based Generative Modeling. In Advances in Neural
Information Processing Systems, volume 34, pp. 17695–17709. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
hash/940392f5f32a7ade1cc201767cf83e31-Abstract.html.

10



Published as a conference paper at ICLR 2024

Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh,
and Arnaud Doucet. Riemannian Score-Based Generative Modelling. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 2406–2422. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/105112d52254f86d5854f3da734a52b4-Paper-Conference.pdf.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, 2021. URL https://openreview.net/forum?id=
AAWuCvzaVt.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. URL https:
//api.semanticscholar.org/CorpusID:70349949.

Paul G. Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B. Iovanisci, Ian
Snyder, and David R. Koes. Three-dimensional convolutional neural networks and a cross-
docked data set for structure-based drug design. Journal of Chemical Information and Mod-
eling, 60(9):4200–4215, Sep 2020. ISSN 1549-9596. doi: 10.1021/acs.jcim.0c00411. URL
https://doi.org/10.1021/acs.jcim.0c00411.

Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted genera-
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A APPENDIX

A.1 MODEL DETAILS

Before message passing, we create a time embedding te = t
T = t

500 and concatenate those to the
geometric-invariant (scalar) features, including atomic elements and charges, to pass the timestep in-
formation into the network. After each round of message passing, we employ a normalization layer
for the position updates as proposed by Vignac et al. (2023), while scalar and vector features (h,v)
are normalized using a Layernorm followed by an update block using gated equivariant transforma-
tion as proposed in the original EQGAT architecture (Le et al., 2022). After L round of message
passing and update blocks, we leverage the last layers’ embeddings to perform the final prediction
x̂0 = (X̂, Ĥ, Ê) as shown in Figure 3. For the case that additional (geometric) invariant features are
modeled, including the atomic formal charges, aromaticity, or hybridization state, the hidden node
matrix Ĥ includes them as output prediction by simple concatenation, i.e., predicting more output
channels.

We implement EQGAT-diff using PyTorch Geometric (Fey & Lenssen, 2019) and leverage the
(sparse) coordinate (COO) format that stores the molecular data and respective edge indices of the
fully connected graphs.

A.1.1 MODEL TRAINING

We optimize EQGAT-diff under x0 parameterization utilizing Gaussian diffusion for coordinates
and categorical diffusion for discrete-valued data modalities, including chemical elements and bond
types.

Lt−1 = ws(t)
(
λx||X0 − X̂0||2 + λhCE(H0, Ĥ0) + λeCE(E0, Ê0)

)
, (4)

where CE refers to the cross-entropy loss and (λx, λh, λe) = (3, 0.4, 2) are weighting coefficients
adapted from Vignac et al. (2023).

In all experiments, EQGAT-diff uses 256 scalar and vector features each and 128 edge features across
12 layers of fully connected message passing. This corresponds to 12.3M trainable parameters.

We train for 200 epochs on QM9 and 400 epochs on GEOM-Drugs to achieve comparability across
models while ensuring computational feasibility regarding many ablation experiments. We use
fewer epochs for QM9 since the diffusion models quickly overfit such that the novelty of sampled
molecules decreases. This is not the case with GEOM-Drugs.

We use the AMSGrad with a learning rate of 2 · 10−4, weight-decay of 1 · 10−12, and gradient
clipping for values higher than ten throughout all experiments. The weights of the final model are
obtained by an exponential moving average with a decay factor of 0.999.
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Figure 3: Prediction module that processes EQGAT-diff embeddings to obtain the predicted data
modalities. The computational graph reads from top to bottom.

15



Published as a conference paper at ICLR 2024

On the QM9 dataset, we use a batch size of 128; on the GEOM-Drugs dataset, we use an adaptive
dataloader with a batch size of 800 following (Vignac et al., 2023). All models are trained on four
Nvidia A100 GPUs.

For training, we use an adaptive noise schedule proposed by (Vignac et al., 2023):

ᾱt = cos

(
π

2

(t/T + s)ν

1 + s

)2

.

The respective scaling hyperparameter ν was set to νr = 2.5, νy = 1.5, νx = νc = 1 on the QM9
dataset. At the same time, for GEOM-Drugs we use νr = 2 with νr, νx, νy and νc denoting atom
coordinates, atom types, bond types, and charges, respectively. This noise scheduler accounts for
the various variables of graph and 3D structure not being equally informative for the model and has
been found by Vignac et al. (2023) to outperform the cosine schedule (Nichol & Dhariwal, 2021;
Hoogeboom et al., 2022) significantly.

A.1.2 MODEL SAMPLING

As mentioned in Sec. 5.2, the diffusion loss term Lt = −DKL[q(xt−1|xt, x0)|pθ(xt−1|xt)] is
optimized by minimizing the KL-divergence. For the case of continuous data types, i.e., coordinates,
the tractable reverse distribution (Sohl-Dickstein et al., 2015; Ho et al., 2020) is

q(xt−1|xt,x0) = N (xt−1|µt−1(xt,x0),Σt−1), (5)

with µt−1(xt,x0) =
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−αt
xt and Σt−1 = 1−ᾱt−1

1−ᾱt
βtI, where we assume that

the coordinate matrix is vectorized to have shape 3N .

Sampling from that reverse distribution is obtained through the denoising network that predicts the
clean coordinate matrix to parameterize pθ(xt−1|xt) = q(xt−1|xt, x̂0) and sample via

xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
αt(1− ᾱt−1)

1− αt
xt +

√
1− ᾱt−1

1− ᾱt
βt · ϵCM, (6)

where ϵCM = ϵ− 1
3N

∑3N
i ϵi is a Gaussian noise vector with zero mean.

For discrete variables, we obtain a tractable reverse distribution that is categorical Austin et al.
(2021)

q(ct−1|c0, ct) = C(ct−1|pt−1(c0, ct)), (7)

with probability vector defined as pt−1(c0, ct) =
ctU

⊤
t ⊙c0Ūt−1

c0Ūtc⊤
t

where the entry [Ut]ij denotes the
transition probability to jump from state i to j and is defined as

Ut = (1− βt)IK + βt1K c̃⊤ = αtIK + (1− αt)1K c̃⊤, (8)

while the cumulative product after t timesteps starting from 1 can be simplified to

Ūt = U1U2 . . .Ut = ᾱtIK + (1− ᾱt)1K c̃⊤. (9)

We recall that the one-hot encoding of each node or edge is perturbed independently during the
forward process, such that the encoding ct ∈ {0, 1}K is obtained by sampling from the categorical
distribution q(ct|c0) = C(ct|ᾱtc0 + (1− ᾱt)c̃) as described in Eq. (1).

Similar to (Austin et al., 2021; Vignac et al., 2023), we obtain the reverse process for discrete data
types by marginalizing the network predictions (for each node in the graph)

pθ(ct−1|ct) ∝
K∑

k=1

q(ct−1|ct, ek)ĉ0,k, (10)

where ek is an one-hot-encoding with 1 at index k and ĉ0,k is the k-th entry in the softmaxed
probability vector ĉ0.
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A.2 METRICS

The Wasserstein distance between valencies is given as a weighted sum over the valency distribu-
tions for each atom type

ValencyW1 =
∑

x∈ atom types

p(x)W1

(
D̂val(x), Dval(x)

)
, (11)

with pX(x) being the marginal distribution of atom types in the training set and D̂val (x) the marginal
distribution of valencies for atoms of type x in the generated set and Dval (x) the same distribution
in the test set. For the bond lengths metric, a weighted sum of the distance between bond lengths for
each bond type is used

BondLenghtsW1 =
∑

y∈ bond types

p(y)W1

(
D̂dist(y), Ddist(y)

)
, (12)

where pY (y) is the proportion of bond of types y in the training set, D̂dist (y) is the generated
distribution of bond lengths for the bond of type y, and Ddist(y) is the same distribution computed
over the test set. Lastly, the distribution of bond angles for each atom type is a weighted sum using
the proportion of each atom type in the dataset, restricted to atoms with two or more neighbors,
ensuring that angles can be defined

BondAnglesW1(generated, target) =
∑

x∈ atom types

p̃(x)W1

(
D̂angles(x), Dangles(x)

)
, (13)

with p̃X(x) denoting the proportion of atoms of types x in the training set, and Dangles (x) the
distribution of geometric angles of the form ∠ (rk − ri, rj − ri), where i is an atom of type x, and
k and j are neighbors of i (Vignac et al., 2023).

A.3 RESULTS AND DETAILS

We visualize the empirical distribution of the number of atoms and the chemical composition for
the QM9, GEOM-Drugs, and PubChem3D datasets in Figure 4. For PubChem3D, we show the
empirical distribution for the datasets with implicit and explicit hydrogens.
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Figure 4: Empirical distributions over QM9, GEOM-Drugs, and PubChem3D with implicit and
explicit hydrogens. a) Frequency for the number of atoms. b) Frequency for atomic elements.

A.4 TIME-DEPENDENT LOSS WEIGHTING

A.4.1 LOSS WEIGHTING AND FINE-TUNING

In the study in Section A.4, we conducted an ablation analysis to evaluate the efficacy of loss weight-
ing, comparing two weighting strategies denoted as ws(t) and wu, across different subsets (25, 50,
75, and 100%) of the QM9 and GEOM-Drugs datasets. In Fig. 5 the truncated loss weighting is
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Figure 5: Comparison of EQGAT-diff trained with ws(t) and wu, respectively, on GEOM-Drugs. a)
Uniform (wu) versus modified SNR(t) loss-weighting (ws(t)). b) Unweighted prediction errors for
models trained with wu or ws(t) loss-weightings over increasing timesteps. c) Comparison between
wu and ws(t) regarding molecule stability convergence during training.
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Figure 6: Comparison of different models and data subsets for training on GEOM-Drugs and QM9,
respectively. The dotted, solid lines depict the fine-tuned model using ws(t)-weighting. The solid
lines show the model using ws(t)-weighting and the dashed lines show the model trained without
loss-weighting. While training, after every 20 epochs, 1000 sampled molecules are evaluated on
molecule stability and validity.

depicted (left) besides the effect on the loss for lower timesteps illustrating the unweighted loss
over time steps for a batch of 128 molecules, where the model trained with ws(t) achieves lower
prediction error for steps closer to 1 (middle) and the effect on the molecule stability while training
showing better performance and faster training convergence for molecule stability when using ws(t)
(right).

As illustrated in Figure 6, applying loss weighting using ws(t) consistently results in performance
enhancements for the model. These enhancements are characterized by accelerated training conver-
gence, leading to improved molecule stability and validity, even when the model operates on smaller
subsets of the data. Notably, in the case of GEOM-Drugs, when trained with only 25% of the data
and optimized with ws(t) (indicated by the yellow solid line), the model exhibits convergence be-
havior similar to that of the model trained on 100% of the data with uniform weighting wu (indicated
by the yellow dashed line). Furthermore, fine-tuning leads to superior performance (dotted, solid
lines). After just 20 epochs of fine-tuning and only using 25% of the data, the model already out-
performs all its counterparts on molecule stability and validity even when they are trained on 100%
of the data and holds for both the GEOM-Drugs (first row) and QM9 (second row) datasets. Our
findings, as summarized in Table 6, underscore the critical role of loss weighting using ws(t) in the
training of diffusion models for molecular data and also highlight the importance of pre-training,
especially when the target distributions are small and do not contain many data points.
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Table 6: Comparison of EQGAT-diff on QM9 and GEOM-Drugs trained on subsets of 25, 50 and
75% of the data. We report the mean values over five runs of Molecular Stability (Mol. Stability),
Validity, and the number of Connected Components (Connect. Comp.) for training from scratch
with and without modified SNR(t) weighting and compare it with the performance of the fine-tuned
model (SNR(t)+fine-tune). The best results are written in bold, and results with overlapping margins
of errors are underlined. The margin of error for the 95% confidence level is given as subscripts.

