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Abstract 

Environmental degradation within river basins arises from both natural factors, such as climatic 

variability and biophysical attributes like topography and soil characteristics, as well as anthropogenic 

influences. Human-induced degradation, driven by factors such as population growth, urban expansion, 

and shifts in land use patterns, exacerbates the natural degradation processes. The study sought to model 

soil erosion risk in the Black Volta River basin. Specifically, the study (1) evaluated and determined the 

land use and land cover dynamic and drivers of urban expansion in the Wa municipality of Ghana 

between 1990 and 2020, (2) estimated soil erosion risk in a typical savannah landscape of Wa 

municipality of Ghana between 1990 and 2020 and (3) estimated and evaluated soil erosion risk across 

various landscape units of the Black Volta River basin over the periods of 1992, 2006 and 2020. Landsat 

satellite data (30 x 30 m resolution) was processed using Geographical Information System and remote 

sensing techniques to establish the spatial and temporal dynamics of land cover in the Wa municipality 

for the years 1990, 2001, 2010 and 2020. The thematic maps were used to assess the drivers of urban 

expansion (objective 1) and the potential and soil erosion risk (objective 2) in the Wa municipality. In 

the basin scale and landscape units’ erosion risk modelling for the years 1992, 2006 and 2020 (objective 

3), a 300 x 300 m resolution land cover data from the Copernicus Global Land Cover Services was used. 

Based on the spatial and temporal analysis of land cover change, it was evident that settlement expansion 

led to the depletion of woody biomass over the three decades (1990 to 2020). Settlement expansion was 

influenced by accessibility and connectivity factors, such as distance to existing settlements, rivers, and 

primary, tertiary, and unclassified roads, which were established as predictors of settlement expansion 

in the Wa municipality. By employing the Revised Universal Soil Loss Equation model, potential 

erosion risk was higher in 1990 (mean annual rate = 8.5 t ha⁻¹yr⁻¹) due to higher rainfall erosivity 

compared to 2020 (6.5 t ha⁻¹yr⁻¹) when rainfall erosivity was lower. However, the estimated soil erosion 

risk was lower in 1990 (2.6 t ha⁻¹yr⁻¹) due to greater vegetation cover, compared to 2020 (3.1 t ha⁻¹yr⁻¹) 

when vegetation cover declined. Soil loss was notably high in settlement, urbanising and areas with long 

and steep slopes, emphasising the influence of human and topographic factors on high erosion risk. This 

was statistically validated with data from a field survey that measures the spatial extents of soil erosion 

damages in 2 km2 each of settlement, open savannah and closed savannah areas in the Wa municipality. 

It was established that settlement areas were the most damaged followed by open savannah and closed 

savannah units. Statistical correlation analysis reveals a positive relationship between the spatial extent 

of damages and the predicted soil erosion risk rates from the RUSLE model. At the basin scale and 

across landscape units, erosion risk and soil loss are primarily driven by topographic attributes and 

rainfall erosivity factors. The Savannah Escarpment and Sahelian Highlands with steep slope 

characteristics were identified as extreme erosion risk landscape units, while the Low Sahelian Plains 

and Sahelian Uplands, characterised by flat and gentle slopes, were predicted to have low erosion risk. 

Also, localised concave areas in the Savannah Escarpment and Sahelian Highland coupled with low 

TWI characteristics further heightened erosion risk. Additionally, a positive increase in the rainfall 

erosivity factor resulted in a positive change in soil loss while a decrease in rainfall erosivity factor led 

to a negative change in soil loss across all the landscape units, thus, underscoring the influence of rainfall 

erosivity factor on high erosion risk. Overall, the findings enhance the understanding of the erosion risk 

dynamic in the Black Volta River basin and would serve as a guide in planning management practices 

in line with global goals that seek to ensure environmental sustainability. 
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Zusammenfassung 

Landdegradierung wird sowohl auf natürliche Faktoren wie Klimaschwankungen und biophysikalische 

Eigenschaftebn wie Topografie und Bodenbeschaffenheit als auch durch anthropogene Einflüsse gesteuert. 

Die vom Menschen verursachte Degradation, die durch Faktoren wie Bevölkerungswachstum, städtische 

Expansion und veränderte Landnutzungsmuster bedingt ist, verschärft die natürlichen Degradations-

prozesse. Ziel der Studie war die Modellierung des Bodenerosionsrisikos im Black Volta River basin. 

Konkret wurden in der Studie (1) die Dynamik der Landnutzung und Landbedeckung sowie die Faktoren 

der städtischen Expansion in der Gemeinde Wa in Ghana zwischen 1990 und 2020 bewertet und bestimmt, 

(2) das Bodenerosionsrisiko in einer typischen Savannenlandschaft der Gemeinde Wa in Ghana zwischen 

1990 und 2020 abgeschätzt und (3) das Bodenerosionsrisiko in verschiedenen Landschaftseinheiten des 

Black Volta River basin für die Zeiträume 1992, 2006 und 2020 abgeschätzt und bewertet. Landsat-

Satellitendaten (30 x 30 m Auflösung) wurden mit Hilfe von geografischen Informationssystemen und 

Fernerkundungstechniken verarbeitet, um die räumliche und zeitliche Dynamik der Bodenbedeckung in der 

Gemeinde Wa für die Jahre 1990, 2001, 2010 und 2020 zu ermitteln. Die thematischen Karten wurden 

verwendet, um die Triebkräfte der städtischen Expansion (Ziel 1) sowie das Potenzial und das Risiko der 

Bodenerosion (Ziel 2) in der Gemeinde Wa zu bewerten. Für die Modellierung des Erosionsrisikos auf der 

Ebene des Einzugsgebiets und der Landschaftseinheiten für die Jahre 1992, 2006 und 2020 (Ziel 3) wurden 

Landbedeckungsdaten mit einer Auflösung von 300 x 300 m aus den Copernicus Global Land Cover 

Services verwendet. Aus der räumlichen und zeitlichen Analyse der Landbedeckungsveränderung ging 

hervor, dass die Ausdehnung der Besiedlung in den drei Jahrzehnten (1990 bis 2020) zu einer Verarmung 

der holzigen Biomasse führte. Die Siedlungsexpansion wurde durch Faktoren der Zugänglichkeit und 

Vernetzung beeinflusst, da die Entfernung zu bestehenden Siedlungen, Flüssen, primären, tertiären und 

nicht klassifizierten Straßen als Prädiktoren für die Siedlungsexpansion in der Gemeinde Wa ermittelt 

wurden. Bei Anwendung des überarbeiteten Modells der universellen Bodenverlustgleichung war das 

potenzielle Erosionsrisiko im Jahr 1990 (mittlere jährliche Rate = 8,5 t ha-¹yr-¹) aufgrund der höheren 

Niederschlagserosivität höher als im Jahr 2020 (6,5 t ha-¹yr-¹), als die Niederschlagserosivität geringer war. 

Allerdings war das geschätzte Bodenerosionsrisiko 1990 (2,6 t ha-¹yr-¹) aufgrund der größeren Vegetations-

decke geringer als 2020 (3,1 t ha-¹yr-¹), als die Vegetationsdecke abnahm. Die Bodenverluste waren in 

Siedlungsgebieten, urbanen Gebieten und Gebieten mit langen und steilen Hängen besonders hoch, was den 

Einfluss menschlicher und topografischer Faktoren auf das hohe Erosionsrisiko unterstreicht. Im Gelände 

erhobene Daten validieren das räumliche Ausmaß der Bodenerosionsschäden in jeweils 2 km2 großen 

Siedlungs-, offenen Savannen- und geschlossenen Savannengebieten in der Gemeinde Wa. Es wurde fest-

gestellt, dass Siedlungsgebiete am stärksten geschädigt wurden, gefolgt von offenen Savannen- und ge-

schlossenen Savanneneinheiten. Die statistische Korrelationsanalyse zeigt eine positive Beziehung 

zwischen der räumlichen Ausdehnung der Schäden und den mit dem RUSLE-Modell vorhergesagten 

Bodenerosionsrisiken. Auf der Ebene des Einzugsgebiets und der verschiedenen Landschaftseinheiten 

werden Erosionsrisiko und Bodenverlust in erster Linie durch topografische Merkmale und den 

Niederschlagsverhalten bestimmt. Das Savannah Escarpment und das Sahelian Highlands mit steilen 

Hängen wurden als Landschaftseinheiten mit extremem Erosionsrisiko identifiziert, während für die Low 

Sahelian Plains und die Sahelian Uplands, die durch flache und sanfte Hänge gekennzeichnet sind, ein 

geringes Erosionsrisiko vorhergesagt wurde. Auch lokal begrenzte konkave Bereiche im Savannah 

Escarpment und im Sahelian Highland in Verbindung mit niedrigen TWI-Merkmalen erhöhten das 

Erosionsrisiko weiter. Darüber hinaus führte ein Anstieg der Niederschläge zu einer Zunahme der 

Bodenverluste, was den Einfluss des Erosionsfaktors der Niederschläge auf ein hohes Erosionsrisiko 

unterstreicht. Insgesamt verbessern die Ergebnisse das Verständnis für die Dynamik des Erosionsrisikos im 

Einzugsgebiet des Schwarzen Volta und können als Leitfaden für die Planung der Bewirtschaftungspraxis 

im Einklang mit den globalen Zielen zur Gewährleistung der ökologischen Nachhaltigkeit dienen. 
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1 

CHAPTER 1: INTRODUCTION  

1.1 Background 

River basins provide essential ecosystem services that sustain lives; however, most basins are faced with 

degradation due to both natural and anthropogenic causes (Akinsete et al., 2019). The natural exposure 

to degradation stems from their physical characteristics and climate change and climate variability 

(AbdelRahman, 2023; Akinsete et al., 2022). The anthropogenic causes of environmental degradation 

on the other hand emanate from population increase and its associated activities that put pressure on 

environmental resources (AbdelRahman, 2023). The Black Volta River basin is one of the major river 

basins in the West Africa Sub-region, and it plays a vital role in the economic development of riparian 

countries. The Black Volta River basin is a transboundary and is shared between Ghana, Mali, Burkina 

Faso and Ivory Coast who rely on the basin’s resources, especially water, for domestic, livestock, crop 

production, and hydropower purposes (Mul et al., 2015; Rodgers et al., 2007).  

Despite its tremendous contribution and potential, the basin is vulnerable to climate impact, particularly 

increased rainfall intensity coupled with rapid human population growth and its resultant degradation. 

The rapid population growth and settlement expansion of the basin are reflected in the census data of 

the highly urbanising Wa municipality within the Ghana part of the basin. There is potential competition 

over the already stressed basin’s resources due to increased demand from the fast-growing population 

and economic growth exacerbated by environmental changes and degradation (Boretti & Rosa, 2019; 

Mul et al., 2015). The competition for environmental resources and its associated degradation is 

expected to worsen in the future with consequences for environmental sustainability, food security and 

economic growth in the four transboundary basin countries (McCartney et al., 2012; Mul et al., 2015).   

The Black Volta basin is predominantly characterised by a semi-arid environment especially in its 

central and northern parts, making the area more vulnerable to excessive evapotranspiration, drought, 

and soil erosion (Gebrechorkos et al., 2022). Environmental degradation and soil erosion in the basin 

emanate from over-exploitation of the landscape coupled with erratic but high-intensity-rainfalls (Barry 

et al., 2005; Jin et al., 2018). The characteristic savannah and woodland vegetation of the basin faces an 

expected depletion of 25% deforestation because of the increasing population (Abungba et al., 2022). 

Since the 1960s, there existed a trend of settlement expansion and agricultural development that led to 

encroachment of forestland (Tengapoe et al., 2023, Barry et al., 2005). Also, timber extraction and tree 

cutting for fuel wood and charcoal production in low-income regions propagated (Tengapoe et al., 2023, 

Barry et al., 2005). The extensive exploitation of the basin creates bare and impervious soil surfaces that 

accelerate run-off, erosion and sedimentation (Peng & Dai, 2022). Soil erosion and sedimentation are 

major threats in the Volta Basin leading to low agricultural productivity, decreasing water storage 

capacity of river channels, siltation of reservoirs, degradation of water quality and a general destruction 

of the ecosystem (Nyamekye et al., 2018; UNEP-GEF, 2013).  

Quantitative assessment of environmental degradation such as soil erosion risk is a fundamental step in 

developing and planning sustainable measures to reduce their impacts on landscapes and the populace 

(Alewell et al., 2019; Prasannakumar et al., 2012). This study seeks to assess soil erosion risk in the 

Black Volta River by applying a coupled approach of on-site geomorphological survey and the 

application of the Revised Universal Soil Loss Equation (RUSLE) model. By assessing and 

understanding the soil erosion risk dynamics in the different landscape units of the basin, conservation 
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and adaptation strategies would be informed in line with the Volta Basin Authority’s mandate of 

integrated water resources management to achieving global goals such as the United Nations’ 

Sustainable development goals to ensure environmental sustainability. The study therefore bases on 

three specific objectives to understand the changes in land cover, driver of settlement expansion and soil 

erosion risk over the past three decades. The study focuses on the transboundary Black Volta River 

basin, however, a case study in a highly urbanising Wa municipality of Ghana, a typical savannah 

landscape within the Black Volta River basin inspired the study.  

1.2 Objectives 

The overall objective of the study is to evaluate soil erosion risk under varied conditions in the Black 

Volta River basin. The specific objectives are as follows: 

(a) To evaluate and determine the land use and land cover change (LULC change) dynamic and the 

drivers of urban expansion in the Wa municipality between 1990 and 2020. 

(b) To estimate soil erosion risk in a typical savannah landscape of Wa municipality/Ghana between 

1990 and 2020.  

(c) To estimate and evaluate soil erosion risk across various landscape units of the Black Volta River 

basin over the periods of 1992, 2006 and 2020. 

Based on the specific objectives, the study wants to find answers to the following questions: 

• What is the extent of land use land cover change in the Wa municipality during the past three 

decades? What are the drivers of land use land cover change and urban expansion in the Wa 

municipality? 

• What is the extent of soil erosion risk in the Wa municipality between 1990 and 2020?  

• How do soil erosion risk estimates vary across different landscape units of the Black Volta River 

basin during the past three decades?  

1.3 Outline of the Thesis 

The thesis is a cumulative dissertation that comprises eight chapters including four introducing chapters, 

three core chapters and a final synthesis Chapter.  

The introductory chapters entail Chapters 1 to 4. Chapter 1 is the introduction chapter that gives a 

general background to the study, introduces the research objective and question, and provides the outline 

of the thesis. Chapter 2 provides the state of the art and particularly reviews relevant literature related to 

the study objectives. In Chapter 3, a comprehensive description of the Black Volta basin is given by 

detailing the location and administrative settings, the natural and physical characteristics, population 

dynamic and urbanisation and the socioeconomics and livelihood diversification options in the basin. 

Chapter 4 of the thesis highlights the material and methods employed in achieving the set research 

objectives that form the core chapters of the thesis.  

The core chapters: The thesis is composed of three peer-reviewed journal articles of which two have 

been published in international journals while the third article is under review. The three peer-reviewed 
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journal articles form the core chapters 5, 6 and 7 of the thesis and correspond to the three specific 

objectives 1, 2 and 3. 

The synthesis chapter: This chapter synthesises the findings of the three main objectives and draws 

general conclusions. Based on the findings, the chapter highlights some potential implications with 

regard to biodiversity and ecological sustainability, agricultural productivity, hydrological impacts and 

economic cost of erosion damages. The chapter also entails a general conclusion based on the objectives 

and findings of the study.  

The detailed outline of the three core chapters is as follows 

Chapter 5:  Asempah, M., Sahwan, W., & Schütt, B. (2021). Assessment of land cover dynamics and 

drivers of urban expansion using geospatial and logistic regression approach in Wa municipality, Ghana. 

Land, 10(11). https://doi.org/10.3390/land10111251. Own contribution: 70%. 

Within the scope of the general aim of the thesis, this chapter focuses on assessing the changes in land 

cover and the geospatial drivers of urban expansion from the year 1990 to 2020 in Wa municipal of 

Ghana. This was imperative due to the growing population in the past decade that renders savannah, arid 

and semi-arid landscapes vulnerable to environmental degradations such as forest-cover depletion, soil 

erosion risk and overall destruction of the ecosystem (Dudley et al., 2020). The Wa municipal is a typical 

savannah landscape that is a true representation of the Black Volta River basin. The chapter expatiated 

the methodological approaches, analysis, and discussions of results of the first objective of the research. 

This was achieved through GIS and remote sensing techniques that were applied in classifying Landsat 

satellite images to assess the land use dynamic of the Wa municipal over time. Owing to the 

heterogeneity of the Wa municipality preprocesses such as image enhancement using spectral indices 

were performed before a supervised classification of Landsat images that was achieved by employing a 

non-parametric random forest classifier. Four thematic maps for the years 1990, 2001, 2010 and 2020 

were produced to better understand the decadal trend in land cover over the three decades. Settlement 

expanded in each consecutive time slice at the expense of vegetation cover. In assessing the geophysical 

drivers of urban expansion, the chapter asses the influence of location factors (distance from existing 

settlement, distance to primary roads, distance to tertiary roads, distance to stream, and distance to rivers) 

and topographic factors (slope, aspect, and topographic wetness index (TWI) on urban expansion over 

the three decades using binomial logistic regression.  

Chapter 6: Asempah, M.; Shisanya, C.A. & Schütt, B (2024). Modelling of soil erosion risk in a 

typical tropical savannah landscape. Scientific African, 23(July 2023), e02042. 

https://doi.org/10.1016/j.sciaf.2023.e02042. Own contribution: 70%. 

This chapter elaborates on the spatial soil erosion risk dynamics in the Wa municipal. The study 

employed the RUSLE empirical model for the estimation of soil erosion risk following the land cover 

dynamic and settlement expansion modelled in Chapter 5. The RUSLE model’s input parameters are 

from two broad sources: natural (rainfall, soil, and topography) and vegetation cover and cover 

management practices. The required data were obtained from various sources for the estimation of 

rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), cover 

factor (C) and support practice factor (P). The spatial soil erosion risk was modelled by incorporating 

all the five input parameters required by the RUSLE model after harmonising the parameters into the 

Published under CC BY.

Published under CC BY.
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https://creativecommons.org/licenses/by/4.0/
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same cell resolution and projection. The chapter details the various relationships between the input 

parameters and high soil erosion risk in the Wa municipality. It was evident that areas with long and 

steep slopes corresponding to bareland areas especially within settlement areas correlate positively with 

high soil erosion risk in the years 1990 and 2020. Data from field surveys that measured the spatial 

extent of erosion damages validate the results from the RUSLE model. Based on the in-situ measurement 

of erosion damages, it was revealed that settlement areas are of the highest erosion risk due to the 

continued human activities that lead to the removal of vegetation cover, creation of impervious surfaces 

and movement of earth.  

Chapter 7: Asempah, M., Becker, F., C.A., Shisanya & B., Schütt (submitted). Major Landscape Units 

of the Black Volta basin and their Exposure to Soil Erosion Risk – Manuscript to be published as an 

open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC 

BY) license. 

 (https://creativecommons.org/licenses/by/4.0/). Own contribution: 65%. 

This chapter assesses the exposure of the landscapes of the Black Volta River basin to soil erosion risk 

for the years 1992, 2006 and 2020. Firstly, the study basin was characterised into landscape units mainly 

based on the geology and climatic characteristics. In all, six landscape units were characterised for the 

onward soil erosion risk estimation. They include Low Sahelian Plains, Sahelian Uplands, Sahelian 

Highlands, Savannah Transition, Mixed Terrain Plateau and Savannah Escarpment landscape units. The 

landscape units across the northern corridor (Low Sahelian Plains, Sahelian Uplands and Sahelian 

Highlands) are characterised by a higher proportion of grassland and cropland than the landscape units 

in the south (Savannah Transition, Mixed Terrain Plateau and Savannah Escarpment). Also, rainfall 

amounts are lower in the north than south. Similar to the step in Chapter 6, the RUSLE model’s input 

parameters (rainfall erosivity factor (R), soil erodibility factor (k), slope length and steepness factor 

(LS), cover factor (C) and support management practice (P) factor) were estimated and evaluated for the 

onward soil erosion risk modelling and assessment. The RUSLE model was used in the soil erosion risk 

estimation at both basin and landscape unit levels. This was followed by a scenario analysis of soil loss 

across the basin and the six landscape units. Overall, it was established that the rainfall erosivity factor 

is the main influencing factor of soil erosion risk and soil loss across all the landscape units. 

https://creativecommons.org/licenses/by/4.0/
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CHAPTER 2: STATE OF THE ART 

Chapter 2 presents the discourse of environmental degradation with an emphasis on soil erosion risk. 

The Chapter gives an account of the historical and contemporary soil erosion risk and elaborates on the 

contributing factors such as climate change and variability, topographic factors and soil physical 

characteristics. Also, the impact of Population growth and urbanisation that drive land use and cover 

dynamics as contribution factors to environmental degradation, particularly soil erosion, is captured. 

2.1 The Historical and Contemporary Account of Soil Erosion Risk  

Soil erosion has been of major interest due to the tremendous effect it has on human survival which has 

necessitated scientific research over the past centuries (Pimentel, 2006). Historically, the impact of soil 

erosion has been severely felt especially in the semiarid to dry-subhumid regions of West Africa which 

are characterised by savannah vegetation cover (Sissoko et al., 2011). The savannah vegetation areas 

within the Sahel region of West Africa were reported as severely most vulnerable to erosion as estimates 

show that the area erodes above the tolerable level for soil formation to compensate for soil loss (Giertz 

et al., 2005; Sissoko et al., 2011). Soil erosion rate of 2.4 t ha−1yr−1, corresponding to 0.90–0.95 mm 

from the land surface removed soil each year most likely has a devastating impact on food production 

(Ostovari et al., 2021; Lanlan Zhang et al., 2021). The severity of soil erosion within the Sahel region 

of West Africa is exemplarily manifested in about 150-300 m2 gullies formation during one short rainy 

season on small alluvial fans of 5000-10,000 m2 area (Talbot & Williams, 1978). Similarly,  Lal, (1984), 

reports a severe soil erosion risk on arable lands in river basins in Upper Volta, Niger, Mali and Chad 

within the West African sub-region. The menace is aggravated by bushfires, deforestation, and 

agricultural activities in savannah woodlands (Nyamekye et al., 2018; Olanipekun et al., 2019; Zhou, 

2016). The magnitude of degradation affects soil organic carbon contents, effective soil water holding 

capacity and major soil nutrients such as nitrogen and phosphorus reserves. Depletion of soil directly 

affects essential functions, such as organic matter storage, nutrient recycling, and food production 

(Pimentel, 2006) thereby causing stunted growth of food crops, low productivity, and food insecurity 

(Dominati et al., 2010; Ferreira et al., 2022; Gerke, 2022). 

In the early-mid-20th century, there was a great revolution in tropical agriculture where vast tropical 

forests and savannah vegetated land converted stepwise into arable land (Tosh, 1980; Tripathi et al., 

2021). The continuing tillage renders vast areas of arable land unproductive due to accelerated soil 

erosion and the resulting destruction of the terrestrial (AbdelRahman, 2023; Larson et al., 1983). Also, 

globally distributed data compiled by Montgomery, (2007) Indicate that conventional agriculture 

predisposes arable lands to about 10-100 times higher soil loss rates compared to conservation 

agriculture. Healthy soils drive sustainable food production, however, human-controlled activities such 

as unsustainable agricultural practices, deforestation, bushfires, and overgrazing, usually increase the 

rate of ecological destruction and natural ecological imbalances and intensify soil erosion (Abdalrahman 

et al., 2010; Keesstra et al., 2016; Stanchi et al., 2015). This is in line with the Millenium Ecosystem 

Assessment, (2005)that identified unregulated land-use decisions, unsustainable agricultural practices 

and poor soil management practices as the principal drivers of accelerating soil erosion risk.  

Globally an estimated 75 billion metric tons of soil is eroded from arable lands annually while about 

80% of the world’s arable land is classified as moderately to severely eroded (Pimentel & Kounang, 

1998). Previous studies affirm the significant impact of soil erosion-induced nutrient variability on 
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agricultural productivity and food security (Gu et al., 2018; Visser et al., 2019). The annual reduction in 

crop production over the year attributed to soil erosion risk and coinciding loss of soil nutrients heighten 

the threat of soil erosion to global food security (Liu et al., 2015; Pimentel & Burgess, 2013; Xie et al., 

2019; Lanlan Zhang et al., 2021). Besides food insecurity, other repercussions associated with 

accelerated soil erosion risk include, increasing atmospheric carbon dioxide concentrations (Lal, 2019), 

water quality degradation characterised by increased turbidity, sedimentation of reservoirs leading to 

reduction of their water holding capacity and the overall disturbances in hydrological regimes (Ayele et 

al., 2021; Shah et al., 2022). The disturbance in hydrological regimes is heightened in many river basins 

as flood risks due to the siltation of river channels and the blockage of watercourses (Lal, 2003; Locatelli 

et al., 2011). Due to the rapid degradation of land cover due to anthropogenic impacts, tropical 

landscapes have high erosion potential given high rainfall intensity and distribution (Flores et al., 2019; 

Malhi et al., 2014). 

2.2 Natural Drivers of Erosion 

In the context of the RUSLE model’s requirement for modelling soil erosion risk, three main natural 

influencing factors are eminent. These include the climatic conditions represented in rainfall intensity 

and distribution, soil characteristics and the topographic influence. These factors play pivotal roles in 

shaping the erosive potential of a given landscape and are integral to the accurate prediction of soil loss. 

2.2.1 Topography Controlling Erosion 

A major controlling factor of soil erosion is topography and the general configuration of land surfaces 

(Dalzell et al., 2022; Dialynas et al., 2016). Specifically, terrain characteristics in terms of steepness, 

slope length and curvature are critical topographic attributes that control erosion (Wang et al., 2020). 

Long slopes are characterised by expanded surface area for water collection and an increased volume of 

runoff (Deng et al., 2021; Hrachowitz et al., 2021). Generally, the steeper the slope, the higher the flow 

velocity of the runoff and associated sediment transport capacity (Fang et al., 2015). Land with slope 

characteristics of greater than 15% is in general considered to be vulnerable to erosion and to be 

unsuitable for arable farming  (Siswanto & Sule, 2019). The erosive potential of runoff is contingent 

upon velocity and volume as increased velocity and volume increase soil particle detachment and 

transport capacity (Deng et al., 2021; Hecht & Oguchi, 2017). 

The influence of topography on erosion damages such as rill, sheet and gully erosion is controlled by 

certain thresholds and triggered and intensified by various predisposing factors (Arabameri et al., 2018; 

Cen et al., 2022; Gayen et al., 2019). Topographic factors such as slope gradient, slope aspect, 

topographic wetness index, curvature, stream power index and drainage density are major determinants 

of soil erosion (Conoscenti et al., 2014; Roy et al., 2020). In many contexts, slope gradient is proven to 

be highly influential on soil erosion risk (Ahmad et al., 2023; Conoscenti et al., 2014).  

2.2.2 Climate Change and Variability Influence on Soil Erosion Risk 

The climatic factor affecting soil erosion risk primarily encompasses rainfall characteristics such as 

rainfall intensity and distribution. Intense rainfall can lead to increased surface runoff and erosion due 

to saturation overland flow and Horton flow (Ahnert, 1996), while the distribution of rainfall over time 
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influences soils’ water saturation and erosion susceptibility (Renard et al., 1997). This underscores the 

importance of considering both the quantity and temporal distribution of rainfall events in erosion risk 

modelling including changes and variations of climatic conditions, particularly in rainfall and 

temperature, over time.  

Climate change and variability are critical environmental issues that directly affect land degradation and 

soil erosion through desertification, drought, and flood (Lal, 2012; Stringer et al., 2009). Over 4 billion 

hectares of land across the globe are mainly affected by climate change and variability affecting over 

1.5 billion people (Berberoglu et al., 2021). The impact of climate change and its associated soil and 

environmental degradation significantly sways environmental sustainability, economic efficiency and 

food security (Nguyen et al., 2023). The dynamics of climate changes and precipitation regimes are 

undoubtedly precursors of risk to surface runoff, soil erosion, and related environmental consequences 

(Berberoglu et al., 2021). According to the Intergovernmental Panel on Climate Change (IPCC, 2021), 

the trends of temperature and precipitation regimes across the globe generally show an increase in 

surface temperature and erratic precipitation variations in the past century. In the West African sub-

region, the impact of climate variability is manifested in the 1970s drought with ripple impacts of 

desertification and low agricultural productivity which in turn affected development in the sub-region 

(Held et al., 2005; Sissoko et al., 2011). Employing the mesoscale meteorological model MM5 (Georg 

et al., 1994) for the Black Volta basin for the two-time steps 1991–2000 and 2030–2039  Jung & 

Kunstmann, (2007)  show an annual mean temperature increase of about 1.3°C and a mean annual 

change in precipitation from -20 to +50 % significantly exceeding the interannual variability.  

Besides the past and the current established trends of climatic change, projections have been made for 

the coming years. Based on spatial and temporal variability climate change simulations on a global scale 

project an increase in precipitation in warmer regions (Iles et al., 2020; Rehfeld et al., 2020). This has 

been affirmed by temporal observations of precipitation for both simulated climate regimes and current 

established climate records. Rainfall intensities are expected to increase, though the average annual 

precipitation is projected to decrease by the end of the 21st century, especially in the Mediterranean 

region (Stefanidis & Stathis, 2018; Zittis et al., 2022). In Sub-Saharan Africa, changes in hydrological 

regimes and early rainfall onset and cessation influence the average annual precipitation over time 

(Shongwe et al., 2009). The global circulation models (GCMs) projected erratic rainfall events until the 

end of the 21st century for countries including Ghana, Burkina Faso and Mali which are major 

contributors to the Black Volta transboundary river basin (Shongwe et al., 2009). As part of the IPCC’s 

Climate Model Intercomparison Project 3 (CMIP3), the evaluation of CNRM and the IPSL show the 

uncertainty of the rainfall regime in West Africa with a contradictory rainfall projection for towards the 

end of the 21st century (Ibrahim e t al., 2014). In support of this assertion, half of the models 

included in the CMIP3 indicate an increase in precipitations especially in the Sahel region of West Africa 

while the other half gives the opposite scenario (Seto et al., 2012).  

Several research alluded to the impacts of climate variability and climate change on soil erosion 

(Eekhout & de Vente, 2022; Klik & Eitzinger, 2010). The integration of regional climate models (RCMs) 

for Sub-Saharan Africa indicates an increase in consecutive dry days with intermittent high-intensity 

rainfall that exacerbates soil erosion risk, particularly during the onset of the wet season (Girmay et al., 

2021; Ligonja & Shrestha, 2015) In assessing the drivers of erosion risk in the context of climate change 

and human impact within East Kagera Basin Li et al. (2021) point out a greater impact of climate change 
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on soil erosion risk than human influence. Owing to the hydrological alterations in many river basins 

stemming from climate change and variability, the rates of soil erosion are expected to change over time 

due to the change in erosivity potential associated with the changes in climate regimes (Girmay et al., 

2021). The degree of rainfall impact on the detachment and transport of soil particles depends on the 

topographic characteristic of the area (Uber et al., 2022). 

2.2.3 Soil Characteristics 

Soil aggregates are formed through several physical, chemical, and biological processes and are sub-

divided into micro aggregates of < 0.25 mm and macro-aggregates of > 0.25 mm size (Kpemoua et al., 

2022; Mustafa et al., 2020; Zeraatpisheh et al., 2021). Following the aggregate hierarchy theory, soil 

aggregates serve as the foundational elements of soil structure that play a pivotal role in determining soil 

structural stability that influences a range of soil physical and chemical properties (Mustafa et al., 2020). 

Soil with good structural and aggregate stability favours the nutrient cycle, soil water balance, soil 

temperature and air exchange thereby promoting good soil health and vegetation growth (Tahat et al., 

2020). Overall, aggregate stability is a good predictor of soil nutrient availability, distribution of soil 

porosity, crusting, detachment, and transport (Khanifar & Khademalrasoul, 2021; Le Bissonnais, 2016). 

The response of soil exposed to rainfall energy includes the mechanical destruction of soil aggregates to 

smaller aggregates or particles, the dispersion of particles and the translocation (Chen et al., 2022). The 

destruction and breakdown of soil aggregates by raindrops depends on the strength of the soil aggregates 

and the kinetic energy inherent in the raindrops to effect detachment (Alivio et al., 2023; Mineo et al., 

2019). Soil particles of <0.125 mm in size require low kinetic energy to effect detachment, thus soils 

with high content of loamy, silty loam, fine sandy, and sandy loam poorly respond to the impact of 

rainfall energy and are most susceptible soils to detachment (Wang et al., 2022).  

Soil erodibility differs in different soils based on their inherent characteristics that determine the capacity 

to detach (Bernik et al., 2018; Fell et al., 2017) Major physical and chemical soil properties such as soil 

structure, texture, organic content, permeability or porosity, temperature, air content, pH, and surface-

aggregation ratios directly influence erodibility (Bonilla & Johnson, 2012; Özdemir et al., 2022). These 

control processes such as infiltration, nutrient cycling, and biological activity determine the soil health, 

productivity, and suitability of use (Tahat et al., 2020; Vereecken et al., 2016). Because of the importance 

of soil characteristics on soil erosion, modelling of soil erosion risk considers textural properties, organic 

matter content, stone coverage and grain size composition, especially considering fines (Pontes et al., 

2022; Schweizer et al., 2021). Generally, clay is a significant active part of soil texture which has a very 

small particle size and a large amount of surface area per unit mass that helps in storing water and ions 

(Stavi & Lal, 2011). Fine sand and silt-dominated soils are prone to erosion due to their high porosity 

rate, and poor water-holding ability and contribute very little to the soil’s ability to restore nutrients and 

water (Stavi & Lal, 2011). In consequence, soils with high proportions of fine sands and silts are mainly 

susceptible to erosion (Scherer et al., 2012)  while soil with significant clay and humus contents presents 

a better protection function against raindrop impacts and erosion (Pintaldi et al., 2018).  

Due to earthy fabric and low cohesiveness, tropical soils exhibit low structure stability with a low 

propensity to resist the impact of raindrops and actions of external mechanical stresses with a high 

tendency to erosion (Wuddivira et al., 2013). Soils with good structural stability may have a low 

infiltration rate because of the inevitable decrease in the gradient of matrix potential (Vereecken et al., 
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2016; Zhipeng et al., 2018). Similarly, deterioration of soil structure reduces infiltration rate in case of 

the formation of clay crusts and due to this sealing of the soil thereby hinders infiltration and promotes 

surface runoff and associated sediment transport (Badorreck et al., 2013).  

2.3 Anthropogenic Causes of Erosion 

Anthropogenic activities crucially determine land use and drive soil erosion as well as the general 

interference of both aquatic and terrestrial ecosystems (Li et al., 2022; Li & Fang, 2016; Tarboton, 1997). 

As the human population grows ecosystem destructive activities such as deforestation, tillage, 

overgrazing, bushfire and settlement expansion are prevalent in many landscapes (Ahmad et al., 2023). 

Anthropogenic activities accelerate soil erosion to about 60% (D. Yang et al., 2003) which accounted 

for about a 2.5% rise in soil erosion by water for the last two decades (Borrelli et al., 2017). According 

to Lal (2003), globally about 109 hectares of land is affected by soil erosion. Soil erosion and soil 

degradation have negative repercussions on agricultural production and profitability (Llena et al., 2019; 

van der Waal & Rowntree, 2018). The soil erosion menace is likely to continue as projections indicate 

a doubling of the global urban population by the end of the 21st century, which will be followed by 

escalating landscape urbanisation to satisfy population demands (Jiang & O’Neill, 2017). 

2.3.1 The Impacts of Population and Urbanisation on Soil Erosion 

It has been projected that the global urban population might increase up to 66% of the global population 

by 2050 (Bettencourt, 2013; Borrelli et al., 2020)including secondary cities urban population is 

envisaged to reach 80% (United Nations Department of Economic and Social Affairs- Population 

Division (UNDESA-POP), 2018). In Africa, the growth of population is reflected in urbanisation and 

settlement expansion, especially in big cities, districts, regional and state capitals (Osawe & Ojeifo, 

2019). In 1950, it was observed that Africa was the least urbanised continent having only 14.5% of the 

population living in urban areas (Osawe & Ojeifo, 2019). In the year 1990, however, 34.5%of the 

African population out of 749 million people was living in urban areas. Based on a projection by the 

United Nations, Africa’s urban population might reach 2.5 billion people by 2050 (International 

Monetary Fund (IMF), 2023). The West African sub-region has seen intensive population growth and 

associated urbanisation since independence, which has strongly affected urbanisation processes and in 

total an increased number of cities with evidence of reduced average distance from 111 km to 33 km 

between agglomerations (Ofoezie et al., 2022). 

