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ABSTRACT

Advanced methods for estimating reaction rates of rare events in molecular dynamics (MD)

simulations are crucial for molecular processes like chemical reactions, nucleation, and pro-

tein folding. These processes commonly involve high energy barriers, making them infrequent

and challenging to capture with conventional MD due to long waiting times. Some rare event

methods apply enhanced sampling techniques where potential energy functions are biased

to accelerate molecular transitions. In this thesis, different rare event methods employing

enhanced sampling are introduced, applied and compared. A first case study focuses on

thermal cis-trans isomerization of retinal, a crucial process in opsins involved in biological

light responses. The enormous disparity between accessible simulation times (nanoseconds to

microseconds depending on level of theory) and actual reaction times (hours to days) requires

careful application of rate theories. Results from rare event methods based in both numerical

sampling of transitions and effective dynamics were compared to results from transition state

optimization followed by application of Eyring’s transition state theory (TST). Numerical

sampling, enabled by infrequent metadynamics simulation, yielded rates in good agreement

with Eyring’s TST, especially when the classical limit was enforced. Methods based in ef-

fective dynamics proved highly sensitive to the choice of reaction coordinate. Only after

optimizing the reaction coordinate using adaptive path collective variables did rates approx-

imate those from Eyring’s TST well. Additionally, the thesis explores dynamical reweighting

techniques, particularly Girsanov reweighting, to recover kinetics and reaction dynamics from

biased simulations. Girsanov reweighting factors were derived for a number of integrators for

underdamped Langevin dynamics. The reweighting factors were subsequently tested for a

[Ca-Cl]+ dimer system. The dissociation rates obtained from biased trajectories successfully

estimated reference rates for the unbiased system, demonstrating the effectiveness of these

methods for accurately recovering reaction dynamics as well as their potential for future

reaction dynamics studies.
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ZUSAMMENFASSUNG

Fortgeschrittene Methoden zur Abschätzung der Reaktionsraten von Rare-Events in moleku-

lardynamischen (MD) Simulationen sind entscheidend für molekulare Prozesse wie chemis-

che Reaktionen, Keimbildung und Proteinfaltung. Diese Prozesse beinhalten häufig hohe

Aktivierungsenergien, wodurch sie selten auftreten und mit konventioneller MD aufgrund

langer Wartezeiten schwer erfasst werden können. Einige Rare-Event-Methoden verwenden

Enhanced-Sampling-MD-Simulationen, bei denen potentielle Energiefunktionen verzerrt wer-

den, um molekulare Übergänge zu beschleunigen. In dieser Arbeit werden verschiedene Rare-

Event-Methoden, die Enhanced-Sampling-MD-Simulationen nutzen, vorgestellt, angewen-

det und verglichen. Eine erste Fallstudie konzentriert sich auf die thermische Cis-Trans-

Isomerisierung von Retinal, einem wichtigen Prozess in Opsinen, der an biologischen Lichtreak-

tionen beteiligt ist. Die enorme Diskrepanz zwischen zugänglichen Simulationszeiten (Nano-

sekunden bis Mikrosekunden, je nach Theorieebene) und tatsächlichen Reaktionszeiten (Stun-

den bis Tage) erfordert den sorgfältigen Einsatz von Reaktionsgeschwindigkeitstheorie. Ergeb-

nisse von Rare-Event-Methoden, die sowohl auf numerischer Simulationen von Übergängen

als auch auf effektiver Dynamik basieren, wurden mit Ergebnissen der Übergangszustands-

optimierung gefolgt von der Anwendung der Theorie des Übergangszustandes von Eyring ver-

glichen. Die numerischen Übergangssimulationen, ermöglicht durch Infrequent-Metadynamics

Simulationen, ergaben Raten, die gut mit der Eyring-Theorie übereinstimmten, insbeson-

dere wenn das klassische Limit berücksichtigt wurde. Methoden, die auf effektiver Dy-

namik basieren, erwiesen sich als äußerst empfindlich gegenüber der Wahl der Reaktion-

skoordinate. Erst nach Optimierung der Reaktionskoordinate mittels adaptiver Pfadkollek-

tivvariablen näherten sich die Raten gut den Ergebnissen der Eyring-Theorie an. Zusätzlich

untersucht die Arbeit dynamische Rückgewichtungstechniken, insbesondere die Girsanov-

Rückgewichtung, um Kinetiken und Reaktionsdynamiken aus verzerrten Simulationen wieder-

herzustellen. Girsanov-Rückgewichtungsfaktoren wurden für eine Reihe von Integratoren

für unterdämpfte Langevin-Dynamik abgeleitet. Die Rückgewichtungs-faktoren wurden an-

schließend an einem [Ca-Cl]+-Dimer-System getestet. Die aus den verzerrten Trajektorien

gewonnenen Dissoziationsraten ergaben eine erfolgreiche Schätzung der Referenzraten für

11



das unverzerrte System und demonstrierten die Wirksamkeit dieser Methoden zur genauen

Wiederherstellung der Reaktionsdynamik sowie ihr Potenzial für zukünftige Studien zur

Reaktionsdynamik.
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Chapter 1

Introduction

1.1 Background and Motivation

Computer Simulations Computer simulations play a pivotal role in natural science

across many disciplines. In their core, simulations strive to faithfully replicate real-world

physical processes. Their use extends far beyond mere replication, however, as they grant

the extraordinary ability to exercise absolute and independent control over all variables,

transcending the limitations of traditional experiments and reducing the need for costly lab-

oratory equipment. Still, the computational cost of the simulations can pose limitations,

often depending on factors such as the size of the system, the timescale of the simulation and

the computational resources available. To make modeling practically feasible, simulations

generally require abstractions and simplifications in description of the physical phenomena.

The accuracy of a simulation heavily relies on the quality of the underlying mathematical

models and assumptions. If these models are inaccurate or incomplete, the simulation results

may not reflect reality in a reliable way. Therefore, one of the main tasks of computational

scientists is estimating the validity of the models used for specific applications. Researchers

continue to improve the simulation methods available, as well as the tools to analyse the

generated data.

Molecular Dynamics Molecular dynamics (MD) are computer simulations of the move-

ment and interactions of molecular systems specifically[1, 2]. By numerically solving the

equations of motion for all the constituent atoms or particles in a system, a trajectory de-

scribing the molecular motion is attained[3]. Such a trajectory can essentially be considered

a movie of how the molecule behaves in time. Getting quantitative predictions on molecular

processes from these trajectories, however, warrants a meticulous statistical analysis of the

trajectory data[4]. More specifically, dynamical trajectories are often used to sample proba-

bility distributions of configurations or events. In this way, one is able to devise meaningful

assessments of molecular structures, thermodynamic properties or dynamics of the simulated

(bio)molecular systems[5].
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A

B

Figure 1.1: Energy scheme of an activated process, with reactant state A, product state B
and activation energy barrier F ‡ along a reaction coordinate s. The effective energy profile
along s is shown in blue, while an example of a biased energy profile is shown in orange.

Rate Theories Of special interest in chemistry or physics are activated processes which

require a relatively large activation energy to transpire. Typical examples include chemical

reactions, nucleation processes or protein folding. The requirement to overcome the activation

energy makes these processes relatively rare, which is why they are also referred to as rare

events. Peters[6] remarked that rare events are not truly rare in the conventional sense of

the word, as in principle, they happen around us all the time. The actual interpretation

of rare events is that their rates are slow relative to other relaxation processes in the same

systems. In other words, the system moves around within a reactant state A for a long

time before ‘suddenly’ moving to a product state B, with the time it takes to transition

from A to B once the transition is initiated being a lot shorter than the waiting time in

A (Fig. 1.1). Small and inconsequential fluctuations away from equilibrium within reactant

state A during this waiting time relax at much smaller timescales than the total time it

takes before transitioning to B [4, 7]. For small proteins, for example, transition from an

unfolded state A to a folded state B typically occurs on the order of microseconds (10−6 s)

to milliseconds (10−3 s), while intramolecular vibrations within either the folded or unfolded

states happen on the order of femtoseconds (10−15 s) to picoseconds (10−12 s). For larger and

more complex proteins, it may require seconds to minutes or even hours to fold properly.

In the context of molecular dynamics simulations, a rare event is usually understood as an

event where the waiting time is too long for direct simulation. Extracting rates from MD

simulations for these events is considered a complicated challenge, as the processes of interest

are too infrequent to obtain sufficient statistics from straightforward unbiased simulation.

Rate theories and rare event methods have been developed to estimate rates while avoiding

the need for direct simulation of rare events[6,8]. Leveraging the time scale separation between

waiting times and transition events, these methods enable computation of rates without fully

simulating the long waiting periods. Different rate theories facilitate calculation of rates

starting from information obtained a priori by other computational methods, such as saddle

16
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b

Figure 1.2: Configurations of the retinal cofactor connected to a lysine dipeptide. Configura-
tions correspond to different isomerization states around the C13=C14 double bond; a: trans
and b: cis. These can be considered reactant state A and product state B in thermal trans-cis
isomerization (Fig. 1.1) or vice versa for cis-trans isomerization. Different rate theories were
compared for isomerization rates, and an analysis of the reaction coordinate was performed.

point search[9, 10], computation of free energy surfaces[11], optimizing minimum free energy

paths[12, 13] or converging reactive trajectories[7, 14]. Selecting the most suitable rare event

method for a particular application is a difficult task. One of the main goals of this work

is to evaluate different rare event methods for processes involving high activation energies.

In particular, the thermal cis-trans isomerization in retinal compounds is studied as a model

case.

Thermal Isomerization of Retinal Retinal is a polyene chromophore that functions as

the key cofactor within the protein class known as opsins[15]. These proteins play an impor-

tant role in many biological processes involving light, including in vision of higher life forms

and in phototaxis of bacteria. The primary mechanism through which retinal engages with

light involves a cis-trans isomerization event occurring over one of its double bonds within the

polyene chain[16] (Fig. 1.2). This molecular transition underpins the photosensitive nature of

opsins, enabling them to initiate key physiological responses upon exposure to light stimuli.

Whereas the initial isomerization event is governed by photo-excitation, the full mechanism

generally involves a return to the original state by a thermal back-isomerization step. Ther-

mal isomerization is a rare event with a very large activation barrier[17, 18], with expected

time scales of seconds to minutes or hours[19–21]. In this thesis, different rate theories are

evaluated with regards to their ability to calculate thermal isomerization rates starting from

MD simulations of the retinal compound. This constitutes a significant challenge, as the

achievable simulation times are often many orders of magnitude lower than the actual re-

action times. Of special interest is the assessment of the reaction mechanism, and closely

related, the definition of a suitable reaction coordinate.

Dynamical Reweighting One strategy to investigate reaction mechanisms and estimate

rates for rare events while avoiding long waiting times is to use enhanced sampling tech-

17



Ca2+ Cl-

Figure 1.3: [Ca-Cl]+ dimer in water. This system was used to test path reweighting for rate
calculation by computing dissociation rates from the bounded state (A) to an unbounded
state (B) with and without application of a bias to the reactant state (similar as in Fig. 1.1).

niques that apply a biasing force to artificially push the system out of the reactant state

(Fig. 1.1). Many methods that bias the potential energy surface in MD simulations have

been developed[1, 11]. While most of these methods focus on exploring new configurations,

recent approaches increasingly seek to recover kinetics and reaction dynamics from the bi-

ased trajectories[22]. Dynamical reweighting techniques use statistical reweighting to correct

the effects of the bias applied during sampling, allowing accurate estimation of unbiased

dynamical properties such as reaction rates and transition times.

Path Reweighting Girsanov reweighting[23] is a dynamical reweighting technique that

intends to express relative probabilities for a path generated at a biased potential to happen

at the unbiased potential. Formulations of the path probability ratios depend on the choice

of integrator used to generate the paths[22]. When dynamical paths have been sufficiently

sampled, relative path probability ratios can reweight dynamic properties from biased simu-

lations. This has the ability to considerably speed up sampling of reactive trajectories and

calculate corresponding reaction rates. For the Euler-Maruyama integrator for overdamped

Langevin dynamics, the path probability ratio has already been described[24–27]. Part of the

work in this thesis focuses on expressing path probability ratios for different integrators for

underdamped Langevin dynamics. The formulations for different integrators are subsequently

tested on a simple molecular system consisting of a [Ca-Cl]+ dimer in water (Fig. 1.3). Disso-

ciation rates are calculated from trajectories sampled on a biased potential using dynamical

reweighting, and compared to rates obtained from unbiased reference trajectories.

18



1.2 Research Questions and Structure

Eyring’s Transition State Theory[28] (TST) remains the most widely used rate theory for

estimating reaction rates, especially for processes with high activation energies. It’s success

lies in requiring only the free energy barrier and partition functions of reactant and transition

state configurations[6], which can be computed with relatively low computational effort, with-

out detailed molecular trajectories. Recent advancements in reactive force fields[29], neural

network potentials[30], semi-empirical electronic structure methods[31–33] and QM/MM ap-

proaches[34] have made it increasingly feasible to simulate chemical reactions using molecular

dynamics. By combining rate theory with enhanced sampling techniques, reaction rates can

be estimated even for reactions with high energy barriers and complex mechanisms. How-

ever, moving from Eyring TST to MD-based rate estimates requires a fundamental shift in

the theoretical framework through which the reaction is modeled. Consequently, it is essen-

tial to evaluate the applicability and performance of these different approaches. This thesis

explores whether reaction dynamics of processes with high energy barriers can be accurately

studied from trajectories generated with enhanced sampling techniques. The central research

question is:

Can MD simulations combined with enhanced sampling techniques yield accurate rate

constants for processes with high activation energies?

To address this question, the thermal cis-trans isomerization of retinal is used as a test sys-

tem. Rate estimates obtained from enhanced sampling methods are compared with those

from TST. Additionally, dynamical reweighting techniques are examined as a means to re-

cover unbiased reaction dynamics from biased trajectories. Specifically, path reweighting is

extended to integrators for underdamped Langevin dynamics and tested on a model system

consisting of a [Ca-Cl]+ dimer in water.

The structure of the thesis is as following. Chapter 1 introduces the central topics and

outlines the structure of the thesis. Chapter 2 presents the most important theoretical con-

cepts, including a brief overview of molecular dynamics (Section 2.1), an introduction to key

enhanced sampling methods such as umbrella sampling and metadynamics (Section 2.2), an

overview of the rate methods utilized in this thesis (Section 2.3), and an introduction to

dynamical reweighting methods (Section 2.4). Chapter 3 presents the results of this thesis,

including three papers. Additionally, a supporting information section is incorporated con-

taining unpublished results. A short summary is given here, including more detailed research

questions for each section:

Part A Reaction Mechanisms and Rates for Thermal Isomerization of Retinal

Paper A1: In this paper, rate constants and reaction mechanisms for thermal isomer-

ization of retinal are investigated for two retinal analogues using ab-initio MD, where
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the self-consistent-charge Density functional tight-binding (DFTB) method is used to

model the potential energy surface. Density Functional Theory (DFT) is used as a

reference. We address the research questions:

1. How do rate constants compare between potential energy surfaces obtained from

DFT and DFTB?

2. How do rate constants estimated from dynamical sampling compare to those from

Eyring’s transition state theory?

Paper A2: In this paper the reaction mechanism of thermal isomerization and the

applicability of different rate theories is studied in more detail. Rate theories are first

tested for a one-dimensional model potential and subsequently for a model retinal sys-

tem using a classical force field. The research questions are:

1. How do rates from effective dynamics compare to rates from numerical sampling

in one-dimensional model potentials?

2. How do rates from effective dynamics compare to rates from numerical sampling

for thermal cis-trans isomerization in a retinal system modeled by a force field?

3. What is the influence of the choice of reaction coordinate?

Part B Path Reweighting for Underdamped Langevin Dynamics

Paper B1: In this paper, relative path probabilities for Girsanov reweighting in inte-

grators from splitting methods for underdamped Langevin dynamics are derived. The

following research questions are treated:

1. Can we formulate a general approach to predict whether the relative path proba-

bility for Langevin integrators from splitting methods obeys absolute continuity?

2. Can we formulate a general approach to derive the associated relative path prob-

ability?

Supporting Information for Part B: In this section, the reweighting factors derived

above are tested numerically for dissociation rates of a [Ca-Cl]+ dimer in water. Rates

from biased simulations are compared to reference rates obtained from simulations at

the unbiased potential.

Finally, Chapter 4 concludes the thesis and provides an outlook on potential future research

directions.
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Chapter 2

Theory

2.1 Molecular Dynamics

Obtaining access to the microscopic details of molecular motion enables a profound under-

standing of the processes these molecules are involved in. Given sufficient data are available,

statistical mechanics theory can be used to generalize many microscopic events to macroscopic

phenomena, and thus yields a definite connection between the microscopic and macroscopic

world. Such connection is of high interest in many fields of application, including drug design,

catalysis, material science and condensed-state physics. Whereas experimental detection of

microscopic motion is challenging or often unattainable, computer simulations have made

their introduction in modeling the dynamics of atoms and molecules[2, 3, 6].

Atoms and especially the particles they consist of are inherently quantum-mechanical in

nature. A highly accurate description of molecules and the way they interact thus warrants

application of the quantum mechanical laws of motion. However, while the field of quantum

dynamics is an intense and fruitful area of research, solving the relevant equations remains a

challenging task[5,35]. Simulation methods developed to do so are generally computationally

expensive to a degree that becomes prohibitive for larger systems. This is especially true

when longer simulation times are required to obtain sufficient statistics on configurational

prevalence as well as on conversions between them.

The Born-Oppenheimer (BO) approximation[5, 35, 36] takes advantage of the fact that

the mass of the electron is much smaller than the mass of any of the nuclei to assume the

electrons in a system move instantaneously and are entirely dependent on the motion of the

nuclei. This approximation allows for separation of the electronic and nuclear degrees of

freedom, enabling a more manageable analysis of the system. The electronic energy, also

called the BO energy, is expressed as a function of the coordinates of the nuclei similar to a

classical potential energy surface (PES). Using Ehrenfest’s theorem[5, 35], the movement of

molecules can then be modeled classically on this PES according to Newton’s equations of

motion.
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Moving to a classical scheme evidently means dynamics become approximate as quantum

effects get ignored. However, these effects generally only play a very minor role for atoms

heavier than hydrogen. In fact, the classical nuclei approximation is anticipated to remain

reasonably accurate even for hydrogen as long as no chemical bond is formed or broken[5].

2.1.1 Hamiltonian Dynamics

In classical mechanics, Newton’s equations of motion are often reformulated into the Hamilto-

nian framework[37]. For a molecular system where N atoms have positions q = {qi}i=1,...,3N

and momenta p = {pi}i=1,...,3N





q̇i = ∂
∂pi

H(q,p) = m−1
i pi

ṗi = − ∂
∂qi

H(q,p) = − ∂
∂qi

V (q).
(2.1)

The masses {mi}i=1,...,3N have been assigned per degree of freedom and one should thus keep

in mind that m1 = m2 = m3 is the mass of the first particle and so on. The Hamiltonian

H(q,p) = V (q) + T (p) represents the total internal energy of the system and consist of the

potential energy V (q) plus the kinetic energy T (p) =
∑3N

i=1 p
2
i /2mi. The state space of the

system at a time t is denoted as x(t) = {q(t),p(t)} ∈ Γ ⊂ R6N . For a certain potential

energy function V (q), Hamiltonian dynamics will always propagate identical dynamics when

starting from the same initial conditions x0 = {q0,p0} at t = 0, i.e. dynamics are said

to be deterministic. Moreover, the total internal energy along the trajectory is constant,

and the Hamiltonian is said to be a constant of motion. Hamiltonian dynamics sample a

microcanonical ensemble, often referred to as NVE because the amount of atoms N , the

volume V and the internal energy E = H(q,p) are constant for all configurations in the

ensemble.

Trajectories for Hamiltonian dynamics can be simulated by numerically integrating the

equations in time. The most commonly used integrator for Hamiltonian mechanics is the

Verlet integrator, but many other schemes exist[3].

2.1.2 Langevin Dynamics

Molecular systems of interest can rarely be considered as isolated entities, but instead cus-

tomarily are surrounded by an environment influencing their behavior. In these cases, the

internal energy isn’t constant, as energy can be exchanged with the environment. A more

suitable approach is to assume such system is in thermal equilibrium with its surroundings.

For many situations of interest, especially in chemistry and biochemistry, the system can be

considered immersed in a bulk of fluid with which it exchanges heat quickly, maintaining

thermal equilibrium.

In Langevin dynamics, the model system surroundings are not explicitly incorporated but
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rather mimicked by including additional terms into the equations of motion[3]:





q̇i = m−1
i pi

ṗi = − ∂
∂qi

V (q)− ξpi +
√
2kBTξmiηi(t).

(2.2)

Here, the term −ξpi is the frictional drag, with ξ the collision rate (in units s−1), also referred

to as the friction coefficient. The frictional drag represents the systematic effect of dissipation

due to the surroundings[5]. The term
√
2kBTξmiη(t) is a random collision force representing

random impulses arising from the surroundings. ηi(t) ∈ R describes an uncorrelated Gaussian

white noise with zero mean and unit variance

〈
ηi(t)ηj(t

′)
〉
= δijδ(t− t′) (2.3)

and is scaled by the volatility
√
2kBTξmi where kB is the Boltzmann constant and T is the

temperature. Here, δij is the Kronecker delta

δij =





1 if i = j

0 if i ̸= j
(2.4)

and δ(t− t′) is the Dirac delta function. The inclusion of the random term makes dynamics

stochastic rather than deterministic.

The relationship between the dissipation through collision rate ξ and the fluctuation

scaled by the volatility ensures thermal equilibrium, which is a manifestation of the so-

called fluctuation-dissipation theorem[3, 5, 38]. Langevin dynamics thus sample a canonical

ensemble of configurations, also known as an NVT ensemble since the temperature T is

constant rather than the internal energy E as is the case in Hamiltonian dynamics. The

equilibrium probability distribution in phase space for a canonical ensemble is given by the

Gibbs-Boltzmann density

ρeq(q,p) = Z−1
cane

−βH(q,p) (2.5)

where β = (kBT )
−1 and the classical canonical partition function Zcan =

∫
Γq

∫
Γp

dqdpe−βH(q,p)

with Γq ⊂ R3N the space of all possible configurations q(t) and Γp ⊂ R3N the space of all

possible momenta p(t). Often, this distribution is split in a configuration and momentum

part ρ(q,p) = ν(q)µ(p). The configurational distribution

ν(q) = Z−1
q e−βV (q) (2.6)

is colloquially referred to as the Boltzmann distribution, with Zq =
∫

Γq
dqe−βV (q) the con-

figurational canonical partition function. The distribution of momenta is Gaussian in each
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dimension of momentum space:

µ(p) =

3N∏

i=1

√
1

2πmikBT
e
− p2i

2mkBT (2.7)

and is referred to as the Maxwell-Boltzmann distribution. The canonical probability distri-

butions can be used to perform thermodynamic averaging. For a configuration dependent

observable O(q), we get

⟨O(q)⟩ =

∫

Γq

dqO(q)ν(q) (2.8)

= lim
M→∞

1

M

M∑

i=1

O(qi) (2.9)

where in the last line, summation is performed over a high number of configurations that are

statistically representative for the canonical ensemble. Langevin dynamics have the advantage

of being ergodic[3], meaning that for long enough trajectories, eventually all configurations

in configuration space Γq will be visited, and moreover they will be visited with a frequency

proportional to the probability distribution. In other words, for long enough simulation times,

time averaging becomes equivalent to ensemble averaging, and Eq. 2.9 can be applied directly

to the trajectory points.

Langevin integrators used to generate time-discretized trajectories for Langevin dynamics

(Eq. 2.2) will be discussed in Section 3.3 and its supplementary material.

2.1.3 Brownian Dynamics

A commonly discussed special case of Langevin dynamics is the high friction limit, where the

inertial force ṗi becomes negligible compared to the dissipation ξpi. The equations of motion

simplify to

q̇i = − 1

miξ

∂

∂qi
V (q) +

√
2kBT

ξmi
ηi(t). (2.10)

The corresponding dynamics are referred to as overdamped Langevin dynamics or Brownian

dynamics.

Complementary to equations of motion describing trajectories in configurational space,

dynamics can also be described as a time evolution of probability densities ρ(q, t). For Brow-

nian motion, evolution of probability densities is described by the Smoluchowski equation

∂

∂t
ρ(q, t) =

3N∑

i=1

Di
∂2

∂q2
i

ρ(q, t) +

3N∑

i=1

m−1
i ξ−1 ∂

∂qi

(
ρ(q, t)

∂V (q)

∂qi

)
(2.11a)

= Qρ(q, t) (2.11b)
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where diffusion coefficientsDi are related to the collision rate through the Einstein-Smoluchowski

equation:

Di =
kBT

miξ
. (2.12)

Whereas the equation of motion in configurational space (Eq. 2.10) is a stochastic differential

equation, the Smoluchowski equation is a partial differential equation in time and thus time

evolution of the probability density is deterministic. We mention similar equations for time

evolution of probability densities exist for Hamiltonian and Langevin dynamics[3,39] but are

omitted here for the sake of brevity.

The most commonly used numerical integrator for Brownian dynamics (Eq. 2.10) is the

Euler-Maruyama integrator[3].

2.1.4 Force fields

So far, we’ve discussed equations of motion for classical dynamics, while saying nothing about

the form of the potential energy function V (q). In principle, the potential energy function

can be estimated ab-initio using electronic structure methods from quantum chemistry, where

commonly electronic energies of configurations are calculated within the Born-Oppenheimer

approximation. The corresponding potential energy functions can be calculated on the fly,

while dynamics of the nuclei are still carried out classically as discussed above. This type of

simulations, where the nuclei are treated classically while electronic structure is computed

quantum mechanically, is generally referred to as ab-initio molecular dynamics. Electronic

structure calculations, however, are ordinarily prohibitively expensive, and applicability of

ab-initio MD is limited to smaller systems at shorter simulation times.

In order to increase calculation speeds, parametrized frameworks for the expression of

the potential energy function V (q) have been developed. The combination of the functional

form of V (q) and the parameter set needed to calculate it, is generally referred to as a force

field. Most force fields use a similar makeup, splitting interactions in bonded and nonbonded

parts[2, 5]:

V (q) = Vnonbonded(q) + Vbonded(q). (2.13)

The nonbonded potential in turn consists of a Coulombic part, designed to reproduce the

electrostatic properties of the molecules, and a Lennard-Jones part, designed to emulate van

der Waals interactions. For a system of N atoms:

Vnonbonded(q) =

N∑

k=1

N∑

l=k+1

QkQl

4πϵ0rkl
+

N∑

k=1

N∑

l=k+1

4ϵkl

[(
σkl
rkl

)12

−
(
σkl
rkl

)6
]

(2.14)

where the first term is the Coulombic contribution withQk andQl the partial charges of atoms

k and l respectively, rkl the interatomic distances between them (which can be deduced from

the positions q) and ϵ0 the vacuum permittivity. The second term is the Lennard-Jones 12-6
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potential with parameters ϵkl and σkl representing the depth of the potential well and the

size of the atoms involved respectively.

The bonded potential manages energetics within molecules and depends on how covalent

bonds between atoms are asserted beforehand. Generally, they depend on bond distances li

between covalently bonded atoms, bond angles θi between two neighboring covalent bonds

and proper dihedrals ωi and improper dihedrals ϕi between three neighboring covalent bonds.

If the connectivity of the molecule is known, all these internal coordinates can be deduced

from the positions q of the atoms. For bond stretching, bond angles and improper dihedral

angles, the corresponding potential energy terms generally penalize deviations from reference

values through harmonic potentials, while proper dihedrals are generally expressed using

periodic potential contributions:

Vbonded(q) =
∑

bonds

k
(l)
i

2
(li − li,0)

2 +
∑

angles

k
(θ)
i

2
(θi − θi,0)

2

+
∑

proper

∑

n

Vn

2
(1 + cos(nωi − γ)) +

∑

improper

k
(ϕ)
i

2
(ϕi − ϕi,0)

2

(2.15)

where li,0, θi,0 and ϕi,0 are reference values for the bond lengths, bond angles and improper

dihedrals respectively, and k
(l)
i , k

(θ)
i and k

(ϕ)
i are the spring constants of their harmonic

potentials. Contributions from proper dihedral angles are commonly expressed as cosine series

expansions, where n is the multiplicity, γ the phase factor and Vn can be considered the barrier

height for a single term in the series. Because the bonded terms take care of interactions

between covalently linked atoms close to each other, nonbonded interactions between atoms

less than three covalent bonds away from each other are commonly not included.

All parameters including the reference values for internal coordinates and spring constants

need to be parametrized. This can be done by picking combinations of these parameters in

a way that simulation results match experimental data of choice, as different parameter

combinations might optimize different experimental observables. Alternatively, parameters

can also be derived from quantum mechanical modeling. For more details on the functional

form as well as parametrization of force fields, I refer to Chapter 4 of Ref. 2 as well as to

manuals of molecular dynamics software packages such as OpenMM[40] and GROMACS[41].

2.1.5 Collective Variables

Collective variables (CV) are descriptors of the system useful to the modeler to investigate its

properties. A collective variable zi can generally be defined in terms of the nuclear positions

q through a mapping

zi = ζi(q) (2.16)
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with ζi : R3N → R. Examples include distances, dihedral angles, coordination numbers, root-

mean square deviations or radii of gyration, but can also include non-trivial combinations of

other variables. In the multidimensional generalization z = {zi}i=1,...,d = {ζi(q)}i=1,...,d =

ζ(q), collective variables span a subspace Γz ⊂ Rd where typically d ≪ 3N , with ζ : R3N →
Rd. This so-called dimensionality reduction is often performed to attempt easier navigation

and interpretation in the study of molecular behavior in terms of thermodynamics and kinetics

as compared to the full-dimensional case.

The equilibrium distribution in the reduced space π(z) can be reformulated from Eq. 2.6

as

π(z) = Z−1
q

∫

Γq

dqe−βV (q)
d∏

i=1

δ(ζi(q)− zi) (2.17)

where δ(ζi(q) − zi) are Dirac delta functions. The free energy surface (FES) in z is defined

as[6]

F (z) = −kBT lnπ(z). (2.18)

In case of sufficient sampling, π(z) can be obtained directly by building a histogram in z over

all configurations sampled and a subsequent normalization.

Reducing dimensionality inherently comes down to projecting out part of the information

entailed in the potential energy surface, and interpretation of the resulting free energy surface

should always be done with care. Collective variables which do not resolve distinct metastable

states and transition states can severely misrepresent the energetics of molecular processes[42].

Often, sufficient sampling of the full CV space by direct unbiased simulation is impractical,

and many methods have been established to obtain free energy profiles more quickly[11]. So-

called enhanced sampling methods will be the subject of Section 2.2. In these methods

the choice of CV space is commonly an important consideration, as unfortunate choices can

severely slow down sampling.

2.1.6 Reaction Coordinates

In the mechanistic understanding of chemical reactions, it is generally key to identify a

physically meaningful reaction coordinate which accurately describes the dynamical progress

from the reactant to the product state. Commonly, reaction coordinates are one-dimensional

collective variables in position space

s = s(q) , (2.19)

but in principle they can also depend on momentum space coordinates. They should mono-

tonically increase going from reactants to products along the reaction pathway[43].

All degrees of freedom orthogonal to the reaction coordinate are considered to comprise the

bath. In many rate theories, the bath is replaced by one-dimensional friction in combination

with random forces along the reaction coordinate. The high-dimensional problem is thus
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reduced to a one-dimensional Langevin dynamics1 (Section 2.1.2), also referred to as effective

dynamics. Here, the free energy in the reaction coordinate F (s) is assumed to take the role of

the potential energy governing drift. Furthermore, the effective friction term ξ as well as the

reduced mass µs in s are important parameters in reducing the high-dimensional problem.

Dynamics s(t) generated by direct application of Eq. 2.2 to the one-dimensional reaction

coordinate are then assumed to be equivalent with full-space dynamics projected on s.

For many processes of interest, the dynamics along the reaction coordinate are considered

diffusive, and the overdamped limit of the Langevin equation is used (Section 2.1.3). This

is typically the case for thermally activated transitions over energy barriers such as confor-

mational transitions in biomolecules. In general, reaction coordinates will require position

dependent friction, reduced mass and diffusion profiles D(s) for an accurate description of the

dynamics[43, 45–48]. In this case, a correction needs to be made to the equations of motion

when using the free energy profile as effective potential energy function. The overdamped

Langevin equation in Eq. 2.10 is now written as[49]:

ṡ = −βD(s)
∂F (s)

∂s
+

∂D(s)

∂s
+
√
2D(s) η(t) (2.20)

with the diffusion coefficient along the reaction coordinate as given by the Einstein-Smoluchowski

relation in Eq. 2.12 where the mass m needs to be substituted with the reduced mass along

the reaction coordinate. The corresponding Smoluchowski equation is[47,49]:

∂

∂t
ρ(s, t) =

∂2

∂s2
[D(s)ρ(s, t)] +

∂

∂s

[
βD(s)ρ(s, t)

∂F (s)

∂s
− ρ(s, t)

∂D(s)

∂s

]
(2.21a)

=
∂

∂s

[
D(s)e−βF (s) ∂

∂s

(
eβF (s)ρ(s, t)

)]
(2.21b)

= Qρ(s, t) . (2.21c)

Given a reaction coordinate, several methods to obtain the position dependent diffusion D(s)

can be found in literature[45,50–52].

The choice of reaction coordinate can greatly influence the reliability of the effective dy-

namics and correspondingly the accuracy of calculated dynamical properties such as reaction

rates. Theories to estimate rates will be the subject of Section 2.3. Finding good reaction

coordinates is often a highly nontrivial task.

In terms of formal properties, the committor pB(q) can be considered an ideal reaction

coordinate[43, 53]. pB(q) gives the probability of trajectories launched at q with momenta

distributed according to Maxwell-Boltzmann (Eq. 2.7) to reach the product state B before

1Remark that the framework for effective dynamics described here assumes a clear separation of time scales
between the reaction coordinate and the bath degrees of freedom. In case bath degrees of freedom exhibit
slow correlated motion with regards to the reaction coordinate, effective one-dimensional dynamics are better
described using a memory kernel as part of the friction in what is called the Generalized Langevin Equation
(GLE)[6, 38,44].
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visiting the reactant state A. It is zero for configurations in the reactant state, one for

configurations in the product state and varies from 0 to 1 along the transition pathway.

Correspondingly, the committor maps the full configurational space to a single scalar coor-

dinate pB which quantifies the dynamical progress from A to B directly. It can be shown

that the free energy surface and dynamics, when projected onto the committor, yield a one-

dimensional model that perfectly preserves the reaction rate[6,43]. Planes in configurational

space with constant committor values are called isocommittor surfaces or isocommittor hy-

perplanes. The isocommittor surface at pB(q) = 0.5 is also called the stochastic separatrix.

The stochastic separatrix commonly connects the transition state ensemble, encompassing

configurations which coincide with dynamical bottlenecks. Although the committor is con-

ceptually an ideal reaction coordinate, it is often impractical to work with, as it cannot be

resolved at the molecular degrees of freedom and thus often does not facilitate mechanical

insight[43].
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2.2 Enhanced Sampling Methods

In a first instance, molecular dynamics are often used to obtain representative samples of

configurations for the thermodynamic ensemble in which the simulation is performed. The

obtained configurations can then be used to set up further thermodynamic study of the

system, i.e. to determine stable states, to calculate thermodynamically averaged observables

or to compute free energy profiles. As systems get more involved, however, potential energy

surfaces grow more complicated. In cases where energy surfaces contain many local minima

separated by high barriers, exploring all parts of configurational space might take a long

time. Even with the use of parametrized force fields, computation times necessary to sample

a statistically representative set of configurations can easily increase to a troublesome degree.

Enhanced sampling methods have been developed to increase sampling speeds in MD

simulations while reproducing the equilibrium probability distribution of the system. Many

approaches have been developed to enhance sampling, including adding additional potentials

to the force field, sampling at higher temperatures, exchanging configurations between parallel

simulations sampling different but related configurational space and more[11].

In this work, the main focus will be on enhanced sampling through application of an

additional biasing potential to the potential energy function. The biasing potential steers the

simulation away from states which have already been sufficiently sampled towards unexplored

parts of the configurational space. Usually, the biasing potential is not applied to all degrees

of freedom, but to a set of sensibly chosen collective variables. The biased potential energy

function takes form

Ṽ (q) = V (q) + Ubias(ζ(q)) (2.22)

where Ubias(ζ(q)) is the biasing potential, often simply referred to as the bias. Notice biased

trajectories can only be propagated if the force from the biasing potential can be calculated,

which requires access to the Jacobian matrix elements of the mapping functions ζi(q):

F bias
i = − ∂

∂qi
Ubias(ζ(q)) = −

d∑

j=1

dUbias

dzj

∣∣∣∣
zj=ζj(q)

∂

∂qi
ζj(q) ∀ i. (2.23)

Similar to the unbiased case in Eqs. 2.6-2.8, sampling at the biased potential energy function

will transpire at a biased probability distribution ν̃(q) = Z̃−1
q exp

(
−βṼ (q)

)
with Z̃q =

∫
Γq

dq exp
(
−βṼ (q)

)
, while the biased ensemble average of an observable O(q) is written

as ⟨O(q)⟩ν̃ =
∫

Γq
dqO(q)ν̃(q). Ensemble averages for biased and unbiased potential energy
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functions are related through[11]

⟨O(q)⟩ =
∫

Γq

dqO(q)ν(q) (2.24a)

=

∫

Γq

dqO(q)
ν(q)

ν̃(q)
ν̃(q) (2.24b)

=

〈
O(q)

ν(q)

ν̃(q)

〉

ν̃

. (2.24c)

The ratio of probability distributions can be expressed as

ν̃(q)

ν(q)
=

Zq

Z̃q

e−βṼ (q)

e−βV (q)
=

∫
Γq

dqe−βV (q)

∫
Γq

dqe−βṼ (q)
· e−βUbias(ζ(q)) (2.25a)

=

∫
Γq

dqe−βṼ (q)eβU
bias(ζ(q))

∫
Γq

dqe−βṼ (q)
· e−βUbias(ζ(q)) (2.25b)

=
〈
eβU

bias(ζ(q))
〉
ν̃
e−βUbias(ζ(q)) (2.25c)

Notice a completely equivalent derivation can be done in the reduced space spanned by

collective variables z = ζ(q), where π̃(z)/π(z) takes the same form as Eq. 2.25c. Filling in

yields

⟨O(q)⟩ =

〈
O(q)eβU

bias(ζ(q))
〉
ν̃〈

eβUbias(ζ(q))
〉
ν̃

(2.26a)

= lim
M→∞

∑M
i=1 O(qi)e

βUbias(ζ(qi))

∑M
i=1 e

βUbias(ζ(qi))
. (2.26b)

Consequently, for sufficiently long trajectories, the ergodic property can be used to estimate

the unbiased ensemble average of O(q) from biased trajectories.

It is important to notice that in what has been discussed above, the biasing potential

Ubias(z) is predetermined and static, and convergence times for reweighting in Eqs. 2.26 will

depend strongly on the overlap between the biased and unbiased distributions of configura-

tions[11]. Choosing a suitable biasing potential is not an easy enterprise, as it is generally

not clear before sampling how the energy landscape as a function of z looks like. As a matter

of fact, the free energy profile F (z) as defined in Eq. 2.18 is often considered one of the

main results of enhanced sampling methods. A bad choice of biasing potential can insuffi-

ciently speed up sampling of the configuration space, as energy barriers might look different

than anticipated. Alternatively, unfortunate choices can also ruin overlap between biased

and unbiased configurational distributions and correspondingly impede convergence of the

thermodynamical reweighting.

A range of methods have been developed to carry out enhanced sampling in a way that

negates the necessity of predefining a single static biasing potential[54–58]. In umbrella
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sampling (Section 2.2.1), harmonic restraints are used to force the system to explore dif-

ferent regions of collective variable space z. While the harmonic restraints themselves are

static, reweighting methods have been constructed that allow combining configurations from

different trajectories at different restraint positions to estimate the unbiased population dis-

tribution over the whole configurational space. In other words, configurations sampled at

effectively different biasing potentials can be used to estimate a single free energy surface.

In adaptive biasing potential simulations, the biasing potential is no longer static, but is

adapted on-the-fly during simulations using information from the trajectory itself. Hence,

the bias can be considered to ‘learn’ an optimal shape as dynamics progress. Metadynamics

(Section 2.2.2) is a widely used adaptive biasing potential method where the bias is evolved

to eventually cancel out the free energy surface in collective variables z. A more complete

overview of enhanced sampling methods and corresponding references can be found in Ref. 11.

2.2.1 Umbrella Sampling

In umbrella sampling (US)[54], harmonic restraint potentials are applied to localize sampling

to a specific region Si ⊂ Γs of the collective variable space z:

Ubias
i (z) =

1

2
ki (z− zi)

2 (2.27)

where ki is the harmonic spring constant and zi is a point in Si around which one wishes

to sample. A trajectory simulated under a harmonic restraint Ubias
i (z) can in principle be

reweighted directly using Eqs. 2.25-2.26. Because the restraints confine trajectories to a

localized part of collective variable space, however, the rest of the space is usually hardly

sampled. Consequently, the biased and unbiased configurational distributions will differ too

much, and reweighting does not converge to the full-space unbiased equilibrium distribution

in any reasonable timespan.

The weighted histogram analysis method (WHAM)[59] is a maximum likelihood method

to estimate the population distribution π(z) using configurations from nt trajectories gen-

erated at different restraint potentials
{
Ubias
i (z)

}
i=1,...,nt

, also referred to as windows. In

WHAM, the collective variable space is discretized in nb bins, and the number of frames Nij

from trajectory i belonging to bin j is counted. The maximum likelihood estimate of the

unbiased probability for bin j is[11, 60]

Pj =

∑nt
i=1 Nij∑nt

i=1 N
steps
i Cie−βUbias(zj)

(2.28)

where N steps
i is the total amount of steps in trajectory i, zj is a representative point for bin
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j in collective variable space and

Ci =
1∑nb

j=1 e
−βUbias(zj)Pj

. (2.29)

Eqs. 2.28 and 2.29 can be solved iteratively, for example by calculating the Pj values first using

Eq. 2.28 and an initial guess for the Ci values. The resulting probabilities are then used to

calculate the Ci’s using Eq. 2.29, which can then be used to calculate the probabilities again.

This iterative scheme is repeated until probabilities converge and we obtain a probability

distribution P = {Pj}j=1,...,nb
which is a discretized estimate of the unbiased probability

density π(z). Binless extensions for free energy estimation using WHAM have also been

introduced[61].

The ability to combine trajectory data from several windows with different restraints

allows sampling of a larger part of collective variable space with smaller simulation time.

Within one window, sampling is localized to a specific part of collective variable space, and

thus windows must be spread out to cover the area of interest in its entirety. At the same

time, however, WHAM only converges if the windows sufficiently overlap[62]. Calculating

the probability distribution and corresponding free energy surface using US thus requires a

strategic choice of the parameters involved, i.e. the positions zi of the restraints for each

window, as well as the spring constants ki and amount of simulations steps per window

N steps
i . Estimation of errors on the free energy surface calculated using WHAM can be done

using bootstrapping[63], either by generating bootstrapped trajectories or by bootstrapping

complete histograms[64].

For trajectories simulated under harmonic restraints, a value for the diffusion coefficient

can be calculated using Hummers method[45]. For a one-dimensional collective variable z,

Hummers formulation for the diffusion coefficient from a single trajectory is:

D(z = ⟨z⟩) = var(z)

τz
(2.30)

where τz =
∫∞

0 ⟨δz(t)δz(0)⟩ dt/var(z) with δz(t) = z(t) − ⟨z⟩. Notice neither the spring

constant ki nor the position zi of the harmonic restraint enters the equations. When multiple

trajectories simulated using harmonic restraints at a series of different zi are available, as is

the case when doing umbrella sampling in combination with WHAM, the diffusion coefficient

in Eq. 2.30 can be calculated for different values of z. If enough data points are available,

diffusion coefficients D(z) for any value of z can be estimated from interpolation.

2.2.2 Metadynamics

Metadynamics (MetaD)[55] is an enhanced sampling method where an adaptive biasing po-

tential is added to a set of collective variables z = {zi}i=1,...,d with the intention of pushing

dynamics to regions of configurational space which have not been sampled yet. The time
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dependent biasing potential Ubias(z, t) consists of a sum of repulsive Gaussian kernels which

are deposited in collective variable space at a predetermined rate. For a time in interval

τGm ≤ t < τG(m+ 1), the bias is given by:

Ubias(z, t) = Um(z) =
m∑

k=1

Wk exp

(
−1

2

d∑

i=1

(zi − zk,i)
2

σi

)
(2.31)

where τG is the deposition rate time interval, Wk is the height of the Gaussian at the k’th

deposition, σi the standard deviation of the deposited Gaussian functions in the dimension

of the i’th collective variable and zk,i is the value of zi at the time of depositing the k’th

Gaussian, i.e. at time t = kτG. When a trajectory finds itself in a deep potential energy well

which would ordinarily be slow to escape from, for example, the adaptive bias steadily fills

the well with deposited Gaussians ultimately speeding up escape significantly. With time,

the deposited Gaussians fill out the full free energy surface and sampling ideally becomes

diffusive in the corresponding collective variable space.

In the original formulation of metadynamics, the Gaussian height Wk is kept constant

and thus independent of k. In this case, the biasing potential converges in time oscillating

around the negative of the free energy surface −F (z) plus a constant. As a consequence,

the free energy surface can be estimated by taking the negative of the average of the bias,

but starting the averaging only from a time where the free energy surface can be considered

filled[11,42].

The oscillations of the biasing potential upon convergence are proportional to the height

of the Gaussian kernels. They can therefore be decreased by reducing the Gaussian height Wk

in the course of the simulation in an appropriate way[42]. In well-tempered metadynamics

(WT-MetaD)[65], the height of the Gaussians is chosen to be proportional to a decaying

exponential function of the biasing potential already deposited in the currently visited point

of the CV space:

Wk = W0 exp

(
− 1

1− γ
βUk−1(zk)

)
(2.32)

where W0 is the initial height and the exponential factor can be considered a scaling factor

decreasing the height of the deposited Gaussian kernels if the biasing potential at the cor-

responding kernel center is already high, where Uk−1(z) is the biasing potential after k − 1

depositions with U0 = 0. γ is generally referred to as the bias factor. Low values for γ speed

up scaling leading to faster decreasing Gaussian heights, while high values for γ slow down

scaling, meaning the heights of the deposited Gaussian kernels decrease slower. Conventional

metadynamics corresponds to the limit γ → ∞.

The biasing potential in well-tempered metadynamics does not converge to −F (z) but
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instead has been shown to converge to[66]:

Ubias(z, t) = −
(
1− 1

γ

)
F (z) . (2.33)

Contrary to conventional metadynamics, the bias potential does not oscillate upon conver-

gence, but instead asymptotically reaches a quasi-equilibrium state. Eq. 2.33 can therefore

be used to estimate the FES directly from the biasing potential Ubias(z, t) at a time t where

the bias can be considered converged. Practically, convergence can be checked by comparing

free energy surfaces obtained using Eq. 2.33 at different times t while aligning their minima

to zero.

The free energy surface can also be obtained from well-tempered metadynamics simu-

lations by applying reweighting methods. These methods have the additional advantage of

being capable of estimating free energy profiles and population distributions in collective vari-

ables which have not been biased during the metadynamics run. Reweighting methods have

been developed where the time dependence of the bias potential is taken into account[67,68].

Alternatively, free energy profiles and probability densities can be estimated by using the

final biasing potential Ubias(z, t = tfinal) to reweight trajectories from well-tempered metady-

namics through direct application of Eq. 2.26 [69]. The assumption made in this case is that

the biasing potential has not changed during the simulation, which is evidently untrue for

adaptive biasing potential methods such as metadynamics. The asymptotic convergence of

the biasing potential, however, means that for the biggest part of the trajectory, the change

to the biasing potential becomes negligible, and the bias is effectively constant. In practice,

one often removes the initial part of the metadynamics trajectory where the bias still signif-

icantly changes, and subsequently reweights the rest of the trajectory points with the final

bias. It is generally good procedure to compare the free energy surface F (z) obtained from

reweighting methods to the one obtained from analyzing the bias potential directly through

Eq. 2.33.

Error estimates for free energy profiles obtained from metadynamics can be calculated

using block analysis[42].

2.2.3 Path Adaptive Sampling

Complicated dynamics can often not be accurately described using traditional internal coor-

dinates such as distances or angles. Therefore, enhanced sampling methods frequently adopt

more complicated collective variables that are better suited to describe the reaction dynam-

ics. For many processes, however, finding a single CV which faithfully describes the progress

of the dynamics (i.e. a reaction coordinate) is a challenging task. In this case, free energy

surfaces in multiple CVs can be generated to get a more comprehensive understanding of the

system’s behavior and explore the multidimensional landscape of the dynamics. For most
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free energy methods, however, the number of CVs is limited as a higher number leads to pro-

hibitively high computational effort. In practical applications, methods like metadynamics

and umbrella sampling are limited to three to four CVs[11], depending on the complexity

of the system and the computational resources available. Methods to extend the number of

CVs have been proposed[70,71].

One approach which has been successful in describing complicated dynamics on a single

CV are path based schemes. In these schemes, a larger CV space is projected onto a carefully

chosen path CV. The path CV is generally represented by a parameterized curve connecting

the initial and final states of the system, aiming to capture complicated dynamics using a

one-dimensional parameter. This one-dimensional parameter can be considered a formulation

of a reaction coordinate as introduced in Section 2.1.6.

Central is of course the formulation of a suitable path in CV space. Different algorithms

to find reaction paths have been proposed, often based on steepest descent starting from

an initial guess and converging toward a minimum free energy path (MFEP). Examples are

schemes using a string method[12,72] or using metadynamics with path-like variables[13,73].

An alternative formulation[53] allows the use of a flexible, adaptive path described in a

predefined set of collective variables z = {zi}i=1,...,d ∈ Γz ⊂ Rd to converge to an estimate of

the average transition path between two stable states instead. This path follows the average

transition flux density under following assumptions[53,74].

1. The average transition path can be represented by a parametrized curve s(σ) : R → Rd

in collective variable space, with s(0) located in the reactant state and s(1) in the

product state.

2. In the vicinity of the path, the isocommittor hyperplanes Sσ are perpendicular to the

path s(σ) for all values of σ.

3. In the vicinity of the path, the transition flux density can be represented by the con-

figurational probability π(z) as defined in Eq. 2.17.