QM9 GEOM-Drugs

Subset Mol. Stability Validity Connect. Comp. Mol. Stability Validity Connect. Comp.

wu

25% 96.01±0.22 96.68±0.24 99.59±0.05 74.12±0.29 51.32±0.38 68.88±0.25

50% 96.84±0.16 97.45±0.15 99.75±0.03 85.20±0.27 64.19±0.39 82.76±0.26

75% 96.19±0.18 96.83±0.17 99.84±0.03 87.08±0.33 74.27±0.29 88.69±0.29

100% 97.39±0.23 97.99±0.20 99.70±0.03 87.59±0.19 71.44±0.22 86.57±0.33

ws(t)

25% 97.34±0.15 97.77±0.09 99.81±0.03 88.39±0.39 75.44±0.46 85.35±0.51

50% 98.32±0.11 98.65±0.07 99.93±0.03 89.41±0.26 77.21±0.28 89.43±0.23

75% 98.45±0.08 98.77±0.04 99.93±0.02 91.88±0.20 82.77±0.16 93.39±0.20

100% 98.68±0.11 98.96±0.07 99.94±03 91.66±0.14 84.02±0.19 95.08±0.12

ws(t)+ fine-tune

25% 99.00±0.13 99.24±0.10 99.96±0.01 90.82±0.67 83.01±1.30 93.77±0.76

50% 99.21±0.09 99.41±0.07 99.96±0.01 91.24±0.82 83.83±1.51 94.66±0.77

75% 98.79±0.10 99.12±0.12 99.95±0.03 92.97±0.15 86.51±0.17 95.92±0.14

100% 98.94±0.07 99.28±0.09 99.95±0.02 93.19±0.07 86.83±0.20 96.31±0.21
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Figure 7: Comparison of the energy distributions calculated using xTB-GFN2 Bannwarth et al.
(2019) for the GEOM-Drugs training dataset against the energies of sampled molecules. We also
provide the energy distribution of PubChem3D (implicit hydrogens) to showcase the distribution
shift; for quantum physics-based software, those molecules appear to be radicals, and hence, the
energy distribution is shifted towards high energies. Nevertheless, the model effectively has to do
this shift while fine-tuning.

A.5 PRE-TRAINING ON PUBCHEM3D

To emphasize more the capability of the model to learn the underlying data distribution, we follow
(Hoogeboom et al., 2022) and plot the distribution of energies for sampled molecules of a model
trained on GEOM-Drugs against the energy distribution of the training dataset, as shown in Fig. 7.
We observe that EQGAT-diff learns the training distribution well, showing a high overlap. Further-
more, to highlight the shift in physical space the diffusion model has to perform while fine-tuning,
we also report the energy distribution of PubChem3D with implicit hydrogens. All energies were
calculated using the semi-empirical xTB-GFN2 software (Bannwarth et al., 2019).

We also pre-trained a model on the PubChem3D dataset with explicit hydrogens. Interestingly, as
shown in Tab. 7 we see a decrease in performance for the model that is fine-tuned on the pre-
training with explicit hydrogens compared to the model using implicit hydrogens, even though pre-
training with explicit hydrogens takes almost three times as long. We suspect that when using
explicit hydrogens in pre-training, the model overfits too much on the PubChem3D data distribution,
having a more challenging time transferring to the GEOM-Drugs distribution.

We subsampled 1M molecules from PubChem3D and GEOM-Drugs and enumerated over bonds of
selected pair atoms including carbon, hydrogen, nitrogen and oxygen atoms. We computed distances
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Table 7: Comparison of EQGAT-diff pre-trained with or without explicit hydrogens on PubChem3D
and fine-tuned on GEOM-Drugs for 400 epochs. We report the mean values over five runs of selected
evaluation metrics with the margin of error for the 95% confidence level given as subscripts. The
best results are in bold.

Pretraining Mol. Stab. ↑ Validity ↑ Connect. Comp. ↑
PubChem3D-noH 93.19±0.07 86.83±0.20 96.31±0.21

PubChem3D-H 92.70±0.09 85.46±0.19 94.78±0.19
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Figure 8: Selected atom-pair distance distribution on PubChem3D and GEOM-Drugs.

and noticed that the hydrogen-oxygen distance distribution in PubChem3D seems to have a smaller
variance than GEOM-Drugs in the last panel of Figure 8.

A.6 EQGAT-DIFF VS MIDI

We found EQGAT-diff outperforming MiDi by a large margin across both datasets, QM9 and
GEOM-Drugs, and all metrics. In Fig. 9, we underpin this observation by comparing training
curves of EQGATx0

disc and the MiDi model, observing that our model not only outperforms MiDi
on molecule stability, validity and in the adaptation to the underlying data distribution, but also
converges significantly faster. EQGATx0

disc converges to SOTA performance already after 150-200
epochs, while MiDi needs roughly 700 epochs weakly indicating convergence but to lower values.

Furthermore, EQGAT-diff needs ∼5 minutes per epoch using four Nvidia A100 GPUs, adaptive
dataloading (taken from the MiDi code based on pyg.loader.Collater) with a batch size of
200 per GPU. In contrast, MiDi takes ∼12 minutes, so EQGAT-diff is more than twice as fast.

For training MiDi, we used the official codebase on GitHub 1 and the given hyperparameter settings
but trained on four Nvidia A100 GPUs (instead of two). As seen in Tab.3 and shown here in Fig. 9b,
we could not reproduce the results reported in the paper. We also re-evaluated the checkpoint given
on GitHub and again could not confirm the reported results.

A.7 EQGAT-DIFF WITH IMPLICIT HYDROGENS ON GEOM-DRUGS

We trained EQGAT-diff on GEOM-Drugs with implicit hydrogens. To this end, we pre-process
the GEOM-Drugs dataset using the RDKit and remove hydrogens from a molecule object mol
using the Chem.RemoveHs function, with subsequent kekulization Chem.Kekulize. We list
the evaluation results of models EQGATx0

disc and EQGATx0
cont in Table 8 below. We discover that

the Gaussian and categorical diffusion for the x0 parameterization achieves similar performance

1https://github.com/cvignac/MiDi
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Figure 9: Comparison between EQGAT-diff and MiDi for training on GEOM-Drugs. We com-
pare both models regarding a) molecular stability, b) validity, c) AtomsTV, and d) AnglesW1 while
training by sampling 1000 molecules every 20 epochs over 800 epochs of training. For molecular
stability and validity, higher is better; for AtomsTV and AnglesW1, lower is better.

related to validity and connected components. At the same time, the Wasserstein-1 distance on
the histograms for empirical bond angles is lower for the generated set from EQGATx0

disc to the
histogram of the reference set.

Table 8: Comparison of EQGAT-diff with implicit hydrogens on GEOM-Drugs for 400 epochs. We
report the mean values over five runs of selected evaluation metrics with the margin of error for the
95% confidence level given as subscripts. The best results are in bold.

Model Validity ↑ Connect. Comp. ↑ BondLengths W1 ↓ BondAngles W1 ↓
EQGATx0

disc 98.29±0.08 98.90±0.10 0.59±0.62 0.44±0.01

EQGATx0
cont 98.48±0.14 98.36±0.09 1.34±0.07 0.56±0.03

Table 9: Classifier-guidance on EQGAT-diff to shift the reverse sampling towards low or high po-
larizability values. We report the mean polarizability values of sampled molecules with standard
deviations as subscripts.

Guidance Polarizability

Minimization 195.19±4.9

Maximization 400.21±8.3

A.8 CLASSIFIER GUIDANCE FOR CONDITIONAL MOLECULE DESIGN

For conditional molecule design, we can use a trained unconditional EQGAT-diff model together
with classifier-guidance, as proposed in (Dhariwal & Nichol, 2021), to steer the generation of sam-
ples using the gradient of an external classifier/regressor during the reverse sampling trajectory from
noise to data. As a proof of concept, we explored classifier-guidance to generate molecules opti-
mizing for low/high polarizability showing promising results. For this, we trained a polarizability
regressor model and applied it to the reverse sampling of an unconditional EQGAT-diff model test-
ing for guiding towards low and high polarizability values, respectively. Afterwards we re-calculate
the polarizability of all sampled molecules for both cases and compared the mean values. In Tab.
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9 we summarize the results. The mean value of the GEOM-Drugs training dataset is 245.9 ± 41.9.
Hence, we see that we can successfully push the distribution of sampled molecules in the respective
direction.

A.9 COMPARISON TO MOLDIFF

We compare against MolDiff Peng et al. (2023) by utilizing their evaluation pipeline that includes
post-processing steps on the generated molecules to potentially fix valency and aromaticity issues
when parsing into the RDKit. Selecting the 5×10, 000 generated samples from our best performing
model EQGATx0,af,ft

disc we report mean validity and mean success rate in Table 10. As shown,
our proposed best-performing EQGAT-diff model achieves superior performance over MolDiff in
generating chemically valid molecules but has lower diversity, which we believe is caused by longer
training time on our side. However, we believe the generative model should be able to faithfully
sample molecules that satisfy valency constraints, as it was also trained in such data. Suppose we
do not employ the post-processing scheme from MolDiff and determine the validity by parsing the
generated molecule into RDKit’s sanitization pipeline. In that case, EQGAT-diff obtains a mean
validity of 0.916 and a mean success rate of 0.887. This shows that the post-processing applied in
MolDiff substantially impacts model evaluation.

Table 10: Evaluation metrics from EQGAT-diff against MolDiff.

Model EQGAT-diff MolDiff
Validity 0.998 0.947
Connectivity 0.968 0.908
Succ. Rate 0.966 0.860
Novelty 1.000 1.000
Uniqueness 1.000 1.000
Diversity 0.320 0.422

A.10 IMPROVED SAMPLING TIME

We experimented with the DDIM Song et al. (2021a) sampling algorithm known for enhancing
inference/sampling time in diffusion models trained via the standard DDPM procedure in image
processing. The difference between DDIM and DDPM lies in the sampling algorithm, which we
believe could also be applied in our molecular data setting. However, our best-performing scenario
utilizes the x0 parameterization to preserve the correct data modalities for coordinates, atom, and
bond features. Hence, applying DDIM directly to discrete-valued data modalities is not straightfor-
ward. We restricted DDIM to continuous coordinate updates, while discrete-valued data modalities
follow the approach outlined by (Austin et al., 2021) and explained in our Appendix in Eq. (10).
Table 11 compares the evaluation performance of our base models when generating samples using
DDIM or DDPM for varying numbers of reverse sampling steps 500, 250, 167. Given that all mod-
els underwent training with T = 500 discretized timesteps, we conducted DDIM sampling every 2
or 3 steps of the reversed trajectory starting from index 500. Notably, we observed that employing
DDIM did not enhance the quality of molecule generation with fewer sampling steps (250 or 166)
compared to the 500 steps the models were trained on.

Another way to enhance sampling time, is to train the diffusion models with less discretized
timesteps. We performed additional experiments and trained EQGATx0

disc with T = 100 timesteps
using the uniform and truncated SNR(t) loss weighting. The rationale behind these experiments is
to assess how the reduced number of timesteps affects performance while enabling faster inference
time. We compare against the two corresponding models trained with T = 500 timesteps and ob-
serve that the model trained with truncated SNR(t) loss weighting over T = 100 timesteps performs
better than the model trained with T = 500 timesteps but uniform loss weighting as illustrated
in Figure 10. This result clearly speaks for the usage of the proposed loss weighting while also
achieving a diffusion model that has a faster sampling time using 100 reverse sampling steps only,
i.e. around 5x faster sampling time. Comparing the two models trained with truncated SNR(t) loss
weighting, we notice that the model trained with T = 500 discretized steps still performs better than
the identical model but trained with T = 100 timesteps.
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Table 11: Sampling results of trained models for DDPM and DDIM for 500 Molecules.

Model Steps Sampling Runtime Mol. Stability Validity AnglesW1

Discrete-SNR(t) 500 DDPM 26min 0.9160 0.8100 0.83
Continuous-SNR(t) 500 DDPM 27min 0.8920 0.7600 0.90
Discrete-Uniform 500 DDPM 26min 0.8600 0.5960 1.36
Discrete-SNR(t) 250 DDIM 13min 0.6580 0.6260 2.26
Continuous-SNR(t) 250 DDIM 13min 0.5680 0.3920 3.95
Discrete-Uniform 250 DDIM 13min 0.5400 0.3880 3.21
Continuous-SNR(t) 250 DDPM 13min 0.5160 0.3400 4.74
Discrete-SNR(t) 250 DDPM 13min 0.4860 0.4600 4.60
Discrete-Uniform 250 DDPM 14min 0.2620 0.1940 7.60
Discrete-SNR(t) 166 DDIM 9min 0.1980 0.2280 5.58
Discrete-Uniform 166 DDIM 9min 0.1240 0.1080 8.24
Continuous-SNR(t) 166 DDPM 8min 0.1000 0.0380 13.68
Continuous-SNR(t) 166 DDIM 9min 0.0900 0.0520 14.11
Discrete-SNR(t) 166 DDPM 9min 0.0660 0.5200 12.21
Discrete-Uniform 166 DDPM 9min 0.0200 0.0120 14.83
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Figure 10: Molecule stability learning curves for diffusion models trained with T = 500 and T =
100 discrete timesteps. Again, we observe that the truncated SNR(t) loss weighting ws(t) greatly
improves performance.
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PILOT: equivariant diffusion for pocket-
conditioned de novo ligand generation with multi-
objective guidance via importance sampling†

Julian Cremer, *ac Tuan Le, *ab Frank Noé,bd Djork-Arné Clevert a

and Kristof T. Schütt a

The generation of ligands that both are tailored to a given protein pocket and exhibit a range of desired

chemical properties is a major challenge in structure-based drug design. Here, we propose an in silico

approach for the de novo generation of 3D ligand structures using the equivariant diffusion model

PILOT, combining pocket conditioning with a large-scale pre-training and property guidance. Its multi-

objective trajectory-based importance sampling strategy is designed to direct the model towards

molecules that not only exhibit desired characteristics such as increased binding affinity for a given

protein pocket but also maintains high synthetic accessibility. This ensures the practicality of sampled

molecules, thus maximizing their potential for the drug discovery pipeline. PILOT significantly

outperforms existing methods across various metrics on the common benchmark dataset

CrossDocked2020. Moreover, we employ PILOT to generate novel ligands for unseen protein pockets

from the Kinodata-3D dataset, which encompasses a substantial portion of the human kinome. The

generated structures exhibit predicted IC50 values indicative of potent biological activity, which highlights

the potential of PILOT as a powerful tool for structure-based drug design.