As the impact of population growth and land use changes is evident on soil erosion risk, depopulation 

and changes from intensive land use to more conservational practices lead to decreasing soil erosion risk 

(Borrelli et al., 2017; Zorn & Komac, 2009, Uddin et al, 2918). The continuously increasing population 

drives urbanisation and environmental degradation as the expansion of built-up areas is directly 

connected to the expansion of infrastructure, agricultural spread and the development of various 

livelihood activities (Fang et al., 2005). These result in the encroachment of sensitive ecosystems, forest 

depletion, degradation of water bodies, pollution, and finally soil erosion (Leh et al., 2013). The 

exposure of soils to erosion in urbanising landscapes is predominantly high and controlled by soil 

compaction and earthworks (Leh et al., 2013; Lei Zhang et al., 2022).  

The modification of urban landscape includes the spread of impervious surfaces and decreasing soil 

infiltration capacity (Sinha et al., 2015). This, in turn, induces increased runoff with increased sediment 
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transport capacity (McVey et al., 2023), leading to sedimentation of river channels, reduced water 

holding capacity, blockage of water canals and culverts (Hajigholizadeh et al., 2018). Peri-urban and 

rural areas also experience increased soil erosion risk owing to the intensification of agricultural 

practices that are required to produce food for the increasing urban population (Ssewankambo et al., 

2023). The agricultural impact on soil erosion is inextricably documented as sediment yield and transport 

are influenced by tillage (Pimentel & Burgess, 2013; H. Wang et al., 2021). Removal of natural 

vegetation cover increasingly exposes bare soil surfaces to direct raindrop impacts, especially at the 

onset of the wet season contributing to massive soil loss (Ligonja & Shrestha, 2015; Shikangalah et al., 

2017). Ristić et al. (2012)  report torrential floods and sediment deposition due to inappropriate land use. 

Based on the complexity and magnitude of processes triggering land degradation spanning from 

population growth and urbanisation up to climate change, the management of environmental degradation 

such as soil erosion is of major sustainability concern (Borrelli et al., 2020). The lack of effective 

management exacerbates damages and leads to high costs of environmental restoration such as channel 

dredging and desilting, implementation of soil conservation measures and replanting of vegetation and 

buffer strips (Llena et al., 2019; Stenfert Kroese et al., 2020).  

2.3.2 Types of Population Growth and Urban Expansion 

Human population growth is a complex phenomenon, it shapes and is shaped by various factors, 

influencing social, economic, and environmental landscapes (UNDESA-POP, 2022). The three main 

types of human population growth are exponential growth, linear growth, and demographic transition 

(Bongaarts, 2009; Demetrius et al., 2004). The exponential population growth is characterised by a 

constant rate of increase over time and is often associated with rapid population expansion, leading to 

increased demands on resources and potential environmental degradation (Hunter, 2000; Yap et al., 

2024). According to Yap et al. (2024) uncontrolled exponential growth might be detrimental to 

sustainable resource use and the environment. With rapid and unsustainable demands on natural 

resources, the exponential population growth can result in overexploitation of land, water, and other 

essential resources, contributing to deforestation, soil erosion, loss of biodiversity, and increased 

pollution – thus to environmental degradation ( Ehrlich & Ehrlich, 1991). Historically, human population 

growth has exhibited exponential characteristics, especially during the last few centuries (Ehrlich, 1985). 

Typical of growth by a fixed number in each successive period, linear population growth is less common 

in human populations compared to exponential growth and is often associated with stable or slowly 

increasing populations (Smith, 1977). In the case where the death rate exceeds the birth rate, without an 

inflow of migrant population growth can be described as negative growth (Bongaarts, 2009). 

Based on the concept of demographic transition, population growth is considered an evolving process 

linked to different stages of societal economic and social development. It involves a shift from high birth 

and mortality rates to low birth and mortality rates with typical occurrences in four stages (Bongaarts, 

2009; Frejka, 2016). The first stage involves high birth and death rates while the second stage is when 

there are high birth rates and declining death rates (Frejka, 2016). Declining birth and death rates are 

considered as the third stage of the transition while the fourth stage is when there are low birth and 

mortality rates. The different stages of the demographic transition model, can impact the environment 

differently at each stage (Bongaarts, 2009; Frejka, 2016). Initially, there may be increased demand for 
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resources during population growth, but as societies move towards lower birth rates, the pressure on the 

environment may ease (Bongaarts, 2009; Frejka, 2016). 

As contemporary urbanisation is marked by a fast increase in urban population and rapid expansion of 

urban areas (Altrock, 2022), growth can lead to severe adverse consequences for the environment and 

socioeconomic aspects if there is no effective management. These repercussions include the formation 

of urban heat islands, reduced green spaces leading to soil erosion, inadequate infrastructure and 

services, and inefficient resource utilisation (S. Li et al., 2018; Viana et al., 2019). A fundamental step 

in comprehending the impacts of urbanisation involves analyzing the spatiotemporal dynamics of the 

built-up area within a specific urban landscape (Kindu et al., 2020). Understanding the spatial pattern 

and intensity of urban land changes is crucial for addressing issues related to human-environmental 

interactions, providing urban environmental services, and formulating land-use policies for sustainable 

urbanisation (Estoque & Murayama, 2015). Recent emphasis on urban change detection has shifted 

towards quantifying change, measuring patterns, and analyzing the patterns, processes, and drivers of 

urban expansion (Li et al., 2014). Also, there has been concern about the types and nature of urban 

expansions for statistical inferences in environmental modelling (Anees et al., 2020).  

2.3.3 Land-use Changes 

The terrestrial land surface cover has undergone continuous changes (Pielke et al., 2011). The major 

inevitable land use land cover changes occur due to the expansion of agriculture and settlement to meet 

the needs of a growing population (Berihun et al., 2019). According to Goldewijk, (2001), intensification 

and expansion of agriculture are the major drivers of global land use land cover changes. The 

proliferation of croplands in originally vegetated landscapes such as forests is reported to be among the 

most prominent land use land cover transformations in Sub-Sahara Africa (Kuule et al., 2022). During 

the past three centuries, there has been an increase in the area of crop-cultivated land from 300 million 

ha to 1530 million ha (Pielke et al., 2011).  

 
Figure 2.1. Land Use and Land Cover Dynamics of West Africa. Changed Area in Thousands (k) of km² 
(copy from Mortey et al., 2023).  

Ramankutty & Foley (1999)  estimated the expansion of cropland in Sub-Sahara Africa from 400 million 

ha in the year 1700 to 2000 million ha in the year 1990. The drastic land use land cover changes have a 

direct impact on the biophysical characteristics such as vegetative cover loss and associated albedo 
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modification (Ito & Hajima, 2020), which greatly affects the net radiative and hydrological budgets at 

land surfaces.  

Within the West Africa sub-region, changes in the total land cover vary from year to year, notably 

spiking in 1995, 2000, 2004, 2016, and 2018 (Figure 2.1). These spikes consistently occur across all 

climatic zones, indicating that the phenomenon is not localised to any specific zone but rather appears 

to be associated with more regional factors (Mortey et al., 2023). Critical drivers of land use land cover 

changes especially the expansion of cropland at the expense of primary forest associated with the human 

population and economic growth (Foley et al., 2005). Land cover changes in a broad sense are driven 

by activities such as shifting cultivation, pasturing, grazing of livestock harvesting trees for fuelwood, 

population growth, settlement expansion and its associated infrastructure development, land tenure and 

poverty  (Tola, 2023). Also. extensive deforestation of tropical rainforests such as in the Amazon basin 

and Southeast Asia has garnered attention owing to the detriment environmental consequences it poses 

(DeFries & Rosenzweig, 2010). The unsustainable land use land cover changes exacerbate soil erosion 

and sedimentation menace (Moisa et al., 2022; Uddin et al., 2018). It is evident that the global land use 

land cover changes from the years 2001 and 2012 contribute to about 2.5% of the global average soil 

erosion (Borrelli et al., 2017; Uddin et al., 2018). The vegetation cover’s protective function against the 

erosive powers is lost in most river basins owing to unsustainable land uses (Nut et al., 2021). 

Human-induced degradation of rangeland has been observed in Sub-Sahara Africa because of land use 

changes that vary in both space and time (Kuule et al., 2022). The historical LULC changes exert 

pressure on rangelands with an estimated 12.8 million km2 changes in habitable drylands of arid, 

semiarid, and dry sub-humid zones in Sub-Sahara Africa (Kuule et al., 2022). Population growth is a 

major factor that promotes sedentary pastoralism effecting an increase in rangeland degradation 

(Holechek et al., 2017),  leading to vegetation cover loss and increased surface runoff (Nyatuame et al., 

2020), consequently, aggravating soil erosion risk due to lack of resistive and protective mechanisms 

(Aghsaei et al., 2020; Stocking & Elwell, 1976). This is in line with Borrelli et al. (2017) who affirmed 

the effects of vegetation cover loss on the resistance mechanism inherent in soil physicochemical 

properties affecting erosion rate. According to Maetens et al. (2012), the impact of human-induced soil 

erosion risk is greater than erosion from natural causes. By analyzing the impact of land use land cover 

changes on 1056 soil erosion plots it was evident that soil erosion risk under semi-natural vegetation 

conditions produced a lower soil erosion risk rate (<1 Mgha-1yr-1) compared to soil erosion risk under 

plots that are directly influenced by human activities (between 6–20 Mgha-1yr-1) (Maetens et al., 2012).  

2.4 Remote Sensing and Environmental Modelling 

Remote sensing and environmental modelling are integral components of modern environmental 

science, providing valuable tools for monitoring, assessing, and understanding Earth's ecosystems (Senf, 

2022). By using satellite and aerial platforms equipped with various sensors for conducting remote 

measurement operations, remote sensing enhances the acquisition of the earth's surface information for 

environmental modelling and monitoring purposes (Jafarbiglu & Pourreza, 2022). Given the variety of 

options with distinct characteristics, the selection of appropriate satellite and aerial platforms depends 

on the specific nature of the problem at hand (Jafarbiglu & Pourreza, 2022; Zhu et al., 2022). Typically, 

satellite images can be useful based on their temporal and spatial characteristics with high-resolution 

data required for extensive surveys in certain precision agriculture purposes (Jafarbiglu & Pourreza, 
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2022) Over time, remote sensing techniques have evolved significantly, enabling the collection of 

diverse data types, including optical, thermal, radar, and lidar imagery (Kanga, 2023). These data are 

invaluable for monitoring changes in land cover such as vegetation health and urban spread (Hong et 

al., 2023). Satellite-based sensors, such as those on NASA's Landsat and European Space Agency's 

Sentinel missions, have been instrumental in global-scale environmental monitoring (Wulder et al., 

2019). 

In environmental modelling and monitoring, mathematical and computational techniques are required 

to simulate and predict environmental processes; thus, a combination of remote sensing and 

environmental models enhances the capacity to evaluate complex environmental dynamics (Maurya et 

al., 2023). These models range from simple to complex, encompassing atmospheric, hydrological, 

ecological, and climatic processes (P. Young et al., 1996). Notable environmental models include 

climate models (Flato et al., 2013), hydrological models like SWAT, ecosystem models such as LPJ 

(Sitch et al., 2003) as well as soil erosion models such as RUSLE ( Renard et al., 1997) and USPED 

(Mitasova et al., 1996).  These models are useful in predicting the impact of various driving factors on 

the environment, thereby helping to make informed decisions toward environmental sustainability. The 

synergy between remote sensing and environmental modelling enhances our ability to monitor and 

understand environmental changes (Cavender-Bares et al., 2020). Remote sensing data provide critical 

input for model calibration, validation, and scenario development (Dangol et al., 2023;  Li et al., 2018). 

A typical case is the derivation of land cover information that is integrated into hydrological models to 

assess the impact of land use changes on water resources (Abbaspour et al., 2007). Similarly, land cover 

data are a critical component of most soil erosion models that predict soil erosion risk.  

2.5 Different Soil Erosion Models and their Applicability in Various Contexts 

Soil erosion models are valuable tools in predicting soil erosion risk, for assessing environmental 

degradation, thereby planning, designing and implementing conservation measures (Simensen et al., 

2018). To understand soil loss patterns under diverse conditions spanning from natural occurrences to 

environmental and anthropogenic conditions, soil erosion models are designed for empirical to 

physically-based approaches, each with specific strengths and limitations  (Alewell et al., 2019; Borrelli 

et al., 2021). Despite the design and availability of models for specific contexts, there are major 

challenges such as high data demands and parameter sensitivity that hinder the accuracy and 

applicability (Razavi et al., 2021). Other practical issues that impede the broader applicability and 

reliability of soil erosion models include calibration challenges, and scale limitations (Alewell et al., 

2019). In many regions, the application of the Revised Universal Soil Loss Equation (RUSLE) and its 

defunct Universal Soil Loss Equation (USLE) is common  (Renard et al., 1997; Wischmeier & Smith, 

1978). Based on specific context and data requirements, other soil erosion models including the 

Modified Universal Soil Loss Equation (MUSLE), the Water Erosion Prediction Project (WEPP) (Laflen 

et al., 1991), the Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012), the Sediment Delivery 

Distributed Model (SEDD) (Ferro & Porto, 2000), the Agricultural Non-Point Source Pollution Model 

(AGNPS) (R. A. Young et al., 1989), and the European Soil Erosion Model (EUROSEM) (Morgan et 

al., 1998), identifying inherent challenges and limitations. 

Its simplicity and minimal data requirements make the USLE one of the most favourite and widely used 

empirical erosion models (Wischmeier & Smith, 1978). Though it is designed to achieve the estimation 
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of long-term average soil loss on cultivated lands, the USLE faces major challenges in complex terrain 

and diverse climates (Schürz et al., 2020). Primarily it is designed for long-term averages as opposed to 

specific events, thereby posing a challenge to its predictive capacity in short-term, high-intensity rainfall 

events (Merritt et al., 2003). RUSLE advanced an empirical relationship superior to the USLE that 

incorporates more refined factors to represent varying rainfall and vegetation cover, yet it suffers from 

similar limitations as identified for the USLE. The RUSLE cannot achieve a temporal or spatial 

resolution with high precision as well as it has stringent calibration requirements which make its use a 

major challenge in data-scarce regions (Panagoset al., 2015). Similar to the RUSLE model, the MUSLE 

model is a modified version of the USLE that integrates sediment yield estimation options for individual 

storm events, thereby addressing some event-specific limitations in USLE (Benavidez et al., 2018). 

Despite its advantage, its application in many geographic contexts where seasonal rainfall intensity 

varies significantly may not yield accurate results owing to its overreliance on storm characteristics 

(Verheijen et al., 2009). A simple conceptual erosion model such as SEDD prevents an advantage over 

MUSLE in sediment yield estimation from catchments by simulating sediment transport pathways 

(Borrelli et al., 2021). Though the SEDD model has a simplified design, it could not adequately account 

for spatial variability in erosion, thereby making its use in complex terrains challenging.  

Hydrological models such as the SWAT and WEPP are also applicable for soil erosion risk predictions  

(Pandey et al., 2021; Wang et al., 2023). With a wide hydrological simulation advantage, the SWAT 

model is a comprehensive watershed model suitable for large-scale applications (Pandey et al., 2021). 

Despite its versatility and advantage, its usage is constrained by its extensive data demand and 

calibration as well as the high cost thereby limiting its accessibility in resource-constraint settings 

(Pohlert et al., 2007). Similarly, the WEPP model simulates soil erosion processes across different 

temporal and spatial scales with the complexity of high data requirements as a limiting factor, especially 

in areas where access to extensive hydrological and climate datasets is limited (Lew et al., 2022). The 

application of the WEPP model offers high variability in predictions owing to the model’s sensitivity to 

input parameters, justifying its rigorous calibration requirement (Borrelli et al., 2021). Typical to other 

empirical and physical models, EUROSEM’s data demands make its application in data-limited regions 

not feasible though it offers a dynamic option for event-based erosion risk predictions (Morgan et al., 

1998). In the context of Mediterranean environments, the design of the SEMMED model focuses on 

seasonal precipitation patterns peculiar to Mediterranean climates. Though its usage is highly relevant 

in Mediterranean regions, SEMMED’s application outside the Mediterranean produced poor results, 

emphasising a critical limitation of highly specialised SEMMED models (De Jong et al., 1999). 

For a better understanding of the global application of soil erosion prediction models, Borrelli et al. 

(2021) comprehensively reviewed relevant peer-reviewed research literature on soil erosion modelling 

published between 1994 and 2017. By creating Global Applications of Soil Erosion Modelling Tracker 

(GASEMT) a comprehensive insight into the state-of-the-art soil erosion models and model applications 

worldwide was provided. (Borrelli et al., 2021). Out of the numerous erosion models used, 25 models 

were identified as the most prominent with RUSLE and its defunct version, the USLE model being the 

most used in different regions (Table 2.1). 
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Table 2.1. Lists of the Top 25 Most Applied Soil Erosion Prediction Models According to the Records 
Reported In the GASEMT Database. 

Model  Records % References 

RUSLE  507  17.1  (Renard et al., 1997) 

USLE 412 13.9  (Wischmeier & Smith, 1978) 

WEPP 191 6.4 (Laflen et al., 1991) 

SWAT 185 6.2 (Arnold et al., 2012) 

WaTEM/SEDEM 139 4.7 (Van Oost et al., 2000) 

RUSLE-SDR 115 3.9 - 

USLE-SDR 64 2.2 - 

LISEM 57 1.9 (De Roo et al., 1996) 

Customised approach 53 1.8  

MUSLE 52 1.7 - 

MMF 48 1.6 (Morgan et al., 1984) 

AnnAGNPS 47 1.6 (R. A. Young et al., 1989) 

RHEM 44 1.5 (Nearing et al., 2011) 

Unknown 36 - - 

Erosion 3D 29 1.0 (J. Schmidt et al., 1999) 

EPIC 25 0.8 (Williams et al., 1983) 

PESERA 23 0.8 (Govers et al., 2003) 

USPED 22 0.7 (Mitasova et al., 1996) 

GeoWEPP 20 0.7 (Renschler, 2003) 

RUSLE2 20 0.7 (Foster et al., 2013) 

EPM 19 0.6 - 

STREAM 19 0.6 (Cerdan et al., 2002) 

RUSLE/SEDD 16 0.5 (Ferro & Porto, 2000)  

DSESYM 15 0.5 (Yuan et al., 2015) 

EUROSEM 15 0.5 (Morgan et al., 1998) 

(Source: Borrelli et al., 2021). 

Besides the peculiar models used in the context of soil erosion risk modelling, holistic approaches have 

enormous benefits for deforestation monitoring, climate change impact assessment, precision agriculture 

and disaster management (Hansen et al., 2013; Sitch et al., 2015; Wulder et al., 2019). Such approaches 

employ diverse models to simulate complex interactions within ecosystems between various variables. 

The SWAT model combines hydrological, land use, and water quality models and is useful in a holistic 

watershed and river basin assessment beyond water availability, water quality, sedimentation, and 

irrigation requirements (Arnold et al., 2012). Despite the significant advancement in environmental 

monitoring through the application of empirical models (Jinyue Chen et al., 2022; J. Li et al., 2020), 

data requirement and integration issues, model validation complexities, and the need for high-

performance computing are some of the major bottlenecks (Linder & Horne, 2018). Overall, the 

integration of remote sensing into environmental modelling has significantly advanced the 

understanding of Earth's complex systems (Senf, 2022) and the prospects to monitor environmental 

changes to assess their impacts and formulate effective strategies for sustainable resource management 

and conservation. 

2.6 Landscape and Soil Erosion 

Landscape is a spatially heterogeneous space with attributes such as topography, vegetation, geology, 

soil, water bodies, and human structures among others (Turner et al., 2001). Similarly, Antrop (2005) 

defines landscape as a spatially diverse area shaped by the interaction of natural processes and human 
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activities over time. Landscapes are shaped by geomorphological processes, climatic conditions, and 

human interventions such as agriculture and urbanisation (Tarolli & Sofia, 2016). Owing to the 

multidimensional characteristics of landscapes, they are useful frameworks for understanding 

environmental processes such as soil erosion; assessment of changes, spatial variability and impacts of 

human activities (Shi et al., 2022). Major landscape units can be classified into mountainous, plains, 

plateaus as well as urban, coastal, and agricultural units based on their prevailing conditions and 

attributes (Reddy et al., 2017). 

The degree of soil erosion risk is controlled by the prevailing landscape attributes. The factors 

topography, intensive agriculture, deforestation and climatic conditions such as rainfall intensity and 

distribution are key drivers of soil erosion (Guerra et al., 2020). The interaction of these influencing 

factors with the physical attributes of landscapes exposes the landscape’s exposure to erosion (Tarolli 

& Sofia, 2016). Distinctively, mountainous landscapes with steep slopes are particularly characterised 

by high erosion risk due to their high energy potential and resulting high-velocity pf runoff. In contrast, 

landscapes with dense vegetation cover act as natural buffers that stabilise soil and intercept raindrops 

(Lann et al., 2024). Wetlands and riparian landscapes trap sediments and slow down run-off thereby 

reducing soil erosion risk (Prosser et al., 2020). Conversely, urban and agricultural landscapes that are 

strongly modified by human activities are characterised by high exposure to soil erosion due to soil land 

surface compaction, depletion of vegetation cover, and resulting surface runoff (Bettoni et al., 2023; 

Ferreira et al., 2022). 

Landscapes can be categorised into homogeneous units by mapping and classifying key attributes 

(Cullum et al., 2016). With a landscape framework, the common tools and techniques used to classify 

landscape units include GIS and remote sensing, hydrologic and erosion models and participatory 

approaches (Arnold et al., 1998; Newton et al., 2009). GIS and remote sensing applications allow 

overlaying multiple satellite images to identify areas with homogenous attributes to be classified as 

landscape units. The topographic attributes such as elevation, slope, and aspect are major considerations 

in landscape characteristics (Singh, 2018; Wang & Cheng, 2023). The elevation is a primary factor in 

landscape characterisation as it affects other physical attributes, including vegetation cover types and 

climatic conditions (Wang et al., 2024). The influence of slope on runoff and its associated erosion 

makes it a crucial parameter in landscape characterisation. Steep slopes often result in rapid runoff and 

thereby controlled strong erosion, and reduced soil stability, which directly affect vegetation 

establishment and persistence (Scotton & Andreatta, 2021). Also, slope length and angle are important 

determinants of land-use potential and suitability, particularly for agricultural zoning and environmental 

planning while the aspect of slope influences sunlight exposure that creates localised microclimates 

within the landscape and shapes vegetation growth patterns (Dornik et al., 2022; Måren et al., 2015). In 

hydrological studies, the Topographic Wetness Index (TWI) is a widely used metric that quantifies soil 

moisture distribution and potential water accumulation based on the landscape's topography (Raduła et 

al., 2018). It combines slope and upstream contributing areas to identify areas prone to wetness or 

dryness, with emphasis on high TWI values as water accumulation areas with associated risks such as 

flooding. As such, TWI plays a critical role in landscape characterisation, aiding in the identification of 

areas with distinct hydrological properties and supporting the management of flood-prone areas and high 

erosion risks (Al-Kindi & Alabri, 2024). The integration of these attributes in landscape characterisation 

is important for a better understanding of the landscape and potential environmental risks such as erosion 

risk. 
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Overall, the landscape approach in soil erosion risk assessment underscores the critical need for 

integrated conservation management practices that address erosion at landscape units. According to 

(Gray et al., 2016), effective erosion control requires monitoring across administrative boundaries and 

land uses to ensure that conservation measures, such as reforestation and terracing, are implemented at 

a scale that maximises their impact. Because soil erosion is not confined to specific plots of land but 

affects entire landscapes, assessment of erosion risk at the landscape unit would help identify high 

erosion risk hotspots to inspire targeted conservation interventions (Arega et al., 2024).  
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CHAPTER 3: STUDY SITE  

This Chapter presents a comprehensive description of the study site in terms of the natural and physical 

characteristics compositing the soil, geology, and climatic conditions. The chapter also highlights the 

population dynamics in the basin and the general socio-economic and livelihood diversification in the 

area. 

3.1 Location and Administrative Settings of the Black Volta Basin 

The Black Volta basin is a transboundary river basin shared between four West African countries (Mali, 

Burkina Faso, Ghana and Cote d’Ivoire) (Akpoti et al., 2016). As a transboundary river system, the basin 

stretches from North to South through Mali, Burkina Faso, Ghana and Côte d’Ivoire, and from Burkina 

Faso, Côte d’Ivoire and Ghana from West to East (Figure 3.1 C).  

 

 

 

Figure 3.1. Land Elevation Map of the Black Volta River Basin Located in the West Africa Sub-Region 

Region. (A) A map of Africa displaying in shade, the four transboundary counties within the West Africa 

Sub-region. (B) Map of the Black Volta River basin located within the four transboundary countries (C) The 

map of the Black Volta River basin displayed in digital elevation model (DEM); emphasising cities and the 

Black Volta River (Source of data: Shuttle Radar Topography Mission (SRTM) DEM, obtained from United 

States Geological Survey’s (USGS) Earth Explorer database. Retrieved from https://earthexplorer.usgs.gov/ 

on 18 April 2023).  
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The Black Volta basin is located between latitudes 7.0°N and 14.3°N, and from longitude 5.5°W to 

1.5°W W with an estimated landmass of about 138,000 km2 (Akpoti et al., 2016). It is a major sub-basin 

of the Volta river basin system which comprises the Black and White Volta and constitutes about 32.6% 

of the Volta basin. The topography of the Black Volta basin is generally slightly undulating with < 800 

m a.s.l elevation. The elevation in the northern part of the basin is between 200 to 500 m a.s.l with very 

flat or moderately sloping terrain. A major urbanising municipality in the basin is the Wa municipality 

(Figure 3.1) located in the upper west region of Ghana (between 10◦ 14′ 46.32″ N and 09◦ 42′ 5.04″ N 

and 02◦ 33′ 14.04 W and 02◦ 0′ 57.96″ W). The municipality is characterised by slightly undulating terrain 

in the savannah high plains, with elevations between 160 and 300 m a.s.l. Further details of the Wa 

municipality are provided in Chapter 5 (Asempah et al., 2021) and Chapter 6 (Asempah et al., 2024). 

3.2 Natural Characteristics of the Black Volta Basin 

3.2.1 Climate 

The Black Volta basin has a distinct climate which is primarily influenced by a southwesterly tropical 

maritime air mass and a northeasterly tropical continental air mass (Grams, 2008; Mul et al., 2015). By 

converging at the Inter-Tropical Convergence Zone (ITCZ), the two air masses create a region of low 

pressure with quasi-frontal characteristics that migrates across West Africa (Grams, 2008). The regional 

amount of rainfall is influenced by the ITCZ which exhibits vigorous frontal activity. The onset of the 

rainy season at any given location coincides with the northward passage of the ITCZ and concludes with 

its southward retreat, resulting in a general decrease in rainfall from south to north (Lélé and Lamb, 

2010). The West African Monsoon occurs between May and August/September (Nicholson, 2009). 

During this time, the ITCZ shifts northward, and the countries within the Volta Basin are exposed to the 

influence of the tropical maritime air mass (McCartney et al., 2012). From November to March, the 

Harmattan with its hot, dry usually dusty wind originating from the northeast or east dominates the 

climate in the Black Volta basin (Kasei, 2010). 

Annual rainfall patterns in the Black Volta basin are predominantly bimodal, especially in the southern 

part of the basin (Abungba et al., 2022; Akpoti et al., 2016). To the north of the Black Volta basin, the 

time interval between the two rainfall peaks diminishes until only a single peak is experienced. The 

amount of mean annual rainfall varies between 300 mm in the north of the Black Volta basin and 1,300 

mm in its south (Figure 3.2). In general, the Basin is spread across four climatic zones based on the 

spatial distribution of rainfall, including from north to south the Sahelian Zone, the Sudano-Sahelian 

Zone, the Sudan Zone, and the Guinean Zone (Mul et al., 2015). 

In the northern part of the Black Volta basin, the Sahelian (mean annual rainfall < 500 mm) and the 

Sudano-Sahelian zones (mean annual rainfall between 500 and 900 mm) have a unimodal rainfall season 

between May and September and distinctly lower annual rainfall than in its southern part (Mul et al., 

2015). The Sudanian and Guinean zones are in the central and southern part of the Black Volta basin 

and experience a bimodal rainfall pattern, marked by two distinct rainfall seasons (Nkrumah et al., 2019). 

The Sudanian Zone is characterised by mean rainfall between 900 and 1,100 mm.  The mean annual 

rainfall within the Guinean Zone ranges from 1,000 to 1,300 mm (Mul et al., 2015; Piacentini et al., 

2018). The major rainy season within the Guinean Zone spans from April/May to June/July while the 

minor season occurs in September/October (Piacentini et al., 2018).  
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Figure 3.2. Mean Annual Rainfall Distribution Map Across the Agro-Climatic Zones A (the Sahelian 
Zone), B (the Sudano-Sahelian Zone), C (the Sudan Zone) and D (the Guinean Zone) of the Black Volta 
River basin. (source: Climatic Research Unit (CRU) of the University of East Anglia 
 (https://crudata.uea.ac.uk/cru/data/hrg/). 

The basin experiences relatively higher temperatures in its north compared to the south. Generally, the 

south is characterised by a mean annual temperature of about 27 °C in the south and increases to 36 °C 

in the north (Agyekum et al., 2022; Oguntunde & Abiodun, 2013). In some cases, the basin experiences 

a daily maximum temperature of up to 44 °C, whereas night temperatures could drop to 15 °C  (Mul et 

al., 2015). The mean temperatures within the Sudanian and Guinean zones never fall below 24 °C. In 

contrast, the mean annual temperatures are higher than 29 °C in the Sahel and the Sudan-Sahelian zones 

(Barry et al., 2005).  

The relative humidity is generally highest in the south of the Black Volta basin owing to the high rainfall 

with low temperatures experienced in this zone. Toward the Guinean zone, relative humidity increases 

temporally up to about 95–100% during the rainy season (Mul et al., 2015). The Sahelian and the 

Sudano-Sahelian zones in the north of the Black Volta basin are characterised by low relative humidity 

of about 20– 30%, especially during the Harmattan season, however, this rises to about 70– 80% during 

the rainy season (Barry et al., 2005). The mean annual potential evapotranspiration in the north of the 

Black Volta basin could exceed 2,500 mm. In the south of the Black Volta basin mean annual potential 

evapotranspiration is estimated to amount to 1,500 mm per annum with actual evapotranspiration 
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between 10 mm d-1 in the rainy season and about 2 mm d-1 in the dry season depending on the soil 

properties (Mul et al., 2015).  

3.2.2 Geology 

The parent materials of the Black Volta basin belong to two major geological provinces; the basement 

crystalline and the unconsolidated sedimentary provinces (Mul et al., 2015) (Figure 3.3). Bedrock of the 

crystalline formations and bedrock of the unconsolidated provinces is built by Tertiary sandstones and 

sedimentary formations (Carrier et al., 2008).  

 
Figure 3.3. Geological Map of the Black Volta River Basin Showing Various Geological Formations 
(Source: Lemoalle and de Condappa 2009, Mul et al., 2015). 

The Black Volta basin is primarily characterised by the dominance of basement crystalline rocks, which 

occur in the southeastern and southwestern part of the basin; these rocks underlie approximately 40% of 

the total land area in sub-Saharan Africa. The composition of the crystalline basement includes various 

types of strongly deformed metamorphic rocks, igneous rocks and granite-gneiss-greenstone rocks (Key, 

1992). Generally, the crystalline basement constitutes a complex assemblage of igneous and 

metamorphic rocks that form stable and rigid foundations and are more resistant to weathering compared 

to sedimentary formations due to their dense and crystalline nature (Selby, 1982).  The bedrock in the 

northern part of the Black Volta is characterised by the unconsolidated Tertiary sandstone and 
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sedimentary formations Mul et al. (2015) The crystalline basement and sedimentary formations are 

typically covered by regolith whose thickness varies locally controlled by topography, bedrock, 

structural characteristics, vegetation cover, and (paleo--) climate (Dewandel et al., 2006). Within the 

crystalline basement, the regolith may reach up to 140 meters, particularly central part of the basin; at 

least it reached c. 30 (Dapaah-Siakwan & Gyau-Boakye, 2000; Mul et al., 2015).   

3.2.3 Relief and Hydrography 

The terrain of the Black Volta River basin exhibits gently undulating characteristics with elevations 

ranging from 84-784 m a.s.l. The higher elevations are located around the western part of the basin. The 

northern part of the basin, which belongs to the Sahelian Zone, is almost flat with elevations of 240-780 

m a.s.l. (Kwakye & Bárdossy, 2020). The southern portion of the basin is characterised by low-lying 

areas, with elevations between 84-300 m a.s.l. (Kwakye & Bárdossy, 2020). 

Within the scope of the wider Volta River system, the Black Volta River serves as the primary headwater 

that originates from southern Mali. It traverses the major transboundary countries Burkina Faso, Côte 

d'Ivoire, and Ghana, encompassing a drainage area of about 138,000 km² (Akpoti et al., 2016). The main 

tributaries of the Black Volta River are Grand Bale, Bougouriba, Gbongbo, Voun Hou, Sourou, Wenare, 

Bondami, Bambassou, Tain and Poni rivers (Mul et al., 2015). The water resources in the basin are 

mainly used for hydropower generation, small-scale irrigation and domestic water supply (Kwakye & 

Bárdossy, 2020). The morphological attributes of the water courses are changing as major constructions 

such as dams cause a diversion of the Black Volta River. The Black Volta River used to join the White 

Volta River in the south-eastern part of Ghana, but after the construction of the Volta Dam the Black 

and White Voltas do not confluence anymore, but rather drain into the lake through a separate channel 

(Kwakye & Bárdossy, 2020).  

3.2.4 Soils 

The Black Volta River basin is characterized by a diverse range of soil types (Fischer et al., 2008). The 

most prominent soil types in the basin include Ferric Luvisols, Gleyic Luvisols, Eutric Cambisols and 

plinthic Luvisols (Figure 3.4). The Ferric Luvisols which are dominant in the southern part of the basin 

(Ghana part) and in its northern part (Burkina Faso) are classified as Ferric due to the presence of iron 

oxides, which impart a reddish-brown coloration to the soil profile (Fischer et al., 2008; Mul et al., 

2015). The presence of Ferric Luvisols in the Black Volta River basin has implications for agricultural 

productivity, water and nutrient retention, and ecosystem dynamics within the region (Kombat et al., 

2021; Mul et al., 2015). The distinctive properties of these soils, such as their clay content, organic 

matter, and iron oxide content, contribute to their ability to support various vegetation types and land 

use practices (de Andrade Bonetti et al., 2017). 

Also, the Gleyic Luvisols which predominantly occur along the alluvial plains is characterised by poor 

drainage or periodic waterlogging (Fischer et al., 2008). The Gleyic Luvisols areas affect land use, 

agriculture, ecosystem dynamics, vegetation distribution and nutrient availability owing to their variable 

drainage patterns and waterlogged conditions (Kibblewhiteet al. 2015). While Ferric Luvisols show 

moderate resistance to erosion due to the presence of clay particles in the soil matrix, agricultural 

activities can increase vulnerability. On the other hand, Gleyic Luvisols, which develop under 
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periodically waterlogged or poorly drained conditions, tend to be more susceptible to erosion due to the 

in general flat relief in the alluvial plains where they predominantly occur (Bedard-Haughn 2011).  

 

 

Figure 3.4. Soil Map of the Black Volta Basin (Data source: Food and Agriculture Organisation of the 
United Nations (FAO), 2008). 

The Eutric Cambisols and Plinthic Luvisols are located predominantly in the central part of the basin 

(Fischer et al. 2008). The dominance of Eutric Cambisols stretches across Burkina Faso and Ghana. The 

Eutric Cambisols in the Black Volta basin are typical soils in slopy positions of the slightly rolling terrain 

and support crop production due to their high nutrient content and well drainage properties (Fischer et 

al. 2008). Patches of other major soil types such as Chromic Vertisols, Ferralic Cambisols and Plinthis 

Acrisols spread across the basin but are minor in distribution (Fischer et al. 2008). 