In the first assumption, the path parameter σ(z) : Rd → [0, 1] projects CV space on a value

between zero and one, which in its turn parametrizes the curve s. This mapping should be

done in a way that each point z in CV space is projected onto the specific value of σ for

which s(σ) corresponds to the point on the path closest to z. The second assumption allows

for expressing the average transition path as:

s(σ) =

∫

Sσ

dSσz
′pσ(z

′) (2.34)

where pσ is the flux probability density at the isocommittor surface perpendicular to s(σ),

which using the third assumption can be obtained from the probability density π(z).
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Under the assumptions listed above, the average transition path can in principle be ob-

tained directly by constructing histograms of z in the isocommittor surfaces after MD runs,

given isocommittor surfaces can be established and are sufficiently sampled. More practi-

cally, a guess transition path sg(σg) parameterized by guess path parameter σg = σ(z)
∣∣
sg

can

be chosen, and the probability distribution in the corresponding orthogonal hyperplanes Sσg

can be estimated during MD runs by replacing the ensemble average in Eq. 2.34 by a time

average using the ergodic property:

⟨z⟩σg
= lim

t→∞

1

t

∫ t

0

∫

Sσg

z′(t′)dSσgdt
′ . (2.35)

The guess path can then be converged to the average transition path in an iterative procedure

by relocating the guess path at regular time intervals to the accumulative average density,

i.e. by iteratively setting the new path to the calculated averages at each isocommittor surface,

sg = ⟨z⟩σg
. The numerical implementation of this method requires definition of a discrete

version of the paths in collective variable space, that is, path curves are expressed through

a number M of nodes sg(σg, t) →
{
stij

}
j=1,...,M

. Here, j labels the nodes and ti represents

the discrete time parameter denoting the current path update step. For expressions of the

geometrical mapping of points z in collective variable space to path parameter σg in discrete

paths, as well as formulations for path updates to the current accumulative average, I refer

to the original reference, Ref. 53, or to a recent review article, Ref. 74.

For rare events, hypersurfaces Sσg away from the stable states will be poorly sampled dur-

ing simulation. Therefore, adaptive biasing methods such as metadynamics can be applied

to the guess path parameter σg to speed up sampling. While metadynamics biasing makes

dynamics more diffusive along the current guess path, the orthogonal degrees of freedom are

being explored and accumulative averaging can be performed and paths can be updated as

before. While the path is being updated, the metadynamics will keep adding layers of Gaus-

sian potentials to the total bias in σg, correcting discrepancies inherited from the previous

path guesses when the path was still moving through higher regions of the FES in collective

variable space[53]. Ultimately, both the path and the adaptive bias will converge, producing a

final estimate for the average transition path as well as the corresponding free energy profile.

Notice that, in principle, other enhanced sampling methods such as umbrella sampling can

be used to locate the average transition path[74]. Evidently, the converged path CV can also

be used directly rather than adaptive (i.e. without updating the path) as a CV in further

analysis.

Care has to be taken using average transition paths in systems where transitions from the

reactant to product state can happen over multiple clearly distinct pathways. In these cases,

the actual average transition path can be a bad representation of the physical pathways the

transitions happen over, and it makes more sense to converge distinct pathways separately,
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averaged over the relevant parts of CV space only. Moreover, for certain systems, free energy

landscapes can be quite rugged, and transition from a reactant to a product state can occur

via various close and ill-defined pathways. This can severely hinder convergence towards an

average transition path, as the path evolution becomes flexible as guess paths tend to wander

during the adaptive path simulations. To avoid sampling multiple distinct pathways within

the same adaptive path simulation, a harmonic restraint potential can be set on the distance

from the path ∥sg(σg(z)) − z∥. Also referred to as a ‘tube potentials’, these restraints are

used to block ‘bifurcations’ away from the pathways of interest, which can also be useful if

landscapes are very rugged.

The spring constant of the harmonic restraint is an important parameter for optimizing

path convergence as well as for the quality of the resulting paths. Evidently, spring constants

need to be chosen as a compromise between a) keeping trajectories from wandering too

far from the path into areas corresponding to other pathways and b) still allowing enough

freedom to efficiently sample the average density in the degrees of freedom orthogonal to the

path within the area of the pathway of interest. From a conceptual point of view, the size

of the tube restraint controls the extent the degrees of freedom orthogonal to the path (but

within CV space) can be explored, and thus influences the entropic contribution of the rest

of CV space to the free energy along the path[74]. In the limit of an infinitesimally narrow

tube potential, no entropic contributions are included, and the path converges to the MFEP

closest to the initial path. Wider tubes go back to the more path density based description

of average transition paths.

Once an estimate for the average transition path sg has been obtained, the path parameter

σg(z) can be used as a reaction coordinate for further analysis including free energy methods

to determine F (σg) and subsequent application of rate theories.

Enhanced sampling techniques such as metadynamics and umbrella sampling increase sam-

pling speeds and allow for exploration of configuration space to an extent that would be

computationally prohibitive in case of unbiased MD. By introducing a biasing potential, the

trajectory is encouraged to explore regions which would otherwise scarcely be visited, and

reweighting procedures have been developed to retrieve the unbiased population distributions

and free energy profiles useful for thermodynamic averaging or other physical analysis of the

molecular system. Path collective variables can be used to reduce the number of CVs that

need to be included in the biased sampling, while taking into account some of the complexities

of the multidimensional dynamics. In the discussions so far, MD has mainly been used as

a tool for generating ensembles, i.e. for creating a representative set of configurations of the

system under specific thermodynamic conditions. In many molecular problems, modelers are

especially interested in inherently dynamical features, such as reaction rates and mechanisms.
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The next section will treat theory on how to calculate rates in molecular dynamics, both for

unbiased simulations as for simulations where dynamics have been enhanced.
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2.3 Rate Theory

Determining reaction mechanisms and estimating rates is a central objective in computa-

tional chemistry. Dynamical properties, however, are generally considered more difficult to

compute than thermodynamic properties, for which the main obstacle often amounts to suf-

ficient sampling of configurational space. Quantitative predictions of rates are persistently

strenuous, especially when activation energies are high and systems of study become more

involved. Many molecular processes involve rare events, where transitions are too infrequent

to be accurately examined in the computationally accessible timescales of direct atomistic

simulation. Therefore, a bulk of more resourceful sampling methods and rate theories have

been developed to be able to formulate rates from MD simulations on timescales much higher

than the actual simulation times. Still, due to the highly complex nature of dynamics, these

methods are often restricted in their applicability, and many factors can appear as potential

sources of error.

The most well-known source of error in calculations of rates is the exponential magnifi-

cation of errors in the activation barrier. Unfortunately, even for relatively small errors this

can create order of magnitude differences between rates obtained from computation versus

experiment. Meanwhile, the force fields involved in describing the underlying energetics of

dynamical processes are customarily parametrized to match equilibrium properties away from

the activated state[6]. As systems get more involved, additional complications arise, more

closely related to the nature of the dynamics as opposed to errors in the energy calculations.

In these cases, the complexity of the energy surface hampers designation of functional tran-

sition states or reaction coordinates required for most rate theories, and a high number of

potential reaction paths might need be considered.

In the quantum chemistry community, the most widely used rate method is Eyring’s tran-

sition state theory[28]. Eyring’s formulations are especially interesting for smaller molecules

in vacuum, since strong assumptions are made regarding the shape of the potential energy

surface. Within these assumptions, one only needs access to a limited amount of configu-

rations representing the reactant and transition states to calculate rate constants. Finding

these configurations, especially transition states, is not always straightforward, especially

when dimensionality increases[10, 75–77]. Nonetheless, the limited amount of energy calcu-

lations allows for ab-initio electronic structure methods to be applied, and depending on the

quality of the quantum chemical methods used, a more accurate estimate of the activation

barrier is attainable.

For more complicated systems such as for larger biomolecules, the energy landscapes

become more rugged and the approximations quickly brake down. Consequently, different

strategies are used to determine rates for such systems, typically involving actual dynamics

simulations. In these cases, electronic structure methods become computationally prohibitive

and parametrized force fields are used. Depending on the size of the system, the computa-
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tional resources at hand and the simulation methods used, different schemes allow for more

dynamics based approaches to rate calculation, unlocking application to systems which violate

the assumptions of Eyring’s transition state theory.

For small energy barriers, reactions can be simulated directly, and mean first passage

times (Section 2.3.1) and corresponding rates can be obtained by averaging. Alternatively,

time correlation functions can be used to determine rates in the reactive flux formalism (Sec-

tion 2.3.2). For complicated dynamics involving multiple metastable states, more involved

methods such as Markov State Models (Section 2.3.3) can be adopted.

As energy barriers increase, crossing events become less frequent and getting sufficient

statistics on their occurrence requires longer trajectories up until the point it becomes com-

putationally prohibitive. In that case, other strategies need to be used to estimate rates of

reaction events. These methods span a continuum of different approaches, and any attempt

to classify them into discrete classes will be inaccurate at the classification boundaries. With

this in mind, there are two distinct approaches to determine transition rates:

1. analyze the free energy surface

2. stimulate, count and reweight transitions.

Transition state theory (Section 2.3.4) or Kramers’ theory (Section 2.3.5) as well as dis-

cretization approaches to the Fokker-Planck equation (Section 2.3.7) are examples of the first

approach. These methods rely on models of effective dynamics in a reduced dimensional

space, for which the FES is presumed to be available. Infrequent metadynamics (Section

2.4.1), path reweighting (Section 2.4.2) and transition path sampling[14, 78] are examples

for the second approach. These methods involve direct numerical sampling using molecular

dynamics, but transitions from the reactant to product state are artificially accelerated. Sta-

tistical methods are then employed to accurately estimate reaction rates from the enhanced

sampling data. Reactive flux methods such as the Bennett-Chandler approach[79–81] can be

considered a combination of both approaches.

These methods have extensively been used for transitions demanding complicated reac-

tion coordinates often characterized by broad transition states or involving multiple possible

reaction pathways. A typical test case is the conformational transition of alanine dipeptide in

vacuum or solution[26,82–88]. Rates have also been calculated for protein folding[89–91], lig-

and binding[92–95], base-pairing transitions in DNA[74,96–98], crystal nucleation[49,99–101],

and many more[6].

2.3.1 Mean First Passage Times

Imagine we are interested in transitions between two states A and B:

A ⇌ B . (2.36)
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An example could be a solution of N noninteracting particles which can occupy two con-

formational states. In case there is good separation of timescales, that is, if the timescales

associated to the relaxation within the conformational states (τmol) is a lot smaller than the

timescale on which the system must wait, on average, in one conformational state before

undergoing a transition to another state (τrxn), the relaxation behaviour can be described

with a linear rate law[102]:

d

dt
NA(t) = −kABNA(t) + kBANB(t) (2.37a)

d

dt
NB(t) = kABNA(t)− kBANB(t) . (2.37b)

Here, NA(t) and NB(t) are the number of particles at a time t in states A and B respectively,

with N = NA(t) +NB(t), while kAB is the microscopic rate of transitioning from state A to

B, and kBA analogously the microscopic rate from B to A.

In MD simulations, states are generally designated by choosing a suitable reaction coor-

dinate s and defining a value s‡ separating state A where s ≤ s‡ from state B where s > s‡.

The states are often represented by occupation functions

hA(s(t)) =





1 if s(t) ≤ s‡

0 if s(t) > s‡
hB(s(t)) =





0 if s(t) ≤ s‡

1 if s(t) > s‡
. (2.38)

To simplify notation, occupation functions will be denoted with their time dependence only:

hA(t) = hA(s(t)) and hB(t) = hB(s(t)). It should be remembered that the time dependence

is implicit and the actual explicit dependence is on the position along the reaction coordinate

at that time s(t). Nonequilibrium ensemble averages of the occupation functions at a time

t can be related to the number of particles ⟨hA(t)⟩ne = NA(t)/N and analogous for B. The

phenomenological rate law can then be written as:

d

dt
⟨hA(t)⟩ne = −kAB ⟨hA(t)⟩ne + kBA ⟨hB(t)⟩ne (2.39a)

d

dt
⟨hB(t)⟩ne = kAB ⟨hA(t)⟩ne − kBA ⟨hB(t)⟩ne . (2.39b)

which can be solved[6, 7, 102] as

⟨hA(t)⟩ne = ⟨hA⟩+ (⟨hA(0)⟩ne − ⟨hA⟩) e−kt (2.40a)

⟨hB(t)⟩ne = ⟨hB⟩+ (⟨hB(0)⟩ne − ⟨hB⟩) e−kt (2.40b)

where ⟨hA⟩ is the standard equilibrium ensemble average of hA(t) corresponding to the equi-

librium molecular fraction of state A with limt→∞ ⟨hA(t)⟩ne = ⟨hA⟩. The new rate constant

k = kAB + kBA is known as the phenomenological rate constant as it describes the effective

exponential asymptotic relaxation towards equilibrium which could be observed in experi-
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ment. The timescale connected to the phenomenological rate τrxn = 1/k is often referred to

as the reaction time and was already mentioned in the separation of timescales assumption

above.

When the energy barrier between state A and B is sufficiently low to sample a lot of

transitions between the states from an unbiased trajectory, rates can be estimated from

mean first passage times (MFPT). The trajectory can be partitioned into segments during

which it stays in the same state, i.e. starting from when it enters the state up until when

the state is exited again. From these segments, the mean first passage times τMFPT,A→B for

going from state A to B and τMFPT,B→A for going from B to A are calculated:

τMFPT,A→B =
1

MA

MA∑

i=1

t
(i)
A→B and τMFPT,B→A =

1

MB

MB∑

i=1

t
(i)
B→A (2.41)

with t
(i)
A→B the time of the i-th segment recorded in state A and analogous for t

(i)
B→A, and

MA and MB the amount of segments in state A and B respectively. The microscopic rates

can then be computed using

kMFPT
AB =

1

τMFPT,A→B
and kMFPT

BA =
1

τMFPT,B→A
. (2.42)

2.3.2 Reactive Flux Formalism

The indicator functions allow easy formulation of the conditional probability to find a system

in state B at time t provided it was in state A at time 0:

CAB(t) =
⟨hA(0)hB(t)⟩

⟨hA⟩
(2.43)

where ⟨. . . ⟩ indicates ensemble averaging over equilibrium initial conditions. In case of sepa-

ration of timescales, it can be shown[4,79] from Onsager’s regression hypothesis[103] that the

time correlation function CAB(t) grows linearly with time in a time regime τmol < t ≪ τrxn

according to CAB(t) ≈ kABt. More details about the derivation are given in Appendix A.1.

The time derivative of CAB(t) is called the reactive flux

kRF
AB(t) ≡

d

dt
CAB(t) . (2.44)

In the time regime τmol < t ≪ τrxn, k
RF
AB(t) has a horizontal plateau with height equal to

the microscopic rate constant kAB. For very long times, CAB(t) reaches ⟨hB⟩ asymptotically

in accordance with Eq. A.6, and consequently kRF
AB(t) goes to zero. At times below the

molecular relaxation time τmol, CAB(t) will incorporate correlations in microscopic motion

including recrossing effects, and consequently the reactive flux kRF
AB(t) can be unstable in this

regime. A sketch of kRF
AB(t) as a function of time is given in Fig. 2.1.
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Figure 2.1: Sketch of behaviour of kRF
AB(t) as a function of time. Based on similar figures in

Refs. [4, 7].

Carrying out the time derivative to the time correlation function gives an expression of

the reactive flux in terms of the velocity along the reaction coordinate s:

kRF
AB(t) =

〈
ṡ(0)δ

(
s(0)− s‡

)
hB(s(t))

〉

⟨hA⟩
(2.45)

where the dot notation signifies a time derivative and δ
(
s(0)− s‡

)
is the Dirac delta function.

The derivation can be found in Appendix A.2. This formulation of the reactive flux gives

a more intuitive interpretation of its meaning. The flux can be considered as the average

velocity in the reaction coordinate ṡ at the dividing surface defined by s = s‡, with the

additional condition that the system is in state B a time t later. For small times t < τmol,

the system might not have settled ‘definitively’ in state B yet, and still recross to state

A, making the velocity averaging unreliable. Commonly such recrossings originate from

interactions of the reaction coordinate with other degrees of freedom[7, 43]. For times larger

than the molecular relaxation time τmol, the system should have relaxed in either state A or

state B, and the reactive flux is expected to reach a plateau value equal to the microscopic

rate kAB before decaying to zero in the long time limit. Notice the reactive flux formulations

do not involve any underlying assumptions about the dynamics or thermodynamic ensemble,

and thus is formally exact. The accuracy of the calculated rate only depends on definitions

of the reactant and product states A and B, and the interpretation of the plateau region.

2.3.3 Markov State Models

More involved systems such as proteins and nucleic acid often show complex dynamics involv-

ing transitions between various long-lived metastable states through a multitude of reaction

paths. Often, the existence and location of metastable states and barriers are not known be-

forehand, and determination of MFPTs is not achievable through direct measurement as in
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the previous section, even when dynamics are properly sampled. A more meticulous approach

to investigate the dynamical behavior entails a partitioning of the configurational space into

discrete cells and subsequently calculating rates or transition probabilities between the cells.

In this way, the view of a single barrier crossing or trajectory path is abandoned in favor of

an ensemble view of the dynamics. Of course, dynamical information can still be disguised

within a single cell, i.e. when parts of configurational space that have an important distinction

have been lumped together during discretization. A sufficiently fine partitioning can resolve

this issue.

To obtain rate and transition matrices from continuous dynamics, configuration space Γq

is divided in a disjoint decomposition of nc cells Σi such that Γq = ∪nc
i=1Σi. To do so, we

define the characteristic function indicating cell i as

χi (q) =





1 if q ∈ Σi

0 if q /∈ Σi

(2.46)

for i = 1, . . . , nc. These can be considered higher-dimensional and multistate equivalents of

the occupation functions defined in Eq. 2.38 in the previous section. Cell probabilities ρi(t)

of probability vectors ρ(t) ∈ Rnc can be formulated as ρi(t) =
∫

Γq
dqχi(q)ρ(q, t) and equi-

librium probabilities πi of equilibrium probability vector π ∈ Rnc as πi =
∫

Γq
dqχi(q)ν(q) =

⟨χi⟩ with ν(q) the equilibrium probability distribution defined in Eq. 2.6. The Fokker-Planck

operator Q in the Smoluchowski equation (Eq. 2.11b) can be discretized in a Galerkin dis-

cretization[88,104] to yield a nc × nc rate matrix Q:

Qij =
⟨χj |Qχi⟩ν
⟨χi|χi⟩ν

=
1

πi
⟨χj |Qχi⟩ν (2.47)

where the scalar product in weighted space ⟨u|v⟩ν =
∫

Γq
u(q)v(q)ν(q)dq was introduced.

The discretized Fokker-Planck equation is then written as

∂tρ
T (t) = ρT (t)Q . (2.48)

Given overdamped dynamics, the rate matrix thus indicates the probability per unit of time

that transition occurs within an infinitesimally small time interval.

Assuming transitions between cells are Markovian, the rate matrix will be constant in time

and independent of the initial probability. Eq. 2.48 can be solved as ρT (t) = ρT (0) exp (tQ)

which allows definition of the propagator

T(τ) = exp (τQ) . (2.49)

The matrix element Tij(τ) indicates the conditional probability for the system to be found
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in cell j given that it was in cell i at a fixed time τ before, and therefore T(τ) is generally

referred to as the transition matrix. Probability vectors can be propagated over a time τ

according to

ρT (t+ τ) = ρT (t)T(τ) . (2.50)

Because we have assumed Markovianity, probabilities at a later time t + aτ can also be

obtained by repeated application of the transition matrix, which can be formulated as

ρT (t+ aτ) = ρT (t)Ta(τ) . (2.51)

Eq. 2.51 is a formulation of the well-known Chapman-Kolmogorov equation[44]. It can be

shown that a transition matrix generally has a unique stationary distribution π ∈ Rn, which

remains unchanged under application of the transition matrix πT = πTT(τ). For dynamics

at thermal equilibrium, the transition matrix fulfills detailed balance πiTij = πjTji.

The transition matrix can be applied directly to propagate any density vector, and can

thus be used to model evolution of nonequilibrium distributions in time. Alternatively, essen-

tial dynamical information about the conformation dynamics of the system can be obtained

by studying the eigenvectors and eigenvalues of the transition matrices[105]. As explained

in Appendix B.1, the largest eigenvalues λi(τ) of T(τ) can be used to calculate implied

timescales connected to exponential decay of nonequilibrium processes:

ti = − τ

lnλi(τ)
. (2.52)

For Markovian processes, the implied timescales do not depend on time τ . The corresponding

leading eigenvectors can be considered the principal modes of probability flow between the

system’s metastable states, governing evolution of nonequilibrium probability densities ρ(t)

towards the equilibrium probability π. From Eq. 2.49 it follows that the rate matrix Q has

the same eigenvectors as T(τ), while its eigenvalues θi are related to those of the transition

matrix through λi(τ) = exp(τθi). Consequently, the eigenvalues of the rate matrix are

directly related to the implied timescales

ti = − 1

θi
. (2.53)

The implied timescales (and corresponding rates) do not have a forward or backward direc-

tion, but should rather be considered as equivalents to the reaction time τrxn (or phenomeno-

logical rate constant k) considered in Section 2.3.1. In fact, as is shown in Appendix B.2, for

a two-state system under Markovian assumptions, the implied timescale equals the reaction

time t1 = τrxn.

Markov state models (MSM) estimate the transition matrix T(τ) from one or multiple
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MD trajectories. The matrix elements Tij(τ) can be written as conditional probabilities[106]:

Tij(τ) = P [q(t+ τ) ∈ Σj |q(t) ∈ Σi] (2.54)

where τ is called the lag time. Using Bayes’ theorem, Eq. 2.54 can be reformulated as[106,107]

Tij(τ) =
P [q(t+ τ) ∈ Σj ∩ q(t) ∈ Σi]

P [q(t) ∈ Σi]
(2.55a)

=
⟨χj (q(τ))χi (q(0))⟩

⟨χi⟩
(2.55b)

=
ccorr
ij (τ)

πi
(2.55c)

where in Eq. 2.55b the ensemble averaging in the numerator is over equilibrium initial con-

ditions[107]. This numerator can be interpreted as an equilibrium time-lagged correlation

function ccorr
ij (τ) between indicator functions χj and χi. The matrix elements Tij(τ) can thus

be considered the multistate equivalents of the time correlation function used in the reactive

flux formalism in Eq. 2.43. From the definitions of the indicator functions, it follows that
∑nc

i=1 c
corr
ij (τ) = πj and

∑nc
j=1 c

corr
ij (τ) = πi for any value of lag time τ .

For long enough MD trajectories, and in case q(t) is ergodic (Eq. 2.9), this correlation

function can be expressed as

ccorr
ij (τ) = lim

M→∞

1

M

M∑

k=1

χi(qk)χj(qk+l) (2.56)

where l∆t = τ with ∆t the time step of the trajectory. In practice, one often builds a count

matrix C(τ) where the matrix elements Cij(τ) are calculated by counting transitions over a

long trajectory from bin i to bin j within a time span τ

Cij(τ) =

nMD−l∑

k=1

χi(qk)χj(qk+l) (2.57)

with nMD the total amount of time steps in the trajectory. The transition matrix elements

can then be estimated as

Tij(τ) =
Cij(τ)∑nc
j=1 Cij(τ)

(2.58)

or, in other words, by row-normalizing the count matrix C(τ).

At this point, it is important to consider that the Markovian assumption might be violated

in the construction of MSMs. Mapping the (spatially) continuous dynamics q(t) onto a

discrete set of cells Σi (Eqs. 2.54-2.55) generally makes the process non-Markovian. Local

dynamical effects within the cells can make transition probabilities history dependent2, and

2For example: it is completely conceivable that a system which has just entered cell j coming from cell i
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the calculated implied timescales generally become dependent of lag time τ . Nonetheless,

MSMs model these dynamics using a transition matrix where the Markovian property is

assumed. In this context, formulations using the transition and rate matrices in Eqs. 2.49 and

2.51 are only approximations. Non-Markovianity effects introduce a discretization error[106]

that makes both propagation of density vectors (Eq. 2.51) and timescale computation from

eigenvector analysis (Eq. 2.52) approximate. In general, the error made will depend on:

• Discretization: larger cells will lump together more dynamics and consequently worsen

Markovianity. A finer discretization will generally reduce the error. Moreover, dis-

cretization can be adapted to fit metastable states if they are known[106].

• Collective variable space: discretization is often chosen to depend only on a low number

of specific collective variables. The CV space on which the discretization is build ideally

incorporates all slow dynamics. Slow correlated motion not included in the resolved

degrees of freedom will induce memory effects and worsen Markovianity, leading to

larger errors.

• Choice of lag time τ : for short lag times τ < τmol, the correlation function in Eq. 2.55b

will incorporate correlation in local microscopic dynamics. These can introduce memory

effects on short timescales which cause errors in determination of the slowest dynam-

ical components. Therefore, transition matrices should be used and analyzed only at

sufficiently high lag times τ > τmol.

Commonly, convergence of the implied timescales of the slowest processes are monitored to

check which lag time to use[106]. For small lag times, implied timescales are often severely

underestimated, whilst an asymptotic convergence is expected as lag times get longer. For

good choices of CVs and discretizations, the implied timescales converge faster, and the

calculated timescales and eigenvectors become reliable representation of the system’s slowest

dynamical processes.

Notice that is often not obvious from the eigenvectors by themselves which bins will

correspond to which metastable states. Methods for assigning bins to metastable states from

the transition matrix eigenvectors can be found in literature[108,109].

2.3.4 Transition State Theory

Transition state theory (TST) embodies a theoretical framework which allows formulation of

relatively simple rate equations for chemical reactions starting from the free energy surface.

In its most general form, the following key assumptions are made[6]:

1. Classical dynamics on a single Born-Oppenheimer PES

has a higher probability of returning to i than a system which has been in cell j for a longer time.
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2. A dividing surface that separates reactants and products

3. States on the dividing surface are populated as though at equilibrium with reactants

4. Trajectories that cross the dividing surface lead directly to products with no recrossing

events.

The first point is generally assumed in classical MD simulations. The second point had already

been assumed in Sections 2.3.1 and 2.3.2 to formally define states A and B in mean first

passage times and the reactive flux formulations. The third and fourth point are additional

assumptions specific to TST, and form the basis of further simplifications in rate expressions.

In the one-dimensional formulation of TST, one assumes knowledge of the FES F (s) in a

one-dimensional reaction coordinate s. For a reaction A ⇌ B, the assumptions above allow

for the following formulation of the rate constant[6, 8]:

kTST
AB =

1

2
⟨|ṡ|⟩‡ exp

(
−β∆F ‡

)
. (2.59)

Here, ⟨|ṡ|⟩‡ is the averaged absolute velocity along s at the transition state and ∆F ‡ = F (s‡)−
FA with s‡ the value of s at the transition state and FA = −β−1 ln

[
l−1
s

∫
A ds exp (−βF (s))

]

the free energy of the reactant well. Derivations of Eq. 2.59 typically commence by formu-

lating an equilibrium constant between the reactant state and an activated complex at the

transition state. From the activated complex, the trajectories are assumed to move to the

product state B at a frequency related to the average velocity along the reaction coordinate.

However, the expression can also be derived directly from the reactive flux formalism as is

shown in Appendix A.3.

If we approximate the free energy near the reactant state A by a harmonic potential

F (s) = F (sA) +
1

2
µsω

2
A(s− sA)

2 for s ∈ A (2.60)

where µs is the effective mass in the reaction coordinate and ωA is the angular frequency,

and, since we assume thermal equilibrium of the dividing surface, we let

⟨|ṡ|⟩‡ ≈ ⟨|ṡ|⟩ =
∫ +∞
−∞ dṡ exp

(
−βµsṡ

2/2
)
· |ṡ|

∫ +∞
−∞ dṡ exp (−βµsṡ2/2)

=

√
2kBT

πµs
(2.61)

where the Maxwell-Boltzmann distribution was used, we obtain:

kTST
AB =

ωA

2π
exp

(
−βF ‡

)
(2.62)

where F ‡ = F (s‡) − F (sA) is the free energy barrier measured from the bottom of state A

(and thus defined differently from ∆F ‡). Eq. 2.62 is often referred to as one-dimensional

harmonic transition state theory or simple transition state theory and corresponds to Eq. 3.5
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in Ref. 8.

Formulations of the TST rate in full dimensional space for a general multidimensional

potential energy surface V (q) have been derived and are available in literature, see for example

Eqs. 3.6 and 3.13 in Ref. 8. For the special case of a nonlinear reaction coordinate coupled

to Ndof orthogonal vibrational degrees of freedom, the rate constant takes the form[110]:

kTST
AB =

1

2π

∏Ndof
i=0 ω

(i)
A∏Ndof

i=1 ω
(i)
‡

exp (−βEb) . (2.63)

Here, ω
(i)
A and ω

(i)
‡ are the angular frequencies in the ith vibrational degree of freedom of the

reactant and transition states respectively, and Eb = V (s‡) − V (sA) is the potential energy

barrier. i = 0 denotes the nonlinear reaction coordinate while all higher indices refer to the

coupled vibrational degrees of freedom.

Using the harmonic partition functions for the reactant and transition state in the classical

limit:

ZA =

Ndof∏

i=0

(
kBT

ℏω(i)
A

)
and Z‡ =

Ndof∏

i=1


 kBT

ℏω(i)
‡


 (2.64)

we can rewrite the TST rate:

kTST
AB =

kBT

h

Z‡

ZA
exp (−βEb) . (2.65)

Assuming equilibrium between reactant and transition state, the corresponding equilibrium

constant can be written in terms of the partition functions, K‡ = Z‡
ZA

exp (−βEb), which

allows the rate constant to be formulated as

kTST
AB =

kBT

h
exp

(
−β∆A‡

)
. (2.66)

where we used the well-known relation between the equilibrium constant and free energy

K‡ = exp
(
−β∆A‡) with ∆A‡ the Helmholtz free energy difference between the transition and

reactant states. Notice the reaction coordinate degree of freedom is excluded in the transition

state partition function in Eq. 2.64 and should thus also be excluded in the transition state free

energy calculation[6]. Care has to be taken not to confuse Eqs. 2.62 and 2.66. The prefactors

differ, and the free energies have been defined in different ways: F ‡ is the free energy barrier

measured from the bottom of the reactant well to the top of the barrier, equivalent to Eb

in full dimensional space, whereas ∆A‡ can be considered the full free energy difference

between reactant and transition states. The prefactor of one equation should not be used in

combination with the exponential factor of the other.

The TST rate equations above have been derived within the realm of classical mechanics

(assumption 1.), and thus do not incorporate effects of quantization such as zero-point ener-

50



gies (ZPE). One approach to incorporate these effects is to substitute the classical partition

functions in Eq. 2.65 by their quantum variants3. The corresponding equation is commonly

referred to as the Eyring equation[28].

To calculate rates using the Eyring equation, geometry optimization algorithms are used

to determine the molecular configurations of the reactant state minimum and transition state

saddle point on the potential energy surface. The quantum partition function analogons in

Eq. 2.65 can then be calculated using a local quadratic approximation for both configura-

tions4, where the frequencies of the vibrational modes are obtained by taking the square root

of the corresponding eigenvalues of the mass-weighted Hessian[114]. Because in principle only

two configurations need to be found and analyzed, it is relatively easy to evaluate Eq. 2.65.

Moreover, it will give surprisingly accurate rate constants whenever the dynamical bottleneck

of the activated process is a clearly distinguishable high saddle on the molecular PES[6]. Con-

sequently, the Eyring equation is frequently used in the quantum chemistry community (see

for example refs. 113,115–117). Evaluation of the Eyring equation and its classical equivalent

(also called the high-temperature limit), as well as the connection between the quantum and

the classical partition functions are described in more detail in Section 3.1 and its supporting

information.

For complicated potential energy surfaces with more rugged energy landscapes, the lo-

cal quadratic approximation around a single reactant state minimum and transition state

saddle point will no longer yield an accurate enough description of the reaction dynamics.

In this case, sampling a free energy profile F (s) in a one-dimensional reaction coordinate

and applying simple TST using Eq. 2.62 might yield a better result. Determining the free

energy as a function of the reaction coordinate F (s), however, generally requires dynamical

calculations in combination with enhanced sampling methods. Notice that simple TST still

uses a harmonic approximation, but only in the reactant state free energy profile along the

reaction coordinate. Furthermore, as potential energy surfaces and corresponding dynamics

become more involved, the fundamental no-recrossing assumption of TST also becomes less

tangible. In the following sections we discuss rate theories improving on the assumptions of

TST.

2.3.5 Kramers’ Theory

Kramers’ rate theory describes chemical reactions as one-dimensional diffusive processes in

reaction coordinate s. A particle of mass µs moves on the free energy surface F (s) starting

3A fully rigorous quantum prescription for determining rate constants necessitates solving the time depen-
dent Schrödinger equation, which is often done by working out the complete state-to-state reactive scattering
problem[35]. Substituting in the quantum partition functions does not suffice for a fully quantum mechani-
cal prescription, as, for example, it does not account for nuclear tunneling[111] important in proton transfer
reactions[5].

4Additionally, the translational, rotational and electronic partition functions will need to be calculated, see
Refs. 112,113.
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from a harmonic reactant well (denoted as state A) moving over a parabolic barrier driven

by the Langevin equation (Eq. 2.2). Let us assume that the minimum of the harmonic well

potential is located at s = sA as in Eq. 2.60 and the barrier is located at s = s‡ = 0, with

sA < s‡ and

F (s) = F (s‡)− 1

2
µsω

2
‡

(
s− s‡

)2
= F (s‡)− 1

2
µsω

2
‡s

2 for s ≈ s‡ , (2.67)

where ω‡ is the angular frequency of the parabolic barrier. At this point, let us consider

the barrier F ‡ = F (s‡)− F (sA) to be significantly larger than the thermal noise, i.e. β−1 ≪
F ‡ so there is separation of timescales between relaxation in reactant state (τmol) and the

escape time (τrxn). We assume the friction coefficient is constant, and additionally presume

a steady-state non-equilibrium flux from state A to state B and vice versa, maintained by

a source which generates a new trajectory every time that the particle crosses the barrier

and is absorbed by a sink at the other side of the barrier [8]. This assumption replaces

the requirement for thermal equilibrium between reactant and transition state in transition

state theory. Under these assumptions, Kramers derived rates kKra
AB for different friction

regimes[6, 8].

1. Weak friction limit. If ξω−1
‡ <

(
βF ‡)−1 ≪ 1, the deterministic forces dominate the

diffusive forces (energy diffusion limited regime), and the energy of the system is almost

constant. Under these conditions, the escape rate from the reactant state A reads

kKra
AB = ξβI(F ‡)

ωA

2π
exp

(
−βF ‡

)
, (2.68)

where we have introduced the abbreviated action variable at energy F ‡,

I(F ‡) =
2πF ‡

ωA
. (2.69)

Notice that for a two-state system, i.e. for a free energy surface with two harmonic

wells, a particle that acquires sufficient energy to escape one well may, on account of

the weak friction, bounce back and forth until it stabilizes in one of either wells. This

will influence the effective rate of transitioning from state A to B, as we do not want

to include escapes from A that end up back in A a short time later. Therefore, the rate

in Eq. 2.68 is commonly multiplied with the probability of ending up in state B once

an escape from A is registered. Expressions can be found in Ref. 8 or alternatively in

Section 3.2 and its supporting information below.

2. Moderate-to-high friction limit. If ξω−1
‡ >

(
βF ‡)−1

, the diffusive forces are

stronger than the deterministic force defined by the free energy function. This is known
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Figure 2.2: Regime of validity of Kramers rate formula (Fig. 15 in Ref. 8).

as the diffusion-dominated regime and the Kramers rate constants is

kKra
AB =

ξ

ω‡



√

1

4
+

ω2
‡

ξ2
− 1

2


 ωA

2π
exp

(
−βF ‡

)
, (2.70)

3. High friction limit. If ξω−1
‡ ≫

(
βF ‡)−1

, then Eq. 2.70 converges to

kKra
AB =

ω‡
ξ

ωA

2π
exp

(
−βF ‡

)
. (2.71)

In the high friction limit, the diffusive forces dominate the deterministic forces (spatial

diffusion limited regime, also shortly called the diffusive regime), and dynamics are

often referred to as being overdamped. In this regime, Langevin dynamics converge

to Brownian dynamics as was explained in Section 2.1.3. Trajectories are propagated

according to Eq. 2.10 while the probability density behaves according to Eq. 2.11a.

Fig. 2.2 summarizes under which conditions the friction regimes hold. Notice that in each

of the friction regimes, the rates (Eqs. 2.68-2.71) are easily expressed as a function of the

simple TST rate of Eq. 2.62:

kKra
AB = κ

ωA

2π
exp

(
−βF ‡

)
= κkTST

AB (2.72)

where κ is referred to as the transmission coefficient and is a number between zero and one.

We remark that in all equations so far, it was assumed the friction and diffusion coefficients

are position independent. Despite the assumption of constant friction, Kramers’ equations

are routinely applied to systems with position dependent friction, in which case the value at

the barrier ξ‡ is used in the rate equations. Evidently this constitutes an approximation of

the true dynamics. Methods which incorporate full diffusion profiles are discussed below.
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2.3.6 Pontryagin Rate

Kramers’ expressions allow for rate calculations over different friction regimes under assump-

tions of parabolic barriers and constant friction coefficients. In the high friction regime

specifically, however, an exact rate expression can be derived for any shape of the barrier

and considering a position dependent friction coefficient. In the high friction limit and for

position dependent diffusion, trajectories are described by Eq. 2.20. From the associated

density evolution in Eq. 2.21, one derives the exact escape rate[118]:

kPon
AB =

{∫ sB

sA

ds′

[
1

D(s′)
eβF (s′)

∫ s′

−∞
ds′′ e−βF (s′′)

]}−1

. (2.73)

In literature, Eq. 2.73 is often quite generically referred to as the formula for mean first

passage time for diffusion over a barrier (which is inverted to get the rate) or the escape rate.

For the sake of clarity, we shall refer to it as the Pontryagin rate equation after Ref. 118.

Inserting the parabolic approximation and assuming constant diffusion in Eq. 2.73 yields

Kramers’ rate equation in the high friction limit (Eq. 2.71).

2.3.7 Grid-Based Models for Discretization of the Fokker-Planck Operator

In grid-based models, the rate matrix Q is estimated directly from the free energy surface and

the diffusion profile of the system[88, 104]. Unlike for MSMs, no calculations of correlation

functions are necessary, and thus no actual trajectories are required.

Using a uniform Voronoi tessellation[88, 104] of configurational space using nc cells, the

rate matrix is obtained from a discretization of the Fokker-Planck operator Q as in Eq. 2.47.

The integral in Eq. 2.47, however, is too high-dimensional to solve directly. Moreover, the

numerator cannot be calculated using correlation functions as was done for the transition

matrix elements in Eq. 2.54. Instead, the Gauss theorem is used to write rates between

neighboring cells as a surface integral over the flux, weighted by the Boltzmann density

of the intersecting surface[88]. This Boltzmann weight between adjacent Voronoi cells Σi

and Σj can be estimated as the geometric average
√
ν(qj)ν(qi), which is why this specific

formulation of grid-based method is referred to as the square-root approximation (SqRA).

Here, ν(q) is the equilibrium distribution and qi and qj are the positions of the centers of

cells Σi and Σj respectively. Furthermore, the flux between cells is assumed to be constant,

i.e. the flux is assumed not to depend on the potential energy but on the discretization of

the space instead. Under sufficiently fine discretization, the rate matrix elements can then

be approximated from the equilibrium probability, the diffusion profile D(q), the area of the

intersecting surfaces between cells Sij , the volume of the cell Vi and the Euclidean distance
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between the centers of the cell hij = ∥qj − qi∥:

Qij =





Dij
Sij

Vihij

√
ν(qj)ν(qi)

ν(qi)
if i ̸= j and cells adjacent

0 if i ̸= j and cells not adjacent

−∑nc
l=1,l ̸=iQil if i = j

(2.74)

where Dij = (D(qj)−D(qi)) /2.

As mentioned, the rate matrix Q has the same eigenvectors as the transition matrix

T(τ) used in MSMs (under Markovian assumptions, see Section 2.3.3). The eigenvalues θi

of the rate matrix are related to those of the transition matrix through θi = − lnλi/τ and

consequently, implied timescales can be calculated directly using Eq. 2.53. The rate matrix

can also be used to estimate microscopic rates directly by introducing a column vector τ j of

size nc containing the mean first passage times τMFPT,i→j from starting cells with centers qi

(with i = 1, . . . , nc) to the cell with center qj . Given the rate matrix Q, the vector τ j solves

the partial differential equation

Q τ j = −1 , (2.75)

subject to the boundary condition τMFPT,j→j = 0 as in Ref. 119. Solving the linear matrix

equation (Eq. 2.75) yields the MFPTs and rates from all cells with centers qi to cell with

center qj

kSqRA
ij =

1

τMFPT,i→j
. (2.76)

In case it is known which cells j belong to the product state B, the boundary condition

can be extended to calculate MFPTs to the full product state. This is done by setting

τMFPT,j→j = 0 for all j belonging to B before solving the linear matrix equation in Eq. 2.75.

If it is also known which cells i belong to the reactant state A, the resulting MFPTs τMFPT,i→j

can be averaged over reactant state equilibrium conditions:

τMFPT,A→B =
∑

i∈A
πA,i τMFPT,i→j (2.77)

where

πA,i = πi/
∑

i∈A
πi . (2.78)

This yields an average time τMFPT,A→B and corresponding rate kSqRA
AB = 1/τMFPT,A→B which

can be compared directly to rates obtained from rare event methods above.
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2.4 Dynamical Reweighting

In the previous Section, methods to estimate rate constants for molecular transitions were

introduced. Some methods required sampling of transitions through direct (unbiased) simu-

lations of the molecular dynamics. Alternatively, methods based in effective dynamics in one

or lower dimensional spaces were presented. These generally required knowledge of the free

energy and diffusion profiles in order to estimate rate constants.

In this Section, we introduce methods to estimate rates obtained from biased molecular

dynamics trajectories. Similar as for the enhanced sampling methods in Section 2.2, biasing

the potential energy function can stimulate transitions and speed up sampling. While for

enhanced sampling methods, this is done to generate a representative ensemble of configu-

rations, the methods introduced here aim to reweight dynamical properties. In other words,

the aim is to determine transition times at the unbiased potential from trajectories generated

at a biased potential (Fig. 1.1).

2.4.1 Infrequent Metadynamics

Infrequent metadynamics[120] (InMetaD) is a method to calculate transition times based on

the related well-tempered metadynamics method introduced in Section 2.2.2. The biasing

potential (Eq. 2.22) is identical in both methods and is given by Eqs. 2.31-2.32. In infrequent

metadynamics, the molecular system is initialized in a state A from which a WTMetaD

simulation is run until a transition to a different state B occurs. At that point, the biased

transition time t̃
(i)
A→B is recorded, where i denotes the index of the InMetaD run. The unbiased

transition time t
(i)
A→B can be estimated by scaling the biased time according to an acceleration

factor α(i)

t
(i)
A→B = α(i) · t̃ (i)

A→B . (2.79)

In other words, the acceleration factor links the biased transition time to the transition time

for the unbiased potential, and can be calculated as follows[57,120,121]

α(i) =
〈
eβU

bias(z,t)
〉
i

(2.80a)

=
1

t̃
(i)
A→B

∫ t̃
(i)
A→B

0
dt eβU

bias(z,t) , (2.80b)

where ⟨ . . . ⟩i denotes ensemble averaging over the trajectory at the biased potential up to

the time of transition t̃
(i)
A→B, as expressed in the time-averaging in the second line. This

expression is derived based on transition state theory (Section 2.3.4) and assumes no bias is

present in the TS region until transition occurs. Consequently, the deposition rate is kept

low during InMetaD runs (i.e. lower than the expected time spent in the TS region). By

combining Eqs. 2.79 and 2.80b, the unbiased transition time can also be expressed as[22,122]
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t
(i)
A→B =

∫ t̃
(i)
A→B

0
dt eβU

bias(z,t) (2.81a)

= ∆t

n
(i)
MD∑

j=1

eβU
bias(z(tj),tj) . (2.81b)

In Eq. 2.81b, the time-integral is written as a sum over the time-discretized steps of the

trajectory, with tj = j∆t the time at the j-th time step and n
(i)
MD the total number of MD

steps to perform the transition t̃
(i)
A→B = n

(i)
MD∆t.

Mean first transition times τMFPT,A→B can be estimated by repeating InMetaD simula-

tions a number MA times (i.e. for i = 1, . . . ,MA) and averaging as in Eqs. 2.41. However,

since escape times from long-lived metastable states are expected to follow Poisson statistics,

more accurate mean transition times can be calculated by fitting the empirical cumulative

distribution function (ECDF) of unbiased transition times to the theoretical cumulative dis-

tribution function (TCDF)[85]

P (tA→B) = 1− exp

(
− tA→B

τMFPT,A→B

)
. (2.82)

for τMFPT,A→B. This has the additional advantage of allowing back-calculation of how well the

ECDF follows a Poisson distribution, by generating a large amount of new data points from

the fitted TCDF and performing a Kolmogorov-Smirnov (KS) test. The KS test estimates

the probability that two sets of data (in this case the original set of calculated unbiased

transition times and the newly generated data set) were produced by the same distribution,

and generally a cutoff p-value of 0.05 is taken in literature[85].

2.4.2 Path Reweighting

Many modern rare event methods are based in a path ensemble description of dynamics[7].

In molecular dynamics, numerical integrators are applied to generate time-discretized paths

x of n+ 1 states

x = (x0,x1, . . . ,xn) (2.83)

where ∆t is the time step of the integrator, xk = (qk,pk) ∈ Γ is the state at time k∆t with

positions qk and momenta pk and T = n∆t is the total simulation time of the path. We

denote the space containing all such possible paths as S = Γn+1. The discussion here is

restricted to paths from stochastic integrators which discretize the equation of motion for

Langevin dynamics.

For an ensemble of paths of length T generated at potential energy function V (q), a path

probability density P [x] = p(x0)P [x |x0] can be defined, where for equilibrium conditions

p(x0) corresponds to the Gibbs-Boltzmann distribution in Eq. 2.5. Due to the Markovian
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property of the Langevin integrators, the conditional probability can be written as

P [x |x0] = P [x1, . . . ,xn|x0] =
n−1∏

k=0

p(xk+1|xk) (2.84)

where the single-step transition probabilities p(xk+1|xk) depend on the choice of Langevin

integrator. The path probability density P[x] is normalized, i.e.

∫

S
DxP [x] =

∫

x0∈Γ

∫

x1∈Γ
· · ·
∫

xn∈Γ
dx0dx1 . . . dxnP [x] = 1 (2.85)

where the discrete path integral
∫
S Dx is introduced. If the path probability density is

available, path expectation values can be calculated for path observables s[x] : S → R as

⟨s⟩ =
∫

x0∈Γ

∫

x1∈Γ
· · ·
∫

xn∈Γ
dx0dx1 . . . dxnP [x] s[x] (2.86a)

=

∫

S
DxP [x] s[x] . (2.86b)

For sufficiently large N , these path expectation values can be calculated by averaging over a

set of paths {x1, . . . , xN} that have been sampled according to P[x]:

⟨s⟩ = lim
N→∞

1

N

N∑

r=1

s[xr] . (2.87)

The aim of path reweighting (also called Girsanov reweighting[23, 26, 87]) is to reweight

path probabilities for trajectories at a simulation potential Vsim(q) to probabilities for the

same trajectories at a target potential

Ṽtar(q) = Vsim(q) + U(q) (2.88)

where U(q) will be referred to as the perturbation potential.5 If the ratio of the respective

path probabilities is known, expectation values for path observables can be estimated at a

target potential from trajectories generated at a simulation potential. The ratio of probabili-

ties can be split up into what can roughly be considered a thermodynamical and a dynamical

part

P̃ [x]

P [x]
=

p̃(x0)

p(x0)
· P̃ [x |x0]

P [x |x0]
= g(x0) ·M [x |x0] (2.89)

5Notice that notation of the target potential in Eq. 2.88 is similar to that of the biased potential for
enhanced sampling in Eq. 2.22. This is done in order to follow convention from literature in both cases. Care
needs to be taken, however, since, while conceptually similar, in certain cases interpretation might differ. If the
sole purpose is to employ enhanced sampling to speed up transitions, the simulation potential often includes
a bias in the reactant state, and thus corresponds to the biased potential in enhanced sampling. In this case,
the target potential corresponds to the unbiased potential, while the perturbation potential is the negative of
the biasing potential U(q) = −Ubias(q).
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Integrator ∆ηk Reference

Euler-Maruyama
√

∆t
2kBTξm∇U(qk) Ref. 26

ISP
√

1
kBTξ2m

1−exp(−ξ∆t)√
1−exp(−2ξ∆t)

∇U(qk) Ref. 27

Table 2.1: Formulations of ∆ηk for different integrators.

where for thermal equilibrium conditions

g(x0) =
p̃(x0)

p(x0)
=

Zq

Z̃q

e−βU(q0) . (2.90)

Notice the thermodynamical reweighting factor g(x0) is the same as the one used for reweight-

ing thermodynamic ensemble averages (Eqs. 2.24-2.26).

The conditional path probability ration M [x |x0] depends on the dynamical properties

of the system and consequently on the integrator used to generate the path. The conditional

path probability ratio for the Euler-Maruyama scheme[3, 24] for overdamped Langevin dy-

namics has been reported many times[24–26, 87, 123, 124]. More recently, an expression for

M [x |x0] has been derived for a specific integrator[125] for underdamped Langevin dynam-

ics[27].

The relative conditional path probability density can be expressed[26] in terms of the

random numbers ηk of the integrator as well as the random number difference[27] ∆ηk which

depends on the gradient of the bias ∇U(qk):

M [x |x0] =
P̃ [x |x0]

P [x |x0]
= exp

(
−

n−1∑

k=0

ηk ·∆ηk

)
· exp

(
−1

2

n−1∑

k=0

(∆ηk)
2

)
. (2.91)

This formulation allows for easy on-the-fly calculation of reweighting factors by recording

ηk and ∆ηk during simulation at the simulation potential. The expression for the random

number difference ∆ηk depends on the stochastic integrator. Expressions derived for the

Euler-Maruyama integrator for overdamped Langevin dynamics and for the ISP integrator

for underdamped Langevin dynamics are shown in Tab. 2.1.

If reweighting factors g(x0) and M [x |x0] are accessible, path expectation values can be

reweighted

⟨̃s⟩ =
∫

Dx P̃[x]s[x] =

∫
Dx g(x0)M [x |x0]P[x]s[x] . (2.92)

In other words, if path space has been sufficiently sampled, path expectation values at a

target potential Ṽ can be calculated from trajectories generated at a simulation potential

V . In case we have a sufficiently large set of paths {x1, . . . , xN} at simulation potential,
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i.e. according to P[x], target path expectation values can be calculated as:

⟨̃s⟩ = lim
N→∞

1

N

N∑

r=1

g(xr,0)M [xr |xr,0] s[xr] (2.93)

where g(xr,0)M [xr |xr,0] is the relative weight of path xr at target potential Ṽ with xr,0 the

paths starting state.

The Girsanov reweighting factors can readily be used to reweight the transition matrices

from Markov state models described in Section 2.3.3. Notice the correlation function in the

numerator of Eq. 2.54 can be rewritten using path probability formulations as

ccorr
ij (τ) =

∫

S
Dxχj (q(τ)) · P[x] · χi (q(0)) (2.94)

where integration happens over all paths x of length τ . Applying Eq. 2.87 retrieves Eq. 2.56.