1 Introduction

Structure-based drug discovery (SBDD) has fundamentally
transformed the landscape of drug development by facilitating
the design of molecules that precisely target biological macro-
molecules, such as proteins, which play a critical role in disease
processes. These designed molecules interact with a specic
pocket of a target protein, either activating or inhibiting its
function, thus inuencing the disease pathway. This strategy is
underpinned by a detailed understanding of the 3D structure of
the target, usually acquired through X-ray crystallography or
nuclear magnetic resonance (NMR) spectroscopy.1,2 By grasping
the structural intricacies of the target protein, researchers are
equipped to create ligands that specically modulate its activity,
offering potential therapeutic benets.

A major challenge in SBDD is the vast chemical space that
must be navigated to discover molecules with desired proper-
ties. Recently, machine learning (ML) has been applied to
SBDD, promising to enable researchers to rapidly pinpoint drug

candidates, signicantly reducing the reliance on labor-
intensive and costly experimental methods. ML algorithms are
capable of analyzing vast datasets of molecular structures and
properties to discern patterns, predict outcomes and generate
de novo molecules. This might not only accelerate the drug
discovery process but also enhance the efficiency and efficacy of
identifying viable therapeutic agents. Early work by Ragoza
et al.3 used 3D convolutional neural networks (3D-CNNs) in
voxel space and encoded the atomic density grids of protein–
ligand complexes and the protein pockets in two separate latent
spaces, both of which are used to decode 3D ligands with vari-
ational autoencoders (VAEs). A similar approach was applied in
the DeepFrag architecture by Green et al.,4 which focused on
fragment-based ligand optimization. Wang et al.5 also used 3D
CNNs in voxel space on density grids, but instead of using VAEs
that optimize a lower bound on the data probability, they train
generative adversarial networks (GANs) end-to-end. Since vox-
elized grid representations are large and have sparse values
(most voxels are empty), high memory consumption is a disad-
vantage. Treating protein–ligand complexes as atomic point
clouds can circumvent this problem and, in combination with
graph neural networks, enable the generative modeling of
ligands bound to protein pockets. SBDD with autoregressive
models that factorize the data probability were used in combi-
nation with SE(3)-invariant GNNs.6–8 Autoregressive models for
SBDD were further improved by using SE(3) equivariant
networks such as in Pocket2Mol,9 which places individual
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atoms one aer the other during generation, or in FRAME,10

which places fragments from a predened library in successive
steps.

Another innovative machine learning technique increasingly
employed in structure-based drug discovery is the application of
generative diffusion models which generate the entire structure
in one-shot, but allow its renement through successive steps.
Originally utilized in elds like computer vision and natural
language processing, these models also excel in capturing the
complex patterns of 3D molecular structures, particularly when
enhanced with features that reect the symmetry and specic
target-related characteristics of proteins.6,9,11–13 Another line of
research leverages diffusion models as methodology to build
ML based docking models.14,15

The effectiveness of these models hinges on training with
detailed protein structures, which allows for the generation of
ligands that are not only structurally compatible but also
specically designed for the interaction with target proteins.
However, while generated ligands t well in a protein binding

pocket, these methods lack a mechanism to guide the genera-
tive process towards ligands with desired chemical properties
such as binding affinity, stability, or bioavailability. Addition-
ally, 3D generative models oen yield ligands with a high
prevalence of fused rings and low synthetic accessibility.12,13,16–18

In this study, we introduce PILOT (Pocket-Informed Ligand
OpTimization) – an equivariant diffusion model designed for de
novo ligand generation. As shown in Fig. 1, PILOT operates in
three distinct stages: unconditional diffusion pre-training,
pocket-conditional ne-tuning, and property-guided inference.
During the inference stage, we employ an importance sampling
scheme to replace less desirable intermediate samples with
more favorable ones, thereby re-weighting trajectories during
generation. This strategy enables the use of any pre-trained,
unconditioned diffusion score model for sampling, which is
subsequently enhanced by integrating the capabilities of an
external model, similar to classier guidance.19 However, while
classier guidance may drive the sampling trajectory to adver-
sarial, out-of-distribution structures,19 trajectory re-weighting

Fig. 1 Top: PILOT is first pre-trained unconditionally on an Enamine Real subset from the ZINC database.20 We employ OpenEye's Omega to
create at most five conformers per molecule.21 Afterwards, we fine-tune the model on CrossDocked2020 conditioned on the atoms of the
pocket.22 Middle: Given the binding pocket of a protein, a noisy state of a ligand is sampled from the diffusion forward trajectory (here, t= 300) as
input to the diffusion model during training. The model has to retrieve the ground truth ligand (M0). For training, a composite loss (ld) is used for
continuous (mean squared error) and categorical features (cross-entropy loss), respectively, together with a timestep-dependent loss weighting
(w(t)). Bottom: at inference, a point cloud is sampled from aGaussian prior (t= 500). Given a binding pocket, themodel retrieves a fitting ligand by
following the reverse diffusion trajectory. At pre-specified steps, a property surrogatemodel (green crosses) guides the diffusion process towards
desired regions in chemical space using importance sampling.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 14954–14967 | 14955
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ensures that samples remain within distribution. As trajectory
re-weighting can be conducted in parallel for multiple proper-
ties, we focus on three critical properties for drug discovery:
synthetic accessibility (SA), docking score, and potency (IC50).
Our ndings demonstrate that PILOT generates ligands that not
only exhibit a signicant improvement in synthesizability and
drug-likeness but also achieve favorable docking scores and
predicted inhibition.

2 Results and discussion
2.1 Pre-training of pocket-conditioned 3D diffusion models

Pre-training enables deep neural networks to build efficient
representations by learning the underlying structure of the data.
It proves to be a successful strategy across various elds of
machine learning, particularly in the development of large
language models (LLMs).23,24 The success of these methods
provides a compelling case for applying similar methodologies
in the domain of scientic research, specically in computa-
tional chemistry and drug discovery.25–27 In the context of de
novo molecular diffusion models, pre-training allows the
models to learn fundamental chemical properties and interac-
tions from large datasets of molecular structures. This foun-
dational knowledge includes understanding bond types,
molecular geometries, and basic physicochemical properties,
which are critical for predicting how novel molecules might
interact with biological targets.

Pre-training molecular diffusion models on extensive data-
sets of low-delity 3D molecule data is a benecial strategy for
enhancing de novo molecule generation capabilities. It signi-
cantly enhances the ability of the model to generate structurally
diverse and chemically plausible molecules, when subsequently
ne-tuned on smaller, high-delity datasets.28 In this work, we
train PILOT as illustrated in Fig. 2. For pre-training, we utilize
the Enamine Real Diversity subset present in the ZINC

database20 which we downloaded from the Enamine website. To
prepare the dataset, we employ OpenEye's Omega soware,21

which we use for the creation of up to ve conformers per
molecule with classic default parameters, resulting in
a substantial corpus of approximately 109 million 3D struc-
tures. Additionally, we simplify the molecular representations
by removing all hydrogens.

We study the impact of pre-training on molecules and ne-
tuning on ligand–pocket complexes on model performance
using the CrossDocked2020 dataset6 following the methodolo-
gies described in the EQGAT-diff model by Le et al.28 and
detailed in Section 4. Table 1 shows the results with evaluation
of metrics related to the generatedmolecular structures, such as
molecular validity, the number of connected components, and
the distribution of bond angles and lengths. This includes
a comparison between models trained from scratch and those
that have been pre-trained. The chosen distance cutoff of the
pocket–ligand complex is a critical factor for model perfor-
mance in terms of computational cost and accuracy (see Section
4.4). We nd that pre-training improves our models across all
measured metrics, and the pre-trained model with 7 Å cutoff
achieves state-of-the-art performance for 8 out of the 9 evalu-
ated metrics. In particular, over 98% of molecules sampled by
the model are PoseBusters-valid (compared to 81% by Target-
Diff). We measure PoseBusters-validity by summing over all
non-overlapping evaluations of the “dock” and “mol” congu-
ration in the PoseBusters tool and divide by the number of
evaluations. The PoseBusters test suite validates chemical and
geometric consistency of a ligand including its stereochemistry,
and the physical plausibility of intra- and intermolecular
measurements such as the planarity of aromatic rings, standard
bond lengths, and protein–ligand clashes.29

The model achieves a Wasserstein distance error of 2.39 ±

0.98 for bond angles. This constitutes 4x improvement over
TargetDiff, a recent SOTA baseline, which indicates a markedly

Fig. 2 Schematical depiction of the PILOT network. Given fixed pocket atoms (purple), ligand atom coordinates, types, and charges as well as the
ligands' topology get noised (green) using forward diffusion. Afterwards, attention-weighted message-passing is done on the fully connected
ligand atoms (here not shown for better visibility) and the ligand–pocket and pocket–pocket interactions, which each are obtained using a radius
graph for computational feasibility. The task of the model is to retrieve the ground truth atom coordinates, types, charges, and the bond types
(red).
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improved ability to learn the underlying data distribution.
Beyond that, all PILOT models outperform TargetDiff in quan-
titative estimates of drug-likeness (QED) and synthetic accessi-
bility (SA) scores, indicating that PILOT not only generates more
structurally accurate molecules but also produces compounds
that are more drug-like and better synthesizable.

We extend our evaluation using a range of metrics from
PoseCheck30 to assess their ability to generate ligands that form
appropriate poses within the vicinity of the protein pocket.
However, it is important to clarify that TargetDiff, and PILOT
are not specically designed or trained to produce exact poses,
unlike tools like DiffDock,14 which are explicitly developed and

trained for docking applications. Still, de novo models should
generate ligand poses without spatial conicts, such as clashing
with the pocket – a common issue highlighted in recent
studies.29,30 Furthermore, strain energy is a crucial metric used
to evaluate ligands; it measures the energy required to alter
a ligand's conformation to t its binding pose. Those with lower
strain energy are generally favorable as they are likely to exhibit
stronger binding with the protein. The strain energy is calcu-
lated as the difference between the internal energy of a relaxed
pose and the created pose. Both the relaxation and energy
ratings are calculated using the Universal Force Field (UFF)31

using RDKit as suggested by Harris et al.30. Fig. 3 shows that our

Table 1 Diverse set of evaluation metrics on the CrossDocked2020 test set comprising 100 protein pockets to assess the distribution learning
capability. For each protein pocket, 100 ligands are sampled. We compare metrics including novelty, bond lengthsW1, and bond anglesW1 with
respect to the test set. The results are reported as mean values across all targets and ligands, with the standard deviation noted in the subscript

Model PILOTscratchpocket,5A PILOTpre-trainpocket,5A PILOTscratchpocket,6A PILOTpre-trainpocket,6A PILOTscratchpocket,7A PILOTpre-trainpocket,7A TargetDiff10A

Validity [ 93.40 � 5.11 96.08 � 3.53 93.48 � 5.13 95.47 � 3.91 92.06 � 6.26 96.05 � 3.83 78.91 � 2.45
Pose busters-valid [ 96.93 � 1.91 97.39 � 1.58 97.88 � 1.41 97.49 � 1.72 96.92 � 1.91 98.21 � 1.51 80.53 � 1.21
Connect. comp. [ 95.61 � 4.15 97.44 � 2.66 95.04 � 5.02 97.19 � 3.38 93.96 � 5.99 97.81 � 3.18 88.02 � 2.54
Diversity [ 72.12 � 9.05 72.99 � 9.01 72.03 � 9.48 71.66 � 9.79 70.36 � 9.59 71.52 � 9.84 75.12 � 6.41
QED [ 0.50 � 0.12 0.51 � 0.12 0.51 � 0.14 0.53 � 0.13 0.49 � 0.14 0.53 � 0.12 0.42 � 0.09
SA [ 0.67 � 0.08 0.69 � 0.07 0.66 � 0.09 0.69 � 0.07 0.66 � 0.07 0.69 � 0.06 0.61 � 0.06
Lipinski [ 4.53 � 0.53 4.54 � 0.49 4.54 � 0.61 4.57 � 0.56 4.46 � 0.65 4.60 � 0.51 4.64 � 0.31
Bond angles W1 Y 4.03 � 1.29 3.04 � 1.19 3.47 � 1.02 3.09 � 1.06 4.00 � 1.10 2.39 � 0.98 9.71 � 4.67
Bond lenghts W1 [10

−2] Y 0.27 � 0.01 0.24 � 0.007 0.27 � 0.09 0.23 � 0.08 0.29 � 0.09 0.21 � 0.08 5.12 � 2.05
Ligand size 23.70 � 8.80 24.08 � 8.83 24.56 � 8.81 24.70 � 8.74 24.39 � 8.74 24.85 � 8.94 22.21 � 9.20

Fig. 3 The impact of varying dataset cutoffs and employing different training approaches (training from scratch versus pre-training) on the
performance of our model and TargetDiff is analyzed. Top: we compare the sample quality using the PoseCheck metrics, where all values are
min–max normalized to better evaluate the difference in performance. Bottom: we present the average clash counts (left) and average strain
energies (right). Models with lower clashes and strain energies are considered to perform better and are thus preferred.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 14954–14967 | 14957
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pre-trained model signicantly excels in terms of reducing
strain energy. Note that the pre-training on molecules without
pocket does not lead to an increase of clashes between ligand
and pocket atoms in the complex. The metrics concerning the
number of hydrogen acceptors, donors, van der Waals contacts,
and hydrophilicity remain consistent across models.