3.2.5 Vegetation Cover  

The northern part of the Black Volta basin is characterised by sparse vegetation in the savannah plain 

and dominated by drought-resistant grasses, shrubs, and tree species such as Acacia spp., Balanites 

aegyptiaca, and Commiphora africana (Akpoti et al., 2016). The Central toward the southern part of the 
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basin is characterised by a semi-deciduous forest with Celtic-Triplochiton and Antiaris-Chlorophora as 

the primary vegetation cover (Barry et al., 2005). These areas are extensively cultivated with cash crops 

such as cocoa and shea (Barry et al., 2005). The extensive agriculture coupled with logging activities 

makes vegetation outside of forest reserves largely reduced to forb regrowth, thickets, secondary forests, 

and swamp thickets (Mechiche-Alami & Abdi, 2020). The southmost part of the Black Volta basin is 

characterised by closed savannah vegetation with a mosaic of woody biomass, grasses of varying 

heights, interspersed with fire-resistant, deciduous, broad-leaved forests, and forest margins within the 

southern corridor of the basin (Barry et al., 2005). Some major tree species in this area include Afzelia 

Africana, Prosopis Africana, Lophira lanceolata, and Butyrospermum parkii among others  (Gordon et 

al., 2013). The main land use and land cover classes of the basin based on Copernicus global landcover 

data (https://cds.climate.copernicus.eu/) include Closed Savannah, Open Savannah, Grassland, 

Cropland, Urban Area, and Bareland. Vegetated Wetlands and Water Bodies ( Figure 3.5) (Buchhorn et 

al., 2020). 

 
Figure 3.5. Land Use and Land Cover Map of the Black Volta Basin for the Year 2020. 

 

https://cds.climate.copernicus.eu/
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3.3 Characterisation of the Major Landscape Units 

A landscape, as defined by (Antrop, 2005) is a spatially diverse area shaped by the interaction of natural 

processes and human activities over time. It can be classified into homogeneous units by identifying, 

categorising, and mapping its features to describe key characteristics for planning (Zoderer et al., 2019). 

The Black Volta River basin exhibits significant diversity in its topographic, climatic, geological, and 

soil characteristics, which influence its geomorphology, hydrology, and land-use potential. The basin 

was classified into major landscape units by processing spatially differentiated data on topography 

(slope, aspect, elevation, curvature, TWI) (Table 3.1), climate, land cover, geology, and soil using GIS. 

Six major landscape units were identified: Low Sahelian Plains, Sahelian Uplands, Sahelian Highlands, 

Savannah Transition, Mixed Terrain Plateau, and Savannah Escarpment (Figure 3.6).  

 

Figure 3.6. Topographic Map of the Black Volta River Basin Displaying Major Cities, Rivers and 
Landscape Units. Major landscape units correspond to: (A) Low Sahelian Plains, (B) Sahelian Uplands, 
(C) Sahelian Highlands, (D) Savannah Transition, (E) Mixed Terrain Plateau, (F) Savannah Escarpment. 
(Data source: Shuttle Radar Topography Mission (SRTM) DEM, obtained from the United States 
Geological Survey’s (USGS) Earth Explorer database https://earthexplorer.usgs.gov/ on 18 April 2023).  

 

The underlying geological formations of the basin include sedimentary, crystalline, and metamorphic 

bedrock. Sedimentary formations dominate the Low Sahelian Plains and Sahelian Highlands, while 

crystalline formations are prevalent in the Sahelian Uplands and Mixed Terrain Plateau. The Savannah 
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Transition and Savannah Escarpment landscape units are primarily characterised by metamorphic 

formations. Soils in the landscape units of the Black Volta basin are mainly characterised by Ferric 

Luvisols and Gleyic Luvisols. Beyond, Eutric Regosols dominate in the Sahelian Highlands, Low 

Sahelian Plains, Sahelian Uplands and the Mixed Terrain Plateau landscape units.  

Rainfall in the northern landscape units (Sahelian Plains, the Sahelian Uplands, the Sahelian Highlands) 

is generally low with a mean annual rainfall of less than 700 mm with a single rainfall season. The mean 

annual temperature of these landscape units is about 36 °C (Agyekum et al., 2022; Oguntunde & 

Abiodun, 2013). The Savannah Transition and Savannah Escarpment landscape units are characterised 

by two distinct rainfall seasons with the primary rainy season beginning in April or May and peaking in 

June or July, while the secondary rainfall season starts in September or October, with its peak occurring 

around the same time (Piacentini et al., 2018). The mean annual rainfall within these landscape units 

amounts below 1,100 mm, and the mean annual temperature averages 27 °C (Agyekum et al., 2022).  

Table 3.1. The Summary Statistics of Topographic Features.   

Elevation Mean (μ) Std (σ) Min. Max. 

Low Sahelian Plains 274 19.4 243 459 

Sahelian Uplands 302 21.0 256 486 

Sahelian highlands 356 70.3 251 772 

Savannah Transition 312 33.6 231 568 

Mixed Terrain Plateau 291 30.8 191 580 

Savannah Escarpment 268 72.1 84 729 

Slope     

Low Sahelian Plains 0.7 0.52 0.0 18.3 

Sahelian Uplands 0.7 0.58 0.0 16.3 

Sahelian highlands 1.3 1.89 0.0 51.4 

Savannah Transition 1.4 1.38 0.0 29.1 

Mixed Terrain Plateau 1.1 0.90 0.0 31.0 

Savannah Escarpment 2.0 1.98 0.0 43.7 

Planform Curvature     

Low Sahelian Plains 0.0 0.03 -0.4 0.5 

Sahelian Uplands 0.0 0.02 -0.5 0.3 

Sahelian highlands 0.0 0.03 -1.4 1.2 

Savannah Transition 0.0 0.03 -0.6 0. 6 

Mixed Terrain Plateau 0.0 0.03 -0.6 0.5 

Savannah Escarpment 0.0 0.03 -1.4 0.7 

Profile Curvature     

Low Sahelian Plains 0.0 0.03 -0.3 0.4 

Sahelian Uplands 0.0 0.02 -0.9 1.1 

Sahelian highlands 0.0 0.03 -0.5 0.5 

Savannah Transition 0.0 0.03 -0.4 0.8 

Mixed Terrain Plateau 0.0 0.03 -0.6 1.2 

Savannah Escarpment 0.0 0.04 -0.3 0.4 

TWI     

Low Sahelian Plains -0.3 2.54 -6.0 14.7 

Sahelian Uplands -1.0 2.14 -5.8 11.7 

Sahelian highlands -1.5 2.22 -7.1 14.2 

Savannah Transition -1.7 2.10 -6.4 14.1 

Mixed Terrain Plateau -1.5 2.13 -6.3 15.2 

Savannah Escarpment -2.1 2.07 -6.9 14.1 
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The vegetation cover across the Black Volta drainage basin is characterised by open savanna vegetation. 

The northern landscape units (Low Sahelian Plains, Sahelian Uplands and Sahelian highlands) mainly 

serve as cropland. Grassland and the open savannah vegetation dominate the Savannah Transition and 

the Mixed Terrain Plateau landscape units. Topographic attributes such as elevation, slope, and aspect 

are fundamental parameters that strongly influence landscape characteristics (Singh, 2018; Wang & 

Cheng, 2023). The elevation gradient is especially critical in mountainous or hilly terrains, where strong 

inclinations create zones with distinct ecological characteristics (Gong et al., 2017). Also, strong 

inclinations affect high runoff velocities, erosion, and soil stability (Bettoni et al., 2023; Jourgholami et 

al., 2021). The most elevated (251–772 m a.s.l.) and steepest landscape unit is located in the northern 

part of the Black Volta basin and corresponds to the Sahelian Highlands. The Low Sahelian Plains, on 

the other hand, are characterised by a flat and low-lying terrain with elevation ranges of 243-459 m a.s.l. 

The southmost part of the basin is delineated as the Savannah Escapement landscape unit and shows a 

wide range of elevations (84–729 m a.s.l.) and is characterised by mean slopes of 2.04° /σ= 1.98 (Table 

3.1). The Savannah Transition and the Mixed Terrain Plateau landscape units spread from the central to 

the southern part of the basin and are characterised by moderate elevation ranges of 191–568 m a.s.l., 

with average slopes in the Savannah Transition landscape unit of 1.39° (σ= 1.38) and moderately mean 

slopes of 1.13° (σ= 0.90) in the Mixed Terrain Plateau landscape unit.  

The TWI estimates show a negative mean across all six landscape units, indicating limited water 

accumulation across the basin. The lowest mean TWI (-2.12) was estimated for the Savannah 

Escarpment landscape unit, causing the driest topographic conditions, likely due to steep slopes that 

inhibit water accumulation. The Low Sahelian Plains landscape unit on the other hand records the 

highest mean TWI (-0.30), indicating relatively wet terrain conditions.  Altogether high standard 

deviations and ranges of TWI across all landscape units (Table 3.1) indicate strong heterogeneity in 

water accumulation patterns. The mean plan and profile curvature are 0 across all the landscape units 

underscores the altogether flat terrain. The variability of the curvature is low with a standard deviation 

in the range of 0.02 and 0.04.  

3.4. Population Dynamics and Urbanisation in the Black Volta Basin 

There is limited information about the current overall population of the Black Volta basin due to a lack 

of harmonisation of population census data for all the districts and provinces transcending Mali, Burkina 

Faso, Côte d’Ivoire, and Ghana. In the year 2000, the basin had a population density in the range of 8 to 

133 people/km2 with a total of about 4.5 million inhabitants (Akpoti et al., 2016; Allwaters Consult, 

2012). It has been projected that the population within the Black Volta basin will grow to about 8 million 

by the year 2025 with an estimated annual population growth rate of 3% (Akpoti et al., 2016). A low 

population density of 8 people/km2 in the year 2000 was estimated for the rural Bouna department in 

Côte d’Ivoire and Sissala district in Ghana (Allwaters Consult, 2012). In contrast, the 2021 population 

and housing census estimated a population density of 33.41/km² for the Bouna department and 

34.43/km² for the Sissala districts. Other major districts within the Black Volta basin such as the Lawra 

district and the Wa municipality, both Ghana, are fast-growing with high population density and are 

considered as highly urbanising (Dambeebo & Jalloh, 2018). 
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3.5. Socioeconomics and Livelihood in the Black Volta Basin 

Owing to the transboundary nature of the Black Volta basin, cross-border migration is a core aspect of 

the population dynamics. The major economic and livelihood activities in the basin are agriculture and 

fishing with a significant number of the inhabitants engaged in subsistence farming (Nkpeebo & 

Mavimbela, 2023). In the Burkina Faso part within the Sahelian and Sudano-Sahelian climatic zones of 

the basin rain-fed agriculture covers more than 90% of cultivated land (Sylla et al., 2021). The Ghana 

part of the Black Volta basin is located in the Guinean agro-climatic zone and is dominated by rainfed 

subsistent farming (Nkpeebo & Mavimbela, 2023). Due to the great agricultural production potential, 

there has been cross-border migration for crop farming and pastoral activities within the Guinean zone 

in Ghana (Tonah, 2002).  

Despite the dominance of rain-fed agriculture, the riparian communities practice small-scale irrigation 

farming. The major crops produced in the basin especially in Ghana part of the Black Volta basin include 

yam, cassava, groundnuts, beans and cereals such as rice, millet, sorghum, and maize (Barry et al., 2005). 

Though the free-range grazing system of animal rearing is mainly practised in the basin, livestock 

owners and herdsmen seasonally migrate with their animals from the Sahehel region in search of water 

and greener pasture to the south during the dry season (Andah et al., 2003; Timpong-Jones et al., 2023). 

Also, small-scale mineral mining operations have become prevalent in the Black Volta basin. (Barry et 

al., 2005; Locatelli et al., 2011). As a significant economic activity in the Black Volta River basin, 

particularly in Burkina Faso and Ghana, gold is extracted using rudimentary methods and technologies 

(Barry et al., 2005). Due to the livelihood and revenue potential many inhabitants are redirecting their 

livelihood activities to the small-scale gold mining operations, in Burkina Faso dominated by women 

(Hentschel et al., 2003). 
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CHAPTER 4: MATERIALS AND METHODS 

The research applied geospatial tools and techniques in processing remote sensed data to answer the 

pertinent research questions of the study. This chapter highlights the core methodological approaches 

used in accomplishing the objectives of the study.  

Table 4.1. Overview of the Methodological Flow 

Objective 1 2 3 

 Evaluation and 

determination of the LULC 

dynamics and its drivers in 

the Wa municipality 

between 1990 and 2020. 

Estimation of soil erosion 

risk in the savannah 

landscape of Wa 

municipality, Ghana 

between 1990 and 2020. 

Estimation and evaluation 

of soil erosion risk across 

various landscape units of 

the Black Volta River basin 

considering the time slices 

1992, 2006 and 2020. 

Data  Landsat satellite data: 

Landsat 5, pathway: 

195/053, date: 12.10.1990), 

Landsat 7, pathway: 

195/053, date: 3.11. 2001 

Landsat 5, pathway: 

195/053, date: 12.11.2010 

Landsat 5, pathway: 

195/053, date: 15.11.2020, 

Shuttle radar topography 

mission (SRTM) Digital 

Elevation Model (DEM) 

(https://earthexplorer.usgs.

gov/),  

Location data from the 

open street map 

(https://download.geofabrik

.de/) and ground truth data. 

Land cover maps 

(Asempah et al., 2021)  

soil maps 

(https://soil.grids.org),  

meteorological data 

(https://power.larc.nasa.gov

/)  

and in-situ data of 

measured erosion damages.  

Copernicus Global land 

cover map 

(https://cds.climate.coperni

cus.eu/), meteorological 

data 

(https://crudata.uea.ac.uk/cr

u/data/hrg/), soil grid data 

(https://soil.grids.org), 

SRTM DEM 

(https://bigdata.cgiar.org/sr

tm-90m-digital-elevation-

database/), Geological data 

(Mul et al., 2015) and 

(https://www.fao.org/soils-

portal/data-hub/soil-maps-

and-databases/harmonised-

world-soil-database-

v12/en/). 

Methods Ground truthing of land 

uses and land cover, 

supervised LULC and 

accuracy assessment 

applying tools and metrics 

such as Error matrix 

(overall accuracy, producer 

accuracy, user accuracy), 

binomial logistic regression 

and model evaluation.  

Field mapping of land 

cover and erosion damages, 

estimation of potential and 

actual soil erosion risks 

applying the RUSLE 

model, on-site spatial 

measurement of soil 

erosion damages, statistical 

correlation analysis 

Quantitative Landscape 

Characterisation, 

estimation of soil erosion 

risk applying RUSLE 

model, Assessing the major 

influencing factor on soil 

loss. 

Outputs  LULC maps and associated 

statistical outputs, predictor 

drivers of settlement 

expansion and model-

evaluated outputs. 

soil erosion risk estimation, 

maps of erosion damages  

Landscape units, LULC 

maps, soil erosion risk 

estimation per landscape 

unit applying RUSLE 

model, estimates of soil 

loss. 

 

https://soil.grids.org/
https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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4.1 Data Sources  

The required data include topography, soil, climate, land use and land cover. This was acquired from an 

array of sources. 

4.1.1 Topographic Data 

The topographic features of the Black Volta River basin were extracted from the shuttle radar 

topography mission (SRTM) digital elevation model (DEM). The 30 m x 30 m ground resolution SRTM 

DEM acquired from the United States Geological Survey database (https://earthexplorer.usgs.gov/) 

served as data for extracting derivatives such as slope, aspect and topographic wetness index for 

characterising the Wa municipality. The derivatives were also used in modelling the drivers of urban 

expansion in the Wa municipality.  

At a macro level a 90 m x 90 m SRTM DEM was used to extract derivatives for large-scale and basin-

wide soil erosion risk modelling. The 90 x 90 m resolution SRTM DEM was obtained from the database 

of the Consortium of International Agricultural Research Centers’ Consortium for spatial-information 

(CGIAR-CSI) (https://bigdata.cgiar.org/srtm-90m-digital-elevation-database/) in mosaiced 5° x 5° tiles 

for easy accessibility and download. 

4.1.2 Soil Data 

Global soil gridded data was obtained from the International Soil Reference Information Centre (ISRIC) 

database (https://soil.grids.org). SoilGrid is designed as a universally consistent, data-driven framework 

that forecasts soil characteristics and categories by leveraging worldwide covariates and globally 

calibrated models. The specific data relevant to the study include contents of clay, silt, sand, and organic 

carbon, which are available in the spatial resolution of 250 m x 250 m. At the ISRIC database, the data 

are available for soil depth below the surface of 0, 5 15, 30 and 60 cm. Weighted averages were estimated 

to derive a single raster of each of the soil characters required in the empirical model for the estimation 

of soil erosion risk. 

Data obtained from the Harmonised World Soil Database (HWSD) (https://www.fao.org/soils-

portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/) corroborated the 

study to classify the Black Volta River basin’s soil types. The HWSD is a 30 arc-second raster database 

encompassing more than 15,000 distinct soil mapping units. It integrates existing regional and national 

soil data updates from sources like SOTER, ESD, Soil Map of China, and WISE, while also 

incorporating the information found within the 1:5,000,000 scale FAO-UNESCO Soil Map of the World 

(Food and Agriculture Organisation of the United Nations (FAO), 2008). 

4.1.3 Climate Data 

The NASA Prediction of World Energy Resources (POWER) meteorological data and the Climatic 

Research Unit (CRU) of the University of East Anglia were the two main sources of rainfall data for the 

study. The POWER data is available in 2-days of real-time, monthly and annual temporal resolution. 

The monthly and annual data were explored for modelling soil erosion risk in the area of Wa 

municipality. For the macro-level basin-wide analysis of soil erosion risk, rainfall data was acquired 

from the database of the Climatic Research Unit (CRU) of the University of East Anglia 

https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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(https://crudata.uea.ac.uk/cru/data/hrg/). The CRU data is high resolution gridded time-series dataset 

that spans from the year 1901 to 2022 and is available in network Common Data Form (NetCDF) format 

in monthly temporal resolution and 0.5° x 0 .5° spatial resolution. 

4.1.4 Landsat and Global Land Cover Data 

Global classified land cover data are available in low temporal and spatial resolution but are crucial for 

macro-scale change analysis. At a micro level, Landsat data was accessed from the United States 

Geological Survey’s (USGS) Earth Explorer website (https://earthexplorer.usgs.gov/) to classify land 

cover changes in the Wa municipality for the years 1990 to 2020. The satellite images for the Wa 

municipality with a spatial resolution of 30 m x 30 m are covered by Landsat Path 195 and Row 053 of 

the Landsat. For spatiotemporal analysis, satellite images from the Landsat thematic mapper (TM) were 

obtained for 12 October 1990, the enhanced thematic mapper (ETM) were obtained for 3 November 

2001 and 12 November 2001 and the operational land imager (OLI) were obtained for 15 November 

2001. All imageries were selected for the time period of October to November to ensure the minimal 

effect of seasonal variation in the vegetation pattern and distribution and cloud-free cover. Out of the 

satellite data land use land cover maps for Wa municipality of the years 1990, 2001, 2010 and 2020 were 

generated.  

A historical global land cover classified gridded data for the years 1992, 2006 and 2020 was obtained 

from the Copernicus database (https://cds.climate.copernicus.eu/) (Buchhorn et al., 2020) as a basis for 

modelling the basin-wide potential erosion risk for the entire Black Volta River basin. The land cover 

data conforms with a series of global annual land cover maps from the 1990s to 2015 produced by the 

European Space Agency (ESA) Climate Change Initiative (CCI). The data is available in 300 m x300 m 

horizontal resolution and spans from the year 1992 to 2020. 

4.1.5 Field Survey 

For land use land cover mapping based on satellite images and soil erosion risk modelling, in-situ 

observations were conducted for the validation of the results (d’Andrimont et al., 2020). With technical 

assistance from the Black Volta basin office in Wa municipality, the study implemented two phases of 

field survey. The first field survey was conducted in January 2020 and focussed on mapping land use 

and land cover. On this basis six main land use land cover classes (closed savannah vegetation, open 

savannah vegetation, other land types, human settlements, vegetated wetlands, and water bodies) were 

identified by Ghana's LULC classification framework for visual interpretation of remotely sensed data 

(Basommi et al., 2015). For on-site geocoding of findings, a Garmin 60Cx GPS was used.x Further 

details and the onward validation are elaborated in Chapter 5 (Asempah et al., 2021). 

A second field survey was conducted in January and February 2022 to map on-site soil erosion damages. 

On-site soil erosion damages, specifically, rills and inter-rills were measured on 2 km2 plots of each of 

the three different land use land cover types closed savannah, open savannah, and settlement areas in 

the Wa municipality. The individual damage points were systematically compared with the model’s 

results. For on-site geocoding of findings, a Garmin 60Cx GPS was used. Further description of the field 

survey and the onward validation are detailed in Chapter 6 (Asempah et al., 2021). 
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4.2 Processing and Classification of Satellite Images 

A series of preprocesses were conducted before image classification and change detection analyses 

(Figure 4.1). To ensure temporal alignment of time series data for the change analyses considering the 

years 1990, 2001, 2010 and 2020 for the Wa municipality, Level 1 terrain corrected (L1T) Landsat 

images were preferentially utilised as primary input data in algorithms for classification of land use land 

cover. L1T Landsat images are renowned for their exceptional geometric precision, characterised by 

root mean square errors (RMSE) consistently below 30 meters in over 99% of the dataset, as documented 

by the United States Geological Survey (USGS) (http://landsat.usgs.gov/geometry.php). Consequently, 

the inclusion of solely L1T Landsat images within the context of land use land cover classification 

required geometric accuracy. Besides the generally acceptable quality of Level 1 terrain-corrected 

Landsat images, the Enhanced Thematic Mapper (ETM) imagery exhibited defects stemming from a 

malfunctioning scan line corrector (SLC) system. This defect was corrected using the Landsat Toolbox 

which is integrated within ArcGIS 10.5 software. Following these initial correction steps, further pre-

processing steps were applied to the Landsat imagery from all time slices. This encompassed stacking 

spectral bands and applying clipping using a projected study area vector boundary. The stacked spectral 

bands included blue, green, red, near-infrared (NIR), and shortwave infrared (SWIR) (Sinha et al., 2015; 

Weng et al., 2004). 

 

 
Figure 4.1. Flow Chart of Landsat Data Processing For Urban Expansion And Soil Erosion Risk 
Prediction in Wa Municipality of Ghana 

To enhance the features of the images and to ensure precision in classification, several spectral indices 

were applied, including the Normalised Difference Vegetation Index (NDVI), Soil Adjusted Vegetation 

Index (SAVI) (Huete, 1988), Normal Difference Built-up Index (NDBI), Normalised Burn Ratio 2 

(NBR2) and Modified Normalised Difference Water Index (MNDW) (Rouse et al., 1973; Singh et al., 

2015) This was followed by a pixel-based supervised land use land cover classification for the years 

1990, 2001, 2010, and 2020. The output maps were used to assess land use land cover change and the 

driver of urban expansion (objective 1) and the modelling of potential and soil erosion risk (objective 

2). 
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4.3 Application of the RUSLE Model 

Soil erosion models fall into three main categories; empirical, conceptual and physical models depending 

on the processes simulated by the model and the model’s algorithms describing these processes (Merritt 

et al., 2003). Empirical models such as the RUSLE and MUSLE are the simplest of all models that can 

be implemented in data-scared landscapes as they make use of limited input data (Adams et al., 2013; 

Buhai et al., 2020). The RUSLE model was used in the spatio-temporal soil erosion risk modelling 

(objectives 1 and 2). The model is universally accepted for the estimation of soil erosion risk. The model 

for the estimation of average soil erosion rate per annum ASE, (t ha-1 yr-1) is based on five input 

parameters, including the three natural parameters soil erodibility factor (K), rainfall erosivity factor (R), 

slope length and steepness factor (LS) and the two land use and land management controlled parameters 

the cover factor (C) and conservation and support practice factor (P) (equation 4.1).  

 

ASE [t ha−1 yr−1] = R x K x L S x C x P     (4.1) 

    

The schematic diagram (Figure 4.2) presents the data requirement and the data flow of the model. The 

detailed description of the model’s input data and their implications as well as the validation procedures 

are provided in chapter 6.   

 

 

Figure 4.2. Methodological Flow of RUSLE Model Input Parameters for Soil Erosion Risk Modelling.  

 

4.4 Statistical Analysis 

A binomial logistic regression model was used to explore the explanatory drivers of urban expansion in 

the Wa municipality, Ghana (equation 4.2). The Selection of the independent variables (Table 4.2) was 

based on an evaluation of scientific literature that presents the most influencing variables. The equation 

for the logistic regression model is:  
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𝑃(𝑦 = 1) =
1

1+e−(𝛽0+ 𝛽1𝑋1+𝛽2𝑋2…+𝛽𝑛𝑋n)
      (4.2) 

where:  

P(𝑦 =1) is the probability of the event y occurring (success or the positive outcome); e is the base of the 

natural logarithm; β0 is the intercept term; β1, β2…, βn are the coefficients associated with the 

independent variables X1, X2…, Xn respectively. 

The statistical significance of the model was established with a significance level (p) of less than 0.05. 

In accordance with this criterion, independent variables incorporated into the model with associated p-

values below 0.05 are considered statistically significant predictors of the dependent variable (Y). The 

model's performance was assessed through the receiver operating characteristic curve (ROC) and its 

corresponding area under the curve (AUC). These metrics rely on accuracy matrices, which gauge the 

proportion of accurately classified positive sampling points (true positive rate: TPR) and the proportion 

of incorrectly classified positive points (false positive rate: FPR) (Anselm et al., 2018). 

Table 4.2. Variables for the Binomial Logistic Regression Analysis applied for Objective 1 

ID for variables Description Unit 

Y Settlement expansion Km2 

X1 Distance from existing settlement M 

X2 Distance to primary road M 

X3 Distance to tertiary road M 

X4 Distance to stream M 

X5 Distance to river M 

X6 Aspect [°] 

X7 Slope [°] 

X8 TWI - 
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CHAPTER 5: ASSESSMENT OF LAND COVER DYNAMICS AND DRIVERS OF URBAN 

EXPANSION USING GEOSPATIAL AND LOGISTIC REGRESSION APPROACH IN WA 

MUNICIPALITY, GHANA  

Asempah, M., Sahwan, W., & Schütt, B. (2021). Assessment of land cover dynamics and drivers of 

urban expansion using geospatial and logistic regression approach in Wa municipality, Ghana. Land, 

10(11). https://doi.org/10.3390/land10111251. 

This article is an open-access article distributed under the terms and conditions of the Creative Commons 

Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/). 

Abstract 

The current trends of land use dynamics have revealed a significant transformation of settlement spaces. 

In the Wa Municipality of Ghana, the changes in land use and land cover are inspired by a plethora of 

driving forces. In this study, we assessed the geo-physical drivers of settlement expansion under land 

use dynamics in the Wa Municipality of Ghana. The study employed geospatial and remote sensing 

tools to map and analyse the spatio-temporal dynamics of the landscape, using Landsat satellite 

imageries: thematic mapper (TM), enhanced thematic mapper (ETM) and operational land imager (OLI) 

from 1990 to 2020. The study employed a binomial logistic regression model to statistically assess the 

geo-physical drivers of settlement expansion. Random forest (RF)–supervised classification based on 

spatio-temporal analyses generated relatively higher classification accuracies, with overall accuracy 

ranging from 89.33% to 93.3%. Urban expansion for the last three decades was prominent, as the period 

from 1990 to 2001 gained 11.44 km2 landmass of settlement, while there was 11.30 km2 gained from 

2001 to 2010, and 29.44 km2 gained from 2010 to 2020. Out of the independent variables assessed, the 

distance to existing settlements, distance to river, and distance to primary, tertiary and unclassified roads 

were responsible for urban expansion. 

Keywords: savannah vegetation; random forest classifier; regression analyses; receiver operating 

characteristics (ROC); urbanisation 

5.1 Introduction 

Urban land covers a relatively small proportion of the global terrestrial landscape but inhabits over half 

of the global population (G. Chen et al., 2020). It is evident that despite its relatively small coverage, its 

expansion in the past decades has caused significant alteration to the environments globally (G. Chen et 

al., 2020; Flörke et al., 2018). Trends in urban land expansion and population over the past decades 

show that the increase in global population lags behind urban land expansion (Seto et al., 2010), although 

urban land expansion is associated with urbanisation, which is a product of population growth. 

Urbanisation coupled with urban land expansion exerts a profound impact on the environment, as it 

causes the destruction of terrestrial ecosystems, leading to the loss of biodiversity and the degradation 

of resources (W. Wang et al., 2020). About 70% of the global anthropogenic greenhouse gas emissions 

emanate from urban areas and more than 80% of the global natural habitat loss is attributed to urban 

expansion (Churkina, 2016).  

Chen et al., (2020) projected that global urban land will continue to expand at an increasing rate before 

the 2040s. They asserted that China and many other Asian countries might face significant pressure from 
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the urban population after the 2050s. It is supposed that global food security is endangered, as 

urbanisation and associated land expansion are expected to encroach on about 50–63% of the current 

cropland, leading to a consequential 1% to 4% decline in global crop production (D’Amour et al., 2017). 

Similarly, Africa, with a predominantly rural landmass, is one of the fastest urbanising regions in the 

world. The continent’s population is expected to attain 1.34 billion in 2050 from 2010’s 395 million 

estimates, constituting 21% of the global population projection (United Nations Department of 

Economic and Social Affairs- Population Division (UNDESA-POP), 2018). Among the numerous 

drivers of changes in LULC changes, urbanisation presents a lasting and irreversible impact on the 

environment (Elmqvist et al., 2013; McKinney, 2002; Seto et al., 2012). Increasing urbanisation and 

associated population exert pressure on natural resources and a high demand for the ecosystem services 

in effect, leading to critical environmental consequences, such as water crises, microclimatic alteration 

and natural resources degradation (McKinney, 2002; Seto et al., 2012; Solecki et al., 2013). Temporal 

changes in landscapes are driven by urban development, as urban expansion coupled with population 

growth destroys the ecosystem, consequently impacting the provision of ecosystem services (Hails & 

Ormerod, 2013). The lack of management plans to counteract the repercussions of the urban expansion 

imposes dire environmental consequences for ecological integrity and the provision of essential 

ecosystem services, such as water and raw materials. Ferreira et al. (2019) established significant 

destruction in the ecosystem as a result of urbanisation, among which the reduction of vegetation was 

prominent. 

Exemplarily, we want to focus on Ghana, the second most populated state in Western Africa, which is 

in transition from an agrarian country to an industrial country. Ampim et al. (2021) assessed land use 

and land cover (LULC) changes in Ghana from 1995 to 2019 to highlight significant changes and 

opportunities for sustainable development. They found the built-up area regionally to increase by 

131.7% over the entire 1995 to 2019 period. On the other hand, areas of bare land shrank by an average 

of 92.8%, areas covered by grassland shrank by 51.1%, and areas covered by diverse vegetation shrank 

by 41%, respectively, over the same period. Ghana experienced significant population growth with 

associated LULC changes over the past six decades with a doubling of their population since 1990. In 

Ghana already in 2018, 56% of the country’s population dwelled in urban areas, which corresponds to 

the global trend, as, globally, 55% of people live in urban areas (UNDESA-POP, 2018). Both urban land 

expansion and population pose serious threats to the integrity of ecosystems and biodiversity (G¨uneralp 

et al., 2017), especially in drought-sensitive landscapes, such as those occurring in the Wa Municipality 

that is located within the semi-arid region of Ghana. Based on the above background, this study assessed 

the drivers of urban expansion in the Wa Municipality of Ghana in the past three decades to provide a 

basis for future landscape management and town planning to combat the municipality’s transformational 

crisis and ensure ecosystem sustainability. 

5.2. Study Area 

The Wa Municipality is located in the Upper West region of Ghana (Lat. 10°14′46.32″ N 09°42′5.04″ 

N and Lon. 02°33′14.04″ W 02°0′57.96″ W). The area covers a total land of 579 km2 with a population 

of 102,214 inhabitants in 2010 (Ghana Statistical Service (GSS), 2014) with a projected 132,646 

inhabitants in 2020 (Statistics, Research and Information Directorate (SRID), 2011). It shares its 

administrative boundary with the Wa West District to the West and the Nadowli District to the East. 

The Wa Municipality (Figure 5.1) is located within the Guinea Savannah agrecological zone and is 
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dominated by drought adaptation vegetation covers. The landscape is generally undulating with a height 

ranging from 248 m to 368 m above sea level (Figure 5.2). Low-lying areas constitute two main drainage 

system in the capital and also retain water for a long period during the long rainy season (Ghana 

Statistical Service (GSS), 2014) .  

 
Figure 5.1. Map of the Wa Municipality Located in the Upper West Region of Ghana. (a) Map of 
Ghana showing its sixteen regions separated by administrative boundaries; the Upper West region is 
marked by shading. (b) Upper West region shows its eleven districts separated by administrative 
boundaries; Wa Municipality is marked by shading. (c) The study area location (Wa Municipality) 
with road network. 

 

Economic trees, such as baobab (Adansonia digitata), shea tree (Butylosternum paradoxum), teak 

(Tectona grandis) and dawa dawa (Parkia biglolosa) spread across the area where inhabitants leverage 

their potential for livelihood diversification and development (Ham, 2017; Kent, 2018). Seasonal 

bushfires coupled with climate variability and increasing built-up areas impose a threat to the benefits 

derived from the economic trees, thus affecting livelihood  (Kpienbaareh, 2016). The climate of the 

district is characterised by two seasons, at a time controlled by the southwest monsoon winds and the 

northeast trade winds. The southwest monsoon wind is associated with the rainy season that lasts from 

May to September. 
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Figure 5.2. Land elevation Map of Wa Municipality located in the Upper West Region of Ghana. (a) 
Map of Ghana showing its sixteen regions separated by administrative boundaries; the Upper West 
region is marked by shading. (b) Upper West region shows its eleven districts separated by 
administrative boundaries; Wa Municipality is marked by shading. (c) Digital elevation model (DEM) 
of the Wa Municipality; the black line marks the administrative boundary of Wa Municipality. (Data 
source: Shuttle Radar Topography Mission (SRTM) DEM from the United States Geological Survey’s 
Earth Explorer website, onhttps://earthexplorer.usgs.gov/accessed on 14 September 2020). 

 

The Wa Municipality is located within the semi-arid savannah high plains with characteristic mixed 

woody vegetation and an open savannah ecosystem with predominating widely spaced trees. 

Agricultural production and activities related to the agricultural value chain are the major economic 

activities in the area, employing over 29.3% of the labour force, with a significant proportion (18.5 %) 

engaged in crafts and related trades (GSS, 2014). The major staple foods cultivated in the district include 

millet (Panicum miliaceum), cowpea (Vigna unguiculata), maize (Zea mays), yam (Dioscorea spp.), 

sorghum (Sorghum bicolor) and groundnut (Arachis hypogaea) (GSS, 2014). Despite the dominant 

contribution of the agricultural sector to employment and livelihoods in the region, the services sector, 

in most recent times, has gained importance, employing up to about 25.7% of the labour force in 2010 

(GSS, 2014; Kpienbaareh & Oduro Appiah, 2019). 

5.3 Data and Methods 

5.3.1 Data Acquisition and Processing 

This study explores the landscape dynamics of Wa Municipality, Ghana, of the past three decades (from 

1990 to 2020), focusing on the time slices 1990, 2001, 2010 and 2020. The study acquired Landsat 

thematic mapper (TM), enhanced thematic mapper (ETM) and operational land imager (OLI) images of 

30 m × 30 m spatial resolution from the United States Geological Survey’s (USGS) Earth Explorer 

https://earthexplorer.usgs.gov/accessed
https://earthexplorer.usgs.gov/accessed
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website (https://earthexplorer.usgs.gov/ accessed on 15 March 2021). To achieve the spatio-temporal 

analysis, Landsat TM5 data were acquired for the year 1990 and ETM data for the years 2001 and 2010, 

while OLI data were acquired for the year 2020 (Tables 5.1 and S 5.1). All imageries selected are 

completely free from cloud cover and were acquired for the same season (October to November) to 

minimise the effects of seasonal variation in the vegetation pattern and distribution. 

The selected satellite images were of good quality, except the ETM imageries, which were characterised 

with defects due to the failed scan line corrector (SLC). The failed SLC resulted in the missing of about 

22% of the normal scene area of the ETM data (Storey et al., 2005). This anomaly was corrected, using 

Landsat Toolbox integrated into ArcGIS 10.5 software to reduce the consequential effects on the image 

classification accuracy. The imageries were corrected for radiometric distortion to present the inhibition 

of the spectral characteristics of the land features (Paolini et al., 2006). The semi-automatic classification 

plugin (SCP) of QGIS 3.4 software was used for dark object subtraction, which, in effect, enabled the 

correction of the atmospheric distortion and conversion of digital numbers (DNs) to spectral reflectance 

(Song et al., 2001; Woodcock et al., 2001). Subsequently, the Landsat imageries for all the considered 

years were subjected to further pre-processing, including stacking and clipping with a projected study 

area vector map to enable high-precision classification of the image and its associated computations. 

The spectral bands stacked for all the sensors include blue, green, red, NIR and SWIR; the thermal bands 

which could impact the quality of the images and affect the classification accuracy were excluded (Sinha 

et al., 2015; Weng et al., 2004). 

Table 5.1. Characteristics of Data Used for Image Classification and their Date of Acquisition. 