The correlation function can consequently be reweighted to a target potential Ṽ using the

reweighting factors

c̃ij
corr(τ) =

∫

S
Dxχj (q(τ)) · P̃[x] · χi (q(0)) (2.95a)

=

∫

S
Dxχj (q(τ)) · g(x0)M [x |x0]P[x] · χi (q(0)) (2.95b)

which as in Eq. 2.93, can be written as

c̃ij
corr(τ) = lim

N→∞

1

N

N∑

r=1

g(xr,0)M [xr |xr,0]χi (qr,0)χj (qr,τ ) . (2.96)

qr,0 and qr,τ are the positions of the initial and final states of path xr, i.e. the positions

at time 0 and τ respectively. In practice, paths are often sampled from a long equilibrium

trajectory by counting transitions from cell i to cell j in a lag time τ and building a count

matrix as in Eq. 2.57. Notice that an equivalent strategy can be used here, providing that

each count has to be weighted by the relevant weighting factor. For a long trajectory of nMD

time steps, the reweighted count matrix takes form

C̃ij =

nMD−l∑

k=1

g(xk)M [xτk |xk]χi (qk)χj (qk+l) (2.97)

where τ = l∆t with ∆t the time step, and xτk = (xk,xk+1, . . . ,xk+l) the part of the long

trajectory starting at time k∆t and ending at (k+ l)∆t = k∆t+τ . The reweighted transition

matrix can then be calculated by row normalizing as in Eq. 2.58.

Girsanov reweighting has been used in combination with the continuum path ensemble

maximum caliber approach to formulate new force field optimization strategies[126] as well

as in a new slow CV discovery method[127].
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Summary

Retinal proteins are light-sensitive membrane proteins that serve as key components in vi-

tal biological processes such as vision or bacterial phototaxis[15]. In general these proteins

consist of a retinal chromophore surrounded by seven trans-membrane helices. Upon photo-

absorption, a fast trans-cis isomerization in the retinal initiates structural changes guiding

the protein through functional states. Thermal back-isomerization returns the protein to its

dark state, a slower process with timescales ranging from seconds to hours[19–21].

In this paper, we study reaction mechanisms and corresponding rate constants of thermal

isomerization over the C13=C14 double bond of the retinal cofactor (Fig. 1 in the article).

We focus on two retinal analogues at 300K in the gas phase. The Born-Oppenheimer (BO)

potential energy surface (PES) is modeled by the self-consistent-charge density functional

tight-binding (DFTB) method[128], while density functional theory (DFT) with the B3LYP

functional[129, 130] and 6-31G* basis set[131] is included as a reference. Despite being com-

putationally efficient, DFTB has been demonstrated to be reasonably accurate in modeling

retinal analogues[132–134]. Leveraging DFTB, ab-initio molecular dynamics (MD) simula-

tions with timescales in the order of hundreds of nanoseconds become accessible, enabling

application of dynamical sampling-based approaches for estimating free energy surfaces and

rate constants.

Thermal cis-trans isomerization in the retinal analogues in the gas phase is expected

to align well with the assumptions of transition state theory (TST). Therefore, within its

level of theory, Eyring TST is anticipated to provide accurate rate constants that can serve

as a benchmark for dynamical sampling-based approaches. Additionally, identifying the

transition state configuration is expected to be achievable at both the DFT level and DFTB

levels, facilitating the comparison of TST rates between these methods. This enables the

exploration of the following research questions:

1. How do rate constants compare between potential energy surfaces obtained from DFT

and DFTB?

2. How do rate constants estimated from dynamical sampling compare to those from

Eyring TST?

Previous studies have examined potential energy barriers for cis-trans isomerization in

the retinal analogues using both DFT and DFTB methods[132,133], with their findings well

reproduced in the study here. Roughly, DFTB underestimates potential energy barriers

by approximately 5 to 10 kJ/mol compared to DFT. This translates in Eyring TST rates

being one to two orders of magnitude higher for DFTB (2× 10−4 s−1) as compared to DFT

(2 × 10−5 s−1).1 In addition to Eyring TST where rates are calculated using the quantum

1Rates between brackets are given for cis-to-trans isomerization in pSb5 and serve as an example. Similar
trends are seen in trans-to-cis rates as well as for rates in pSb1, see Tabs. 2 and 3 in the paper.
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partition functions, rates can also be calculated in the high-temperature limit formulation

of TST (Eq. 2.63), see Section 2.3.4. Rates in the high-temperature limit are consistently

around three times lower (6×10−5 s−1 for DFTB) than those obtained from Eyring TST. The

error stemming from the high-temperature limit thus is small compared to the uncertainty

arising from the model of the PES.

Rate constants from dynamical sampling are computed using two main approaches. In the

first approach, infrequent metadynamics runs are carried out biasing the C13=C14 dihedral

angle φ. Rates from infrequent metadynamics (1× 10−4 s−1) are found to match rates from

TST in the high-temperature limit very well. In a second approach, enhanced sampling

techniques are used to sample the free energy and diffusion profiles along φ. Rates are then

computed by Kramers’ equation (2 × 10−1 s−1) and Pontryagin’s equation (3 × 10−1 s−1).

Remarkably, rates obtained through these methods are several orders of magnitude higher

than those derived from TST. This is a more considerable difference even than the uncertainty

due to the model of the PES.

In both MD simulations employing DFTB and constrained optimizations at the DFT level,

we observe neighboring dihedral angles to be correlated to φ. Particularly notable is the out-

of-plane wagging of substituents on the C13 and C14 atoms. These observations suggest that

the isomerization mechanism involves a coordinated motion beyond mere rotation around φ.

Hence, relying solely on φ as a one-dimensional reaction coordinate may not be sufficient to

accurately describe the reaction dynamics. Effective dynamics-based methods heavily rely on

the definition of the reaction coordinate, which could contribute to the observed disparities

in rate calculations. This is investigated in more depth in the next section.
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Abstract

For a detailed understanding of chemical processes in nature and industry, we need

accurate models of chemical reactions in complex environments. While Eyring transi-

tion state theory is commonly used for modeling chemical reactions, it is most accurate

for small molecules in the gas phase. A wide range of alternative rate theories exist that

can better capture reactions involving complex molecules and environmental effects.

However, they require that the chemical reaction is sampled by molecular dynamics

simulations. This is a formidable challenge since the accessible simulation timescales

are many orders of magnitude smaller than typical timescales of chemical reactions. To

overcome these limitations, rare event methods involving enhanced molecular dynam-

ics sampling are employed. In this work, thermal isomerization of retinal is studied using

tight-binding density functional theory. Results from transition state theory are com-

pared to those obtained from enhanced sampling. Rates obtained from dynamical

reweighting using infrequent metadynamics simulations were in close agreement with

those from transition state theory. Meanwhile, rates obtained from application of

Kramers' rate equation to a sampled free energy profile along a torsional dihedral

reaction coordinate were found to be up to three orders of magnitude higher. This

discrepancy raises concerns about applying rate methods to one-dimensional reaction

coordinates in chemical reactions.

K E YWORD S

DFT, DFTB, Kramers, metadynamics, rate theory, retinal, square-root approximation, umbrella
sampling

1 | INTRODUCTION

Precise models of chemical reactions, encompassing reaction mecha-

nisms and precise rate constants, are critical for a nuanced under-

standing of reactions occurring in nature, laboratory experiments, and

industrial processes. Yet, computational models of chemical reactions

remain challenging, because the transition state of a reaction has to

be calculated using a highly accurate model of the Born-Oppenheimer

potential energy surface (PES). This usually involves evaluating the

electronic structure and explicitly calculating the electronic energy at

each nuclear configuration. Thus, the current standard to calculate

reaction rate constants remains Eyring transition state theory (TST),1

which requires only calculations at a few select points along the PES.

However, Eyring TST makes strong assumptions for the shape of the

PES and the dynamics on this PES and is therefore limited to small to

medium sized systems in the gas phase.

Eyring TST defines the transition state as a saddle point on the

PES, assumes an equilibrium between reactant state A and transition
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state TS and models the PES at A and TS by a harmonic approxima-

tion.2 The dynamics of the nuclei are treated quantum mechanically. The

most prominent error source is the accuracy of the energy barrier, which

enters the equation for the rate exponentially. But the assumptions are

easily violated if (i) the saddle point of the PES does not coincide with

the bottleneck of the reaction (i.e., the free energy maximum along

the optimal reaction coordinate), (ii) the PES at A or at TS is anharmo-

nic, (iii) the reaction coordinate has a strong curvature in the configu-

rational space, or (iv) the reactant state exhibits multiple minima.

These violations occur in systems with many degrees of freedom,

in particular if these degrees of freedom are very mobile. Then the reac-

tant state may comprise multiple molecular conformations and various

vibrational modes may couple to the reactive vibrational mode. The sit-

uation is further complicated if the reaction occurs in solution or if the

reactants otherwise strongly interacts with their environment, for

example, in a catalysed reaction. To model reactions for these systems,

one shifts to a classical description of the nuclear dynamics and samples

the reaction using molecular dynamics (MD) simulations.3

The simplest estimator for a reaction rate constant from a MD simu-

lation is to count the number of transition from reactant state A to prod-

uct state B. However, since the accessible simulation times are orders

of magnitude smaller than the mean first passage times even of very

fast reactions, one uses enhanced sampling protocols to increase the

statistics. A wide variety of methods to recover accurate rate con-

stants and mechanisms from these sped-up simulations have been

proposed.2,4 They broadly fall into two categories: (i) dynamical

reweighting methods5 sample the reaction on a biased PES and

reweight the transition count, (ii) reaction coordinate based methods

define a one-dimensional reaction coordinate s6 and calculate the rate

constant from an effective dynamics on this reaction coordinate.

Besides the definition of a reaction coordinate, the second approach

involves the calculation of the free energy surface (FES)7 and diffusion

profile8 via MD simulations.

Kramers' rate theory9 is the most prominent example for this second

approach. It assumes separation of timescales and models the FES at A

and TS by a harmonic approximation. These two assumptions may be

relaxed by using Pontryagin's rate theory.10 In both cases, the dynam-

ics are modelled by a stochastic classical equation of motion. Infre-

quent metadynamics11 is an example for the first approach. The

method assumes separation of timescales, but does not use a har-

monic approximation. The dynamics are modelled and simulated in

the full configurational space using either a deterministic or a stochas-

tic classical equation of motion.

Owing to recent progress in electronic structure calculations12–14

and quantum mechanics/molecular mechanics approaches,15 the devel-

opment of reactive force fields,16 and the emergence of neural network

potentials,17 chemical reactions will increasingly be modeled through

simulations rather than through Eyring TST. Thus, models of chemical

reactions in large molecular systems with complex environments come

within reach. However, moving from Eyring TST to sampling-based rate

estimates involves a considerable reconstruction of the theoretical

foundation through which the reaction is modelled. Most importantly,

the quantum mechanical description of the nuclear degrees of freedom

is replaced by a classical approximation. Furthermore, the search for a

transition state TS is replaced by a statistical estimate of the transition

count (first approach) or by the search for an optimal reaction coordi-

nate. It is not obvious how these changes influence the accuracy with

which the reaction rate constant can be determined.

The first aim of this study is to explore and to quantify the

influence of these approximations on the estimate of a reaction

rate constant. As test reactions we choose the thermal cis-trans

isomerization in two analogues of retinal: pSb5 and pSb1

(Figure 1). When modelled in vacuum, the thermal cis-trans isomer-

ization over a C=C double bond fulfills the assumptions of Eyring

TST well. Additionally, it is an unimolecular reaction, so that the

encounter complex of the reactants does not need to be modelled.

Thus for this specific system, we expect that Eyring TST yields an

accurate rate constant, which can serve as a reference for more

approximate TST models or for sampling-based approaches. On the

other hand, the reaction energy barrier is high and the two mole-

cules are large enough for non-trivial coupling between vibrational

modes, so that the two test systems pose a reasonable challenge

for sampling-based approaches.

Extensive literature has addressed the precise modeling of the

potential energy surface (PES) for the cis-trans isomerization in

retinal,18 as well as for retinal analogues.19–21 We here model the PES

by self-consistent-charge density-functional tight-binding method

with a third-order expansion of the total energy around a reference

density (DFTB3)12,22 and include density functional theory (DFT)23,24

as a reference. This allows us to explore the sensitivity of the reaction

rate constant to variations in both the rate model and the underlying

PES. Thus, as a second aim of the study, we ask whether the precision

of the activation energy is indeed the most pivotal parameter when

calculating a reaction rate constant.

2 | THEORY

We here summarize the rate theories used in this study. For a more

in-depth exploration of rate theories, please refer to References 2, 4,

and section I of the supplementary material.

(A)

(B)

(C)

F IGURE 1 Structures of retinal compounds: (A) Retinal cofactor
attached to lysine chain, (B) pSb5 and (C) pSb1.
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2.1 | Eyring TST

The cis-trans isomerization around a C=C double bond is a unimole-

cular reaction

A!kAB B, ð1Þ

which, according to the theory of the activated complex, is mod-

eled as

A ⇌ AB‡ !B ð2Þ

where A is the reactant state, B is the product state and AB‡ is the

activated complex. The critical assumption in Equation (2) is

that reactant and transition state configurations are in equilib-

rium. Eyring TST1 models this equilibrium by statistical thermo-

dynamics and arrives at the following equation for the reaction

rate:2,4

kEyrAB ¼RT
h

~qAB‡

qA
exp � Eb

RT

� �
ð3aÞ

¼RT
h

exp �ΔF‡

RT

� �
ð3bÞ

where R is the ideal gas constant, T is the temperature, and h is the

Planck constant in molar units. See section I of the supplementary

material.

The free energy difference ΔF‡ between the AB‡ and A can be

calculated from the molecular partition function at the transition state

~qAB‡ and the molecular partition function at the reactant state qA:

ΔF‡ ¼ Eb�RT ln
~qAB‡

qA

� �
ð4Þ

where Eb is the potential energy barrier, that is, the potential energy

difference between the reactant minimum and the maximum of the

energy barrier. The partition functions are calculated relative to

the electronic ground state energy of the respective configurations.

The tilde symbol in ~qAB‡ indicates that, for AB‡, the vibrational contri-

bution corresponding to the reaction coordinate is excluded in the

free energy calculation.

We calculate and report potential and free energies in units of

Jmol�1, correspondingly the thermal energy is also reported as a

molar quantity: RT. If units of energy are used for potential and free

energies, R should be replaced by the Boltzmann constant kB ¼R=NA

in Equations (3) and (4) and all of the following equations. NA is the

Avogadro constant.

The molecular partition functions are determined by separat-

ing their translational, rotational, vibrational and electronic

degrees of freedom. Each part is treated using appropriate quan-

tum mechanical models, that is, particle-in-a-box for translational,

rigid rotor for rotational and harmonic oscillator for vibrational

degrees of freedom. In the case of a unimolecular reaction, the

contributions of the translational degrees of freedom to the

free energy difference in Equation (4) will cancel. We assume

qel ¼1 for all situations, that is, the electronic ground state energy

level is non-degenerate, and any contributions from higher electronic

states can be ignored. With these approximations, the free energy

difference (Equation 4) of the cis-trans isomerization can be decom-

posed as

ΔF‡ ¼ EbþΔFrotþΔFvib ð5Þ

where

ΔFrot ¼�RT ln
qAB‡ ,rot

qA,rot

� �
ð6aÞ

ΔFvib ¼�RT ln
~qAB‡ ,vib

qA,vib

� �
ð6bÞ

define the rotational and vibrational free energy difference. qA,rot and

qAB‡ ,rot are the rotational partition functions of A and AB‡. qA,vib and

~qAB‡ ,vib are the vibrational partition functions of A and AB‡, where the

tilde symbol indicates that the reactive vibrational mode has been

excluded from vibrational partition function of AB‡. See section I of

the supplementary material.

2.2 | High-temperature TST

If the thermal energy RT is large compared to the energy difference of

the vibrational states, the following high-temperature approximation

to Eyring TST may be used

kEyrAB ≈ khtAB ¼
Q3N�6

k¼1 νA,kQ3N�6
k¼1,k ≠ rνAB‡ ,k

exp � Eb
RT

� �
ð7Þ

where the frequencies νA,k and νAB‡ ,k correspond to the harmonic fre-

quencies at the reactant and transition state respectively. Note that

the frequency of the reactive vibrational mode νAB‡ ,r is excluded from

the product.

Equation (7) can be brought into the form of Equation (3b) by

setting

ΔF‡ ≈ΔF‡,ht ¼ Eb�RT ln
~qhtAB‡ ,vib

qhtA,vib

 !

¼ EbþΔFhtvib

ð8Þ

where ~qhtAB‡ ,vib and qhtA,vib are the high-temperature approximations to

the vibrational partition functions of A and AB‡. In deriving Equa-

tions (7) and (8), one assumes that the moments of inertia of the reac-

tant and TS configuration are approximately the same and thus the

rotational contribution to the ΔF‡ is negligible. Additionally, one

neglects the vibrational zero-point energy and takes the continuum
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limit of the vibrational partition function. See section I of the supple-

mentary material.

The high-temperature TST can also be derived by treating the parti-

tion functions in Equations (3a) and (4) classically and using a harmonic

approximation for the PES. See section I of the supplementary material.

Equations (7) and (8) thus constitute the link between a quantum

mechanical and a classical treatment of the activated complex.

2.3 | Infrequent metadynamics

A statistical estimate for the reaction coordinate rate constant is

obtained via the mean first-passage time τAB

kAB ¼ 1
τAB

, ð9Þ

where τAB is the average time it takes for the system to reach the

product state B from the reactant state A. The relation between kAB

and τAB stated in Equation (9) relies on a separation of timescales

between the timescale of equilibration within A and the much slower

timescale of equilibration between A and B. From MD simulations on

the PES VðxÞ, where x is the molecular configuration, τAB can be calcu-

lated as the arithmetic mean of the first-passage times from A to B.2

However, a better statistical accuracy is obtained by fitting a the

cumulative distribution function of a Poisson process25

PðτAB,iÞ¼1� exp �τAB,i
τAB

� �
ð10Þ

to the cumulative distribution histogram of these fist passage times. In

Equation (10), τAB,i is the i first-passage time observed in the simula-

tion and τAB is the MFPT and acts as a fitting parameter, which is

inserted into Equation (9) to obtain the reaction rate.

Infrequent metadynamics11 is a method to calculate transition

times for systems in which the mean first-passage times is larger than

the accessible simulation time. The molecular system is prepared in

the reactant state A and a time dependent bias function Uðx,tÞ is

introduced that increases in strength as the simulation proceeds and

pushes the system over the barrier into state B. One terminates the

simulation and records the biased transition time τInMetaD
AB,i , where i is

the index of the infrequent metadynamics simulation. Each acceler-

ated first-passage time is then reweighted to the corresponding physi-

cal first-passage time by a discretized time-integral over the length of

the trajectory11,26–28

τAB,i ¼Δt
XTi

k¼1

exp
Uðxi,k ,kΔtÞ

RT

� �
, ð11Þ

where Δt is the time step of the trajectory, Ti is the total number of

time steps in the ith trajectory, xi,k is the kth configuration in this tra-

jectory, and t¼ kΔt is the corresponding time. This reweighting

assumes that no bias has been deposited on the transition state,

which is approximately ensured by the slow deposition of the infre-

quent metadynamics protocol.29

Equation (11) is derived from the Equation (3b), that is, the

method assumes that the reaction proceeds via an activated com-

plex. In contrast to Eyring TST, partition functions qA and qAB‡ are

treated classically. The derivation considers a statistical estimate of

qAB‡=qA from MD simulation data, which has the advantage that no

harmonic approximation is needed. See section I of the supplementary

material.

2.4 | Reaction coordinate based rate theories

In reaction coordinate based rate theories, one assumes that the sys-

tem evolves according to a diffusive dynamics along a reaction coordi-

nate sðxÞ. This approach requires the free energy surface (FES) along

sðxÞ, which is defined as:2

FðsÞ¼�RT lnπðsÞ ð12Þ

where πðsÞ is the equilibrium distribution in s:

πðsÞ¼Z�1
x

ð
Γx

dx exp �VðxÞ
RT

� �
δ sðxÞ� sð Þ: ð13Þ

Zx the configurational partition function, Γx is the configurational

space, and δ sðxÞ� sð Þ is the Dirac delta function.

The interaction of the internal degrees of freedom with the effective

dynamics along s is modelled as a thermal bath, that is, by a friction

and random force which are balanced by the Einstein relation. The

friction force can be scaled by a friction coefficient or collision rate ξ

(with units time�1).

The following two rate theories assume separation of timescales

which can be quantified in terms of the FES as F‡AB �RT, where

F‡AB ¼ FðsAB† Þ�FðsAÞ is the difference of the FES between the FES

minimum in the reactant state and the maximum of the free energy

barrier. We remark that the location of the free energy maximum sAB†

does not necessarily coincide with a saddle point in the PES.

In Kramers' rate theory,2,4,9 the reactant and product state, as

well as the maximum of the FES are modelled using a harmonic

approximation of the FES around these extrema. In the medium-

to-high friction regime, one obtains the following analytical expression

for the reaction rate constant

kKraAB ¼ ξ

ω‡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þω2

‡

ξ2

s
�1
2

0
@

1
AωA

2π
exp �F‡AB

RT

� �
ð14Þ

where ωA is the angular frequency of the harmonic approximation in

the reactant state A, and ω‡ is the angular frequency of the harmonic

approximation at the maximum of the free energy barrier.

By relaxing the harmonic approximation one obtains Pontryagin's

expression for the rate constant:10

GHYSBRECHT AND KELLER 1393

 1096987x, 2024, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27332 by Sim

on G
hysbrecht - Freie U

niversitaet B
erlin , W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



kPonAB ¼
ðsB
sA

ds0 1
Dðs0 Þe

βFðs0 Þ
ðs0
�∞

ds00 e�βFðs00 Þ
" #( )�1

ð15Þ

where β¼1=RT, and DðsÞ¼ RT
μqξðsÞ. DðsÞ is the position dependent diffu-

sion profile, which arises from the position dependent friction coeffi-

cient ξðsÞ. μq is a effective molar mass. DðsÞ can be estimated form

MD simulations following Reference 8. Note that, while Equation (14)

is valid in the intermediate and in the high friction regime,

Equation (15) is only valid in the high friction regime, where the

effective dynamics can be modelled by overdamped Langevin

dynamics. Equation (15) is often quite generically referred to as the

formula for the mean first-passage time (MFPT) for diffusion over a

barrier (which is inverted to get the rate) or the escape rate. For the

sake of clarity, we shall refer to it as the Pontryagin rate equation

after Reference 10.

The assumptions of the reaction rate models introduced in this

section are summarized in Table 1. We remark that all sampling-based

approaches use the high-temperature approximation, and that infre-

quent metadynamics needs a reaction coordinate to apply the bias,

but not for the actual estimate for the rate constant.

3 | MODEL SYSTEMS AND POTENTIAL
ENERGY SURFACE

pSb5 and pSb1 (Figure 1B,C) are model compounds for retinal. In pro-

teins, retinal is covalently linked to a lysine side chain via a protonated

Schiff base (Figure 1A). In pSb5 (naming following Reference 18), the

β-ionone ring and methyl substituents as well as the lysine chain have

been removed. In pSb1 (naming following Reference 18), the β-ionone

ring and methyl substituents remain but the lysine chain has been

replaced by a methyl group. Both compounds have been used as

models for retinal in previous studies.18–20,30–34

Our goal is to evaluate various rate theories for two model com-

pounds on a specific potential energy surface. Here, we outline our

selection of the electronic structure method for PES calculation. Even

though most computational models emphasize photo-isomerization in

electronically excited states, our focus centers on the thermal isomeri-

zation within the electronic ground state.

A critical point in modelling the thermal isomerization is the

highly correlated π-electron system along the retinal polyene chain,

which allows for two possible pathways for the cis-trans isomeriza-

tion. In the first pathway, the double bond is broken homolytically

when the torsion angle reaches ca. 90 degrees, creating a transition

state with diradical character. In the second pathway, cis-trans isom-

erization over the double bond occurs through charge transfer, with

the electrons moving towards the protonated imine in the transition

state.

From quantum chemical methods that account for dynamic elec-

tron correlation, there is little consensus as to whether cis-trans isom-

erization in molecules with three conjugated double bonds proceeds

via a charge-transfer or a diradical mechanism.21,35–37 However, DFT

studies of retinal and related systems18,20,32–34 conclude that the

isomerization over double bonds in the polyene chains proceeds

through a charge-transfer pathway if the Schiff-base is protonated.

Since both pSb5 and pSb1 feature a protonated Schiff-base, the

charge-transfer pathway seems to be a reasonable assumption for the

isomerization of the C13=C14 double bond in our model compounds.

In a charge-transfer pathway, electrons stay paired (closed-shell) dur-

ing isomerization, and we thus do not necessarily need an electronic

structure method that models unpaired electrons.

Ab-initio MD simulations of the thermal isomerization in retinal

at the level of DFT are limited to simulation times in the order 1 ns

to 10 ns, which is not enough to converge a free energy surface. An

alternative is the self-consistent-charge tight-binding density-

functional method (DFTB),12,22 whose computational cost is 2–3

orders of magnitude lower than DFT, thus giving access to much

longer simulation timescales. DFTB is an approximation to DFT

based on expansion of the total energy around a reference

density,22 where DFTB312 includes the third order of the expansion.

Even though spin polarization has been introduced for DFTB,38–40

most applications are based on restricted DFT and cannot model

unpaired electrons.

For retinal compounds, DFTB-predicted structures are in good

agreement with NMR experiments.41 Relative to DFT, DFTB yields a

reasonable description of the torsional properties of retinal not only in

the gas phase,34 but also in the protein environment.18,42,43 Torsional

barriers for the C13=C14 bond in retinal compounds are slightly

TABLE 1 Overview of the model assumptions for different reaction rate models.

Equation

Activated

complex

Separat. of

timescales

Harmonic

approx. High T

QM versus

CM

TS versus

RC Sampling

Further

assumptions

Eyring TST 3b ✓ — ✓ — QM TS —

High T TST 7 ✓ — ✓ ✓ QM/CM TS —

InMetaD 11 ✓ ✓ — ✓ CM (RC) ✓ Poisson statistics

No bias on TS

Pontryagin 15 — ✓ ✓ ✓ CM RC ✓ High friction

Kramers 14 — ✓ — ✓ CM RC ✓ Medium-to-high friction

Abbreviations: CM, classical mechanics; QM, quantum mechanics; RC, reaction coordinate; TS, transition state.
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underestimated (about 2 kcalmol�1) when using DFTB as compared

to DFT/B3LYP.

More approximate potential energy functions, including

semi-empirical methods such as AM1 or PM3, overestimate the delo-

calization more dramatically than DFTB.34 In empirical force fields, the

delocalization can be modelled by imposing the bond lengths along

the polyene chain. But since these potential energy functions use

fixed partial atomic charges, they are not well suited to describe the

charge-shift in the polyene chain during the isomerization, and conse-

quently the isomerization is highly sensitive to the choice of these

charges.

Since DFTB strikes a suitable balance between the accuracy of

the potential energy function and the computational cost of conduct-

ing ab-initio MD simulations, we use will use it in our simulations. For

rate theories that do not require sampling, we include calculations at

the level of unrestricted DFT/B3LYP/6-31G* for comparison to a

higher level of theory.

4 | RESULTS

4.1 | Free energy surface and diffusion profile

The potential energy functions of pSb5 and pSb1 are high-

dimensional functions of 72 and 156 internal degrees of freedom,

respectively. With MD simulations, one can characterize these high-

dimensional energy functions in more manageable, lower-dimensional

collective variable spaces using free energy surfaces (FES) and diffu-

sion profiles.

Figure 2 shows the FES (Equation 12) along the C13=C14 torsion

angle φ, as estimated from umbrella sampling44 (US) and well-

tempered metadynamics29,45 (MetaD) simulations using ab-initio MD

with the DFTB3 method. The line thickness shows the statistical error

in the estimated FES.

A full rotation around φ yields two barriers which, as expected,

have the same absolute height. The vertical rotational barriers are

F‡t!c ≈89 kJmol�1 and F‡c!t ≈81 kJmol�1 for pSb5 and

F‡t!c ≈79 kJmol�1 and F‡c!t ≈75 kJmol�1 for pSb1 (both from

MetaD1 in Figure 2). The rotational barrier in pSb5 is slightly higher

than in pSb1, because the tertiary C13 in pSb1 stabilizes the positive

charge at the charge-transfer transition state better than the second-

ary C13 in pSb5.19,20 As usual for a carbon double bond, the trans

state at φ¼ π rad is slightly more stable than the cis state at φ¼0 rad,

however the stabilization is larger in pSb5 (9:43�1:20 kJmol�1) than

in pSb1 (2:70�1:23 kJmol�1). A possible explanation might be that in

the trans state of pSb1, the methyl group at C13 sterically interacts

with the hydrogens at C15, which destabilizes this conformation.

The effective dynamics along a reaction coordinate are suitably

modelled by stochastic dynamics with position dependent diffusion

constant. The dependence of the diffusion constant on the collective

variable is due to the dynamics in the orthogonal degrees of freedom

and due to the curvature of the collective variable. The diffusion pro-

file in Figure 2 show the form that is expected for a dihedral angle

rotations. Note that the estimate of the diffusion constant fails in the

barrier region, because of the sharpness of the barriers.

In pSb1, umbrella sampling and metadynamics yield essentially

the same FES for various parameter settings (Figure 2B). By contrast,

estimates of the FES for pSb5, and especially the relative stability of

the cis state, depends on the method that is used to construct the

FES and on the parameter settings (Figure 2A). Additionally, the meta-

dynamics simulations converge much slower for pSb5 than for pSb1.

Convergence of the metadynamics simulation can be checked by

monitoring the estimated free-energy difference between cis and

trans state ΔF as function of simulation time (Figure 3A), or by moni-

toring average errors in block analysis46 as a function of block size

(Figure 3B).

The kinks in the lines in Figure 3A correspond to transitions

between cis and trans state during the metadynamics build-up. The

larger and less frequent kinks in the simulations for pSb5 compared to

those for pSb1 imply that the bias builds up within one state longer

before moving to the other. Slow convergence can be caused by cor-

related motion in degrees of freedom orthogonal to the biased coordi-

nate, which in this case is the C13=C14 dihedral φ.

4.2 | Correlated degrees of freedom

Using MD simulations, correlation between various collective vari-

ables can be assessed. In the case of pSb1, previous research in

Ref. 18 documented correlations between the C13=C14 dihedral angle

and adjacent dihedral angles along the minimum energy path, that

is, at 0K. In Figure 4, the correlations at 300K are presented for both

pSb5 and pSb1. These correlation plots were generated from US sim-

ulations, with each color in the plot representing a different umbrella

potential. Crosses represent the minimum energy path calculated at

unrestricted DFT/B3LYP/6-31G*.

The MD simulations at DFTB3 follow closely the B3LYP/6-31G*

minimum energy path, which substantiates that DFTB faithfully repre-

sents the DFT-PES of these two molecules. However, there is consid-

erable thermal fluctuations around the minimum energy path. For the

single-bond dihedrals C12-C13 and C14-C15, the spread is �0:4 rad

(≈ �23degrees), whereas for the improper torsions the spread is

�0:2 rad (≈ �11degrees). Overall, we find that the correlation

extends to the neighboring single bond, but not to the improper dihe-

drals at C12 and C15. We observed a certain level of correlation to the

C15-N double bond along the minimum energy paths. However, this

correlation is obscured by thermal fluctuations at 300K (see Figure S1

in the supplement).

The most remarkable feature of the correlations plots are the sud-

den jumps at the transition states (φ¼þπ=2 rad and φ¼�π=2 rad).

The improper dihedral angles at C13 and C14 represent the planarity at

these sp2-carbon atoms, with χ¼0 rad representing a planar confor-

mation. Consider the improper torsion at C14 when approaching the

transition state at φ¼�π=2 rad from the trans-state, the local confor-

mation at C14 bends out of plane up to 20 degrees (0:35 rad, minimum

energy value). At the transition state, it suddenly inverts to an
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out-of-plane distortion of �20degrees. On top of the out-of-plane

wagging at C14, the substituent at N (H for pSb5 and CH3 for pSb1)

slightly rotates. The concerted motion is illustrated in Figure 5, where

structures of pSb1 nearing the transition state (φ≈ �90degrees) from

cis (orange structure, φ¼�60degrees) and from trans (red structure,

φ¼�120 degrees) are aligned along the C13, C15 and N atoms. Note

that the out-of-plane wagging at C14 contributes to the correlation

between C13=C14 dihedral and C14-C15 dihedral.

C13 shows a similar out-of-plane wagging as C14. However, while

at C14 we do not find any difference between pSb5 and pSb1, the cor-

relation of the C13=C14 dihedral to the improper dihedral at C13 and

the C13-C12 torsion is less pronounced in pSb1 than in pSb5. Presum-

ably, the methyl substituent hinders the out-plane motion at C13 in

pSb1 compared to C14 in the same molecule and thus interrupts the

correlation.

4.3 | Rates for the DFTB3 potential energy surface

With a model of the free energy surface of pSb5 and pSb1 and good

understanding of the reaction mechanism, we are ready to discuss the

reaction rate constants for the thermal isomerization at the level of

DFTB3 (Tables 2 and 3). Transition states for both compounds were

optimized using the Nudged Elastic Band (NEB) method. NEB optimi-

zation converged well for pSb5, but was very sensitive to the choice

of the NEB parameters (spring constants, maximal force, amount of

nodes) for pSb1.

4.3.1 | Eyring TST

In pSb5, the potential energy barrier Eb for trans!cis reaction is

112:2 kJmol�1, which is in good agreement with the previously

reported value of 27:5 kcalmol�1 ¼115:1 kJmol�1.34 The barrier for

cis ! trans reaction is about 7:7 kJmol�1 lower, which implies that

the cis reactant state is slightly higher in energy than the trans state.

This aligns closely with the free energy difference of 8 to 10 kJmol�1

between cis and trans states in pSb5 (Figure 2). For pSb1, the poten-

tial energy barriers have about equal height (93.7 and 91.1 kJmol�1)

and are about 10 kJmol�1 lower than for pSb5. Again, this aligns

closely with the FES along φ for this molecule.

In each of the four reactions, the free energy difference ΔF‡ at

T¼300K is about 8 to 12 kJmol�1 lower than Eb due to the vibra-

tional and rotational contribution to the free energy difference. For

pSb5, the Eyring TST rates are 8:30 �10�6 s�1 for the trans ! cis

(A) (B)

F IGURE 2 Free energy surfaces FðφÞ and diffusion profiles DðφÞ along C13=C14 dihedral angle φ for (A) pSb5 and (B) pSb1 from
metadynamics (MetaD) and umbrella sampling (US) using DFTB3. Parameters for MetaD and US simulations are reported in Tables 4 and 5. Free
energy curves are filled between plus and minus one standard error.

(A)

(B)

F IGURE 3 (A) Convergence of free energy difference ΔF¼ Fcis�
Ftrans from metadynamics bias as a function of simulation time for
pSb5 (dashed) and pSb1 (full). (B) Convergence of the average errors
from block averaging analysis as a function of block size for the same
simulations as above.
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reaction and 1:99 �10�4 s�1 for the reverse reaction. In pSb1, the

lower energy barrier Eb leads to considerably faster rates, namely

1:42 �10�2 s�1 for the trans!cis transition and 2:06 �10�1 s�1 for the

reverse reaction.

4.3.2 | High-temperature TST

The high-temperature approximation approximates the free energy

contribution to the rates by neglecting the contribution due to the

rotational degrees of freedom and by making a classical approximation

for the harmonic vibrational partition function. Tables 2 and 3 show

that for pSb5 and pSb1 the rotational contribution is less than 1

kJmol�1, and thus neglecting this contribution is well justified. In our

systems, the vibrational component contributes negatively to the free

energy difference, thereby reducing the overall free energy difference

ΔF‡ in comparison to the potential energy barrier Eb. This effect is

slightly underestimated in the classical approximation. Consequently,

ΔF‡,ht in high-temperature TST appears higher than ΔF‡ in Eyring TST,

and the high-temperature TST rates are slower than Eyring TST rates.

The effect amounts to about 3 kJmol�1 which lowers the rate by

about a factor of two. Thus, the high-temperature approximation is

suitable for our two systems.

4.3.3 | Infrequent metadynamics

The high-temperature approximation constitutes the link between a

quantum partition function and the classical partition functions.

Models based on classical partition functions can be sampled by MD

simulations to obtain a statistical estimate of the rate. One method to

do this is infrequent metadynamics, in which Gaussian bias function

are deposited in the potential energy well of the reactant state, and

the enhanced reaction rate constant is subsequently reweighted to

the unbiased reaction rate constant. Rate constants for two different

deposition paces of the Gaussian bias functions are shown in Tables 2

and 3. The obtained rate constants were insensitive with regards to

doubling the pace of deposition (Table S1), indicating that the deposi-

tion rate is infrequent enough for rate constants to be reliable. The

infrequent metadynamics simulations passed the Kolmogorov-

Smirnoff test25 which serves as indication whether the assumptions

of TST are violated. The rate constants from infrequent metadynamics

F IGURE 4 Correlations in pSb5 and pSb1. (A) Umbrella sampling simulations using DFTB3 (set US1) for pSb5 showing correlation between
C13=C14 dihedral φ and dihedral C12-C13, the improper dihedral on C13, the dihedral C14-C15 and the improper dihedral on C14. Different colors
represent different umbrella windows. Black crosses represent constrained optimizations along φ using unrestricted DFT/B3LYP/6-31G*. (B)
Same analysis for pSb1.
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are in very good agreement with the rate constants from high-

temperature TST. Only in pSb1, the rate constant for the cis ! trans

reaction is slightly underestimated by infrequent metadynamics.

Infrequent metadynamics and high-temperature TST are based on

very similar assumptions (Table 1). In this sense, infrequent metady-

namics may be regarded as a sampling-based analogue to high-

temperature TST. Because the results from infrequent metadynamics

and high-temperature TST are in excellent agreement, we may con-

clude that sampling-based approaches are suitable for the calculation

of reaction rates of chemical reaction and the required MD simulation

times are accessible when using DFTB3 to calculate the PES.

4.3.4 | Reaction coordinate based rate theories

We calculated the rate constants from Kramers' (Equation 14) and

Pontryagin's (Equation 15) rate theories using the free energy surfaces

and diffusion profiles in Figure 2 (Tables 2 and 3). Values for the

parameters in Equation (14) are reported in Tables S2 and S3 in

the supplement. Surprisingly, these rates are orders of magnitude

higher than rates from TST or from infrequent metadynamics. In

pSb5, Kramers' rate constant is three orders of magnitude higher then

the rate constant from high-temperature TST. This can be traced back

to the low free energy barriers F‡AB in the FES compared to the energy

difference ΔF‡, as calculated within TST.

Kramers' rate theory can treat reactions that violate the TST

assumptions. Therefore, differences between high-temperature

TST and Kramers' rate theory might be explained by a complicated

reactant state or by violations of the harmonic approximation. How-

ever, the choice of our test system, the slow convergence of the

metadynamics simulations for the FES in pSb5, as well as the sensitiv-

ity of the FES to parameters collectively raise concerns about the

optimality of the chosen reaction coordinate. With a sub-optimal

reaction coordinate, the free-energy barriers are underestimated and

thus Kramers' rate theory overestimates the rate constants. Although

φ appears an intuitive choice for the reaction coordinate, the corre-

lated motions in orthogonal degrees of freedom described above sug-

gests that these motions need to be taken into account to construct a

sufficiently accurate reaction coordinate.

On the other hand, while pSb1 exhibits the same correlated

motions as pSb5, the discrepancy between F‡AB and ΔF‡ is much smal-

ler. Consequently Kramers' rate theory overestimates the rate con-

stants from high-temperature TST for pSb1 only by a factor of 40 for

the trans ! cis reaction and by a factor of 17 for the reverse reaction.

Additionally, the calculation of the FES converges quickly for pSb1. It

is not obvious, why the C13=C14 dihedral angle φ would be a poor

reaction coordinate for pSb5 but a reasonably accurate reaction coor-

dinate in pSb1.

Pontryagin's rate theory yields even higher rate constants than Kra-

mers' rate theory and this points to a second effect that might be at

play. Pontryagin's rate theory assumes overdamped Langevin dynamics

along the reaction coordinate and would overestimate the rates if the

effective dynamics actually falls into the intermediate or weak friction

regime. In the weak friction regime, also Kramers' rate theory for inter-

mediate friction (Equation 14) would overestimate the rate constant.

The friction regime is in part determined by the “sharpness" of the free

energy barriers as measured by ω‡, the angular frequency of the har-

monic approximation of the FES maximum. Both systems in fact

exhibit very sharp barriers and thus high values of ω‡, which might

shift the effective dynamics into the weak-to-intermediate friction

regime.

4.4 | Comparison across different PES

Tables 2 and 3 compare the energy barriers and the rotational and

vibrational contribution to the free energy differences at the level of

DFTB3 to those at the unrestricted DFT/B3LYP/6-31G* level, abbre-

viated DFT/B3LYP in the following. The potential energy barriers Eb

from DFT/B3LYP calculations closely aligning with literature-reported

values.2,20,21

Compared to unrestricted DFT/B3LYP, DFTB3 tends to underes-

timate the barrier heights, as has been reported previously.34,42,43

Energies of constrained optimizations along φ for DFT/B3LYP and

DFTB3 are shown in Figure S2 in section III of the supplementary

F IGURE 5 (A) Minimum energy structures from constrained
optimizations using unrestricted DFT/B3LYP/6-31G* calculations on
pSb1 at φ¼�60degrees (cis, orange structure) and φ¼�120 degrees
(trans, red structure). Structures are aligned along the N, C15 and C13

atoms. (B) Zoom on the reaction center.
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material. The discrepancy between DFT/B3LYP and DFTB3 is larger

for the trans ! cis transitions than in the cis ! trans transitions, with

a discrepancy as high as 11:4 kJmol�1 in pSb5. The exception to this

trend is the cis ! trans transition in pSb1, for which the DFT/B3LYP

is 1 kJmol�1 lower than the DFTB3 barrier.

The rotational contributions to total free energy difference are

nearly identical at DFT/B3LYP and at DFTB3, which can be attributed

to the rigid molecular scaffold. The vibrational motion lowers the total

free energy barrier in all four reactions. However, the effect is smaller at

the level of DFT/B3LYP than with DFTB3. The discrepancy between

DFT/B3LYP and DFTB3 for the vibrational contribution can be as large

as the discrepancy for the potential energy barrier Eb (see e.g., cis !
trans reaction in pSb1). This highlights the need to consider not only

the potential energy barrier but also the vibrational free energy of the

reactant and transition state when comparing different PES.

Overall, we find that the total free energy difference ΔF‡ is 6 to

13 kJmol�1 larger in DFT/B3LYP than in DFTB3. Consequently, the

Eyring TST rate constants at the level of DFT/B3LYP are one to two

orders of magnitude lower than at the level of DFTB3. As with

DFTB3, the high-temperature rate constant is slightly lower than the

Eyring TST rate constant, because the reduction of the total free

energy difference due to the vibrational contribution is underesti-

mated when using the high-temperature limit. Rates from infrequent

metadynamics or reaction-coordinate based methods are not avail-

able, because they require ab-initio MD simulations. The necessary

simulation time to converge these rate estimates is challenging to

attain at this level of theory.

The last two columns in Tables 2 and 3 report the influence of

the the D3 dispersion correction for DFT47 on the energy barriers and

the free energy contributions to the rates. The effect is less than

1 kJmol�1 (only exception: ΔFvib for trans ! cis in pSb1). The differ-

ence in the energies for constrained optimizations along φ (Figure S2

in the supplement) is equally small. As a result, there is a minimal dif-

ference in the rates when calculated with and without D3 correction.

We suspect that the small influence of the D3 correction on the PES

stems from the linear and rigid structure of the two molecules. Disper-

sion is a strongly distance-dependent pairwise interaction. Due to the

linearity, the molecules likely have a small intramolecular dispersion

overall. Due to the rigid polyene scaffold, most pairwise distances do

not change during the reaction. Even though rotation from trans to cis

shortens the distance between the Schiff base and the β-ionone ring,

the distance remains so large that the two groups have minimal dis-

persion interaction.

5 | METHODS

Calculations for DFTB3 were carried out with the DFTB+ software

package48 using the 3ob-3-1 Slater-Koster parameter set.49 Energy

minimizations, constrained optimizations and Nudged Elastic Band

TABLE 2 Rates for thermal cis-trans isomerization around the C13=C14 double bond in pSb5 using DFTB3 as well as DFT/B3LYP/6-31G*
without (DFT) and with (DFT-D3) Grimme's dispersion correction.

DFTB3 DFT DFT-D3

Equation trans ! cis cis ! trans trans ! cis cis ! trans trans ! cis cis ! trans

Free energy difference between A and AB‡ in Eyring TST [kJmol�1]

Eb 112.2 104.5 123.6 108.5 123.6 109.3

ΔFrot 6a �0:5 0.2 �0:4 0:1 �0:4 0.1

ΔFvib 6a �7:3 �8:3 �6:2 �6:5 �6:5 �6:6

ΔF‡ 5 104.4 96.5 117.0 102.2 116.8 102.8

Free energy difference betweeen A and AB‡ in high-temperature TST [kJmol�1]

Eb 112.2 104.5 123.6 108.5 123.6 109.3

ΔFhtvib 8 �4:6 �5:2 �3:6 �3:6 �3:7 �3:7

ΔF‡,ht 8 107.6 99.3 120.0 104.8 119.9 105.6

Free energy barrierF‡AB [kJmol�1]

F‡AB 89.0 80.5 n/a n/a n/a n/a

Rates [s�1]

Eyring TST 3 8:30�10�6 1:99�10�4 5:40�10�8 2:04�10�5 5:81�10�8 1:56�10�5

high T TST 7 2:28�10�6 6:39�10�5 1:62�10�8 7:00�10�6 1:65�10�8 5:19�10�6

InMetaD 1 11 1:94�10�6 1:04�10�4 n/a n/a n/a n/a

InMetaD 2 11 2:63�10�6 9:22�10�5 n/a n/a n/a n/a

Kramers 14 4:06�10�3 1:74�10�1 n/a n/a n/a n/a

Pontryagin 15 1:14�10�2 2:74�10�1 n/a n/a n/a n/a

GHYSBRECHT AND KELLER 1399

 1096987x, 2024, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27332 by Sim

on G
hysbrecht - Freie U

niversitaet B
erlin , W

iley O
nline L

ibrary on [11/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(NEB) calculations were done by interfacing DFTB+ with the Atomic

Simulation Environment (ASE)50 and using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm51 for numerical optimization.

Vibrational analysis of the optimized structures was done using DFTB

+ to obtain the vibrational frequencies, while rotational moments of

inertia were calculated by entering the optimized configuration into

the Gaussian 16 software.52 From these data we calculated rates for

Eyring TST and high-temperature TST.

Ab-initio MD simulations were performed using DFTB+ using the

velocity-Verlet integrator with a time step of 1 fs. Before simulations,

energy minimization was done, followed by temperature equilibration

at 300K in two steps. In a first equilibration run, the Berendsen ther-

mostat53 with a coupling time of 2 ps is employed, while in a second

equilibration run a Nosé-Hoover chain setup54–56 of coupling time

2ps and chain length 3 is used. For production runs, the same thermo-

stat setup was used as for the second equilibration runs.

Well-tempered metadynamics29 and umbrella sampling44 were

carried out by interfacing the PLUMED57 software package with

DFTB+. Parameter sets for metadynamics and umbrella sampling sets

can be found in Tables 4 and 5 respectively. Sets of runs for infre-

quent metadynamics were set up by equilibrating in the reactant

state, after which a metadynamics bias is applied until a transition is

registered. The transition times were reweighted using the accelera-

tion factor which was directly calculated by PLUMED. The set of

reweighted transition times was fitted to the theoretical cumulative

distribution function of a Poisson distribution (Equation 10) to obtain

a mean first-passage time and corresponding rate.

Diffusion profiles were calculated using the method from

Reference 8. Effective masses of the reactant states were calcu-

lated by measuring the average squared velocity along the dihe-

dral angle and using the equipartition theorem. Frequencies of

the harmonic approximations of the reactant wells and transition

state barriers were calculated from spring constants obtained by

harmonically fitting the corresponding wells or barriers. Free

energy barriers F‡AB are measured from the FES directly. One-

dimensional rate methods (Kramers and Pontryagin) can then be

applied straightforwardly.

Calculations at the DFT level were performed using the

Gaussian 16 software52 using unrestricted DFT with the B3LYP

functional23,24 and the 6-31G* basis set.58 Full geometry optimi-

zations as well as constrained optimizations were done using the

Berny optimization algorithm59 as implemented in Gaussian. Tran-

sition state search was performed using the Synchronous Transit-

guided Quasi-Newton (STQN) method60,61 as implemented in

Gaussian, where the reactant and product state input configura-

tions were chosen to be the geometry optimized structures in the

trans and cis states. Gaussian performs a full thermochemical

analysis including calculation of the translational, rotational and

TABLE 3 Rates for thermal cis-trans isomerization around the C13=C14 double bond in pSb1 using DFTB3 as well as DFT/B3LYP/6-31G*
without (DFT) and with (DFT-D3) Grimme's dispersion correction.

DFTB3 DFT DFT-D3

Equation trans ! cis cis ! trans trans ! cis cis ! trans trans ! cis cis ! trans

Free energy difference between A and AB‡ in Eyring TST [kJmol�1]

Eb 93.7 91.1 98.0 90.1 98.2 90.4

ΔFrot 6a �0:1 0.0 �0:1 �0:0 �0:1 �0:0

ΔFvib 6a �7:7 �12:0 �2:4 �3:8 �4:1 �3:7

ΔF‡ 5 85.8 79.2 95.4 86.2 94.0 86.7

Free energy differenceΔF‡ between A and AB‡ in high-temperature TST [kJmol�1]

Eb 93.7 91.1 98.0 90.1 98.2 90.4

ΔFhtvib 8 �5:1 �9:4 0:5 �1:1 �1:1 �0:9

ΔF‡,ht 8 88.5 81.7 98.4 89.0 97.0 89.5

Free energy barrierF‡AB [kJmol�1]

F‡AB 78.9 75.0 n/a n/a n/a n/a

Rates [s�1]

Eyring TST 3 1:42�10�2 2:06�10�1 3:09�10�4 1:24�10�2 5:35�10�4 9:92�10�3

high T TST 7 4:81�10�3 7:44�10�2 9:21�10�5 4:12�10�3 1:58�10�4 3:31�10�3

InMetaD1 11 2:97�10�3 9:30�10�3 n/a n/a n/a n/a

InMetaD2 11 3:09�10�3 1:22�10�2 n/a n/a n/a n/a

Kramers 14 1:92�10�1 1:30�100 n/a n/a n/a n/a

Pontryagin 15 5:43�10�1 2:07�100 n/a n/a n/a n/a
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vibrational partition functions and corresponding energies and

entropies.62

This allows for straightforward calculation of rates for

Eyring TST. Vibrational frequencies were obtained from

Gaussian separately63 and used to calculate rates for high-

temperature TST.

A complete overview of the computational details is given in

section II of the supplementary information.

6 | CONCLUSIONS

We studied the thermal cis-trans isomerization in two retinal ana-

logues at 300K in the gas phase. This reaction falls well within the

approximation of TST, and thus accurate values for the reaction rate

constant can be obtained from this theoretical framework. However,

reactions in molecules with numerous flexible degrees of freedom or

reactions in complex environments may not be accurately modeled by

TST. We therefore explored whether accurate estimates of the reac-

tion rate constant can be obtained from MD simulations. The impact

of changing the theoretical framework for modelling the reaction rate

must be assessed relative to the error in the potential energy surface

(PES), which is often considered to be the primary error source in rate

modeling. To gauge the effect of changing the PES, we compared TST

rate constants at the level of at the DFTB3 and the unrestricted

DFT/B3LYP/6-31G* level. Figure 6 summarizes our results.