The reduction in strain energy observed in the pre-trained
model might be attributed to two main factors. First, the
diffusion model is exposed to a vast array of conformers during
its pre-training phase, likely featuring low strain energy due to
the conformer generation techniques employed. This results in
the generation of 3D conformers with optimal torsional proles
and minimized torsional strains, contributing to overall lower
energy values in the ligands produced. Second, the enamine
real diversity subset used for pre-training typically includes
a wide variety of stable ring systems. Thus, the model likely
encounters fewer unfavorable ring systems (e.g. 3- or 9-
membered rings), which could contribute to higher strain
energies. These insights further underscore the importance of
the initial pre-training phase to generate relevant and biologi-
cally active ligands, further validating the efficacy of our
approach in advancing the eld of structure-based drug
discovery. Notice that the PILOT architecture closely resembles
EQGAT-diff (see Section 4.5), and thus its superior performance
over TargetDiff, e.g. in terms of molecular validity, arises from
the application of timestep-dependent loss weighting as well as
bond diffusion.28 Higher validity comes from the correct
construction of the bond graph whose atoms maintain the
correct valencies, where EQGAT-diff and PILOT both have the
advantage, unlike TargetDiff, of being able to directly predict
the bond features. The TargetDiff architecture creates the bond
graph in a post-processing step using OpenBabel with the pre-
dicted atom coordinates as input. While EQGAT-diff is pre-
trained on the PubChem3D dataset, we pre-train PILOT on
a subset of Enamine REAL to incorporate a larger and more
diverse set of synthesizable molecules.

2.2 Multi-objective de novo generation using importance
sampling

In previous studies utilizing 3D target-aware molecule genera-
tion, a signicant challenge has been the poor synthetic
accessibility (SA) of the generated molecules. These models
oen produce molecules with complex, fused, and uncommon
ring systems, which are difficult to synthesize.12,13,16 This issue
underscores the need for approaches that not only produce
molecules with strong binding affinities but also ensure that
these molecules can be feasibly synthesized. To address this, we
propose a trajectory-based importance sampling method that
utilizes property-specic expert models explained in Section 4.

The evaluation of the importance sampling approach is
performed for both single- and multi-objective optimization
scenarios, focusing on SA and docking score guidance. We refer
to guidance with an SA score model as SA-conditional and using
a docking score model as docking-conditional. When both
objectives are considered, we refer to the model as SA-docking-
conditional. In each case, the unconditional base model is
augmented with the respective property model during the
sampling process.

Fig. 5 shows the correlation matrix of the CrossDocked2020
dataset. The SA scores exhibit a negative correlation with ligand
size, i.e., larger molecules tend to be less synthetically accessible
on average. Conversely, the positive correlation between SA
scores and QED suggests that molecules with higher QED are
generally more synthetically accessible. Docking scores show
a strong negative correlation with both the number of rings and
the number of atoms. This implies that models driven by
docking scores tend to generate larger molecules with more
(fused) rings. However, such molecular characteristics typically
result in decreased SA scores and QED, presenting a trade-off
between optimizing for docking score and maintaining
synthetic feasibility. By incorporating these insights into our
modeling approach, we aim to balance the dual objectives of
binding efficacy and synthetic accessibility, thereby enhancing

Fig. 4 Visualization of the importance sampling algorithm. The shape of the prior (left) and target (right) distribution, where ligands at the target
distribution are highlighted in two different regions based on a property function, which is synthetical accessibility in this case. At t= T (left), noisy
samples are drawn from the prior, and during the reverse trajectory, stochastic paths that lead to promising candidates are selected and de-
noised in state-space to converge to samples from the data distribution at t = 0 (right). Ligands in the green box refer to molecules with high
synthetic accessibility according to SA score, while molecules in the red box refer to rather inaccessible ones.
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the practical utility of the generated molecules in drug
discovery.

Table 2 shows that our model reproduces the observed
correlations of the dataset. When guiding the unconditional
model with the SA score, we notice a signicant enhancement
not only in the SA score, which increases to 0.77, but also
improvements in QED and Lipinski's rule of ve compliance.
The mean docking scores remain consistent with those of the
unconditional model. However, there is a notable reduction of
docking performance in the top-10 ligands, consistent with the
correlations observed in the dataset. Conversely, applying
docking score guidance exclusively results in diminished SA
scores and QED, while the docking scores themselves increase
considerably. This reects the trade-offs involved in optimizing
for docking efficacy at the expense of synthetic accessibility and
drug-likeness. When applying both SA and docking score
guidance, the model achieves comparably high values for SA,
QED, and Lipinski, while signicantly improving docking
scores and outperforming TargetDiff by a large margin.

To mitigate the adverse impact on SA scores and drug-
likeness typically associated with high docking scores of
larger molecules, we introduce a normalization strategy where
docking scores are adjusted by the square root of the number of
atoms per ligand. The results of this adjustedmodel, denoted as
SA-docking-conditional (norm), are presented in the last row of
Table 2. Here, we observe a signicant increase in docking
scores compared to the unconditional model, while the SA
scores improve to 0.78, compared to 0.77 in the SA-conditional

model. This illustrates how our multi-objective optimization
strategy balances different property demands. Such balanced
outcomes are critical for advancing the practical utility of
generated molecules in drug discovery, ensuring that they not
only bind effectively but are also feasible for synthesis.

We investigate how various molecular properties are affected
by the application of guidance to further study the impact of
importance sampling guidance on molecular design. Fig. 6
shows molecular characteristics such as ligand sizes, number of
rings, number of rotatable bonds, and logP values across
different models. Based on previous observations (Fig. 5), we
expect SA guidance to result in smaller ligands with fewer rings,
contrasting with the effect of docking guidance. First, we
determine the most likely ligand size given a target from the
training distribution and allow for the addition of up to ten
atoms during inference. Fig. 6 (top) shows that ligands indeed
tend to be smaller and possess fewer rings under SA guidance.
The SA-docking-conditional model, which integrates both SA
and docking objectives, represents a balanced compromise
between these extremes.

Lipinski's rule of ve is an important measure for assessing
drug-likeness, including criteria such as the number of rotat-
able bonds and logP values. The number of rotatable bonds
exhibits a strong positive correlation with the number of atoms
mitigating the slight negative correlation with both SA and
docking scores, while logP shows a positive correlation with SA-
and docking scores. Fig. 6 (bottom) illustrates effective condi-
tioning as both the SA- and docking-conditional models

Table 2 Performance comparison among unconditional sampling, SA-conditional, docking-conditional, and SA-docking-conditional sampling
using the CrossDocked test set, which includes 100 targets. For each target, 100 valid ligands were sampled. We assessed the performance based
on several criteria: mean docking scores obtained from QVina2 re-docking, the top-10 mean docking scores per target, drug-likeness (QED),
synthetic accessibility score (SA), compliance with Lipinski's Rule of Five (Lipinski), and mean diversity (Diversity) across targets and ligands

Model QVina2 (all) Y QVina2 (Top-10%) Y QED [ SA [ Lipinski [ Diversity [

Training set −7.57 � 2.09 — 0.53 � 0.20 0.75 � 0.10 4.57 � 0.91 —
Test set −6.88 � 2.33 — 0.47 � 0.20 0.72 � 0.13 4.34 � 1.14 —
TargetDiff −7.32 � 2.47 −9.67 � 2.55 0.48 � 0.20 0.58 � 0.13 4.59 � 0.83 0.75 � 0.09
Unconditional −7.33 � 2.19 −9.28 � 2.26 0.49 � 0.22 0.64 � 0.13 4.40 � 1.05 0.69 � 0.07
SA-conditional −7.32 � 2.25 −8.91 � 2.29 0.58 � 0.19 0.77 � 0.10 4.82 � 0.54 0.73 � 0.08
Docking-conditional −9.17 � 2.48 −10.94 � 2.51 0.54 � 0.13 0.62 � 0.08 4.70 � 0.41 0.57 � 0.10
SA-docking-conditional −8.35 � 2.75 −10.36 � 2.62 0.58 � 0.17 0.72 � 0.12 4.88 � 0.44 0.68 � 0.09
SA-docking-conditional (norm) −7.92 � 2.44 −9.85 � 2.33 0.56 � 0.19 0.78 � 0.11 4.84 � 0.47 0.75 � 0.13

Fig. 5 Correlation matrix that includes the number of rings, number of atoms, docking scores, quantitative estimate of drug-likeness (QED), and
synthetic accessibility (SA) scores using the CrossDocked2020 training set.

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 14954–14967 | 14959
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generally result in a lower average number of rotatable bonds
compared to the unconditional model. In contrast, the partition
coefficient logP tends to increase under both conditions.

Fig. 7 illustrates the evolution of the sample space across the
unconditional, SA-conditional, docking-conditional, and SA-
docking-conditional models. Each plot in this gure includes
a red rectangle that identies the regions where samples exceed
the respective means of the test set, indicating improved

property scores. The rst row of Fig. 7 compares the drug-
likeness (QED) of sampled ligands with their synthetic acces-
sibility (SA) scores. The SA-conditional model shows a notable
shi with most of the sample mass residing within the red
rectangle. Thus, it successfully generates samples with notably
higher SA scores compared to both the unconditional model
and the test set ligands, while largely preserving docking scores.
In contrast, the docking-conditional model exhibits lower

Fig. 6 Analysis of the distribution of certain ligand characteristics, including size, number of rings, number of rotatable bonds, and logP values,
across three sampling methods to show the effect on physicochemical properties: unconditional sampling, SA-conditional, and SA-docking-
conditioned sampling.

Fig. 7 Scatter plots with Gaussian kernel density estimation (KDE) were used to illustrate the evolution of QED, SA, and docking scores for all
sampled ligands across test targets for different sampling methods: unconditional, SA-conditional, docking-conditional, and SA-docking-
conditional sampling. Red rectangles within these plots highlight regions where sampled ligands demonstrate superior QED, SA, and docking
scores compared to the test set. Upper row: relationship between QED and SA scores. Lower row relationship between docking scores and SA
scores.
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docking scores on average at the expense of the SA scores. The
SA-docking-conditional model demonstrates a good balance,
transitioning towards both high SA scores and low docking
scores. Remarkably, most of the sampled ligands from this
model not only fall within the red rectangle but also signi-
cantly surpass the test set ligands in terms of docking scores
with equal SA scores as listed in Table 2, while the model with
normalization improves in both metrics.