Satellite Name Sensor 
Number of 

Bands 
Path/Rows 

Spatial 

Resolution 
Date of Acquisition 

Landsat 5  TM 7 195/053 30 m 12 October 1990 

Landsat 7  ETM 9 195/053 30 m 3 November 2001 

Landsat 7  ETM 9 195/053 30 m 12 November 2010 

Landsat 8  OLI 11 195/053 30 m 15 November 2020 

 

5.3.2 Use of Spectral Indices for Extracting Landscape Features 

Spectral indices combine spectral reflectance from wavelengths used in highlighting and enhancing the 

interpretability of landscape features (Table 5.2; (Robinson et al., 2017)) and, thus, are widely adopted 

in modelling and monitoring land surface phenomena. The spectral indices used in the LULC 

classification to extract spectral information for the categorisation of urban areas, vegetation-covered 

areas and water features include the normalised difference vegetation index (NDVI), normal difference 

built-up index (NDBI) (Rouse et al., 1973), soil-adjusted vegetation index (SAVI), normalised burn ratio 

2 (NBR2) and modified normalised difference water index (MNDW) (K. V. Singh et al., 2015; H. Xu, 

2006). These were additionally applied for LULC classification to cope with the regional landscape’s 

high intra-heterogeneity. The identification and classification of built-up areas was supported by NDBI 

computation (Table 5.2, Equation (5,1)) that utilises shortwave-infrared (SWIR) and near-infrared (NIR) 

multispectral bands (Zha et al., 2003). These extract built-up areas and barren land and seclude areas 

covered by water and vegetation. NDBI is applicable with a multispectral sensor with a SWIR band 

between 1.55 µm and 1.75 µm and a NIR band between 0.76 µm and 0.9 µm. 

https://earthexplorer.usgs.gov/
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Table 5.2. Summary of Spectral Indices Used for LULC Classification. 

ID Index Formula Equation 

1 NDBI 
SWIR − NIR

SWIR + NIR
 (1) 

2 NDVI 
NIR − Red

NIR + Red
 (2) 

3 SAVI 
NIR− Red

NIR + Red+L 
 ×  (1 + L) (3) 

4 NBR2 
SWIR1 −  SWIR2

 SWIR1 +  SWIR2
 (4) 

5 MNDWI 
Green − SWIR

Green + SWIR
 (5) 

 

Through a normalised computation procedure and mathematical expression, NDVI utilises red and NIR 

Landsat bands to significantly enhance green vegetation (Table 5.2, Equation (5.2)) (Xue & Su, 2017; 

Rouse et al., 1973). Since its introduction by Rouse et al. (1973), NDVI has become the most widely 

used vegetation index in interpreting vegetation characteristics of complex landscapes (Xue & Su, 

2017). Due to the complex landscape of the Wa Municipality, the NDVI was corroborated with SAVI 

and NBR2 (Table 5.2, Equations (5.3) and (5.4)). The SAVI accounted for the deficiencies in NDVI in 

terms of the stability of vegetation and soil characteristics as a result of the loss of spectral differential 

red and infrared by vegetation canopy. SAVI incorporates a soil brightness correction factor (L) in the 

range of 0 (for dense vegetation cover) to 1 (for low vegetation cover). The NBR2, on the other hand, 

assists in identifying areas recovering from bushfires, which otherwise would be interpreted as built-up 

areas. 

The MNDWI enhances the extraction of open water features from landscapes (Table 5.2, Equation (5). 

It is an improved form of the normalised difference water index (NDWI) by McFeeters, (1996) that 

utilises green and NIR bands in extracting water features. McFeeters’ NDWI computation shows higher 

spectral reflectance in green light than NIR light for both built-up areas and areas covered by water, in 

effect, producing positive values for both. The computation of MNDWI substitutes SWIR for NIR as 

proposed by Xu, (2006). This procedure yields a better result in extracting water features from the 

landscape because of water’s ability to absorb SWIR better than NIR, leading to an increased positive 

value for MNDWI (Xu, 2006). 

5.3.3 LULC Classification and Change Detection 

Pixel-based supervised LULC classification (Phiri & Morgenroth, 2017) was carried out on each pre-

processed Landsat images for the years 1990, 2001, 2010 and 2020. Six LULC classes (closed savannah 

vegetation, closed savannah vegetation, other, settlement, vegetated wetland and water), adapted from 

Ghana’s LULC classification scheme for visual characterisation of remote sensing data (Basommi et al., 

2015), were identified through ground truthing for the spatio-temporal classification (Table 5.3). A non-



 
43 

parametric–based RF classifier was used to generate the thematic maps through a supervised 

classification approach for each respective year from their stacked spectral bands and the relevant 

spectral indices. The integration of spectral indices enhances the identification of landscape features for 

built-up, greenness, brightness and wetness. Built-up areas within the Wa Municipality were classified 

into settlement areas as identified by diverse spectral features of the Landsat satellite images 

corroborated by the NDBI spectral index. The characterisation of vegetation cover was supported by 

enhancement with the SAVI and NDVI spectral indices; integration of the NBR2 index helped to 

identify vegetation covers that regenerated after bushfire. The vegetation cover was categorised into 

closed savannah, open savannah and vegetated wetland. The distinction between closed and open 

savannah vegetation was influenced by the dominance of woody biomass within a hectare space. A 

threshold of less than 150 trees per hectare is categorised into open savannah, and a hectare of land with 

more than 150 trees, which is characteristic of forests and reserves, is considered closed savannah. The 

vegetated wetland class predominantly corresponds to water channels previously inundated with water 

that are overgrown with dense grasses and shrubs. This class has the highest spectral values in the 

vegetation indices. The application of MNDWI to the Landsat images supported the identification and 

classification of water bodies. Ground truthing of the six LULC classes was conducted in a field 

campaign in 2020 (Table 5.3). 

Table 5.3. Description of LULC Classes of the Study. 

ID LULC Class Description 

1 Closed savannah 

This is characterised by dense vegetation, predominantly woody cover, 

such as natural forest, and reserved and protected areas with a population 

density of more than 150 trees per hectare. 

2 Open savannah 

These are areas with less dense vegetation cover with a tree population 

density of fewer than 150 trees per hectare. The vegetation cover is 

predominantly sacred groves and thick shrubs and grasses. 

3 Other 
Areas without vegetation cover, bare lands, rocky surfaces, sand, gravel 

and unregulated open mining pits. 

4 Settlement 
Built-up areas, towns, and emerging residential areas with low to medium 

density. 

5 Vegetated wetland 
Dried-up rivers and stream channels and areas previously inundated with 

water that are overgrown with grasses and shrubs. 

6 Water 
Natural and artificial water bodies, including streams, rivers, dams and 

reservoirs. 

On-site random points were collected for each LULC class, using Garmin 60Cx GPS, serving as the 

reference for the classification and validation of the stacked Landsat image for 2020 with an 80% and 

20% split for training and test data, respectively. Training samples were created by digitising polygons 

and selecting sample pixels from each of the pre-processed Landsat images for the established LULC 

classes. Each of the ground truth LULC classes was verified by visual interpretation of the Landsat 

satellite images (Table 5.1) supported by topographic maps (scale 1:50,000 published in 1999 by the 

Survey of Ghana) and Google Earth and Bing high-resolution imagery (acquired via Web Map Service, 

WMS) (Borrelli et al., 2015; Schubert et al., 2018). An accuracy matrix was created for the respective 

years (1990, 2001, 2010 and 2020) to assess the performance of the random forest classification 
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algorithm by assessing the error matrices and overall accuracy of agreement. Frequency statistics were 

conducted to establish the quantities of spatial changes in each class for the periods of 1990–2001, 2000–

2010, 2010–2020, and the overall period from 1990 to 2020. 

5.3.4 Locational Factors 

Data on locational characters were obtained from broad categories of factors, including topographic 

factors and location factors. The topographic factors were derived from a shuttle radar topography 

mission (SRTM) digital elevation model of 30 m ground resolution, acquired from the United States 

Geological Survey database (https://earthexplorer.usgs.gov/ accessed on 14 September 2020). 

Topographic factors were calculated as derivatives from this digital elevation model (DEM), including 

slope, aspect, and topographic wetness index (TWI). The location factors were processed with the 

Euclidean distance tool in ArcGIS 10.5 version to obtain the raster layers that served as location-

independent variables (distance from existing settlement, distance to primary roads, distance to tertiary 

roads, distance to stream, and distance to rivers). The existing settlements were extracted from the LULC 

maps for 1990, 2001 and 2020; these data were used to establish the proximity relationship for the 

changes that occurred from 1990 to 2001, 2001 to 2010 and 2010 to 2020. Additional locations, such as 

open water, streams, primary roads, and tertiary roads, were acquired from OpenStreetMap and 

Geofabrik. 

5.3.5 Binomial Logistic Regression 

Selection of Variables (Factors Contributing to Urban Expansion) 

A binomial logistic regression model was used to explore the explanatory drivers of settlement 

expansion over the study period. The independent variables were selected from previous studies that 

assessed the drivers of urban expansion in a context similar to our study. According to Xu et al. (2018) 

and Dubovyk et al. (2011), there are diverse driving factors of settlement expansion. In the modelling 

of urban expansion, the geographical location and its prevailing conditions are important in selecting 

the independent variable. In the context of emerging compacted cities, such as the Wa Municipality, 

topographical and location factors are relevant and could influence urban expansion. Consistent with 

previous locational studies in developing contexts that have similar attributes to the Wa Municipality 

(X. Li et al., 2013; Marondedze & Schütt, 2019), topographical and location factors were selected as 

potential independent variables from various sources (Section 3.4) with the highest likelihood of 

influencing urban expansion in the studied municipality. 

In a study of the linkage between drivers and the axis of urban expansion in Zimbabwe, Marondedze & 

Schütt, (2019) identified slope and distance proximity characters as statistically significant predictors of 

urban growth. Similarly, Li et al. (2013) found slope and location factors, such as distance to major 

roads, distance to highways and distance to city centre, as drivers of urban expansion. This agrees with 

other studies which established the same characteristics as determinants of urban expansion (Cheng & 

Masser, 2002; Dubovyk et al., 2011; Luo & Wei, 2009). The proximity to water networks was studied 

extensively in both developed and developing contexts and was proven to be an important driver of 

urban expansion (Batisani & Yarnal, 2009; Luo & Wei, 2009). Based on the established relevance of 

the topography and location characters in urban expansion, our study explores slope, aspect, TWI, 

distance to settlements, distance to primary roads, distance to tertiary roads, distance to unclassified 

https://earthexplorer.usgs.gov/%20accessed%20on%2014
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road, distance to river, and distance to stream) as the independent variables for modelling urban 

expansion in the Wa Municipality. 

Model Development 

The raster layers for areas expanded from the time steps (1990–2001, 2001–2010, 2010–2020 and the 

entire period of 1990–2020) serve as dependent variables to explore the drivers of change (Figure SM 

5.1). The cells from the raster layers were transformed to dichotomous variables, where any area newly 

transformed to settlement land use is considered settlement expansion and denoted with ”1“, while 

already existing urban areas and other areas occupied by landscape features that did not transform into 

settlement areas in the subsequent time slice are considered non-expansion areas and denoted with a 

dichotomy value of ”0”. 

A total of 6000 stratified random sample points were created from all classification maps to extract 

values for the regression analysis. We set up the binomial logistic model after all the dependent and 

independent variables were processed. The model was taken to be statistically significant at p < 0.05. 

Given this, all independent variables that were specified and fitted into the model and produced p-values 

less than 0.05 are taken as statistically significant predictors of urban expansion in the study 

municipality. The model performance was evaluated to assess the discriminatory of the result using the 

receiver operating characteristic curve (ROC) and its area under the curve (AUC). The ROC and AUC 

rely on accuracy matrices, which is a measure of the proportion of correctly classified positive sampling 

points (true positive rate: TPR), and the proposition of incorrectly classified positive (false positive rate: 

FPR) (Anselm et al., 2018). 

5.4 Results 

5.4.1 The Extent of Land Use and Land Cover Change 

The spatio-temporal analysis reveals varying extents of change of the LULC features for the three-

decade periods that span from 1990 to 2020 (Figures 5.3 and 5.4). In general, the Wa Municipality is 

characterised by savannah vegetation, with open savannah covering the largest extent of the area. In 

1990, the total extent of open savannah was 407.22 km2 (70.30% of the total spatial extent of the Wa 

Municipality). The LULC analysis revealed dynamics in the open savannah coverage in subsequent time 

steps, as there were some gains in the open savannah coverage in the year 2001 with a total spatial extent 

of 417.06 km2 (72.0%). Overall, the open savannah reduced to 392.25 km2 (67.72%) in 2020. As 

vegetation cover reduced within the three-decade time frame, closed savannah vegetation covered 

128.69 km2 (22.22%) of the total area in 1990 and reduced to 91.34 km2 (15.77%) in the year 2020 

(Table 5.4). The reduction of areas covered by closed savannah vegetation more or less stagnated 

between the year 2001 (119.32 km2; 20.60%) and 2010 (107.21 km2; 18.51%). Similarly, areas covered 

by vegetated wetland decreased from 13.3 km2 (2.30%) in 1990 to 12.73 km2 (2.16%) in 2020; for the 

year 2010, the highest coverage of 14.59 km2 (2.52%) was observed. 
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Figure 5.3. Land Use and Land Cover Map for Wa Municipality for the years 1990, 2001, 2010 and 
2020. 

 

 
Figure 5.4. The Proportion of LULC Change in Wa Municipality for the Respective Time Slices. 

Beyond, the analysis showed a continued increase in settlement expansion with an expansion of eight 

times the area covered by settlements between 1990 (7.44 km2, 1.28%) and 2020 (59.86 km2, 10.33%). 

The settlement expansion predominantly took place in the southern direction. Most of these spatial 

expansions between 1990 and 2020 predominantly occurred within areas previously characterised by 

open savannah vegetation and areas without vegetation. The class “other” primarily corresponds to areas 

other than vegetation and water and shows a relatively stable spatial extent over the observation period; 

the total spatial extent of 22.18 km2 (3.83%) in the base year 1990 only reduced by 0.01%, as the total 

area covered in 2020 was 22.11 km2 (3.82%). Areas covered by water during the entire observation 

period are relatively low but increased from 0.39 km2 (0.07%) in 1990 to 0.93 km2 (0.2%) in 2020. 
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Table 5.4. Spatial Changes of Land Area for the Land Use and Land Cover Classes in Wa Municipality 
for the 1990, 2001 2010 And 2020 Time Series. 

LULC Class 
1990 2001 2010 2020 

Km2 % Km2 % Km2 % Km2 % 

Closed savannah 128.69 22.22 119.32 20.60 107.21 18.51 91.34 15.77 

Open savannah 407.22 70.30 417.06 72.00 400.61 69.16 392.25 67.72 

Other 22.18 3.83 12.98 2.24 25.62 4.42 22.11 3.82 

Settlement 7.44 1.28 19.12 3.30 30.42 5.25 59.86 10.33 

Vegetated 

wetland 
13.30 2.30 10.33 1.78 14.59 2.52 12.73 2.16 

Water 0.39 0.07 0.41 0.07 0.77 0.13 0.93 0.20 

 

5.4.2 Accuracy Assessment for Land use and land cover Classification 

Relatively high overall accuracy (OA) was recorded for each time slice, ranging from 89.33% (2001) to 

93.3% (2020) (Table 5.5). The user accuracy (UA) reflects the reliability of the classification, while 

producer accuracy (PA) reveals how well the reference pixels of land cover types are classified. The 

class water had the highest producer’s accuracy for all the time slices (Table 5.5). Generally, a relatively 

high degree of classification accuracy runs through all the time slices for all LULC classes. 

 

Table 5.5. User’s Accuracy (UA), Producer Accuracy (PA) and Overall Accuracy (OA) For Land Use 
Land Cover Classification Accuracy Assessment for the Time Slices. 

Class 

Closed 

Savannah 

Open 

Savannah 
Other Settlement 

Vegetated 

Wetland 
Water OA 

UA PA UA PA UA PA UA PA UA PA UA PA  

1990 92 97.87 94 82.46 80 93.02 96 92.31 98 94.23 96 97.96 92.67 

2001 88 93.62 96 78.69 82 78.85 84 93.33 92 97.87 94 97.92 89.33 

2010 88 93.6 96 75 88 93.6 92 93.9 82 89.1 92 97.9 89.7 

2020 92 92 94 87.0 94 95.9 90 93.8 94 94 96 98 93.3 

 

5.4.3 Binomial Logistic Regression and Model Validation 

A receiver operating characteristic (ROC) curve ( Figure 5.5) is a graphical plot of the true positive rate 

(sensitivity) against the false positive rate (1-specificity) and illustrates the diagnostic ability of a binary 

classifier (Sedano et al., 2016). This produces an area under the curve (AUC) that measures the 

discriminating power of a model. The area under the curve (AUC) is an effective and combined measure 

of sensitivity and specificity for assessing the inherent validity of a test (Anselm et al., 2018; Sedano et 

al., 2016). The larger the area under the ROC curve, the stronger the predictive power of the model 

(Sedano et al., 2016).  
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Figure 5.5. Receiver Operating Characteristic (ROC) Curves Depicting Validity and Performance of 
Binomial Logistic Regression Analyses Results for Urban Expansion in Wa Municipality for the 
following years: (a) 1990, (b) 2001, (c) 2010 and (d) 2020. (FPR: false positive rates; TPR: true positive 
rates; AUC: area under the curve). 

As a broader acceptable standard, a model with maximum AUC (1.0) has a perfect descriptive power, 

with 0.9 being considered excellent. A perfect descriptive power of the model is an indication of having 

all the true positive rates (sensitivity) and true negative rates (specificity) as one and both errors (false 

positive and false negative) as zero. In a complete random relationship, the model produces an AUC of 

0.5 with a diagonal line from the left bottom to the upper right corner. For a model to be considered 

efficient, it must possess at least 0.6 power. A power of 0.7 is considered good, while 0.8 is regarded as 

very good (Anselm et al., 2018).Through the binomial logistic regression modelling, it was evident that 

topographic factors (slope, aspect, topographic wetness index) were not statistically significant to urban 

expansion. In contrast, the location factors were, for all the time steps, statistically significant. The 

distance to the existing settlement was significant at p < 0.001 for all time steps. Similarly, the distances 

to primary roads, tertiary roads, and unclassified roads were significant at p < 0.001 for all time steps, 

except for the time step of 2001 to 2010, where the distance to tertiary roads and distance to unclassified 

roads were of less powerful statistical significance (p < 0.05). The distance to rivers was also significant 

at p < 0.01 for time step 1990–2001 and p < 0.001 for time step 2001–2010. The receiving operating 

characteristic (ROC) curve was used to validate the model performance. The discriminatory power of 

the model was very high for all time steps (Figure 5.5). The ROC for 1990 produced the best performing 

descriptive and predictive model, with an AUC of 0.97. The least was observed in the model for 2001–

2010 (AUC = 0.89). Summarising, all the models for the four-time steps selected are valid and 

satisfactory for describing and predicting the urban expansions in the Wa Municipality. 
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5.5 Discussion 

The transformation of the natural vegetation and the functioning of the terrestrial ecosystems are 

influenced by the ongoing urban sprawl and its associated environmental changes. The Wa Municipality, 

and the Upper West Region of Ghana as a whole, has seen significant changes regarding demography 

and ecological landscapes over the past decades and most likely will be impacted in the years to come 

(Attua & Fisher, 2011). The spatio-temporal LULC classification of the Wa Municipality reveals the 

dynamics of urban expansion and associated changes in the landscape between 1990 and 2020. The 

classification was accomplished with high overall accuracies. The relatively high accuracy was achieved 

by the non-parametric RF machine learning classifier, which was identified to produce better LULC 

classification accuracy than non-parametric and traditional parametric classifiers (Carranza-García et 

al., 2019). In a review of LULC classification using the machine learning classifier for satellite 

imageries, Talukdar et al. (2020) concluded that in a high dynamic landscape with intra-heterogeneity, 

as is also typical for the Wa Municipality, the RF classifier provides better classification accuracy than 

other machine learning classifiers when modelling LULC changes, especially when imageries have the 

same sensor characteristics, such as spatial and temporal resolution (Ma et al., 2017; Mountrakis et al., 

2011). 

The random forest (RF) classification algorithm provides a great opportunity to generate higher 

classification accuracy outputs than parametric classifiers (Talukdar et al., 2020). The success of high 

classification accuracies was achieved by the corroboration of the RF classifier with the application of 

spectral indices. The spectral indices in the LULC assessment of this study in turn enhanced the 

delineation of the landscape features, making the clear distinction between the different LULC classes 

more prominent and, thus, increased the accurate selection of training samples and, subsequently, the 

LULC classification accuracy. The high accuracies generated by incorporating spectral indices agree 

with (Hegazy & Kaloop, 2015), who established increased separability between LULC classes in the 

quest to analyse land use and land cover changes, using spectral indices. Owing to the vegetation cover 

complexity of the Wa Municipality, intra-vegetation separability was enhanced by the vegetation indices 

that enabled the distinction between closed and open savannah vegetation. Misclassifications observed 

between land-use classes were a result of small-scale intra-heterogeneity of the landscape, which caused 

a high number of mixed pixels and thus, negatively affected the classification accuracies. In principle, 

mixed pixels emanating from subpixel objects of various classes exhibit high intra-heterogeneity within 

a defined landscape unit (Phiri & Morgenroth, 2017). Mixed pixels can affect the classification results, 

even as they are located along the borders between discrete and easily separable classes, though the 

occurrence of mixed pixels is not limited to the transition zones of landscape classes and does not 

underly a continuous gradient, which, in effect, leads to classification errors (Phiri & Morgenroth, 2017). 

The use of multi-spectral Landsat imageries and the extracting of heterogeneous training data helped to 

overcome this challenge. 

The results obtained from the geospatial analysis reveal that increasing urbanisation was prevalent 

during all the time slices analysed, predominantly indicating significant urban expansions from the 

previous time steps at the expense of vegetation cover. This agrees with previous studies (Hegazy & 

Kaloop, 2015; Marondedze & Schütt, 2019) that show an inverse relationship between the expansion of 

built-up areas and especially areas covered by vegetation. In consequence, it can be stated that urban 

expansion reduces the vegetated area. Beyond, the analysis shows that the urban expansion in the Wa 
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Municipality is in a form of concentration and expansion that is identical to the typical urban 

development pattern observed in Ghana (Kuusaana et al., 2021). The concentration can be observed by 

increasing spatial densities of built-up areas, particularly in the Wa township, the capital of the 

municipality. Simultaneously, there was a massive expansion of built-up areas toward the peripheries 

of the major towns during all the time steps analysed (Figure 5.3). This also includes the engulfment of 

already existing peri-urban settlements in the Wa Municipality by urban sprawl. This is in line with the 

findings of Cobbinah & Amoako, (2012) and Kombe, (2005), who describe characteristic 

unconsolidated lateral physical urban expansion and urban sprawl with the engulfment of existing built-

up areas by new settlements within the peripheral areas of most cities in developing countries. 

Urban expansion in the Wa Municipality between 1990 and 2020 strongly correlates to population 

growth. According to Ghana Statistical Service, (2005), the population of the Wa Municipality increased 

from 98,675 inhabitants in the year 2000 to 107,214 inhabitants in 2010. This corresponds to an annual 

growth rate of about 0.77% in the decade of 2000–2010, while, simultaneously, settlement expansion 

totalled 3.71%. For 2020, the projected population amounted to 132,646 (GSS, 2012), which puts the 

annual growth rate between 2010 and 2020 at 1.92%, while, in parallel, the observed annual rate of 

settlement expansion averaged 4.1%. This observation underlines the critical role that population 

pressure has on urban expansion and agrees with observations on land cover change in West Africa by 

Herrmann et al., (2020), who revealed that changing intensities of settlement areas were significantly 

influenced by population pressure. Spatial patterns of the human footprint within the area of the Wa 

Municipality suggest that population pressure coupled with the socioeconomic statuses of the people 

and policies geared toward infrastructure development affect the complexity of land cover outcomes. 

The infrastructure expansion in the Wa Municipality manifests in the LULC changes in the area: the Wa 

airport, for example, is a prominent infrastructure measure visible in the satellite imageries. It influenced 

the expansion of the settlement space, especially between 1990 and 2001. Evidence from previous 

research suggests that other infrastructure measures, such as roads, schools and hospitals, were part of 

the development phase from 1990 to 2020 as a response to the population’s demand (Osumanu et al., 

2019; Ziem Bonye et al., 2021), thus controlling large parts of the dynamics in LULC changes within 

this period. 

It was evident that areas previously covered by savannah vegetation changed to settlement areas, as 

proven for all the time slices selected. This also became explicit in the LULC classification that shows 

significant spatial settlement expansion in all the time slices. While in the Wa Municipality settlement 

expansion was prominent, woody biomass, on the other hand, shrank over the past decades; this was 

confirmed by the LULC analysis based on the satellite images that revealed a depletion of closed 

savannah vegetation for all the time steps analysed. Between 1990 and 2001, there was a gain in the 

settlement area in the Wa Municipality of 11.68 km2 corresponding to a relative increase of 61.09%, 

while in parallel, there was a reduction of areas covered with closed savannah vegetation by 9.37 km2 

corresponding to a relative decrease of 7.85%. This inverse relationship can be observed for all time 

steps analysed, with the overall gain in settlement area between 1990 and 2020 of 52.42 km2 (+87.57%) 

and the corresponding loss in areas covered by closed savannah vegetation of 37.35 km2 (−40.89%). 

This reflects the effects of the characteristic urban agglomeration–population nexus typical of 

contemporary times, where landscape degradation associated with urban expansion is driven by the need 

for shelter for the increasing population who engages in livelihood development activities in their 

respective settlements (Acheampong & Anokye, 2013; Appiah et al., 2014). The current trends of urban 
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expansion and vegetation dynamics in the Wa Municipality are in line with Bologna & Aquino, (2020) 

who emphasise a population–urban expansion–deforestation nexus, maintaining that the essential 

services derived in support of human life are the main driving force behind encroachment on forest 

spaces. This is supported by Myers et al., (2013) who stated that changes in terrestrial ecosystems are 

influenced by increasing pressure emanating from population growth, which in effect degrades the 

landscape and its associated resources. 

In Ghana, north-to-south migration is typical for the exploration of livelihood development options. 

Beyond, people also move within their districts and municipalities, due to the push factors to access 

resources such as fertile land and water to secure their livelihood (Antabe et al., 2017). Next to LULC 

change as an effect of migration and population growth, there has been, in recent times, an increase in 

the proliferation of unregulated small-scale gold mining within the Wa Municipality and its 

neighbouring Wa East district (Antabe et al., 2017). These economic opportunities are a strong pull 

factor for intra- and inter-district migration and affect the LULC pattern. While agriculture is the major 

livelihood and economic 

development activity in the Wa Municipality, some inhabitants are shifting to unregulated small-scale 

mining, which seems to be more lucrative and yields the promise of quick income, despite the 

environmental consequences it poses. Basommi et al. (2015) observed that settlements expanded within 

the Wa East district, which has neighboured the Wa Municipality in gold mining activities in the area 

over the past years. Currently, unregulated small-scale mining operations cause destruction of the 

ecosystem (Basommi et al., 2015; Mucova et al., 2018). 

In the Wa Municipality, the cutting of trees for fuelwood and charcoal production is the major cause of 

woody biomass depletion (Chiteculo et al., 2018; Sedano et al., 2016), affecting the decline in closed 

savannah vegetation. In addition, seasonal bushfires occurring predominantly during harmattan seasons 

(November to March) also contribute to the depletion of woody vegetation (Kusakari et al., 2014). 

Despite the devastating effects of bushfires on livelihood, there is a lack of understanding of its causes 

and a clear policy direction to address it (Yahaya & Amoah, 2013). Rainfall in northern Ghana is 

unimodal with high spatial and temporal variability in the rainy season between May and September 

(Yengoh et al., 2010). Due to the seasonal occurrence of rainfall, runoff regimes of the major rivers are 

periodical, causing a water shortage during the dry season. As surface water is an important water source 

for agricultural activities, the study area is significantly impacted by the competing demand for water 

between domestic and agricultural uses (Benebere et al., 2017). The increased availability of water, 

deviated from the extent of open water areas, as seen in the satellite images from 2010 and 2020, is in 

line with government efforts to construct dams and dugouts to ensure water availability to sustain 

agriculture and guarantee livelihoods (Diko et al., 2021). Expanding vegetation in the vicinity of the 

wetlands suggests that in periods of increased water availability, the vegetated wetland expands. 

Among the topographical characteristics, slope, aspect and TWI are key determinants in choosing land 

for settlement (Ye et al., 2013; Z. Zhang et al., 2014). Location factors, such as distance to existing 

settlements, distance to water sources, and distance to tertiary and primary roads also play a major role 

in urban expansion. Additionally, the proximity to physical infrastructure and water resources is a 

driving factor of urban growth, as people are pulled toward areas that are endowed with physical 

infrastructure and water resources for economic and livelihood activities (Luo & Wei, 2009; Poelmans 

& Van Rompaey, 2009). However, by applying binary logistic regression to determine the drivers of 
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urban expansion, it is evident that the topographic factors of slope, aspect and TWI did not obtain 

statistically significant coefficients to predict the odd logs of their probabilities of influence on urban 

expansion within the Wa Municipality for all the time steps analysed. This might be due to the nature 

of the entire landscape, which is almost homogenous and has almost equal suitability of selection for 

settlement. On the other hand, drivers such as distance to settlement, distance to road networks, and 

distance to water were statistically significant for all the time steps analysed, strongly indicating their 

influence on urban expansion. These physical location drivers’ influence on urban expansion was 

reinforced by the direction of the expansion which was predominantly towards the southwestern part of 

the Wa Municipality, where major primary, tertiary and unclassified road networks are densely formed.  

This finding is in line with studies conducted in national and regional contexts, all establishing a 

significant relation between physical location factors and urban expansion (Das Chatterjee et al., 2016; 

Poku-Boansi & Adarkwa, 2016). Pravitasari et al., (2018) underlined in their study on the Jakarta–

Bandung mega-urban region asserted that among the major drivers of urban expansion is the distance to 

road, which directly affects the extent and spatial expansion of the area. Similarly, Marondedze & 

Schütt, (2019) identified roads as a major determinant of urban expansion for the Epworth district, 

Harare, Zimbabwe. In the Wa Municipality, urban expansion is being driven by the government’s 

commitment to the provision of infrastructure, such as roads, and schools as part of the development 

agenda. Considering the trend of urban expansion in the Wa Municipality, it is evident that people 

choose to live close to roads to have easy access to the workplace, school and market. Distance to 

primary, tertiary and unclassified roads were statistically significant with a negative coefficient, 

indicating an increased probability of an area being transformed into an urban space controlled by the 

proximity of the area to roads; thus, the shorter the distance of an area to a road, the higher the possibility 

of the area being expanded into an urban space. 

Beyond, the development of the Wa Municipality and the expansion of built-up areas since the year 

2000 was also affected by the establishment of the Wa Campus of the University for Development 

Studies (now called S.D. Dombo University of Business and Integrated Development Studies), Wa 

Polytechnic (now called Wa Technical University) and a nursing training college, all distributed across 

the municipality and acting as pull factors (Korah et al., 2018). 

Distance to already existing settlements was also established as a key driver for urban expansion. For 

all the time steps analysed (1990–2001, 2001–2010 and 2010–2020), the binomial logistic regression 

shows statistically significant negative coefficients describing the relation between new built-up areas 

and distance to existing settlements. The result agrees with findings from previous studies, which also 

observed urban expansion to be influenced by distance to existing settlements and other locations 

(Dubovyk et al., 2011; Luo & Wei, 2009). The negative coefficient of distance to existing settlement 

observed for all the time slices in the logistic regression analysis underscores the increasing likelihood 

of newly developed settlements near already existing settlements, and thus settlement expansion. This 

observation can be attributed to the higher affinity for easy access to socioeconomic resources and better 

development opportunities in existing settlements, especially closer to the administrative centre of the 

municipality (Boamah, 2013). 

According to Li et al. (2018), the presence of water bodies in an area could either hinder or promote 

urban expansion corresponding to the waterborne advantages as well as the opportunities that water 

resources present for urban development. Correspondingly, proximity to rivers is established as a key 
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driver of urban expansion, proven to be statistically significant with new built-up areas for the time steps 

1990–2001 and 2001–2010; considering the data for the entire observation period (1990–2020), also a 

statistically significant relation between the development of new built-up areas and their distance to 

rivers can be observed. The result suggests an increasing probability of urban expansion at a location 

the closer the distance to open water is. This finding is consistent with findings by (Cheng & Masser, 

2002; G. Li et al., 2018; Luo & Wei, 2009) for studies conducted in Asia. During the Colonial era, the 

people of the Wa Municipality largely relied on hand-dug wells, streams and rivers to cover their daily 

water needs. In the 1950s, the Hydraulic Division of Public Works Department was mandated to plan 

and develop water supply systems for the provision of potable water in the Wa Municipality. During the 

1950s, the water allocation capacity was as low as 150 m3 per day and increased to about 1320 m3 daily 

water allocation in the 1980s as the ever-increasing population necessitated increasing water availability 

(Amoah, 2013). Currently, Ghana Water Company Limited is responsible for the operation of the water 

supply system in the Wa Municipality, with a daily demand of more than 12,000 m3. As developments 

and associated infrastructure are still in progress, in particular, the rural population still relies on open 

water from rivers for domestic and agricultural purposes (GSS, 2014). 

5.6 Conclusions 

Over the past decades, landscapes have been influenced significantly by climate variability and 

anthropogenic impacts. The proliferation of rural settlements and urban expansion has further led to 

landscape modification, as vegetation cover and environmental resources deplete. Owing to the 

environmental conditions and development potential of Wa Municipality of Ghana, an assessment of 

the dynamics of land cover and drivers of settlement expansion is a great step to inform developmental 

policies. This study provides insight into landscape dynamics and the drivers of urban expansion in the 

Wa Municipality, Ghana, by employing geospatial and remote sensing tools coupled with a binomial 

logistic regression model. By employing supervised LULC classification using the random forest 

classifier, we obtained satisfactory overall accuracies. Similarly, we obtained great performance of the 

binomial logistic model, as the model validation yielded excellent output. The study reveals that the 

landscape of the Wa Municipality over the past three decades has been influenced by urban expansion, 

while in parallel, woody biomass has reduced as observed in the reduction of areas covered by closed 

savannah vegetation. We note that during the 1990–2020 observation period, settlement expansion for 

all the time steps analysed was consistent with the trend of regional population growth. The urban 

expansion is relatively compact within the capital city of the Wa Municipality as a result of the infilling 

of open spaces within the city complex. However, the peripheral areas of the capital city expanded 

predominantly toward the southwest part of the Wa Municipality. This behaviour was observed for all 

10 years’ time steps analysed. In parallel, for all 10 years’ time steps analysed, a decrease in areas 

covered by savannah vegetation can be observed. Even when the urban spread predominantly captures 

areas with bare land, population pressure, and grazing activities as well as fuel wood consumption as a 

concomitant phenomenon of the urban spread triggers the decline in savannah vegetation. 

In consonance with other studies, the LULC change dynamics observed for the Wa Municipality reflect 

the resultant effects of the influx of population growth and the associated demand for environmental 

resources for sustainable livelihood and economic development. The drivers identified to influence 

settlement expansion include distance to existing settlements, distance to rivers and distance road 

networks. The development of settlements near an already existing settlement is imperative, due to the 
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potential economic development opportunities they present. Beyond, accessibility and connectivity 

seem eminent, as distance to roads was also proven to be a driver for settlement expansion. In line with 

the new spatial planning framework of Ghana, our findings provide relevant information for the Town 

and Country Planning Department for future development plans of the Wa Municipality. Beyond, our 

findings provide valuable knowledge to support integrated landscape management decisions and their 

impacts on the ecosystem and environmental resources. It is expected that future research will expand 

the scope of the study beyond the Wa Municipality and explore the landscape dynamics and drivers of 

urban expansion at the macro level. Additionally, beyond the geophysical factors, future research should 

explore the socioeconomic drivers of urban expansion at the municipal level and beyond. This, together 

with our findings, informs a holistic framework in sustainable urban planning and development. 
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5.8 The Link of this Chapter to Other Chapters 

The chapter is a case study of the Wa municipality in the Black Volta River Basin that addresses the 

first objective of the study which sought to evaluate and determine the LULC dynamic and drivers of 

urban expansion in the Wa municipality between 1990 and 2020. The findings informed the 

understanding of the LULC dynamics and the drivers of the urbanisation in the municipality. The 1990 

and 2020 LULC thematic maps from this chapter served as the cover factor input parameter in the next 

chapter that estimated soil erosion risk in a typical savannah landscape of Wa municipality of Ghana 

between 1990 and 2020.
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Abstract 

Tropical savannah landscapes are faced with high soil degradation due to climate change and 

variability coupled with anthropogenic factors. However, the spatiotemporal dynamics of this is not 

sufficiently understood particularly, in the tropical savannah contexts. Using the Wa municipality of 

Ghana as a case, we applied the Revised Universal Soil Loss Equation (RUSLE) model to predict the 

potential and actual soil erosion risk for 1990 and 2020. Rainfall, soil, topography and land cover data 

were used as the input parameters. The rate of predicted potential erosion was in the range of 0-111 t 

ha-1 y-1 and 0–83 t ha-1 y-1 for the years 1990 and 2020, respectively. The prediction for the rate of 

potential soil erosion risk was generally higher than the actual estimated soil erosion risk which ranges 

from 0 to 59 t ha-1 y-1 in 1990 and 0 to 58 t ha-1 y-1in 2020. The open savannah areas accounted for 

75.8 % and 73.2 % of the total soil loss in 1990 and 2020, respectively. The validity of the result was 

tested using in situ data from 2 km2 each of closed savannah, open savannah and settlement area. By 

statistical correlation, the predicted soil erosion risk by the model corresponds to the spatial extent of 

erosion damages measured in the selected area for the validation. Primarily, areas with steep slopes, 

particularly within settlements, were identified to have the highest erosion risk. These findings 

underscore the importance of vegetation cover and effective management practices in preventing soil 

erosion. The results are useful for inferences towards the development and implementation of 

sustainable soil conservation practices in landscapes with similar attributes. 