Reaction rate constants at DFTB3 are larger than those at DFT,

with a difference of one to two orders magnitude. However only in

pSb5 the increase in reaction rate can be mainly attributed to a lower

potential energy barrier. In pSb1, the change of the vibrational free

energy has an equally strong (trans ! cis) or even larger (cis ! trans)

contribution to the increase of the reaction rate constant. Thus,

reducing the comparison of different PES to the height of the poten-

tial energy barrier and neglecting entropic effects may be misleading.

It is important to note that we only compared PES that are ultimately

derived from DFT. DFT and wavefunction-based methods tend to differ

in delocalization of the conjugated π-electron system, with DFT typi-

cally overdelocalizing the π-electrons.64 Overdelocalization reduces

the double-bond character in the C13=C14 double bond, and thus

decreases the reaction barrier. In fact, for cis-trans isomerization in polyene

chains, DFT/B3LYP/6-31G* underestimates the torsional barrier compared

to CASSCF65 as well as compared to experimental data.66–68 Thus, the true

reaction rate constant might be even lower than our DFT estimates.

An important assumption when estimating reaction rate con-

stants from MD simulations is that classical mechanics are used to

TABLE 4 Parameters for metadynamics and infrequent metadynamics simulations for pSb5 and pSb1 using DFTB3.

Height [kJmol�1] Width [rad] Pace [ps] Bias factor Time [ns] Runs

pSb5

MetaD1 1.3 0.15 0.5 16 152 n/a

MetaD2 1.3 0.10 0.5 16 87 n/a

MetaD3 0.75 0.075 0.25 25 51 n/a

InMetaD1 1.3 0.05 5.0 16 n/a 25

InMetaD2 1.3 0.05 10.0 16 n/a 30

pSb1

MetaD1 1.3 0.10 0.5 16 86 n/a

MetaD2 1.3 0.05 0.5 16 63 n/a

MetaD3 1.3 0.10 0.5 16 24 n/a

InMetaD1 1.3 0.05 5.0 16 n/a 25

InMetaD2 1.3 0.05 10.0 16 n/a 30

TABLE 5 Parameters for umbrella sampling using DFTB3.

Windows
Biased
region [rad]

Interval
[rad]

Force constant
[kJmol�1 rad�2]

63 ½�3:1, þ3:1� 0.1 500

10 ½�1:95, �1:05� 0.1 500

10 ½þ1:05, þ1:95� 0.1 500

Note: Each umbrella sampling set was run with 83 windows positioned as

shown here. In total, three sets were run for pSb5 and three for pSb1

(Figure 2).

F IGURE 6 Effect of rate model and PES on the estimated
reaction rate constant.
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model the dynamics of the nuclei and to approximate the partition

functions. The classical limit is well justified for rugged potential

energy landscapes with broad minima and relatively low energy bar-

riers, but might not be appropriate for modelling a chemical reaction.

In both of our molecules, the classical limit (high-temperature TST)

yields a lower rate constant than Eyring TST, but the effect is less than

an order of magnitude. Thus, the error due to the classical limit is small

compared to the uncertainty due to the model of the PES.

Since the classical limit is justified for our systems, one should in

principle be able to estimate reaction rate constants from MD simula-

tions. Indeed, the infrequent metadynamics results are in excellent

agreement with results from high-temperature TST. The length of the

simulations (on a biased PES) were in the nanosecond regime,

the mean-first passage times τAB ¼1=kAB are in the regime of hun-

dreds to hundred thousands of seconds. This is a enormous speedup,

with the largest acceleration factors being of the order of 1014.

By contrast, our results from Kramers and Pontryagin's rate the-

ory overestimate the rate constant by multiple orders of magnitude.

These two methods rely on a reaction coordinate – in our case the

C13=C14 torsion angle φ - but the FES can be very sensitive to the

choice of this reaction coordinate. In fact, we found that the improper

dihedrals of the substituents on the C13 and C14 atoms correlate with

the reaction coordinate φ. We hypothesized that this was indicative

of a isomerization mechanism consisting of a concerted motion where

the C14 atom temporarily nods out of the polyene plain, before the

isomerization is completed. Thus, even though the torsion angle φ is a

very intuitive reaction coordinate, it might not be optimal enough to

yield accurate results for Kramers and Pontryagin's rate theory.

This places us in a challenging position. Both MD based-

approaches, infrequent metadynamics and reaction coordinate based

rate models, come with a high computational cost. Our simulations

required approximately 10 to 100 ns for each rate estimation. However,

since infrequent metadynamics is derived from TST, it is particularly

suitable for chemical reactions that align well with Eyring TST. By con-

trast, reaction coordinate based rate theories have the potential to

model systems deviating from the harmonic approximation and the sep-

aration of timescales. However, their robustness is compromised due to

sensitivity to the reaction coordinate and the friction regime.

Fortunately, several alternatives exist. Within reaction coordinate-

based rate models, one can optimize the reaction coordinate,69,70 and

we will explore this approach in subsequent work.71 Interestingly, neu-

ral networks17,72 can be used to optimize reaction coordinates. Another

avenue extends these models to encompass effective dynamics within

multidimensional collective variable spaces.73,74 Alternatively, one can

opt for transition path sampling75–77 and leverage dynamical reweight-

ing techniques that are not based on TST.5,78,79 In summary, while sam-

pling chemical reactions in complex systems poses a formidable

challenge, there is optimism that this wide variety of ideas will allow us

to solve this task.
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Supplementary Information: Thermal Isomerization Rates
in Retinal Analogues using Ab-Initio Molecular Dynamics

Simon Ghysbrecht and Bettina G. Kellera)

(Dated: 16 February 2024)

I. TRANSITION STATE THEORIES

The introduction of activated complex theory introduced here largely follows the textbook
by Mortimer1. Alternative derivations can be found in textbooks by Peters2 or McQuar-
rie & Simon3.

Eyring transition state theory

The cis-trans isomerization is a unimolecular reaction A ! B which, according to the
theory of the activated complex, is modeled as

A ��*)�� AB‡ ! B (S1)

where the reactant A is the cis state, AB‡ is the activated complex, and B is the trans
state. One assumes (1) that A and AB‡ are in equilibrium with equilibrium constant

K‡ =
[AB‡]
[A]

(S2)

where [...] denotes concentrations, and (2) that the rate-determining step in the reaction is
the decay of AB‡ to the product state B. Then the reaction rate is

rAB = �d[A]

dt
= kAB [A] = ⌫r[AB‡] = ⌫rK

‡[A] (S3)

where kAB is the rate constant with units s�1, ⌫r is the rate at which the TS conformation
decays, and the last equality arises from the definition of the equilibrium constant. Note
that for a unimolecular reaction, equilibrium constant K‡ and dimensionless equilibrium

constant eK‡ are identical, because

K‡ =
[AB‡]
[A]

=
[AB‡]/c�

[A]/c�
= eK‡ , (S4)

where c� is the standard concentration.
The rate constant of the reaction then is

kEyr
AB = ⌫rK

‡ = ⌫r · qAB‡

qA
exp

✓
� Eb

RT

◆
(S5)

where we related K‡ to its definition in terms of molecular partition functions qAB‡ and
qA. qA is calculated with respect to the energy EA at the minimum energy conformation of
A, whereas eqAB‡ is calculated with respect to the energy at the saddle point of the Born-
Oppenheimer potential energy surface EAB‡ , i.e. both energies are measured at a single
point in conformational space. Eb = EAB‡ �EA accounts for the the di↵erence in reference

a)Electronic mail: bettina.keller@fu-berlin.de
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energies and can be interpreted as the energetic barrier of the reaction. R is the ideal gas
constant, and T is the temperature.

We calculate and report potential and free energies in units of J mol�1, correspondingly
the thermal energy is also reported as a molar quantity: RT . Likewise masses and reduced
masses are treated as molar masses: kg mol�1. If potential and free energies are treated with
units of J, and masses with units of kg, R should be replaced by the Boltzmann constant
kB = R/NA in eq. S5 and all of the following equations. NA is the Avogadro constant.

Assuming that the electronic, translational, rotational and vibrational degrees of freedom
are su�ciently decoupled, one can decompose the molecular partition function

qi = qi,el · qi,tr · qi,rot · qi,vib i = A, AB† (S6)

into electronic partition function qi,el, translational partition function qi,tr, rotational parti-
tion function qi,rot, and vibrational partition function qi,vib. The ratio of partition functions
in eq. S5 then decomposes into factors

qAB‡

qA
=

qAB‡,el

qA,el
· qAB‡,tr

qA,tr
· qAB‡,rot

qA,rot
· qAB‡,vib

qA,vib
. (S7)

In retinal, the electronically excited states are only populated when the molecule is excited
by light. At room temperature and without any external excitation, only the electronic
ground state is populated. Therefore qAB‡,el = qA,el = 1, and the electronic factor in eq. S7
equals 1. The translational partition function is modelled using the quantum mechanical
treatment of a particle in a box. The translational factor then reduces to the ratio of masses

qAB‡,tr/qA,tr = (MAB‡/MA)
3/2

= 1, since in a unimolecular reaction the molar mass of the
reactant MA and the molar mass of the activated complex MAB‡ are equal. The rotational
partition function is modelled using the quantum mechanical treatment of a rigid rotor

qi,rot =
⇡2

�i

r
8⇡ Ii,a RT

h2

r
8⇡ Ii,b RT

h2

r
8⇡ Ii,c RT

h2
i = A, AB† (S8)

where Ii,a, Ii,b, and Ii,c are the three moments of inertia in the two retinal conformations
(measured at the minimum of the reactant state and at the saddle point of the transition
state and in molar units), h is the molar Planck constant, and �i is the symmetry number
which is 1 for both conformations. The rotational factor thus reduces to

qAB‡,rot

qA,rot
=

s
IAB‡,a

IA,a
· IAB‡,b

IA,b
· IAB‡,c

IA,c
. (S9)

We assume that the dynamics of the remaining 3N � 6 vibrational degrees of freedom can
be modelled by a multidimensional harmonic oscillators (harmonic approximation), where
the frequencies ⌫i,k, with i = A, AB‡, along each direction are given by the square rooted
eigenvalues of the mass-weighted Hessian matrices at the minimum of the reactant state for
qA,vib, and at the saddle point for qAB‡,vib

4,5. We define qA;vib and qAB‡;vib relative to the

PES minimum at A and relative to the saddle point of the PES minimum at AB‡, i.e. the
vibrational partition functions include the zero-point energies.

The vibrational partition function at the reactant state is

qA;vib =

3N�6Y

k=1

exp
⇣
�h⌫A,k

2RT

⌘

1 � exp
⇣
�h⌫A,k

RT

⌘ . (S10)

Molar masses are used for the mass-weighted Hessian matrices, and the force-constant of
the potential is given in molar units.

The mass-weighted Hessian matrix at the saddle point has one negative eigenvalue and
accordingly one imaginary frequency ⌫⇤AB‡,r. This imaginary frequency cannot be properly
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treated as harmonic vibration, and one therefore defines a reduced vibrational partition
function from which the imaginary frequency is excluded

eqAB‡;vib =
3N�6Y

k=1,k 6=r

exp
⇣
�h⌫

AB‡,k

2RT

⌘

1 � exp
⇣
�h⌫

AB‡,k

RT

⌘ . (S11)

The reduced vibrational partition function eqAB‡;vib is related to the vibrational partition
function qAB‡;vib by a multiplicative factor qAB‡;vib = fr · eqAB‡;vib, which is approximated
as

fr ⇡ RT

h⌫AB‡,r

=
RT

h⌫r
. (S12)

where the absolute value of the imaginary frequency is set equal to the decay rate of the
activated complex: |⌫⇤AB‡,r| = ⌫r. The vibrational factor then is

qAB‡,vib

qA,vib
=

RT

h⌫r
· eqAB‡,vib

qA,vib
. (S13)

With these models and approximations, the reaction rate in eq. S5 can be calculated as

kEyr
AB = ⌫r · RT

h⌫r
· eqAB‡,vib

qA,vib
· qAB‡,rot

qA,rot
· exp

✓
� Eb

RT

◆

=
RT

h
· eqAB‡,vib

qA,vib
· qAB‡,rot

qA,rot
· exp

✓
� Eb

RT

◆
(S14)

where the frequency of the reactive mode ⌫r cancels. This equation for the reaction rate is
often called Eyring TST or harmonic TST. By setting

�F ‡ = Eb � RT ln

 eqAB‡,vib

qA,vib
· qAB‡,rot

qA,rot

�
(S15)

eq. S14 becomes consistent with eq. 3.
There are two ways to justify the treatment of the imaginary frequency6. In both deriva-

tions, one realizes that the eigenvector associated to ⌫⇤r corresponds to the direction of
the reaction coordinate s at the saddle point. In the first derivation1,6, one treats the
motion along this coordinate as a vibrational motion with frequency ⌫⇤r . Applying the high-
temperature approximation yields eq. S12. One further assumes that the TS decays with
⌫r, i.e. there is no restoring force and with the first vibration along this coordinate the AB‡

falls apart.
In the second derivation2,6, the frequency at which the AB‡ decays, ⌫r, is modelled as

the reactive flux across the transition state region. The reactive degree of freedom is then
treated as a translational degree of freedom, rather than a vibrational degree of freedom.
To obtain the reactive flux, one additionally calculates the expected value of the absolute
velocity at TS in the classical approximation. This approach also leads to eq. S12.

High-temperature approximation

In the high-temperature approximation, one assumes that the rate is dominated by the
energy barrier and the vibrational contribution, and thus

qAB‡,rot

qA,rot
⇡ 1 . (S16)

Then

kht
AB =

RT

h
· eqAB‡,vib

qA,vib
· exp

✓
� Eb

RT

◆
. (S17)
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Using eqs. S10 and S11, the ration of vibriational partition functions can be reformulated
as

eqAB‡,vib

qA,vib
= e�

h⌫A,r
2RT ·

3N�6Y

k=1,k 6=r

exp
⇣
�h⌫A,k

2RT

⌘

exp
⇣
�h⌫

AB‡,k

2RT

⌘ ·
Q3N�6

k=1,k 6=r 1 � exp
⇣
�h⌫

AB†,k

RT

⌘

Q3N�6
k=1 1 � exp

⇣
�h⌫A,k

RT

⌘ . (S18)

The first factor is the contribution of the specific mode in A that corresponds to the reactive
mode at AB‡. The second factor represents the contribution due to the zero-point energies
of the vibrational modes (excluding the reactive mode). The third factor is the ratio the
vibrational partition functions relative to the zero-point energies.

At high temperatures, the ratio in the first term can be approximated as

3N�6Y

k=1,k 6=r

exp
⇣
�h⌫A,k

2RT

⌘

exp
⇣
�h⌫

AB‡,k

2RT

⌘ =

3N�6Y

k=1,k 6=r

exp

✓
�h�⌫k

2RT

◆

⇡ 1 (S19)

where �⌫k = ⌫A,k�⌫AB‡,k is the frequency di↵erence between A and AB‡ of the kth mode,

We assumed that h�⌫k ⌧ RT , and hence exp
�
�h�⌫k

2RT

�
⇡ exp(0) = 1. We furthermore

assume that for the mode ⌫A,r has a low frequency, such that h⌫A,r ⌧ RT and hence

e�
h⌫A,r
2RT ⇡ exp(0) = 1. Then the entire first factor can be approximated by 1. In making

this approximation we neglect the contribution of the zero-point energies to the free energy
di↵erence �F ‡.

For the high-temperature approximation of the second term, one uses a Maclaurin series
expansion of the exponential function and truncates it after the linear term

1 � exp

✓
�h⌫A,k

RT

◆
⇡ 1 � 1 +

h⌫A,k

RT
=

h⌫A,k

RT
(S20)

which is justified if h⌫A,k ⌧ RT . Then

Q3N�6
k=1,k 6=r 1 � exp

⇣
�h⌫

AB†,k

RT

⌘

Q3N�6
k=1 1 � exp

⇣
�h⌫A,k

RT

⌘ ⇡
Q3N�6

k=1,k 6=r
RT

h⌫
AB‡,kQ3N�6

k=1
RT

h⌫A,k

=
h

RT
·

Q3N�6
k=1 ⌫A,kQ3N�6

k=1,k 6=r ⌫AB‡,k

. (S21)

Inserting eq. S19 and S21 into eq. S17 yields the high-temperature approximation to the
rate constant form Eyring TST

kht
AB =

Q3N�6
k=1 ⌫A,kQ3N�6

k=1,k 6=r ⌫AB‡,k

· exp

✓
� Eb

RT

◆
. (S22)

Classical harmonic approximation

Eq. S22 can also be obtained from the classical treatment of the vibrational partition
function. The classical Hamilton function of a one-dimensional harmonic vibration is
H(x,p) = 

2x2 + p2

2M , where M is the reduced molar mass, x is the position, p is the
momentum, and  is the molar force constant for the harmonic approximation of the po-
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tential. The corresponding classical partition function is

qclassical,vib,1D =
1

h

Z 1

�1
dx

Z 1

�1
dp exp

✓
� 1

RT
H(x,p)

◆

=
1

h

Z 1

�1
dx exp

✓
� 1

RT



2
x2

◆Z 1

�1
dp exp

✓
� 1

RT

p2

2M

◆

=
1

h
·
r
⇡RT

2


·
p
⇡RT2M

=
RT

h
· 2⇡ ·

r
M



=
RT

h⌫
(S23)

where we used that the two integrals are Gaussian integrals, and that the frequency of a
harmonic oscillator is ⌫ = 1

2⇡ ·
p

/M . The vibrational partition function of a system with
N atoms then is

qclassical,vib =

3N�6Y

k=1

RT

h⌫k
(S24)

The ratio of classical vibrational partition functions then is

eqAB‡,classical,vib

qA,classical,vib
=

Q3N�6
k=1,k 6=r

RT
h⌫

AB‡,kQ3N�6
k=1

RT
h⌫A,k

=
h

RT
·

Q3N�6
k=1 ⌫A,kQ3N�6

k=1,k 6=r ⌫AB‡,k

. (S25)

Using this ratio in eq. S17 yields the high-temperature approximation for rate constant from
Eyring TST (eq. S22). This result shows that, in the limit of high temperature, classical
and quantum mechanical treatment of transition state theory coincide.

At T = 300 K, this is approximation is valid for ⌫ ⌧ kBT/h = 6.25 · 1012 s�1 or
208.5 cm�1. Since many vibrational modes in our two compounds have higher frequen-
cies, the high-temperature approximation does not yet strictly apply. However, the two
molecular sca↵olds are very rigid and most vibrational modes likely have similar frequen-

cies in A and in AB‡. The corresponding factor for these modes in
eq
AB‡,vib

qA,vib
then is about

1 and its contribution to the free-energy di↵erence �F ‡ is approximately zero. The one
covalent bond that is altered during the reaction, the C13=C14 double bond, is represented
by ⌫r and is treated separately in the theory of the activated complex. Thus, the high-
temperature approximation of the transition state rate can be a valid approximation, even
if the high-temperature limit for the individual vibrational partition functions is not yet
reached.

Sampling anharmonic vibrations

The dynamics of the a system with N atoms evolve in the 6N -dimensional phase space
� = (x,p) 2 R6N , where x 2 R3N are the atomic positions and p 2 R3N are the
atomic momenta. V (x) is the molecular potential energy function and represents the Born-
Oppenheimer surface. In the present study, these dynamics are simulated in the NVT
ensemble at T = 300 K. The classical Hamilton function of such a system is H(x,p) =

V (x) +
P3N

i=1

p2
j

2Mj
, where Mj is the molar mass associated to the jth degree of freedom.
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The classical partition functions of the reactant state A and the activated complex AB‡

are

qclassical,i = qclassical, x,i · qclassical, p,i i = A, AB‡ (S26)

with

qclassical, x,i =
1

h3N

Z

x2i

dx exp

✓
� 1

RT
V (x)

◆

qclassical, p,i =

Z
dp exp

0
@� 1

RT

3NX

i=j

p2
j

2Mi

1
A

i = A, AB‡ . (S27)

We assumed that all N atoms in the system are distinguishable, which is a reasonable
assumption for a single molecule like retinal. It is a matter of convention whether the factor

1
h3N is included in the configurational partition function qclassical, x or not.

Using classical partition functions in eq. S5 yields

kEyr
AB = ⌫r · K‡ = ⌫r · qclassical,AB‡

qclassical,A
. (S28)

Note that in the classical treatment of the partition function, A and AB‡ have the same
reference energy and the factor Eb is absorbed into the partition function. The factor
exp

�
� Eb

RT

�
arises when the integration for qclassical, x,i is carried out.

Classical partition functions and reaction rates can be estimated by sampling the dy-
namics of the molecule using MD simulations. In this sense, MD simulation is a numerical
integration technique to solve the high-dimensional integrals that appear in the classical
partition function, without resorting to a harmonic approximation. However, owing to
the large barriers involved in chemical reactions, the numerical estimates converge poorly
when the simulation is carried out at V (x). Instead one uses importance sampling and
reweighting.

Here, we discuss metadynamics7–10 and infrequent metadynamics11 as importance sam-
pling methods to obtain the classical approximation of Eyring TST. In this method, one
samples the dynamics at a biased potential

V InMetaD(x, t) = V (x) + U(x, t) (S29)

where U(x, t) is a time-dependent bias. The bias is chosen such that the rate constant
kInMetaD

AB at V InMetaD(x) is increased to the rate constant kAB at the molecular potential:
kInMetaD

AB = ↵kAB , where the acceleration factor is

↵ =
kInMetaD

AB

kAB

= ⌫InMetaD
r

qInMetaD
classical,AB‡

qInMetaD
classical,A

· 1

⌫r

qclassical,A

qclassical,AB‡

⇡ qclassical,A

qInMetaD
classical,A

, (S30)

where qInMetaD
classical,A and qInMetaD

classical,AB‡ are the classical partition functions for A and AB‡ at the

biased potential V InMetaD(x). In the last line in eq. S30, we assumed that ⌫r ⇡ ⌫InMetaD
r

and qclassical,AB‡ ⇡ qInMetaD
classical,AB‡ . This is the case if the bias is only deposited in the reactant

state, and the potential in the region around AB‡ remains unmodified.
At constant bias U(x), this acceleration factor is essentially the free energy di↵erence in

the reactant state A and can be estimated as

↵ =
qclassical,A

qInMetaD
classical,A
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=
1

h3N

R
x2A

dx exp
�
� 1

RT V (x)
�

1
h3N

R
x2A

dx exp
�
� 1

RT [V (x) + U(x)]
�

=

R
x2A

dx exp
�
� 1

RT [V (x) + U(x)]
�

· exp
�
+ 1

RT U(x)
�

R
x2A

dx exp
�
� 1

RT [V (x) + U(x)]
�

=

⌧
exp

✓
+

1

RT
U(x)

◆�

A

(S31)

where h...iA denotes an ensemble average restricted to the reactant state A and is measured
at V InMetaD(x).

To estimate the rate from the simulation data, one uses that the rate is related to the
dynamics via

kAB =
1

⌧AB
=

1

↵
kInMetaD

AB =
1

↵⌧ InMetaD
AB

(S32)

where ⌧ InMetaD
AB is the mean first passage time at V InMetaD(x). The estimator for the mean

first passage time is the arithmetic mean of the sampled first passage times ⌧ InMetaD
AB,i

⌧ InMetaD
AB = lim

NAB!1
1

NAB

NABX

i=1

⌧ InMetaD
AB,i (S33)

where NAB is the number of transition events observed during the simulation. Alternatively,
one can estimate ⌧ InMetaD

AB by fitting the cumulative distribution function of the simulated
first passage times to the cumulative distribution of a Poisson process.

In infrequent metadynamics11, a time-dependent bias U(x, t) is used. One assumes U(x, t)
changes slowly enough that at any time t the assumptions of Eyring TST are met, and that
no bias is deposited in the transition state region. One starts a simulation x(i) in reactant
state A and stops the simulation as soon as it crosses AB‡. Because of the time-dependent
bias, the first passage times at V InMetaD(x) and at V (x) are not simply related by constant
acceleration function, but by the following time integral

⌧AB,i =

Z ⌧ InMetaD
AB,i

t=0

dt exp

✓
+

1

kBT
U(x

(i)
t )

◆
, (S34)

where we used the result from eq. S31 to approximate the instantaneous acceleration. Dis-
cretizing the integral yields12,13

⌧AB,i ⇡ �t

Ni,tX

t=1

exp

✓
+

1

kBT
U(x

(i)
t )

◆
, (S35)

where x
(i)
t is the tth time step in trajectory x(i), �t is the time di↵erence between subsequent

frames in the trajectory U(x
(i)
t ) is the bias at time t�t at position x

(i)
t , and Nt is the number

of frames in the trajectory. From these rescaled first passage times, one can estimate the
mean first passage time ⌧AB by fitting to a Poisson distribution.

Eq. S34 can be cast in terms of an acceleration factor by multiplying with 1 =
⌧ InMetaD
AB,i /⌧ InMetaD

AB,i

⌧AB,i = ⌧ InMetaD
AB,i · ↵(⌧ InMetaD

AB,i ) (S36)

where

↵(⌧ InMetaD
AB,i ) =

1

⌧ InMetaD
AB,i

Z ⌧ InMetaD
AB,i

t=0

dt exp

✓
+

1

kBT
U(x

(i)
t )

◆
. (S37)
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II. COMPUTATIONAL DETAILS

A. Geometry optimization on the DFTB3 PES

Starting structures of the cis and the trans conformation of pSb5 and pSb1 were gen-
erated using Gaussian’s graphical interface, GaussView 614, and converted to .xyz file
format. These structures were energy minimized on the level of the self-consistent-charge
density-functional tight-binding method including the third order correction (DFTB3)
and using the 3ob-3-1 Slater–Koster parameter set15. Applicability of self-consistent
charge DFTB to the retinal cofactor has been extensively documented16,17. Energy
minimizations and constrained optimizations were carried out by interfacing DFTB+
software package18 with the Atomic Simulation Environment (ASE)19, and using the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS) algorithm20 with a maximum force of 10�5 eV Å
�1

as convergence criterion. Transition states were optimized using the Nudged Elastic Band
(NEB) method21 with climbing image22 using 22 nodes starting from the optimized reactant
and product states (trans and cis respectively) in combination with BFGS for numerical

optimization. For pSb5, the spring constants of the bands were chosen to be 0.8 eV Å
�2

,

while a maximal force of 0.02 eV Å
�1

was used as convergence criterion. For pSb1, the
transition state search was considerably more sensitive to the parameters used. Here, a
two-step optimization was performed, first using NEB without climbing image with spring

constants of 0.3 eV Å
�2

and a maximum force of 0.01 eV Å
�1

, followed by a second NEB
optimization with climbing image using the same spring constants and maximum force.

Moments of inertia for the reactant states (cis or trans) as well as for transition states were
obtained by entering the configurations into the Gaussian 16 software23, which calculates
rotational temperatures ⇥rot,i,k = h2/8⇡2kBIi,k, where i designates the configuration (A
or AB‡) and k designates the axis of inertia (a, b or c, see section I of this supplement).
These were used to calculate the ratio of rotational partition functions qAB‡,rot/qA,rot as in
eq. S9, from which the rotational contributions �Frot (eq. 6a) to the free energy di↵erence
�F ‡ (eq. 5) was computed, see Tables II and III.

Vibrational mode analyses were carried out for the reactant states (cis or trans) as
well as for transition states using DFTB+. The smallest six frequencies correspond to
the translational and rotational degrees of freedom, and were excluded from the subse-
quent calculations. After removing these frequencies, reactant state configurations did not
have imaginary frequencies, and transition state configurations only had one imaginary fre-
quency, as is expected for optimized structures. For pSb5, the imaginary frequency was
�2347.45 cm�1 and the lowest real frequency was 35.0 cm�1. For pSb1, the imaginary fre-
quency was �690.5 cm�1 and the lowest real frequency was 15.3 cm�1. From the vibrational
frequencies, the vibrational contributions �Fvib (eq. 6b) to the free energy di↵erences for
Eyring TST (�F ‡, eq. 5) and �F ht

vib for the high-temperature limit (�F ‡,ht, eq. 8) were
calculated. From the free energy di↵erences �F ‡ and �F ‡,ht, Eyring TST rate constants
and high-temperature TST rate constants were calculated using eqs. 3 and 7, respectively.

To obtain the energy scan in Fig. S2, twelve constrained geometry optimizations were
carried out for each compound, where the dihedral angle ' was constrained at values in 30
degree intervals over the whole 360 degree range, that is at -150, -120, -90, -60, -30, 0, 30,
60, 90, 120, 150 and 180 degrees.

B. Well-tempered metadynamics with DFTB3

Starting structures of the cis and the trans conformation of pSb5 and pSb1 were generated
as described in section II A of the supplement.

MD simulations (equilibration and production) were carried out using the DFTB+ soft-
ware package18. The potential energy and the resulting forces were calculated with the
self-consistent-charge density-functional tight-binding method including the third order cor-
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rection (DFTB3) in combination with the 3ob-3-1 Slater–Koster parameter set15. The
equations of motions were integrated using the velocity-Verlet integrator with a time step
of �t = 1 fs. The 1 fs time step was validated by comparison to the periods of the fastest
vibrational components obtained from vibrational mode analysis. These were 9.7 fs and
10.0 fs in the reactant states, and 9.6 and 10.0 fs in the transition states, for pSb5 and pSb1
respectively. Thus, our time step is about an order of magnitude smaller then the fastest
vibrational mode.

The system was equilibrated for 50 ps using Berendsen thermostat24 at T = 300 K with
a coupling strength of �t/⌧ = 5 ⇥ 10�4, corresponding to a the coupling time of ⌧ = 2ps.
This was followed by a second equilibration of 50 ps at T = 300K using a Nosé-Hoover
thermostat25–27 of chain length three and coupling frequency of 0.5 THz, corresponding to
a the coupling time of ⌧ = 2ps.

Well-tempered metadynamics28 were carried out by plugging the PLUMED software
package29–31 with the DFTB+ package18. Potential energy, integrator settings and set-
tings of the Nosé-Hoover thermostat were the same as in the second equilibration run.
For each of the two systems, we carried out three di↵erent well-tempered metadynamics
simulations (MetaD1, MetaD2, MetaD3). As biased collective variable, we used the C12-
C13=C14-C15 dihedral angle '. Height and width of the Gaussian bias potentials, deposition
rate, and bias factor, as well as simulation time are reported in Table IV. Sporadically, the
self-consistent charge calculation of the DFTB3 force evaluation would fail to converge for a
specific configuration along a longer metadynamics run. In that case, a small perturbation
was enforced to the velocities of the corresponding configuration, after which the metady-
namics simulation was resumed. Unbiasing weights for the trajectory were calculated using
the bias potential obtained at the end as described in Ref. 32. Free energy surfaces were
calculated after building a weighted histogram from the trajectory starting at a simulation
time where the bias can be considered converged.

C. Error estimates for metadynamics FES

Error estimates for free energy profiles obtained from metadynamics reweighting can be
determined using the block analysis technique33 on the reweighted trajectory. Block analysis
was carried out using the example code on the PLUMED website.

The free energy di↵erence at a certain simulation time is calculated by determining the
FES corresponding to the bias at that time (i.e. from the scaled upside-down bias, see
Refs. 32–34). This FES is used to calculate the relative probabilities of being in cis versus
being in trans. Using eq. 12:

⇡cis =

Z ⇡/2

�⇡/2

d'⇡(') =

Z ⇡/2

�⇡/2

d' exp

✓
�F (')

kBT

◆
(S38)

and equivalent for trans in ' < �⇡/2 and ' > ⇡/2. The free energy of a state can then be
calculated using Fcis = �kBT ln⇡cis and equivalent for trans, and the free energy di↵erence

�F = Fcis � Ftrans = �kBT ln
⇡cis

⇡trans
. (S39)

D. Umbrella Sampling

Umbrella Sampling35 has been run for thermal isomerization over the C13=C14 double
bond for both pSb5 and pSb1, constraining the C12-C13=C14-C15 dihedral angle '. Biasing
of the CV was carried out by plugging the PLUMED software package29–31 with the DFTB+
package36.

For both pSb5 and pSb1, three sets of umbrella sampling simulations have been per-
formed, i.e. sets US1, US2 and US3. Each set has the same parameter setup and consisted
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of 83 trajectories. The parameters (number of windows, the region of ' in which they
are distributed at a regular interval, and the force constant of the umbrella potential) are
reported in Table V.

Each window was initialized starting from the structure obtained from constrained op-
timization at the '-value closest to the position of the window. For every window, an
initial equilibration of 25 ps was performed from the respective starting structure using a
Berendsen thermostat of coupling strength 5 ⇥ 10�4. The initial velocities were generated
randomly from an initial Maxwell-Boltzmann distribution of atomic velocities. This is fol-
lowed by a second equilibration run of 25 ps using the same Nosé-Hoover chain setup that
is used during production runs. Every production trajectory was 2 ns making for a total
simulation time of 166 ns per set. Binless WHAM33,37 was used to establish the free energy
profile from the trajectory data.

Error estimates for the free energy profiles obtained from umbrella sampling can be
computed using the bootstrapping method38. For each umbrella, the trajectory was split
in 20 blocks of equal length. A ‘new’ trajectory of the same length as the original is then
constructed by taking combinations of these 20 blocks with the possibility of repetition.
After doing this for all umbrellas, the free energy surface is recalculated using WHAM.
This procedure is repeated 200 times, producing 200 free energy surfaces which allows
calculation of standard deviations which can be shown to be good estimates of standard
errors on the free energy surface39. Notice the standard errors might be underestimated
because of correlations between blocks within each trajectory40. Because of important
correlated motion in orthogonal degrees of freedom, we expect this to be the case for US of
pSb5.

E. Unbiased MD simulations with DFTB3

Separate unbiased ab-initio MD simulations were performed in the cis and the trans state
for both pSb5 and pSb1, i.e. generating a total of four unbiased trajectories. Dynamics
were simulated using the DFTB+ software package36 at the DFTB3 level, with starting
structures of the cis and the trans conformation of pSb5 and pSb1 generated similarly as
before (section II A of the supplement). For each simulation, first a 25 ps equilibration
using the Berendsen thermostat24 at 300 K with a coupling time of 2 ps was performed,
followed by a second equilibration of 25 ps at 300K using a Nosé-Hoover thermostat25–27

with chain length 3 and a coupling time of 2 ps. Once equilibrated, production runs of 2 ns
were performed.

F. Infrequent metadynamics with DFTB3

Infrequent metadynamics11,41 was used to study a total of four transitions: cis ! trans
and trans ! cis for both pSb5 and pSb1. For each of these four transitions, two separate
sets of infrequent metadynamics (InMetaD1 and InMetaD2) were carried out, giving rise to
a total of eight sets and eight corresponding rates (four for pSb5 in Table II and four for
pSb1 in Table III). Each set consists of a number of trajectories (also referred to as ‘runs’
i) starting in the reactant state and ending in the product state.

Trajectories were generated by plugging the PLUMED software package30 with the
DFTB+ package36. Potential energy, integrator settings and settings of the Nosé-Hoover
thermostat were the same as in the metadynamics simulations described above. As biased
collective variable, we used the C12-C13=C14-C15 dihedral angle '. Height and width of
the Gaussian bias potentials, deposition rate, and bias factor, number of simulations are
reported in Table IV.

Notice that, because DFTB+ implements deterministic dynamics (velocity-Verlet + Nosé-
Hoover), additional care needs to be taken in generating the correct initial conditions,
i.e. to start each run from uncorrelated starting configurations and velocities according to
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Molecule Set pace runs kt!c [s�1] kc!t [s�1] min
i

⌧ InMetaD
t!c,i max

i
⌧ InMetaD
t!c,i min

i
⌧ InMetaD
c!t,i max

i
⌧ InMetaD
c!t,i

[ps] (p-value) (p-value) [ns] [ns] [ns] [ns]

pSb5 InMetaD1 5 25 1.94 ⇥ 10�6 1.04 ⇥ 10�4 10.8 18.2 8.4 15.4
(0.58) (0.77)

pSb5 InMetaD2 10 30 2.63 ⇥ 10�6 9.22 ⇥ 10�5 22.0 32.6 18.2 28.0
(0.93) (0.78)

pSb1 InMetaD1 5 25 2.97 ⇥ 10�3 9.30 ⇥ 10�3 5.6 11.8 6.7 10.6
(0.77) (0.56)

pSb1 InMetaD2 10 30 3.09 ⇥ 10�3 1.22 ⇥ 10�2 13.6 20.1 11.8 19.9
(0.75) (0.44)

TABLE S1. Parameters and rates for infrequent metadynamics simulations of thermal cis-trans
isomerization around the C13=C14 double bond in pSb5 and pSb1. Parameters of the metadynamics
biasing can be found in Table IV. Rates are repeated from Tables II and III. The pace and the
amount of runs used to fit the TCDF are given. Additionally, the minimum and maximum biased
transition times are given for each set. For each rate calculation, the p-value is shown as well.

local equilibrium in the reactant state. Generating good initial starting states was taken
care of in the equilibration phase of each separate run. To obtain uncorrelated starting
configurations for the infrequent metadynamics runs, we equilibrated the starting reactant
state configuration with randomized velocities before each run. Additionally, the total
equilibration time of each run was randomized to be anywhere between 10 and 100 ps.

Trajectories for runs from trans to cis were terminated once a value of ' 2 [�⇡/5,⇡/5] was
reached, where the molecule is definitely in the cis state. The biased transition time ⌧ InMetaD

t!c,i

was then taken to be the time of the last trajectory point where the configuration can still
be considered at the trans side, i.e. the last trajectory point where ' < �⇡/2 or ' > ⇡/2.
The unbiased transition times ⌧t!c,i can then be calculated from eq. 11. Trajectories for
runs from cis to trans were stopped once a value of ' < �4⇡/5 or ' > 4⇡/5 was reached,
where the molecule is definitely in the trans state. The biased transition time ⌧ InMetaD

c!t,i

was then taken to be the time of the last trajectory point where the configuration can
still be considered at the cis side, i.e. the last trajectory point where ' 2 [�⇡/2,⇡/2], and
unbiased transition times ⌧c!t,i can be calculated from eq. 11. To get an idea of the actual
simulation times, the minimum and maximum biased transition times for each set are given
in Table S1. Notice that acceleration factors ↵ were very large for our particular application
of infrequent metadynamics, with numbers up to the order of ↵

�
⌧ InMetaD
t!c,i

�
⇠ 1014 in set

InMetaD1 for trans to cis runs for pSb5.

The estimated mean first-passage times can then be obtained by fitting the reweighted
transition times of all runs within a set to a Poisson distribution (eq. 10), and rates can be
calculated directly using eq. 9. Parameters for the infrequent metadynamics simulations,
p-values of the Kolmogorov-Smirno↵ test, as well as ranges of the simulated first-passage
times are reported in Table S1.

G. Pontryagin and Kramers Rate Calculations

Rates from Pontryagin and Kramers’ rate equations (eqs. 15 and 14 respectively) were
calculated using free energy surfaces MetaD1 for both pSb5 and pSb1, see Fig. 2. Di↵usion
profiles for both pSb5 and pSb1 were taken from the umbrella windows of the corresponding
US3 set.

Calculation of rates from the Pontryagin equation in eq. 15 entails a nested integration
over the free energy profile F (') and the position-dependent di↵usion D('). The integrals
were calculated numerically, where the inner integral was carried out starting from the
barrier peak on the other side of the reactant state. Rates were initially calculated separately
in the two possible direction, i.e. going clockwise or counterclockwise, for both trans-to-cis
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as cis-to-trans isomerizations. The actual rates are then obtained by summing:

ktrans!cis = kt!c,left + kt!c,right (S40a)

kcis!trans = kc!t,left + kc!t,right (S40b)

where kt!c,left indicates trans-to-cis isomerization over the left free energy barrier, and
analogous for kt!c,right, kc!t,left and kc!t,right.

For calculation of Kramers’ rate equation (eq. 14), free energy barriers F ‡ were determined
directly from the free energy profile by subtracting the maximum free energy value at
the corresponding peak (left or right) by the minimum value at the reactant side under

consideration. In this way, four energy barriers per free energy surface F ‡
t!c,left, F ‡

t!c,right,

F ‡
c!t,left and F ‡

c!t,right are obtained. Masses in reduced dimensions for reactant states
µtrans and µcis were calculated by running unbiased 2 ns runs in the corresponding states,
calculating the average kinetic energy in the reduced dimension (i.e. the dihedral angle) and
comparing to the temperature using the equipartition theorem:

µA =
kBT⌦
v2
'

↵
A

. (S41)

The reactant state dihedral velocities !A (where A denotes cis or trans) can then be calcu-
lating using

!A =

r
A

µA
(S42)

where spring constant A is obtained by fitting the free energy surface to a harmonic poten-
tial 1

2A('�'A)2 where 'A corresponds to the free energy minimum at the corresponding
reactant state A. Fits for the trans and cis free energy wells show close agreement with har-
monic potentials at the bottom, which validates the harmonic assumptions of the reactant
and product states in the formulations for Kramers’ equation. The friction coe�cient ⇠ in
eq. 14 was taken to be the friction coe�cient ⇠‡ at the barrier top, which can be calculated
directly from the di↵usion profile using the Einstein-Stokes relation:

⇠‡ =
kBT

µ‡D‡ (S43)

where D‡ is the value of the di↵usion coe�cient at the barrier top and µ‡ has been approx-
imated by averaging µcis and µtrans. The angular frequency at the barrier top !‡ has been
calculated in a similar way as at the reactant states using:

!‡ =

s
‡

µ‡ (S44)

where ‡ was obtained using a parabolic fit to the free energy surface at the barrier top.
Again, total rates are obtained by summing rates for both barriers as in eqs. S40.

The resulting parameters for Kramers’ rate constant are reported in Tables S2 and S3.

H. Geometry Optimization using unrestricted DFT and DFT-D3

All calculations for pSb5 and pSb1 at the DFT level were performed with the Gaussian
16 software23 using unrestricted DFT with the B3LYP functional42,43 and 6-31G* basis
set44, same as in Refs. 17,45,46. Gaussian’s default settings were used for the integration
grid, i.e. for the grid size used for numerical integration of the functional, as well as for the
convergence settings of the self-consistent field (SCF) iterations. This proved su�cient for
reactant and transition state optimization and vibrational analysis as described below.
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trans!cis cis!trans
units TS TS0 TS TS0

µA [kg.m2.rad�2] 7.03 ⇥ 10�47 7.03 ⇥ 10�47 2.35 ⇥ 10�47 2.35 ⇥ 10�47

D‡ [rad2.ps�1] 0.68 0.67 0.68 0.67
⇠‡ [ps�1] 1.31 ⇥ 102 1.31 ⇥ 102 1.31 ⇥ 102 1.31 ⇥ 102

!A [ps�1] 4.67 ⇥ 101 4.67 ⇥ 101 6.68 ⇥ 101 6.68 ⇥ 101

!‡ [ps�1] 3.08 ⇥ 102 2.80 ⇥ 102 3.08 ⇥ 102 2.80 ⇥ 102

F ‡ [kJ.mol�1] 89.0 88.7 80.5 80.2

TABLE S2. Parameters for one-dimensional rate theories calculated for F (') for pSb5 using
metadynamics (MetaD1) for trans!cis and cis!trans transitions. Values are given separately for
transitions over the left (TS) and right (TS0) torsional barrier.

trans!cis cis!trans
units TS TS0 TS TS0

µA [kg.m2.rad�2] 6.80 ⇥ 10�47 6.80 ⇥ 10�47 2.49 ⇥ 10�47 2.49 ⇥ 10�47

D‡ [rad2.ps�1] 0.62 0.64 0.62 0.64
⇠‡ [ps�1] 1.45 ⇥ 102 1.39 ⇥ 102 1.45 ⇥ 102 1.39 ⇥ 102

!A [ps�1] 4.34 ⇥ 101 4.34 ⇥ 101 6.24 ⇥ 101 6.24 ⇥ 101

!‡ [ps�1] 2.08 ⇥ 102 2.26 ⇥ 102 2.08 ⇥ 102 2.26 ⇥ 102

F ‡ [kJ.mol�1] 78.7 78.9 74.8 75.0

TABLE S3. Parameters for one-dimensional rate theories calculated for F (') for pSb1 using
metadynamics (MetaD1) for trans!cis and cis!trans transitions. Values are given separately for
transitions over the left (TS) and right (TS0) torsional barrier.

All calculations were done in parallel with and without Grimme’s empirical dispersion
corrections with the D3 damping function47, while using the same functional and basis
functions. Adding D3 corrections in Gaussian was done by including the EmpiricalDis-
persion=GD3 keyword. Calculations including D3 corrections are designated as DFT-D3
calculations.

First, full geometry optimizations were performed in the cis and trans states, where the
opt=tight keyword was used to control the convergence criterion. Furthermore, geometry
optimizations with constrained dihedral angle ' were performed using the ModRedundant
keyword with default cuto↵s for the convergence criterions of the optimization algorithm.
Gaussian uses the Berny optimization algorithm48 as default for both minimizations and
optimizations.

Transition state search was performed using the Synchronous Transit-guided Quasi-
Newton (STQN) method49,50 with the opt=qst3 keyword, where the reactant and product
state input configurations were chosen to be the geometry optimized structures in the trans
and cis states. Separate transition states were optimized for di↵erent directions of trans-cis
rotation, i.e. clockwise or counterclockwise. This was done by providing an approximate
transition state configuration with dihedral angle of ' = 90� or ' = �90� respectively.

Gaussian performs a full thermochemical analysis including calculation of the trans-
lational, rotational and vibrational partition functions and corresponding energies and
entropies5. This allows for straightforward calculation of rates using Eyring’s equation
(eq. 3).

Rotational characteristic temperatures were calculated by Gaussian by default, and can
be used to calculate the rotational contributions �Frot (eq. 6a) to the free energy di↵erence
(�F ‡, eq. 5), similar as was done for DFTB3.

Vibrational mode analyses were performed on the reactant and transition state struc-
tures using the freq keyword in Gaussian. Notice Gaussian automatically disregards the
frequencies associated with the translational and rotational degrees of freedom. The struc-
tures optimized to a minimum did not have any imaginary frequencies, while the structures
optimized to transition states had only one imaginary frequency, as is expected. For pSb5,
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the imaginary frequency was �882.9 cm�1 and the lowest real frequency was 28.4 cm�1.
For pSb1, the imaginary frequency was �428.0 cm�1 and the lowest real frequency was
16.1 cm�1.

The vibrational frequencies can be used to calculate the vibrational contributions to the
free energy di↵erences, both fully quantum mechanical (�Fvib and �F ‡, eqs. 6b and 5) as
in the high-temperature limit (�F ht

vib and �F ‡,ht, eq. 8), same as was done for DFTB3.
Subsequently, rates for high-temperature TST can be calculated according to eq. 7. Rota-
tional and vibrational contributions to the free energy di↵erences as well as rates can be
found in Tables II and III.
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III. SUPPLEMENTARY FIGURES

a

b

FIG. S1. a: Sampling using DFTB3 set US3 for pSb5 showing correlation between C13=C14

dihedral ' and improper dihedrals of substituents on C13, C14, C12 and C15 atoms. Configurations
taken from 83 trajectories from harmonic restraints at di↵erent values of ', with configurations of
each trajectory colored with a di↵erent color. Black crosses correspond to configurations obtained
from geometry optimization using unrestricted DFT/B3LYP/6-31G* with constrained dihedral '.
b: Sampling using DFTB3 set US1 for pSb1 showing correlation between C13=C14 dihedral ' and
improper dihedrals of substituents on C13, C14, C12 and C15 atoms. Configurations taken from 83
trajectories from harmonic restraints at di↵erent values of ', with configurations of each trajectory
colored with a di↵erent color. Black crosses correspond to configurations obtained from geometry
optimization using unrestricted DFT/B3LYP/6-31G* with constrained dihedral '.
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ba

FIG. S2. Electronic energies from constrained optimization calculations using DFTB3 (E(DFTB3))
as well as unrestricted DFT/B3LYP/6-31G* with (E(DFT � D3)) and without (E(DFT))
Grimme’s D3 correction for a: pSb5 and b: pSb1. Energies have been taken relative to the
trans structure (180 degrees) within the respective level of theory.
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36Hourahine, B.; Sanna, S.; Aradi, B.; Köhler, C.; Niehaus, T. and Frauenheim, T., The Journal of Physical

Chemistry A, 2007, 111(26), 5671–5677.
37Tan, Z.; Gallicchio, E.; Lapelosa, M. and Levy, R. M., The Journal of Chemical Physics, 2012, 136(14),

04B608.
38Efron, B., The jackknife, the bootstrap and other resampling plans, SIAM, 1982.



18

39Gatz, D. F. and Smith, L., Atmospheric Environment, 1995, 29(11), 1185–1193.
40Hub, J. S.; De Groot, B. L. and Van Der Spoel, D., Journal of Chemical Theory and Computation, 2010,

6(12), 3713–3720.
41Salvalaglio, M.; Tiwary, P. and Parrinello, M., Journal of Chemical Theory and Computation, 2014,

10(4), 1420–1425.
42Becke, A. D., Physical Review A, 1988, 38(6), 3098.
43Lee, C.; Yang, W. and Parr, R. G., Physical Review B, 1988, 37(2), 785.
44Hehre, W. J.; Ditchfield, R. and Pople, J. A., J. Chem. Phys., 1972, 56, 2257–2261.
45Tajkhorshid, E. and Suhai, S., The Journal of Physical Chemistry B, 1999, 103(26), 5581–5590.
46Tajkhorshid, E.; Paizs, B. and Suhai, S., The Journal of Physical Chemistry B, 1999, 103(21), 4518–4527.
47Grimme, S.; Antony, J.; Ehrlich, S. and Krieg, H., The Journal of Chemical Physics, 2010, 132(15).
48Schlegel, H. B., Journal of Computational Chemistry, 1982, 3(2), 214–218.
49Peng, C. and Bernhard Schlegel, H., Israel Journal of Chemistry, 1993, 33(4), 449–454.
50Peng, C.; Ayala, P. Y.; Schlegel, H. B. and Frisch, M. J., Journal of Computational Chemistry, 1996,

17(1), 49–56.



3.2 Paper A2

“Accuracy of reaction coordinate based rate theories for modeling chemical reactions: insights

from the thermal isomerization in retinal”

S. Ghysbrecht, L. Donati, B. G. Keller

J. Comput. Chem., 2024

Accepted manuscript

Preprint: https://doi.org/10.48550/arXiv.2312.12948

This is the pre-peer reviewed version of the following article:

S. Ghysbrecht, L. Donati, B. G. Keller, “Accuracy of reaction coordinate based rate theories

for modelling chemical reactions: insights from the thermal isomerization in retinal” J. Com-

put. Chem. 46.1 (2025): e27529,

which has been published in final form at https://doi.org/10.1002/jcc.27529. This article

may be used for non-commercial purposes in accordance with Wiley Terms and Conditions

for Use of Self-Archived Versions.

Contributions:

Simon Ghysbrecht, Luca Donati and Bettina Keller conceived the project and wrote the

manuscript. L.D. performed the computational work for the one-dimensional model systems.

S.G. performed the computational work for the atomistic model of retinal. All authors

contributed to the the final version of the manuscript.