We compare our importance sampling approach against the
classier guidancemethod19 using the ne-tunedmodel trained
on the CrossDocked dataset with 5 Å cutoff. For classier
guidance, we calculate the gradients with respect to atomic
coordinates by using the autograd engine for the outputs of the
surrogate models during the reverse sampling trajectory.
Guided by maximizing SA and minimizing docking scores, we
nd that the mean run time per protein pocket in the test set
using classier guidance is approximately 4.3 times slower than
importance sampling, largely due to the gradient calculations
(see Section C.1 in the ESI†). Notice that for classier guidance
the batch size has to be reduced in order to avoid out of memory
issues which are caused by the autograd engine. The impor-
tance sampling approach does not require gradients and
enables practitioners to maintain a signicantly larger batch-
size. The molecular validity for our proposed importance
sampling method is also signicantly higher at 93.40%
compared to classier guidance, which achieves a validity of
77.17% for 10 000 generated ligands. This shows that sampling
a given set of valid molecules takes even longer, as classier
guidance results in a signicant increase in adversarial struc-
tures. Nevertheless, we nd that the mean SA and docking
scores of 0.82 and −8.43, respectively, are better than those for
importance sampling (0.75 and −7.7). However, if we perform
classier guidance with the same number of update steps as the
importance sampling, the validity increases to 93.18% similarly
to importance sampling, but the SA and docking scores are
signicantly less optimized, reaching 0.72 and −7.15, respec-
tively. Additionally, we measure the effect of importance
sampling and classier guidance on the uniqueness rate
(number of unique molecules per 100 sampled ligands). The
unconditional model achieves a uniqueness rate of 0.83, which
diminishes slightly to 0.75 when using importance sampling
and more signicantly to 0.65 using classier guidance.

Overall, our ndings demonstrate that using importance
sampling as a guidance mechanism in the diffusion model is
a potent strategy for steering the generation of molecules
towards desired regions of chemical space while being

computationally several times cheaper compared to classier
guidance. The method effectively modies molecular properties
in line with desired multi-objective property proles, albeit
within the constraints set by the data distribution used for
training. Unlike classier-guidance, our approach does not
require (prohibitively) expensive backpropagation. Instead, we
achieve the aforementioned results using only a few importance
sampling steps (forward calls to the surrogate models).

2.2.1 Kinodata-3D. We leverage the Kinodata-3D dataset,
annotated with experimental pIC50 values, to train PILOT on
ligand–kinase complexes. Simultaneously, we train a property
model predicting pIC50, to guide the diffusion model with the
proposed importance sampling towards ligands that are more
likely to be potent inhibitors. All models are trained from
scratch because the pre-trained Enamine model does not
contain all atom types present in the Kinodata-3D dataset. We
leave the evaluation with a pre-trained model to future work.

We evaluate the models on a hold-out test set comprising ten
kinase targets that were not included in either the training or
validation datasets. The performance of our pIC50-conditional
model is summarized in Table 3. The pIC50-conditional model
shows a signicant improvement in predicted mean pIC50

values of 7.65 ± 0.78 compared to the test set ligands (6.41 ±

1.56). At the same time, it maintains robust performance
metrics in terms of docking scores and other critical properties
such as QED and compliance with Lipinski's rule of ve.

Fig. 8 provides a visual comparison of the sample spaces
generated by the unconditional and the pIC50-conditional
model. We observe a signicant shi in the overall density of
samples towards higher predicted pIC50 when using the
importance sampling guidance (le panel). Fig. 8 (right) illus-
trates the relationship between docking scores and pIC50. While
the pIC50-conditional model yields samples with higher pIC50

on average, the ligands maintain competitive docking scores.
This suggests that the model does not compromise docking
efficacy for higher expected pIC50.

Note, that the current approach is limited as pIC50 values are
inherently noisy, in particular when collected across various
data sources.32 Thus, the predicted binding affinities should be
interpreted cautiously. To alleviate this problem, we propose to
adopt ensemble modeling techniques to enhance the mean-
ingfulness of predictions in the importance sampling pipeline.
Similar approaches are, for example, commonly used for
stabilizing machine learning force elds.33

Fig. 9 (top) demonstrates how ensemble techniques signi-
cantly improve the robustness of pIC50 predictions. We employ an

Table 3 Performance comparison among unconditional and pIC50-conditional sampling using the Kinodata-3D test set, which includes 10
targets. For each target, 100 ligands were sampled. We assessed the performance based on several criteria: mean docking scores obtained from
QVina2 re-docking, the top-10 mean docking scores per target, (predicted) pIC50, drug-likeness (QED), synthetic accessibility score (SA),
compliance with Lipinski's Rule of Five (Lipinski), and mean diversity (Diversity) across targets and ligands

Model Vina (all) Y Vina (top-10%) Y pIC50 [ QED [ SA [ Lipinski [ Diversity [

Training set −9.20 � 1.13 — 7.05 � 1.28 0.49 � 0.16 0.75 � 0.07 4.73 � 0.52 —
Test set −8.78 � 1.13 — 6.41 � 1.56 0.61 � 0.14 0.79 � 0.05 4.96 � 0.22 —
Unconditional −8.49 � 1.05 −9.79 � 0.87 6.28 � 0.68 0.63 � 0.14 0.75 � 0.13 4.95 � 0.25 0.65 � 0.06
pIC50-conditional −8.60 � 0.98 −9.75 � 0.86 7.65 � 0.78 0.62 � 0.16 0.67 � 0.09 4.94 � 0.28 0.57 � 0.06

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 14954–14967 | 14961
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ensemble of property models for importance sampling guidance.
Each propertymodel, denoted as seed1, seed2, etc., is trained with
a different global seed. The base model is used to sample 100
ligands per test target, both with and without ensemble guidance.
The term single model guidance refers to the base model guiding
itself. We observe that single model guidance results in a notable
offset between the predictions of the base model and those of all
other property models, indicating poor generalization perfor-
mance. That is, self-guidance exploits the predicted pIC50 value
toomuch, as it was trained on. However, with ensemble guidance,

even just two additional seedmodels (seed500 and seed1000) lead
to greater improvement in generality. This enhancement is
evident in the pIC50 predictions of all seedmodels not included in
the ensemble guidance (i.e., seed1, seed2, seed15, and seed800).
As shown in Fig. 9 (bottom), further increasing the ensemble size,
such as by adding another model, here seed800, leads to addi-
tional renement in predictions and consequently, increased
generality of pIC50 predictions.

We observe improved generalization performance for the
ensemble compared to the single models. We evaluate the ve

Fig. 8 Left: density plot comparing unconditional with pIC50-conditional sampling. Right: scatter heatmap overlap of unconditional and pIC50-
conditional samples comparing docking scores and (predicted) pIC50 values.

Fig. 9 A violin plot is used to display the distribution of predicted pIC50 values for 100 sampled ligands across ten test set targets, guided either by
a single model or an ensemble approach. Upper panel: ligands generated under single model guidance, where the base model guides itself, or
ensemble guidance that includes seed models 500 and 1000. All other models are utilized for evaluating the respective samples. Lower panel:
here, the ensemble guidance for the base model is extended by incorporating an additional model, specifically seed800. This is referred to as
“Ensemble guidance (+1)”.

14962 | Chem. Sci., 2024, 15, 14954–14967 © 2024 The Author(s). Published by the Royal Society of Chemistry

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 9
/2

4/
20

24
 3

:0
5:

17
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online



models on the Kinodata-3D test set, which achieve an average
mean squared error of 1.34. In contrast, the ensemble built
from these ve models achieves a lower error of 1.23.

3 Conclusions

We have introduced PILOT, a novel equivariant diffusion-based
model tailored for de novo ligand generation conditioned on
protein pockets in three-dimensional space. Our research
demonstrates the superior performance of PILOT compared to
existing state-of-the-art models in this domain, as evidenced by
a comprehensive evaluation across a spectrum of metrics crit-
ical in medicinal chemistry and drug design.

A signicant nding of our study is the substantial
enhancement in downstream performance achieved by pre-
training our model on a vast dataset of molecular conformers.
This underscores the pivotal role of pre-training in the
structure-based drug discovery pipeline, demonstrating its
efficacy in improving the quality of generated ligands. Beyond
that, we have proposed a trajectory-based importance sampling
strategy, which enables targeted steering of ligand generation
towards desired chemical properties. This technique guides the
generation process towards ligands with desired properties
such as synthetic accessibility, drug-likeness, docking scores,
and predicted binding affinities by using surrogate models
trained on experimental data. This strategy represents an
important advancement in structure-based drug discovery,
offering researchers a powerful tool to design molecules with
tailored properties using 3D equivariant diffusion models.

The dependency on the availability and quality of training
data remains a critical challenge for deploying AI models like
PILOT in drug discovery pipelines. In the domain of structure-
based drug design, data can oen be sparse, noisy, and of
varying quality, which signicantly impacts the learning and
predictive capabilities of ML models. While our method heavily
relies on surrogate models and proxies such as the RDKit
synthetic accessibility (SA) scores to estimate the synthesiz-
ability of generated ligands, these scores may not fully capture
the complexities and practical challenges of medicinal chem-
istry. Addressing these challenges will require a concerted effort
to enhance data collection practices, improve data quality, and
expand the variety of data sources.

Moving forward, we see potential applications of PILOT in
the drug discovery pipeline by integrating this model with other
AI-driven tools and technologies, such as automated synthesis
platforms and high-throughput screening to accelerate drug
design. Furthermore, the scope of our model may be extended
from small molecule drugs to biologic therapeutics involving
for example peptides or antibodies.

4 Methods
4.1 Pocket conditioned 3D diffusion models

We aim to generate novel molecules M de novo, conditioned on
a protein pocket P while optimizing multiple objectives c, such
as synthetic accessibility, docking score, and predicted half-
maximal inhibitory concentration (IC50). Recent developments

have utilized 3D diffusion models to implement pq(MjP), where
the task of the model is to denoise an initially random ligand
structure, while maintaining the protein pocket as a xed
condition.12,13,28 This is achieved by following a stochastic path
that targets the distribution of training data, iteratively moving
towards more dened structures pq(Mt−1jMt, P) as illustrated in
Fig. 1.

During training, the reverse distribution pq(Mt−1jMt, P) is
parameterized using the approach as proposed by Le et al.28.
That is, a noisy ligand Mt = (Xt, Ht, Et) at time step t is repre-
sented by perturbed atomic coordinates Xt, element types Ht,
and bond features Et, while the diffusion model pq is tasked in
predicting the noise-free structure M̂0=(X̂0,Ĥ0,Ê0), acting as
denoiser with the inherent goal to iteratively attain a cleaner
structure. We optimize the variational lower bound of the log-
likelihood log p(M0jP) and minimize the timestep-dependent
diffusion loss

Lt ¼ 1

2
ðwðtÞ � ldðM0; pqðMt; t;PÞÞ (1)

where ld : M�M/ℝþ reveals as mean-squared-error loss for
3D coordinates, and cross-entropy loss for discrete-valued data
types like atom, bond, and charge-types.28 To obtain the noisy
ligand Mt, we apply the forward noising process with Gaussian
diffusion for continuous valued coordinates, while discrete
valued data like atom, bond- and charge-types are perturbed
using categorical diffusion which both reads

qðXtjX0Þ ¼ N
�
Xt

��� ffiffiffiffiffi
at

p
X0; ð1� atÞI

�
(2)

qðCtjC0Þ ¼ C
�
CtjatC0 þ ð1� atÞ ~C

�
; (3)

where at ¼
Yt
k¼1

ð1� bkÞ˛ð0; 1Þ determines a variance-preserving

(VP) adaptive noise scheduler with empirical distribution ~C
estimated from the training set for categorical data (H, E).34

4.2 Multi-objective importance sampling

To sample ligands from the distribution pq(MjP, c), we utilize
Bayes' theorem to decompose the probability density into
pq(MjP, c) f pd(cjM, P)pq(MjP). We further assume that multiple
properties c = (c1, c2, ., ck) are conditionally independent,

leading to the factorization pdðcjM; PÞ ¼
Yk
l¼1

pdlðcljM; PÞ, where

each pdl(cljM, P) can be interpreted as an expert surrogate model
for a specic property. These surrogate models must be able to
predict the properties of interest at any step of the diffusion
trajectory, similar to classier-guidance.19 While classier-
guidance requires backpropagation at every step, making it
quickly unfeasible for ligand–pocket complexes with several
hundred atoms, our proposed importance sampling approach
eliminates the need for backpropagation. Moreover, far fewer
steps are needed to update the diffusion model compared to
classier-guidance, which also oen tends to steer the model
towards adversarial structures.19

© 2024 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2024, 15, 14954–14967 | 14963
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As properties such as synthetic accessibility are determined
solely based on the ligand, whereas others, like docking scores,
depend on the interaction between the ligand and the protein
pocket, suitable property predictors pdi may be dened as
required. During the sampling process of a set of K noisy
ligands {M1, M2, ., MK}, we use importance weights derived
from pd(cjM, P) to rank each intermediate noisy sample at its
current position in the state space, as described in Algorithm 1.
Our goal is to generate samples from pq(Mjc, P) f pd(cjM, P)
pq(MjP) under the condition c, which species the property that
the ligand M must achieve. For continuous properties, we
choose a Gaussian distribution with a standard deviation of 1 to
model p(cjM, P). Specically, this takes the form

pdðcjM; PÞ ¼ 1ffiffiffiffiffiffi
2p

p exp
�
� 1

2
ðc� fdðM; PÞÞ2

�
. This formulation

also establishes a natural connection to maximum-likelihood
training for the property predictor fd. Since the reverse diffu-
sion trajectory is inherently stochastic, our goal is to preferen-
tially select samples that are most likely to follow a path
resulting in ligands meeting the specied conditions c. This
process is schematically depicted in Fig. 4. To accurately predict
these conditions, we train pd(cjM, P) as pd(cjMt, P, t) along the
forward noising diffusion trajectory, where Mt represents the
state of the ligand at time step t. The property model pd is
trained using the mean squared error and cross-entropy loss for
continuous and discrete properties, respectively. The rationale
behind this training approach is that denoising steps closer to
the original data distribution retain a clearer signal of the input
ligand, making them highly informative. In contrast, steps
closer to the prior noise distribution, although less informative,
can still provide valuable discriminative insights for pd. This
strategy leverages the nuanced progression of information

degradation during the diffusion process to efficiently guide the
generation of desired ligands without mode collapse.