Keywords: Erosion risk prediction Potential erosion risk RUSLE model Soil degradation Soil erosion 

damage. 

6.1 Introduction 

Soil erosion is influenced by natural factors such as rainfall, topography as well as soil physical and 

chemical characteristic coupled with anthropogenic activities (Butt et al., 2010; Mutua et al., 2006). 

The anthropogenic influence of soil erosion includes land modification through agriculture, 

deforestation, construction and general land use (Flores et al., 2019). Soil erosion results in on-site 

losses of fines and dense particles, such as clay and humus, that are essential soil nutrient carriers and 

also function as soil stabilising agents (Wantzen & Mol, 2013). Soil erosion potentials are high within 

subhumid and dry-subhumid tropics given the high rainfall intensities and amount prevalent in such 

regions (Arneth et al., 2019; Guerra et al., 2020). Besides rainfall, soil erosion within tropical regions 

is generally concentrated in space over time (e.g. during changes in cropping systems such as crop 

rotation) (Labrière et al., 2015). The consequential effects are multi-faceted and include decreasing 

crop yields and water resource degradation, which are observed in high turbidity and particle-induced 

https://creativecommons.org/licenses/by/4.0/
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/savanna
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-degradation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/anthropogenic-factor
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/revised-universal-soil-loss-equation
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-erosion
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pollutants. The water-holding capacity of reservoirs is reduced through sedimentation thereby altering 

the hydrological regimes, and further compounding flood risk as a result of riverbed filling and stream 

plugging(Chomitz et al., 1999; Locatelli et al., 2011; Millennium Ecosystem Assessment, 2005). 

Globally, soil erosion disrupts the sustainable functioning of ecosystems (Borrelli et al., 2021). The 

impacts of soil erosion jeopardise the potential of a variety of ecosystem services, which could be 

derived from healthy soil. The Millennium Ecosystem Assessment (2005) points out that ecosystem 

services for soil erosion control are on the decline globally. Globally, the range of soil erosion is highly 

substantial (Borrelli et al., 2017) and threatens ecological integrity, biodiversity and future agriculture 

productivity (Arneth et al., 2019). According to Wantzen & Mol, (2013), about 1094×106 hectares - 

corresponding to c. 8.4 % of global land surface - is affected by soil erosion by water, with 751×106 

hectares (5.8 %) even severely affected by water erosion. In contrast, wind-induced soil erosion 

affected about 549×106 hectares (4.2 %) of the world’s land mass, with about 296×106 hectares (2.3 

%) being severe (Lal, 2003). Economically, the impact of the deterioration of arable land amounts to 

billions of dollars (Pimentel et al., 1995). According to. Dregne (2002), Africa faces irreversible soil 

productivity losses due to water erosion at national scales; in some parts of sub-Saharan Africa already 

about 20 % of crop yield has been permanently reduced due to soil erosion processes. Obalum et al. 

(2012) postulate for sub-Saharan Africa about 50 % of productivity losses are attributable to soil 

erosion processes. In the East Africa region, Fenta et al. (2020) modelled land susceptibility to water 

and wind erosion risks and established 10 % moderate or elevated water erosion risks (>10 t ha-1yr-1) 

while prediction for wind erosion was 25 % moderate or elevated erosion. Similarly, Okou et al. (2016) 

predicted 19.5 % of high to very high erosion risk in West Africa following a regional erosion risk 

mapping. In Ghana, the impact of soil erosion has been felt since the early 1930s (Dregne, 2002). 

Research has shown that since that time about 29.5 % of the country’s erosion impact could be 

classified as slight-to-moderate sheet erosion, with 23 % being severe sheet and gully erosion, and 43.3 

% being classified as high sheet and gully erosion (Baatuuwie et al., 2011). However, it is anticipated 

that actual Figures may be significantly higher owing to the enormous strain on land due to a mix of 

physical and socioeconomic reasons, including population pressure, poor farming methods, and the 

effects of global climate change (Moomen & Dewan, 2017). 

The trend of soil erosion poses a great threat to food security, poverty reduction and biodiversity 

conservation which are core components of the United Nations Sustainable Development Goals 

(SDGs). While SDG 15 is aimed at protecting, restoring and promoting sustainable use of terrestrial 

ecosystems as well as halting and reversing land degradation and biodiversity loss, SDGs 1 and 2 seek 

to end poverty and hunger, respectively (Yin et al., 2022). Aside the destruction of the ecosystem and 

loss of biodiversity, Soil erosion reduces the fertility and productivity of the soil leading to low 

agricultural productivity. Soil erosion risk modelling is part of efforts to promote sustainable 

agriculture, water and biodiversity conservation which are vital to achieving the SDGs (Yin et al., 

2022). Assessing soil erosion risk is therefore a step towards planning sustainable conservation 

practices in the face of climate variability and land use intensification for the realisation of the 

aforementioned global goals (Foucher et al., 2014). Several empirical, statistical, and physical models 

are applicable in estimating soil erosion risk (Abdullah et al., 2017; Foucher et al., 2014; Igwe et al., 

2017; Meusburger et al., 2010). Generally, the selection of a model is highly dependent on the 

availability of a data, its applicability to the study area’s attributes, intended use, processes and 
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calibration needs (Merritt et al., 2003; Ranzi et al., 2012). In practice, the Universal Soil Loss Equation 

(USLE) is one of the widely used empirical models (Wischmeier & Smith, 1978). Also, its derivatives, 

the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997), the Water Evaluation and 

Planning (WEAP), the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) and the Water 

Erosion Prediction Project (WEPP) (Laflen et al., 1991) have been extensively explored to model 

erosion risk under various contexts, including different climatic and soil conditions as well as land use 

practices. 

In this study, Wa municipality, an area typical for the tropical savannah agroecological zone, remote 

sensing techniques and data processing with Geographic Information Systems (GIS) build the basis for 

soil erosion risk modelling applying the RUSLE. GIS was applied in extracting, delineating and 

manipulating land characteristics that serve as input parameters for the estimation of soil erosion risk 

by the RUSLE model (Chalise et al., 2018; Shamshad et al., 2008; G. Wang et al., 2003). The RUSLE 

model which was initially developed for plot-based experiments has been applied for modelling at 

macro-scales and is useful for identifying areas which are vulnerable to soil erosion (Benavidez et al., 

2018; Constantine & Ogbu, 2015). However, the means of validating the RUSLE model’s result is 

lacking. This study provides a three-stage approach to better estimate the soil erosion risk by predicting 

the potential soil erosion risk and the actual soil erosion risk as well as testing the validity of the results 

using soil erosion damage data that was measured in the field. In order to understand within the 

vulnerable savannah agroecological zone, the relevant dynamics of soil erosion across time, this case 

study on Wa municipality models the spatial pattern of soil erosion risk as well as potential erosion for 

the years 1990. and 2020 owing to changes in climate patterns and land use and land cover over these 

periods. Thus, the study evaluates how changes in land use and land cover (LULC) influence soil 

erosion risk in Wa municipality through the analysis of temporal soil erosion estimates. First, we 

modelled potential erosion for the Wa municipality, and predicted the actual soil erosion risk for the 

years 1990 and 2020 using the RUSLE model. We then validated the modelled soil erosion risk using 

field measurements. This approach, especially the validation option, is useful, applicable and provides 

the basis for making inferences in future studies, especially in the tropical context. 

6.2 Materials and Methods 

6.2.1 Study Area 

Wa municipality is situated in Ghana’s Upper West Region, (between 10◦ 14′ 46.32″ N and 09◦ 42′ 

5.04″ N and 02◦ 33′ 14.04 W and 02◦ 0′ 57.96″ W). According to the 2010 census, 102,214 people 

reside in the municipality’s 579 km2 of land (Ghana Statistical Service (GSS), 2005). According to the 

Ghana population and housing census for the 2021 census, the municipality’s population has grown to 

200,672 people, of which 143,358 people (71.4 %) live in urban areas while 57,314 people (28.6 %) 

are residing in rural areas  (GSS, 2021).To the western border of the studied municipality lies the Wa 

West administrative District of Ghana, with the Nadowli administrative district lying to the east. In the 

Guinea Savannah agroecological zone, the Wa Municipal District (Figure 6.1.) is characterised by flora 

that has adapted to drought. 
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Figure 6.1. Map of Wa Municipality’s Land Elevation Within the Context of the Upper West Region 
of Ghana.  (a) A map of Ghana displaying its sixteen administrative regions, with Upper West 
shaded. (b) Map of the Upper West region displaying the eleven administrative districts and their 
borders; Wa municipality is shown by shade. (c) Digital elevation model (DEM); the black line 
designates the Wa municipality’s administrative boundary. Data source: See Shuttle Radar 
Topography Mission (SRTM) DEM, obtained from the United States Geological Survey’s (USGS) 
Earth Explorer database. Retrieved from https://earthexplorer.usgs.gov/ on 18 September 2020). 
 

A savannah landscape characterises the Wa municipality. Its relief is slightly undulating in the savannah 

high plains, which are located between 160 and 300 m a.s.l. The southern and the northern areas are low-

lying and constitute two drainage systems within the municipality with the main drainage system in the 

north. The main soil types are laterites, which can be found across the entire municipality, but in its 

western part shallow savannah ochrosols predominate. Locally clayey and sandy textures predominate; 

especially Nakore township and its environ in the western part of the municipality has abundant 

occurrence of sandy materials, while the community of Charia township and its environ is well known 

for a predominance of clay. Rivers in the low-lying areas are peri- odical and provide discharge during 

the rainy season. The valleys also form the two principal drainage systems in the Wa municipality. The 

Billi and its tributaries drain the northern part of the Wa municipality, and the Sing-Bakpong and its 

tributaries drain the southern part  (GSS, 2014), both are tributary to the Black Volta River. 

The climate of Wa municipality is tropical and characterised by two distinct seasons as controlled by 

the dry Northeast trade winds (which originate from the sub-tropical high-pressure region) and the 

South-west monsoon winds (which originate from the Indian sub-continent in a south-westerly 

direction). The wet season, which runs from May to September, is linked to the southwest monsoon 

winds (Barry et al., 2005; GSS, 2014). The dry Harmattan season usually commences in November 

and lasts till around March and is caused by the northeast trade winds. The mean annual temperature 

ranges from 20.5 to 37.2 ◦C, seldom drops below 15.5 ◦C and occasionally might exceed 40 ◦C. 

The relative humidity ranges from 68 to 72 %, with the mean annual rainfall varying between 840 and 

1400 mm within the 1990–2020 period  (GSS, 2014; Kpienbaareh & Oduro Appiah, 2019). Under the 

https://earthexplorer.usgs.gov/
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influence of Harmattan winds, relative humidity can drop below 20 % during extended drought periods. 

The central part of Wa municipality is highly urbanised with a cluster of towns which significantly 

expanded since 1990 (Asempah et al., 2021). The northern part of the municipality is an expansion of 

rural settlements such as the Charia, Guuli and Anhiwienu, with these areas lying in the lowlands close 

to the major rivers in the region. Piisi, Boli and Sing villages are located in the slightly undulating 

lowlands south of Wa; also, their location is close to the major rivers. In contrast, the Nakore and 

Bulenga villages are located in the headwater areas. All these smaller villages correspond to nucleated 

villages and are directly connected by roads to Wa; between the villages along the roads, dispersed 

settlements occur. The remaining area is predominantly rural and characterised by savannah 

vegetation. Agriculture and further processing of agricultural products characterise the economic 

structure of Wa municipality (GSS, 2021). Major crops cultivated are millet, sorghum, yam, soya beans 

and groundnuts. Beyond, trees of economic value such as the baobab, the shea tree, and the teak tree 

among others are widespread in the area, and serve to diversify agricultural products and thus sustain 

livelihood and development (Ham, 2017; Kent, 2018). Seasonal bushfires, climate change, and 

expanding built-up regions strain economic trees’ advantages and livelihoods. Based on the general 

characteristics of the municipality coupled with rapid settlement expansion and exposure of the 

landscape due to anthropogenic activities, the tendency for soil erosion risk in the area is high. 

6.2.2 RUSLE Model 

We applied the RUSLE model in estimating the average annual rate of soil loss based on the sheet and 

rill erosion forms, and to show the distribution of potential and predicted soil erosion risks across space 

in the Wa municipality. The RUSLE model’s comparative advantage in modelling data-scarce 

landscapes owing to its flexible data requirements makes it applicable to the Wa municipality other 

than physically distributed models with extensive data requirements (Benavidez et al., 2018). We 

applied ArcGIS in conjunction with QGIS and the machine learning programme R to process the raster-

based input data required to implement the RUSLE model. Estimation of soil erosion risk was 

conducted by applying the formula by Renard et al., (1997): 

ASE [t ha−1 yr−1] = R × K × L S × C × P                             (6.1) 

 

where: 

ASE connotes the average soil erosion rate per annum (t ha-1 yr-1); R connotes rainfall erosivity factor 

(R-factor) (MJ mm ha-1 h-1 yr-1); K connotes soil erodibility factor (K-factor) (t h MJ-1 mm-1); LS 

represents the slope length and steepness factor (LS-factor); C represents the cover management factor 

(C-factor), and P connoted the conservation support practice factor (P-factor). Weighted values 0 and 

1 are the respective lower and upper limits of C and P values, and this is influenced by the level of 

vegetation and conservation management practices available on the landscape. 

To better explain the effects of land use change on morphodynamics, we applied Eq. (6.1) and set the 

C-factor and P-factor values to 1 as the identity number for multiplication operations. We define the 

resulting average potential soil erosion rate per annum Apot (t ha-1 yr-1) as the soil loss of a land surface 

without conservation and management practice. Data from diverse sources were used for the 

computation of the input variables for the model (Table SM 6.1). The K-factor was generated using 
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soil grid data from the International Soil Reference Information Centre (ISRIC) database (See 

https://soilgrids.org). A trapezoidal rule approach was complemented with machine learning for an 

onward computation to generate the K-factor input parameter. The LS-factor is obtained from the 

SRTM DEM with a horizontal resolution of 30 × 30 m. C-factors were deduced on the terrain cover 

characteristic presented in the Wa municipality’s LULC classification for the years 1990 and 2020 

(Asempah et al., 2021). All the input raster data were of 30 × 30 m horizontal resolution except for the 

K-factor raster data that was available in 250 × 250 m resolution. By employing nearest neighbour 

techniques, the K-factor raster was resampled to the same resolution and projection to ensure model 

accuracy. 

Soil Erodibility factor (K). The K-factor defines the proneness of soil to erosion as a result of the soil’s 

inherent properties that influence the resistance to detachment. Soil physical properties (including 

porosity, structure and texture) play significant roles in soil erosion as they influence the degree of 

resistance or susceptibility to rainfall impacts in the form of splash or overland flow (Beguería et al., 

2015). In computing the soil erodibility factor, we obtained data from the ISRIC database. The soil 

information applied in estimating the K-factor with the equation proposed by Sharpley & Williams in 

1990, which includes contents of silt, clay, sand and organic matter. While these data are at the 

“SoilGrids” and available for soil layers from 0 cm to 200 cm depth (with other sub-divisions), we 

used weighted averages of these characters for the soil layers within 0-30 cm depth. By employing 

numerical integration through a Trapezoidal equation, the average values for each layer of overall depth 

intervals for 0–30 cm were estimated using a weighted mean of the predictions in the interval (Hengl 

et al., 2017):    

      
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≈

1

(𝑏−𝑎)

1

2
∑ (𝑋𝐾 + 1 − 𝑋𝐾)(𝑓(𝑋𝐾) + 𝑓(𝑋𝐾 + 1))

𝑁−1

𝐾=1
                         (6.2) 

where: 

N connotes the number of depths; xk represents the kth depth; f(xk) is the estimated value of the target 

variable (i.e., soil property) at depth xk. 

Machine learning was employed in the processing and generating of the weighted averages of the 

respective raster layers for the various soil properties as inferred from Eq. (2). The output raster layers 

were used subsequently as the input parameters for the computation of the K-factor using the proposed 

Eq. (3) (Sharpley & Williams, 1990; Y. Yang et al., 2018).  

𝑘 = 0.1317(0.2 + 0.3 ∗ 𝑒{−0.0256𝑆𝐴𝑁(1−
𝑆𝐼𝐿

100
)}∗ 

(
𝑆𝐼𝐿

𝐶𝐿𝐴+𝑆𝐼𝐿
)0.3)*{1-

0.25∗𝑇𝑂𝐶

𝑇𝑂𝐶+𝑒(3.72−2.95∗𝑇𝑂𝐶)}*{1-
0.7∗𝑆𝑁1

𝑆𝑁1+ 𝑒(22.9∗𝑆𝑁1−5.51)} (6.3) 

where: 

SAN represents sand, SIL connotes silt, CLA is clay, T OC represents the To ta l  organic carbon 

contents of the soil (mass-%) and SN1=1- SAN/100. 

 

Slope Length and Steepness Factor (LS). LS-factor is an important parameter that influences 

soil erosion, and it represents the cumulated effects of slope steepness (S) and slope length (L) on soil 

erosion (S. Schmidt et al., 2019). The distance between an upslope starting point and to downslope 

point where soil deposition starts is referred to as the slope length (L) (Farhan & Nawaiseh, 2015). The 

exposure to soil loss is increased by increasing the length of the slope and the steepness per unit area, 

https://soilgrids.org/
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which increases the values of runoff and associated flow velocity (Defersha et al., 2010). A steeper 

slope has a higher tendency to influence erosion because it produces a higher flow velocity of runoff, 

thereby increasing the shear stress on the surface and in consequence mobilising more material (D. M. 

Fox & Bryan, 2000). The combined effects of the slope length and the steepness measure the 

topographic impact on erosion (Defersha et al., 2010; D. M. Fox & Bryan, 2000; Shrestha & Jetten, 

2018). The LS-factor utilised in the RUSLE model was derived from a 30 × 30 m resolution SRTM 

DEM by computation using the Hydrology module (Farhan & Nawaiseh, 2015) of the SAGA GIS 

software. The fill sink algorithm was used for data pre-processing, utilising the spill-elevation method 

(L. Wang & Liu, 2006). The DEM was further processed by applying the multiple flow direction tool 

(MFD) (S. Wu et al., 2008) in SAGA GIS for the attribution of flow directions and accumulation 

(Tarboton, 1997). The computation of LS-factor considers the unit contributing area that is factored 

distribution of LS-factor over the entire landscape (X. Yang, 2015). 

Rainfall erosivity factor (R). The R-factor is the capacity of rain to trigger soil erosion (Farhan & 

Nawaiseh, 2015; Stocking & Elwell, 1976). The Rainfall variables that determine the total erosivity 

include the drop size and drop distribution, amount and intensity coupled with terminal velocity 

(Meshesha et al., 2014; Thomas et al., 2018). The raindrop impact partly determines the rate of runoff 

usually associated with rain and, in effect, reflects in the numerical value of rainfall erosivity 

(Wischmeier & Smith, 1978). Based on high-resolution data, a product of long-term average rainfall 

energy (E) together with a maximum of 30 min rainfall intensity (I30) for storm events is desirable for 

the computation of Rainfall erosivity. However, in the absence of high-resolution and sufficient data, 

several context-specific simplified approaches have been proposed to estimate an R-factor (J. H. Lee 

& Heo, 2011; Renard et al., 1997). In this study, we explored tropical landscape-specific equations 

applicable to the context of Wa municipality in computing R-factor (in MJ mm ha-1 h-1 yr-1). The 

equation for estimating R (Tilahun et al., 2018) is given as follows: 

R = 0.562(Ar) - 8.1      (6.4) 

Where: R denotes the rainfall erosivity factor, and (Ar) denotes average annual rainfall. 

Time series erosivity was computed from the long-term rainfall data from 1980 to 1990 and 2010–2020 

for the examined years 1990 and 2020, respectively. The inverse distance weighted (IDW) technique was 

used to interpolate the long-term rainfall data. The output raster of the interpolation was extracted to the 

extent of the study area and subsequently applied in Eq. (6.4) to compute the erosivity factor. 

Land Cover and Management Factor (C). The C-factor is explained as the influence of vegetation 

cover on erosion (S. Lee, 2004). Barelands are more prone to erosion than vegetated lands as – among 

others - they are protected from raindrop impact by leave coverage, as soil cohesion is supported by 

plant roots and as vegetation increases surface roughness and, thus, decelerates flow velocity (Mengistu 

et al., 2015; Wischmeier & Smith, 1978; Wynants et al., 2018). Therefore, depletion in vegetation 

cover may cause the C-factor to increase significantly, and in effect increase in soil loss rate. The C-

factor corresponds to an assigned numeric value (0–1), which is based on the land cover types and their 

resistance capability to erosivity capabilities as presented as vegetative protection (Table 6.1). 

Completely bare land has a C-factor of 1, while densely vegetated land that tends to protect the soil 

from detachment has a C-factor of 0. Hence, the lower the C-factor value the better erosion prevention 
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capability and vice versa (Mengistu et al., 2015). Several approaches are proposed for the computation 

of the C-factor. The approach of  Benkobi et al. (1994); and Renard et al. (1997) is based on a field 

experiment that considers the C-factor as the product of soil loss ratio and the total storm energy of a 

rainfall event with 30 min intensity (EIn) divided by the total storm erosivity EI.  

The soil loss ratio is computed as the product before land use, surface cover, canopy cover, soil 

moisture and surface roughness (Renard et al., 1997; J. Wu et al., 2021). Though this approach seems 

preferable, some limitations hinder its adoption. The approach involves a laborious field experiment 

to obtain the surface cover, canopy cover, soil moisture and surface roughness on the assumption of 

their uniform distribution throughout the entire landscape (Tanyaş et al., 2015). The samples obtained 

may not reflect the exact prevailing conditions of the entire landscape and may differ from season to 

season (Renard et al., 1997; J. Wu et al., 2021). Based on this we employed the option of satellite 

images which give a better impression of the landscape characteristics in terms of the type and extent 

of vegetation coverage. 

The C-factor was deduced from a supervised LULC classification to establish the type as well as the 

stretch of land cover and by this to achieve a reliable C-factor as an input parameter for the RUSLE 

model (Table 6.1). We used LULC maps for the years 1990 and 2020 generated from satellite images 

adapted from Asempah et al., (2021) (Figure. 6.3). The categorisation and definition of LULC classes 

(Table SM 6.2) were adapted after Ghana’s LULC classification scheme to visualise remote sensing 

data (Basommi et al., 2015). Based on the land use and land cover classes, we estimated the C-factor 

by assigning a weighted C-factor value to each land use and land cover types 

Table 6.1. Classes of Land Cover and their Spatial Extent (%) in the Wa Municipality. For the C-Factor 
Values Assigned to their  Respective Land Cover Classes, References are Provided. 

 Area Covered (%)   

Land cover 
classes 

1990 2020 
Weighted 
C-factor 

value 
Source of Weighted C-factor value 

Closed savannah 22.22 15.77 0.001 (Kusimi et al., 2015; Watene et al., 2021) 

Open savannah 70.30 67.72 0.002 (Kusimi et al., 2015) 

Other (bare land) 3.83 3.82 1 (Asiedu, 2018; Girma & Gebre, 2020) 

Settlement 1.28 10.33 0.8 (Asiedu, 2018) 

Vegetated 
wetland 

2.30 2.16 0.21 (Asiedu, 2018) 

Water 0.07 0.20 0 (Asiedu, 2018; Girma & Gebre, 2020) 

 

The weighted values of each land use and land cover type were carefully selected by evaluating 

literature in the context of tropical savannah landscape (Basommi et al., 2015; Benkobi et al., 1994; 

Tanyaş et al., 2015; J. Wu et al., 2021; Wynants et al., 2018). The C-factor raster images that served 

as an input parameter for the RUSLE model were obtained by multiplying the established weighted 

value for each LULC class by their corresponding weighted C-factor value (Table 6.1). 

Conservation Support Practice factor (P). P-factor values range from 0 to 1 and indicate the 

effectiveness of conservation practices in the landscape as a measure against soil erosion (Karthick et 

al., 2017; Panagos, Borrelli, Meusburger, et al., 2015). A lower P-factor value implies better 

management and conservation practices and higher effectiveness in reducing soil erosion. In 
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comparison, a high P-factor value represents less effective conservation practices and less effective 

erosion control ability (Tian et al., 2021). Thus, a P-factor value of 0 indicates the highest erosion 

control ability, while a P-factor value of 1 means no soil conservation or erosion control measure is 

implemented (Karthick et al., 2017; Panagos, Borrelli, & Meusburger, 2015). The type of conservation 

and management option highly depends on the topography of the landscape; hence computation of the 

P-factor considers the slope of the landscape to adopt conservation activities such as contour ploughing, 

strip cropping and terrace risers and bunds to control surface runoff and force infiltration (Jia Chen et 

al., 2019; Tian et al., 2021). 

6.2.3 Field Survey of On-site Erosion Damages 

To validate the results of the RUSLE model, we conducted in January/February 2022 a field survey to 

measure the spatial extents of on-site soil erosion damages, specifically, rills and inter-rills in the Wa 

municipality. Specifically, a survey was implemented on 2 km2 plots each in the Wa municipality’s 

closed savannah, open savannah, and settlement LULC areas. On-site damages that qualify as rills and 

inter-rill in the context of the RUSLE model specification for soil erosion risk assessment were 

identified, mapped and measured (Bewket & Sterk, 2003). A portable GPS (Garmin 60Cx) was used 

in mapping and geocoding the individual damage spots that comprise linear channels whose 

dimensions are within rill and inter-rills categories other than ephemeral gullies and gullies (Poesen et 

al., 2003). Rills as linear erosion channels had a cross-sectional area of less than 929 cm2 and a 

maximum depth of 0.5 m (Marondedze & Schütt, 2020; Poesen et al., 2003). The spatial extent of 

damages from various survey plots was categorised into five classes of damages in a digitised damage 

map depicting the extent of disturbance within each LULC area (Figure 6.5) and systematically and 

statistically compared to the corresponding soil erosion risk predicted by the RUSLE model. Prior to 

the systematic and statistical comparison, the data was standardised by logistic transformation. 

6.3 Results 

6.3.1 RUSLE Model Input Parameters 

Soil Erodibility factor (K). Within this model, the K-factor values estimated for the whole landscape 

of Wa municipality range from 0.024 to 0.034 t h MJ-1 mm-1, with the mean value corresponding to 

0.029 t h MJ-1 mm-1 (std.=0.001) (Figure 6.2A). The values spread heterogeneously across the studied 

municipality with relatively low values (0.024-0.028 t h MJ-1 mm-1) in the western and southwestern 

part of the municipality where coarse-textured soils predominate. In the most western part of Wa 

municipality K-factor values of 0.029- 0.030 t h MJ-1 mm-1 can be observed. Isolated patches of the 

highest K-factor values occur across the entire study area. The field survey showed a distribution of 

diverse soil characteristics, corresponding to the diversity in the k-factor for the area. Slope Length and 

Steepness Factor (LS). In the study municipality, the LS-factor values range from 0 to 7.12, with a 

mean value of 2.96 (std = 0.06) (Figure 6.2B). Due to the overall slightly undulating terrain in the Wa 

municipality, LS values remain < 2.2. Correspondingly, the variability of the LS-factor is low. Steep 

slopes and coinciding increased LS factors predominantly occur around the central and northeastern 

areas of the municipality. Locally slopy areas also occur in the urbanised of Kpelisi, Mungu, Duuli and 

the Wa township. 
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Rainfall erosivity factor (R). The decadal rainfall for the entire Wa municipality from 1980 to 1990 

averaged 948 mm (std.=0.74) with a corresponding average R-factor of 524.83 MJ mm ha-1 h-1 yr-1 

(std.=0.53). In the year 2020 rainfall averaged 723 mm, also with a corresponding R- R-factor of 398.63 

MJ mm ha-1 h-1 yr-1. This data is consistent with the Ghana Meteorological Agency and Ghana 

Statistical Service’s annual rainfall statistics for the Wa municipality (GSS, 2014).  

 
Figure 6.2. Map of K, LS and R-factor.  (A) Soil Erodibility Map for the Wa municipality (Data 
source: ISRIC- World Soil Information "SoilGrids" provides a raster (TIF format) global soil map 
and associated information (See https://soilgrids.org; accessed on 20 September 2021). (B) LS factor 
map for the Wa municipality. Source of Data: SRTM DEM from USGS’ Earth Explorer website (See 
https:// earthexplorer.usgs.gov/ 15th September 2020). (C1) The R-factor for 1990 (C2) the R- R-
factor for 2020 (See database at: https://power.larc.nasa.gov/ accessed on 15 April 2021). 

Generally, rainfall erosivity factors (R) differ in spatial variability across the Wa municipality for the 

observation years 1990 and 2020. In 1990, the highest R-factors ranging between 530 and 560 MJ mm 

ha-1 h-1 yr-1 occurred along a N-S corridor across Wa municipality, while in the neighboring areas R-

factors varied between 480 and 530 MJ mm ha-1 h-1 yr-1 (Figure 6.2 C1). In contrast, during the study 

year 2020 the R-factor is evenly distributed across the study area with values predominantly < 480 MJ 

mm ha-1 h-1 yr-1. (Figure 6.2 C2). 

Estimated Cover factor (C) and Support Practice factor (P). The area of Wa municipality is 

predominantly covered with the savannah open vegetation that constitutes the arable land for various 

agricultural activities. Settlement and bare lands areas show the highest C- factor values (0.8 and 1, 

respectively) (Figure 6.3). The smallest C-factor values are assigned to areas with dense vegetation 

cover (example the closed savannah vegetation and the vegetated wetland areas). While the closed 

savannah areas are characterised by a dense cover of trees and bushes and a dense ground vegetation 

layer, the vegetated wetlands areas are characterised by a dense grass and shrub cover that get 

https://soilgrids.org/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://power.larc.nasa.gov/
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inundated regularly. Due to the expansion of settlement areas and corresponding decline of savannah 

areas between 1990 and 2020, the area characterised by low C-factor values is distinctly larger in the 

year 1990 than in the year 2020, as it is also evident in the LULC classification (Table 6.1). Previous 

scientific works extensively established P-factor values in the context of typical tropical regions. 

However, our field survey shows that support or erosion control practices is lacking in the Wa 

municipality; thus, our model considered 1 as the value for the P-factor. 

 
Figure 6.3. LULC Map for the Wa Municipality and Corresponding C-factor Input Parameter for 
Modelling Soil Erosion Risk for the years 1990 and 2020. (A) 1990 and (A) 2020 are LULC maps for 
1990 and 2020, respectively, while (B) 1990 and (B) 2020 are corresponding C-factor input parameters 
for the years 1990 and 2020, respectively (LULC classification adapted from (Asempah et al., 2021) 

6.3.2 Estimated Potential Erosion Risk Apot 

The modelled potential erosion risk for the years 1990 and 2020 is expressed as soil loss by potential 

erosion Apot. and focusses on the physical factors controlling erosion, thus, exclusively the R, LS and 

K-factors are taken as input for the RUSLE model. The resulting maps of potential erosion risk (Figure 

SM 6.1) are complemented by the corresponding statistical values (Table 6.2) for the respective years. 

Altogether, for 1990 the estimated rate of potential erosion range between 0 and 111 t ha-1y-1 

corresponding to a total potential soil loss in Wa municipality of c. 395,959 tons. For the year 2020, 

the rate of potential erosion is estimated to lie within 0- 83 t ha-1y-1, with a corresponding total potential 

soil loss in Wa municipality of c. 376,266 tons. For both observation years, more than 50 % of the 

landscape was prone to high-to-extreme grades of potential erosion risk. For 1990 36.5 % of the Wa 
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municipality was exposed to a high potential erosion risk; within the error margins, this equals the area 

being exposed to high potential erosion in 2020 (38.1 %; Table 6.2). Areas with “low” and “moderate” 

potential erosion risk predominantly occurred in flat areas. In contrast, areas exposed to the "very high" 

and "extreme" potential erosion risk corresponded to areas with high LS-factors or occurred in 

urbanised areas with extensive road networks. 

Table 6.2. Estimated soil Loss by Potential Erosion Apot. at Wa Municipality by Different Severity 
Classes.  

  1990: Soil loss by potential erosion 
Apot. 

2020: Soil loss by potential erosion 
Apot. 

Potential 
Erosion 
Risk 

Soil 
Erosion  
(t ha-1y-

1) 

Total 
area  
(ha) 

Total 
area  
(%) 

Total  
soil loss  
(t y−1) 

Total 
soil 
loss 
(%) 

Total  
area  
(ha) 

Total 
area  
(%) 

Total  
soil loss 
(t y−1) 

Total  
soil loss 

(%) 

Low <3 16,933.8 29.3 34,352.6 8.7 15,933.9 27.6 28,840.3 7.7 
Moderate 3-5 8,101.2 14.0 42,541.4 10.7 7,050.2 12.2 27,495.6 7.3 

High  6-10 21,119.0 36.5 145,261.1 36.7 22,019.0 38.1 147,747.8 39.3 
Very 
High 

11-15 8,223.4 14.2 105,664.4 26.7 8,519.3 14.7 104,957.9 27.9 

Extreme >15 3,506.6 6.1 68,139.9 17.2 4,306.5 7.5 67,224.5 17.9 
  57,884 100.0 395,959.4 100.0 57,828.9 100.0 376,266.1 100.0 

6.3.3 Estimated Soil Erosion Risk ASE 

In 1990, about 83.9 % of the Wa municipality was exposed to low to moderate soil erosion risk while 

in 2020 spatial extent of areas exposed to low to moderate soil erosion risk decreased to 76.0 % (Table 

6.3). These areas of low to moderate soil erosion risk contributed in 1990 to 44.8 % of the total erosion 

in Wa municipality while in 2020 it amounted to 39.3 %. In contrast, areas that were exposed to "high" 

and "very high" soil erosion risk covered in 1990 15.35 % of the area of Wa municipality, and increased 

in spatial extent to 23.4 % in 2020; it is estimated that these areas exposed to “high” and “very high” 

soil erosion risk contributed about half of the municipality’s total soil loss in the respective year. The 

statistics document the contribution of the different soil erosion risk grades to the estimated annual soil 

loss: For 1990 total soil loss in Wa municipality was estimated at 150,401 tons but increased to an 

estimated total erosion of 200,464 tons in 2020. The soil erosion risk in Wa municipality averaged in 

1990 2.6 t ha-1 y-1 (range of spatial distribution: 0-59 t ha-1 y-1) and in 2020 3.5 t ha-1 y-1 (range of spatial 

distribution:0-68 t ha-1 y-1) (Figure 6.4). Exposure to high soil erosion risk especially occurred around 

the central part of the Wa municipality, with isolated patches of very high and severe soil erosion risk. 

Very high to extreme soil erosion risk predominantly can be observed at hillside locations within 

settlement areas; this observation applies for both observation years. Spatial variations in soil erosion 

risk for Wa municipality closely correlates to land use. In general, the areas covered by open savannah 

vegetation contributed about three-quarters of the total soil loss in 1990 and 2020 with a spatial extend 

of open savannah vegetation of 70.4 % in 1990 and 67.8 % in 2020. 
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Figure 6.4. Spatial Distribution Map of the Estimated Soil Erosion Risk for Wa Municipality for the 
years (A) 1990 and (B) 2020. 

 

Table 6.3. Estimated Soil Loss by Soil Erosion ASE at Wa Municipality by Different Severity Classes.  