96

https://doi.org/10.48550/arXiv.2312.12948
https://doi.org/10.1002/jcc.27529


Summary

Rate theories enable estimation of rate constants for chemical reactions from molecular dy-

namics (MD) simulations. However, vastly different results can be obtained from different

methods. In the previous section, different rare event methods were used to calculate rate

constants for thermal cis-trans isomerization in two retinal analogues using density functional

tight-binding (DFTB) to model the potential energy surface (PES). While numerical sampling

of transitions through infrequent metadynamics produced rates that were in good agreement

with values obtained from Eyring transition state theory, methods from effective dynamics

along a one-dimensional reaction coordinate yielded rates which were up to three orders of

magnitude higher. In this paper, the source of this discrepancy is examined, and alternative

methods and reaction coordinates as well as multidimensional extensions are evaluated. The

following research questions are investigated:

1. How do rates from effective dynamics compare to rates from numerical sampling in

one-dimensional model potentials?

2. How do rates from effective dynamics compare to rates from numerical sampling for

thermal cis-trans isomerization in a retinal system modeled by a force field?

3. What is the influence of the choice of reaction coordinate?

First, the rate theories are compared for one-dimensional model systems characterized by

analytical free energy profiles. In one dimension, effective dynamics evidently corresponds to

the explicit dynamics, and thus consistency of these rate equations is tested directly against

numerical sampling. Effective dynamics-based methods assessed here are Kramers’, which

takes on different formulations for different friction regimes, and Pontryagin and grid-based

methods, which are derived for the high friction regime. For all examined free energy profiles,

these methods yield results which, in their appropriate friction regime, are consistent with

results from numerical simulation of transitions, carried out either by unbiased simulations

or by infrequent metadynamics. This underscores that these methods accurately reproduce

rates as long as the effective dynamics are reliable. As a consequence, the discrepancies in the

retinal analogues likely arise from unreliable representation of the full-dimensional dynamics

by the one-dimensional reaction coordinate.

Second, we conduct MD simulations to explore cis-trans isomerization in a retinal model

system using a force field[135]. Although utilizing force fields extends simulation times to

microseconds, it remains insufficient for directly sampling transitions. In a first approach and

similarly as in the previous section, infrequent metadynamics are used, biasing the C13=C14

dihedral angle φ and reweighting transition times to estimate rate constants (2× 10−5 s−1).2

2Rates between brackets are given for cis-to-trans isomerization. Similar trends are seen in trans-to-cis
rates, see Tab. 2 in the paper.
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Subsequently, metadynamics and umbrella sampling (US) are used to generate free energy

and diffusion profiles in φ, just as was done in the previous study. Free energy barriers from

metadynamics are found to be overestimated compared to those from US, an effect attributed

to correlated motion orthogonal to the biased dihedral angle around the transition state[136].

Consistent with DFTB results, application of effective dynamics-based methods to US free

energy profiles along φ as reaction coordinate result in rates (6×10−3 s−1 for Kramers) orders

of magnitude higher than those from infrequent metadynamics.

Third, the effect of the reaction coordinate is investigated. Similar to our observations

with DFTB in the preceding section, we note correlations between neighboring dihedral angles

and φ. Particularly notable are contributions from out-of-plane wagging of the substituents

on the C13 and C14 atoms, gauged through the corresponding improper dihedral angles χ1

and χ2. In a first approach, path reaction coordinates are optimized through path adaptive

sampling, taking into account the two improper dihedrals in addition to φ. Free energy

profiles along these path reaction coordinates reveal barriers approximately 9 kJ/mol higher

than those along φ. Correspondingly, rates derived from effective dynamics-based methods

are substantially lower (5×10−5 s−1 for Kramers, 4×10−5 s−1 for Pontryagin and grid-based)

and are closer to those obtained from infrequent metadynamics. Metadynamics along the path

reaction coordinate again produce free energy barriers higher than those obtained from US,

suggesting that certain correlated motions remain unaccounted for. In a second approach,

grid-based models are applied to three-dimensional free energy surfaces spanned by φ, χ1

and χ2, obtained from multidimensional metadynamics or US. This approach corresponds to

modeling effective dynamics in a three-dimensional subspace, and yields rates (1× 10−5 s−1)

in good agreement to those obtained from infrequent metadynamics. In this case, rates from

three-dimensional free energy surfaces generated from metadynamics and US are very close.
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Modern potential energy surfaces have shifted attention to molecular simulations of chemical reac-
tions. While various methods can estimate rate constants for conformational transitions in molecular
dynamics simulations, their applicability to studying chemical reactions remains uncertain due to
the high and sharp energy barriers and complex reaction coordinates involved. This study focuses on
the thermal cis-trans isomerization in retinal, employing molecular simulations and comparing rate
constant estimates based on one-dimensional rate theories with those based on sampling transitions
and grid-based models for low-dimensional collective variable spaces. Even though each individual
method to estimate the rate passes its quality tests, the rate constant estimates exhibit considerable
disparities. Rate constant estimates based on one-dimensional reaction coordinates prove challeng-
ing to converge, even if the reaction coordinate is optimized. However, consistent estimates of the
rate constant are achieved by sampling transitions and by multi-dimensional grid-based models.

I. INTRODUCTION

Elucidating chemical reaction mechanisms and rates is a
central goal in computational chemistry. Yet, calculating
this type of dynamical properties remains significantly
more challenging than obtaining structural or thermody-
namic information. Making precise predictions of reac-
tion rates is particularly difficult.
The difficulties arise from two main sources: inaccuracies
in the model of the potential energy surface (PES) [1],
and inaccuracies in the method to calculate the rate on
this PES [2]. Modelling a chemical reaction often requires
a highly accurate PES based on explicitly evaluating the
electronic structure at each nuclear configuration. Until
recently, the computational cost of electronic structure
methods has been so large that their use has been con-
fined to single-point calculations [3] or short simulations
of small systems [4]. Only few rate theories can work
with so little information. Among them Eyring transi-
tion state theory [5] remains the most frequently used
method. However, several extensions of Eyring tran-
sition state theory, such as variational transition state
theory[6, 7] and Grote-Hynes theory [8], have been intro-
duced to account for recrossing and the influence of the
solvent.
With recent advances in electronic structure methods
[9, 10] and the advent of neural network potentials
[11, 12], molecular dynamics (MD) simulations of chem-
ical reactions in complex environments become possible,
allowing for the explicit treatment of solvent effects and
entropic effects. A wide variety of methods to estimate

∗ bettina.keller@fu-berlin.de

rates[13, 14], that have been developed in the context
of MD simulations of soft-matter systems, can now be
applied to chemical reactions in complex environments.
Soft-matter systems are characterized by rugged PES
with multiple minima connected by energy barriers that
are in the same range as the thermal energy. Exam-
ples are peptide[15] and protein dynamics[16], molecular
binding[17] or crystal nucleation[18]. The accuracy of
simulation-based rate estimates in the context of chem-
ical reactions, which usually feature a single high and
sharp barrier, is still a matter of debate.

It is important to acknowledge that simulation-based rate
estimates are founded on classical mechanics and there-
fore do not account for quantum tunneling or energy
quantization. While quantum tunneling is significant in
proton transfer reactions, its rate diminishes exponen-
tially with the square root of the reactant’s mass and the
barrier height. As a result, for reactions involving car-
bon or other medium-mass atoms, quantum tunneling
is observable only when the reactant molecule is highly
strained and consequently the reaction barrier is low [19].
However, energy quantization of the vibrational degrees
of freedom does have a noticeable effect in most reactions,
in particular, if the reactant molecule is rigid. For the
thermal isomerization of protonated Schiff bases, which
are closely related to retinal, neglecting the energy quan-
tization incurs an error in the reaction rate of about a
factor of three at room temperature [2]. It is worth not-
ing that one can incorporate the effect of energy quan-
tization into the potential energy and thereby achieve
quantum-corrected classical dynamics [20].

Simulation-based rate estimates broadly fall into two dis-
tinct categories. The first approach is based on counting
transitions across the reaction barrier. Since for most
chemical reactions, the mean first passage time exceeds
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the accessible simulation time by far, one employs dy-
namical reweighting techniques, in which the sampling
is enhanced and the transition count is subsequently
reweighted [21–23]. Infrequent metadynamics[24] falls
into this category.

The second approach is based on assuming an effective
dynamics along a one-dimensional reaction coordinate,
which requires the free energy surface and diffusion con-
stant or diffusion profile as a function of this reaction
coordinate. The influence of the neglected degrees of free-
dom and the curvature of the reaction coordinate on the
system’s dynamics are captured by these two functions,
which can be readily estimated from atomistic simula-
tions of the full molecular system[25–27]. From the effec-
tive dynamics, one may then derive analytical expressions
for the rate constants. Kramers’ rate theory [28, 29] falls
into this second category.

The advantage of Kramers’ theory is that, given a reac-
tion coordinate, the individual steps of this approach are
well-established and straight-forward. However, both the
free energy surface and the diffusion constant depend on
the reaction coordinate and thus the accuracy of the rate
estimate hinges on the quality of this coordinate.

Furthermore, Kramers’ analytical expressions for the rate
fall into three limiting cases (friction regimes), and it is
essential to ensure the correct friction regime is applied.
Both the barrier height and the “sharpness” of the bar-
rier, represented by the barrier frequency, determine the
friction regime. The high friction regime is induced by
high barriers (compared to thermal energy) and broad
barriers (barrier frequency compared to friction due to
the implicit degrees of freedom). The low and interme-
diate friction regimes are induced by low and sharp bar-
riers. Chemical reactions with high and sharp barriers
fall into a middle ground, where it is not a priori clear
whether the high friction regime applies.

To investigate how these effects play out in a chemical
reaction, we study the thermal cis-trans isomerization
around the C13=C14 double bond of retinal coupled to
a lysine in vacuum [30, 31]. As PES, we use an empir-
ical force field, whose computational efficiency permits
a broad comparison of rate estimates. For a cis-trans
isomerization one may use an empirical force field, be-
cause the molecule’s sigma bonds stay intact. Our goal
is to explore whether classical MD in combination with
Kramers’ rate theory can model this reaction with quan-
titatively accurate reaction rates and mechanism (on a
given PES). As comparison, we include rate estimates for
overdamped Langevin dynamics along a one-dimensional
reaction coordinate (Pontryagin’s rate theory [32]), grid-
based models [33, 34] of an effective dynamics in a mul-
tidimensional collective variable space, and infrequent
metadynamics[24].

II. THEORY

A. Definitions

The cis-trans isomerization of retinal is a unimolecular
reaction

A
kAB−−→ B , (1)

where A is the cis isomer, B is the trans isomer, and kAB

is the reaction rate constant. The rate constant is related
to the mean first-passage time (MFPT) τAB by

kAB =
1

τAB
. (2)

The configuration of the molecule is given by the posi-
tions of its N atoms in Cartesian space: x ∈ Γx ⊂ R3N ,
where Γx is called configuration space. We model the
dynamics within the Born-Oppenheimer approximation,
where V (x) represents the Born-Oppenheimer potential
energy of the electronic ground state. Reactant state
A ⊂ Γx and the product state B ⊂ Γx are regions around
minima in V (x), whereas the transition state (TS) cor-
responds to a saddle point in V (x).

Collective variables are low-dimensional representations
of the 3N -dimensional atomic positions. A collective
variable vector is a (possibly non-linear) function

q : Γx → Rm (3)

which maps each position x ∈ Γx onto a low-dimensional
vector q ∈ Rm, where m ≪ 3N .

The free energy along q is defined as:

F (q) = −RT lnπ(q) (4)

where π(q) is the configurational Boltzmann density
marginalized to the collective variable space

π(q) = Z−1
conf

∫

Γx

dx exp

(
−V (x)

RT

)
δ [q(x)− q] . (5)

Here, δ [q(x)− q] is the Dirac delta function and Zconf is
the configurational part of the classical partition function
Zconf =

∫
Γx

dx exp (−V (x)/RT).

A reaction coordinate is a one-dimensional collective vari-
able that scales monotonously between reactant state A
and product state B:

q : Γx → [0, 1] . (6)

q is zero for the reactant state A and one for product
state B. In this manner, q represents the progress of the
reaction. Other intervals are also possible, but can be
rescaled to [0, 1]. The free energy F (q) along the reaction
coordinate is defined analogous to eqs. 4 and 5.

In eqs. 4 and 5, R is the ideal gas constant and T is
the temperature. We calculate and report potential and
free energies in units of J/mol, correspondingly the ther-
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mal energy is also reported as a molar quantity: RT .
If units of energy are used for potential and free ener-
gies, R should be replaced by the Boltzmann constant
kB = R/NA in eqs. 4 and 5 and all of the following
equations. NA is the Avogadro constant.
Equations of motion for the effective dynamics for q
and q (underdamped Langevin dynamics, overdamped
Langevin dynamics with and without position dependent
diffusion), as well as the associated Fokker-Planck oper-
ators are reported in section I of the SI.
The equations of motion for the effective dynamics re-
quire an effective mass (molar) µq, which can be esti-
mated from the equipartition theorem[26]

⟨Ekin⟩ =
1

2
µq⟨v2⟩ =

1

2
RT (7)

where ⟨v2⟩ is the average squared velocity along q.
The rate theories introduced in the following, with the
exception of the grid-based models, all assume separation
of time scales. That is, on average, the system should
fully sample the local equilibrium distribution within A,
before it escapes over the transition state TS. This is

only the case if the free energy barrier F ‡
AB of the reaction

is much larger than the thermal energy: F ‡
AB ≫ RT .

B. Simple transition state theory

In simple TST [13, 29] (or equivalently: harmonic TST
or Vineyard TST), one uses a one-dimensional reaction
coordinate q and the free energy F (q) along this reaction
coordinate. A then corresponds to the region around
a minimum on the one-dimensional free energy surface,
whereas TS is a point qTS along the reaction coordinate
that separates reactant state A (q < qTS) and product
state B (q > qTS). Usually TS is positioned at the max-
imum of the free energy barrier. The rate is derived by
considering the probability flux across TS (see SI section
I)

kAB = κ · ωA

2π
exp

(
−F ‡

AB

RT

)
. (8)

The free energy barrier is

F ‡
AB = F (qTS)− F (qA)

F ‡
BA = F (qTS)− F (qB) (9)

where F ‡
AB is measured from the free energy minimum

of A to TS, and, analogously, F ‡
BA is measured from the

free energy minimum of B to TS. ωA in eq. 8 is the
angular frequency of the harmonic approximation of the
reactant state minimum. κ ∈ [0, 1] is the transmission
factor, which accounts for the fraction of molecules that
proceed from TS to the product state B. Molecules, that
revert to A after they have already passed TS, recross
the transition state region. At this point, κ is an ad-

hoc correction to the rate constant. In this contribution,
we will set κ = 1 when applying eq. 8, meaning that
all molecules that reach TS complete the reaction, and
recrossing can be neglected.

C. Kramers’ rate theory

In Kramers’ rate theory[28, 29], one uses a one-
dimensional reaction coordinate q. One models the ef-
fective dynamics along q by underdamped Langevin dy-
namics, where the free energy F (q) takes the role of the
potential energy governing the drift and the neglected
degrees act as a thermal bath. The interaction with this
thermal bath is modelled by a friction and a random
force, where the friction force can be scaled by a friction
coefficient or collision rate ξ (with units time−1). Thus,
two thermal parameters enter Kramers’ model: ξ and T .

One models F (q) as a double well function, where the
minima correspond to reactant (A) and product (B)
state, and the barrier corresponds to the transition state
(TS). Around each of the three states, F (q) is approxi-
mated by a harmonic function

F (q) =





F (qA) +
1
2µq ω

2
A (q − qA)

2
if q ≈ qA

F (qTS)− 1
2µq ω

2
TS (q − qTS)

2
if q ≈ qTS

F (qB) +
1
2µq ω

2
B (q − qB)

2
if q ≈ qB ,

,

(10)
where qA, qB and qTS are positions of the extrema, ωA,
ωB and ωTS are the angular frequencies of the harmonic
approximation around the extrema. Fig. 1.a, c, e show
the harmonic approximation for double wells on a circular
coordinate.

In total, five parameters originating from the free en-

ergy surface govern Kramers’ model: ωA, ωB , ωTS , F
‡
AB

and F ‡
BA. To obtain the rate constant, the thermal pa-

rameters are compared to the free energy parameters.
Three limiting cases are classified according to the ther-

mal energy RT/F ‡
AB and the friction ξ/ωTS (See Fig. 15

in Ref. 29).

The weak friction limit (or sometimes: diffusion limited

regime) is defined by ξ/ωTS < RT/F ‡
AB . In this regime,

the deterministic forces (due to the free energy) domi-
nate the diffusive forces (friction and the thermal noise
terms). Thus, the underdamped Langevin dynamics is
quasi-Hamiltonian. The rare interactions with the heat
bath cause the total energy of the system to slowly oscil-
late and the rate constant is derived by considering the
time evolution for the energy probability density [29].
One obtains

kAB =
I(F ‡

BA)

I(F ‡
AB) + I(F ‡

BA)
· ξ I(F

‡
AB)

RT
· ωA

2π
exp

(
−F ‡

AB

RT

)

(11)
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a b

c d
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FIG. 1: One-dimensional model systems and corresponding rate constants from A to B as a function of ξ/ωTS : a,
b: low barriers; c, d: high and broad barriers; e, f: high and sharp barriers. Rates have been calculated by simple
TST (eq. 8), Kramers’ weak friction (eq. 11), Kramers’ moderate friction (eq. 13), Kramers’ high friction (eq. 14),
Pontryagin (eq. 16), grid-based model (eq. 18), and from numerical simulations. Threshold between weak and

moderate friction is ξ/ωTS = RT/F ‡
AB . Threshold between moderate and high friction is at the value of ξ/ωTS

where eq. 13 and eq. 14 deviate less than five percent.

where

I(F ‡
AB) =

∮

H(q,p)=F ‡
AB

p dq

= 2

∫ q+AB

q−AB

√
2µq

(
F ‡
AB − F (q)

)
dq

=
2πF ‡

AB

ωA
(12)

is an integral over closed orbits of the phase space corre-

sponding respectively to the total energy F ‡
AB . I(F ‡

BA)
is defined analogously. The limits of the integrals are
obtained by setting p = 0 in the Hamiltonian func-

tion: q±AB = qA ±
√

2F ‡
AB/µqω

2
A (and equivalent q±BA =

qB ±
√

2F ‡
BA/µqω

2
B). The resulting formula is the reduced

action of the harmonic oscillator at an energy F ‡
AB (and

equivalent for F ‡
BA). A sharp peak at the transition state

corresponds to a large value of ωTS , and thus might in-
duce the weak friction limit.

The moderate-to-high friction limit is defined by

ξ/ωTS > RT/F ‡
AB . The diffusive forces are stronger than

the deterministic forces, but not by orders of magnitude.
In this regime, one assumes a steady state probability
flux from state A across the a transition state region
[29]. This assumption replaces the requirement for ther-
mal equilibrium between reactant and transition state in
transition state theory. This yields

kAB =
ξ

ωTS



√

1

4
+

ω2
TS

ξ2
− 1

2


 · ωA

2π
exp

(
−F ‡

AB

RT

)
.

(13)

The high friction limit is defined by ξ/ωTS ≫ RT/F ‡
AB .

The diffusive forces dominate the deterministic forces. At
high values of ξ, the prefactor in eq. 13 can be approxi-
mated as ωTS/ξ (see SI section I), yielding

kAB =
ωTS

ξ
· ωA

2π
exp

(
−F ‡

AB

RT

)
. (14)

This regime is also called the spatial diffusion limited
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regime, or the diffusive regime.
The rate constants for the three friction regimes (eqs. 11,
13, 14) have the same functional form as in simple TST
(eq. 8), but in addition they provide explicit expressions
for the transmission factor κ. Kramers’ rate theory pro-
vides a model for recrossing in terms of the shape of the
free energy surface, the temperature and the strength of
the heat bath.

D. Pontryagin’s rate theory

The following rate model is often quite generically in-
troduced as a means to calculate the mean first-passage
time (MFPT) τAB or escape rate kAB for diffusion over
a barrier. It is derived from the Fokker-Planck equation
for overdamped Langevin dynamics (Smoluchowski equa-
tion). Here, we will refer to it as the Pontryagin’s rate
theory [32].
In Pontryagin’s rate theory [29, 32], one uses a one-
dimensional reaction coordinate q and models the ef-
fective dynamics along q by overdamped Langevin dy-
namics, which is the high friction limit of underdamped
Langevin dynamics. In this rate theory, the friction co-
efficient ξ(q) may vary along the reaction coordinate q.
This generalization is important because the fluctuations
of the neglected degrees of freedom may vary along q [27],
and additionally the curvature of q may give rise to a po-
sition dependent friction. Conventionally, Pontryagin’s
rate constant is not formulated in terms of ξ(q) but in
terms of the closely related position dependent diffusion
profile

D(q) =
RT

µqξ(q)
(15)

where µq is a molar mass. The rate constant is then given
by the following nested integral

kAB =

{∫ qB

qA

dq′
[

1

D(q′)
eβF (q′)

∫ q′

−∞
dq′′ e−βF (q′′)

]}−1

(16)

with β = 1/RT . A closed-form version is not available,
but computing the nested integral numerically is straight-
forward.
This expression for the rate constant does not make any
assumptions on the shape of the reactant state and tran-
sition barrier and includes the full position dependent
diffusion profile. Inserting the harmonic approximation
and assuming constant diffusion in eq. 16 yields Kramers’
rate equations in the high friction limit (eq. 14).

E. Grid-based models

In grid-based models[33, 34], one uses a multidimensional
collective variable q ∈ Rm and models the effective dy-

namics in this collective variable space by overdamped
Langevin dynamics with position dependent diffusion.
The collective variable space is discretized into n disjoint
cells. The cells are divided into three sets A, B, and I,
where A represents the reactant state A, B represents the
product state B, and I the intermediate region. Indepen-
dent of the assignment to the three sets, the transition
rate Qij from cell i to cell j is

Qij =





Qij if i ̸= j and cells adjacent
0 if i ̸= j and cells not adjacent .
−∑n

l=1,l ̸=i Qil if i = j

(17)

Eq. 17 defines a n×n row-normalized rate matrix Q with
elements Qij . Q is a discretization of the Fokker-Planck
operator for overdamped Langevin dynamics, where we
assumed that the free energy is constant within each grid
cell.

Qij between adjacent cells can be calculated as[33–35]

Qij = Dij
Sij

Vihij
·
√

π(qj)π(qi)

π(qi)
(18)

where qi and qj are the centers of the adjacent grid cells,
π(q) is given by eq. 5, hij = ∥qj − qi∥ is the Euclidean
distance between the centers of the cells, Sij is the area
of the intersecting surface between cells i and j, Vi is the
volume of the Voronoi cell i, and Dij is the diffusion on
the boundary between cells i and j, which we approxi-
mate as Dij =

1
2 (D(qi) +D(qj)). Because of the square

root in eq. 18, the approach is called Square Root Ap-
proximation of the Fokker-Planck equation (FP-SqRA)
[33, 34].

In eq. 18, the probability density at the cell boundary
between adjacent cells is approximated by the geomet-
ric mean of the Boltzmann weights of the cells[33, 34].
Using a harmonic mean instead leads to the Harmonic
Averaging Approximation of the Fokker-Planck equation
(FP-HAA):

Qij = Dij
Sij

Vihij
· 1

π(qj)

2π(qj)π(qi)

π(qi) + π(qj)
(19)

and has improved convergence properties [36].

Mean first-passage times τi→B from any cell i to the to
the product state B can be computed by solving[37]

Q τB = −1 (20)

for τB = [τ1→B , . . . , τn→B ]
T
. This vector contains MF-

PTs for all cells i to the product state B. To enforce
this, eq. 20 must be solved while imposing the boundary
condition that τk→B = 0 for all k ∈ B. The MFPT from
A to B is then obtained by averaging over the state-wise
MFPTs

τAB =
∑

i∈A
πA,iτi→B (21)
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where πA,i = πi/
∑

i∈A πi and πi =
∫
q∈ cell i

dqπ(q). The

rate constant is the inverse of this MFPT (eq. 2).

F. Rates from sampling transitions

The system is simulated on V (x), and the reaction rate
kAB is obtained as a statistical estimate of the observed
transitions between A and B. It is sufficient to define
A ⊂ Γx and B ⊂ Γx as regions in the configurational
space, a transition state does not need to be defined. The
first-passage times from A to B are recorded in a series
of n simulations, whose initial states are located in A and
which are terminated once they reach B. This yields a
series of first-passage times (τAB,1, τAB,2 . . . τAB,n).
The MFPT τAB can be calculated as the arithmetic mean
of these first-passage times, or – with better statistical
accuracy – by fitting the cumulative distribution function
of a Poisson process[15]

P (τAB,i) = 1− exp

(
−τAB,i

τAB

)
(22)

to the cumulative distribution histogram of these fist pas-
sage times. In eq. 22, τAB is the MFPT and acts as a
fitting parameter, which is inserted into eq. 2 to obtain
the reaction rate.
For reactions with high energy barriers the transition
times are orders of magnitude longer than the accessible
simulation times. Therefore in infrequent metadynam-
ics simulations [24, 38], a time dependent bias function
U(x, t) is introduced that increases in strength as the sim-
ulation proceeds and pushes the system over the barrier
into state B. Each accelerated first-passage time is then
reweighted to the corresponding physical first-passage
time by a discretized time-integral over the length of the
trajectory [24, 39, 40]

τAB,i = ∆t

Ti∑

k=1

exp

(
U(xi,k, k∆t)

RT

)
(23)

where ∆t is the time step of the trajectory, Ti is the
total number of time steps in the ith trajectory, xi,k is
the kth configuration in this trajectory, and t = k∆t is
the corresponding time. This reweighting assumes that
no bias has been deposited on the transition state, which
is approximately ensured by the slow deposition of the
infrequent metadynamics protocol.

III. RESULTS

A. Friction regimes

To study the effect of the curvature of the free en-
ergy surface on the friction regime independently from
the choice of the reaction coordinate, we devised one-
dimensional model systems with a circular reaction co-

ordinate q ∈ [−π,+π]. As in the actual retinal molecule,
the free energy functions F (q) for these models exhibits
two energy barriers and two minima. The models differ
in the height and the “sharpness” of the barriers, where
the first model has low and broad free energy barriers,
the second model has high and broad free energy barriers.
The third model is the actual free energy function along
the C13=C14 torsion angle of retinal and exhibits sharp
and high free energy barriers. Figs. 1.a, c, e show the
free energy functions along with the harmonic approxi-
mations for the minima and the barriers. Tab. I reports
the corresponding parameters. We set T = 300K, and
thus the thermal energy is RT = 2.49 kJmol−1.

With increasing barrier height the rate constant due to
simple TST drops by orders of magnitude from kAB ∼
10−2 ps to kAB ∼ 10−9 ps and kAB ∼ 10−13 ps (cyan lines
in Fig. 1.b, d, f). However, comparison to the numeri-
cal simulations (black dots in Fig. 1.b, d, f) shows that
simple TST is a crude approximation and severely over-
estimates the rate constants in the low and high friction
regimes.

The numerical simulations reproduce Kramers’
turnover[29, 41], i.e. the bell curve characterized
by low rates in the weak friction regime, high rates in
the moderate friction region, and low rates again in the
high friction region (see SI Tab. S.7 for representative
numerical values). Kramers’ rate theory models this
turnover by devising a seperate rate equation for each
of the three friction regimes (eqs. 11, 13, and 14). The

theory requires that F ‡
AB ≫ RT , which is well fulfilled

for the second (F ‡
AB = 20.4RT ) and the third model

(F ‡
AB = 29.0RT ) and to a lesser extent for the first

model (F ‡
AB = 4.4RT ).

The friction regime is determined by the relative sizes

of the ratios RT/F ‡
AB and ξ/ωTS . The ratio RT/F ‡

AB
compares the thermal energy to the free energy barrier.

Within the assumptions of Kramers’ theory, RT/F ‡
AB ≪

1. The ratio ξ/ωTS compares the time it takes to
cross the transition state region, 1/ωTS , to the average
time between two interactions with the thermal bath.
ξ/ωTS > 1 means that, on average, several interactions
with the thermal bath occur while the system crosses the
transition state region, implying a high friction regime.
ξ/ωTS < 1 means that, on average, no interaction with
the thermal bath occurs while the system crosses the
transition state region, implying a weak friction regime.
For ξ/ωTS ≈ 1, transition time and interaction with the
thermal bath occur on the same timescale.

All other parameters being equal, an increase in the
curvature of the free energy barrier leads to an in-
crease in ωTS and thus might shift the effective dynam-
ics into the weak or intermediate friction regime. In our
model systems, the ωTS increases across the models from
ωTS ≈ 5 ps−1 to ωTS ≈ 10 ps−1 and finally reaching
ωTS = 48.38 ps−1, and ωTS′ = 46.21 ps−1 for the model
representing the actual retinal. Simultaneously, the free
energy barrier increases across the models. The result-
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Small High Inter-
barrier barrier polated

TS TS′

RT [kJmol−1] 2.49 2.49 2.49

F ‡
AB [kJmol−1] 10.98 50.84 72.11 72.10

F ‡
BA [kJmol−1] 12.96 52.74 76.15 76.14
ωA [ps−1] 4.78 10.13 6.83
ωB [ps−1] 4.98 10.21 7.60
ωTS [ps−1] 4.89 10.17 48.38 46.21

energy ratio

RT/F ‡
AB [-] 0.23 0.05 0.03 0.03

threshold between weak and moderate friction
ξ/ωTS [-] 0.23 0.05 0.03 0.03

ξ [ps−1] 1.12 0.51 1.45 1.39
threshold between moderate and high friction
ξ/ωTS [-] 1.90 2.30 1.50 1.57

ξ [ps−1] 9.29 23.39 72.57 72.55

TABLE I: Parameters for one-dimensional rate theories
calculated for the one-dimensional systems.

ing boundaries between the friction regimes are shown as
vertical dashed lines in Fig. 1.b, d, f.

Kramers’ rate constants kAB as a function of ξ/ωTS are
represented as blue, purple and green lines for the three
friction limits (Fig. 1.b, d, f). Each of the three rate equa-
tions agrees well with the numerical results when applied
within the appropriate friction regime. Outside of their
respective friction regime, the three rate equations yield
very inaccurate results. In particular, the rate equation
for the high friction regime vastly overestimates the rates
in the weak and moderate friction regime.

Additionally, we report the results from Pontryagin’s rate
theory (red line, eq. 16) and the grid-based model (yellow
line, eq. 18), which both assume overdamped Langevin
dynamics. For a position independent friction coefficient
ξ, these models closely align with the high friction regime
of Kramers’ rate theory, and equally overestimate the
rate constant in the weak and moderate friction regime.
These results underlines the importance of determining
the system’s friction regime and choosing the appropriate
rate model.

For the free energy function of retinal (third model sys-
tem), the moderate friction regime ranges from ξ =
1.45 ps−1 to ξ = 72.57 ps−1. The friction coefficient ξ
of the effective dynamics along q is not a parameter that
can be chosen freely, but it is determined by the influ-
ence of the neglected degrees of freedom and is calculated
from the diffusion constant D(q) (eq. 15) and the effec-
tive mass µp (eq. 7). This is explored in the following
section.

C12
C13

C14
C15

H

C20

C12

C13 C14
C15

C20 H

13

14
N
H

NH

NHO

O CH3

H3C

1

a

c

b

FIG. 2: a: Retinal covalently linked to a capped lysine
residue. Position restraints have been applied to heavy
atoms highlighted in gray. b: trans-configuration. c:

cis-configuration.

B. Atomistic model of retinal

Our model of retinal (Fig. 2.a) consists of the retinal
molecule, which is covalently bound to a capped lysine
residue via a protonated Schiff base [42]. This corre-
sponds to the chemical structure of retinal in a protein
environment. Since the lysine residue cannot move freely
in a protein environment, we placed position restraints
on all heavy atoms of lysine (backbone and side chain)
as well as on the atoms in the caps. All atoms in reti-
nal including the cyclohexene ring were allowed to move
freely. As potential energy function of this molecule we
use an empirical atomistic force field. Our goal is to cal-
culate the reaction rate constants of the thermal cis-trans
isomerization around the C13=C14 double bond (Fig. 2.b-
c), where the cis-configuration is the reactant state A and
the trans-configuration is the product state B.

C. C13=C14-torsion angle as reaction coordinate

As initial reaction coordinate for the one-dimensional
rate models, we choose the torsion angle φ constituted
by the chain of carbon atoms C12-C13=C14-C15 (Fig. 2).
Fig. 3 shows two free energy functions along this reac-
tion coordinate, which were numerically calculated by
well-tempered metadynamics simulations[38] (blue line)
and by umbrella sampling simulations[43] combined with
weighted histogram analysis[44] (orange line). The sta-
tistical uncertainty of the free energy profiles are shown
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FIG. 3: Free energy surfaces F (φ) and diffusion profiles
D(φ) estimated from umbrella sampling (US) and

metadynamics (MetaD) by biasing the C13=C14 torsion
angle φ. Statistical standard errors given by the

thickness of the curves.

as shaded areas in Fig. 3, but they are only about as
large as the linewidth. The figure also shows the position
dependent diffusion D(φ) obtained from umbrella sam-
pling simulations following Ref. 27. Because of the sharp
barriers, the diffusion profile could not be estimated in
the transition regions, and we relied on the interpolation
(dotted line in Fig. 3) in these regions.

Both F (φ) have minima at the cis-configuration (φ =
0 rad) and at the trans-configuration (φ = ±π rad),
where we set the trans state to F (φ) = F (π) =
0. Cis- and trans-configuration have the same free
energy in F (φ) from umbrella sampling, whereas, in
F (φ) from metadynamics, the cis-configuration is about
1.6 kJmol−1 lower than the trans-configuration. The
minima are separated by two free energy barriers TS
and TS′ corresponding to rotating clockwise and coun-
terclockwise around φ, respectively. Both methods, um-
brella sampling and metadynamics, predict that the bar-
riers TS and TS′ are equal in height. Umbrella sam-

pling yields a barrier height of F ‡
cis→trans = 89 kJmol−1,

whereas metadynamics yields barriers that are about

10 kJmol−1 higher (F ‡
cis→trans = 99 kJmol−1).

Even though we monitored the convergence of the two
free energy methods carefully, the difference in the pre-
dicted free energy barrier is sizeable. At room tempera-
ture, the difference corresponds to about four times the
thermal energy of RT = 2.49 kJmol−1, and in absolute
terms it is well above the limit for chemical accuracy of
1 kcalmol−1 = 4.2 kJmol−1. Because the free energy dif-
ference enters exponentially in each of the rate models,
this difference strongly affects the predicted rate. We
return to this discussion in section III F, but for now
will discuss rates based on the umbrella sampling F (φ).

The parameters for the one-dimensional rate theories for
F (φ) from umbrella sampling and from metadyamics are
reported in SI Tabs. S.1 and S.2.
Next, we determine the friction regime by comparing

the energy ratio is RT/F ‡
cis→trans = 0.028 to the fric-

tion ratio ξTS/ωTS . The friction coefficient of the ef-
fective dynamics along φ is ξTS = 132 ps−1 for transi-
tions via TS (determined via eqs. 15 and 7). The cur-
vature of TS is ωTS = 244 ps−1, yielding the friction
ratio ξTS/ωTS = 0.54. The corresponding ratio for the
other barrier is ξTS′/ωTS′ = 0.50. Both friction ratios
are much higher than the energy ratio, and therefore the
effective dynamics along φ fall into the moderate-to-high
or even high friction regime.
Tab. II shows the rate constants derived from one-
dimensional rate theories for the moderate and high
friction regime. Methods that assume high friction
(Kramers’ (high friction), Pontryagin, grid-based) all
yield a rate constant of kcis→trans ≈ 0.009 − 0.015 s−1

for the cis-trans transition. The two methods that are
based on overdamped Langevin dynamics (Pontryagin
and grid-based models) yield indistinguishable rate con-
stants (kcis→trans ≈ 0.009 s−1), which is slightly lower
than the high friction limit of Kramers’ rate theory
(kcis→trans ≈ 0.015 s−1).
The high friction Kramers’ rate constant (kcis→trans ≈
0.015 s−1) is higher than the one form the moderate
friction regime (kcis→trans ≈ 0.006 s−1). Since the two
methods would coincide in the high friction region, this
indicates, that the effective dynamics along φ fall into
the moderate friction regime and are best described by
Kramers’ rate theory for moderate friction.
Simple TST is a reasonable approximation in the mod-
erate friction regime and yields a rate constant of
kcis→trans ≈ 0.008 s−1, only slightly overestimating
Kramers’ rate constant for moderate friction. The rate
constant of the reverse reaction, ktrans→cis, are reported
in Tab. II and show the same effects.

D. Comparison to infrequent metadynamics

Even though the results from one-dimensional rate the-
ories (using φ as reaction coordinate) seem consistent,
they deviate drastically from rate constants estimated
from molecular simulations (Tab. II). We used infre-
quent metadynamics and biased along φ to simulate
the cis-trans isomerization. The resulting rate con-
stant, kcis→trans = 2.23 · 10−5 s−1, is more than two
orders of magnitude smaller than the most appropriate
one-dimensional rate theory kcis→trans = 5.83 · 10−3 s−1

(Kramers’ with moderate friction). By moving from a
one-dimensional system (Fig. 1) to a high-dimensional
system (Fig. 2) we have lost the agreement between one-
dimensional rate theories and numerical simulations.
The deviation between Kramers’ rate theory and nu-
merical simulation for retinal is in stark contrast to the
good agreement between the two approaches for the one-
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dimensional systems. It is, however, in line with the re-
sults from Ref. 2, where we found a similar disparity be-
tween simulated rate constants and the moderate friction
limit of Kramers’ rate theory.
Two known error sources of infrequent metadynamics are
(i) slow processes that occur orthogonal to the biased
coordinate, e.g. due to sub-minima in the reactant state
[45, 46], and (ii) perturbation of the transitions state re-
gion because bias is deposited there[15, 24]. Retinal is
a very rigid molecule and does not exhibit sub-minima
within the cis- or within the trans-configuration, mak-
ing the first error source unlikely. Our rate constants
are insensitive to the variations in the bias deposition
rate, which confirms that the transition state region is
unperturbed (Fig. S.4). Thus, for this specific system
the limitations of infrequent dynamics metadynamics do
not explain the deviation results of one-dimensional rate
theories.
A second error source might be a wrong choice of the fric-
tion regime. However, the analysis in section III C shows
that, for this system, the difference between the high fric-
tion and the intermediate friction results are small and do
not explain the discrepancy with the simulation results.
Specifically, high friction: kcis→trans = 1.45 · 10−2 s−1,
moderate friction: kcis→trans = 5.83 · 10−3 s−1, simula-
tion: kcis→trans = 2.23 · 10−5 s−1.
We conclude that the disparity between Kramers rate
constant for moderate friction and the simulated results
is based in the high-dimensionality of the system. One-
dimensional rate theories are sensitive to the choice of
reaction coordinate[47]. To explain the gap between the
simulated rate constant and Kramers’ rate constant, we
will next optimize the reaction coordinate.

E. Optimized reaction coordinate

The reaction coordinate q = φ cleanly separates the reac-
tant and the product state and thus fulfills an important
criterion for a good reaction coordinate. However, closer
inspections shows that other degrees of freedom besides
the torsion angle participate in the cis-trans isomeriza-
tion. The bonding environments around C13 and C14 are
planar when retinal is in the cis- or trans-configuration,
but both C13 and C14 bend out of plane in the vicinity
of the transition state [2, 48]. The out-of-plane motion
around C13 is captured by the improper dihedral χ1 de-
fined by {C13,C14,C12,C20}. Likewise, the out-of-plane
motion around C14 is captured by the improper dihe-
dral χ2 defined by {C14,C15,C13,H}. The correlation be-
tween φ and the two improper dihedrals has been demon-
strated at the levels of DFT/B3LYP and DFTB[2, 48],
and is also captured by our umbrella sampling simula-
tions using an empirical force field.
Fig. 4.a shows the configurations of a series of umbrella
sampling simulations projected into the two-dimensional
space spanned by φ and χ1. These distributions seem to
“jump” at the transition states (φ = ±π

2 ). The projec-

tion into the space spanned by φ and χ2 shows a similar
behaviour (Fig. 4.b). Note that the amplitude of the
“jump” is not very large, only ±0.4 rad, compared to the
range of φ itself. (In SI Fig. S.5 the zoom on χ1 and χ2

has been removed to give a more realistic impression of
the amplitude.)
We optimized nonlinear reaction paths s (σs) in the space
spanned by φ, χ1 and χ2 using the path finding algorithm
from Ref. 49. The paths are parametrized by a path pro-
gression parameter σs which can be used as a reaction
coordinate in rate theories: q = σs. In total, we op-
timized four reaction paths: two reaction paths for the
transition from cis to trans, each rotating in a different
direction, and similarly two reaction paths for the tran-
sition from trans to cis (Fig. 4.c,d). The progress of the
optimization is shown in SI Fig. S.6. The optimized reac-
tion coordinates are correlated to χ1 and χ2 but do not
exhibit any sudden jumps in the two-dimensional distri-
butions (SI Fig. S.7 and S.8).
To employ one-dimensional rate theories on these op-
timized reaction coordinates, we calculated free energy
functions F (σs), using umbrella sampling and metady-
namics, as well as diffusion profiles (see Fig. 4.e for paths
from cis to trans and Fig. S.9 in the SI for paths from
trans to cis). We will discuss the rate constant derived
from the umbrella sampling for the reaction cis → trans
in detail. The rate constants for the reverse reaction have
similar values and show the same trends (see Tab. II).
For the optimized reaction coordinate umbrella sampling

yields a barrier height of F ‡
cis→trans = 98 kJmol−1, which

is 9 kJmol−1 higher than the free energy barrier for φ.
Due to this higher free energy barrier, all one-dimensional
rate theories yield lower rates for σs than for φ and there-
fore are in much better agreement with the numerical re-
sults. Nonetheless, a discussion of the friction regime is
worthwhile.
Despite the increase in the free energy barrier, the energy

ratio is only slightly lower than for φ: RT/F ‡
cis→trans =

0.025. By contrast the friction ratio for σs is about ten
times higher than for φ: namely ξTS/ωTS = 5.09 (for
path cis trans1 ). This is caused by an increased friction
coefficient of the effective dynamics and a broader free
energy barrier (ξTS = 785 ps−1 and ωTS = 154 ps−1 for
path cis trans1 ). Consequently, the effective dynamics
along q = σs fall into the high friction regime.
This is also reflected by the values for Kramers’ rate
constants for moderate friction regime and for the high
friction regime. For q = σs, these two equation yield
almost the same value (kcis→trans = 4.81 · 10−5 s−1

and kcis→trans = 4.98 · 10−5 s−1, see Tab. II), which
is only the case in the high friction regime. Another
consequence of the higher friction regime is that sim-
ple TST considerably overestimates the rate constant
(kcis→trans = 2.57 · 10−4 s−1). Pontryagin’s rate theory
and the grid-based model yield the same rate constant
(kcis→trans = 3.66 · 10−5 s−1), which is lower than the
result from Kramers’ rate theory. Since the effective dy-
namics fall into the high friction regime, this deviation
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F (q) via US F (q) via MetaD
method eq. CV ktrans→cis [s

−1] kcis→trans [s
−1] ktrans→cis [s

−1] kcis→trans [s
−1]

C13=C14-torsion angle as reaction coordinate
Simple TST 8 φ 5.17× 10−3 7.55× 10−3 2.05× 10−4 1.60× 10−4

Kramers (moderate friction) 13 φ 3.99× 10−3 5.83× 10−3 1.67× 10−4 1.30× 10−4

Kramers (high friction) 14 φ 9.90× 10−3 1.45× 10−2 4.96× 10−4 3.86× 10−4

Pontryagin 16 φ 1.08× 10−2 8.93× 10−3 4.68× 10−4 2.17× 10−4

Grid-based 19 φ 1.07× 10−2 8.95× 10−3 4.67× 10−4 2.17× 10−4

Optimized reaction coordinate σs

Simple TST 8 path 2.41× 10−4 2.57× 10−4 9.56× 10−6 1.19× 10−5

Kramers (moderate friction) 13 path 4.45× 10−5 4.81× 10−5 1.85× 10−6 2.26× 10−6

Kramers (high friction) 14 path 4.61× 10−5 4.98× 10−5 1.92× 10−6 2.34× 10−6

Pontryagin 16 path 5.80× 10−5 3.66× 10−5 2.51× 10−6 1.73× 10−6

Grid-based 19 path 5.78× 10−5 3.66× 10−5 2.53× 10−6 1.75× 10−6

Grid-based model for multidimensional collective variables
Grid-based (diffusion grid1 ) 19 φ, χ1, χ2 (5.66× 10−6) (7.05× 10−6) 8.13× 10−6 1.23× 10−5

Grid-based (averaged grid1 ) 19 φ, χ1, χ2 (1.14× 10−5) (1.44× 10−5) 1.58× 10−5 2.40× 10−5

Grid-based (diffusion grid2 ) 19 φ, χ1, χ2 (7.14× 10−6) (9.05× 10−6) 1.03× 10−5 1.56× 10−5

Grid-based (averaged grid2 ) 19 φ, χ1, χ2 (1.02× 10−5) (1.35× 10−5) 1.40× 10−5 2.13× 10−5

Sampling
method eq. CV ktrans→cis [s

−1] kcis→trans [s
−1]

InMetaD 23 φ 2.18× 10−5 2.23× 10−5

InMetaD 23 φ, χ1, χ2 2.22× 10−5 2.60× 10−5

TABLE II: Rate constants determined through different methodologies for the thermal cis-trans isomerization over
the C13=C14 double bond in retinal. (...): results sensitive to the grid.

a b

dc

e

FIG. 4: a: Scatter plots of the umbrella sampling simulations (one color per umbrella) for dihedral φ vs. improper
dihedral χ1. b: The same for dihedral φ vs. improper dihedral χ2. c: 3-dimensional free energy surface F (φ, χ1, χ2)
from metadynamics projected into the (φ, χ1)-space. Lines show optimized reaction coordinates. d: The same but
projected into (φ, χ2)-space e: Free energy profiles from metadynamics and umbrella sampling as well as diffusion

profiles for optimized reaction coordinate for the cis-to-trans isomerization.
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is not likely caused by the assumption of overdamped
Langevin dynamics in these theories. The more likely
cause is that Kramers’ rate theory assumes a position
independent diffusion constant, whereas both Pontrya-
gin and grid-based models account for variations in the
diffusion constant along the reaction coordinate.
In summary, optimizing the reaction coordinate had two
effects on the one-dimensional rate models: the free en-
ergy barrier increased, and the friction ratio ξTS/ωTS

increased. Both effects lower the estimate of the rate
constant and thus improve the agreement with the sim-
ulation results.

F. Umbrella sampling vs metadynamics

For both reaction coordinates, q = φ and q = σs, we
find that the free energy barriers from metadynamics are
consistently 7 to 10 kJmol−1 higher than the free energy
barriers from umbrella sampling (SI Tab. S.3 and S.4).
Consequently, the rate constants based on metadynamics
are about an order of magnitude lower than those based
on umbrella sampling.
The sampling for both methods is generous, such that
the statistical uncertainty is negligible (Fig. 3 and 4.e).
The free energy functions do not change noticeably when
we vary the parameters of the method (force constant
and positioning of the umbrella potentials, width of the
Gaussian bias potentials in metadynamics, SI Fig. S.11).
However, in metadynamics, the error estimated by block
analysis[50] as well as the free energy difference between
the cis- and the trans-configuration converged only slowly
for both reaction coordinates (SI Fig. S.10).
Fig. 4 indicates that the optimal reaction coordinate fol-
lows a Z-shaped curve embedded in multiple collective
variables. If the metadynamics bias does not account
for all of these relevant collective variables, the system
can be pushed into a position parallel to the transition
state. However, from this position, the system is unable
to transition into state B. As a result, repeated failed
crossing attempts lead to a buildup of bias in basin A,
overfilling this minimum. Once the system escapes the
local minimum due to the excessive bias, it might not ad-
equately sample the transition state or other important
configurations, especially if the metadynamics bias does
not account for the slow collective variables necessary
for proper exploration. This may ultimately cause an
overestimation of the free energy barrier. For a detailed
discussion of this effect see Ref. [51], especially Fig. 2
therein.
The slow convergence of the error estimates as well as
the free energy difference could therefore indicate that
further degrees of freedom are relevant to the optimal
reaction coordinate. Candidates are the torsion around
the neighboring single bonds, i.e. C12-C13 and C14-C15.
Projecting the configurations into the space spanned by
these torsion angles and φ, we find similar “jumps” as in
Fig. 4, albeit less pronounced (SI Fig. S.12). The opti-

mized reaction coordinate σs is still correlated with the
torsion around these single bonds, but does not exhibit
any sudden jumps in the two-dimensional distributions
(SI Fig. S.7), even though these torsion angles were not
explicitly part of the optimization process. By comparing
SI Fig. S.7 and S.8, we observe that for metadynamics
along σs, the sampling in the transition state region is
clearly reduced compared to umbrella sampling. This
supports the conclusion that transitions are more chal-
lenging, leading to an overestimation of the free energy
barriers.

G. Multidimensional collective variables

An alternative to one-dimensional rate theories are grid-
based models in multidimensional collective variable
spaces. We calculated the three-dimensional free energy
function F (φ, χ1, χ2) using metadynamics with three-
dimensional Gaussian bias functions, as well as using
umbrella sampling with three-dimensional harmonic con-
straints. The position dependent diffusion profile for
the diffusion in each of the three directions were cal-
culated using umbrella sampling with three-dimensional
harmonic restraining potentials on a coarse grid (grid1 )
and a fine grid (grid2 ). See SI Figs. S.13 and S.14.
The projection of F (φ, χ1, χ2) into the two-dimensional
spaces (φ, χ1) and (φ, χ2) are shown in Fig. 4.c and d,
and explain the sudden “jumps” in the two-dimensional
distributions in Fig. 4.a and b. The free energy min-
ima of the cis- and the trans-configuration are slanted
in the two-dimensional space. Specifically, the configura-
tions overlap for values of φ near the barrier, and thus φ
does not cleanly discriminate between cis- and the trans-
configuration. In Fig. 4.c, when going form negative val-
ues of φ to positive values across the cis-minimum, χ1

steadily decreases from +0.3 rad to -0.3 rad. At the tran-
sition state, the value of χ1 is restored to χ1 = +0.3 rad
within a short interval of φ, giving rise to “jumps” in
the two-dimensional distribution. The correlation of φ
to χ2 shows a similar behaviour (Fig. 4.D). The opti-
mized path follows this sudden change in χ1 and χ2 by
zigzagging through the three-dimensional space.
To obtain our grid-based rate model, we discretized the
three-dimensional space (φ, χ1, χ2), and calculated the
rate matrix Q from the free energy surface and the diffu-
sion profiles using eq. 19, which then yielded the reaction
rate constants via eq. 20 and 21. Convergence of the rates
with respect to different discretizations of (φ, χ1, χ2) is
better for metadynamics than for umbrella sampling. (SI
Fig. S.1). The rate constants of the three-dimensional
models are in good agreement with the rate constants
from the simulations (Tab. II).
Most importantly, in the three-dimensional models, the
results from metadynamics and from umbrella sampling
are in excellent agreement. The rate estimates are some-
what sensitive to the model of the diffusion profile. In
particular, using a uniform diffusion profile along each of
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the three collective variables (averaged grid1 and grid2 )
yields rate constants that are slightly closer to the simu-
lated results than when estimating a fully position depen-
dent diffusion profile (diffusion grid1 and grid2 ). This
might be caused by numerical effects when using the fully
position dependent diffusion profile.
We additionally repeated the infrequent metadynamics
simulations using three-dimensional Gaussian bias func-
tions in the space spanned by φ, χ1 and χ2. The result-
ing rate constants are very close to those obtained from
infrequent metadynamics with one-dimensional biasing
(Tab. II).