The algorithm is inspired by the Sequential Monte Carlo
(SMC) method.35,36 A similar replacement strategy has previ-
ously been applied by Trippe et al.37 and Wu et al.38 in the
context of diffusion models for protein backbone modeling and
motif scaffolding. In Algorithm 1, we focus on maximizing
property values by scoring each predicted property value among
the samples in the population. To achieve this, we employ
somax normalization on the predicted property values fd(Mk,
P) for maximization. If the goal is to minimize a certain prop-
erty, the predicted property values must be multiplied by −1 to
compute the importance weights before applying the somax
operation. These importance weights represent the probability
of selecting samples from the nite population set for the next
iteration. When specic property values c are desired, instead of
relying solely on the predicted property values ck = fd(Mk, P), we
compute the probability using a Gaussian kernel as described
earlier. Notice that we additionally need to employ another
normalization scheme to rank each unique probability value.
For simplicity, we choose to use somax normalization again.
On CrossDocked, we employ the importance sampling every N
= 10 steps and rst lter for trajectories with highly synthetic
accessible samples in timesteps 100–250, while ligands with
better docking scores are weighted in steps 300–400 during the
reverse trajectory which involves 500 steps. Both importance
ltering steps are applied with temperature s = 0.1. We refer to
the ESI section C† for more details.

4.2.1 Classier guidance. We leverage the SA- and docking
score predictions of fd1,d2 to compute gradients with respect to
atomic coordinates that describe the direction to maximize/
minimize the corresponding properties. Given a single mole-
cule with n atoms, classier guidance for SA and docking score
optimization is described via the coordinate update equations

~Xt�1 � pqðXt�1jMt;PÞ
Xt�1 ¼ ~Xt�1 þ l1VXþfd1ðMt;PÞ � l2VXt

fd2ðMt;PÞ; (4)

where Xt�1˛ℝn�3 and the rst equation samples the atomic
coordinates with respect to the current noisy molecule and
protein pocket disregarding the SA and docking scores property.
The second equation applies the gradient guidance with scales
l1, l2 > 0 to maximize SA and minimize docking scores. In our
experiments we set l1 = l2 = 0.1.

4.3 Datasets

4.3.1 Enamine. We use the Enamine REAL drug-like
Diversity subset comprising 48.2 M compounds represented
as SMILES string representations. To process the 3D dataset, we
attempt to generate up to ve conformers per SMILES string
using OpenEye Omega (version 2022.1.2) classic with default
parameters without hydrogens.

4.3.2 CrossDocked. We use the CrossDocked2020 dataset
introduced in Francoeur et al.39 and follow the same ltering
and splitting strategies as in previous works, which utilized
a protein sequence identity splitting.6,9 This results in

14964 | Chem. Sci., 2024, 15, 14954–14967 © 2024 The Author(s). Published by the Royal Society of Chemistry
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approximately 100 000 protein–ligand complexes for the
training set and 100 for the test set.

4.3.3 Kinodata-3D. We use the Kinodata-3D dataset,40

a collection of kinase complexes curated and processed in silico
using cross-docking data. To facilitate training of machine
learning models for structural protein–ligand complexes, asso-
ciated experimental binding affinity labels are included. The
dataset builds on the cross-docking benchmark established by
Schaller et al.,41 adopting a template-based approach. For more
details we refer to Backenköhler et al.40. We use approximately
105 000 pocket-ligand complexes for training, and save 310 and
136 complexes for validation and testing, respectively.

4.4 Choosing the cutoff for protein–ligand complex creation

The CrossDocked2020 dataset implements a pre-dened cutoff
surrounding the bound ligands to cut out the protein pockets.
Based on this, TargetDiff12 uses a cutoff region of 10 Å with the
centers of mass (CoM) of the residues acting as reference points
for measuring distances to ligand atoms. Residues whose CoM
are within or equal to the cutoff distance are included in the
Protein–Ligand (PL) complex. Conversely, DiffSBDD includes
the entire residue in the PL complex if any atom within that
residue falls inside the cutoff region.13 Our work adopts the
latter approach as it offers a more physically plausible repre-
sentation of the interaction space. We ablate different cutoff
values {5,6,7}Å on the CrossDocked2020 dataset and observe
that the model trained on the 7 Å cutoff performs best as
illustrated in Table 1 for the pre-trained model. We hypothesize
that the trade-off between smaller cutoff and model perfor-
mance is caused by the complexity and tendency to overt on
smaller complexes. Note that a smaller cutoff leads to PL
complexes with fewer atoms as shown in Figure and Table B1 in
the ESI.†

4.5 Model architecture

The PILOT architecture is an extension of EQGAT-diff28 with
minor changes to handle protein–ligand (PL) complexes. To
perform message-passing, we calculate the interactions in the
protein–ligand and protein–protein graphs using a radius graph
with a cutoff of 5 Å. We perform fully-connected message-
passing for all ligand–ligand interactions. Unlike the EQGAT-
diff architecture, we also incorporate a residual connection of
the transformed initial ligand–ligand edge encodings into the
PILOT architecture. Assuming that the small molecule consists
of n atoms, the initial one-hot encoded edge features E˛ℝn�n�5

categorize the presence of none, single, double, triple and
aromatic bonds. We further calculate the distance matrix of
D˛ℝn�n and compute an initial edge-feature between atom i and
j as e*ij ¼ eij5grbfðdijÞ˛ℝ5�20, which computes an outer product
between the one-hot encoding of the bond feature with an
exponential radial basis function with 20 channels. The
embedding e*ij is vectorized into shape ℝ100 and linearly trans-
formed to obtain the hidden edge embedding eð0Þij ˛ℝ128 prior to
the message passing. Aer L = 12 rounds of message-passing,
we use separate prediction heads for predicting coordinates,
atoms, charges, and bond types, as suggested in the initial

EQGAT-diff architecture. We use 256 scalar and vector channels
and 128 edge channels across the network. We observe
improved model performance when including the initial
embedding of edge features through a residual connection aer
each message-passing layer. We hypothesize that this infor-
mation enables better 3D coordinates as well as bond predic-
tions by the diffusion model because the dependency between
bonds and atomic coordinates is included in each message-
passing layer.

4.6 Training details

We train PILOT with T = 500 diffusion timesteps (in contrast to
TargetDiff, which uses T = 1000). For training, we draw
a random batch of protein–ligand complexes and uniformly
sample timesteps t ˛ U(1, 500). The diffusion loss Lt is opti-
mized for each sample, which under the data prediction
parameterization means a mean-squared-error (MSE) loss for
atomic coordinates and cross-entropy (CE) loss for discrete-
valued modalities including atom- and bond types of the
ligand molecule. For more details we refer to Le et al.28. The
Enamine model was pre-trained for 10 epochs with the goal of
learning a broad chemical space of molecules not limited to
pocket–ligand complex data. We trained the models for 300
epochs from scratch on the CrossDocked2020 and Kinodata 3D
dataset. When leveraging the pre-trained Enamine model as
a starting point, we only ne-tuned for 100 epochs on the
CrossDocked2020 dataset. In all (pre-)trainings we use the
AdamW optimizer with AMSGrad and a learning rate of 2 ×

10−4, weight-decay of 1 × 10−12, and gradient clipping for
values higher than 10 throughout all experiments.

4.6.1 Property training. In this work, we utilize a joint
training strategy for both the diffusion and property models
within a single neural network architecture. Since both models
take a noisy ligand Mt = (Xt, Ht, Et) as input, the joint model
predicts both the clean molecule and the ground-truth property
of the input sample, such as synthetic accessibility and/or
docking score (M̂0 and ĉ, respectively). This is achieved by
including additional prediction heads, e.g. MLPs, operating on
the node/edge embeddings of the nal message-passing layer.
As the synthetic accessibility (SA) score only depends on the
ligand we also pre-train the Enamine model to jointly predict
the SA score in addition to the denoising task. When ne-tuning
on CrossDocked, we load the model weights from Enamine and
add an extra head for docking score prediction. However,
importance sampling can be performed using any external
model trained on a diffusion trajectory, as long as it uses the
same transition kernels as the diffusion model. In preliminary
studies, we experimented with separately trained models and
found that they also worked. However, for simplicity, we used
joint training in this work. We adapt the timestep dependent
loss weighting as in Le et al.,28 such that the gradient signal for
larger timesteps is damped, following the property loss

Lp,t = w(t)‖c0 − pq,d(Mt, t, P)‖
2. (5)
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Data availability

The processed CrossDocked2020 dataset can be downloaded
from https://github.com/pengxingang/Pocket2Mol/tree/main/
data. The Kinodata-3D dataset can be downloaded from
https://volkamerlab.org/projects/kinodata-3d. The Enamine
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provide all information needed to reproduce the dataset.

Author contributions

Conceptualization: J. C., T. L.; data curation: J. C., T. L.; formal
analysis: J. C., T. L.; investigation: J. C., T. L.; methodology: J. C.,
T. L.; resources: D. A. C.; supervision: D. A. C., K. T. S.; visuali-
zation: J. C., T. L.; writing — original dra: J. C., T. L., K. T. S.;
proofreading: J. C., T. L., F. N., D. A. C., K. T. S.; writing— review
and editing: J. C., T. L., K. T. S.

Conflicts of interest

There are no conicts to declare.

Acknowledgements

JC and DAC acknowledge the support from the European
Union's Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie Actions grant agreement
“Advanced Machine Learning for Innovative Drug Discovery
(AIDD)” No. 956832. DAC additionally acknowledges the fund-
ing from the European Commission's Horizon 2020 Framework
Programme (AiChemist; grant no. 101120466).

References

1 A. C. Anderson, Chem. Biol., 2003, 10, 787–797.
2 M. Batool, B. Ahmad and S. Choi, Int. J. Mol. Sci., 2019, 20,
2783.

3 M. Ragoza, T. Masuda and D. R. Koes, Chem. Sci., 2022, 13,
2701–2713.

4 H. Green, D. R. Koes and J. D. Durrant, Chem. Sci., 2021, 12,
8036–8047.

5 L. Wang, R. Bai, X. Shi, W. Zhang, Y. Cui, X. Wang, C. Wang,
H. Chang, Y. Zhang, J. Zhou, W. Peng, W. Zhou and
B. Huang, Sci. Rep., 2022, 12, 15100.

6 S. Luo, J. Guan, J. Ma and J. Peng, Adv. Neural Inf. Process.
Syst., 2021, 6229–6239.

7 M. Liu, Y. Luo, K. Uchino, K. Maruhashi and S. Ji, Proceedings
of the 39th International Conference on Machine Learning,
2022, pp. 13912–13924.

8 C. Tan, Z. Gao, S. Z. Li, Target-aware Molecular Graph
Generation, arXiv, 2022, preprint, arXiv:2202.04829, DOI:
10.48550/arXiv.2202.04829.

9 X. Peng, S. Luo, J. Guan, Q. Xie, J. Peng and J. Ma, Proceedings
of the 39th International Conference on Machine Learning,
2022, pp. 17644–17655.

10 A. S. Powers, H. H. Yu, P. Suriana, R. V. Koodli, T. Lu,
J. M. Paggi and R. O. Dror, ACS Cent. Sci., 2023, 9, 2257–2267.

11 E. Hoogeboom, V. G. Satorras, C. Vignac and M. Welling,
Proceedings of the 39th International Conference on Machine
Learning, 2022, pp. 8867–8887.