 
 1990: Soil erosion ASE risk by grade 2020: Soil erosion risk ASE by grade 

Soil 
Erosion 
Risk 

Soil 
Erosion  
(t ha-1y-

1) 

Total 
area 
(ha) 

Total 
area 
(%) 

Total  
soil loss  
(t y−1) 

Total  
soil loss 

(%) 

Total  
area 
(ha) 

Total  
area  
(%) 

Total  
soil loss  
(t y−1) 

Total  
soil 
loss 
(%) 

Low <3 38,166.1 65.9 23,302 15.5 30,002.5 51.9 26,732 13.3 

Moderate 3-5 10,421.2 18.0 44,027 29.3 13,960.1 24.10 52,145 26.0 

High  6-10 7,592.7 13.1 58,751 39.1 10,957.0 18.9 73729 36.8 

Very 
High 

11-15 1,288.6 2.2 16,934 11.3 2,547.5 4.4 29,811 14.9 

Extreme >15 415.3 0.7 7,387 4.9 361.8 0.6 18,047 9.0 
  57,883.9 100.0 150,401 100.0 57,828.9 100.0 200,464 100.0 

 

The areas covered by open savannah vegetation are to a great extent cultivated and grazed, resulting in 

a high exposure to soil erosion. This is exacerbated by seasonal bushfires that usually occur during the 

Harmattan season that disturb vegetation cover and, thus, expose the area to erosion at the beginning of 

the rainy season (which advances the Harmattan season). Closed savannah vegetation covered in 1990 

22.2 % (12,869 ha) of Wa municipality and had shrunk until 2020 to 15.8 % coverage (9134 ha) (Table 

6.4). Due to the relatively low soil erosion risk under closed savannah vegetation, the decrease in the 

area covered by the closed savannah vegetation between 1990 and 2020 caused an increased exposure 

to soil loss in areas covered in 1990 still by the closed savannah. Areas covered by settlements and 

barelands in general have a high exposure to soil erosion risk (Mariye et al., 2022; Melese et al., 2021). 

The spatial extent of settlement areas in Wa municipality quadruplicated from 5.1 % in 1990 to 22.2 % 

in 2020. The contribution of areas covered by settlements or barelands to the total soil loss in Wa 

municipality amounted 13.4 % in 1990 and increased to 20.4 % in 2020 (Table 6.4). 
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Table 6.4. Estimates of Soil Loss Under Different LULC Across Wa Municipality.  

 1990: Estimated soil loss by land use class 
2020: Estimated soil loss by land use 

class 

Land use Total area  

(ha) 

Total 

area 

(%) 

Total  

soil loss  

(t y−1) 

Total  

soil loss 

(%) 

Total  

 

(ha) 

Total 

area  

(%) 

Total  

soil loss  

(t y−1) 

Total 

soil 

loss 

(%) 

Closed Savannah 12,869.0 22.2 14,584 9.7 9,133.7 15.8 9,627 4.8 

Open Savannah 40,722.5 70.4 113,987 75.8 39,224.9 67.8 146,689 73.2 

Other 2,218.1 3.8 18,549 12.3 2,211.4 3.8 27,167 13.6 

Settlement 744.4 1.3 1,637 1.1 5,985.9 10.4 13,794 6.9 

Vegetated 

Wetland 
1,329.9 2.3 1,644 1.1 1,273.1 2.2 3,187 1.6 

 57,884.0 100 150,401 100 57,828.9 100.0 200,464 100 

 

6.3.4 Validation of Modelled Soil Erosion Risk Applying RUSLE Model 

During 2022 field survey in each of the land use classes, closed savannah (Figure 6.5A), open savannah 

(Figure 6.5B), and settlement (Figure 6.5C), a 2 km2 test plot was systematically mapped for soil erosion 

damages. Mapping results were then applied to validate the RUSLE modelling results for soil erosion 

risk for the year 2020. For each plot area erosion damage maps (Fig.6. 5 A2, B2, B3) were systematically 

compared to the 2020 RUSLE modelling results of the soil erosion risk (Figure 6.5 A1, B1, C1). 

Altogether in all three survey plots, 79 linear erosion forms corresponding to rills were mapped and 

measured. Eighteen (18) of the rills (coverage: 15.1 m2) were mapped in the closed Savannah vegetation 

areas, while 26 of the rills (coverage: 69.8 m2) were mapped in areas covered by open savannah 

vegetation. In settlement areas degree of on-site damages was highest with a total number of 35 rills 

mapped (coverage: 109.9 m2). In total, an area damaged by soil erosion of 194.8 m2 was mapped within 

the 6 Km2 of the three test plot areas. 

The extent of on-site damages measured on each of the test plots is consistent with the modelled soil 

erosion risk for the respective sites. The soil erosion risk for settlement plot (C1) is classified as "high," 

"very high," and "severe," with a soil loss estimate of 6- 54 t ha-1 y-1. The areas of high to extreme soil 

erosion risk correspond to the large spatial extent of soil erosion damages mapped and measured in the 

settlement test plot (C2). In comparison, in the open savannah vegetation test plot (B1) soil erosion risk 

is "moderate"to "high" (3-10 t ha-1 y-1); the corresponding damage map of the open savannah test plot 

(B2) shows in comparison to the settlement test plot (C2) comparatively small spatial extent of areas 

with on-site erosion damages (mostly in the range of 2-5 m2). Overall, the closed savannah test plot (A1) 

had the lowest soil erosion risk (< 3 t ha-1 y-1). This corresponds to the least spatial extent of all the 

individual eroded area of less than 3 m2 in the closed savannah damage map (A2). In a nutshell, for the 

test plots A1, B1 and C2 estimated soil erosion risk corresponds to the area of on-site damages in the 

respective test plots A2, B2 and C2. 
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Figure 6.5. Validation Maps for Model Result and Corresponding Maps of Field Plots Surveyed from 
January to February 2022. (A1) The 2 km2 model output for closed savannah area with various levels 
of soil erosion risks for the year 2020; (B1) the 2 km2 model output for open savannah area with 
various levels of soil erosion risks for the year 2020; (C1) the 2 km2 model output for settlement area 
with various levels of soil erosion risks for the year 2020. (A2) the corresponding plot of A1 with 18 
measured spatial extents of soil erosion damages; (B2) the corresponding plot of B1 with 26 measured 
spatial extents of soil erosion damages;(C2) the corresponding plot of C1 with 35 measured spatial 
extents of soil erosion damages. (D) The soil erosion risk map for the Wa municipality for the year 
2020 from which A1, B1 and C1 were extracted. 

 

The moderate to high exposure to soil erosion risk in the open savannah LULC class indicates the high 

vulnerability of this area. The spatial pattern of the corresponding damage measurements (Figure 6.4 

B2) is in line with the model results (Figure 6.4 B1). The highest exposure to soil erosion was observed 

in the settlement area plot. The spatial extent of erosion damages (Figure 6.5 C2) and the corresponding 

soil erosion risk map (Figure 6.5 C1) underline high exposure to soil erosion. However, spatial 

accordance of soil erosion damages mapped and soil erosion risk modelled is less solid for the settlement 

areas than for the areas covered by open and closed savannah (Figure 6.6). Overall, the configuration of 

soil erosion damages observed in the three different study plots largely conforms with the modelling 

result of soil erosion risk in the respective areas (Figure 6.6). 
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Figure 6.6. Soil Erosion Damages in the Wa Municipality Observed During the Field Survey. (CS) 
Damage observed within the closed savannah vegetation area; (OP) damages observed within the open 
savannah vegetation area; (SE) damage observed within the settlement area. 
 

 

 

Figure 6.7. Evaluation of the Model’s Results and Field Measurement. (a) evaluation for closed 
savannah LULC class; (b) evaluation for open savannah LULC class (c) evaluation for settlement 
LULC class; (d) the combined evaluation of a, b and c. 
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As a means of model validation, a systematic comparison of the RUSLE modelling result for soil erosion 

risk with the on-site field measurements of soil erosion damages, a satisfactory performance of the 

modelling results can be pointed out (Figure 6.6). Soil erosion risk modelling results for closed savannah 

test plot A1 and the corresponding on-site damages A2 show a strong spatial overlap and are 

significantly positively correlated (R2 = 0.69, n = 18, α < 0.05). This also applies to the mapping results 

for the open savannah (R2 = 0.71, n = 26, α < 0.05;  Figure 6.6b) and the settlement test plot (R2 = 0.58, 

n = 35, α < 0.05;  Figure 6.6c). On the whole, the model output of soil erosion risk for the entire 6 km2 

of plot areas and the on-site mapped 79 linear damage form shows a positive correlation with R2 = 0.61 

(n = 79). The analyses establish a statistical significance at p < 0.05 for the individual validations. 

6.4 Discussion 

The c. 30 % higher erosion risk predicted for the year 2020 than 1990 emphasises the RUSLE model 

results based on the prevailing driving factors in each year. These results are strongly linked to regional 

land use dynamics and changes in vegetation cover. The vegetation cover is essential in soil erosion risk 

reduction as its canopy intercepts rainfall, improves infiltration, and lowers the rainfall energy thereby 

reducing its impacts on soil erosion (Uddin et al., 2018). The spatial distribution of soil erosion risks 

presented in the soil erosion risk map (Figure. 6.4) shows that areas with very high and extreme soil 

erosion risk correspond to areas with relatively low vegetation cover and slopes with steep gradients, a 

finding that corresponds to those among others of (Pimentel & Burgess, 2013; Tian et al., 2021). This 

especially applies to urbanised areas which occur in slopy terrain such as Bamahu, Kpelisisi Guli 

Kpelisi, Mungu, Duuli and the Wa township, which can be characterised as very high to severe rate of 

exposure to soil erosion risk. During the 30 years between 1990 and 2020 the areas with very high to 

severe exposure to soil erosion risk expanded, and this was triggered by urban spread and its associated 

alteration of vegetation cover. These findings correspond to those from other African strongly urbanising 

areas such as Harare (Marondedze & Schütt, 2020). The observed significance of topographic 

characteristics (LS-factor) and cover factors as the main drivers for soil erosion risk within the Wa 

municipality is consistent with (Uddin et al., 2018). Beyond this, Karamage et al. (2017) highlight the 

relevance of the slope length for controlling soil erosion risk. 

The decrease in vegetation cover and the associated increase in soil erosion risk can be explained by the 

Wa municipality’s increasing population and associated developmental activities (Myers et al., 2013). 

Ghana’s population and housing census has estimated growth of the Wa municipality’s population by 

10 % between 2000 and 2010, counting 98,675 inhabitants in 2000 and 107,214 in 2010 (GSS, 2012). 

A subsequent population and housing census conducted in 2021 attests to population growth of 200,672 

inhabitants in Wa municipality (GSS, 2021), indicating a 6.0 % annual population growth since 2010. 

Population growth and associated settlement expansion drive infrastructure development, alteration of 

vegetation cover and environmental degradation as a whole (Acheampong & Anokye, 2013; Appiah et 

al., 2014). Between 1990 and 2020 settlement spaces expanded spatially from 7.44 km2 to 59.86 7.44 

km2 (Asempah et al., 2021). In parallel, the estimated soil loss for Wa municipality amounted to 1637 

tons in 1990 and octuplicates until 2020 to 13,794 tons in settlement areas. The settlement expansion-

based soil erosion risk can be especially attributed to the infrastructure developments that need to be 

synchronised with the demands of population growth (Acheampong & Anokye, 2013; Osumanu et al., 

2019). As the expansion of settlement areas is pronounced within the central part of Wa municipality 

where most settlements are clustered, construction of roads and other infrastructure developments are in 
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progress. This leads to the destruction of the ecosystem and exposes surface material due to earth 

movements. In consequence, urbanisation processes in Wa municipality led to the shrinking of areas 

covered by woody vegetation, a process especially due to the exploration of savannah-vegetated areas 

for agriculture and other livelihood diversification options such as unregulated small-scale gold mining 

(Antabe et al., 2017; Basommi et al., 2015). In total, an increase in settlement areas by 87.57 % between 

1990 and 2020 in the Wa municipality parallel to a 40.89 % decrease in areas covered by woody 

vegetation (Asempah et al., 2021) occurred. These changes in vegetation and land use are reflected in 

an estimated 25 % rise in the total rate of soil loss between 1990 and 2020. 

The strong control of soil erosion risk by LULC is also observed in areas under different savannah 

vegetation cover. In the years 1990 and 2020 areas under open savannah vegetation in particular 

contributed to a significant amount of soil loss due to proliferations of human activities within these 

areas, especially cultivation and grazing. Vulnerability to soil erosion corresponds to high soil erosion 

risk within the open savannah area with an escalating soil loss wherever canopy cover diminishes, 

ranging from 2- 4 t ha-1 y-1 in areas covered by trees and bushes and 16-34 t ha-1 y-1 for farmlands 

(Diwediga et al., 2018). These data affirm the consequential effects of exploiting vegetated savannah 

areas within the Wa municipality for agriculture, which renders this area to high soil erosion risk. 

Within the Wa municipality, seasonal bushfires (Plate 6.1), which generally occur during the Harmattan 

season (Yahaya & Amoah, 2013), could be an exacerbating factor to increase soil erosion risk. Several 

studies pronounce the significant influence of bushfires on the rate of soil erosion (Agbeshie et al., 2022; 

O’Brien et al., 2018). According to Agbeshie et al. (2022), the severity level of bushfires is proportional 

to the rate of soil erosion. The interception functions of the tree canopy are lost after bushfire, thus, 

increasing generation of surface run-off results and associated with soil detachment and sediment 

transport (Bento-Gonçalves & Vieira, 2020). Estimated pre-fire soil erosion rates of 69 t ha-1yr-1 are 

distinctly lower than the estimated post-fire soil erosion rates (94 t ha-1 y-1) documenting that the soil 

erosion rate shortly after the fire event increased by 36.2 % (Depountis et al., 2020). However, it has to 

be considered that bush fires not only affect canopy cover but also soil characters as it is well known 

that a rise in soil water repellency is a frequent after-effect of bush and forest fires (Kusakari et al., 

2014). However, the long-term impact of fire on soil erosion could be higher than the immediate impact: 

An assessment of soil erosion after a decade of fire events shows a third reduced impact of fire on soil 

erosion compared to the impact observed immediately after bush fire event (Depountis et al., 2020). 

The Wa municipality soils’ physical characteristics and resulting erodibility potentials cause their low 

propensity to resist erosion (Beguería et al., 2015). The dominance of sandy soil texture across Wa 

municipality and herein formed shallow savannah ochrosols and laterites are reflected in the distribution 

of soil erosion risk  (GSS, 2014). Coarse-textured soils dominate within the southwestern part of the 

studied municipality, resulting in moderate to severe soil erosion risks. Coarse-textured soils are in 

general characterised by high infiltration rates and corresponding low surface run-off generation; 

however, due to poor cohesion effects of sandy material erodibility is high (Duiker et al., 2001; P. M. 

Fox et al., 2017). Also, the settlement areas of Nakore and Chansa township and the adjourning central 

part of the Wa municipality are characterised by widely spread soils with sandy texture and were 

estimated to have high-to-severe soil erosion risk. In contrast, soils with high clay content are 

characterised by relatively poor infiltration rates and consequently affect strong surface run-off 

generation, but due to the strong cohesion of clayey soils resistance capabilities are high and erodibility 
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is low (Zhang et al., 2019). Beyond, soils with high aggregate stability resist the impact of raindrops and 

have a propensity to affect erosion (Fox et al., 2006;  Fox et al., 2017). In the North-western part of Wa 

municipality, soils with clayey texture are widely spread and frequently covered by savannah vegetation. 

These areas show low to moderate exposure to soil erosion risk owing to the combined detachment 

resistance properties of soil characters and soil coverage (GSS, 2021). 

The RUSLE model’s prediction of a higher risk of potential erosion, compared to the actual risk of soil 

erosion is attributed to a lack of vegetation cover and underlines the influence of the municipal’s climate, 

soil and topographic characteristics on erosion. The climatic influence on potential erosion risk for 1990 

and 2020 is reflected in the R-factor maps (Figure. 6.2 C1 a and C2) and the corresponding potential 

erosion risk maps (Figure SM 6.1 A and B). Thus, the spatial distribution of potential erosion risk is 

higher in the year 1990 than in 2020 owing to the higher amount and distribution of rainfall in the year 

1990 than in 2020. Increasing rainfall intensity and amount potentially increases soil detachment and 

soil erosion (Mohamadi & Kavian, 2015). Besides the climatic influence on the potential erosion risk, 

the topographic characteristics of the study area control erosion as areas with steep slopes show the 

highest severity of potential erosion risk (Pimentel & Burgess, 2013). 

The actual soil erosion risk map (Figure 6.4) shows low soil erosion risk in areas with significant 

vegetation cover, while the corresponding areas on the potential risk of erosion map (Figure SM1) show 

“high” to “severe” risk. Most of the high to severe soil erosion risks were estimated for settlement and 

bareland areas while savannah vegetated areas underlie relatively low to moderate soil erosion risk. 

According to Ullah et al. (2018), human-induced modification of vegetation cover causes a high 

exposure to erosion risk in tropical landscapes. Unfortunately, the cover factor’s function of erosion 

control is lacking in the settlement and bareland areas, consequently resulting in severe soil erosion risk 

(Marondedze & Schütt, 2020) and showing comparable exposure as the potential erosion risk. 

The RUSLE model’s predictions of soil erosion risk operate on the assumption of detachment of soil on 

the field (Seutloali et al., 2017). The assessment of the model outputs is improved when data from field 

surveys (point-like plot-based data) are used for the validation (Pistocchi et al., 2002; Seutloali et al., 

20517). The data on spatial damages, estimated from the test plots under different land use represent the 

effective amount of soil removed. These mapped damages correspond spatially with soil loss estimates 

generated using the RUSLE model. Settlement areas showed the highest spatial extent of effective soil 

erosion damage while closed and open savannah areas featured less spatial extent of eroded areas. The 

spatial extent of eroded areas in each of the test plots agreed widely with the estimated soil erosion risk 

area applying the RUSLE model. Thus, the validation of the predicted soil erosion risk as provided by 

applying the RUSLE model by alignment with the spatial extent of measured effective damages has 

been proven to be a suitable tool to affirm the reliability of a model application to a new environment. 

Statistical analyses established positive correlations between data resulting from the utilisation of the 

RUSLE model and on-site measured data. Overall, the statistics for the 79 point-based data from the 

field survey and the corresponding modelling are positively correlated and highly significant (α < 0.05). 

Though field damage estimation could not account for damages based on sheet erosion, the spatial extent 

of damages from field measurements reflected the predicted output and enhanced model evaluation and 

validation. Despite the essence of long-term field measurement as an ideal means for empirical model 

validation in soil erosion estimation, plot-based point data are suitable for effective validation and the 

general comprehension of the model performance (Lazzari et al., 2015; Seutloali et al., 2017). 
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6.5 Conclusions 

In the Savanna agroecological zones of Ghana, soil erosion threatens environmental sustainability and 

agricultural productivity. Although predicting soil erosion risk is critical for developing land 

management plans sustainably in a vulnerable landscape, research in the Savannah agroecological zones 

has paid little consideration. This study assesses soil erosion risks within the context of land use 

dynamics in Wa municipality since 1990, a fast-developing area with rapid population growth. 

Assessment of soil erosion risk and estimation of average soil erosion rates per annum is based on change 

detection of LULC in Wa municipality between 1990 and 2020 (Asempah et al., 2021). The application 

of the RUSLE model emphasises in particular settlement areas and bareland in slopy terrain as highly 

vulnerable to soil erosion. The predicted rates of potential erosion for the years 1990 and 2020 were 

distinctly higher than the actual predicted rates of soil erosion of the respective years. The comparative 

lower actual soil erosion risk rate is due to vegetation cover influence that is reflected in the actual 

erosion risk model prediction for vegetated areas. Given the high risk associated with altered vegetated 

areas caused by human disturbances, the importance of a cover factor in soil conservation is emphasised. 

Aside the alteration of vegetation covers due to settlement activities, it is highlighting that areas with a 

high soil erosion risk spatially predominantly occur in areas with steep and long slopes. 

Urbanisation processes and settlement activities that cause changes and loss of vegetation cover can be 

attributed to the estimated c. 30 % increase in soil loss between 1990 and 2020. Though the modelling 

data as well as the field survey identify the settlement areas as a high-risk zone, it can also be pointed 

out that the open savannah area contributes distinctly to the total rate of soil loss. In consequence, since 

open savannah is the most widespread land cover class its contribution to the total rate of soil loss is 

significant. In general, in Wa municipality, the vegetation cover is largely altered through the 

exploration of the area for agriculture. These coupled with bushfires render the area to high erosion risk. 

Due to the increasing population in Wa municipality, infrastructural development and agricultural 

production must synchronise with the populace’s demands.  

Unfortunately, in the quest to achieve that, the conversion of vegetated areas into settlement areas and 

agricultural areas has led to significant soil erosion and in consequence land degradation in the Wa 

municipality. Especially settlement areas and bareland have been identified as areas being highly 

exposed to soil erosion risk. Overall, the soil erosion risk within the Wa municipality is strongly linked 

to human-induced activities through land use intensification that renders the municipality vulnerable to 

erosion. Soil and water conservation strategies are important in such a situation; however, the field 

survey established that Wa municipality has no such interventions. It is therefore recommended to 

establish an integrated landscape management inclusive of soil and water conservation strategies to 

curtail the impending erosion-related menace. The findings from this study are relevant for designing 

and implementing mitigation strategies for the Wa municipality and tropical savannah landscapes at 

large. Outcomes of modelling soil erosion risk by applying the RUSLE in Wa municipality for the year 

2020 were validated on a plot-based field survey conducted in January 2021. Statistical evaluations 

document an acceptable performance of the model output data. The statistics from the corroborative 

validation increase confidence in using the model. 
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6.7 The Link of this Chapter to Other Chapters 

This chapter is the second objective that estimated soil erosion risk in a typical savannah landscape of 

Wa municipality of Ghana between 1990 and 2020. As a case study in the Black Volta River Basin, it 

estimated and evaluated the spatial distribution of soil erosion risk in relation to the physical attributes 

of the municipality. The results of the RUSLE model estimations were compared with the land cover 

dynamic and settlement expansion from the previous chapter (5) to understand the impact of changes in 

land cover and settlement expansion on the severity of soil erosion risk in the municipality. The results 

of the RUSLE model were validated with field data of measured spatial extent of soil erosion damages 

in settlement, open savannah and closed savannah areas. Overall, the chapter set the base for the third 

objective (chapter 6) that sought to estimate and evaluate soil erosion risk across various characterised 

landscape units of the Black Volta River Basin for the years 1992, 2006 and 2020. 
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CHAPTER 7: MAJOR LANDSCAPE UNITS OF THE BLACK VOLTA BASIN AND THEIR 

EXPOSURE TO SOIL EROSION RISK 

 

Asempah, M., Becker, F., Shisanya, C.A., Schütt, B. (Manuscript) Major Landscape Units of the Black 

Volta Basin and their Exposure to Soil Erosion Risk. 

To be published as an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license. (https://creativecommons.org/licenses/by/4.0/) 

Abstract 

Soil erosion within river basins spatio-temporally varies depending on the prevailing environmental 

conditions and anthropogenic impacts. Analogously, different landscape units exhibit different degrees 

of susceptibility based on their physical and biological characteristics and the level of human activities. 

By employing the RUSLE empirical model, soil erosion risk of the Black Volta River basin (138,063 

km² area) is modelled for the years 1992, 2006 and 2020 considering varying land use land cover and 

precipitation in the three-time slices. The Black Volta River basin covers several landscape units 

reaching from the Sahel zone to the Guinian-Savannah zone. In our study, we compare the varying 

susceptibility of the different landscape units to soil erosion risk. The results show an increased soil 

erosion risk in areas with strong relief and rare vegetation cover. The comparison between the time slices 

shows that in 2020 less than 10% of the basin area was exposed to “high” to “extreme” erosion risk and 

is in the range of variations of the other years. The highest soil erosion risk was predicted for the 

landscapes in the wet savannah zone.  

Keywords: Black Volta basin, RUSLE model, soil degradation, soil erosion damage 

7.1 Background 

Tropical regions derive essential societal benefits from their landscapes, including agriculture, water for 

irrigation, hydropower, and transportation (Labrière et al., 2015; Strasser et al., 2016), all promoting 

livelihood development by supporting food production and trade. Despite the potential of tropical 

landscapes, there have been concerns about their degradation by soil erosion and its associated declining 

agricultural productivity (Amisigo et al., 2008; Pimentel, 2006). Associated sediment fluxes alter water 

quality and flow dynamics (Dutta, 2016; Morehead et al., 2003). Within river basins, soil erosion 

accelerates siltation of reservoirs, streams, and channels, thereby reducing their water-holding capacity 

and disrupting ecosystem functions, with long-term impacts on the availability of a landscape’s natural 

resources (Dutta, 2016; Locatelli et al., 2011; Spalevic et al., 2020).  

Soil erosion is controlled by a complex interplay of natural and human factors (Butt et al., 2010; Mutua 

et al., 2006). The natural causes include climate and weather characteristics, topography, and soil 

physical and chemical characteristics (Tully et al., 2015; Zhao & Hou, 2019). Beyond, soil erosion is 

attributed to land use and land management (Boakye et al., 2018). Especially the Sahel Savannah zone 

of West Africa is due to annual rainfall of 500-1000 mm (Asare-Nuamah & Botchway, 2019) and strong 

population growth with associated environmental activities and competition for land usage (Zhao & 

Hou, 2019) highly exposed to soil erosion. Major regional land use activities triggering soil erosion 

include forest lumbering, bushfires (Amoako & Gambiza, 2019), urbanisation, overgrazing and crop 

production (Boakye et al., 2018).   

Soil erosion varies widely across the tropics, as evident in studies examining land cover and rainfall 

intensity (Meledje et al., 2021; Taye et al., 2023). De Silva et al. (2023) estimated a mean annual soil 
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loss rate of 2.99 t ha⁻¹ yr⁻¹ in a tropical region of Sri Lanka, where rainfall was found to be the major 

driving factor of soil erosion. Similarly, in Ethiopia’s Rift Valley, expanding cropland and bareland 

coming along with reduced vegetation cover led to high soil erosion rates (Taye et al., 2023). The Black 

Volta River basin, shared by Ghana, Côte d’Ivoire, Mali, and Burkina Faso, is a critical region for 

agriculture and hydropower generation (Akpoti et al., 2016). Its vulnerability stems from climate 

conditions with a distinct rainy season, rapid population growth, and land-use demands. In the adjoining 

Mo River Basin, Togo, soil loss increased from 23 t ha⁻¹ yr⁻¹ in 1972  to 44 t ha⁻¹ yr⁻¹ in 2014, especially 

in steep, cropland-dominated areas (Diwediga et al., 2018). In the Bia Watershed, Côte d'Ivoire, soil 

erosion rates locally peak at 1,600 t ha⁻¹ yr⁻¹, though around 85% of the area show moderate to low 

sensitivity (Meledje et al., 2021). Beyond, human activities in the drainage basin areas such as bushfires 

and sand winning from the riverbed increased river sediment yield (Amoako & Gambiza, 2019). For the 

Pra Basin, a sub-basin of the Black Volta River basin, an annual soil loss of 1.28 million tons was 

estimated, with urban and gold-mining areas facing the highest erosion risk (Boakye et al., 2020).  In 

the fast-growing Wa municipality of Ghana, urbanisation at the edges of settlements further heightens 

soil erosion threats (Asempah et al., 2021).  

Modelling soil erosion risk at the landscape offers great potential for the identification of soil erosion 

hotspots, allowing for tailored interventions such as terracing and buffer strips, which are effective soil 

conservation measures (Prasuhn et al., 2013). Advances in GIS technology coupled with erosion risk 

models have enhanced landscape-scale erosion risk predictions, making them valuable for addressing 

diverse erosion mechanisms, including sheet and rill erosion (Benavidez et al., 2018; Gharari et al., 

2011). Applying a soil erosion risk model at the landscape level for the Black Volta River basin allows 

identification of erosion risk hotspots and provides a planning basis for effective conservation practices 

planning. Among the numerous soil erosion risk models available, the Revised Universal Soil Loss 

Equation (RUSLE) is the most superior in data-scarce regions such as the Black Volta River basin, 

owing to its flexibility in assessing soil erosion risk across landscapes with varying levels of data 

availability (Benavidez et al., 2018). By applying the RUSLE soil erosion risk model, the study seeks 

to answer the following research questions: (1) has soil erosion risk changed across the major landscape 

units of the Black Volta River basin between the years 1992 to 2020? (2) What are the main factors 

influencing soil erosion risk in the Black Volta River basin? 

7.2 Study Area  

7.2.1 Study Location and Physical Characteristics 

The Black Volta River basin is located between 7.0°N and 14.3°N, and between 5.5°W and 1.5°W. The 

Black Volta is the major headwater stream of the Volta river system with its source in southern Mali. It 

flows through Burkina Faso, Côte d'Ivoire and northwestern Ghana covering a drainage system of 

approximately 138,000 km2 (Akpoti et al., 2016). The relief of the basin is slightly undulating with an 

elevation between 84 to 784 meters m a.s.l. The southern part of the basin is low-lying with characteristic 

84-300 meters m a.s.l while the northern part lies in general above 280 m a.s.l (Kwakye & Bárdossy, 

2020). Rainfall varies across the basin due to the different climatic zones it passes: In the North, the 

annual precipitation distribution is unimodal with the rainy season between May and September and 

peak in September and an annual rainfall amount of less than 500 mm. The southern part of the basin is 

characterised by bimodal annual rainfall distribution with the onset of the major season in April or May 

and a peak in June or July; the minor rainfall season spans from September to October; this southern 
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part of the basin receives mean annual rainfall between 1,000 to 1,300 mm (Piacentini et al., 2018). 

Overall, the basin passes the climatic zones of the Sahelian Zone, the Sudano-Sahelian Zone, the Sudan 

Zone and the Guinean Zone (Figure 7.1), characterised by an increasing rainfall amount from north to 

south (Mul et al., 2015).  

 

 

Figure 7.1. Map of climate zones of the Black Volta River basin (A) map of Africa displaying in shade, 
the four transboundary counties (B) Map of the four transboundary river basin countries and the 
boundary of the Block Volta River basin. (C) Map of the Black Volta River basin with the major climate 
zones (source: Lemoalle & Condappa, 2009; Mul et al., 2015). 

Daily maximum temperatures within the basin can reach 44 °C and can decrease to about 15 °C at night.  

In the Sahel Zone, the mean annual temperature rarely falls below 29 °C while the Sudano-Sahelian 

Zone experiences a mean annual temperature of about 28 to 29 °C (Bagayoko, 2016; Barry et al., 2005). 

The basin's relative humidity shows significant seasonal variation. In the southern part of the basin, 

located in Ghana’s Guinean zone, relative humidity ranges from 95–100% in the morning, decreasing 

to approximately 75% in the afternoon. In the northern part of the basin, relative humidity drops to 20–

30% during the harmattan season but rises to 70–80% during the rainy season (Barry et al., 2005). 
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Figure 7.2. Geological Map of the Black Volta River Basin Showing the Various Geological Formations 
(Data from Lemoalle and de Condappa 2009 and (Source: Mul et al. 2015).  

 

Bedrock in the Black Volta basin is mainly characterised by metamorphic and crystalline rock 

formations of the Crystalline Basement Province (Mul et al., 2015) Locally, especially in the drainage 

basin parts located in Mali and Burkina Faso, bedrock is characterised by Tertiary sandstone and 

sedimentary formations (Figure 7.2).  

7.2.2 Landscape Units  

The Black Volta River basin exhibits a considerable diversity of topographic, climatic, geologic, and 

pedologic characteristics. The spatial variations in these attributes allow to subdivide the Black Volta 

River basin into six major landscape units. To characterise the landscape units, spatial data on 

topography (slope, aspect, elevation, curvature and TWI), climate, land cover, geology and soil types 

were evaluated. The six major landscape units of the Black Volta River basin delineated are the Low 

Sahelian Plains, the Sahelian Upland, the Sahelian Highlands, the Savannah Transition, the Mixed 

Terrain Plateau and the Savannah Escarpment (Figure 7.3).  
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Figure 7.3. Land Elevation Map of the Black Volta River Basin Displayed in Digital Elevation Model 
(DEM); emphasising Cities, the Black Volta River and Landscape units. (A) Low Sahelian Plains 
landscape Unit (B) Sahelian Uplands landscape Unit (C) Sahelian Highlands Landscape Unit (D) 
Savannah Transition landscape Unit (E) Mixed Terrain Plateau landscape Unit (F) Savannah 
Escarpment landscape Unit. Data source: See Shuttle Radar Topography Mission (SRTM) DEM, 
obtained from the United States Geological Survey’s (USGS) Earth Explorer database. Retrieved from 
https://earthexplorer.usgs.gov/ on 18 April 2023).  

 

The Low Sahelian Plain landscape unit experiences rainfall in a single rainy season that starts from 

May to September, followed by a prolonged dry season from November to March. The mean annual 

rainfall remains below 600 mm, the annual temperature averages around 36 °C  (Agyekum et al., 2022; 

Oguntunde & Abiodun, 2013). The altitudes of the Low Sahelian Plains landscape unit is characterised 

by average elevations around 2734 m.a.s.l. The landscape unit is mainly flat with about 73% of the area 

characterised by slopes of 0.3 – 1.1° altogether characterised by gentle slopes with an average slope of 

0.64°. The average aspect of 170.89° highlights the eastern to southeastern direction of the slope 

orientation (Figure SL  7.2). The TWI of the Low Sahelian Plains unit averages (-0.30). Bedrock in the 

Low Sahelian Plains corresponds to Tertiary sandstones and conglomerates (Barry et al., 2005); soils 

developed in there are predominantly Ferric Luvisols and Gleyic Luvisols (FAO, 2008). 

The Sahelian Uplands have a mean elevation value of 302 m a.s.l., ranging between 256 m a.s.l and 

486 m a.s.l (Figure 7.4). Its relief is slightly undulating with about 73% of its area characterized by 

slopes of 1.1-3.0° (µ=0.71°). Aspect of the slopes is highly variable. Low values of planform and profile 

curvature (Figure SL  7.1) and average TWI values (-1.01) indicate low water retention capacity. The 

major geological formations underlying the Sahelian Uplands are crystalline formations (granite). Eutric 

Regosols, Ferric Luvisols and Gleyic Luvisols' are the predominant soil types. The vegetation cover is 

mainly open savannah characterised by grasses and short trees spread across the landscape. 
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The Sahelian Highlands are characterised by a mean elevation of 356 m a.s.l., ranging between 251 m 

a.s.l. and 772 m a.s.l. The landscape unit exhibits high topographical variability with slopes averaging 

1.3° (σ =1.89°) and locally maximum inclinations up to 52°.  Mean curvature values of 0 plan curvature 

and 0 profile curvature reflect the general ruggedness of the terrain; maximum profile curvature reaches 

1.18. The mean TWI value (-1.46) is distinctly lower than that of the Low Sahelian Plains (-0.30) and 

the Shelian Uplands (-1.01), implying a low water retaining capacity of the Sahelian Highlands. The 

Sahelian Bedrock underlying the Sahelian Highlands are Tertiary sandstones, shales, and conglomerates 

(Barry et al., 2005). The dominant soil types developed within the Sahelian Highlands are Eutric 

Regosols Ferric Luvisols and Gleyic Luvisols. Though the natural potential vegetation of the landscape 

unit is primarily classified as open savannah vegetation the area is actually widely used as cropland. 

The Savannah Transition landscape unit is characterised by two major rainy seasons with the primary 

season starting in April or May, reaching its peak in June or July, while the minor rainy season starts in 

September or October, with a peak occurring around the same time (Piacentini et al., 2018); mean annual 

precipitation totals 700 mm. The mean annual temperature in the Savannah Transition landscape unit is 

27 °C. The terrain characteristics vary highly between the flat lowlands and the rugged highlands. The 

mean elevation in the Savannah Transition landscape unit amounts to 320 m a.s.l., and maximum 

altitudes reach 568 m a.s.l. Slopes average 1.39° and locally reach maximum inclinations of 30°. The 

curvature in the Savannah Transition landscape unit averages 0 with low variability (σ=0.03), but locally 

reaching profile curvature values up to 0.56. TWI values average -1.71 (σ=2.10), ranging between 

minimum values of -6.45 and maximum values of 14.08. The Savannah Transition landscape unit is 

underlain by metamorphic bedrock including gneisses and migmatites rich in hornblende and biotite 

(GEF-UNEP, 2002). Soil types in the Savannah Transition landscape unit are dominated by Ferric 

Luvisols and Gleyic Luvisols soil types with about a quarter of the area covered by Pilnthic Luvisols. 

Potential natural vegetation corresponds to savannah vegetation, today competing with extensive 

agricultural activities. 