H. Computational Cost

The main computational costs for one-dimensional rate
theories (simple TST, Kramers’ rate, Pontryagin’s rate,
grid-based models) comes from the enhanced sampling
MD simulations (metadynamics or umbrella sampling),
while reweighting to obtain the free energy surface from
these simulation data and evaluation of the rate equa-
tions exerts a negligible computational cost. Pontrya-
gin’s rate and grid-based models additionally require a
diffusion profile. When using umbrellas sampling, FES
and diffusion profile[27] can be obtained from the same
set of simulations. In this case the diffusion profile has
negligble computational cost. If metadynamics is used
to generate the FES, additional simulations might be re-
quired to estimate the diffusion profiles.
To compare the computational cost of one-dimensional
rate theories and grid-based models (Tab. III), we there-
fore focus on the computational cost of MD simulations
for generating the FES. For the path-based FES, this
cost estimate includes the simulation time for optimizing
the four paths (clockwise and counter-clockwise rotation
for both kcis→trans and ktrans→cis, total), as well as the
simulation time for generating the FES along the opti-
mized paths. We additionally include the computational
cost of the MD simulations for infrequent metadynamics,
where again the cost of reweighting these trajectories is
negligible (Tab. III).
Across all methods the required simulation time ranges
between 1 µs and 12 µs. Considering that the mean-first
passage time of the cis-trans isomerization (at the present
force field) is τ = k−1 ∼ 5 × 104 s, this is a remark-
ably short simulation time. Using enhanced sampling,
reweighting and appropriate rate models, we bridged ten
orders of magnitude in time scales from microseconds of
total simulation time to hours in molecular process. How-
ever, relative to modern computational capabilities, the
cost remains significant. At a time step of 2 fs, a sim-
ulation time of 1 µs amounts to 500 million force calls,
which is currently only feasible for computationally very
efficient energy functions.
Since MD simulations for a small molecule in vacuum
with an atomistic force field are relatively inexpensive,
we sampled generously without optimizing the simulation

Method Reaction simulation time
Coordinate time step

MetaD US
[10−6 s] [10−6 s] [10−15 s]

1D FES dihedral φ 2.0 0.996 2.0
1D FES path σ 8.0 9.6 1.0
3D FES dihedrals

φ, χ1, χ2 1.0 3.92 2.0
InMetaD 12.0 2.0

TABLE III: Aggregated MD simulation times to
calculate rates for both isomerization directions

(kcis→trans and ktrans→cis).

times. Therefore, the computational costs presented in
Tab. III are not a quantitative benchmark, but should be
considered as representative examples.

IV. COMPUTATIONAL METHODS

A. One-dimensional model systems

The model free energy functions on the circular reaction
coordinate q ∈ [−π, π] in Fig. 1.a and 1.b are defined by

F (q) = a cos 2q − b sin q , (24)

in units kJmol−1. We set a = 2.4RT and b =
−1 kJmol−1 for Fig. 1.a, and a = 10.4β−1 kJmol−1 and
b = −1 kJmol−1 for Fig. 1.b. The free energy function
in Fig. 1.c was prescribed by a spline interpolation of
a metadynamics profile measured along φ of the retinal
system studied in this work.
Numerical simulation was carried out by implementing
the ISP integrator[52] for underdamped Langevin dy-
namics (SI eq. S.7) for a particle with effective mass
m = 1amu · nm2 · rad−2 and using a time step of ∆t =
0.001 ps. The temperature of the system was T = 300K,
and the gas constant R = 8.314463 Jmol−1 K−1 for all
simulations. We varied the value of the friction coeffi-
cient ξ in ranges that matched the free energy barrier
of the model potentials: Fig. 1.a: ξ = 0.002 ps−1 to
ξ = 72ps−1; Fig. 1.b: ξ = 0.005 ps−1 to ξ = 150 ps−1;
Fig. 1.c: ξ = 0.02 ps−1 to ξ = 713 ps−1.
For the model systems in Fig. 1.b and Fig. 1.c, we
used infrequent metadynamics [24] to enhance the sam-
pling. For Fig. 1.b, Gaussian bias functions of height
0.1 kJmol−1 and width 0.6 rad were deposited every 300
time steps (weak friction regime); 0.05 kJmol−1 and
width 0.4 rad every 150 time steps (moderate and high
friction regime). For Fig. 1.c, Gaussian bias functions of
height 0.8 kJmol−1 and width 0.1 rad were deposited ev-
ery 100 time steps (weak friction regime); and of height
0.5 kJmol−1 and width 0.1 rad every 100 time steps
(moderate and high friction regime). Well-tempering has
been enforced using a biasing factor of 100. Forces were
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calculated by adding the gradient of the free energy pro-
file to the gradient of the biasing potential U(q, t).
The transition rates in Fig. 1.a and Fig. 1.b were esti-
mated by realizing 100 simulations starting at the left
minimum qA = −1.6 rad and measuring the first-passage
time to reach the barrier at qTS = 0 rad or qTS′ = −π rad.
The reciprocal of the mean and standard deviation of the
first-passage times gives the escape rate with its uncer-
tainty. The transition rates in Fig. 1.b were estimated
by the same procedure, but simulations started at qA =
0 rad and stopped at qTS = 1.6 rad or qTS′ = −1.6 rad.
Transition rates for simple TST formula and Kramers’
rate theory in the moderate and high friction limit were
calculated by applying of eqs. 8, 13, 14, where ωA, ωB

or ωTS were calculated from the second derivative of the
free energy profile. The integrals in Kramers’ rate theory
in the weak friction regime (eq. 11) and Pontryagin’s rate
theory (eq. 16) were evaluated by discretizing the interval
[−π,+π] in 100 subsets of equal length and employing
the trapezoidal rule. The same discretization was used
for grid-based model (eq. 18).

B. Atomistic model of retinal

Retinal parameters for atomistic force field calcula-
tions were taken from DFT studies on the protonated
Schiff base[30], adapted to GROMACS format[31], while
the connecting amino acid was modelled using the
AMBER99SB*-ILDN forcefield[53]. The starting struc-
ture was obtained by cutting out the lysine amino acid
and retinal cofactor from a recent crystal structure[54].
All simulations are carried out at 300K in vacuum using
stochastic dynamics with GROMACS[55] version 2019.4
built in Langevin integrator with a 2 fs step size and an
inverse friction coefficient of 2 ps. For the path collective
variables occasionally lower time steps were used. Po-
sition restraints of 10000 kJmol−1nm−2 were put on all
heavy atoms of the peptide chain as well as on the lysine
chain carbon atoms (Fig. 2), while the LINCS constraint
algorithm[56] was applied to all hydrogen bonds. Before
all simulations, energy minimization and NVT equilibra-
tion were performed. Metadynamics [39, 40, 57, 58] and
umbrella sampling [43] simulations were carried out by
plugging PLUMED[25] with GROMACS. Diffusion pro-
files were calculated by following Ref 27. The reaction
coordinate was optimized using the PLUMED implemen-
tation of the adaptive path CV method in Ref. 49 in
combination with metadynamics. Effective masses of the
reactant states were calculated by measuring the aver-
age squared velocity along the reaction coordinate and
applying eq. 7. Frequencies ωA, ωB , ωTS and ωTS′ were
calculated from spring constants obtained by harmoni-
cally fitting the corresponding wells or barriers. Free en-
ergy barriers are measured from the FES directly. One-
dimensional rate methods (simple TST, Kramers’, Pon-
tryagin) can then be applied straightforwardly. For grid-
based methods, 500 cells were used for one-dimensional
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FIG. 5: Rate constants determined through different
methodologies for the thermal cis-trans isomerization

over the C13=C14 double bond in retinal.

discretizations, while a discretization of (31,23,23) was
used in the 3D CV space (φ,χ1,χ2), with χ1 and χ2 be-
ing discretized in the region between -1 and 1 radians
for metadynamics and -0.7 and 0.7 radians for umbrella
sampling. Rates from direct numerical simulation were
obtained from infrequent metadynamics runs, where ac-
celeration factors were calculated directly by PLUMED.
See SI section II A for a complete description of the com-
putational details.

V. DISCUSSION AND CONCLUSION

Fig. 5 summarizes the results of this study. For the ther-
mal cis-trans isomerization in retinal, different methods
to calculate the rate constant yield drastically different
results. Specifically, reaction-coordinate based rate es-
timates using the torsion angle q = φ as an intuitive
reaction coordinate differ by about two orders of magni-
tude from the infrequent metadynamics results, which is
based on counting transitions. Furthermore within the
reaction-coordinate based estimates, the results are very
sensitive to the method of calculating the free energy
profile: the results with an umbrella sampling FES differ
systematically form those with a metadynamic FES.
These deviations are not primarily caused by a poor
choice of the friction regime in the Kramers’ rate esti-
mates. For q = φ the effective dynamics falls into the
intermediate friction regime, but using rate equations for
overdamped friction instead changes the rate constant
only by about a factor of 2. Thus, for particular choice for
calculating F (q), all one-dimensional rate theories yield
similar results. The same is true for the optimized reac-
tion coordinate, whose effective dynamics falls into the
high friction regime. However, it remains crucial to con-
firm the friction regime and use the appropriate formula,
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because Kramers’ rate for high friction scenarios may sig-
nificantly overestimate the rate constant when applied in
the wrong friction regime (Fig. 1).

Optimizing the reaction coordinate lowered the rate es-
timates of the one-dimensional rate theories by two or-
ders of magnitude compared to q = φ. These lower rate
constants are likely more accurate, since the free energy
function of a poor reaction coordinate underestimates the
true reaction barrier.

It is surprising at first that, for the cis-trans isomeriza-
tion, an improved reaction coordinate has such a mas-
sive effect on the accuracy of the rate constant. Cis and
trans configuration are defined by the torsion angle φ and
therefore q = φ cleanly separates reactant and product
state [22], which is a crucial criterion for an optimal reac-
tion coordinate. However, the optimization of q revealed
that the intuitive reaction coordinate fails another im-
portant criterion. In the transition state, the optimized
reaction coordinate forms a large angle to the intuitive
reaction coordinate q = φ (Fig. 4.c and d). Consequently,
the probability flux across the barrier is nearly orthog-
onal to q = φ, rather than parallel as expected for an
optimal reaction coordinate[22].

This curvature of the optimal reaction coordinate arises,
because at the transition state the C13 and C14 slightly
bend out of plane and thus the reaction coordinate takes
a short detour into otherwise rigid degrees of freedoms,
namely the improper dihedral angles χ1 and χ2. This de-
tour is possible because, at the transition state, the elec-
tronic structure changes. In this case, the p-orbitals of
C13 and C14 do no longer overlap. This effect is captured
by DFT-calculations [2] and reproduced by the empirical
force field used in this study.

Since a change in the electronic structure a the transition
state is a hallmark of chemical reactions, we suspect that
such short detours into orthogonal degrees of freedom
(with respect to an intuitive reaction coordinate) will be
the rule rather than the exception when modelling chemi-
cal reactions. However, finding such a curved optimal re-
action coordinate is not trivial, even if an initial reaction
coordinate and candidates for further correlated degrees
of freedom are known, as in the case of retinal [2, 48]. Be-
sides the path-based method [49] we used in our study, a
wide range of other methods to identify optimal reaction
coordinates have been proposed [59–61], including recent
approaches based on neural networks [62, 63].

An alternative to optimizing the reaction coordinate
is to improve the estimate of the rate constant for
a sub-optimal reaction coordinate q by including non-
Markovian effects into the effective dynamics along q.
The corresponding equations are based on the general-
ized Langevin equation (GLE). Here, non-Markovian be-
haviour arises from the memory kernel, which is a time-
integral over the time-dependent friction coefficient [64–
66]. Memory kernels are notoriously hard to predict,
but recently multiple methods have emerged to model
them[67–69]. In addition, Grote-Hynes theory provides
an equation for the memory kernel[8]. The resulting rate

equation has the same functional form as Kramers rate
equation for the moderate friction regime (eq. 13), where
the Markovian friction ξ is replaced by the Laplace trans-
form of the time-dependent friction coefficient[13]. In
general, the closer the reaction coordinate follows the
probability flux of the reaction, the smaller are the non-
Markovian effects[65]. Although non-Markovian rate the-
ories provide accurate rate estimates even for imperfect
reaction coordinates, using these suboptimal reaction co-
ordinates risks obscuring important mechanistic details
needed for understanding the reaction. For example in
retinal, the out-of-plane bending of C13 and C14 near the
transition state is not captured by the initial reaction
coordinate q = φ.

For our system, despite using an optimized reaction coor-
dinate, metadynamics and umbrella sampling produced
different free energy barriers, leading to significantly dif-
ferent rate estimates, as shown in Fig. 5. This is likely
caused by the strong curvature of the optimized reaction
coordinate and might indicate that q = σs is not yet fully
optimal.

Grid-based models in a multidimensional collective vari-
able space offer an alternative to optimizing the one-
dimensional reaction coordinate or including memory ef-
fects. Using the torsion angle φ and two improper torsion
angles at C13 and C14 as collective variables, we obtained
rate estimates that are in very good agreement with the
simulation results (Fig. 5). Moreover, for these multi-
dimensional models, the free energy functions derived
from metadynamics and umbrella sampling agree, lead-
ing to similar rate constants. Multidimensional models
have additional advantages: they can be applied to multi-
state dynamics, do not assume timescale separation, and
they yield information on all of the slow processes in the
system[33, 34]. The trade-off is the need to estimate a
multidimensional free energy surface.

Furthermore, methods that model the reaction rate by
envisioning a flux over a dividing surface[70] rather than
a maximum in an energy landscape can be considered.
In variational transition state theory (VTST), differ-
ent approaches are used to optimize the dividing sur-
face and minimize the TST reaction rate[6, 7, 71]. The
reactive flux method[72], links the flux across a divid-
ing surface to a correlation function which can be es-
timated from molecular simulations. Modern meth-
ods based on this framework include transition path
sampling[22, 73], transition interface sampling[74] and
forward flux sampling[75].

Our results show that rate constants for chemical re-
actions can be determined with high accuracy (within
the classical approximation) from molecular simulations.
The caveat is that the methods need to be carefully cho-
sen for the system at hand. Of the various parameters
that influence the rate constant, the curvature of the re-
action coordinate at the transition state emerges as the
most critical one.



15

VI. ACKNOWLEDGEMENTS

This research has been funded by Deutsche Forschungsge-
meinschaft (DFG) through grant SFB 1114 ”Scaling Cas-
cades in Complex Systems” - project number 235221301,
as well as by the Cluster of Excellence MATH+, project

AA1-15 “Math-powered drug-design”. S.G. acknowl-
edges funding by the Einstein Center of Catalysis/BIG-
NSE.

VII. REFERENCES

[1] Vitalini, F.; Mey, A. S.; Noé, F. and Keller, B. G., J.
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I. EXTENSIONS TO THEORY

A. Effective dynamics

1. One-dimensional reaction coordinates

The effective dynamics of the system along a one-dimensional reaction coordinate q can
be modelled by underdamped Langevin dynamics1

{
q̇t = 1

µq
pt

ṗt = − d
dqF (q)− ξpt +

√
2RTξµq ηt ,

(S1)

where qt = q(xt) denotes the position of the system along the reaction coordinate at time t,
pt is the conjugate momentum, µq is an effective mass, ξ is the effective friction coefficient or
collision frequency (units: [time−1]), and F (q) is the free energy profile defined in eq. 4. As
in the main part of the manuscript, the free energies has units of J/mol, and correspondingly
the thermal energy is also formulated as a molar quantity RT , where T us the temperature
and R is the ideal gas constant. The last term in eq. S1 is the random force, where ηt is a
Gaussian white noise with ⟨ηt⟩ = 0 and ⟨η0, ηt⟩ = δt.

Eq. S1 samples the Boltzmann distribution

π(q, p) = Z−1
conf exp

(
−F (q)

RT

)
·
√

1

2πµqRT
exp

(
− 1

2µqRT
p2
)

. (S2)

The first factor is the configurational Boltzmann distribution

π(q) = Z−1
conf exp

(
−F (q)

RT

)
(S3)

where Zconf the configurational partition function, which normalizes the configurational
Boltzmann distribution.

Let us now consider the Langevin equation defined in eq. S1 and assume to have a
trajectory realised with a very fine time discretization in ∆t timesteps. If we counted the
number of collisions between the molecular system and the solvent molecules, whose action
is represented by the friction term and the noise term, we would observe few collisions in
the time unit ∆t. Imagine now to enlarge the time unit ∆t by a unitless factor g > 1, we
would observe more collisions and the time-averaged acceleration over the timestep g ·∆t
would be zero. In other words, by increasing the number of collisions in the unit time,
the velocity reaches a steady-state. Then, by coarse-graining the time, the term ṗt on the
left-hand side of the Langevin equation can be deleted. Instead of enlarging the time unit,
to increase the number of observed collisions in the unit time, we can act on the parameter
ξ, i.e. the friction coefficient. Increasing ξ → g · ξ is in fact equivalent to increasing the
number of collisions in the unit time ∆t. This allows us, in a completely equivalent manner,
to delete the term on the left-hand side of eq. S1 and write the so-called Langevin equation
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for the high friction regime:

q̇t = − 1

µqξ

d

dq
F (qt) +

√
2RT

ξµq
ηt . (S4)

When modelling rare events and transitions across large free energy barriers, the constant
friction ξ is often replaced by a position dependent friction coefficient ξ(q). Eq. S4 can then
be written as

q̇t = −D(qt)

RT

d

dq
F (qt) +

d

dq
D(qt) +

√
2D(qt) ηt (S5)

where we introduced the position dependent diffusion profile D(q) which is defined via the
Einstein relation

D(q) =
RT

µqξ(q)
. (S6)

Eq. S5 can be derived by applying Ito’s formula to a higher-dimensional Langevin equation
with constant diffusion. Both eq. S4 and eq. S5 sample the same configurational equilibrium
density (eq. S3).

Numerical simulations of the eq. S1 can be realized using the ISP algorithm2





vk+1 = exp (−ξ∆t) vk

−
[
1− exp (−ξ∆t)

] ∇F (qk)

ξm

+

√
RT

m

[
1− exp (−2ξ∆t)

]
ηk

qk+1 = qk + vk+1∆t

(S7)

where qk and vk denote respectively the position and the velocity of the particle at time
tk, ∆t = tk+1 − tk = 0.001 ps−1 is the integrator time step, and ηk are independent and
uncorrelated random numbers drawn from a standard Gaussian distribution.

2. Multidimensional collective variables

The effective dynamics in this m-dimensional collective variable space can be modelled
as overdamped Langevin dynamics with position dependent diffusion.

q̇t = − 1

RT
D(qt)∇F (qt) +∇ ·D(qt) +

√
2D(qt)ηt , (S8)

where ∇ = (∂/∂q1, . . . ∂/∂qm)⊤ is the gradient with respect to q, ηt is a m-dimensional
Gaussian white noise with ⟨ηt⟩ = 0 and ⟨η0, ηt⟩ = δt. D(q) is a m × m diagonal matrix
whose ith element represents the diffusion profile along the ith collective variable.

3. White noise vs. Wiener process

Eq. S1 contains ηt as a symbol for a Gaussian white noise. The use of a white noise
process is problematic, because it does not have a clear physical interpretation. Formally,
one can define η as the time derivative of a Wiener process Wt, i.e. ηt = Ẇt. Unfortunately,
the Wiener process is not differentiable and the derivative is only defined in a finite dif-
ference sense Ẇt ≈ (Wt+h −Wt)/h, for small time increments h. A mathematically more
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rigorous way to formulate eq. S1 is to use increments of the Wiener process rather than
time derivatives:

{
dqt = 1

µp
ptdt

dpt = − d
dqF (q)dt− ξptdt+

√
2RTξµp dWt .

(S9)

The same discussion applies to eqs. S4, S5 and S8.

4. Fokker-Planck equations

Associated to each of the stochastic equations of motion (eqs. S1, S4, S5 and S8) there
exists a Fokker-Planck equation. The Fokker-Planck equation is a deterministic partial
differential equation which describes how the probability density ρ(p, q, t), for eq. S1, or
ρ(q, t), for eqs. S4 and S5, or ρ(q, t) for eq. S8 evolves with time:

∂

∂t
ρ(t) = Qρ(t) . (S10)

Q is Fokker-Planck operator.
The Fokker-Planck equation for underdamped Langevin dynamics (eq. S1) is called Klein-

Kramers equation and Q is given as

Q = − p

m

∂

∂q
+ ξm

∂

∂p

(
p

m
+RT

∂

∂p

)
+

∂F (q)

∂q

∂

∂p
(S11)

The Fokker-Planck equation for overdamped Langevin dynamics (eq. S4) is called Smolu-
chowski equation. Q given as

Q = D
∂2

∂q2
+ ξ−1m−1 ∂

∂q

∂F (q)

∂q
(S12)

The Fokker-Planck operator for overdamped Langevin dynamics with position dependent
diffusion (eq. S4) is

Q =
∂2

∂q2
D(q) +

∂

∂q

(
βD(q)

∂F (q)

∂q
− ∂D(q)

∂q

)
(S13)

=
∂

∂q
D(q)e−βF (q) ∂

∂q
eβF (q) . (S14)

The Fokker-Planck equation for overdamped Langevin dynamics with position dependent
diffusion in a multidimensional space (eq. S8) is given as

Q = ∇ ·D(q)e−βF (q)∇eβF (q) (S15)

(if D(q) is a diagonal matrix).
We used the following convention to denote differential operators: derivatives written as

operators ( ∂
∂q ,

∂
∂p ,

∂2

∂q2 and ∇) should be applied to anything that follows behind it, while

derivatives written as functions (∂F (q)
∂q and ∂D(q)

∂q ) should be considered stand-alone func-

tions, i.e. the derivative only applies to the function (F (q) or D(q) respectively) directly
and not what comes after it.

B. Simple transition state theory

In simple TST3,4 one defines the transition state TS as a point qTS along the reaction
coordinate that separates reactant state A (q < qTS) and product state B (q > qTS). In the
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full dimensional configurational space Γx, this point corresponds to an isosurface on which
the value of the reaction coordinate is constant. Using the Dirac delta function, the surface
is defined by δ (q(x)− qTS) and separates the reactant configurations from the product
configurations. The TST rate constant is derived from the one-directional flux across the
dividing surface assuming the reactant and transition state are in equilibrium4,5:

kAB = κ · 1
2
⟨|q̇|⟩TS · l−1

q exp

(
−F (qTS)− FA

RT

)
. (S16)

The variable

FA = −RT ln

(
l−1
q

∫

A

dq exp

(−F (q)

RT

))
(S17)

denotes the free energy of the entire reactant state, not just its minimum. The factor

l−1
q exp

(
−F (qTS)−FA

RT

)
in eq. S16 is the relative probability density of finding the system at

the transition state, where lq is the unit of length along coordinate q. The factor ⟨|q̇|⟩TS is
the averaged absolute velocity along q at the transition state TS. The factor 1/2 accounts
for the fact that only half of all systems in an ensemble move in the forward direction. κ
is again the transmission factor to correct for the fact that in reality not all systems that
cross the dividing surface proceed to state B, but instead revert to A (recrossing).

Since transition state theory assumes the transition state to be in thermal equilibrium
with the reactant state, the absolute velocity |q̇| can be averaged using the Maxwell-

Boltzmann distribution, giving ⟨|q̇|⟩TS =
√

2RT
πµq

, where µq is the effective mass. Fur-

thermore, the reactant state A can be approximated by a harmonic potential around the
reactant state minimum qA,

F (q) = F (qA) +
1

2
µqω

2
A(q − qA)

2 if q ≈ qA , (S18)

where ωA is the angular frequency associated to harmonic approximation, µq the reduced
mass, and F (qA) is the free energy at the minimum of the reactant state. Carrying out the
integral in eq. S17 for eq. S18 and inserting the and the result for ⟨|q̇|⟩TS into eq. S16 yields

kAB = κ · ωA

2π
exp

(
−F ‡

AB

RT

)
. (S19)

In Ref. 4, eq. S16 is called the generalized TST approach, and eq. S19 is called one-
dimensional Vineyard TST6. In this work, we follow Ref. 3 where the result in eq. S19
is called simple transition state theory.

C. Kramers’ rate theory: from moderate to high friction

In the main part of the article, eq. 14 is derived from eq. 13 as follows:

ξ

ωTS



√

1

4
+

ω2
TS

ξ2
− 1

2


 =

ξ

ωTS



√

1

4

√
1 + 4

ω2
TS

ξ2
− 1

2




≈ ξ

ωTS

(
1

2

(
1 +

1

2
4
ω2
TS

ξ2

)
− 1

2

)

=
ξ

ωTS

(
1

2
+

ω2
TS

ξ2
− 1

2

)

=
ωTS

ξ
, (S20)
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where in the second line, we approximated the square-root by a power series

√
1 + a = 1 +

1

2
a− 1

8
a2 +

1

16
a3 − 5

128
a4 + . . . |a| ≤ 1 (S21)

with a = 4ω2
TS/ξ

2, and truncated after the second term.
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II. COMPUTATIONAL DETAILS

A. Classical MD with atomistic force field

1. Dynamics

Retinal parameters for atomistic force field calculations were taken from DFT studies on
the protonated Schiff base7–9, adapted to GROMACS format10, while the connecting amino
acid was modelled using the AMBER99SB*-ILDN forcefield11. The starting structure was
obtained by cutting out the lysine amino acid and retinal cofactor from a recent crystal
structure12, while the ends of the lysine were capped with methyl groups as shown in
Fig. 2.

All simulations are carried out at 300K in vacuum and are done using stochastic dynam-
ics with GROMACS13,14 version 2019.4 built in Langevin integrator with a 2 fs timestep
and an inverse friction coefficient of 2 ps, except when using path collective variables,
where, when explicitly mentioned, lower time steps were used. Strong position restraints
of 10000 kJmol−1nm−2 were put on all heavy atoms of the peptide chain as well as on the
lysine chain carbon atoms (Fig. 2), while the LINCS constraint algorithm was applied to all
hydrogen bonds. Before all simulations, energy minimization and NVT equilibration were
performed.

2. Free energy and diffusion constant calculation along φ

As initial reaction coordinate for the one-dimensional rate models, we choose the dihedral
angle φ constituted by the retinal chain atoms C12-C13=C14-C15. For four atoms with
indices i, j, k and l, the vectors connecting the atoms are rji = rj − ri, rkj = rk − rj and
rlk = rl − rk. The general dihedral angle φ is then defined15,16 by the angle between two
planes, one constituted by vectors rji and rkj and the other constituted by vectors rkj and
rlk:

cosφ =
(rji × rkj) · (rkj × rlk)

|rji × rkj | |rkj × rlk|
(S22a)

sinφ =
[(rji × rkj)× (rkj × rlk)] · rkj

|rkj | |rji × rkj | |rkj × rlk|
. (S22b)

The torsion angle can be obtained using the atan2 function17:

φ = atan2
(
− [(rkj × rji)× (rlk × rkj)] · rkj ,
|rkj | (rji × rkj) · (rkj × rlk)

)
. (S23)

This implies a certain convention with regards to the sign and phase of φ. In general, φ
is zero for the case where the the dihedral corresponds to a cis/syn state, and ±π when
the dihedral corresponds to a anti/trans state. Increasing values of φ correspond to a
clockwise rotation of the plane constituted by vectors rkj and rlk with regards to the
plane constituted by vectors rji and rkj when looking along the rkj vector, i.e. similar to
conventions in stereochemistry15. For the case of retinal in Fig. 2, the dihedral angle φ is
defined by matching indices i, j, k and l with atoms C12, C13, C14 and C15 respectively.

Metadynamics (MetaD) and umbrella sampling (US) were carried out by plugging
PLUMED18–20 with the GROMACS software package13,14. Before production runs, the
model system was energy minimized and NVT equilibrated over 400 ps. Subsequently, 2µs
of well-tempered metadynamics21 were run biasing φ at a pace of 1 ps using Gaussians with
a height of 1.2 kJmol−1, a standard deviation of 0.05 radians while the bias factor was 10.
Unbiasing weights for the trajectory were calculated using the bias potential obtained at
the end as described in Ref. 22. Free energy surfaces can then be calculated after building a
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weighted histogram from the trajectory starting at a simulation time where the bias can be
considered converged. On account of the large simulation time, there is no significant change
in the free energy profile depending on whether we build the histogram on the full trajectory
or only after a certain time at which we consider the bias converged. There was also no
considerable difference when calculating FES after reweighting with a time-dependent bias
as in Refs. 23 and 24, and FES from reweighted trajectories were always close to the free
energy estimated from the upside-down bias potential F (φ) = − γ

γ−1Vb(φ), where Vb(φ) is

the biasing potential at the end of the well-tempered metadynamics simulation21, and γ is
the bias factor25,26.

Monitoring the evolution of the metadynamics simulations can be done by following the
free energy difference ∆F between the trans and cis state as estimated from the upside-
down bias potential as a function of simulation time as in Fig. S.10.a. See SI section III B
below for more details. It is apparent from the oscillating free energy differences that the
biasing potentials are still undergoing changes with time. Consequently, dynamics along the
dihedral angle do not reach a point of being completely diffusive, which is a first indication
of hidden motion not being included in the collective variable used here, i.e. the dihedral
angle φ.

To test the sensitivity of metadynamics to the width of the deposited Gaussians, ad-
ditional sets of simulations were performed using the same simulation and metadynamics
parameters as before but changing the standard deviation of the deposited Gaussians. The
resulting free energy profiles can be seen in Fig. S.11.b. The free energy surfaces appear
to have a small dependency on the width of the Gaussians used, which can in part be ex-
plained by the biasing potentials still evolving due to hidden motion as explained above.
That being said, Gaussians of standard deviation 0.17 radians seem too wide for accurately
reweighting the shapes of barrier peaks and reactant wells.

Error estimates for free energy profiles obtained from metadynamics reweighting can be
determined using the block analysis technique27 on the reweighted trajectory. To check
convergence of the free energy profile, one commonly plots the average error as a function
of block size. Because data from an MD trajectory are generally correlated, the average
error will be underestimated for small block sizes in which case the error analysis of the
free energy profile will not represent an accurate evaluation of the quality of the free energy
surface. When sufficiently large blocks are used, the average error will converge to a plateau
value suggesting the data has decorrelated and indicating the error analysis can now be
trusted. In cases where the average error does not converge even for very large block sizes,
correlated effects should be considered too strong and the trajectory too short to truthfully
capture them, and thus the accuracy of the computed free energy surface and its error
analysis can be questioned. Block analysis was carried out using the example code on the
PLUMED website27. Average errors of the energy profile as a function of block size are
shown for different metadynamics simulations in Fig. S.10.a. The average errors appear to
be converging for large block sizes. Notice that FES could still depend on the parameters
chosen for the metadynamics simulations, and errors are only estimated within a certain
parameter set.

Umbrella sampling was carried out by running 83 trajectories of 12 ns for a total of 996 ns
of simulation time. Each trajectory was restrained with a harmonic potential of spring
constant 400 kJmol−1 rad−2 at different values of φ:

• 63 umbrellas were positioned at regular 0.1 radian intervals between -3.1 and 3.1
radians

• 10 umbrellas were positioned at regular 0.1 radian intervals between -1.95 and -1.05
radians

• 10 umbrellas were positioned at regular 0.1 radian intervals between 1.05 and 1.95
radians.

For each trajectory, a two step equilibration procedure was carried out before each pro-
duction runs. First, a 20 ps NVT equilibration was carried out at a lower spring constant
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of 100 kJmol−1 rad−2 starting from an energy minimized structure. Second, another 20 ps
NVT equilibration was carried out at the same spring constant of the production runs,
i.e. at 400 kJmol−1 rad−2. In this way, the production runs start from configurations which
can be considered equilibrated within their respective umbrella sampling restraints.

From the umbrella sampling trajectories, binless WHAM27,28 was used to reconstruct the
free energy profile. For each trajectory, a value for the diffusion coefficient was calculated
using Hummer’s formulation of position dependent diffusion coefficients29:

D(φ = ⟨φ⟩) = var(φ)

τφ
(S24)

where τφ =
∫∞
0

⟨δφ(t)δφ(0)⟩dt/var(φ) with δφ(t) = φ(t)− ⟨φ⟩. The diffusion coefficient as
a continuous function of φ was obtained using cubic spline interpolation on all resulting dif-
fusion data points excluding data points near the transition state where Hummer’s formula
cannot be applied directly and the diffusion coefficient is underestimated. Accordingly, all
data points with values under 0.4 rad2/ps were ignored for interpolation. The corresponding
profiles can be found in Fig. 3 as well as in Fig. S.11.c under the label set1. Additional sets
have been run and are also shown:

• set2 has the same parameter setup as set1.

• For set3, 125 trajectories of 12 ns were run with harmonic spring constant
750 kJmol−1rad−2 positioned in 0.05 rad intervals between −3.1 and 3.1 rad.

Computation of the reweighted histograms was done applying kernel density estimation
(KDE) with Gaussian kernels of bandwidth 0.01 radians for all metadynamics runs as well
as for umbrella sampling sets set1 and set2. For umbrella sampling set set3, it turned out
to be challenging to find a good choice of bandwidth for KDE, and therefore conventional
discrete histograms were utilized instead.

Error estimates for the free energy profiles obtained from umbrella sampling can be
computed using the bootstrapping method30. For each umbrella, the trajectory was split
in 20 blocks of equal length. A ‘new’ trajectory of the same length as the original is then
constructed by taking combinations of these 20 blocks with the possibility of repetition.
After doing this for all umbrellas, the free energy surface is recalculated using WHAM.
This procedure is repeated 200 times, producing 200 free energy surfaces which allows
calculation of standard deviations which can be shown to be good estimates of standard
errors on the free energy surface31. Notice the standard errors might be underestimated
because of correlations between blocks within each trajectory32. Free energy and diffusion
profiles including error estimates for all umbrella sampling sets can be found in Fig. S.11.c.

3. Rate calculations along dihedral reaction coordinate

Rates along the φ reaction coordinate were calculated using the free energy profiles in
Fig. 3, both for metadynamics (σ = 0.05 rad and umbrella sampling (set1 ), see Tab. II.
Diffusion coefficients were taken from the diffusion profile from umbrella sampling set1.

Free energy barriers F ‡ were measured directly from the free energy profile by subtracting
the minimum free energy value at the reactant side of the isomerization under consideration
from the maximum value at the corresponding peak. Notice we denote the peak at negative
φ as TS and the peak at positive φ as TS′, similar as in Fig. 1.e. In this fashion, four energy

barriers per free energy surface F ‡
t→c,TS , F ‡

t→c,TS′ , F ‡
c→t,TS and F ‡

c→t,TS′ are obtained.
Masses in reduced dimensions for reactant states µtrans and µcis were calculated by running
unbiased 12 ns runs in the corresponding states, calculating the average kinetic energy in
the reduced dimension (i.e. the dihedral angle) and comparing to temperature using the
equipartition theorem

µA =
kBT〈
v2φ
〉
A

(S25)



9

similar as in Ref. 33. In principle, applying the equipartition theorem here is an approxima-
tion, since it cannot be used for collective variables obtained from nonlinear transformations
of Cartesian coordinates. Since the free energy surface is nearly harmonic at the reactants
states, however, we expect it to be a good approximation. The reactant state dihedral
velocities ωA (where A denotes cis or trans) can then be calculating using

ωA =

√
κA

µA
(S26)

where spring constant κA is obtained by fitting the free energy surface to a harmonic poten-
tial 1

2κA(φ−φA)
2 where φA corresponds to the free energy minimum at the corresponding

reactant state A. Fits for the trans and cis free energy wells show close agreement with
harmonic potentials at the bottom, which validates the harmonic assumptions of the reac-
tant and product states in the formulations for simple TST and Kramers’ equations (eqs. 8,
11, 13 and 14). Alternatively, one can calculate a period TA from the unbiased trajectories
by choosing two cutoff values for φ above and below its value for minimal free energy (e.g.
above and below approximately zero radians for the cis state) and by counting transitions
of the trajectory dihedral angle between these cutoffs as a function of time. Angular ve-
locities calculated from this period ωA = 2π/TA gave similar results to the ones obtained
from the harmonic fit in combination with the equipartition theorem above. Given the free
energy barrier heights and the reactant state angular frequency, simple TST rates can be
calculated directly for each barrier using eq. 8. Notice that calculating reaction constants
for full processes requires taking into account transitions over both peaks:

ktrans→cis = kt→c,TS + kt→c,TS′ (S27a)

kcis→trans = kc→t,TS + kc→t,TS′ . (S27b)

In order to calculate Kramers’ rate in the moderate-to-high friction limit as in eq. 13
or in the high friction limit as in eq. 14, the friction coefficient at the barrier top can be
calculated directly from the diffusion profile using:

ξTS =
kBT

µTSDTS
(S28)

where DTS = D(φTS) is the value of the diffusion coefficient at the barrier top taken from
the spline interpolation and µTS has been approximated by averaging µcis and µtrans. The
angular frequency at the barrier top ωTS has been calculated in a similar way as at the
reactant states using:

ωTS =

√
κTS

µTS
(S29)

where κTS was obtained using a parabolic fit to the free energy surface at the barrier top.
An identical analysis can be done to obtain the friction coefficient ξTS′ at the other barrier
TS′. Again, total rates are obtained by summing rates for both barriers as in eqs. S27.

Calculating isomerization rates over a specific barrier using the Pontryagin equation
(eq. 16) was done by nested integration using the calculated free energy profile from MetaD
or US as well as the position dependent diffusion from eq. S24. Here, the inner integral
was carried out from the barrier peak on the other side of the reactant state. Again, rates
over individual barriers were combined to describe full thermal isomerization rates using
eqs. S27.

Rates from grid-based models were calculated by discretizing the dihedral CV φ in 500
cells of equal size and building the rate matrix according to eq. 19. For each cell i with
cell middle φi, the population πi = π(φi) was determined by using spline interpolation of
the free energy surface as obtained from metadynamics or US, evaluating at φ = φi and
applying eq. 5. In principle, populations πi need not be normalized since only ratios appear
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in eq. 19. The values for the diffusion coefficient D(φi) were similarly obtained by spline
interpolation of the results from application of eq. S24 to the US trajectories and evaluating
at the cell middles. For the very high barriers we are dealing with, populations πi in cells
near the barrier can get very small, and high precision numbers need to be used in the
construction of the rate matrix. The mpmath34 python package was used to administer
arbitrary precision in building the rate matrix, and the FLINT35 python package was used
to solve for the mean first-passage times in eq. 20. A precision of 50 digits was used for
these calculations. The initial conditions are enforced by setting 1[j] = 0 and adapting the
rate matrix Q[j, :] = 0 and Q[j, j] = −1 for all j ∈ B.

4. Infrequent Metadynamics

Infrequent metadynamics (InMetaD) were run for both the trans-cis and cis-trans tran-
sition in sets of 30 runs and fitted to a Poisson distributions36 as described in the Theory
section (eq. 22). Biasing was done on the C13=C14 dihedral CV φ at a pace of 100 ps
with a Gaussian height of 1.2 kJmol−1, standard deviation of 0.05 rad and bias factor of
16. Trajectories for runs from trans to cis were terminated once a value (in radians) of
φ ∈ [−π/5, π/5] was reached, where the molecule is definitely in the cis state. The biased
transition time τ InMetaD

t→c,i was then taken to be the time of the last trajectory point where the
configuration can still be considered at the trans side, i.e. the last trajectory point where
φ < −π/2 or φ > π/2. The unbiased transition times τt→c,i can then be calculated from
eq. 23. Trajectories for runs from cis to trans were stopped once a value of φ < −1.9 rad
or φ > 1.9 rad was reached, where the molecule is definitely in the trans state. The biased
transition time τ InMetaD

c→t,i was then taken to be the time of the last trajectory point where
the configuration can still be considered at the cis side, i.e. the last trajectory point where
φ ∈ [−π/2, π/2], and unbiased transition times τc→t,i can be calculated from eq. 23.

KS tests were done using using a million randomly generated points according to the
corresponding TCDF (eq. 22) for both trans-cis and cis-trans transitions, yielding a p-value
of 0.95 and 0.74 respectively, which is well above the proposed cutoff of 0.05. A graphical
representation of the TCDF fit and KS test as well as the biased potential at the moment
of the transitioning for example runs can be found in Fig. S.4. Average transition times,
standard errors, Poisson fitted transition times and corresponding p-values can be found in
Tab. S.5.

5. Multidimensional Free Energy and Diffusion surfaces

Multidimensional free energy surfaces were calculated from multidimensional metady-
namics simulations implemented using a similar setup as for the one-dimensional case.
Well-tempered metadynamics were run biasing the three-dimensional space spanned by the
following collective variables:

• φ: C13=C14 dihedral angle

• χ1: improper dihedral constituting the out of plane bending of the carbon atom of
the methyl group on the C13 atom

• χ2: improper dihedral constituting the out of plane bending of the hydrogen on the
C14 atom.

See eqs. S22-S23 for a mathematical definition. Three-dimensional Gaussians of width
0.07 rad in each CV were deposited at a pace of 1 ps and with a bias factor of 12. In this
case, metadynamics were only carried out for 1µs because the retinal cofactor was noticed
to collapse upon the lysine backbone for larger simulation times. Since such configurations
were not observed during one-dimensional metadynamics or umbrella sampling, and we are
not interested in them from a conceptual point of view, the trajectory was cut before they
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appear, i.e. after 1µs. The three-dimensional free energy surface F (φ, χ1, χ2) was calculated
by building a three-dimensional histogram from trajectory data and reweighting using the
bias obtained at the end of the metadynamics simulation. Equivalently, two-dimensional
free energy surfaces F (φ, χ1) and F (φ, χ2) (Fig. 4.b and d) and one-dimensional free energy
surface F (φ) (Fig. 3) can be computed by reweighting two- and one-dimensional histograms
respectively, using the same trajectory data and bias. Convergence of the bias and block
error analysis are shown in Fig. S.10.b.

Multidimensional diffusion surfaces Dφ, Dχ1 and Dχ2 were computed by applying a mul-
tidimensional generalization of Hummer’s formulation in eq. S24. In our three-dimensional
case, a series of trajectories are run with three-dimensional harmonic restraints positioned
on a regular grid in collective variable space. For each trajectory, one value for each of the
diffusion coefficients Dφ, Dχ1 and Dχ2 can then be calculated by computing correlation
functions in each direction (eq. S24). Additionally their corresponding average positions
⟨φ⟩, ⟨χ1⟩ and ⟨χ2⟩ are computed, yielding a three-dimensional ‘grid’ (which now might be
irregular) in collective variable space, with for each point an associated value for Dφ, Dχ1

and Dχ2
. Diffusion surfaces Dφ(φ, χ1, χ2), Dχ1

(φ, χ1, χ2) and Dχ2
(φ, χ1, χ2) can then be

obtained by three-dimensional interpolation.
In this fashion, two sets of diffusion profiles in each direction were calculated using dif-

ferent grids and different spring constants for the harmonic restraints. We will refer to the
sets as grid1 and grid2.

For grid1, 200 trajectories of 5 ns were run employing three-dimensional harmonic re-
straints with 400 kJmol−1 rad−2 spring constants in each direction, positioned on a regular
8× 5× 5 grid in CV space as follows:

• φ varies over 8 steps in regular intervals from −π to π

• χ1 varies over 5 steps in regular intervals from -0.5 to 0.5

• χ2 varies over 5 steps in regular intervals from -0.5 to 0.5.

Two-dimensional cuts of the resulting three-dimensional diffusion surfaces are shown in
Fig. S.13.

For grid2, 729 trajectories of 2 ns were run employing three-dimensional harmonic re-
straints with 600 kJmol−1 rad−2 spring constants in each direction, positioned on a regular
9× 9× 9 grid in CV space as follows:

• φ varies over 9 steps in regular intervals from −π to π

• χ1 varies over 9 steps in regular intervals from -1 to 1

• χ2 varies over 9 steps in regular intervals from -1 to 1.

Two-dimensional cuts of the resulting three-dimensional diffusion surfaces are shown in
Fig. S.14.

Multidimensional US simulations were performed by running 5 ns trajectories on a total
of 784 three-dimensional harmonic restraints, positioned on a three-dimensional grid in
(φ, χ1, χ2). The harmonic restraints had spring constants of 400 kJmol−1 in φ directions
and 300 kJmol−1 in both χ1 and χ2 directions, and were positioned as follows:

• φ varies over 16 steps in regular intervals from −π to π

• χ1 varies over 7 steps in regular intervals from -1 to 1

• χ2 varies over 7 steps in regular intervals from -1 to 1.

We will refer to this grid as grid3. While grid1 and grid2 were exclusively used for calcu-
lations of position dependent diffusion profiles, grid3 was exclusively used for construction
of a three-dimensional free energy surface F (φ, χ1, χ2). This was done employing binless
WHAM27,28.
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6. Adaptive Path Collective Variables

For a more accurate description of the dynamics, we aim to find a path CV description of
the thermal isomerization in the space spanned by the φ, χ1 and χ2 CVs. Paths have been
optimized using the adaptive path collective variable method37,38 implemented in PLUMED
under the ADAPTIVE PATH module in combination with well-tempered metadynamics.
In order to correctly handle the periodicity of φ, the sine and cosine were used rather
than including the angle directly. In order to avoid differences in scale of the CVs38,39, we
have also taken the sines of the improper dihedrals. Notice that in this case we do not
have to include the corresponding cosines as the range of interest of the improper dihedrals
doesn’t warrant it. Thus, in practice, the adaptive path CV algorithm was performed in
four dimensions:

• sin phi: sine of φ

• cos phi: cosine of φ

• sin improper1: sine of χ1

• sin improper2: sine of χ2.

Although in principle cyclic paths can be handled with the adaptive path CV scheme39, we
have chosen to study each transition separately, i.e. we optimized the cis trans1, cis trans2,
trans cis1 and trans cis2 paths in separate runs.

• trans cis1 describes trans-cis isomerization in counterclockwise direction (increasing
torsion angle)

• trans cis2 describes trans-cis isomerization in clockwise direction (decreasing torsion
angle).

• cis trans1 describes cis-trans isomerization in counterclockwise direction (increasing
torsion angle)

• cis trans2 describes cis-trans isomerization in clockwise direction (decreasing torsion
angle)

The initial and final states for each path, which are kept fixed during the adaptive path CV
algorithm, have been chosen as 0 or ±π rad depending on the transition under consideration.
As initial guess paths, linear interpolations of φ between the initial and final state values
were used, while χ1 and χ2 were simply set to zero over the full initial guess paths.

The adaptive path CV for each transition was run using 21 path nodes over the course of
a 1µs well-tempered metadynamics trajectory. Notice that one of the path CV components,
χ2, encompasses out of plane bending of a hydrogen atom. Since LINCS constraints were
applied, a smaller time step of 1 fs was chosen for all dynamics where an (adaptive) path CV
is being biased. Additionally, the actual biasing was done in a more gentle way, decreasing
the height of the initial Gaussians to 0.2 kJmol−1 while the width was set at 0.05 normalized
path units and the pace was 0.5 ps. We also intended to limit the bias factor. For adaptive
path CVs, however, the bias factor is generally preferred to be chosen higher than for general
well-tempered metadynamics runs as to optimize the convergence of the path38. A factor
of 12 turned out to be a good compromise for all transitions except for trans cis2, where a
smaller factor of 10 was used. During metadynamics sampling we used a tube restraint of
200 kJmol−1 per normalized units squared to avoid bifurcations37,38, e.g. isomerizations in
the wrong direction, and a half life of 5× 105 steps to allow sufficient flexibility in the path
adaptive algorithm38. Furthermore, harmonic walls of 500 kJmol−1 per normalized units
squared have been put on the path parameter σs before the reactant state and behind the
product state, that is at σs = −0.4 and σs = 1.4.
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7. Free Energy and Rate Calculations on Path Collective Variables

Free energy profiles on each of the four paths were calculated using metadynamics and
umbrella sampling biasing the path collective variable optimized during the adaptive path
sampling described above. All dynamics were done using 1 fs time steps.

Well-tempered metadynamics were run for 1µs for each path depositing Gaussians of
standard deviation of 0.5/21 = 0.0238 normalized path units, a height of 1.4 kJmol−1,
a pace of 0.5 ps and a bias factor of 12. Tube restraints of 200 kJmol−1 per normalized
units squared were used for all profiles. Furthermore, harmonic walls with a spring con-
stant of 500 kJmol−1 per path units squared were employed before the reactant state at
σs = −5/21 = 0.238 and after the product state at σs = 26/21 = 1.238 to avoid iso-
merization along different paths from the one being investigated. Unbiasing weights were
calculated using the bias potential at the end of the trajectories, and FES were composed
from the accompanying weighted histograms. Notice it is also necessary to reweight the
tube restraints; we noticed a difference in barrier height of about 2 kJmol−1 if this restraint
was not included in the reweighting. Construction of weighted histograms was done with
kernel density estimation (KDE) with Gaussian kernels of bandwidth 0.1/21 = 0.00476 for
all metadynamics runs. Error estimation and convergence of the free energy difference are
shown for metadynamics simulations for each path in Fig. S.10.c.

Umbrella sampling simulations were carried out using 70 umbrellas of 20 ns, restraint
along the path collective variable using harmonic restraints of spring constant 100 kJmol−1

per normalized path units squared, located at regular intervals between −3.2/21 = −0.152
and 24.4/21 = 1.162 normalized path units. This makes for a total of 1.4µs simulation
time per path. Again, tube restraints and harmonic walls before reactant and behind
product states were used for all profiles, with the same spring constants and positions as
for metadynamics on the path CV described above. For some trajectories restrained near
the barrier top, LINCS errors occurred. This could generally be helped by choosing a
more suitable starting configuration or by reducing the time step to 0.5 fs for these cases.
Notice that sampling along σs is smoother than sampling along φ, as there is no ‘jump’ at
the barrier, see Fig. S.7. For all umbrella sampling sets, conventional discrete grids were
utilized to construct weighted histograms. Diffusion profiles were calculated by applying
Hummer’s method (eq. S24) to trajectories of each of the umbrellas.