12 J. Guan, W. W. Qian, X. Peng, Y. Su, J. Peng and J. Ma, The
Eleventh International Conference on Learning
Representations, 2023.

13 A. Schneuing, Y. Du, C. Harris, A. Jamasb, I. Igashov, W. Du,
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A. Learning curves: From scratch vs fine-tuned
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Figure A1: Learning curves comparison for the from scratch trained model against fine-
tuned model. For better visibility, we fine-tuned the pre-trained model for 200 epochs
to obtain more metrics for visualisation. We show the molecule validity as well as
samples/AnglesW1 metric and observe that the fine-tuned model achieves much better
metrics already after 20 epochs of training.

We observe that the pre-trained PILOT model achieves faster training convergence
compared to the model that is trained from scratch on the CrossDocked dataset. In Figure
A1 we show the evaluation curves for both models trained on the 5A PL-complex dataset,
i.e., comparing PILOTscratch

pocket, 5A against PILOTpre-train
pocket, 5A. As shown, the pre-trained model
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achieves superior metrics compared to the model trained from scratch already in the
first evaluation period after 20 epochs of training. Specifically, the molecule validity for
the fine-tuned model accomplishes a highest value of 95.67% after 40 epochs while the
model trained from scratch only achieves a maximum molecule validity of 90.00% after
240 epochs of training. As the pre-trained model has learned on a vast chemical space
from the Enamine Real Diversity, this model achieved to learn general chemistry rules
related to valency. Nonetheless, when trained on CrossDocked an extensive distribution
shift is expected, since in this scenario, the model inputs a much larger sample in form of a
protein-ligand complex. Learning correct geometries how a ligand might fit into a protein
pocket is a non-trivial task. Although both models are not explicitly trained to generate a
ligand that fit a pocket in a physical sense, like a docking tool, the ligands generated by the
fine-tuned model achieves predominant angles distribution metrics compared to the from
scratch model. This means that the ligands sampled from the fine-tuned model attain
better geometries resembles the angles statistics present in protein-ligand-complexes in
the validation set.

B. CrossDocked2020: Analysis

B.1 Pocket size distribution
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Figure B1: The size distribution for protein pockets in the CrossDocked2020 dataset
based on the cutoff radius to create the ligand-pocket complex. The namings DiffSBDD
or Targetdiff folowed by xA describe the method to determine the protein pocket with
cutoff x. Left: size distribution. Right: distribution of pocket atoms.

To create the Protein-Ligand (PL) complex, the cutoff radius determines which protein
atoms should be included next to all ligand atoms, to build the PL complex.

The work by1 in DiffSBDD creates the PL-complex by computing for each atom in each
residue in the protein all pairwise distances to the ligand atoms. As long as one distance
from the residues’ atom is below the defined cutoff to any ligand atom, the entire residue
is included into the protein pocket. Hence choosing such selection through the minimum
function potentially creates larger PL complexes, but ensures that all interactions between
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Dataset Mean Standard Deviation Median Skewness

DiffSBDD-5A 24.16 3.35 24.20 0.02
DiffSBDD-6A 26.22 3.33 26.26 0.08
DiffSBDD-7A 28.47 3.25 28.40 0.13
TargetDiff-10A 30.49 3.10 30.47 0.17

Table B1: Statistics of pocket size for different datasets.

Dataset Mean Standard Deviation Median Skewness

DiffSBDD-5A 152.73 42.04 151.00 0.26
DiffSBDD-6A 198.62 51.90 197.00 0.17
DiffSBDD-7A 274.94 68.32 274.00 0.19
TargetDiff-10A 393.83 90.70 394.00 0.15

Table B2: Statistics of number of pocket atoms for different datasets.

protein-atoms to the ligands are considered.
The PL complex creation in TargetDiff2 chooses a query point from each residue

through the center of mass. Based on this query point the distance to all ligand atoms
are computed and the residue with its atoms are included into the PL complex, if any
distance between the query point to any ligand atom is below the cutoff. Note that by
computing the CoM in the first place, an initial reduction has already been done which
can lead so fewer interactions and hence smaller PL complexes. The authors of TargetDiff
estimate the pocket size by computing the top 10 farthest pairwise distances of protein
atoms. Based on that, they select the median of that as the pocket size for robustness.
As the cutoff increases, we observe that the protein pocket also increases as shown in the
both panels of Figure B1 for pocket size as well as the number of atoms in the protein
pocket. The TargetDiff-10A PL-dataset is particularly large with protein pockets having
mean size of 393 atoms. Having larger PL complexes might impede the optimization of the
diffusion models since smaller batch sizes and backbones with less trainable parameters
are only feasible to fit on a single GPU. Additionally, a smaller cutoff also enables faster
training since less message passing steps are required. We believe that a cutoff of 7A is
a good trade-off, in that it enables the diffusion model to propagate distant information
but also does not fall into the risk of overfitting on a potentially smaller PL complex. The
latter is particularly important in the setting of generalization when the diffusion model
generates ligands on a new protein target.

B.2 Metrics dependency on ligand size

In this section we show how several metrics are dependent on the ligand size. To this
end, we ran six additional sample experiments with EQGATpocket, 6A

diff trained on Cross-
Docked2020, where ligands are generated without any guidance, i.e., unconditionally with
only the protein pocket as context. Figure B2 shows the results. In particular, as de-
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Figure B2: Evaluation metrics for 10, 000 ligands where the number of atoms was first
sampled from the training set prior and additionally a node bias of n added. Here n =
{0, 1, 2, 3, 4, 5}. The caption shows the mean value across each of the 5 different sets per
metric. For the docking scores panel, the first value describes the mean value among all
targets, while the second value refers to the top-10% mean value among all targets.

scribed in the main text, larger ligands with more atoms, shown through increasing node
bias n tend to have lower synthetic accessibility (SA) score as well as QED and a better
(smaller) docking score. Therefore, it is important to take the ligand size distribution
into account when evaluating generative models based on docking scores, since the later
is negatively correlated with ligand size.

B.3 Ring distribution

To delve deeper into our analysis, we also examine the distribution of ring structures, a
known challenge for 3D-based models3. The top panel in Fig. B3 illustrates the occurrence
of fused and uncommon rings for all models. We observe that TargetDiff, as well as our
models, tend to generate more uncommon rings compared to the train and test sets.
However, both the SA- and SA-docking-conditional models effectively mitigate this issue
by reducing the number of uncommon rings and aligning more closely with the distribution
observed in the training and test data.

Consistent with our earlier discussion, the docking-conditional model exhibits a strong
propensity for generating numerous rings, including fused and uncommon ones. As de-
picted in the lower panel of Fig. B3, all models also tend to produce rings that are less
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common in drug-like molecules, such as three-, four-, seven-membered, or larger rings.
These ring structures are often associated with poor synthetic accessibility, chemical sta-
bility, toxicity, or metabolic instability4–6.

In contrast, five- and six-membered heterocycles containing one or more heteroatoms
are considered the gold standard in drug-like molecules4,6,7, and we observe that these are
well represented in the sample space following the training distribution.

Notably, the SA-conditional model effectively regulates the formation of unfavorable
ring systems, particularly three- and seven-membered rings. Conversely, the SA-docking-
conditional model strikes a reasonable balance, with only a slight increase in seven-
membered rings compared to the docking-conditional model, where such rings are more
prevalent.
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0.20

0.25
Uncommon rings Fused rings

Train Test

TargetDiff

unconditional

SA-conditional

docking-conditional

SA-docking-conditional
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Figure B3: Evaluation of the ring systems in all sampled ligands across test targets. Top:
Histogram detailing the percentage of uncommon and fused rings for all ligands. Bottom:
Histogram displaying the distribution of ring sizes from three- to eight-membered rings.
Five- and six-membered rings are considered the most drug-like.

C. Hyperparameters for Importance Sampling

In Algorithm 1, we present the property-guided sampling algorithm, which we will further
discuss in this section. To perform SA- and docking-score optimization on CrossDocked,
we first optimize the SA-score in the population for several iterations. After this initial
optimization, we then optimize for docking-score, using a population that has been filtered
or biased based on the SA-score guidance. In Table C1, we report the start and end
points, as well as the temperature parameter for the unbounded SA-score maximization
and unbounded docking-score minimization. Note that the reverse diffusion trajectory
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sampling includes T = 500 timesteps. We set the population size to 40. This means that
for a given protein target P , each batch consists of 40 ligands optimized for high SA-
scores and low docking scores. We continue the sampling process until 100 valid ligands
are generated.

Property Start End N Temperature τ

SA-score 0 200 10 0.1
Docking-score 10 250 10 0.1

Table C1: Settings for importance sampling to optimize SA- and docking scores. Start
and end columns determine when the importance sampling is performed in the iteration
ranging from 1 to 500.

In our experiments, we tried optimizing both SA- and docking score simultaneously by
either pointwise adding or multiplying the importance weights {wk,SA}Kk=1 with {wk,dock}Kk=1

for each intermediate ligand k for varying time intervals including (1, 200), (100, 300) and
(300, 500). We did not see satisfying results where both criteria are optimized in the final
ligands, which might be possible to achieve through different hyperparameters including
temperature annealing. For this reason, we choose to optimize each property in consecut-
ive order, where the SA-guidance shall act as an initial filter to discard synthetic infeasible
(noisy) ligands between steps (100, 250), while the filtered noisy ligands are then guided to
minimize docking score in the interval (300, 400). Notice that we do not employ the guid-
ance in iteration in the intervals, but every 10, such that each SA- and docking-guidance
include 15 and 10 guidance steps respectively. For sampling, we leveraged an Nvidia A100
with 40GB GPU memory.

C.1 Comparison to Gradient Guidance

We list the metrics for joint optimization fo SA- and docking score in Table C2. For a
protein target, we do not sample the number of atoms for generated ligands, but fix the
number to the reference ligand to have a fair comparison between importance sampling
and classifier guidance.

Table C2: Comparison of importance sampling (IS) vs. classifier guidance (CG) on Cross-
Docked testset. We generated 100 ligands for each of the 100 pockets in the test set. We
report mean time per pocket in minutes, validity, uniqueness and the corresponding prop-
erty values.

Method Time [min] Validity [%] Uniqueness [%] SA Docking
Steps Every-N λ, τ Score Steps Every-N λ, τ Score

IS 3.51 92.29 75.55 0− 200 10 0.1 0.7531 150− 250 10 0.1 −7.679
CG 15.02 77.17 64.97 0− 500 1 0.1 0.8248 0− 500 1 0.1 −8.4397
CG 3.71 93.18 83.22 0− 200 10 0.1 0.7205 150− 250 10 0.1 −7.1523

IS & CG 3.72 92.54 58.79 0− 200 10 0.1 0.7608 150− 250 10 0.1 −8.0151
Unconditional 3.01 93.15 83.63 − − − 0.711 − − − −7.0248

We experienced GPU memory issues when performing classifier (gradient) guidance
because backpropagation is costly, especially for larger protein-ligand complexes, disabling
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us to use the default batch size of 40 on an A100 40GB GPU . Reducing the batch size is
necessary to avoid out of memory errors, with the disadvantage of increasing the overall
running time. We set the batch size to 25 to perform both importance sampling as well as
classifier guidance with the same settings on an Nvidia H100 with 80GB GPU memory.
For importance sampling, we can easily set a batch size of 40 or even 50 ligands per
pocket, achieving an average pocket time of about 3.28 minutes to generate 100 ligands,
showing the advantage of importance sampling compared to classifier guidance, to allow
for larger ligand batches during generation, effectively reducing runtime.

Since our proposed importance sampling filters for trajectories that either maximize
or minimize a property, gradient guidance can also be performed afterwards. To enable
both approaches (IS & GC), we choose the same filtering steps to maintain a low com-
putational budget and perform backpropagation to obtain the gradients with respect to
atomic coordinates to shift the positions in space after promising candidates were selected
based on their importance weights. This results in a generated ligand set with a similar
validity of 92.54% but a reduced uniqueness rate of 0.58. The mean SA score reaches
0.76, while the docking score reaches -8.01 as shown in the second last row in Table C2.

D. Kinodata-3D: Analysis

D.1 Correlation

pIC50 # Rings # Rotatable bonds # Atoms QED SA
# Rings

# Rotatable bonds

# Atoms

QED

SA

logP

0.190.19

0.160.16 0.150.15

0.28 0.66 0.68

-0.18 -0.53 -0.62 -0.79

-0.24 -0.37 -0.20 -0.39 0.180.18

0.04 0.22 0.13 0.30 -0.39 0.38

Figure D1: Correlation matrix of pIC50s, number of rings, number of atoms, QEDs, and
SAs on the Kinodata-3D training set.