The Mixed Terrain Plateau landscape unit is characterised by an average elevation of 291 m a.s.l., 

ranging between 191 m a.s.l. and 580 m a.s.l. The topography is characterised by a mean slope of 1.13° 

(σ=0.90), reaching maximum inclinations of 31°. Planform curvature values (mean=0, σ= 0.03, 

range=1.16) and profile curvature values (mean=0, σ=0.03, range=1.12) show high stability. The mean 

TWI of -1.53 (σ=2.13, minimum TWI= -6.34, maximum TWI= 15.21) indicates moderate water 

retention capacity of the landscape unit. Underlying bedrock corresponds to crystalline formations such 

as granulites. Ferric Luvisols and Gleyic Luvisols are the predominant soil types in the Mixed Terrain 

Plaeau landscape unit, however, about a fifth of its area is covered by Eutric Regosols (FAO, 2008).  

The Savannah Escarpment landscape unit is characterized by rugged terrain. Though it has the lowest 

mean elevation (268 m a.s.l.) in the Black Volta River basin, its elevations range between 84 m a.s.l. and 

729 m.a.l. This extreme range of elevation range underscores the steep relief of the escarpment. Average 

slope amouts 2.04° (σ= 1.98), along the escarpment locally reaching vertical walls. The mean TWI value 

of -2.12 (σ=2.07), suggests a low water retention capacity, corresponding to the steep slopes that 

promote runoff rather than infiltration and water storage. Metamorphic bedrock such as gneisses and 

migmatites rich in hornblende and biotite, granulites, and schists crop out in this landscape unit (GEF-

UNEP, 2002). The vegetation cover within the Savannah Escarpment landscape unit is dense with a 

mosaic of trees, grasses and shrubs. 

Overall, the major landscape units of the Black Volta basin differ significantly in terms of elevation, 

slope, aspect, curvature, and topographic wetness index. The Low Sahelian Plains is identified as the 

flattest unit, while the Sahelian Highlands and Savannah Escarpment are characterized by more rugged 

terrain. The Savannah Transition and Mixed Terrain Plateau landscape units are considered transitional 

areas with moderate slopes and varying extent of topographical attributes. Ferric Luvisols and Gleyic 

Luvisols are the predominating soil types developed across all six major landscape units of the Black 

Volta River basin. All over the Black Volta River basin open savannah vegetation in competition with 

cropland characterizes vegetation cover.  
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Figure 7.4. Graphs of the Distributions of Topographic Features in the Black Volta River basin’s major 

landscape units. 
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7.3 Materials and Methods 

7.3.1 RUSLE Model Parametrisation 

The RUSLE is a flexible computerised model widely used in GIS applications to estimate soil erosion 

risk (Almouctar et al., 2021; Thakuriah, 2023). Its global acceptance and utilisation for soil erosion risk 

estimation are given due to its adaptability, efficiency in terms of time and cost and practicality in 

regions where data is limited (Gelagay & Minale, 2016; Zerihun et al., 2018). The model’s input 

parameters include rainfall erosivity factor (R), soil erodibility factor (K), slope length and steepness 

factor (LS), land cover and management factor (C) and the support practice factor (P) (Mhiret et al., 

2019; Renard et al., 1997). These input parameters (Figure 7.5) are linked in the RUSLE equation 

(Renard et al., 1997):   

ASE [t ha−1 yr−1] = R × K × LS × C × P        (7.1) 

where:  

the average soil erosion rate per year (t ha−1 yr−1) is denoted by ASE; rainfall erosivity factor also known 

as the R-factor is represented as R and measures in MJ mm ha−1 h−1 yr−1; soil erodibility factor (K-factor) 

is connoted with K and measured in t h MJ−1 mm−1; LS represents the dimensionless slope length and 

steepness factor (LS-factor); C and P are cover management factor (C-factor) and conservation support 

practice factor (P-factor). The cover factor is represented by weighted values in the range of 0 to 1.  

 

Figure 7.5. Flow Chart Diagram of the Input Requirement for the Soil Erosion Risk Modelling Using 
RUSLE Model. 

We assessed and processed data from various sources to generate each of the model’s input parameters. 

The rainfall data was acquired from the database of the Climatic Research Uni (CRU) of the University 

of East Anglia (https://crudata.uea.ac.uk/cru/data/hrg/). The CRU gridded data time series that spans 

from the year 1901 to 2022 (0.5°x 0.5° spatial resolution; monthly temporal resolution). The 250 x 250 

m resolution soil grid data from the International Soil Reference Information Centre (ISRIC) database 

(https://soilgrids.org) was used in generating the K-factor. The LS factor was generated from the SRTM 

DEM; due to the large area of the Black Volta basin, it was feasible and applicable to work with a 90m 

x 90m SRTM DEM. The C-factor input map for the years 1992, 2006 and 2020 was generated from the 

annual 300 x 300 m resolution historical global land cover data obtained from the Copernicus database 

(https://cds.climate.copernicus.eu/) (Buchhorn et al., 2020); these land cover datasets provide global 
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maps with defined land use classes based on the Land Cover Classification System (LCCS) designed by 

the United Nations Food and Agriculture Organisation (UN FAO). Each of the input parameters was 

generated separately in raster data format for the onward estimation of soil erosion risk. By employing 

the nearest neighbour techniques, the raster input parameter of all the factors was resampled to a 

common resolution of 90 × 90 m resolution and the same projection to ensure model accuracy. 

Mathematical linking of the input parameters took place using ArcGIS in association with QGIS (Atoma 

et al., 2020; Ganasri & Ramesh, 2016).  

The Soil Erodibility factor (K) is a quantitative measure of soil’s susceptibility to erosion owing to its 

inherent properties of the soil (Beguería et al., 2015). The computation of the K-factor was carried out 

using raster-based silt, clay, sand and organic carbon contents obtained from the ISRIC database 

(https://soilgrids.org). We used a trapezoidal rule approach (equation 7.2) to compute the weighted 

averages of each of the soil physical properties that were accessed in different depths (0, 5, 15 and 30 

cm b.g.l.)  (Hengl et al., 2017): 

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≈

1

(𝑏−𝑎)

1

2
∑ (𝑋𝐾 + 1 − 𝑋𝐾)(𝑓(𝑋𝐾) + 𝑓(𝑋𝐾 + 1))

𝑁−1

𝐾=1
   (7.2) 

where:  

N connotes the number of depths soil properties; Xk represents the kth depth; f(Xk) is the estimated 

value of the target variable (i.e., soil property) at depth Xk. 

The outputs of the weighted averages of the soil's physical properties complemented the onward 

computation of the K-factor using equation (7.3) following (Sharpley & Williams, 1990): 

  

𝑘 = 0.1317(0.2 + 0.3 ∗ 𝑒{−0.0256𝑆𝐴𝑁(1−
𝑆𝐼𝐿

100
)}∗ 

(
𝑆𝐼𝐿

𝐶𝐿𝐴+𝑆𝐼𝐿
)0.3)*{1-

0.25∗𝑇𝑂𝐶

𝑇𝑂𝐶+𝑒(3.72−2.95∗𝑇𝑂𝐶)}*{1-
0.7∗𝑆𝑁1

𝑆𝑁1+ 𝑒(22.9∗𝑆𝑁1−5.51)} (7.3) 

where:   

SAN connotes the amount of sand components in mass-%, SIL connotes silt components in mass-%, 

CLA connotes clay components in mass-% and TOC connotes the total organic carbon contents of the 

soil (mass-%). The variable S N1 connotes the sand-index and is calculates as S N1=1-SAN/100.  

The Rainfall erosivity factor (R) presents the propensity of rainfall to initiate soil erosion (Farhan & 

Nawaiseh, 2015; Stocking & Elwell, 1976). The rain drops size and distribution, amount and intensity 

of rainfall coupled with terminal velocity are determining factors of total erosivity (Meshesha et al., 

2014; Thomas et al., 2018). In this study, we applied equation 7.4 (Adongo et al., 2019; Endalamaw et 

al., 2021) to derive the rainfall erosivity factor from annual rainfall in tropical regions: 

R= 0.562 (Ar) - 8.12      (7.4) 

where:  

R denotes the rainfall erosivity factor (MJ mm ha-1 h-1 yr-1) and (Ar) denotes long-term mean annual 

rainfall (in MJ mm ha-1 h-1 yr-1).  

The long-term mean annual rainfall data is required for the approximation of the rainfall erosivity factor 

(equation 7.4) and was generated from the spatially differentiated CRU rainfall data. Monthly rainfall 

data that was available in the NETCDF file format were processed in ArcGIS. Data for each year 

comprise twelve bands of monthly rainfall; these bands were stacked using the composite tool in ArcGIS 
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and summed to obtain an annual rainfall raster for each year. The long-term averages were obtained 

using the raster statistics function of ArcGIS. The raster images of 5° x 5° tiles resolution were converted 

into points and the inverse distance weighted (IDW) technique was employed to generate a raster of 90 

x 90 m spatial resolution in harmony with the other input parameters. The output raster of the 

interpolation was extracted to the extent of the study area and subsequently applied in equation (7.4) to 

compute the erosivity factor for each of the time slices. The decadal mean annual rainfall data of the 

three periods 1983-1992, 1997-2006 and 2011-2020 were used for the computation of rainfall erosivity 

factor for the years 1992, 2006 and 2020.  

Slope Length and Steepness Factor (LS). LS factor is the representation of the effect of slope length 

(L) and steepness (S) on soil erosion in the RUSLE model. It presents the influence of topography on 

soil erosion based on the combined impact of slope steepness (S) and length of slope (L) (S. Schmidt et 

al., 2019). As established by Wischmeier & Smith, (1978) the L factor is the ratio of erosion from 

horizontal slope length to the corresponding loss from the slope length of a unit plot (22.13 m). The LS 

factor was generated from the 90 x 90 m resolution SRTM DEM based on the equation proposed by 

Moore & Burch (1986) (equation 7.5). The 90m x 90m SRTM DEM was obtained from the database of 

the Consortium of International Agricultural Research Centers’ Consortium for spatial-information 

(CGIAR-CSI) (https://bigdata.cgiar.org/srtm-90m-digital-elevation-database/) in mosaiced 5° x 5° tiles. 

The LS factor incorporates parameters related to slope length (A and m) and slope steepness (θ and n). 

Equation 7.5 allows the quantification of the combined effect of these factors on soil erosion, 

considering both the length and steepness of slopes in the landscape.  

𝐿𝑆 = (
𝐴

22.13
)m * (

sin 𝜃

0.0896
)n      (7.5) 

where: 

A =Accumulated up-slope contribution catchment region for a specific cell (m2/m); 𝜃 is slope steepness 

angle (°); m is a variable slope length exponent; n is a slope steepness exponent. 

The Land Cover and Management Factor (C) is a significant factor in erosion risk modelling as the 

landscape’s susceptibility to soil erosion is greatly dependent on the level of vegetation cover. The 

presence of vegetation cover enhances surface roughness thereby lowering the flow velocity of rainwater 

(Mengistu et al., 2015; Wischmeier & Smith, 1978; Wynants et al., 2018). The C-factor corresponds to 

a numerical value in a range of 0 to 1. Areas fully protected by vegetative cover are designated with a 

value of 0, while a complete bare land is designated with a value of 1. This implies that the lower the C-

factor value the better erosion prevention capability and vice versa (Mengistu et al., 2015). The time 

series of global land cover data for the years 1992, 2006 and 2020 were obtained from the Copernicus 

database (Buchhorn et al., 2020) and were used to compute the C-factor for the Black Volta River basin. 

The land cover classes appearing in the study area include cropland, closed savannah, open savannah, 

grassland, bareland, urban area, vegetated wetland and water bodies. The C-factor values for these 

different land cover classes are based on a weighted average of soil loss ratio calculated from a reference 

plot where the C-factor for a bareland is set at 1 (Renard et al., 1997). The weighted values for the C-

factors for the land cover classes were evaluated from literature (Girma & Gebre, 2020; Kusimi et al., 

2015; Watene et al., 2021). The C-factor was generated by assigning the established respective weighted 

values (Table 7.1) designed for each of the defined land cover classes. A C-factor value of 0.2 is assigned 

to the cropland land cover class; open savannah land cover offers better erosion resistance than 

grassland, thus, a better C-factor value for open savannah is set at 0.002 and the C-factor value for 
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grassland is set at 0.05. Close savannah land cover has a relatively high protective cover and thus C-

factor value was set at 0.001. For settlement areas, the C-factor value was set at 0.8 while completely 

bare land has a C-factor value of 1. The vegetated wetland area was assigned a C-factor value of 0.21.  

The Support practice factor (P) expresses the influence of land surface management on runoff and soil 

erosion (Kebede et al., 2021). The determination of the P-factor is based on prevailing land management 

techniques encompassing terracing, strip cropping and contour ploughing (Renard et al., 1997). The P-

factor values are in the range of 0 to 1, with 0 representing the most effectively implemented 

conservation practices, while 1 signifies the absence of any support practices. Owing to the widespread 

lack of support management practices in the Black Volta basin a P-factor of 1 was uniformly applied. 

7.3.2 Soil Erosion Estimation Based on Different Land Cover and Rainfall Erosivity Factors  

By employing the RUSLE model soil erosion risk for the years 1992, 2006 and 2020 was estimated. To 

evaluate the influences of the R-factor and the C-factor on soil erosion risk four scenarios were set up 

by replacing land cover and rainfall erosivity data of the initial models for the years 1992, 2006 and 

2020 while all other input parameters remained constant:   

In scenario 1 all the input parameters for the 1992 RUSLE model application were held constant except 

for the R-factor values which were substituted by the 2006 R-factor values to assess the effect of the R-

factor on the results of the initial model that used the 1992 R-factor values. In scenario 2 the C-factor 

input parameter for the year 1992 RUSLE model application was substituted by the 2006 C-factor. 

Correspondingly, in scenario 3 the R-factor values of the 2006 RUSLE model application were 

substituted by the 2020 R-factor values. In scenario 4 the C-factor 2006 RUSLE model application was 

substituted by the 2020 C-factor values. For each scenario, total soil loss (t ha-1y-1) was calculated and 

subsequently, changes in soil loss were estimated between the initial models and their respective models 

when the C and R factors were substituted. 

7.4 Results 

7.4.1 RUSLE Model Input Parameters 

Soil Erodibility factor (K). The estimated K-factor values for the Black Volta River basin range from 

less than 0.015 to 0.047 t ha MJ−1 mm−1 (mean = 0.030; σ.=0.005) (Figure SL 7.3A). Low mean values 

were estimated for the Low Sahelian Plains landscape unit; 0.024 t h MJ−1 mm−1 (σ=0.003) and Sahelian 

Uplands landscape unit; 0.025 t h MJ−1 mm−1, (σ=0.003) which are located in the northern part of the 

basin. The Sahelian Highlands landscape unit has a mean K-factor value of 0.031 t ha MJ−1 mm−1, 

(σ=0.004) with patches of values estimated with a range of 0.026 t ha MJ−1 mm−1 (Table 7.1). Similarly, 

the estimated mean values of 0.031 t ha MJ−1 mm−1, (σ=0.004) for the Mixed Terrain Plateau landscape 

unit and 0.032 t ha MJ−1 mm−1 (σ=0.004) for the Savannah Escarpment landscape unit characterised the 

central part within Burkina Faso toward the south where the Ghana part is located (Figure 7. SL 3A). 

Slope Length and Steepness Factor (LS). The LS-factor value for the Black Volta River Basin reflects 

the slightly undulating topographic characteristics of the basin. The estimated LS-factor for the basin 

ranges from 0-26. Over 90% of the basin has a low LS factor value of less than 3 (Figure SL 7.3 B). 

Conspicuously, Steep slopes and corresponding LS-factor values above 7 are predominantly in the 

Sahelian Highlands, Low Sahelian Plains and Savannah Escarpment landscape units. 
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Rainfall erosivity factor (R). For each of the time slices (1992, 2006, 2002), the R-factor values show a 

north-south gradient with the highest values in the southernmost part of the basin and lowest values in the 

northmost part (Figure 7.6; SL 7.4). The spatial distribution of the R-factor for the year 1992 spans from 

less than 250 MJ mm ha-1 h-1 yr-1 in the northern part of the basin to 650 MJ mm ha-1 h-1 yr-1 in the southern 

part of the basin with a mean value of 338.0 MJ mm ha-1 h-1 yr-1 (σ=95.6). The landscape units located in 

the north, particularly, the Low Sahelian Plains and the Sahelian Uplands show lower mean R-factor values 

than other landscape units. The change across all landscape units shows an increase in mean R-factor value 

from the year 1992 to 2006, followed by a decrease in the year 2020 (Figure SL 7.4). The Savannah 

Escarpment landscape unit shows a mean R-factor value of 485.06 MJ mm ha-1 h-1yr-1 (σ=113.5) in 1992 

that increases to 617.1 MJ mm ha-1 h-1yr-1 (σ=11.3) in the year 2006 and in the year 2020 again declines to 

454.30 MJ mm ha-1 h-1yr-1 (σ= 55.3). Parallel variations were observed for the other landscape units.  

 
Figure 7.6. The Mean Rainfall Erosivity in the Six Major Landscape Units of the Black Volta River 
Basin in the Years 1992, 2006 And 2020. 

The Savannah Transition and the Escarpment unit landscape units that stretch from the central to the 

southern part of the basin show a comparatively higher mean rainfall erosivity in all its three-time slices 

while the highest was in the year 2006 (Table 7.1). The inter-annual difference of the R-factor is in 

consonant with the long-term annual rainfall for the three-time step. 

Land Cover Factor (C). The basin experienced a significant change in land cover and due to this, C-

factor values underlie strong changes (Table SL 7.1, 7.2 and 7.3). The land cover maps and graphs of 

the Black Volta River basin for the years 1992, 2006 and 2020 (Figure SL 7.5 and 7.6) show that 

cropland is concentrated in the northern part of the basin within the Sahelian Highlands, Low Sahelian 

Plains and Sahelian Uplands landscape unit. Dominant land cover types in the basin are grassland and 

open savannah vegetation.  In the year 1992 about 29.8% of the drainage basin area was covered by 

grassland and since then slightly decreased to a coverage of 24.1% in 2006 and 22.6% in 2020. Open 

savannah vegetation covered about 23.8% of the drainage basin area in the year 1992 and until 2006 
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spread to an extent of 25.7%, since then remaining widely stable (2020: 25.9%) (Table 7.2 and Figure 

7.7).  

Table 7.1. Summarizing Statistics of RUSLE Input Parameters Across the Six Major Landscape Units 
of the Back Volta River Basin. 

Erodibility K-factor [t ha MJ−1 mm−1] Mean 

Standard 

Deviation Range 

Low Sahelian Plains 0.02 0.003 0.02 

Sahelian Uplands 0.02 0.003 0.02 

Sahelian Highlands 0.03 0.004 0.03 

Savannah Transition 0.03 0.003 0.02 

Mixed Terrain Plateau 0.03 0.004 0.02 

Escarpment unit 0.03 0.004 0.02 

LS-factor    
Low Sahelian Plains 0.6 3.04 34.1 

Sahelian Uplands 0.4 1.02 60.7 

Sahelian Highlands 1.2 5.10 84.5 

Savannah Transition 1.0 2.70 42.3 

Mixed Terrain Plateau 1.0 6.90 109.6 

Escarpment unit 2.2 12.28 216.8 

Erosivity factor (1992)- [MJ mm ha-1 h-1yr -1]    
Low Sahelian Plains 217.5 39.41 156.2 

Sahelian Uplands 214.8 25.66 119.7 

Sahelian Highlands 320.5 61.54 281.7 

Savannah Transition 393.3 38.36 182.2 

Mixed Terrain Plateau 357.2 68.05 234.1 

Escarpment unit 485.1 13.52 59.9 

Erosivity factor (2006) [MJ mm ha-1 h-1yr -1]    
Low Sahelian Plains 334.4 50.89 205.0 

Sahelian Uplands 332.4 27.34 131.3 

Sahelian Highlands 477.7 85.88 377.1 

Savannah Transition 554.3 40.51 211.2 

Mixed Terrain Plateau 501.6 76.57 259.2 

Escarpment unit 617.1 11.30 47.6 

Erosivity factor (2020) [MJ mm ha-1 h-1yr -1]    
Low Sahelian Plains 310.0 49.00 194.1 

Sahelian Uplands 306.6 26.61 140.0 

Sahelian Highlands 431.0 72.18 329.0 

Savannah Transition 491.0 26.84 152.6 

Mixed Terrain Plateau 454.3 55.30 211.0 

Svannah Escarpment 526.4 8.43 51.3 

 

The land cover classification indicates an expansion of settlement areas of less than 0.05% in 1992 to 0.01% 

in 2006 and spread abruptly up to 0.2% in 2020. These data correspond to a relative increase of settled area 

+91% from 1992 to 2006 and of +146% from 2006 to 2020. Bareland areas spread slightly by +10% from 

1992 to 2006 and abruptly +83% between 2006 to 2020. Cropland areas spread all over the Black Volta 

basin between 1992 to 2006 by 8%. In the Mixed Terrain Plateau landscape unit during the same period, 

between 1992 and 2006, cropland expanded by +61%; in contrast, simultaneously in the Low Sahelian 

Plains landscape unit cropland areas halved (-50%). In contrast, the Low Sahelian Plains landscape unit 

doubled between 2006 to 2020 (+99%), Stron spread of cropland areas was also observed for the Savannah 

Transition landscape unit (+75%). The area covered by water bodies remained stable between 1992 to 2006 

but doubled between 2006 and 2020 (+100%). This tendency is extremely pronounced in the Savannah 
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Escarpment landscape unit where between 2006 to 2020 the areas covered by water bodies spread by 

+1342% due to the construction of the Bui power dam that was commissioned in 2013. 

Table 7.2. Spatial Extent of LULC Classes and their Corresponding C-Factor Values (database: 

 https://cds.climate.copernicus.eu/).  

Area Cover 

 1992 2006 2020  

LULC Classes 

Area 

(km2) % 

Area 

(km2) % 

Area 

(km2) % 

Weighted C-

factor value 

Cropland 63,397.6 45.9 68,376.4 49.5 68,216.5 49.4 0.2 

Grassland 41,086.7 29.8 33,319.1 24.1 31,259.0 22.6 0.05 

Open Savannah 32,804.6 23.8 35,459.6 25.7 35,775.2 25.9 0.002 

Closed Savannah 280.2 0.2 396.2 0.3 1,844.0 1.3 0.001 

Vegetated Wetland 135.5 0.1 121.4 0.1 63.7 <0.05 0.21 

Urban areas 62.0 <0.05 118.6 0.1 291.4 0.2 0.8 

Bareland 12.4 <0.05 13.6 <0.05 24.9 <0.05 1.0 

Water bodies 283.9 0.2 258.0 0.2 588.3 0.4 0.00 

 138,062.9 100.0 138,062.9 100.0 138,062.9 100.0  

 

 
Figure 7.7. Frequencies Distribution of  Land Cover Across the Black Volta Basin for the years 1992, 
2006 and 2020 (database: https://cds.climate.copernicus.eu/).  

7.4.2 Estimated  Soil Erosion Risk  

For the three steps examined soil erosion risk in more than three-fourth of the Black Volta basin was 

exposed to a low soil erosion risk (Table 7.3).  The drainage basin area exposed to moderate soil erosion 

risk in the basin fluctuated between 11.3% and 13.1% (Table 7.3). The spatial distribution of the soil 

erosion risk classes (Figure 7.8) estimated as “high”, “very high” and “extreme” exposure amounted at 

large around 10% of the Black Volta basin, being subject to slight temporal variations. The six landscape 

units differ in exposure to soil erosion risks and show different temporal variations considering the 

selected time slices of 1992, 2006 and 2020. In the Low Sahelian Plains and Sahelian Uplands landscape 

units consistently more than 90% of the area is exposed to the low soil erosion risk (Table 7.4).  

In contrast, the Savannah Transition landscape unit area exposed to low erosion risk remained during 

all three-time slices below 70%. In the Savannah Escarpment landscape unit areas exposed to high to 
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extreme soil erosion risk amounted to 15.3% in 1992 and until 2020 slightly declined to 12.2%. Also, 

the Savannah Transition landscape unit showed relatively widely spread areas of high to extreme soil 

erosion risk varying between 11-13.5% for the three-time steps. 

Table 7.3. Estimated soil loss by soil erosion ASE and Soil Erosion Risk by Different Severity Classes.  

  

1992: Soil erosion 
ASE 

risk by grade 

2006: Soil erosion 
ASE 

risk by grade 

2020: Soil erosion 
ASE 

risk by grade 

Soil erosion 
risk 

Soil 
Erosion 

(t ha-1y-1) 
Area 
(km2) 

Area 
(%) 

Area 
(km2) 

Area 
(%) 

Area 
(km2) 

Area 
(%) 

 Low Erosion 0-2 

111,019.
7 

80.4 
104,373.

5 75.6 
107,950.

2 78.2 

 Moderate 
erosion 3-5 

15,650.2 11.3 18,113.0 13.1 16,917.3 12.3 

 High erosion 6-10 
6,331.0 4.6 8,558.9 6.2 7,275.3 5.3 

 Very high 
erosion  11-15 

2,559.3 1.9 3,360.8 2.4 2,868.0 2.1 

 Extreme 
erosion >15 

2,502.6 1.8 3,656.6 2.6 3,052.1 2.2 

  

138,062.
9 

100.0 
138,062.

9 100.0 
138,062.

9 100.0 

 

 

 
Figure 7.8. Spatial Distribution of Soil Erosion Risk in the Black Volta River Basin for the years 1992, 
2006 and 2020 for major landscape units. A:  Low Sahelian Plains, B: Sahelian Uplands, C: Sahelian 
Highlands, D: Savannah Transition, E: Mixed Terrain Plateau and F: Savannah Escarpment). 
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Table 7.4. Estimated Soil Erosion Risk by Different Severity Classes for the six  major landscape units of the Black Volta River basin for the years 1992, 2006 and 2020 

 

Low Sahelian 

Plains 

Sahelian 

Uplands 

Sahelian 

Highlands 

Savannah 

Transition 

Mixed Terrain 

Plateau 

Savannah 

Escarpment 

Soil erosion risk 

Soil 

Erosion 

(t ha-1y-1) 

Area 

(km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) % Area (km2) % 

1992 

 Low Erosion 0-2 22,846 93.3 8,034 93.9 17,243 77.2 18,517 69.8 33,619 80.3 10,761 75.1 

Moderate erosion 2-5 890 3.6 270 3.2 3,040 13.6 4,979 18.8 5,091 12.2 1,381 9.6 

 High erosion 5-10 338 1.4 81 0.9 1,108 5.0 1,799 6.8 1,909 4.6 1,097 7.7 

 Very high erosion  10-15 24 1.0 150 1.8 460 2.1 593 2.2 598 1.4 518 3.6 

 Extreme erosion >15 165 0.7 18 0.2 492 2.2 633 2.4 626 1.5 568 4.0 

  24,481 100.0 8,552 100.0 22,341 100.0 26,523 100.0 41,843 100.0 14,324 100.0 

2006 

 Low Erosion 0-2 21,985 89.8 7,711 90.2 15,454 69.2 16,521 62.3 31,397 75.0 11,306 78.9 

Moderate erosion 2-5 1,381 5.6 488 5.7 3,808 17.0 5,546 20.9 5,949 14.2 942 6.6 

 High erosion 5-10 521 2.1 142 1.7 1,644 7.4 2,637 9.9 2,696 6.4 918 6.4 

 Very high erosion  10-15 306 1.2 169 2.0 631 2.8 846 3.2 865 2.1 544 3.8 

 Extreme erosion >15 289. 1.2 41 0.5 805 3.6 971 3.7 937 2.2 614 4.3 

  24,481 100.0 8,552 100.0 22,342 100.0 26,522 100.0 41,843 100.0 14,324 100.0 

2020 

 Low Erosion 0-2 22,166 90.5 7,776 90.9 16,100 72.1 17,794 67.1 32,456 77.6 11,659 81.4 

 Moderate erosion 2-5 1,276 5.2 440 5.1 3,551 15.9 5,161 19.5 5,581 13.3 909 6.3 

 High erosion 5-10 482 2.0 132 1.5 1,428 6.4 2,133 8.0 2,272 5.4 828 5.8 

 Very high erosion  10-15 293 1.2 167 2.0 559 2.5 682 2.6 717 1.7 451 3.1 

 Extreme erosion >15 264 1.1 38 0.4 704 3.2 752. 2.8 817 2.0 477 3.3 

  24,481 100.0 8,552 100.0 22,342 100.0 26,522 100.0 41,843 100.0 14,324 100.0 
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7.4.3 Estimated Soil Losses Based on Different Land Cover and Rainfall Erosivity Factors  

Considering the overall Black Volta basin estimated soil loss in 2006 amounted to c. 21,538,580 tons 

was distinctly higher than in 2020 (c. 19,191,212 tons) (Table 6) and 1992 (c. 15,746,453 tons) (Table 

7.5). Across all six major landscape units in the Black Volta basin between the years 1992 and 2006 the 

soil loss increased; relative increase in the three northern landscape units, the Sahelian Highlands, the 

Low Sahelian Plains and the Sahelian Uplands, varied between 45-55% (Table 7.5), while in the 

landscape units located in the southern part of the Black Volta basin, the Savannah Escarpment, the 

Savannah Transition and the Mixed Terrain Plateau, during the same period estimated soil loss increased 

by landscape unit it only increased by c. 25-36% (Table 7.5). In contrast, in 2020 the estimated soil loss 

across the Black Volta basin had decreased compared to 2006, reaching a maximum decrease in the 

Savannah Transition landscape unit by -17.5% and a minimum decrease of -5.4% in the Savannah 

Escarpment landscape unit. 

Assessing the effect of differing land cover and rainfall on soil erosion risk, scenarios 1-4 were set up. 

In scenario 1 soil erosion risk of the Black Volta basin applying 1992 land cover data and 2006 rainfall 

erosivity data for the RUSLE model. Differences of resulting soil loss estimates to those of the data 

achieved by applying 1992 land cover and rainfall erosivity data are all over the Black Volta basin 

positive, documenting the controlling effect of rainfall erosivity on soil loss (Table 7.5). This observation 

is confirmed by soil loss data generated by applying scenario 3 where 2006 land cover data and 2020 

rainfall erosivity data were applied. Corresponding to the comparatively low rainfall erosivity data 

(Figure 7.6 and SL 7.4) resulting soil loss estimates to those of the data achieved by applying 2006 land 

cover and rainfall erosivity data are negative for all the landscape units of the Black Volta basin (Table 

7.6). Likewise, the controlling effect of land cover changes was assessed by applying 1992 rainfall 

erosivity data and 2006 land cover data for the RUSLE model (scenario 2); additionally, the same 

procedure was conducted by applying 2006 rainfall erosivity data and 2020 land cover data. The 

resulting soil loss data were widely stable (Table 7.5), indicating a general minor effect of land use 

change on soil erosion processes. 
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Table 7.5. Estimates of soil Loss for the years 1992 and 2006 and the relative changes under different scenarios 

  Base Model Scenario1  

(1992 model varying R-factor) 

Scenario 2  

(1992 model varying C-factor) 

  1992 2006 Δ (2006-1992) Δ 1992_R06 Δ (1992_R061992) Δ 1992_C06 Δ (1992_C06-1992) Δ 

Landscape Unit Area(ha) Soil loss (tons) 

Soil loss 

(tons) 

Soil loss change 

(tons) % 

Soil loss 

(tons) 

Soil loss change 

(tons) % 

Soil loss 

(tons) 

Soil loss change 

(tons) % 

Low Sahelian Plains 2,448,090 1,082,795 1,673,357 590,562 54.5 1,653,981 571,186 52.8 1,095,622 12,827 1.2 

Sahelian Uplands 855,210 270,147 413,458 143,312 53.0 417,186 147,039 54.4 267,705 -2,442 -0.9 

Sahelian Highlands 2,234,170 4,615,605 6,715,717 2,100,112 45.5 6,910,352 2,294,747 49.7 4,483,497 -132,108 -2.9 

Savannah Transition 2,652,150 3,322,218 4,504,345 1,182,127 35.6 4,668,699 1,346,481 40.5 3,206,906 -115,312 -3.5 

Mixed Terrain Plateau 4,184,300 3,897,381 5,046,151 1,148,770 29.5 5,449,576 1,552,195 39.8 3,798,521 -98,860 -2.5 

Savannah Escarpment 1,432,380 2,558,307 3,185,552 627,245 24.5 3,879,971 1,321,664 51.7 2,505,718 -52,589 -2.1 

 Total 13,806,300 15,746,453 21,538,580 5,792,128 26.9 22,979,765 7,233,312 45.9 15,357,969 -388,484 -2.5 

 

Table 7.6. Estimates of soil loss for the years 2006 and 2020 and the relative changes under different scenarios 

  Base Model Scenario 3  

(2006 model varying R-factor) 

Scenario 4  

(2006 model varying C-factor) 

  2006 2020 Δ (2020-2006) Δ 2006_R20 Δ (2006_R20-2006) Δ 2006_C20 Δ (2006_C20_2006) Δ 

Landscape Unit Area(ha) Soil loss (tons) 

Soil loss 

(tons) 

Soil loss change 

(ton) % 

Soil loss 

(tons) 

Soil loss change 

(tons) % 

Soil loss 

(tons) 

Soil loss change 

(tons) % 

Low Sahelian Plains 2,448,090 1,673,357 1,558,002 -115,355 -6.9 1,553,480 -119,877 -7.2 1,678,191 4,834 0.3 

Sahelian Uplands 855,210 413,458 389,950 -23,508 -5.7 381,425 -32,033 -7.7 422,713 9,255 2.2 

Sahelian Highlands 2,234,170 6,715,717 6,018,182 -697,535 -10.4 6,055,114 -660,603 -10 6,679,497 -36,220 -0.5 

Savannah Transition 2,652,150 4,504,345 3,717,792 -786,553 -17.5 3,982,143 -522,202 -11.6 4,405,758 -98,587 -2.2 

Mixed Terrain Plateau 4,184,300 5,046,151 4,494,970 -551,181 -10.9 4,557,854 -488,297 -9.7 4,973,011 -73,140 -1.4 

Savannah Escarpment 1,432,380 3,185,552 3,012,316 -173,236 -5.4 3,416,075 230,523 7.2 3,143,817 -41,735 -1.3 

 Total 13,806,300 21,538,580 19,191,212 -2,347,368 -10.9 19,946,091 -1,592,489 -7.4 21,302,987 -235,593 -1.1 
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7.5 Discussion 

Soil erosion risk across the major landscape units of the Black Volta River basin is primarily controlled 

by topographical characters and rainfall erosivity. One of the important landscape attributes that 

influences soil erosion risk is slope. Across the northern part of the Black Volta basin, the Sahelian 

Highlands landscape unit is characterised by a high average elevation of 356 m a.s.l. and is particularly 

characterised by relatively steep terrain and is exposed to high annual rainfall. These conditions promote 

substantial runoff generation and high flow velocities (Ao et al., 2024), leading to severe soil erosion 

risk. Similarly, the Savannah Escarpment landscape unit, with long and steep slopes in the southern part 

of the Black Volta River basin shows extended areas exposed to severe soil erosion risks corresponding 

to the long steep slopes. This relationship is in consonant with Ayele et al. (2021) who estimated 

increased soil erosion risk in hilly to mountainous landscapes with steep slopes, particularly in areas 

with fragmented landscapes such as typical for Sahelian Highlands and Savannah Escarpment landscape 

units.  

Conversely, soil erosion risk in the Low Sahelian Plains and Sahelian Uplands landscape units, 

characterised by flat terrains and gentle slopes, is consistently predicted as low for the three time slices 

considered (the years 1992, 2006 and 2020). Faint relief makes them less prone to runoff generation and 

high flow velocities and, consequently, only few areas are exposed to severe soil erosion risk. As 

emphasised by Montgomery, (2007), steep slopes exacerbate erosion, leading to reduced soil fertility 

and posing significant threats to agricultural productivity. In effect, the Low Sahelian Plains and 

Sahelian Uplands are well-suited for agriculture due to their favourable terrain conditions that promote 

enhanced infiltration and reduced soil erosion. The findings are supported by Ziadat & Taimeh (2013) 

who affirm the significance of steep slopes to high erosion risk due to the increased flow velocity of 

runoff. Additionally, the Savannah Transition landscape unit, with a considerable and moderate slope 

shows that erosion risk can be exacerbated under extensive land use and low vegetation cover conditions. 

The aspect of slope across the landscape units suggests minor differences in the exposure to sunlight. 