Rates were calculated similarly as for the C13=C14 dihedral angle CV described in Sec-
tion. IIA 3. Since we have calculated free energies for all paths separately, we are only
interested in rates from left to right for each path, i.e. for increasing value of the path CV
σs. Reduced masses µA and µB in reactant state A and product state B were calculated
from 10 ns unbiased simulations in the reactant and product states respectively, and sub-
sequent application of eq. S25 monitoring the kinetic energy in the path CV σs instead of
in φ. Similarly ωA was obtained using the path CV equivalent of eq. S26 where the spring
constant κA is obtained by fitting the free energy surface along σs in the reactant state
A to a harmonic potential. Angular frequencies ωA obtained this way were compared to
frequencies obtained from measuring oscillation periods TA in the reactant states, with both
corresponding very well. Similarly, ξTS and ωTS were calculated in the same way as we did
for the dihedral CV, i.e. trough eqs. S28 and S29, where κTS was obtained by a parabolic
fit and µTS by averaging µA and µB . The obtained values are shown in Tabs. S.4 and
S.3. Coefficients for evaluating the friction limit can be found in the same tables. These
constants can be used to calculate the TST and Kramers’ rates. Pontryagin rate was com-
puted carrying out the nested integration using the free energy and diffusion profile as a
function of σs. Grid-based models were carried out by discretizing the path CV in 500 bins
and using high precision libraries34,35 with 50 digits to build and solve the rate matrix as
in eqs. 19 and 20, similarly as for the dihedral CV case.

An overview of all resulting rates from free energy profiles from metadynamics and um-
brella sampling along the path CVs can be found in Tab. II.
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trans→cis cis→trans
units TS TS′ TS TS′

µA [kg.m2 rad−2] 6.81× 10−47 6.81× 10−47 2.41× 10−47 2.41× 10−47

DTS [rad2.ps−1] 0.680 0.687 0.680 0.687
ξTS [ps−1] 1.32× 102 1.31× 102 1.32× 102 1.31× 102

ωA [ps−1] 4.99× 101 4.99× 101 7.72× 101 7.72× 101

ωTS [ps−1] 2.44× 102 2.63× 102 2.44× 102 2.63× 102

F ‡ [kJmol−1] 88.6 89.3 88.8 89.5
ξTS/ωTS [-] 0.54 0.50 0.54 0.50
RT/F ‡ [-] 0.028 0.028 0.028 0.028

TABLE S.1. Retinal: parameters for one-dimensional rate theories calculated for F (φ) obtained
by umbrella sampling.

trans→cis cis→trans
units TS TS′ TS TS′

µA [kg.m2 rad−2] 6.81× 10−47 6.81× 10−47 2.41× 10−47 2.41× 10−47

DTS [rad2.ps−1] 0.680 0.687 0.680 0.687
ξTS [ps−1] 1.32× 102 1.31× 102 1.32× 102 1.31× 102

ωA [ps−1] 5.17× 101 5.17× 101 7.99× 101 7.99× 101

ωTS [ps−1] 2.97× 102 3.42× 102 2.97× 102 3.42× 102

F ‡ [kJmol−1] 96.9 97.3 98.6 99.0
ξTS/ωTS [-] 0.45 0.38 0.45 0.38
RT/F ‡ [-] 0.026 0.026 0.025 0.025

TABLE S.2. Retinal: parameters for one-dimensional rate theories calculated for F (φ) obtained
by metadynamics.

units trans cis1 trans cis2 cis trans1 cis trans2

µA [kg.m2] 1.42× 10−48 1.44× 10−48 5.18× 10−49 5.10× 10−49

DTS [ps−1] 5.413 5.552 5.449 5.421
ξTS [ps−1] 7.92× 102 7.65× 102 7.85× 102 7.90× 102

ωA [ps−1] 5.89× 101 5.86× 101 8.86× 101 8.91× 101

ωTS [ps−1] 1.46× 102 1.52× 102 1.54× 102 1.52× 102

F ‡ [kJmol−1] 96.9 97.1 97.9 97.8
ξTS/ωTS [-] 5.41 5.05 5.09 5.21
RT/F ‡ [-] 0.026 0.026 0.025 0.025

TABLE S.3. Retinal: parameters for one-dimensional rate theories calculated for F (σs) obtained
by umbrella sampling.

units trans cis1 trans cis2 cis trans1 cis trans2

µA [kg.m2] 1.42× 10−48 1.44× 10−48 5.18× 10−49 5.10× 10−49

DTS [ps−1] 5.396 5.565 5.403 5.440
ξTS [ps−1] 7.94× 102 7.63× 102 7.92× 102 7.87× 102

ωA [ps−1] 5.91× 101 5.86× 101 8.88× 101 8.94× 101

ωTS [ps−1] 1.54× 102 1.58× 102 1.55× 102 1.55× 102

F ‡ [kJmol−1] 105.2 104.9 106.7 104.8
ξTS/ωTS [-] 5.16 4.82 5.12 5.08
RT/F ‡ [-] 0.024 0.024 0.023 0.024

TABLE S.4. Retinal: parameters for one-dimensional rate theories calculated for F (σs) obtained
by metadynamics.
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FIG. S.1. Isomerization rates as a function of discretization for 3D grid-based models applied to 3D
FES from metadynamics and umbrella sampling (grid3 ) and with averaged and position dependent
diffusion for two diffusion schemes grid1 (Fig. S.13) and grid2 (Fig. S.14).

8. Multidimensional Discretization of the Fokker-Planck Operator

Similarly as for the one-dimensional cases, grid-based models can be implemented by
discretizing the three-dimensional CV space spanned by φ, χ1 and χ2 and building the
rate matrix according to eq. 19. This was done for the free energy surface obtained from
three-dimensional metadynamics (see above) as well as for the free energy surface obtained
from three-dimensional umbrella sampling (see above, grid3 ). The χ1 and χ2 CVs where
discretized between −1 and 1 rad for the metadynamics surface and −0.7 and 0.7 rad for the
US surface, and were treated as non-periodic. For both surfaces, φ was discretized between
−π and π rad and treated as periodic just as was done for the one-dimensional case. Within
a choice of discretization, all cells had the same shape and size, i.e. each CV was discretized
in cells of the same length.

The free energy and diffusion surfaces calculated as detailed above were interpolated
using radial basis function (RBF) interpolation as implemented in scipy, and evaluated at
the cell middles qi for each cell i to yield the free energy and diffusion values πi and Di

necessary to build the rate matrix according to eq. 19. High precision libraries34,35 were
used to handle the high barriers, just as for the one-dimensional case. 50 digits were used for
all calculations. Notice that working with high-precision numbers makes calculations much
slower and therefore severely limits the discretization which can be used. The discretization
used in this work divided the CV space in (31,23,23) blocks in φ, χ1 and χ2 collective
variables respectively, yielding a total of 16399 cells. Rates from the three-dimensional
grid-based models for different diffusion surfaces can be found in Tab. II.

While the discretization is fine enough to yield converged rates for the 3D FES from
metadynamics, the rates from 3D US do not converge as quickly (Fig. S.1). Therefore,
rates calculated from the 3D US FES are given between brackets in Tab. II, and have to
be interpreted with care. We stress that discretizations could be significantly increased for
application to barrier heights that do not necessitate high precision numbers.
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InMetaD

biased CV trans→cis cis→trans
µ± S.E. [s] τ [s] p-value µ± S.E. [s] τ [s] p-value

φ 4.45× 104 ± 7.70× 103 4.58× 104 0.95 4.16× 104 ± 6.39× 103 4.48× 104 0.74
φ, χ1, χ2 4.06× 104 ± 6.07× 103 4.51× 104 0.52 4.27× 104 ± 8.98× 103 3.85× 104 0.98

TABLE S.5. Average transition times (µ), corresponding standard errors (S.E.) and transition
times from Poisson fit (τ) from infrequent metadynamics for classical model system with 1D biasing
using φ as collective variable and with 3D biasing in the CV space spanned by φ, χ1 and χ2. Rates
mentioned in Tab. II correspond to 1/τ .

9. Three-dimensional Infrequent Metadynamics

Three-dimensional infrequent metadynamics were run for both trans-cis and cis-trans
transitions in sets of 30 runs for each. Biasing was done using three-dimensional Gaussians
of height 0.75 kJmol−1 with a standard deviation of 0.07 rad in all three dimensions, that
is, along φ, χ1 and χ2. The deposition pace was 20 ps while a bias factor of 20 was used.
Determining the biased transition time for trans-to-cis and cis-to-trans simulation was done
based on the φ value alone in the same way as for one-dimensional infrequent metadynamics
described above.

The reweighted transition times were fitted to a Poisson distribution and a KS test
was done using a million randomly generated points according to the TCDF from the
corresponding fits, as described in Ref. 36. The corresponding rates can be found in Tab. II.
Average transition times, standard errors, Poisson fitted transition times and corresponding
p-values can be found in Tab. S.5.

10. Transition State Search

Since GROMACS does not have a method for transition state (i.e. first-order saddle
point) search implemented, transition state configurations were estimated using relaxed
scans along one of the path CVs. From the umbrella sampling simulations along the
cis trans1 path (SI section IIA 7), seventeen candidate configurations were selected for
which φ ∈ [π/2− 0.001, π/2 + 0.001], χ1 ∈ [−0.01, 0.01] and χ2 ∈ [−0.01, 0.01]. For each of
the candidates, a relaxed scan along the cis trans1 path CV was performed. More specifi-
cally, a series of constrained optimizations was carried out, restraining the path parameter
σs at specific values near the transition state in addition to the backbone restraints that
were already used in all dynamics simulations. For each candidate, 41 constrained optimiza-
tions were performed, with restraints on σs carried out between 11.20/21 and 11.28/21 in
steps of 0.002/21 normalized path units, each time with a spring constant of 1500 kJmol−1

per normalized path units squared. The optimizations were performed using GROMACS’
limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian40 minimizer (l-bfgs).
For each of the seventeen candidates, the optimized configuration in the scan at the σs-value
with the highest potential energy was chosen to represent the transition state configuration
(see Fig. S.2.a for candidates TS0 and TS8).

Hessian matrices and the corresponding eigenvalues were calculated on the obtained tran-
sition state structures using GROMACS’ normal-mode analysis functionalities. The path
parameter restraints used in the constrained optimization were not included for the Hessian
calculations. Additionally, and contrary to the molecular dynamics simulations performed
before, the constrained optimization as well as the normal-mode analysis were performed
without inclusion of LINCS constraints, as these cannot be handled in GROMACS’ normal-
mode analysis functionalities. All structures obtained from the relaxed scans (labeled TS0
to TS16) roughly corresponded to first-order saddle points, where one eigenvalue was large
and negative and the subsequent six eigenvalues corresponding to translational and rota-
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ba

FIG. S.2. a: Potential energies of relaxed scan along the cis trans1 path collective variable for
two example candidates (TS0 and TS8). The configurations at the potential energy maxima are
circled in red and are chosen to represent the transition state in further analysis (Eyring and high-
temperature TST).
b: Potential energies of the transition state configurations obtained from relaxed scan for seventeen
candidates (TS0-TS16) in reference to the potential energy of the optimized structure in the trans
state. Transition states differ up to 35 kJmol−1 in potential energy.

tional degrees of freedom were small (corresponding to wavenumbers under 40 cm−1).
In parallel with the transition states, structures were energy minimized using the same

minimizer and without LINCS constraints in the trans and the cis state as representations
of the reactant states. Equivalent as for the transition states, Hessian matrices and corre-
sponding eigenvalues were calculated, with all eigenvalues found to be positive and the six
smallest eigenvalues found to be small. Potential energies of the transition states (i.e. at
the potential energy maxima of the relaxed scan) in reference to the potential energy of the
optimized structure in the trans state are shown in Fig. S.2.b for all seventeen candidates
(TS0-TS16). Notice the potential energies of the obtained maxima of the candidates still
vary quite a bit (up to 35 kJmol−1), indicating the relaxed PES scan is not an optimal tool
for finding the lowest-lying transition state.

11. Eyring Transition State Theory and the High-Temperature Limit

When configurations for the reactant (minimum on the PES) and transition state (first-
order saddle point on the PES) are available, rates can be estimated by Eyring’s transition
state theory:

kEyr
AB =

RT

h

q̃AB‡

qA
exp

(
− Eb

RT

)
(S30)

where Eb is the potential energy difference between reactant state A and transition state

AB‡ and qA and q̃‡AB are the partition functions of the reactant and transition states re-
spectively. The tilde over the transition state partition function indicates that the degree
of freedom associate with the negative eigenvalue of the first-order saddle point should be
excluded. Partition functions are commonly factorized in their translational, rotational,
vibrational and electronic contributions. For unimolecular reactions such as cis-trans iso-
merization, the translational contribution to the partition function remains unchanged, and
thus cancels in eq. S30. Rotational contributions to the partition function are also expected
to not change much between reactant and transition states, as strong positional restraints
keep the backbone in place and the molecule remains relatively linear over the course of
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FIG. S.3. a,b: Rates from Eyring TST and the high temperature (high T ) approximation for
trans→cis (a) and cis→trans (b) isomerization. Rates for different transition states vary over
multiple orders of magnitude. c,d: ratio of rate from Eyring (kEyr) over rate from the high
temperature approximation (kht) for trans→cis (c) and cis→trans (d) isomerization. Eyring and
high T rates approximately differ by a factor between 4 and 11.

isomerization. Therefore, rotational contributions to q̃AB‡/qA and thus kEyr
AB are neglected

in our analysis. Furthermore, we assume only the electronic ground state is involved during
thermal cis-trans isomerization, and thus also electronic contributions are ignored. Conse-
quently, only vibrational contributions to the partition functions in eq. S30 are considered
here.

The quantum mechanical partition functions for vibrational degrees of freedom are given
by

qA;vib =

3N−6∏

k=1

exp
(
−hνA,k

2RT

)

1− exp
(
−hνA,k

RT

) and q̃AB‡;vib

3N−6∏

k=1,k ̸=r

exp
(
−hν

AB‡,k

2RT

)

1− exp
(
−hν

AB‡,k

RT

) (S31)

where N is the amount of atoms in the system. Frequencies νA,k and νAB‡,k are obtained
from the square-rooted eigenvalues of the mass-weighted Hessian of the reactant and tran-
sition states respectively41,42. Rates calculated by combining eqs. S30 and S31 are given in
Fig. S.3.a and b in blue.

Instead of using the quantum mechanical partition function, one can also use classical
partition functions for the vibrational degrees of freedom in a so-called high-temperature
approximation. The high-temperature equivalents of eq. S31 are given by41

qA;ht,vib =

3N−6∏

k=1

RT

hνA,k
and q̃AB‡;ht,vib =

3N−6∏

k=1,k ̸=r

RT

hνAB‡,k
(S32)
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and the corresponding high-temperature approximation of Eyring’s TST

khtAB =
RT

h

q̃AB‡;ht,vib

qA;ht,vib
exp

(
− Eb

RT

)
(S33)

=

∏3N−6
k=1 νA,k∏3N−6

k=1,k ̸=r νAB‡,k

exp

(
− Eb

RT

)
. (S34)

Rates from eq. S34 are given in Fig. S.3.a and b in orange.
The high-temperature limit estimates the rate corresponding to sampling from a fully

classical dynamics on the potential energy surface given by the force field. This is the same
rate as estimated by the rate methods used above, as all of these are based in classical MD
simulations, i.e. calculated from simulations integrating Newton’s laws of motion. When
using the quantum partition functions in eq. S31, however, quantization of the vibrational
degrees of freedom is taken into account. Comparing rates from Eyring’s TST to rates using
the high-temperature limit thus gives us an idea of the impact of this quantization. From
Fig. S.3.c and d, quantization is expected to increase rates by a factor between 4 to 11.
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III. ADDITIONAL TABLES AND FIGURES

method equation Moderate friction High friction

Small barrier
kAB [ps−1] kBA [ps−1] kAB [ps−1] kBA [ps−1]

Simple TST (8) 1.86× 10−2 1.94× 10−2 1.86× 10−2 1.94× 10−2

Kramers (weak friction) (11) 6.55× 10−2 3.53× 10−2 2.09× 10−1 1.13× 10−1

Kramers (moderate friction) (13) 1.44× 10−2 6.77× 10−3 8.84× 10−3 4.13× 10−3

Kramers (high friction) (14) 3.11× 10−2 1.48× 10−2 9.73× 10−3 4.63× 10−3

Grid-based (18) 3.03× 10−2 1.43× 10−2 9.47× 10−3 4.49× 10−3

Direct simulation
1.48× 10−2

±
1.53× 10−2

6.52× 10−3

±
6.59× 10−3

1.05× 10−2

±
9.72× 10−3

5.04× 10−3

±
4.95× 10−3

High barrier

Simple TST (8) 4.58× 10−9 4.63× 10−9 4.58× 10−9 4.63× 10−9

Kramers (weak friction) (11) 7.10× 10−9 3.32× 10−9 4.26× 10−7 1.99× 10−7

Kramers (moderate friction) (13) 4.47× 10−9 2.02× 10−9 1.40× 10−9 6.38× 10−10

Kramers (high friction) (14) 9.33× 10−8 4.22× 10−8 1.55× 10−9 7.04× 10−10

Grid-based (18) 8.40× 10−8 3.80× 10−8 1.40× 10−9 6.34× 10−10

Infrequent metadynamics (23)
4.60× 10−9

±
4.26× 10−9

1.84× 10−9

±
1.37× 10−9

1.24× 10−9

±
4.05× 10−10

6.29× 10−10

±
6.72× 10−10

Interpolated potential

Simple TST (8) 6.08× 10−13 1.58× 10−13 6.08× 10−13 1.58× 10−13

Kramers (weak friction) (11) 1.47× 10−12 4.11× 10−13 5.91× 10−11 1.64× 10−11

Kramers (moderate friction) (13) 5.92× 10−13 1.55× 10−13 2.46× 10−13 6.59× 10−14

Kramers (high friction) (14) 9.31× 10−12 2.20× 10−12 2.32× 10−13 5.50× 10−14

Grid-based (18) 1.17× 10−11 3.18× 10−12 2.94× 10−13 7.95× 10−14

Infrequent metadynamics (23)
5.21× 10−13

±
6.39× 10−13

1.76× 10−13

±
2.18× 10−13

2.07× 10−13

±
1.98× 10−13

5.28× 10−14

±
4.95× 10−14

TABLE S.6. One-dimensional potential. Kinetic rates estimated at specific friction values: ξ =
2.5 ps−1 (moderate friction - small barrier); ξ = 8ps−1 (high friction - small barrier); ξ = 0.5 ps−1

(moderate friction - high barrier); ξ = 30ps−1 (high friction - high barrier); ξ = 2.5 ps−1 (moderate
friction - interpolated potential); ξ = 100 ps−1 (high friction - interpolated potential).
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a b

c d

FIG. S.4. a, b: TCDF fit to results of 30 InMetaD runs for trans-cis (a) and cis-trans (b)
transitions. µ is the transition time averaged over 30 runs, τ is the transition time as obtained
from fitting and k = 1/τ the corresponding rate. p is the calculated p-value of the KS test. c,
d: Free energy profiles obtained from metadynamics simulation (as in Fig. 3) with the biasing
potential at the moment of transitioning for an example run of InMetaD for trans-cis (c) and cis-
trans (d) isomerization added on top in black.
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A. Optimized reaction coordinate

a b

c d

FIG. S.5. Unscaled version of Fig. 4 to indicate how small the out of plane bending of the improper
dihedral substituents really are.
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FIG. S.6. Time evolution of 21 nodes of path collective variables for four trajectories of 1µs of
metadynamics, each trajectory representing one transition: cis trans1, cis trans2, trans cis1 and
trans cis2. Top row: path evolution represented in 2D space spanned by φ and χ1. Underlying
contour plot taken from 2D-reweighted free energy surface from 3D metadynamics simulation (see
also Fig. 4 left). Bottom row: path evolution represented in 2D space spanned by φ and χ2.
Underlying contour plot taken from 2D-reweighted free energy surface from 3D metadynamics
simulation (see also Fig. 4 right).
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a b

c d

FIG. S.7. a, b, c, d: Scatter plot of improper dihedrals χ1 (a) and χ2 (b) as well as proper dihedrals
C11=C12-C13=C14 (c) and C13=C14-C15=NH (d) versus the path CV for umbrella sampling along
the path CV of path cis trans1. Clearly the correlation of the improper dihedrals χ1 and χ2 is
handled more smoothly as compared to umbrella sampling along the dihedral CV φ, as the sampling
doesn’t ‘jump’ at the peaks anymore (compare to Fig. 4). Interestingly, also the correlation of the
proper dihedrals (C12-C13 and C14-C15) is handled more smoothly as the sampling doesn’t ‘jump’
at the peaks anymore either (compare to Fig. S.12).
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a b

c d

FIG. S.8. a, b, c, d: Scatter plot of improper dihedrals χ1 (a) and χ2 (b) as well as proper
dihedrals C11=C12-C13=C14 (c) and C13=C14-C15=NH (d) versus the path CV for metadynamics
along the path CV of path cis trans1. The color of the markers indicates the simulation time at
which the corresponding configuration was generated.
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FIG. S.9. Free energy profiles from metadynamics and umbrella sampling as well as diffusion
profiles for optimized trans to cis path collective variable.
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B. Umbrella sampling vs. metadynamics

Convergence of the free energy difference between the cis and trans state ∆F = Fcis −
Ftrans in the metadynamics biases are given in Fig. S.10 for different metadynamics runs.
For the corresponding details about parameter sets, see SI section IIA. For the final free
energy surfaces, see Figs. 3 and 4.

The free energy difference at a certain simulation time is calculated by determining the
FES corresponding to the bias at that time (i.e. from the scaled upside-down bias, see
Refs. 22,25,27). This FES is used to calculate the relative probabilities of being in cis
versus being in trans. Using eq. S3:

πcis =

∫ π/2

−π/2

dφπ(φ) =

∫ π/2

−π/2

dφ exp

(
−F (φ)

RT

)
(S35)

and equivalent for trans in φ < −π/2 and φ > π/2. For the 3D FES, the integration is
additionally carried out over χ1 and χ2 over their full range. The free energy of a state can
then be calculated using Fcis = −RT lnπcis and equivalent for trans, and the free energy
difference

∆F = Fcis − Ftrans = −RT ln
πcis

πtrans
. (S36)
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a

b

c

FIG. S.10. Convergence of the metadynamics bias Convergence of free energy difference
between trans and cis for metadynamics bias and error convergence from block analysis for: a:
MetaD simulations biasing the C13=C14 dihedral angle φ for different Gaussian standard deviations
(in radians). All these simulations were run for 2µs with a deposition pace of 1 ps and a biasing
factor of 10. b: 3D MetaD simulation. Error convergence from block analysis for 3D free energy
surface was done using discretization (31,23,23). Simulation was run for 1µs with a deposition
pace of 1 ps and a biasing factor of 12. c: MetaD simulations along path CVs. Simulation was run
for 1µs with a deposition pace of 0.5 ps and a biasing factor of 12.
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b

c

a

FIG. S.11. a: Free energy surfaces F (φ) and diffusion profiles D(φ) estimated from MetaD and
US biasing C13=C14 torsion angle φ including standard errors.
b: Free energy profiles for metadynamics simulations biasing the C13=C14 dihedral angle φ for
different Gaussian standard deviations (in radians), as well as profile reweighted from 3D metady-
namics. One-dimensional metadynamics simulations (colored) were run for 2µs with a deposition
pace of 1 ps using Gaussians with a height of 1.2 kJmol−1 and a biasing factor of 10. 3D metady-
namics simulation (black, dashed) was run for 1µs with a deposition pace of 1 ps using Gaussians
with a height of 1.2 kJmol−1 and a width of 0.07 rad in each dimension and a biasing factor of 12.
c: Free energy profiles for US simulations biasing the C13=C14 dihedral angle φ. The statistical
uncertainty of the free energy profiles are shown as shaded areas, but they are so small, that they
are hardly discernible.
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a b

FIG. S.12. a, b: Scatter plot of proper dihedrals C11=C12-C13=C14 (a) and C13=C14-C15=NH
(b) versus φ for umbrella sampling along φ (US set2 ). These proper dihedrals are also correlated
and also cause hysteresis when using φ as a reaction coordinate (compare to Fig. 4).
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C. Multidimensional models
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FIG. S.13. Interpolated three-dimensional diffusion surfaces Dφ, Dχ1 and Dχ2 obtained from grid1
of three-dimensional harmonic restraints.
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FIG. S.14. Interpolated three-dimensional diffusion surfaces Dφ, Dχ1 and Dχ2 obtained from grid2
of three-dimensional harmonic restraints.
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Summary

Girsanov reweighting enables the estimation of dynamical properties at a target potential Ṽtar

from trajectories simulated at a simulation potential Vsim by reweighting path probabilities

of discretized trajectories at time step resolution (Section 2.4.2). When the path ensem-

ble is sufficiently sampled, the path probability distribution at the target potential can be

estimated and used to calculate dynamical properties. A strategic choice of perturbation po-

tential U (Eq. 2.88) accelerates transitions in otherwise slow processes, and path reweighting

subsequently facilitates the computation of rate constants at the unbiased target potential.

The relative path probabilities P̃ [x] /P [x] depend on the integrator used to generate

discrete trajectories x. For overdamped Langevin dynamics, the Girsanov theorem[23] ensures

that as long as the biasing forces do not approach infinity, the relative path probability

does not violate absolute continuity, meaning any path possible at the target potential is

also possible at the simulation potential. The expression for the relative path probability

for paths generated by the Euler-Maruyama algorithm is well known[26]. However, most

molecular dynamics (MD) use underdamped Langevin dynamics, where absolute continuity

is not guaranteed. Here, reweighting is contingent on the specific integrator, with relative

path probabilities for some integrators already available[27]. In other words, integrators

for underdamped Langevin dynamics must be individually studied, with no guarantee that

reweighting for any specific one is achievable.

In this study, path reweighting is investigated with a focus on integrators from splitting

methods[3] for underdamped Langevin dynamics. Single integration steps are constructed

by applying a sequence of partial updates, each corresponding to an exact solve of a piece of

the Langevin equation (Eq. 2.2). For the integrators considered here, the Langevin equation

is separated into two deterministic parts A and B, updating the position and momentum

respectively, and a stochastic part O. By carrying out the partial steps sequentially, a full

single-step transition (qk,pk) → (qk+1,pk+1) is approximated. Notice that different se-

quences of the partial steps yield disparate updates (qk+1,pk+1). More specifically, distinct

integrators characterized by different arrangements of partial steps show differing perfor-

mances in terms of errors on the computed positions and momenta as well as convergence to

accurate configurational ensembles. Performance of distinct integrators is subject of intense

investigation[137–140]. We are prompted to put forward the following research question:

1. Can we formulate a general approach to predict whether the relative path probability

for Langevin integrators from splitting methods obeys absolute continuity?

2. Can we formulate a general approach to derive the associated relative path probability?

To address the first question, we examine the image of the update operators for various

integrators. The image of an update operator represents all attainable values of (qk+1,pk+1)
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that can be reached from an initial point (qk,pk), based on the random number used in

stochastic step of the algorithm. The probability of generating this point does not affect

the image definition; it only indicates if the point can be reached. We examined for each

integrator whether the image of the update operator depends on the potential energy, i.e.,

if the images at the target and the simulation potential correspond (Figs. 1 and 2 in the

paper). This ensures that all single-step transitions possible at the simulation potential are

also possible at the target potential. This is a strict condition for absolute continuity and

guarantees the Girsanov reweighting in full phase space is possible. Graphical representations

decomposing the partial steps of each integrator (Figs. 3 and 4 in the paper) show which parts

of the integration algorithm are affected by a change in the potential energy function and

contribute in understanding why some integrators have potential independent images while

others do not.

Formulating the relative path probability requires determining the probabilities of gener-

ating (qk+1,pk+1) at both the target and simulation potential, rather than just examining

the images of the update operators. Computable expressions for the probability ratios are

derived using the reweighting-on-the-fly approach[26, 27]. In this approach, relative path

probabilities are expressed in terms of random numbers ηk generated during simulation, and

random number differences ∆ηk, which indicate the differences in random numbers necessary

to reach the same point (qk+1,pk+1) at the target versus the simulation potential. When

absolute continuity is fulfilled, these random number differences can effectively be expressed

in terms of the gradient of the bias ∇U . An overview of expressions for random number dif-

ferences for various integrators is provided in Tab. 1 of the paper, with detailed derivations

in the Appendix. These can be employed to calculate the relative path probabilities directly

using Eqs. 2.89-2.91 in Section 2.4.2.

In the Supporting Information (Section 3.4) to this Section, the reweighting formulations

for different integrators are tested numerically for a model molecular system.
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The critical step in a molecular process is often a rare-event and has to be simulated
by an enhanced sampling protocol. Recovering accurate dynamical estimates from
such biased simulation is challenging. Girsanov reweighting is a method to reweight
dynamic properties formulated as path expected values. The path probability is
calculated at the time-step resolution of the molecular-dynamics integrator. But
the theory is largely limited to overdamped Langevin dynamics. For underdamped
Langevin dynamics, the absolute continuity of the path probability ratio for the
biased and unbiased potential is not guaranteed, but it depends on the Langevin
integrator. We develop a general approach to derive the path probability ratio
for Langevin integrators and to analyze whether absolute continuity is fulfilled.
We demonstrate our approach on symmetric splitting methods for underdamped
Langevin dynamics. For methods that obey absolute continuity, and thus can
be used for Girsanov reweighting, we provide an expression for the relative path
probability.

I. INTRODUCTION

Understanding rare events in molecular systems on an atomistic resolution would have
great impact in many areas, such as the binding of drug molecules to receptors, protein-
protein interactions in molecular machines, aggregation processes in biomolecular systems or
artificial materials, phase transitions and chemical reactions. In principle, these processes
can be studied by molecular dynamics (MD) simulations1–3. However, the timescale of
molecular rare events are often well beyond the timescales that can be reached by direct
MD simulations. Even if occasional rare-event transitions can be observed in the course of
a direct MD simulation, the estimates of thermodynamic or kinetic properties are often not
statistically meaningful. This is because passage times across a barrier into a target state are
long-tailed distributed, and the tail contributes to the rare-event estimate. Furthermore, the
dynamics in the fast degrees of freedom influence the free-energy surface and the diffusion
constant of the rare-event transition in ways that are hard to predict, and any rare event can
consist of multiple separate transition paths with different intermediate states and transition
states. In short: it is important to sample the full path ensemble that contributes to a rare-
event.
One approach to speed up the sampling of rare events is to add a bias to the molecu-
lar interaction potential. Enhanced sampling methods like metadynamics4–8 and umbrella
sampling9,10 add energy to the system in order to steer the simulation away from states
which have already sufficiently been explored. Since enhanced sampling changes the dynam-
ics of the system, estimates of thermodynamics and dynamic properties are distorted and
need to be unbiased. For thermodynamic properties, estimators that accurately reweight
the enhanced sampling simulations, such as weighted histogram analysis method11,12, are
available. With these reweighting techniques, the statistical certainty of thermodynamic
properties is drastically increased compared to direct simulations. As a result, the field

a)equal contribution
b)Electronic mail: bettina.keller@fu-berlin.de
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Girsanov reweighting for underdamped Langevin dynamics 2

is moving from direct simulations to combining enhanced sampling with thermodynamic
reweighting techniques.

For dynamic properties, on the other hand, one cannot yet routinely use enhanced sampling
simulations. In fact, dynamic reweighting techniques are currently a very active field of
research13. Dynamic properties are path expected values weighted by the path probability
density which depends on the potential energy function. Suppose, the system has been
simulated at a potential V , and one would like to know a dynamic property at a target

potential Ṽ = V + U . To reweight the corresponding path expected value, one needs the

relative path probability, i.e the ratio of the path probabilities at Ṽ and at V . Furthermore,
the relative path probability needs to obey absolute continuity, i.e. any path that is possible

the target potential Ṽ also needs to be possible at the simulation potential V .

Several methods to reweight simulations with bias potentials have been proposed in recent
years. Usually an effective model of the dynamics is assumed, either a two-state dynamics
in which transition state theory or Kramers’ rate theory holds14–18 or a Markov state model
on a discretized state space19–24. Since the validity of these effective models changes with

the potential energy function, they cannot be equally valid at V and at Ṽ . It is difficult
to judge how this affects the accuracy of the reweighted estimate. We argue that a more
accurate approach is to consider the calculation of the path probability ratio as part of the
enhanced sampling simulation. In the subsequent analysis, one would use the simulated
paths along with the time-series of the relative path probability to reweight the desired
dynamic property. For this the relative path probability ratio needs to be calculated at the
time-step resolution of the MD simulation, and the corresponding equations need to match
the MD integrator. Additionally, at this high time-resolution, the question of absolute
continuity needs to be addressed.

Based on works by L. Onsager and S. Machlup25 and, independently, by I.V. Girsanov26, one
can derive an exact reweighting technique, in which the path probability ratio is calculated
at the time-step resolution of the MD simulation. For overdamped Langevin dynamics,
the Girsanov theorem guarantees that the relative path probability does not violate ab-
solute continuity, as long as the biasing forces do not approach infinity. This guarantee
holds even for continuous solutions of the stochastic differential equation26,27. Additionally,
the expression for the relative path probability for time-discretized paths generated by the
Euler-Maruyama algorithm is well established27,28. Since the late 1990s, it has been shown
several times that Girsanov reweighting or, equivalently, dynamic importance sampling can
be used to unbias overdamped Langevin dynamics, both for model potentials29–33 and for
small molecular systems34–36. But the use of overdamped Langevin dynamics to model
molecular rare events is limited. It can be used in the mesoscopic molecular regime, in
which molecules are (partly) treated as rigid bodies, to study molecular crowding effects,
association processes between large molecules, and even the dynamics of coarse-grained
polymers37,38 But because overdamped Langevin dynamics suppresses the fast intramolec-
ular fluctuations, it cannot be used to model conformational transitions at atomistic reso-
lutions.

By contrast, underdamped Langevin dynamics, often under the name ,,Langevin ther-
mostats”, is an accurate and frequently used equation of motion for atomistic MD39.
For continuous solutions of underdamped Langevin dynamics, the path probability can
be formulated40, but one cannot guarantee that the relative path probability obeys abso-
lute continuity. This, at first, seems like an impasse in the attempt to unbias dynamic
estimates: one needs to sample the molecular rare events by underdamped Langevin dy-
namics, but for underdamped Langevin dynamics the relative path probability might not
exist. Fortunately, when reweighting a MD simulation, the path expected value is not cal-
culated for time-continuous paths but for time-discretized paths. As explained above, an
accurate reweighting method needs to calculate the relative path probability at the time
resolution at which the path is produced. Thus, depending on the integrator used to prop-
agate the underdamped Langevin dynamics, the relative path probability density may exist
after all, and Girsanov reweighting may become possible. Our approach is therefore not to
discretize the continuous path integral.33. Instead we start from already existing algorithms
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to propagate the equation of motion for underdamped Langevin dynamics and derive the
relative path probability for the resulting time-discretized paths.
Girsanov reweighting for underdamped Langevin dynamics has first been reported in
Refs. 41 and 42. In Ref. 43 we introduced a formulation of the path probability ratio as
a function of the random numbers generated during the simulation potential at V and a

random number difference to Ṽ , which we called reweighting on-the-fly. This allowed us
on the one hand to efficiently calculate part of the relative path probability already during
the simulation. On the under hand, it allowed us to approximate the relative path prob-
ability for underdamped Langevin dynamics. With this approximation, we could reweight
metadynamics simulations of the folding equilibrium of β-hairpin peptide44. In Ref. 45 we
analyzed this approximation and derived the path probability ratio for a simple Langevin
integrator.
The goal of this contribution is to develop a general approach to derive the path proba-
bility for Langevin integrators and to analyze whether the relative path probability obeys
absolute continuity. We focus on symmetric splitting methods for underdamped Langevin
dynamics46–49, and additionally include a closely related50 variant51,52 which is used as
default Langevin thermostat in several MD simulation programs53–55. For methods that
obey absolute continuity, and thus can be used for Girsanov reweighting, we provide an
expression for the relative path probability.
We chose symmetric splitting methods, because their derivation is documented in great
detail46–49,56, which provides an easy entry point for our analysis. Additionally, the con-
vergence properties of this class of integrators are well-understood48,57–59. However, the
development of integrators for underdamped Langevin dynamics has been a very active
field for decades and many other algorithms have been proposed60–75. We believe our ap-
proach to derive the path probability ratio can be applied to these Langevin integrators,
too.
The article is structured as follows: In sections II and III we review the theory of Girsanov
reweighting and of symmetric splitting algorithms. Sections IV and V contain our analysis
of these integrators and the derivation of the relative path probabilities. In section VI we
introduce a graphical representation of Langevin integrators that helped us to visualize
and classify the effects of changeing the potential energy on the behaviour of the Langevin
integrator. Section VII contains a short discussion and outlook.

II. GIRSANOV REWEIGHTING

A. Equation of motion, path probability density, and path integral

Consider a particle with mass m that moves in a one-dimensional position space q ∈ R
according to underdamped Langevin dynamics

q̇ =
p

m

ṗ = −∇qV (q)− ξp+
√

2ξkBTmη(t) , (1)

In eq. 1, V (q) is the potential energy function, ∇q = ∂/∂q denotes the gradient with
respect to the position coordinate, ξ is a collision or friction rate (in units of s−1), T is the
temperature and kB is the Boltzmann constant. η ∈ R is an uncorrelated Gaussian white
noise with unit variance centered at zero 〈η(t)η(t′)〉 = δ(t− t′), where δ(t− t′) is the Dirac
delta-function. We use the dot-notation for derivatives with respect to time: q̇ = ∂q/∂t.
x(t) = (q(t), p(t)) ∈ Γ ⊂ R2 denotes the state of the system at time t, which consists of
positions q(t) and conjugated momenta p(t) = mq̇(t). Γ is called state space or phase space
of the system.
A Langevin integrator yields a time-discretised solution of eq. 1: x = (x0, x1, x2, . . . xn).
The path x is a sequence of n+ 1 states xk = (qk, pk) ∈ Γ, where consecutive states xk and
xk+1 are separated by a (small) time step ∆t, qk is the position at time k∆t, and pk is the
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momentum at time k∆t. x0 = (q0, p0) is the initial state of the path, and τ = n∆t is the
path length.
A time-discretized path x is an element of the space S = Γn+1. Its path probability density
is P[x] = p(x0) · P[x1 . . . xn|x0] , where we wrote the path probability as a product of the
probability density of the intial state p(x0) and the conditional probability of the path
P[x1 . . . xn|x0], given that the path starts in x0. The Langevin integrators considered in
this contribution implement a Markov process. That is, the probability to observe the state
xk+1 at time t = (k + 1)∆t depends only on the previous state xk at time t = k∆t and
not on any of the states before that, i.e. p(xk+1|xk, xk−1 . . . x0) = p(xk+1|xk). The path
probability density to observe a particular path x can then be written as a product of the
single-step transition probabilities p(xk+1|xk)

P [x] = p(x0) · P [x1 . . . xn|x0] = p(x0) ·
n−1∏

k=0

p(xk+1|xk) . (2)

The probability density of the initial state depends on the setup of the computational
experiment. Here, we assume that the path x is a short snippet of a long equilibrium
trajectory. Then we can assume that p(x0) is distributed according to the Boltzmann
distribution

p(x0) = p(q0, p0) =
1

Z
exp

(
−V (q0)

kBT

)
· 1√

2πkBTm
exp

(
− 1

kBT

p2
0

2m

)
, (3)

where Z =
∫∞
−∞ dq0 exp

(
−V (q0)

kBT

)
is the classical partition function. The functional form

of the single-step transition probability depends on the Langevin integrator, and it is the
aim of this contribution to analyze p(xk+1|xk) for various integrators.
The path probability density P [x] is normalised as

∫

S
DxP[x] =

∫

x0∈Γ

∫

x1∈Γ

· · ·
∫

xn∈Γ

dx0dx1 . . . dxn P[x] = 1 , (4)

where the first equality defines the path integral
∫
S Dx . . . .

Let s : S → R be a path observable, i.e. a function that maps a time-discretised path to a
number. The path expected value of this observable is

〈s〉 =

∫
DxP[x]s[x] =

∫

x0∈Γ

∫

x1∈Γ

· · ·
∫

xn∈Γ

dx0dx1 . . . dxn P[x]s[x] , (5)

Assuming ergodicity, this path expected value can be estimated from a set of N paths
(x1,x2 . . .xN ) that has been sampled according to P[x]

〈s〉 = lim
N→∞

1

N

N∑

i=1

s[xi] . (6)

A short comment on notation: we denote functions of paths x with square brackets around
the argument, and functions of states x = (q, p) with round brackets.

B. Girsanov reweighting

In Girsanov reweighting, one samples paths at a simulation potential V (q), and from this
sample one estimates path expected values at a target potential

Ṽ (q) = V (q) + U(q) , (7)

where U(q) is called bias or perturbation potential. Let us point out the sign convention.
In eq. 7, we add the perturbation U to the simulation potential V , which is the convention
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used in the literature on path reweighting. The literature on enhanced sampling simulations
uses the opposite sign convention, i.e. the bias is subtracted from the simulation potential

to obtain to the true (target) potential: Ṽ = V −Uenh. samp.. Thus, if Girsanov reweighting
is used to unbias enhanced sampling simulations, the bias in eq. 7 is U = −Uenh. samp..

We assume that Ṽ represents a typical molecular potential, i.e. a function that has infi-
nite discontinuities whenever two atoms occupy the same position, but is continuous and
differentiable everywhere else. We further assume that U(q) respects these discontinuities
and does not introduce any new discontinuities. In practice this means that one cannot use
soft-core potentials76,77 to construct U(q).
Formally, one can reweight the path expected value at the target potential as

〈̃s〉 =

∫
Dx P̃[x]s[x] =

∫
Dx g(x0)M [x|x0]P[x]s[x] , (8)

where P̃[x] is the path probability density at Ṽ , and

g(x0) ·M [x|x0] =
p̃(x0)

p(x0)
· P̃[x1 . . . xn|x0]

P[x1 . . . xn|x0]
(9)

is the path reweighting factor. If p̃(x0) and p(x0) are given by eq. 3 (for Ṽ and V , respec-
tively), then the relative weight of the initial state is

g(x0) =
p̃(x0)

p(x0)
=
Z

Z̃
exp

(
− 1

kBT
U(q0)

)
. (10)

If M [x|x0] exists and one can find a computable expression for it, then one can estimate

the path expected value at the target potential, 〈̃s〉 from paths sampled at the simulation
potential (x1,x2 . . .xN ) by reweighting their contribution to the estimator

〈̃s〉 = lim
N→∞

1

N

N∑

i=1

g(xi,0)M [xi|xi,0] · s[xi] . (11)

where g(xi,0)M [xi|xi,0] is the relative weight of path xi a the target potential Ṽ . Whether
M [x|x0] exists, depends on the underlying dynamics, specifically on the condition of absolute
continuity.

C. Absolute continuity

The path probability density P̃[x] at the target potential and the path probability den-
sity P[x] at the simulation potential are absolutely continuous with respect to each
other26,27,43,78 if

P̃[S] =

∫

S⊂S
Dx P̃[x] = 0⇔ P[S] =

∫

S⊂S
DxP[x] = 0 , (12)

where S = S0×S1×· · ·×Sn is a small subset of the path space S, a and Si is a small region
in phase space Γ in which xi may be found. That is, any region of the path space S that is

sampled by the dynamics at Ṽ (x) also needs to be sampled by the dynamics at V (x), and
vice versa. Otherwise the relative path probability density in eq. 9 is not defined.

(Strictly speaking only P̃ needs to be absolutely continuous with respect to P. But since

this almost surely implies27 that also P is absolutely continuous with respect to P̃, we here
omit this distinction.)

If P [x] and P̃ [x] can be decomposed as in eq. 2, absolute continuity is fulfilled if

p̃(S0) =

∫

S0

dx0 p̃(x0) = 0⇔ p(S0) =

∫

S0

dx0 p(x0) = 0 (13)
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and if

p̃(Sk+1|xk) =

∫

Sk+1

dxk+1 p̃(xk+1|xk) = 0⇔ p(Sk+1|xk) =

∫

Sk+1

dxk+1 p(xk+1|xk) = 0 .(14)

for all k with k = 0, 1 . . . , n − 1. Eq. 13 is fulfilled if p̃(x0) and p(x0) are given by eq. 3

(for Ṽ and V , respectively), but other choices are also possible. For overdamped Langevin
dynamics, the Girsanov theorem guarantees that - for sensible choices of U(q) (see section
II B) - eq. 14 is fulfilled. Thus for overdamped Langevin dynamics, M [x|x0] exists, and
for overdamped time-discretized paths generated by the Euler-Maruyama scheme27,28, the
computable expression for M [x|x0] is well-established27,31,33,35,42–44. By contrast, the ex-
istence of M [x|x0] cannot be guaranteed for underdamped Langevin dynamics (eq. 1). It
may however exist for time-discretized paths of underdamped Langevin dynamics. In sec-
tions IV and V, we will discuss the existence of M [x|x0] for symmetric splitting schemes46–49

for underdamped Langevin dynamics.

D. Reweighting on-the-fly

To derive M [x|x0], we use reweighting on-the-fly (proposed in Ref. 43 and discussed in
more detail in Ref. 45). In this approach, the reweighting factor is formulated in terms of
the random numbers ηk, which are generated during the simulation at V , and a random
number difference ∆ηk, which depends on the gradient of the bias ∇U . Both properties
are easily accessible during the simulation, and part of the reweighting factor can be pre-
calculated on-the-fly during the simulation. This makes the actual reweighting (eq. 11)
computationally simple and efficient.
A stochastic integrator generates a sequence of random numbers η = (η0, η1, . . . , ηn−1) to
represent the random force in a stochastic equation of motion (e.g. eq. 1). The random
numbers ηk are usually drawn from a Gaussian normal distribution with zero mean and
unit variance

P (ηk) =

√
1

2π
exp

(
−1

2
η2
k

)
. (15)

If the initial state x0 has been set and η has been generated, the path x|x0 = (x1 . . . xn|x0)
is fully determined. Thus, the stochastic integrators can be viewed as a map from a random
number sequence η to a path x|x0. If the map is bijective (one-to-one mapping between
random number sequence and path), the conditional path probability density is equal to
the probability of drawing the corresponding sequence of random numbers:

P[x|x0] = P[η] =
1

n
√

2π
exp

(
−1

2

n−1∑

k=0

η2
k

)
. (16)

The stochastic integrator evaluates the gradient of the potential V , and therefore the map

depends on V . If the potential is modified from V to the target potential Ṽ , the map
changes accordingly, and a different random number sequence η̃ is needed to generate

the same path x|x0. The conditional path probability density at Ṽ is then equal to the

probability of drawing η̃: P̃[x|x0] = P[η̃].
At each integration step k, the random numbers ηk and η̃k differ by ∆ηk:

η̃k = ηk + ∆ηk . (17)

This allows us to write the relative conditional path probability density as45

M [x|x0] =
P̃[x|x0]

P[x|x0]
=
P[η̃]

P[η]
= exp

(
−
n−1∑

k=0

ηk ·∆ηk
)
· exp

(
−1

2

n−1∑

k=0

(∆ηk)2

)
. (18)
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The random numbers ηk are recorded during the simulation at V ; the expression for ∆ηk
depends on the stochastic integrator.
The discussion so far applies to stochastic integrators that generate one random number
ηk per integration step and degree of freedom. Some symmetric splitting methods for

underdamped Langevin dynamics however generate two random numbers (η
(1)
k , η

(2)
k ) per

integration step and degree of freedom. The two random numbers are drawn independently

from a Gaussian normal distribution with zero mean and unit variance, i.e. P (η
(1)
k , η

(2)
k ) =

P (η
(1)
k )P (η

(2)
k ), and P (η

(1)
k ) and P (η

(2)
k ) are given by eq. 15. Thus, an integrator with

two random numbers per integration step can be viewed as a map from two sequences of

random numbers (η(1),η(2)) to a path x|x0, where η(1) = (η
(1)
0 , η

(1)
1 , . . . , η

(1)
n−1) and η(2) =

(η
(2)
0 , η

(2)
1 , . . . , η

(2)
n−1). If the map is bijective, the conditional path probability density is

equal to the probability of drawing the two random number sequences:

P[x|x0] = P[η(1),η(2)] =
1

n
√

2π
exp

(
−1

2

n−1∑

k=0

(
η

(1)
k

)2
)
· 1
n
√

2π
exp

(
−1

2

n−1∑

k=0

(
η

(2)
k

)2
)
.(19)

At the target potential Ṽ , two different random number sequences η̃(1) = (η̃
(1)
0 , η̃

(1)
1 , . . . , η̃

(1)
n−1)

and η̃(2) = (η̃
(2)
0 , η̃

(2)
1 , . . . , η̃

(2)
n−1) are needed to generate the same path x. At each integration

step k, the random numbers differ by ∆η
(1)
k and ∆η

(2)
k :

η̃
(1)
k = η

(1)
k + ∆η

(1)
k

η̃
(2)
k = η

(2)
k + ∆η

(2)
k . (20)

The relative conditional path probability density can then be written as

M [x|x0] =
P̃[x |x0]

P[x |x0]
=
P [η̃(1), η̃(2)]

P [η(1),η(2)]

= exp

(
−
n−1∑

k=0

η
(1)
k ·∆η

(1)
k

)
· exp

(
−1

2

n−1∑

k=0

(∆η
(1)
k )2

)
·

exp

(
−
n−1∑

k=0

η
(2)
k ·∆η

(2)
k

)
· exp

(
−1

2

n−1∑

k=0

(∆η
(2)
k )2

)
. (21)

As in eq. 18, the random numbers η
(1)
k and η

(2)
k are recorded during the simulation at V ,

and the expressions for ∆η
(1)
k and ∆η

(2)
k depend on the integrator.

At this point the obstacle in constructing path reweighting factors for underdamped
Langevin dynamics becomes noticeable. In underdamped Langevin dynamics, the state
xk = (qk, pk) is a two-dimensional vector. Thus, integrators with two random numbers per
integration step map two real numbers to a two-dimensional state space, whereas integra-
tors with one random number map a single real number to a two-dimensional state space.
In both cases, P [x|x0] can be derived from the integrator equations (see section III and
supplementary material), but M [x|x0] does not exist for all integrators (see sections IV and
V).

III. LANGEVIN INTEGRATORS

A. Equation of motion and splitting methods

Eq. 1 can be reformulated as a vector field
(
q̇
ṗ

)
=

(
p/m

0

)

︸ ︷︷ ︸
A

+

(
0

−∇qV (q)

)

︸ ︷︷ ︸
B

+

(
0

−ξp+
√

2ξkBTmη(t)

)

︸ ︷︷ ︸
O

. (22)
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Each of the three terms, A, B and O, can be integrated separately to yield the following
time-discretized update operators

A
(
qk
pk

)
=

(
qk + ∆t 1

mpk
pk

)
=

(
qk + apk

pk

)
(23a)

B
(
qk
pk

)
=

(
qk

pk −∆t∇V (qk)

)
=

(
qk

pk + b(qk)

)
(23b)

O
(
qk
pk

)
=

(
qk

e−ξ∆tpk +
√
kBTm(1− e−2ξ∆t) ηk

)
=

(
qk

d pk + f ηk

)
, (23c)

with time step ∆t and random number ηk ∼ N (0, 1), where N (µ, σ2) denotes the Gaussian
normal distribution with mean µ and variance σ2. Eqs. 23a – 23c are the time-discretized
solutions of their respective parts in the differential equation (eq. 22), where 23c is the result
known from the Ornstein-Uhlenbeck process (see Chapter 7.3.1. in Ref. 56). The second
equality introduces the following abbreviations to keep the notation manageable

a = ∆t
1

m
(24a)

b(qk) = −∆t∇V (qk) (24b)

d = e−ξ∆t (24c)

f =
√
kBTm(1− e−2ξ∆t) (24d)

where d stands for dissipation and f for the thermal fluctuation.
Particularly accurate Langevin integration schemes can be derived using the (symmetric)
operator splitting method, or Strang splitting70,79. In these algorithms, some of the update
operators (eqs. 23a, 23b, and 23c) are carried out twice during an integration step, but each
time with only half a time step ∆t

2 . If a step is carried out for only half a time step ∆t
2 , we

denote the corresponding operator with a prime, e.g.