We show the correlation matrix on the Kinodata-3D dataset in Figure D1. Similar
to the CrossDocked dataset, we observe that metrics like the QED and SA score are
negatively correlated with the number of atoms and rings. As opposed to CrossDocked,
in the Kinodata-3D a negative correlation of -0.39 between logP and QED is observed
while in CrossDocked the correlation amounts to 0.36. One possible explanation for this
is that Kinodata-3D consists of experimental kinase-ligand assay data and therefore only
considers ligands that covers a smaller chemical space where the logP covers a potentially
smaller range.

In Figure D3 we show the ring distributions on the Kinodata-3D dataset next to
the distribution that our EQGAT-Diff-Pocket models produced in 4 settings, namely
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ensemble guidance, an ensemble of models, here seed 42, 500, and seed 1000, are used
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pIC50. We can see that throughout targets and seeds, the ensemble guidance not only
works best in terms of pIC50 but also in terms of stability and generality. The base model
assigns similar pIC50 values to its samples for both, single model and ensemble guidance.
Nevertheless, across seed models (involved in ensemble guidance or not) the samples taken
from the single model guidance exhibit a significantly worse pIC50 prediction in contrast
to ensemble guidance. Here, all seed models predict similarly high pIC50 values suggesting
that ensemble guidance leads to a more stable and most importantly more general set of
samples.
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Figure D3: Ring distribution on the Kinodata-3D dataset

8



the unconditional, single pIC50-conditional, joint SA-pIC50-conditinoal as joint SA-pIC50-
conditional ensemble. Similar to CrossDocked, an unconditional model that only generates
ligands based on a protein (kinase) pocket as context, the number of fused rings increases,
leading to unfavourable molecules that might be difficult to synthesize. When leveraging
the importance sampling in the pIC50-conditional generation, we observe that the number
of fused rings stays the same but unexpected rings increases. Also, an increase in 4, 7- and
8-membered rings is observed, when we aim in maximizing the pIC50 to search for ligands
that exhibit high (predicted) binding affinity. One potential reason why that happens
might lie in the dataset the pIC50 expert model was trained on. As shown in Figure D1 a
negative correlation between pIC50 and QED as well as SA is observed. Thus, with higher
pIC50, ligands tend to become less synthesizable and drug-like according to those metrics.
Fortunately, we can leverage our framework and jointly optimize for high pIC50 as well as
SAscore, which is done in the SA-pIC50-conditional samples. By leveraging expert models
for both properties, we can reduce the number of unexpected rings as well as fused rings,
although the 4,7- and 8-membered rings are still prevalent but potentially in ligands that
according to the SAScore are still better evaluated compared to the pIC50-conditional
setting only.
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Chapter 3

Conclusion

This thesis has contributed to the development of deep learning models to process
molecular representation suitable for either molecular property prediction or
molecular generation and optimization by exploring the symmetries of the data
with the overall goal of improving the efficiency of computer-aided methods for
accelerated drug discovery. As molecules can be described through different
raw and unprocessed representations, e.g., line notation as in SMILES, 2D
topological graphs with connected atoms through bonds, or point clouds as
3D conformers potentially embedded in a protein pocket forming a complex,
all representations have in common that they form set, where the concept of
group equivariance, such as permutations and rotations, plays a central role with
practical implications on graph representation learning and generation.

In the first publication, we have shown with the Neuraldecipher model that
reverse-engineer fixed-sized extended-circular fingerprints (ECFPs) of molecules
back to their SMILES is to some extent possible depending on the input size
of the ECFP. While this application has not been researched extensively, we
demonstrated that exchanging ECFPs between institutions in academia or the
private sector comprises the risk of loss of intellectual property. Unless a non-
disclosure agreement has been placed, ECFPs should not be shared. With
this in mind, collaborative drug discovery programs among private and public
sectors are advised to opt for federated learning approaches, as pioneered in the
MELLODY project (Oldenhof et al., 2023; Heyndrickx et al., 2024).

In the second publication, we demonstrated that the relatively underexplored
hypercomplex neural networks also benefit for 2D graph representation learning.
We show that learning the multiplication rule inspired by the complex or quater-
nion algebras reduced the number of trainable parameters in the network without
performance decrease on molecular property prediction benchmarks compared to
their real counterpart, suggesting that the assumed internal hypercomplex hidden
representation is richer and better suited for generalization. While the proposed
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PHC-GNN architecture is relatively simple and adapted from the GIN model
(Xu et al., 2019), we believe future research can be dedicated to an improved
version of PHC-GNN that use novel aggregations schemes, e.g., attention-based,
and include additional positional encodings to increase expressivity, while also
relying on the parameterized hypercomplex linear layer to mimic and learn the
multiplication rule from the data.

In the third publication, we lift the space for graph representation learning
by including the spatial coordinates in the geometric graph. This implies that
the neural network architecture must consider rotation equivariance next to
permutation symmetry. We proposed a novel and efficient 3D GNN architecture
termed EQGAT that is equivariant to permutations as well as 3D rotations.
Similar to other recent Cartesian-based SO(3) equivariant GNNs, we implement
rotation equivariant rank-1 features through scalarization but enjoy increased
model expressivity through the interplay of equivariant features by using the cross-
product, a unique and novel feature, as well as attention mechanism. Especially
on larger point clouds of bio-molecules, our proposed EQGAT architecture
is competitive, if not superior, to other SO(3)-equivariant GNNs while being
computationally inexpensive on protein property prediction benchmarks. One
possible limitation of the EQGAT architecture on protein learning tasks, however,
is the lack of initial featurization of node or edge features computed from the
backbone atoms from each residue to extract relative spatial encodings as
proposed by Ingraham et al. (2019) and also extended in the GVP-GNN model
(Jing et al., 2021). Although EQGAT might be able to learn the features through
several message passing layers, we believe that including such initial features has
the potential to increase expressiveness next to the baked-in equivariance.

In the fourth publication, we used the EQGAT architecture from publication 3
for 3D molecule generation as a denoising model to sample de novo molecules.
We proposed several critical design choices, such as timestep dependent loss
weighting or the suitable noising scheme, to effectively train diffusion models on
3D molecular data, answering open questions for practitioners new to generative
modeling with diffusion models for 3D molecules. Since diffusion models act as
denoisers, gradually predicting more data-like molecules, the choice of EQGAT,
which is permutation and rotation equivariant, was made due to the experience
with this architecture. Nonetheless, we demonstrated that the EQGAT architec-
ture with the same diffusion design choices is parameter-lighter and superior to
the MiDi model (Vignac et al., 2023), which was state-of-the-art at the time of
publication.

In the final and fifth publication, we delved into structure-based drug design
following up with the EQGAT-diff architecture from publication 4. We show that
pre-training 3D diffusion models on only small molecules has the advantage of
improved sample quality when fine-tuned on data-scarce protein-ligand complexes.
Since conditioning the ligand generation on the protein pocket alone is not
sufficient to design an effective drug, we proposed an importance sampling
algorithm that enables multi-objective generation of ligands tailored for fixed
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protein pockets. We demonstrate that the novel importance sampling algorithm
is a computationally efficient alternative to other conditioning methods, such as
classifier (gradient) guidance. Since the exploration of chemical space heavily
relies on the surrogate (property) model, we further show that an ensemble of
surrogate models for properties like predicted pIC50 increases the reliability
of generated ligands since the uncertainty is implicitly modeled through the
ensemble.

The diffusion models introduced in publications 4 and 5 for unconditional
and conditional 3D molecule design within the context of a protein pocket are
currently limited in the quadratic complexity during message passing to exchange
information between atoms from the ligand, while interactions between protein
and ligand are restricted based on a distance cutoff. Furthermore, diffusion
models tend to have slow sampling speed, particularly in larger PL-complexes
where every forward pass amounts to a costly denoising step. For SBDD,
developing customized protein-ligand encoder network architectures might be
an exciting research direction, while computation time during sampling can be,
e.g., accelerated by changing the generative algorithm from diffusion to, e.g.,
continuous normalizing flows that enjoy fewer sampling steps during the reverse
trajectory by following a learned deterministic dynamics, but are trained through
a diffusion like simulation-free training objective (Lipman et al., 2023; Liu et al.,
2023; Albergo and Vanden-Eijnden, 2023) making them favorable and scalable.

Despite significant advances in deep graph representation learning for drug
discovery, numerous challenges remain. Among the most critical issues are
data-related concerns, including scarcity, heterogeneity, and labeling directly
influenced by the origin where the data was produced in the first place (Bender
and Cortes-Ciriano, 2021). Furthermore, another challenging task is properly
evaluating generative machine learning algorithms, like diffusion models in SBDD.
Including physical priors during the training of the diffusion model in a simulation-
free manner is an interesting research direction to increase the credibility of
the generated samples of the model as an alternative to existing methods that
apply guidance at the inference stage during sampling. We are confident that
the research community will continue to achieve remarkable advancements in
these areas and beyond. We are proud to have contributed to this vibrant and
evolving field. We hope that the work presented in this thesis has contributed
to the development of improved graph representation and generation methods.
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Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Atz, K., Grisoni, F., and Schneider, G. (2021). Geometric deep learning on
molecular representations. Nature Machine Intelligence, 3(12):1023–1032.

Bao, F., Zhao, M., Hao, Z., Li, P., Li, C., and Zhu, J. (2023). Equivariant energy-
guided SDE for inverse molecular design. In The Eleventh International
Conference on Learning Representations.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre,
C., Song, F., Ballard, A., Gilmer, J., Dahl, G., Vaswani, A., Allen, K., Nash,
C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep
learning, and graph networks.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M.,
Molinari, N., Smidt, T. E., and Kozinsky, B. (2022). E(3)-equivariant graph
neural networks for data-efficient and accurate interatomic potentials. Nature
Communications, 13(1):2453.

Bender, A. and Cortes-Ciriano, I. (2021). Artificial intelligence in drug discovery:
what is realistic, what are illusions? part 2: a discussion of chemical and
biological data. Drug Discovery Today, 26(4):1040–1052.

Bender, A. and Glen, R. C. (2004). Molecular similarity: a key technique in
molecular informatics. Organic & biomolecular chemistry, 2(22):3204–3218.

160



Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E. J., and Welling, M.
(2022). Geometric and physical quantities improve e(3) equivariant message
passing. In International Conference on Learning Representations.

Brandstetter, J., van den Berg, R., Welling, M., and Gupta, J. K. (2023). Clifford
neural layers for PDE modeling. In The Eleventh International Conference on
Learning Representations.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric
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F., Engkvist, O., Göller, A. H., Moreau, Y., Galtier, M. N., Schuffenhauer,
A., and Ceulemans, H. (2024). Melloddy: Cross-pharma federated learning at
unprecedented scale unlocks benefits in qsar without compromising proprietary
information. Journal of Chemical Information and Modeling, 64(7):2331–2344.
PMID: 37642660.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models.
In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors,
Advances in Neural Information Processing Systems, volume 33, pages 6840–
6851. Curran Associates, Inc.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling, M. (2022). Equivariant
diffusion for molecule generation in 3D. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 8867–8887. PMLR.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences, 79(8):2554–2558.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and
Leskovec, J. (2020). Open graph benchmark: Datasets for machine learning
on graphs. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H., editors, Advances in Neural Information Processing Systems, volume 33,
pages 22118–22133. Curran Associates, Inc.

Huang, L., Zhang, H., Xu, T., and Wong, K.-C. (2023). Mdm: Molecular diffusion
model for 3d molecule generation. Proceedings of the AAAI Conference on
Artificial Intelligence, 37(4):5105–5112.

Igashov, I., Stärk, H., Vignac, C., Schneuing, A., Satorras, V. G., Frossard, P.,
Welling, M., Bronstein, M., and Correia, B. (2024). Equivariant 3d-conditional
diffusion model for molecular linker design. Nature Machine Intelligence,
6(4):417–427.

Ingraham, J., Garg, V., Barzilay, R., and Jaakkola, T. (2019). Generative models
for graph-based protein design. In Wallach, H., Larochelle, H., Beygelzimer,
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Le, T., Bertolini, M., Noé, F., and Clevert, D.-A. (2021). Parameterized hyper-
complex graph neural networks for graph classification. In Artificial Neural
Networks and Machine Learning – ICANN 2021: 30th International Confer-
ence on Artificial Neural Networks, Bratislava, Slovakia, September 14–17,
2021, Proceedings, Part III, page 204–216, Berlin, Heidelberg. Springer-Verlag.

Le, T., Cremer, J., Noe, F., Clevert, D.-A., and Schütt, K. T. (2024). Navigating
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