The variation spans from 171° in the Low Sahelian Plains to 185° in the Sahelian Uplands. The south-

facing slopes of the Sahelian Uplands are exposed to faster desiccation than especially the north and 

east-facing slopes and, thus, are generally drier, leading due to the phenomenon of water repellency to 

reduced infiltration (Ribolzi et al., 2006) and in consequence enhanced soil erosion risk. This is 

particularly evident in areas where vegetation is sparse, as the lack of vegetation cover makes the soil 

more susceptible to soil erosion due to its protecting and stabilizing functions (Akpoti et al., 2016). 

Though plan and profile curvature across all landscape units exhibit low average values corresponding 

to the extended arching of the landforms, the Savannah Escarpment and Sahelian Highlands are, 

corresponding to their relatively strong relief, characterised by areas with locally strong convex and 

concave curvature. Stron convex plan and profile curvature of slopes such as on ridges is associated with 

downslope increasing runoff velocities exposing especially ridges to increased erosion (Noroozpour et 

al., 2014). In contrast, areas with concave plan and profile curvature are prone to accumulation 

processes. This is consistent with Stefano et al. (2000) who emphasise that concave areas are more prone 

to cumulation of runoff; in consequence, these areas are often characterised as hotspots for soil erosion. 

The high erosion risk in the Savannah Escarpment landscape unit is predominantly controlled by the 

steep slopes occurring widespread in this area. This coincides with relatively low TWI values indicating 

poor water retention capacity (Meles et al., 2020). The Low Sahelian Plains landscape unit, on the other 
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hand, showing relatively high TWI values can be characterized by a good water retention capacity and 

resulting lower erosion risk (Winzeler et al., 2022). This finding is supported by Seutloali et al. (2017), 

who pronounced the nexus between high erosion risk and areas with low TWI values, particularly in 

terrains that are characterised by steep slopes and dry conditions.  

The influence of rainfall erosivity is especially evident in the Savannah Transition and Savannah 

Escarpment landscape units where the high erosivity factor results in high soil erosion risk compared to 

the other landscape units where the rainfall erosivity factor is lower. These findings are consistent with 

Mohamadi & Kavian (2015) which point out a strong relationship between high soil erosion risk and 

high erosivity factors. Further analysis of various scenarios for soil loss underscores the influence of 

rainfall erosivity on soil erosion risk. A +55% relative change in R-factor between 1992 and 2006 

resulted in a relative increase of soil loss of 53% in the Sahelian Uplands landscape unit (Table 7.5). In 

contrast, the negative change in the R-factor between the years 2006 to 2020 led to a decrease of soil 

loss across all landscape units (Table 7.6). This reflects the strong influence of rainfall erosivity on soil 

erosion and is consistent with studies by Panagos et al. (2017), which emphasise rainfall erosivity as a 

primary driver of soil erosion, particularly in regions with low vegetation cover. Also, the findings by 

Oliveira et al. (2013) reported that decreases in rainfall erosivity coincide with reduced rainfall intensity 

and often result in reduced soil loss.  

Previous studies (Asempah et al., 2024; Boakye et al., 2020; Obiahu & Elias, 2020) highlight a strong 

relationship between vegetation cover and soil loss. However, the findings of this study underscore a 

low influence of land use factor C on soil loss; however, assessing this statement the altogether low 

variability of the C-factor values across the landscape units has to be considered. The major land cover 

types - cropland, grassland, and open savannah vegetation - exhibited moderate stability across all time 

slices. The major change in the land use and land cover occurred in all the six landscape units in and 

around the settlements. Settlement expanded significantly across all the landscape units with an 

estimated increase by 148% between 1992 and 2006 and an estimated increase by 119% between 2006 

to 2020. The overall land use land cover dynamics and the associated spatial distribution of soil erosion 

risk particularly in and around settlement areas can be linked to increasing population growth and 

coinciding urbanisation processes in the Black Volta River basin  (Asempah et al., 2021). Especially 

major towns across the Mixed Terrain Plateau and Savannah Escarpment landscape units established 

rapid population growth and associated vegetation depletion (Acheampong & Anokye, 2013; Appiah et 

al., 2014). The Wa municipality located in the Mixed Terrain Plateau landscape unit showed an 

estimated population growth by 10% between the years 2000 and 2010 (Ghana Statistical Service (GSS), 

2012). A subsequent population and housing census conducted in 2021 attests to population growth to 

200,672 inhabitants from 107, 214 in 2010 in Wa municipality. (GSS, 2021). The spatial expansion of 

settlement areas in the Wa municipality from 7.44 km2 to 59.86 km² between the years 1990 and 2020 

is paralleled by a 41% reduction of areas in Wa municipality covered by woody vegetation (Asempah 

et al., 2021).  

Other human influences of high soil erosion risk in the Black Volta River basin, especially in the 

Savannah Escarpment landscape unit, include lumbering of trees for timber and fuelwood, bushfire, 

infrastructural expansion and overgrazing and unsustainable agricultural practices such as improper crop 

rotation practices, excessive tillage methods and lack of soil and water conservation measures (Amoako 

& Gambiza, 2019; Reynolds et al., 2007). Due to low economic status and limited access to resources, 
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inhabitants prioritise short-term economic livelihood gain options such as unregulated small-scale gold 

mining activities that predispose the land to degradation (Bagah et al., 2016; GEF-UNEP, 2013).  

In many parts of the West African sub-region, many households still rely on fuelwood and charcoal as 

a primary source of energy (GEF-UNEP, 2013). Extraction of trees for fuelwood and charcoal 

production is an unsustainable venture that depletes forest cover thereby triggering erosion and 

environmental degradation (GEF-UNEP, 2013; Obahoundje et al., 2018), both getting aggravated by 

overgrazing and seasonal bushfires (GEF-UNEP, 2002). According to Fielmua et al. (2014), besides the 

direct environmental destruction through overgrazing, pastoralism also contributes to bushfires as 

herdsmen deliberately burn vegetation covers for the germination of tender grasses for grazing animals. 

These activities are notable across all six major landscape units, especially in the Low Sahelian Plains 

Sahelian Uplands and Sahelian Highlands landscape units where pastoralism is prominent.  Agbeshie et 

al. (2022) emphasise that the intensity of bushfire is proportional to the rate of soil erosion as higher 

intensity fires cause enormous vegetation cover loss, thus, triggering increased surface runoff with an 

associated soil detachment, sediment transport and deposition (Bento-Gonçalves & Vieira, 2020).  

There has been major infrastructure development over the past few decades across the Black Volta River 

basin, driven by the need to support a growing population and meet increasing demands for 

transportation, energy, and water. The key infrastructure projects such as the construction of dams, road 

networks, and other essential facilities greatly contributed to the socio-economic development and the 

same time affected earth movement across the whole area (Gocking, 2021). In the Savannah Escarpment 

landscape unit, the construction of the 400-megawatt hydroelectric power dam with an active storage 

capacity of 7,720,000,000 m³ completed in 2013 was one of these projects (Gocking, 2021). In addition, 

the road networks were expanded to improve accessibility and facilitate economic activities. These 

developments have accelerated environmental challenges, including soil erosion and land degradation 

(Gocking, 2021).  

7.6 Conclusions 

A major environmental concern in the tropics is soil erosion risk owing to changing rainfall 

characteristics coupled with land use and land cover changes. Modelling soil erosion risk in the Black 

Volta River basin improved the understanding of the spatio-temporal varying soil erosion risk and its 

relation to overall landscape characteristics. By applying the RUSLE model the soil erosion risk was 

predicted based on the basin’s characteristics in terms of topography, land use and land cover, soil 

characteristics and rainfall distribution. Soil erosion risk was estimated for the three-time steps 1992, 

2006 and 2020 for the Black Volta River basin. The severity of soil erosion risk across the landscape 

units of the Black Volta River basin is ranked in descending order as follows: Savannah Escarpment, 

Savannah Transition, Sahelian Highlands, Mixed Terrain Plateau, Low Sahelian Plains, and Sahelian 

Uplands. The lower erosion risk in the Low Sahelian Plains and Sahelian Uplands is primarily attributed 

to their low relief and their low rainfall erosivity values. In contrast, the Savannah Escarpment, Sahelian 

Highlands, and Savannah Transition are characterised by long, steep slopes and high rainfall erosivity, 

making them more prone to soil erosion. These observations emphasise the dominant influence of 

topographical features and rainfall erosivity on soil erosion risk within the basin. 

The spatial distribution of soil erosion risk across the three-time slices analysed shows an expansion of 

areas of high risk in and around settlement units as well between the years 1992 and 2006 as between 
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the years 2006 and 2020, underscoring the influence of settlement expansion and human activities on 

high-erosion risk. The spatial patterns of soil erosion risk and their linkages to landscape attributes, 

rainfall erosivity, and human activities provide critical insights for targeted interventions. Effective soil 

and water conservation strategies tailored to the specific needs of each landscape unit are essential to 

mitigate soil erosion and to sustain agricultural productivity. Such strategies should focus on reducing 

human-induced pressures, enhancing vegetative cover, and implementing erosion control measures. 

Addressing these challenges is imperative to safeguarding the ecological and economic sustainability of 

the Black Volta River basin. Given the continuous pressure of environmental changes and human 

activities in the Black Volta basin, it is imperative to incorporate these topographic insights into soil 

conservation strategies to mitigate erosion and protect the fragile landscape units such as the Savannah 

Escarpment, Sahelian Highlands, and Savannah Transition landscape units. 
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CHAPTER 8: ANALYSES AND MODELLING OF SOIL EROSION RISK IN THE BLACK 

VOLTA TRANSBOUNDARY RIVER BASIN OF WEST AFRICA – SYNTHESIS AND 

CONCLUSIONS 

The vulnerability of the West Africa sub-region to land degradation is to a large extent controlled by 

soil erosion and stems from the regional climatic conditions and unadapted land use land cover changes 

as evident in the Black Volta riparian countries including Mali, Burkina Faso, Côte d’Ivoire and Ghana. 

The degradation resulting from the regional climatic conditions is exacerbated by the continued 

exploration of natural resources that put pressure on water, arable land and forest resources, leading to 

a loss of biodiversity, soil fertility, low agricultural productivity and food insecurity (Gomiero, 2016; 

Sinshaw et al., 2021; Xie et al., 2019). For the Black Volta River basin, it is typical that especially in 

rural settlements there occur rapid expansions of settlement areas including road networks, dams, 

schools, hospitals and other infrastructure and social amenities. This is shown exemplarily for the Wa 

municipality, a fast-developing settlement area within the Ghana part of the Black Volta basin. The Wa 

municipality has experienced a doubling of its population since 2010 (2021: 200,672 population) which 

led to rapid settlement expansion (Ghana Statistical Service (GSS), 2021). Exemplarily, for Wa 

municipality at a regional level, a case study was conducted to model land cover dynamics, drivers of 

urban expansion and the effects of resulting land use land cover change soil erosion risk. Based on these 

in-depth studies necessary for a valid model set-up soil erosion risk assessment for the whole Black 

Volta basin with a focus on its major landscape units was conducted to understand the dynamics of the 

landscapes’ susceptibility to soil erosion risk.  

8.1 Land Use and Land Cover Dynamics and the Drivers of Urban Expansion in Wa 

Municipality, Ghana - Synthesis  

The assessment of the land use land cover changes on a decadal between 1990 and 2020 the informed 

understanding of the dynamics of land use land cover changes in the Wa municipality to aspire 

conservation practices to halt and avert further degradation and biodiversity loss in line with the UN 

SDG number 15. The land use land cover classification conducted by applying Landsat satellite images 

shows a continued reduction in close savannah vegetation since 1990. From 1990 to 2001, there was a 

reduction of close savannah vegetation by c. 7% which came along with an increase in open savannah 

vegetation, water areas and settlement areas. Similarly, a decrease in areas covered by closed savannah 

vegetation from 2001-2010 went along with a spread of settlement areas covered by water bodies and 

bareland. Overall, since 1990 the decrease of areas covered by closed savannah coincides with increased 

settlement areas and bare land. These findings emphasise the nexus between settlement expansion and 

the reduction in woody biomass within the Wa Municipality over the past three decades as expansion of 

settlement areas led to a decrease in woody biomass, particularly in areas previously covered by woody 

savannah vegetation.  

The increasing settlement expansion and its associated shrinking areas covered by closed savannah in 

the Wa municipality can be attributed to the doubling of population over the past decades. In the fast-

growing Wa municipality, there is competing demand for environmental resources especially arable land 

for crop production and land for settlement. This coupled with seasonal bushfires leads to the depletion 

of woody biomass (Kuunibe et al., 2013).   
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The settlement expansion observed corresponds to infilling, edge/urban fringe and leapfrogging types 

of expansion (Asempah et al., 2021). Over the past decades, settlement areas have undergone significant 

expansion within the cities and towns and have become more clustered and compacted as characterised 

by infilling settlement expansion. However, there is significant expansion toward the peripheries of the 

existing settlement as an indication of fringe/edge expansion (Asempah et al., 2021; Fletcher, 2019). 

With leapfrogging attributes, the classification shows new settlement patches without spatial connection 

to existing settlement areas with sprawling rural settlements strategically toward resources such as 

streams and rivers as an indication of the drive for livelihood and economic development opportunities  

(Asempah et al., 2021). By statistical analysis of the driver of urban expansion in the municipality, it 

was established that accessibility and connectivity factors such as distance to water resources, road 

networks and already existing settlements were major drivers of settlement expansion in the Wa 

municipality.  

The Wa municipality can be taken as a settlement located in a typical Savannah landscape characterised 

by a semi-arid to dry-subhumid climate with distinct periods of drought. Landscapes with similar 

attributes undergo tremendous transformation due to degradation and desertification, leading to a 

reduction in the provision of ecosystem services (Schneibel et al., 2017; Symeonakis et al., 2018). Owing 

to the delicate and vulnerable nature of the savannah districts, the United Nations consider the 

assessment of degradation in the savannah a high priority as trends of decreasing productivity of dryland 

savannahs are quantified, pointing to major social and political implications (Maestre et al., 2016; 

Symeonakis et al., 2018). Therefore, the assessment of the land cover dynamics in the fast-growing 

savannah landscape such as the Wa municipality is a significant step to understanding the direction of 

land cover changes as a basis for sustainable land management strategies and policies. 

8.2 Spatial Dynamics of Soil Erosion Risk in the Wa Municipality, Ghana -Synthesis  

The spatial distribution of soil erosion risk is dependent on the natural characteristics of a landscape, 

especially soil, rainfall and relief attributes. To understand the effects of land use and land cover change 

on soil erosion, the potential erosion risk is exclusively controlled by natural characteristics and the soil 

erosion risk was assessed for Wa municipality for the years 1990 and 2020 by applying the RUSLE 

model. The estimation of the potential erosion risk showed higher values, thus a higher exposure, for the 

year 1990 than for 2020. This change was exclusively controlled by the temporally varying rainfall 

characteristics, which had a higher erosivity in 1990 than in 2020. Beyond, areas with steep slopes were 

predicted as areas of severe erosion risk.  

Inclusion of the land use land cover characters into the RUSLE model allowed the prediction of soil 

erosion risk. The estimated mean annual soil erosion risk was lower in 1990 and was distinctly lower 

than in 2020 – even despite the lower rainfall erosivity in 2020. This clearly shows the strong control of 

soil erosion by land use. Especially settlement areas, bareland and areas in slopy terrain were estimated 

as areas of extreme soil erosion risk. In particular, the loss of natural vegetation, thus of open and closed 

savannah, went along with an expansion of settlement areas. In consequence, this led to a multiplication 

(factor 7) of expected soil loss in the settlement areas between 1990 to 2020. These findings underscore 

the importance of vegetation cover as a buffer against the erosive power of rainfall. On the other hand, 

low-lying landscapes with short slope lengths coupled with high vegetation cover that provides high 
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surface roughness and soil stability have the highest propensity to lower runoff and its inherent erosive 

power (Esa et al., 2018). 

The dynamics of soil erosion risk in the Wa municipality for the years 1990 and 2020 amplifies the 

impact of land use land cover change, settlement expansion and the overall depletion of vegetation cover. 

This enhances understanding of the changes in the municipality’s land cover and its impacts on erosion 

risk. The changes in land use patterns from 1990 to 2020 explain the comparatively lower soil erosion 

risk in 1990 than in 2020 due to more effective vegetation cover in 1990. Though the RUSLE model is 

limited to detachment and unable to model deposition and gully erosion its application stimulates the 

general understanding of soil erosion risk in the Wa municipality to inform integrated landscape and 

environmental resource management practices. Summarising, the findings provide a valuable 

background for soil and water conservation management practices, particularly in the highly urbanising 

areas that are identified as highly susceptible to erosion risk.   

8.3 Exposure of Major Landscape Units to Soil Erosion Risk in the Black Volta basin – 

Synthesis  

Different landscape units respond differently to adverse environmental conditions due to their Different 

landscape units respond differently to adverse environmental conditions due to their biophysical 

characteristics which are key determinants of the degree of degradation in a landscape (Yousefi et al., 

2021) Also, land cover characteristics in each landscape may lead to distinct hydrological functions, 

different runoff and erosion and sediment transport (Ciampalini et al., 2012; Ouyang et al., 2010). This 

informed the characterisation of the black Volta River basin into different landscape units and the 

onward assessment of soil erosion risk and total soil loss in the units for 1992, 2006 and 2020 time slices. 

The characterised landscape units are unique in terms of biophysical characteristics and show different 

degrees of vulnerability to erosion risk.  

The variations of soil erosion risks across the Black Volta River basin are influenced primarily by 

topographical attributes and rainfall erosivity. The topographical characters slope, and curvature 

significantly control soil erosion susceptibility across all major landscape units of the basin, highlighting 

the Sahelian Highlands with its long and steep slopes being exposed to severe soil erosion risk. In 

contrast, the landscape unit characterised by gentle slopes such as the Low Sahelian Plains are mostly 

exposed to low erosion risks. The Savannah Escarpment landscape unit with the steep slopes along its 

long escarpment is exposed to extreme and exacerbated soil erosion risk.  The slopes planform and 

profile curvatures as well as the topographic wetness index (TWI) next to the slope inclination 

significantly control runoff generation and, thus, exposure to soil erosion risk.  

In comparing the influence of rainfall erosivity and land cover on soil erosion risk across the six major 

landscape units of the Black Volta River basin, it got evident that the erosivity factor domninates. The 

total soil loss for all the landscape units was higher in the base year 2006 than in the year 1992 

corresponding to the mean erosivity factor being higher in 2006 than in 1992.  Between the years 1992 

and 2006, the Sahelian Uplands landscape experienced a 55% increase in the mean erosivity factor, 

which was associated with an estimated 53% increase in soil loss. Similarly, in the Savannah Escarpment 

landscape unit a 27% increase in the mean erosivity factor during the same period corresponded to a 

24.5% increase in soil loss. In 2020 the overall rainfall erosivity was lower than in the base year 2006: 

correspondingly soil loss decreased inn all landscape units of the Black Volta River basin. The effects 
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of land use and land cover on soil loss across the Black Volta River basin were difficult to assess due to 

its low fluctuations between the landscape units. Summarising, topographic characters and rainfall 

erosivity were identified as the major factors controlling soil erosion risk and soil loss in the Black Volta 

River basin.  

8.4 General Implications of Soil Erosion Risk and Soil Loss- Synthesis 

This section highlights the implications of soil erosion risk in the Black Volta River basin. The 

implications are multi-faceted and of ecological, agricultural, hydrological, climatic and economic 

dimensions.  

8.4.1 Ecological Destruction and Biodiversity Loss 

Unsustainable land use frequently results in degradation at both regional and landscape scales with 

ecological implications (Qu et al., 2023). The findings of the study emphasise that land use change led 

to the depletion of vegetation cover in the Black Volta basin especially in highly urbanising areas. A 

typical case study is the Wa municipality which underwent increasing urban expansion and associated 

depletion of woody biomass on decadal time steps at least during the past 30 years. Additionally, soil 

erosion damages are evident in the Wa municipality due to unregulated land use and practices such as 

bush burning and small-scale gold mining (Barry et al., 2005; Kusakari et al., 2014). Soil erosion 

damages have numerous interconnected ecological implications that can significantly threaten the 

natural ecosystems as well as infrastructure. The spatial and temporal dynamics of land use land cover 

and hereby triggered soil erosion and soil loss alludes to significant ecological disruption. These 

ecological consequences may include changes in species composition as well as disruption of food webs 

and altering of nutrient cycles (Laine & Tylianakis, 2024). Also, natural habitats may be destroyed as 

erosion alters the landscape and causes fragmentation, thereby negatively impacting the survival, 

especially of species that are dependent on specific habitat types (Heinken & Weber, 2013). On the 

whole, ecosystem resilience and ecological health are compromised under unsustainable land use and 

severe soil erosion leading to loss of biodiversity (Khattak et al., 2025). In consequence, conversation 

practices and integrated landscape management are imperative in line with United Nations SDG 15 of 

the 2030 Agenda for Sustainable Development which seeks to “protect, restore and promote sustainable 

use of terrestrial ecosystems, sustainably manage forests, combat desertification and halt and reverse 

land degradation and halt biodiversity loss.”  

8.4.2 Agricultural Production and Productivity 

Soil erosion reduces the fertility and productivity of the soil leading to low agricultural productivity 

(Sartori et al., 2024). Soil erosion risk modelling is part of efforts to promote sustainable agriculture and 

food security which are vital to the SDGs (Yin et al., 2022). The RUSLE estimates as applied in this 

study focus on processes of rill and sheet erosion. Hereby triggered top-soil removal affects depletion 

of major plant nutrients such as nitrogen, phosphorus and potassium. Self-enforcing, the loss of organic 

matter by wash out results in a destabilisation of soil structure. Owing to the rapid population growth 

and associated settlement expansions there is a high likelihood of an expansion of arable land and an 

increased competition for productive land in the surroundings of the settlements which in turn leads to 
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a loss of savannah areas. With unadapted land use land degradation gets triggered and as a result, efforts 

to achieve food security may be jeopardised.  

8.4.3 Economic Cost and Impacts 

There is growing evidence of the economic impacts of soil erosion in West African river basins and 

landscapes. According to the World Bank, (2019) in 2017 the costs for environmental degradation 

emanating from erosion, floods and pollution in the coastal zones of West Africa amounted to about US 

$ 3.8 billion. Exclusively focusing on the costs resulting from soil erosion this amount accounted for 

2017 about US $ 964 million in the same area, thus a quarter of the total costs (World Bank, 2019). 

Wherever soil erosion damages appear, costs for repair or reconstruction of damaged infrastructure, cost 

of land reclamation and restoration of land and increased costs of input for farming come along (Huang 

et al., 2022). The budget for agriculture could increase due to the investment needed in crop production 

inputs such as fertilizers, pesticides and irrigation to compensate for the soil erosion damages that lead 

to nutrient loss and soil fertility depletion (Pandian et al., 2024). Also, soil erosion and its associated 

off-site damages such as deposition may lead to a consequential cost for investments in more advanced 

water treatment for rural communities in the basin that rely on reservoirs and surface water (Huang et 

al., 2022). The assessment of soil erosion risk provides information about areas with high exposure to 

soil erosion, and, thus, supports the implementation of soil conservation measures before the damages 

take place (Buraka et al., 2024). 

8.4.4 Hydrological Impacts 

Surface water is the major source of water supply in the Black Volta riparian countries (Kwakye & 

Bárdossy, 2020). The spatial dynamics of land use and related soil erosion processes in the basin imply 

earth movements and accelerated deposition of sediments. These processes may affect channel dynamics 

as well as the siltation of dams (Mosaid et al., 2024). Owing to the application of agro-chemicals and 

POPs in crop production and mining within the river basin, sediments may also contain chemical 

pollutants, such as pesticides and heavy metals (Adnan et al., 2024) Overall, the distribution and 

availability of water may be altered, leading to changes in the timing and volume of river flow (Döll et 

al., 2009).   

8.4 Conclusions 

The Black Volta River basin is a major transboundary river basin in West Africa that provides notably 

arable land for agriculture production, water resources for domestic consumption, irrigation and 

hydropower generation and mineral resources. Settlement expansion as a result of population growth 

influences space demand and competes with other uses, frequently causing unadapted land use or over-

exploitation and thereby depletion of vegetative cover and soil degradation. A large part of the basin 

particularly the areas located within the semi-arid to dry-subhumid zones of the Sahel and savannah are 

highly susceptible to degradation due to climatic conditions and sparse vegetation cover. This 

vulnerability is exacerbated by human activities triggered by the rapid population growth in the basin as 

displayed by the Wa municipality.  

The case study of Wa municipality reveals information on the spatio-temporal transformation of the land 

cover in its administrative area. The expansion of settlement areas in the municipality consistently causes 
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a decrease in areas covered by closed savannah vegetation which coincides with a loss of woody 

biomass. The degradation of vegetation cover through human-induced activities such as bushfires and 

unregulated small-scale gold mining by the inhabitants of the municipality could be pointed out. 

Geostatistical analysis of location factors in particular such as distance to existing settlements, distance 

to rivers and distance to road networks were identified as the major drivers of settlement expansion. 

Accessibility and connectivity driving factors of settlement expansion emphasise the quest by the 

inhabitants for economic and livelihood development.   

Comparing the potential and actual soil erosion risk in the Wa municipality for the years 1990 and 2020 

the higher potential erosion risk estimated for the year 1990 than 2020 affirms the strong control of 

potential erosion by rainfall erosivity. The assessment of the soil erosion risk by including land use as a 

factor in the modelling approach shows that even despite the higher rainfall erosivity in 1990 land use 

changes affected a higher soil erosion risk in 2020 than in 1990. The high erosion in the year 2020 is 

mainly influenced by the depletion of vegetation cover as a result of urban expansion. Settlement and 

bareland areas were identified as areas of highest exposure to soil erosion risk. Additionally, the relief 

especially in areas with steep and long slopes was identified triggering high soil erosion risk.  

Overall, the study provides insights into the relationships between topographic attributes, settlement 

expansion, land use changes and soil erosion risk. Also, the major landscape units including the 

Savannah Escarpment, the Sahelian Highlands and the Savannah Transition were identified as the most 

vulnerable owing to the biophysical attribute that exposes them to high soil erosion risk. The findings 

are imperative and could serve as a guide in planning conservation management practices in line with 

goals to protect, restore and promote sustainable use of terrestrial ecosystems and halt degradation and 

biodiversity loss as proposed by the United Nations SDGs. Finally, in promoting integrated watershed 

management and sustainable development as mandated by the Volta Basin Authority, the understanding 

of the land use land cover dynamics and associated soil erosion risk will be a valuable basis for future 

decision-making and conservation planning. 
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SUPPLEMENTARY MATERIALS 

Chapter 5. Supplementary Figures and Tables 

 
Figure SL 5.1. The Raster layer of urban expansion was obtained from change detection for all the 
time slices and served as dependent variables in the logistic regression analysis. The dichotomous 
variables were 1=expansion and 0=no expansion. 

Table SL 5.1. Landsat Satellites Used for Classification, their Scene ID Number and the Time of 

Acquisition 

 

Satellite Name Scene ID number 

Date of 

Acquisition Time of Acquisition 

Landsat 5 LT51950531990285MPS00 October 12, 1990 09:46:28.2240060Z 

Landsat 7 LE71950532001307EDC00 November 03, 2001 10:15:13.1215482Z 

Landsat 7 LE71950532010316ASN00 November 12, 2010 10:19:33.0561608Z 

Landsat 8 LC81950532020320LGN00 November 15, 2020 10:27:08.9585710Z 
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Chapter 6. Supplementary Figures and Tables 

 

Figure SL.6.1.  Potential Erosion Risk. (A)1990 is the Map of Potential Erosion Risk for the year 

1990; (B)2020 is the Map of Potential Erosion Risk for the year 2020. 

 

   Table SL 6.1. Summary of Data and their Sources used in the Soil Erosion Risk Modelling 

Factors  Resolution Source 

R-factor -  NASA’s POWER project (See https://power.larc.nasa.gov access date: 15 

April 2022). 

K-factor 250x250 m ISRIC- World Soil Information "SoilGrids" provides a raster (TIF format) 

global soil map and associated information (https://soilgrids.org; (accessed 

on 20 September 2021). 

LS-factor 30x30 m SRTM Digital Elevation Model (DEM): (See the USGS database at 

https://earthexplorer.usgs.gov/, Retrieved on 15 October 2020). 

C-factor  

 

 

Supervised LULC classification maps adopted from (Asempah et al., 

2021)and adopted weighted C-factor values in the context of the landscape. 

P-factor 30x30 m A p-factor value, 1, was assigned based on the non-availability of soil 

erosion conservation and support management practices. 
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    Table SL 6.2.  Description of Land Use Land Cover classes 

ID LULC class Description  

1 Closed savannah 

 

Dense cover, usually woody biomass-dominated areas (including natural 

forests, protected and reserved areas) with over 150 tree/ha density.  

2 Open savannah 
 Dense cover, usually fewer woody biomass than close savannah with less 

than 150 tree/ha density. Main cover includes shrubs, grasses and gloves. 

3 Other 

Highly exposed areas without vegetation cover. These are predominantly 

bare lands, unregulated open small-scale mining pits, sandy and gravel 

surfaces. 

4 Settlement 
Areas that are built-up (particularly towns, villages and other emerging 

residential zones with characteristic low to medium population densities). 

5 
Vegetated 

wetland 

Characterised by dried up river courses and stream channels. Such areas 

are often previously swamped and have overgrown grasses and shrubs. 

6 Water 
Areas covered with water bodies (such as rivers, streams, reservoirs and 

dams. 
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Chapter 7. Supplementary Figures and Tables 

 
 

 
Figure SL 7.1. The Profile and Planform Curvature of the Six Landscape Units 
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Figure SL 7.2. The Aspect of  Slope (°)  for the Six Landscape Units 
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Figure SL 7. 3. Map of K and LS Factors. (A) Soil erodibility map for the basin (Data source: ISRIC- 

World Soil Information "SoilGrids" provides a raster (TIF format) global soil map and associated 

information (See https://soilgrids.org; accessed on 20 September 2021). (B) LS factor map for the 

basin. Source of Data: SRTM DEM from CGIAR-CSI database (https://bigdata.cgiar.org/srtm-90m-

digital-elevation-database/). The specific landscape units within the maps are labelled A, B, C, D, E 

and F. A is Low Sahelian Plains, B is Sahelian Uplands, C is Sahelian highlands, D is Savannah 

Transition, E is Mixed Terrain Plateau and F is Savannah Escarpment). 

 

 

Figure SL 7.4. Map of R-factor for the years 1992, 2006 and 2020 (A) R-factor for the year 1992 (B) R-
factor for the year 2006 (C) R-factor for the year 2020. Data for the respective R-factors was obtained from 
the CRU database https://crudata.uea.ac.uk/cru/data/hrg/). The specific landscape units within the maps are 
labelled A, B, C, D, E and F. A is Low Sahelian Plains, B is Sahelian Uplands, C is Sahelian Highlands, D 
is Savannah Transition, E is Mixed Terrain Plateau and F is Savannah Escarpment). 
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Figure SL 7.5. LULC Maps For The Black Volta River Basin and their Corresponding C-factors 
for Soil Erosion Risk Modelling for the years 1992, 2006 and 2020. (A) 1992, (B) 2006 and (C) 
2020 are LULC maps for 1992, 2006 and 2020, respectively, while (A1) 1992, (B1)2006 and 
(C1) 2020 are their corresponding C-factor maps for the years 1992, 2006 and 2020, respectively 
(LULC classification from the Copernicus database) The specific landscape units within the 
maps are labeled A, B, C, D, E and F. A is Low Sahelian Plains, B is Sahelian Uplands, C is 
Sahelian highlands, D is Savannah Transition, E is Mixed Terrain Plateau and F is Savannah 
Escarpment). 
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Figure SL 7.6.  Frequencies Distribution of  Land Cover Across the Six Landscape Units for the years 1992, 2006 and 

2020  
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Table SL 7.1.  Land Cover for the year for each Landscape Unit for 1992 Time Slice 

 Land cover per landscape unit 

 Low Sahelian Plains Sahelian Uplands Sahelian 

Highlands 

Savannah 

Transition 

Mixed Terrain 

Plateau 

Savannah 

Escarpment 

LULC Class Area (km2) % Area (km2) % Area 
(km2) 

% Area 
(km2) 

% Area 
(km2) 

% Area 
(km2) 

% 

Cropland 11,481.2 46.9 4,594.8 53.7 14,666.9 65.6 10,870.3 41.0 18,999.3 45.4 2,785.1 19.4 

Grassland 9,894.2 40.4 3,412.3 39.9 6,850.6 30.7 9,241.0 34.8 9,641.1 23.0 2,047.4 14.3 

Open Savannah 2,954.6 12.1 461.0 5.4 687.0 3.1 6,360.7 24.0 13,043.5 31.2 9,297.8 64.9 

Closed Savannah 24.8 0.1 40.1 0.5 30.6 0.1 19.0 0.1 112.0 0.3 53.7 0.4 

Vegetated 
Wetland 

8.3 <0.05 0.0 0.0 31.9 0.1 0.7 <0.05 0.5 <0.05 94.1 0.7 

Urban areas 3.0 0.1 1.1 0.0 35.3 0.2 0.2 <0.05 4.6 <0.05 17.7 0.1 

Bareland 1.9 <0.05 8.8 0.1 0.2 <0.05 0.2 <0.05 1.3 <0.05 0.0 0.0 

Water bodies 112.9 0.5 34.0 0.4 39.1 0.2 29.2 0.1 40.7 0.1 28.1 0.2 
 
 

Table SL 7.2.  Land cover for the year for each Landscape Unit for the 2006 Time Slice 

Land cover per landscape unit 

 Low Sahelian Plains Sahelian Uplands Sahelian 

Highlands 

Savannah 

Transition 

Mixed Terrain 

Plateau 

Savannah 

Escarpment 

LULC Class Area 
(km2) 

% Area 
(km2) 

% Area 
(km2) 

% Area 
(km2) 

% Area (km2) % Area 
(km2) 

% 

Cropland 5,750.7 23.5 4,725.9 55.3 16,806.8 75.2 7,684.5 29.0 30,631.8 73.2 2,776.8 19.4 
Grassland 10,427.4 42.6 1,861.2 21.8 770.0 3.4 10,625.5 40.1 6,480.5 15.5 3,154.3 22.0 
Open Savannah 8,197.6 33.5 1,817.7 21.3 4,643.9 20.8 8,184.2 30.9 4,543.9 10.9 8,072.2 56.4 
Closed Savannah 27.8 0.1 128.7 1.5 31.9 0.1 19.6 0.1 31.9 0.1 156.3 1.1 
Vegetated 
Wetland 

8.7 <0.05 0.0 0.0 6.1 <0.05 0.7 <0.05 6.1 <0.05 99.8 0.7 

Urban areas 6.9 <0.05 1.4 <0.05 51.0 0.2 0.3 <0.05 15.0 <0.05 43.9 0.3 
Bareland 1.4 <0.05 10.9 0.1 0.0 <0.05 1.3 <0.05 0.0 0.0 0.0 0.0 
Water bodies 60.4 0.2 6.2 0.1 31.9 0.1 5.4 <0.05 133.6 0.3 20.5 0.1 
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Table SL 7.3.  Land Cover for the year for each Landscape Unit for the 2020 Slice  

 
Low Sahelian 

Plains 
Sahelian Uplands 

Sahelian 
Highlands 

Savannah 
Transition 

Mixed Terrain 
Plateau 

Savannah 
Escarpment 

LULC Class 
Area 
(km2) 

% 
Area 
(km2) 

% 
Area 
(km2) 

% 
Area 
(km2) 

% 
Area 
(km2) 

% 
Area 
(km2) 

% 

Cropland 11,441.9 46.7 4,695.8 54.9 16,000.1 71.6 13,467.8 50.8 20,023.8 47.9 2,698.9 18.8 

Grassland 9,840.4 40.2 3,366.2 39.4 2,682.5 12.0 5,462.7 20.6 9,316.3 22.3 540.0 3.8 

Open Savannah 3,019.8 12.3 406.5 4.8 3,111.5 13.9 6,899.5 26.0 11,797.5 28.2 10,484.9 73.2 

Closed Savannah 78.9 0.3 50.3 0.6 246.3 1.1 678.1 2.6 614.9 1.5 172.8 1.2 

Vegetated Wetland 20.3 0.1 0.0 0.0 5.4 0.0 0.7 <0.05 2.0 <0.05 35.4 0.2 

Urban areas 14.8 0.1 4.2 <0.05 108.9 0.5 6.1 <0.05 58.7 0.1 96.2 0.7 

Bareland 1.4 <0.05 22.0 0.3 0.0 0.0 0.2 <0.05 1.2 <0.05 0.0 0.0 

Water bodies 63.5 0.3 7.0 0.1 187.1 0.8 6.4 <0.05 28.6 0.1 295.7 2.1 

  24,480.9 100.0 8,552.1 100.0 22,341.7 100.0 26,521.5 100.0 41,842.9 100.0 14,323.8 100.0 
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