A′
(
qk
pk

)
=

(
qk + ∆t

2
1
mpk

pk

)
=

(
qk + a′pk

pk

)
. (25)

Correspondingly, a′, b′, d′ and f ′ are obtained by replacing ∆t with ∆t/2 in eqs. A1a-A1d.
For an in-depth discussion on the theory of splitting operators we refer to Refs. 47, 48, 70,
79, and 80 and Chapter 7 in Ref. 81.
In this contribution, we will use the ABO method to illustrate our approach, and we will ap-
ply the approach to the following integrators based on eq. 22: ABOBA, BAOAB, OABAO,
AOBOA, OBABO (Bussi-Parrinello thermostat), and BOAOB46–49,58. These algorithsm
are implemented in OpenMM53 via the package OpenMMTools59. We additionally in-
clude BAOA51, because it is implemented in several MD simulations packages53–55, where
it is sometimes called Verlet-Middle integrator73. GROMACS implements the GROMACS
stochastic dynamics (GSD) method52, which is equivalent to BAOA50.

B. Example: ABO method

The Langevin integrator that is constructed by carrying out eqs. 23a, 23b and 23c con-
secutively is called ABO method (sequential splitting70,79). The ABO algorithm yields a
less accurate approximation to the actual dynamics than symmetric splitting methods (or
equivalently: a small time step ∆t is needed to obtain a given accuracy). Here, we use it
to illustrate concepts.
The integrator equations of the ABO algorithm are

qk+1 = qk + apk (26a)

pk+1/2 = pk + b(qk+1) (26b)

pk+1 = dpk+1/2 + fηk . (26c)
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pk+1/2 should not be interpreted as an integration by half a time step, but rather as 50%
progress in the update of the momenta. Namely, in eq. 26b the momentum is updated
according to the forces due to the potential energy function, and in eq. 26c the momentum
update due to friction and random forces is carried out. The contributions of these two
steps to the total momentum update are by no means equal.
The joint update of the position and momentum, i.e. the update operator of the ABO
method UABO, is obtained by sequentially applying operators A, B, and O to the current
state (qk, pk)>.

(
qk+1

pk+1

)
= UABO

(
qk
pk

)

= OBA
(
qk
pk

)

= OB
(
qk + apk
pk

)

= O
(
qk + apk
pk + b(qk + apk)

)

=

(
qk + apk
dpk + db(qk + apk) + fηk

)
. (27)

As usual the operators are applied from right to left, and hence the order of the operators
in eq. 27 is reversed compared to the name.
The algorithms for each of the integrators in Tab. I as well as their update operators are
reported in the supplementary material.

IV. THE IMAGES OF LANGEVIN UPDATE FUNCTIONS

The update operator U of a Langevin integrator depends parametrically on the random
number ηk: when ηk is varied, the updated state (qk+1, pk+1) changes. One can thus
interpret the update operator in eq. 27 as a function U that maps a random number ηk ∈ R
to a point in state space xk+1 = (qk+1, pk+1)> ∈ Γ. The current state (qk, pk) is treated as
a parameter of U . The image of the update function U , i.e. “the set of all output values it
may produce.”, is the set of all points in state space that can theoretically be reached from
(qk, pk) within a single integration time step. Note that the image only reflects whether
or not a certain point can be reached. The probability with which this point would be
generated during an integration time step does not play a role when discussing the image
of U . Besides ηk and (qk, pk), the update function U also depends on the potential energy
function V . Thus the image of U might change if V is varied.

A. One random number per integration time step

First, we consider Langevin integrators that use a single random number per integration
step, i.e. one O-step (eq. 23c) per integration step k. In Tab. I, these are ABO, ABOBA,
BAOAB and BAOA/GSD.
The following realization is crucial: given an initial state xk, the image of U is not the entire
state space Γ, but a one-dimensional curve C1d within Γ. This one-dimensional curve is
parametrized by ηk. Formally, we can characterize the function U as

U : R→ C1d ⊂ Γ
U : ηk 7→ xk+1 . (28)

See Ref. 82 for an overview of parametrized curves and parametric equations.
Mathematically, it is not surprising that the image is one-dimensional, since it is impossible
to map the one-dimensional number line R to a two-dimensional space. Algorithmically
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FIG. 1. Initial state (qk, pk)> (black dot) and image of the update function UABO(ηk;xk, V ) for
an unscaled potential (blue line) and a scaled potential (orange line) for the ABO method. The
image of the update function contains all possible states (qk+1, pk+1)> that can be reached from
(qk, pk)> within one integration time step ∆t.

Parameters: kB ,m, T, ξ = 1, ∆t = 0.25, (qk, pk)> = (1, 1)>, V (q) = (q2 − 1)2 + q, Ṽ (q) =
4.2 · (q2 − 1)2 + q and η ∈ [−5, 5].

this means that, given an initial state xk, not all states in state space Γ can be reached by a
single iteration of the integrator. Rather, the accessible states lie on C1d, and which precise
point on this line is obtained depends on ηk.

For the ABO method, this parametrization of C1d by ηk can be made explicit by reformu-
lating eq. 27 as

(
qk+1

pk+1

)
= UABO(ηk;xk, V ) =

(
qk+1

p̄k+1

)
+

(
0
f

)
ηk (29)

with qk+1 = qk + apk and p̄k+1 = dpk + db(qk + apk). That is, the algorithm first moves
the system to (qk+1, p̄k+1)> and then adjusts the momenta by (0, f)>ηk. Consequently, all
accessible states of UABO(ηk;xk, V ) lie on a vertical through (qk+1, p̄k+1)>.

Fig. 1 illustrates the image of UABO(ηk;xk, V ). The initial point (qk, pk) = (1, 1) is marked
as a black dot. The point (qk+1, p̄k+1)> for the potential V (q) = (q2 − 1)2 + q is shown as
a blue dot and acts as the support point for the image of UABO(ηk;xk, V ). Varying ηk from
-5 to +5 then yields the blue line, i.e. the image of UABO(ηk;xk, V ) for ηk ∈ [−5, 5]. When

the potential is changed to Ṽ (q) = 4.2 · (q2 − 1)2 + q, the point (qk+1, p̄k+1)> shifts to the

orange point. Varying ηk from -5 to +5 yields the image of UABO(ηk;xk, Ṽ ) for ηk ∈ [−5, 5],
shown as the dashed orange line in Fig. 1. For arbitrary values of ηk, the images of the two
functions coincide. Thus, the image of the update function of the ABO method, i.e. the set
of possible updated states (qk+1, pk+1), does not depend on the potential V .

The update functions for ABOBA, BAOAB and BAOA/GSD are derived in the supplemen-
tary material. Their images are summarized in the second column of Tab. I and illustrated
in Fig. 2. As in Fig. 1, the current state (qk, pk) is shown as a black dot, the support
points for the image for two different potentials are shown as blue and orange dots, and
the corresponding images for ηk ∈ [−5,+5] are shown as blue and orange lines. Fig. 2 also
contains the diagram for a Langevin integrator with two random numbers, AOBOA, which
will be discussed in the following section.

Two aspects of the images of the update functions in Fig. 2 are important to point out. First,
for ABOBA, BAOA/GSD and AOBOA, the possible updated states depend linearly on ηk,
and thus the image is a line L1d in the state space Γ. By contrast, the possible updated
states of BAOAB depend non-linearly on ηk, and the image is a curve C1d. Second, in
ABOBA and AOBOA the image does not depend on the potential, whereas in BAOAB and
BAOA/GSD the image changes if V is varied.
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FIG. 2. Initial state (qk, pk)> (black dot) and image of the update function U(ηk;xk, V ) for
an unscaled potential (blue line) and a scaled potential (orange line) for the ABOBA, BAOAB,
BAOA/GSD and AOBOA method. The image of the update function contains all possible states
(qk+1, pk+1)> that can be reached from (qk, pk)> within one integration time step ∆t.

Parameters: kB ,m, T, ξ = 1, ∆t = 0.25, (qk, pk)> = (1, 1)>, V (q) = (x2 − 1)2 + x, Ṽ (q) =
4.2 · (x2 − 1)2 + x, η ∈ [−5, 5], or ηcomb ∈ [−5, 5] .

B. Two random numbers per integration time step

Next, we consider Langevin integrators that generate two random numbers per integration
step, i.e. two O-half-steps (eq. 23c with ∆t/2 instead of ∆t) per integration step k. In
Tab. I, these are AOBOA, BOAOB, OBABO/BP, and OABAO. Their update functions are
derived in the supplementary material.
The image of update functions of Langevin integrators with two random numbers can be
the entire phase space Γ. That is, given an initial state (qk, pk), any point in phase space
can be reached within a single integration time step, albeit mostly with very low probability.
For BOAOB and OBABO/BP this is indeed the case. Both of their update functions have
the following form

(
qk+1

pk+1

)
=

(
q̄k+1

p̄k+1

)
+

(
0

c · b′(q̄k+1 + af ′η(1)
k )

)
+

(
af ′

d′f ′

)
η

(1)
k +

(
0
f ′

)
η

(2)
k , (30)

where η
(1)
k and η

(2)
k are the two random numbers, and c = 1 for BOAOB, and c = d′

for OBABO/BP. The functions first move the system deterministically to a support point
(q̄k+1, p̄k+1). BOAOB and OBABO/BP differ in the way this deterministic update is cal-
culated (see supplementary material), but have analogous subsequent terms in the update



Girsanov reweighting for underdamped Langevin dynamics 12

function. (BOAOB: q̄k+1 = qk + ad′pk + ad′b′(qk) and p̄k+1 = d′d′pk + d′d′b′(qk). OB-
ABO/BP: q̄k+1 = qk + ad′pk + ab′(qk) and p̄k+1 = d′d′pk + d′b′(qk).) From the support
point, the momentum is slightly adjusted in the second term eq. 30, which however depends

on the random number η
(1)
k and thus represents a partly randomized update of the mo-

mentum. The last two terms in eq. 30 randomize the position and the momentum. Note

that by scaling η
(1)
k between −∞ and +∞, one can access any position, and by scaling η

(2)
k

one can access any momentum. Thus, the image of the update functions of BOAOB and
OBABO/BP is the entire phase space Γ (Tab. I).
The update function of OABAO differs in a crucial point from eq. 30: in the second term
both position and the momentum get a partly randomized update. This partly randomized
update depends on the potential energy function via b(q). One can construct cases, in which
the update of the positions in the second term and the update in the third term compensate
each other, and the images collapses from Γ to a line (see supplementary material). Thus,
the image of the update function of OABAO depends on the potential, and the existence of

M [x|x0] and analytical expressions for ∆η
(1)
k and ∆η

(2)
k need to be discussed in the context

of specific potentials V and Ṽ . We will therefore exclude OABAO from the subsequent
analysis.

AOBOA generates two random numbers η
(1)
k and η

(2)
k per integration time step. But η

(1)
k

and η
(2)
k do not affect the position and the momentum independently as in eq. 30, and

several combinations of η
(1)
k and η

(2)
k lead to the same updated state (qk+1, pk+1). In fact,

one can combine η
(1)
k and η

(2)
k into an effective random number

ηcomb
k = d′η(1)

k + η
(2)
k ∼ N (0, d′2 + 1) . (31)

and formulate the update function in terms of ηcomb
k(

qk+1

pk+1

)
=

(
q̄k+1

p̄k+1

)
+

(
a′

1

)
f ′ηcomb (32)

with q̄k+1 = qk + (a′ + a′d′d′)pk + a′d′b(qk + a′pk) and p̄k+1 = d′d′pk + d′b(qk + a′pk) (see
supplementary material). The AOBOA method first generates a deterministic update and
moves the system to the support point (q̄k+1, p̄k+1), and then randomizes the position and
momentum along a line with slope (a′, 1). Thus, the image of this update function is a line

L1d through the state space Γ (see Fig. 2). Note that any combination of η
(1)
k and η

(2)
k that

yields the same value ηcomb
k , will yield the same updated state (qk+1, pk+1).

V. ABSOLUTE CONTINUITY AND PATH REWEIGHTING FACTOR

The notion of absolute continuity is closely related to the image of update function. Recall
that absolute continuity implies that the same regions of path space are sampled by the

dynamics at Ṽ (x) and by the dynamics at V (x). If the image of the update function
depends on the potential energy, transitions (qk, pk) → (qk+1, pk+1) that are possible at

V are impossible at Ṽ . Thus, the corresponding path probabilities are not absolutely
continuous with respect to each other, and M [x|x0] does not exist for the corresponding
integrators. Among the integrators we considered here, this is the case for BAOAB and
BAOA/GSD (Tab. I). Phase-space trajectories generated by these two integrators cannot
be reweighted.
By contrast, the images of the update functions of ABO, ABOBA, AOBOA, BOAOB and
OBABO/BP do no depend on the potential energy function. Consequently, any transition

(qk, pk) → (qk+1, pk+1) that is possible at V is also possible at Ṽ . The corresponding
path probabilities are absolutely continuous with respect to each other, and M [x|x0] exists.
Phase-space trajectories generated by these integrators can be reweighted (Tab. I).
Having identified integrators of underdamped Langevin dynamics for which Girsanov
reweighting is possible, we next derive computable expressions for M [x|x0] using the
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image at absolute reweighting in

integrator update u V and Ṽ continuity phase space

ABO R→ L1d L1d = L̃1d yes ∆ηk = d
f

∆t∇U(qk+1)

ABOBA R→ L1d L1d = L̃1d yes ∆ηk = (d+1)
f

∆t
2
∇U(qk+1/2)

BAOAB R→ C1d C1d 6= C̃1d no n/a

BAOA/GSD R→ L1d L1d 6= L̃1d no n/a

AOBOA R2 → L1d L1d = L̃1d yes ∆ηcomb
k = d′

f ′ ∆t∇U(qk+1/2)

ηcomb
k = d′η(1)

k + η
(2)
k

BOAOB R2 → Γ Γ in both cases yes ∆η
(1)
k = d′

f ′
∆t
2
∇U(qk)

∆η
(2)
k = 1

f ′
∆t
2
∇U(qk+1)

OBABO/BP R2 → Γ Γ in both cases yes ∆η
(1)
k = 1

f ′
∆t
2
∇U(qk)

∆η
(2)
k = d′

f ′
∆t
2
∇U(qk+1)

OABAO depends on V and Ṽ .

TABLE I. Image of integrator update function and corresponding expressions for the random
number difference

reweighting-on-the-fly approach (eqs. 18 and 21). The mathematically formal way to derive
an expression for ∆ηk = η̃k − ηk (eq. 17) goes as follows. We denote the update function
of integrator I at the simulation potential by UI(ηk;xk, V ), and the update function of

the same integrator at the target potential by UI(η̃k;xk, Ṽ ). We require that both update
operators yield the same update (qk+1, pk+1)> given the initial state xk = (qk, pk)>, i.e. the
path remains unchanged,

(
qk+1

pk+1

)
= UI(ηk;xk, V ) = UI(η̃k;xk, Ṽ ) . (33)

Thus, we need to solve
(

0
0

)
= UI(ηk;xk, V )− UI(η̃k;xk, Ṽ ) (34)

for ∆ηk, i.e. we determine the change in the random number that yields the same path even
though the potential has changed.

A. One random number per integration time step

We again use the ABO method to illustrate how to derive an expression for ∆ηk. Its update

function at the simulation potential V is eq. 27, and at the target potential Ṽ (q) it is
(
qk+1

pk+1

)
= UABO(η̃k;xk, Ṽ ) =

(
qk + apk
dpk + db̃(qk + apk) + fη̃k

)
, (35)

where

b̃(q) = b(q)−∆t∇U(q) . (36)
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Inserting eq. 27 and 35 into eq. 34 yields

(
0
0

)
= UABO(ηk;xk, V )− UABO(η̃k;xk, Ṽ )

=

(
0

d · (b(qk + apk)− b̃(qk + apk)) + f · (ηk − η̃k)

)

=

(
0
d∆t∇U(qk+1)− f ·∆ηk

)
, (37)

where, in the last line, we replaced qk + apk by qk+1 (eq. 26a). Thus, for

∆ηk =
d

f
∆t∇U(qk+1) , (38)

the two update functions yield the same state (qk+1, pk+1)>.

The same calculation for ABOBA yields

∆ηk =
(d+ 1)

f

∆t

2
∇U(qk+1/2) (39)

(see supplementary material). The relative conditional path probability densities M [x|x0]
for these two integrators can now be calculated according to eq. 18.

B. Two random numbers per integration time step

The condition

(
0
0

)
= UBOAOB(η

(1)
k , η

(2)
k ;xk, V )− UBOAOB(η̃

(1)
k , η̃

(2)
k ;xk, Ṽ ) (40)

yields the random number differences for the BOAOB method

∆η
(1)
k =

d′

f ′
∆t

2
∇U(qk) (41a)

∆η
(2)
k =

1

f ′
∆t

2
∇U(qk+1) . (41b)

Similarly, the condition

(
0
0

)
= UOBABO(η

(1)
k , η

(2)
k ;xk, V )− UOBABO(η̃

(1)
k , η̃

(2)
k ;xk, Ṽ ) (42)

yields the random number differences for the OBABO/BP method

∆η
(1)
k =

1

f ′
∆t

2
∇U(qk) (43a)

∆η
(2)
k =

d′

f ′
∆t

2
∇U(qk+1) . (43b)

For both methods, the intermediate steps of this calculation are reported in the supple-
mentary material. The relative conditional path probability densities M [x|x0] for these two
integrators can now be calculated according to eq. 21.
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C. AOBOA: two random numbers, but one-dimensional image

The condition
(

0
0

)
= UAOBOA(ηcomb

k ;xk, V )− UAOBOA(η̃comb
k ;xk, Ṽ ) , (44)

where UAOBOA(ηcomb
k ;xk, V ) is given by eq. 32, yields the difference of the combined random

number

∆ηcomb
k =

d′

f ′
∆t∇U(qk+1/2) . (45)

The intermediate steps of this calculation are reported in the supplementary material.
To reweight trajectories generated by the AOBOA integrator, we need to formulate M [x|x0]
as a function of the combined random numbers ηcomb

k . From the update function of AOBOA
(eq. 32), it follows that the conditional path probability is

P[x|x0] = P[ηcomb] =
1

n
√

2(d′2 + 1)π
exp

(
−
n−1∑

k=0

(
ηcomb
k

)2

2(d′2 + 1)

)
. (46)

Note that the probability density of the weighted sum of two normally distributed random
numbers is again a normal distribution with adjusted mean µ and variance σ2. For the
combined random number (eq. 31): µcomb = d′µ(1) + µ(2) = 0 and (σcomb)2 = d′2(σ(1))2 +
(σ(2))2 = d′2 + 1. The relative conditional path probability density for AOBOA is

M [x|x0] =
P[η̃comb]

P[ηcomb]
= exp

(
−
n−1∑

k=0

ηcomb
k ·∆ηcomb

k

d′2 + 1

)
· exp

(
−
n−1∑

k=0

(
∆ηcomb

k

)2

2(d′2 + 1)

)
. (47)

The random numbers η
(1)
k and η

(2)
k are recorded during the simulation at V . The combined

random number ηcomb
k is calculated according to eq. 31, and the expression for ∆ηcomb

k is
given by eq. 45.

VI. GRAPHICAL REPRESENTATION OF LANGEVIN INTEGRATORS

In this section, we introduce a graphical representation of splitting methods for Langevin
integrators. This representation helps in reasoning why some methods have potential-
independent images, and why others do not. It also shows which parts of the integration
algorithm are affected by a change in the potential and how this influences ∆ηk.
Fig. 3 illustrates this graphical representation for the ABO method. The graphs show
the phase space (q, p), and the black dots represent the initial state (qk, pk)> and the state
(qk+1, pk+1)>after one iteration of the ABO method. The left-hand graph shows the update
from (qk, pk) to (qk+1, pk+1) for the simulation potential V decomposed into the three
update operators A, B, and O. The A-step depends on the momentum pk and updates
the position from qk to qk+1. This is followed by two momentum updates: the B-step
which depends on the updated position qk+1 and potential V and yields the intermediate
momentum pk+1/2, followed by an O-step which depends on this intermediate momentum
and a random number. The graph in the middle shows how the same update from (qk, pk) to
(qk+1, pk+1) is achieved at the target potential. Update operators and intermediate results
that are affected by the change in potential are shown in colour. The A-step only depends
on the initial momentum pk and therefore does not change. The B-step evaluates the
gradient of the potential and thus yields a different intermediate momentum pk+1/2, shown
in blue. In order to reach the state (qk+1, pk+1), the random number in the O-step needs
to be adjusted such that O covers the remaining distance to pk+1. Colloquially: we have to

adjust the random number in the O-step such that
√
kBTm(1− e−2ξ∆t)∆ηk compensates
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FIG. 3. Update from (qk, pk) to (qk+1, pk+1) for the ABO method at the simulations potential

V (x) and at the target potential Ṽ (x) = V (x) + U(x). Update operators and intermediate results
that are affected by the change in potential are shown in colour.

“for the mess that −∇U created”. The right-hand graph combines the two previous graphs,

so that the update at V (x) and at Ṽ (x) can be compared directly.
Because the A-step in the ABO method is unaffected by a change in the potential, the
equation to determine ∆ηk simplifies. Instead of the condition

[
OBA− ÕB̃Ã

](
qk
pk

)
=

(
0
0

)
(48)

we only need to solve the condition

[
OB − ÕB̃

](
qk+1

pk

)
=

(
0
0

)
. (49)

which yields the same expression for ∆ηk as eq. 38.
Fig. 4 shows the graphical representation of the six symmetric splitting methods46–49. as
well as for BAOA/GSD. These Langevin integrators can be classified according to the route
they take through phase space during an integration time step from (qk, pk) to (qk+1, pk+1).
In the integrators in the first columns of Fig. 4, the position update occurs in two steps,
and in between the steps the momentum is updated. Stochastic position Verlet (SPV)68,
a splitting method that has been proposed prior to the symmetric splitting methods, takes
the same route through phase space. In the algorithm in the second column, the momentum
update occurs in two steps, and in between the steps the position is updated. Also in this
case, there is an older algorithm that takes the same route through phase space: stochastic
velocity Verlet (SVV)68. Algorithms in which neither position nor momentum update is
calculated in one go, but position and momentum update are interspersed, are shown in
the third column.
Using Fig. 4, one can derive simplified conditions for ∆ηk by considering which sub-steps
in the integrator are affected by a change in V . In the ABOBA method, the first A-step
depends only on pk and is not affected by a change in the potential. Therefore also the
intermediate result pk+1/2 is not affected by a change in the potential. The momentum
update pk → pk+1 is contained in the sequence of steps BOB (vertical line in Fig. 4), where
the B-step is affected by a change in the potential. In order to obtain the same momentum
update in both potentials, the following condition for the two random numbers needs to be
fulfilled:

[
B′OB′ − B̃′ÕB̃′

](
qk+1/2

pk

)
=

(
0
0

)
(50)

The final A-step only depends on pk+1 and is the same in both potentials if pk+1 remains
the same. Solving eq. 50 yields the same ∆ηk as defined in eq. 39. Similarly, in the AOBOA
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FIG. 4. Decomposition of the transition from (qk, pk) to (qk+1, pk+1) for Langevin integrators
derived via the operator splitting method. Methods that are not suited to reweight position
trajectories are highlighted in gray.

method it suffices to solve
[
O′BO′ − Õ′B̃Õ′

](
qk+1/2

pk

)
=

(
0
0

)
(51)

to obtain eq. 45 for ∆ηcond
k .

Consider the algorithms in the second column. In the BOAOB method, the update of the
positions qk → qk+1 is contained in a single A-step, which depends on the intermediate
momentum result pk+1/2. If pk+1/2 is altered, qk+1 will change. In order to obtain the
same path at the simulation and at the target potential, pk+1/2 has to be the same in both
potentials. This is the case, if the updates pk → pk+1/2 and pk+1/2 → pk+1 (vertical lines
in Fig. 4) are the same in both potentials. Thus, we have two separate conditions, one for
each random number:

[
O′B′ − Õ′B̃′

](
qk
pk

)
=

(
0
0

)
(52a)

[
B′O′ − B̃′Õ′

](
qk+1

pk+1/2

)
=

(
0
0

)
(52b)

which lead to eqs. 41a and 41b for η
(1)
k and η

(2)
k . (Note that the operators act from right to

left, and thus their order is reversed compared to the name of the method.) Similarly, the
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conditions for OBABO/BP are

[
B′O′ − B̃′Õ′

](
qk
pk

)
=

(
0
0

)
(53a)

[
O′B′ − Õ′B̃′

](
qk+1

pk+1/2

)
=

(
0
0

)
(53b)

which lead to eqs. 43a and 43b for η
(1)
k and η

(2)
k .

BAOAB and BAOA/GSD in the third column in Fig. 4 do not allow for reweighting in phase
space. Consider BAOA/GSD to understand why. The first two steps in the algorithm

are deterministic and the B-step is affected by a change in V . Consequently, at Ṽ the
intermediate state (qk+1/2, pk+1/2) will be different from the intermediate state at V . One
can now choose the value of ηk such that the O-step reaches pk+1. In that case, the
subsequent A-step will not reach qk+1. Or one can scale to a momentum p̃k+1 that is
sufficient to bridge the remaining gap between qk+1/2 and qk+1, but this p̃k+1 will not be
equal to the original pk+1. Thus, one can reach either pk+1 or qk+1, but not both. The
equations for the corresponding values of ∆ηk are reported in the supplementary material.
Note that this in principles allows for reweighting path expected values, in which the path
observable s[x] only depends on the positions or only depends on the momenta. However,
the resulting reweighted estimators might have a large variance or even a bias. An analogous
reasoning applies to BAOAB. We provide the equations for ∆ηk for separately reweighting
in position and momentum space in the supplementary material, and give the same warning.
For the OBABO method reweighting should in principle be possible, because we have two
random numbers to adjust the updated position and the updated momentum. However,
since pathological cases in which the image of the update function changes with the potential
can be constructed (see supplementary material), we do not derive the equations for the
random number differences here.

VII. CONCLUSION

We have introduced a strategy to derive the relative path-probability ratio for Langevin
integrators. To achieve this, we adapted the method to derive the random number difference
∆ηk as presented in Ref. 45. With the random numbers differences presented in Tab. I it
is now possible to use Girsanov reweighting with underdamped Langevin dynamics. This
removes a major road block to study rare events by combining biased simulations with
dynamical reweighting.
Besides reweighting enhanced sampling simulations, the relative path probability ratio for
underdamped Langevin integrators can also be use in other contexts such as searching and
sampling in path space83–85 or force-field optimization86. It might also help in understanding
the relation between molecular models that rely on path sampling and models that are
derived from a direct discretization of the Fokker-Planck equation78.
The analysis revealed that some algorithms violate absolute continuity, because the image of
their update changes when the potential is change. As a consequence single-step transitions
(qk, pk)→ (qk+1, pk+1) that are possible at the simulation potential are no longer possible at
the target potential. Our condition for the absolute continuity of the single-step transitions
(eq. 14) is a very strict condition and guarantees the Girsanov reweighting in the full phase
space is possible. However, path observables usually either depend on the positions or
on the momenta, rarely on both. Thus, for algorithms that violate eq. 14 reweighting in
position space or in path space might still be possible. In fact, we report random number
difference for these approaches for BAOA/GSD in the supplementary material. Whether
these equations yield accurate results has yet to be tested. Another interesting question
is how the absolute continuity of a Langevin integrator relates to the accuracy with which
it reproduces transport properties74,75. Finally, in some cases one might be able to relax
the absolute continuity over a single integration time-step to an absolute continuity over a
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larger lag time of several integration time steps, and thereby link Girsanov reweighting to
dynamical reweighting methods that assume a Markov state model20–24.
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Appendix A: Langevin integration methods

For the update operators we use the following abbreviations:

a = ∆t
1

m
(A1a)

b(qk) = −∆t∇V (qk) (A1b)

d = e−ξ∆t (A1c)

f =
√
kBTm(1− e−2ξ∆t) . (A1d)

and for half time steps

a′ =
∆t

2

1

m
(A2a)

b′(qk) = −∆t

2
∇V (qk) (A2b)

d′ = e−ξ
∆t
2 (A2c)

f ′ =

√
kBTm(1− e−2ξ∆t

2 ) . (A2d)

We will further use that

η̃k − ηk = ∆ηk (A3)

and that

b̃(qk)− b(qk) = −∆t∇Ṽ (qk) + ∆t∇V (qk)
= −∆t(∇V (qk) +∇U(qk)) + ∆t∇V (qk)
= −∆t∇U(qk) (A4)

and analogously for half-time steps.

1. ABOBA

a. Algorithm

qk+1/2 = qk +
∆t

2m
pk (A5a)

pk+1/3 = pk −
∆t

2
∇V (qk+1/2) (A5b)

pk+2/3 = e−ξ∆tpk+1/3 +
√
kBTm(1− e−2ξ∆t) ηk (A5c)

pk+1 = pk+2/3 −
∆t

2
∇V (qk+1/2) (A5d)

qk+1 = qk+1/2 +
∆t

2m
pk+1 (A5e)

The algorithm has been reported in Refs. 47 and in 57. Compared to Ref. 48, we changed
the notation as follows: n→ k, Rn → ηk, δt→ ∆t, M → m, γ → ξ, F → −∇V .
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b. Update operator

A′B′OB′A′
(
qk
pk

)
= A′B′OB′

(
qk + a′pk
pk

)

= A′B′O
(
qk + a′pk
pk + b′(qk + a′pk)

)

= A′B′
(
qk + a′pk
dpk + db′(qk + a′pk) + fηk

)

= A′
(
qk + a′pk
dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)

=

(
qk + a′pk + a′[dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)]
dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
(A6)

c. Update function

(
qk+1

pk+1

)
= UABOBA(ηk;xk, V ) =

(
q̄k+1

p̄k+1

)
+

(
a′f
f

)
ηk (A7)

with q̄k+1 = qk + a′(1 + d)pk + a′(d+ 1)b′(qk + a′pk) and p̄k+1 = dpk + (d+ 1)b′(qk + a′pk).
Thus,

UABOBA : R→ L1d ⊂ Γ
UABOBA : ηk 7→ xk+1 , (A8)

where L1d denotes a line in Γ.

d. Image at V and Ṽ

(
0
0

)
= UABOBA(ηk;xk, V )− UABOBA(η̃k;xk, Ṽ )

=

(
qk + a′pk + a′(dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk))
dpk + db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
−

(
qk + a′pk + a′(dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk))

dpk + db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)

)

=

(
a′[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)]
db′(qk + a′pk) + fηk + b′(qk + a′pk)

)
−

(
a′[d · b̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)]

db̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)

)

=

(
a′

1

)
[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)]−

(
a′

1

)
[d · b̃′(qk + a′pk) + fη̃k + b̃′(qk + a′pk)]

=

(
a′

1

)
[d · b′(qk + a′pk) + fηk + b′(qk + a′pk)− d · b̃′(qk + a′pk)− fη̃k − b̃′(qk + a′pk)]

=

(
a′

1

)
[(d+ 1) · b′(qk + a′pk)− (d+ 1) · b̃′(qk + a′pk) + f(ηk − η̃k)]
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=

(
a′

1

)
[(d+ 1) · ∆t

2
∇U(qk+1/2)− f∆ηk] (A9)

is fulfilled if

∆ηk =
(d+ 1)

f

∆t

2
∇U(qk+1/2) , (A10)

where we substituted qk+1/2 = qk + a′pk (eq. A5a) and used eqs. ?? and eq. A4. Thus,

UABOBA(ηk;xk, V ) and UABOBA(η̃k;xk, Ṽ ) have the same image

L1d = L̃1d .

2. BAOAB

a. Algorithm

pk+1/3 = pk −
∆t

2
∇V (qk) (A11a)

qk+1/2 = qk +
∆t

2m
pk+1/3 (A11b)

pk+2/3 = e−ξ∆t pk+1/3 +
√
kBTm(1− e−2ξ∆t) ηk (A11c)

qk+1 = qk+1/2 +
∆t

2m
pk+2/3 (A11d)

pk+1 = pk+2/3 −
∆t

2
∇V (qk+1) (A11e)

The algorithm has been reported in Refs. 47 and 57. Compared to Ref. 48, we changed the
notation as follows: n→ k, Rn → ηk, δt→ ∆t, M → m, γ → ξ, F → −∇V .

b. Update operator

B′A′OA′B′
(
qk
pk

)
= B′A′OA′

(
qk
pk + b′(qk)

)

= B′A′O
(
qk + a′pk + a′b′(qk)
pk + b′(qk)

)

= B′A′
(
qk + a′pk + a′b′(qk)
dpk + db′(qk) + fηk

)

= B′
(
qk + a′pk + a′b′(qk) + a′dpk + a′db′(qk) + a′fηk
dpk + db′(qk) + fηk

)

=

(
qk + a′pk + a′b′(qk) + a′dpk + a′db′(qk) + a′fηk
dpk + db′(qk) + fηk + b′(qk + a′pk + a′b′(qk) + a′dpk + a′db′(qk) + a′fηk)

)
(A12)

c. Update function

(
qk+1

pk+1

)
= UBAOAB(ηk;xk, V ) =

(
q̄k+1

p̄k+1

)
+

(
0
b′(q̄k+1 + a′fηk)

)
+

(
a′f
f

)
ηk(A13)
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with q̄k+1 = qk + a′pk + a′b′(qk) + a′dpk + a′db′(qk) = qk + a′(1 + d)pk + a′(1 + d)b′(qk) and
p̄k+1 = dpk + db′(qk). Thus,

UBAOAB : R→ C1d ⊂ Γ
UBAOAB : ηk 7→ xk+1 , (A14)

where C1d denotes a curve in Γ.

d. Image at V and Ṽ

(
0
0

)
= UBAOAB(ηk;xk, V )− UBAOAB(η̃k;xk, Ṽ )

=

(
qk + a′(1 + d)pk + a′(1 + d)b′(qk) + a′fηk
dpk + d · b′(qk) + fηk + b′(qk + a′(1 + d)pk + a′(1 + d)b′(qk) + a′fηk)

)
−

(
qk + a′(1 + d)pk + a′(1 + d)̃b′(qk) + a′fη̃k
dpk + d · b̃′(qk) + fη̃k + b̃′(qk + a′(1 + d)pk + a′(1 + d)̃b′(qk) + a′fη̃k)

)

=

(
a′(d+ 1) · b′(qk) + a′fηk
d · b′(qk) + b′(qk + a′(d+ 1)pk + a′(d+ 1) · b′(qk) + a′fηk) + fηk

)
−

(
a′(d+ 1) · b̃′(qk) + a′fη̃k
d · b̃′(qk) + b̃′(qk + a′(d+ 1)pk + a′(d+ 1) · b̃′(qk) + a′fη̃k) + fη̃k

)
. (A15)

ηk appears linearly in the update of the positions. It appears as the argument of the function
b(q) in the update of the momenta which is typically a non-linear function (eq. A1b).
Therefore, one cannot find an analytical expression for ∆ηk that solves both lines of the
equation.
One can however find an expression for ∆ηpos

k , for which the two update functions yield the
same positions:

0 = a′(d+ 1) · b′(qk) + a′fηk − a′(d+ 1) · b̃′(qk)− a′fη̃k
= a′(d+ 1) · ∆t

2
∇U(qk)− a′f∆ηpos

k

m
∆ηpos

k =
d+ 1

f

∆t

2
∇U(qk) . (A16)

Then

qk+1 = qk + a′(d+ 1)pk + a′(d+ 1) · b′(qk) + a′fηk
= qk + a′(d+ 1)pk + a′(d+ 1) · b̃′(qk) + a′fη̃k , (A17)

and we can make the following substitution in the equation above
(

0
0

)
=

(
0

d · b′(qk) + b′(qk+1) + fηk − d · b̃′(qk)− b̃′(qk+1)− fη̃k

)

=

(
0
d∆t

2 ∇U(qk) + ∆t
2 ∇U(qk+1)− f∆ηpos

k

)
. (A18)

One can now see that the equation for the momenta is not fulfilled, because

0 6= d
∆t

2
∇U(qk) +

∆t

2
∇U(qk+1)− f∆ηpos

k

0 6= d
∆t

2
∇U(qk) +

∆t

2
∇U(qk+1)− (d+ 1)

∆t

2
∇U(qk)

∇U(qk+1) 6= ∇U(qk) . (A19)

Thus, UBAOAB(ηk;xk, V ) and UBAOAB(η̃k;xk, Ṽ ) parameterise different curves in state space

C1d 6= C̃1d .
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3. BAOA/ Gromacs stochastic dynamics

BAOA is equivalent to Gromacs stochastic dynamics (GSD)50,52.

a. Algorithm

pk+ 1
2

= pk −∆t∇V (qk) (A20a)

qk+ 1
2

= qk +
∆t

2m
pk+ 1

2
(A20b)

pk+1 = e−ξ∆tpk+ 1
2

+
√
kBTm (1− e−2ξ∆t)ηk (A20c)

qk+1 = qk+ 1
2

+
∆t

2m
pk+1. (A20d)

b. Update operator

A′OA′B
(
qk
pk

)
= A′OA′

(
qk
pk + b(qk)

)

= A′O
(
qk + a′pk + a′b(qk)
pk + b(qk)

)

= A′
(
qk + a′pk + a′b(qk)
dpk + db(qk) + fηk

)

=

(
qk + a′pk + a′b(qk) + a′dpk + a′db(qk) + a′fηk
dpk + db(qk) + fηk

)
(A21)

c. Update function

(
qk+1

pk+1

)
= UBAOA(ηk;xk, V ) =

(
q̄k+1

p̄k+1

)
+

(
a′f
f

)
ηk (A22)

with q̄k+1 = qk + a′pk + a′b(qk) + a′dpk + a′db(qk) = qk + a′(1 + d)pk + a′(1 + d)b(qk) and
p̄k+1 = dpk + db(qk). Thus,

UBAOA : R→ L1d ⊂ Γ
UBAOA : ηk 7→ xk+1 , (A23)

where L1d denotes a line in Γ.

d. Image at V and Ṽ

(
0
0

)
= UBAOA(ηk;xk, V )− UBAOA(η̃k;xk, Ṽ )

=

(
qk + a′(1 + d)pk + a′(1 + d)b(qk) + a′fηk
dpk + d · b(qk) + fηk

)
−
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(
qk + a′(1 + d)pk + a′(1 + d)̃b(qk) + a′fη̃k
dpk + d · b̃(qk) + fη̃k

)

=

(
a′(1 + d) · b(qk) + a′fηk
d · b(qk) + fηk

)
−
(
a′(1 + d) · b̃(qk) + a′fη̃k
d · b̃(qk) + fη̃k

)

=

(
a′(1 + d) ·∆t∇U(qk)− a′f∆ηk
d ·∆t∇U(qk)− f∆ηk

)
(A24)

The two update functions yield the same positions if

0 = a′(1 + d) ·∆t∇U(qk)− a′f∆ηpos
k

m
∆ηpos

k =
1 + d

f
·∆t∇U(qk) . (A25)

Substituting ηpos
k for ηk in eq. A24 yields

(
0
0

)
=

(
0

d ·∆t∇U(qk)− f∆ηpos
k

)

=

(
0

d ·∆t∇U(qk)− (1 + d)∆t∇U(qk)

)
(A26)

which shows that the equation for the momenta is not fulfilled with ∆ηpos
k , because

d ·∆t∇U(qk) 6= (1 + d)∆t∇U(qk) . (A27)

Thus, UBAOA(ηk;xk, V ) and UBAOA(η̃k;xk, Ṽ ) parameterise different curves in state space

L1d 6= L̃1d .

Because ηk appears linearly in the update of the positions as well as in the update of the
momenta, one can solve eq. A24 for the momentum update

0 = d ·∆t∇U(qk)− f∆ηmom
k

m
∆ηmom

k =
d

f
·∆t∇U(qk) . (A28)

Note that ∆ηmom
k 6= ∆ηpos

k .

4. AOBOA

a. Algorithm

qk+1/2 = qk +
∆t

2m
pk (A29a)

pk+1/3 = e−
ξ∆t

2 pk +
√
kBTm(1− e−ξ∆t) η(1)

k (A29b)

pk+2/3 = pk+1/3 −∆t∇V (qk+1/2) (A29c)

pk+1 = e−
ξ∆t

2 pk+2/3 +
√
kBTm(1− e−ξ∆t) η(2)

k (A29d)

qk+1 = qk+1/2 +
∆t

2m
pk+1 . (A29e)

Here, two random numbers η
(1)
k ∼ N (0, 1) and η

(2)
k ∼ N (0, 1) need to be drawn per full

update cycle.
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b. Update operator

A′O′BO′A′
(
qk
pk

)
= A′O′BO′

(
qk + a′pk
pk

)

= A′O′B
(
qk + a′pk
d′pk + f ′η(1)

k

)

= A′O′
(
qk + a′pk
d′pk + f ′η(1)

k + b(qk + a′pk)

)

= A′
(
qk + a′pk
d′d′pk + d′f ′η(1)

k + d′b(qk + a′pk) + f ′η(2)
k

)

=

(
qk + a′pk + a′

(
d′d′pk + d′f ′η(1)

k + d′b(qk + a′pk) + f ′η(2)
k

)

d′d′pk + d′f ′η(1)
k + d′b(qk + a′pk) + f ′η(2)

k

)
(A30)

c. Update function

(
qk+1

pk+1

)
= UAOBOA(ηcomb

k ;xk, V ) =

(
q̄k+1

p̄k+1

)
+

(
a′

1

)
f ′ηcomb

k (A31)

with q̄k+1 = qk + (a′ + a′d′d′)pk + a′d′b(qk + a′pk) and p̄k+1 = d′d′pk + d′b(qk + a′pk) and a
combined random number

ηcomb
k = d′η(1)

k + η
(2)
k ∼ N (0, d′2 + 1) . (A32)

Thus,

UAOBOA : R→ L1d ⊂ Γ
UAOBOA : ηcomb

k 7→ xk+1, (A33)

where L1d denotes a line in Γ.

d. Image at V and Ṽ

(
0
0

)
= UAOBOA(ηcomb

k ;xk, V )− UAOBOA(η̃comb
k ;xk, Ṽ )

=

(
qk + (a′ + a′d′d′)pk + a′d′b(qk + a′pk)
d′d′pk + d′b(qk + a′pk)

)
+

(
a′

1

)
f ′ηcomb

k −
(
qk + (a′ + a′d′d′)pk + a′d′ · b̃(qk + a′pk)

d′d′pk + d′ · b̃(qk + a′pk)

)
−
(
a′

1

)
f ′η̃comb

k

=

(
a′d′b(qk + a′pk)
d′b(qk + a′pk)

)
−
(
a′d′ · b̃(qk + a′pk)

d′ · b̃(qk + a′pk)

)
−
(
a′

1

)
f ′∆ηcomb

k

=

(
a′

1

)
d′
[
b(qk + a′pk)− b̃(qk + a′pk)

]
−
(
a′

1

)
f ′∆ηcomb

k

=

(
a′

1

)
d′∆t∇U(qk + a′pk)−

(
a′

1

)
f ′∆ηcomb

k (A34)

is fulfilled if

∆ηcomb
k =

d′

f ′
∆t∇U(qk+1/2) (A35)
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where we substituted qk+1/2 = qk + a′pk (eq. A29a). Thus, UAOBOA(ηk;xk, V ) and

UAOBOA(η̃k;xk, Ṽ ) have the same image

L1d = L̃1d .

5. BOAOB

a. Algorithm

pk+1/4 = pk −
∆t

2
∇V (qk) (A36a)

pk+2/4 = e−
ξ∆t

2 pk+1/4 +
√
kBTm (1− e−ξ∆t) η(1)

k (A36b)

qk+1 = qk +
∆t

m
pk+2/4 (A36c)

pk+3/4 = e−
ξ∆t

2 pk+2/4 +
√
kBTm (1− e−ξ∆t) η(2)

k (A36d)

pk+1 = pk+3/4 −
∆t

2
∇V (qk+1) . (A36e)

Here, two random numbers η
(1)
k ∼ N (0, 1) and η

(2)
k ∼ N (0, 1) need to be drawn per full

update cycle.

b. Update operator

B′O′AO′B′
(
qk
pk

)
= B′O′AO′

(
qk
pk + b′(qk)

)

= B′O′A
(
qk
d′pk + d′b′(qk) + f ′η(1)

k

)

= B′O′
(
qk + ad′pk + ad′b′(qk) + af ′η(1)

k

d′pk + d′b′(qk) + f ′η(1)
k

)

= B′
(
qk + ad′pk + ad′b′(qk) + af ′η(1)

k

d′d′pk + d′d′b′(qk) + d′f ′η(1)
k + f ′η(2)

k

)

=

(
qk + ad′pk + ad′b′(qk) + af ′η(1)

k

d′d′pk + d′d′b′(qk) + d′f ′η(1)
k + f ′η(2)

k + b′
(
qk + ad′pk + ad′b′(qk) + af ′η(1)

k

)
)

(A37)

c. Update function

(
qk+1

pk+1

)
= UBOAOB(η

(1)
k , η

(2)
k ;xk, V )

=

(
q̄k+1

p̄k+1

)
+

(
0

b′
(
q̄k+1 + af ′η(1)

k

)
)

+

(
af ′

d′f ′

)
η

(1)
k +

(
0
f ′

)
η

(2)
k (A38)

with q̄k+1 = qk + ad′pk + ad′b′(qk) and p̄k+1 = d′d′pk + d′d′b′(qk). Thus,

UBOAOB : R2 → Γ

UBOAOB : (η
(1)
k , η

(2)
k ) 7→ xk+1 . (A39)
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d. Derivation of ∆η
(1)
k and ∆η

(2)
k

We derive ∆η
(1)
k and ∆η

(2)
k from the condition

(
0
0

)
= UBOAOB(η

(1)
k , η

(2)
k ;xk, V )− UBOAOB(η̃

(1)
k , η̃

(2)
k ;xk, Ṽ ) (A40)

Inserting eq. A38 yields
(

0
0

)
=

(
qk + ad′pk + ad′b′(qk)
d′d′pk + d′d′b′(qk)

)
+

(
0
b′(qk+1)

)
+

(
af ′

d′f ′

)
η

(1)
k +

(
0
f ′

)
η

(2)
k

−
(
qk + ad′pk + ad′b̃′(qk)

d′d′pk + d′d′b̃′(qk)

)
−
(

0

b̃′(q̃k+1)

)
−
(
af ′

d′f ′

)
η̃

(1)
k −

(
0
f ′

)
η̃

(2)
k

=

(
ad′∆t2 ∇U(qk)
d′d′∆t2 ∇U(qk)

)
+

(
0

b′(qk+1)− b̃′(q̃k+1)

)
−
(
af ′

d′f ′

)
∆η

(1)
k −

(
0
f ′

)
∆η

(2)
k ,(A41)

where we used eqs. A3 and A4. The second term evaluates the potential at the updated

position which, a priori, might differ in V and Ṽ . Solving the line for the position in the
above equation yields

∆η
(1)
k =

d′

f ′
∆t

2
∇U(qk) . (A42)

With this qk+1 = q̃k+1, and thus b′(qk+1)− b̃′(q̃k+1) = ∆t
2 ∇U(qk+1). Then the line for the

momentum yields

0 = d′d′
∆t

2
∇U(qk) +

∆t

2
∇U(qk+1)− d′f ′ · d

′

f ′
∆t

2
∇U(qk)− f ′∆η(2)

k

=
∆t

2
∇U(qk+1)− f ′∆η(2)

k

m
∆η

(2)
k =

1

f ′
∆t

2
∇U(qk+1) (A43)

6. OBABO method / Bussi-Parrinello thermostat

a. Algorithm

pk+1/4 = e−
ξ∆t

2 pk +
√
kBTm (1− e−ξ∆t) η(1)

k (A44a)

pk+2/4 = pk+1/4 −
∆t

2
∇V (qk) (A44b)

qk+1 = qk +
∆t

m
pk+2/4 (A44c)

pk+3/4 = pk+2/4 −
∆t

2
∇V (qk+1) (A44d)

pk+1 = e−
ξ∆t

2 pk+3/4 +
√
kBTm (1− e−ξ∆t) η(2)

k . (A44e)

Here, two random numbers η
(1)
k ∼ N (0, 1) and η

(2)
k ∼ N (0, 1) need to be drawn per full

update cycle. The algorithm is equal to the Bussi-Parrinello thermostat46. Compared to
Ref. 48, we changed the notation as follows: n → k, Rn → ηk, δt → ∆t, M → m, γ → ξ,
F → −∇V .
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b. Update operator

O′B′AB′O′
(
qk
pk

)
= O′B′AB′

(
qk
d′pk + f ′η(1)

k

)

= O′B′A
(
qk
d′pk + f ′η(1)

k + b′(qk)

)

= O′B′
(
qk + ad′pk + af ′η(1)

k + ab′(qk)

d′pk + f ′η(1)
k + b′(qk)

)

= O′
(
qk + ad′pk + af ′η(1)

k + ab′(qk)

d′pk + f ′η(1)
k + b′(qk) + b′

(
qk + ad′pk + af ′η(1)

k + ab′(qk)
)
)

=

(
qk + ad′pk + af ′η(1)

k + ab′(qk)

d′d′pk + d′f ′η(1)
k + d′b′(qk) + d′b′

(
qk + ad′pk + af ′η(1)

k + ab′(qk)
)

+ f ′η(2)
k

)
(A45)

c. Update function

(
qk+1

pk+1

)
= UOBABO(η

(1)
k , η

(2)
k ;xk, V )

=

(
q̄k+1

p̄k+1

)
+

(
0

d′b′(q̄k+1 + af ′η(1)
k )

)
+

(
af ′

d′f ′

)
η

(1)
k +

(
0
f ′

)
η

(2)
k (A46)

with q̄k+1 = qk + ad′pk + ab′(qk) and p̄k+1 = d′d′pk + d′b′(qk). Thus,

UOBABO : R2 → Γ

UOBABO : (η
(1)
k , η

(2)
k ) 7→ xk+1 . (A47)

d. Derivation of ∆η
(1)
k and ∆η

(2)
k

We derive ∆η
(1)
k and ∆η

(2)
k from the condition

(
0
0

)
= UOBABO(η

(1)
k , η

(2)
k ;xk, V )− UOBABO(η̃

(1)
k , η̃

(2)
k ;xk, Ṽ ) (A48)

Inserting eq. A46 yields
(

0
0

)
=

(
qk + ad′pk + ab′(qk)
d′d′pk + d′b′(qk)

)
+

(
0
d′b′(qk+1)

)
+

(
af ′

d′f ′

)
η

(1)
k +

(
0
f ′

)
η

(2)
k

−
(
qk + ad′pk + ab̃′(qk)

d′d′pk + d′b̃′(qk)

)
−
(

0

d′b̃′(q̃k+1)

)
−
(
af ′

d′f ′

)
η̃

(1)
k −

(
0
f ′

)
η̃

(2)
k

=

(
a∆t

2 ∇U(qk)
d′∆t2 ∇U(qk)

)
+

(
0

d′b′(qk+1)− d′b̃′(q̃k+1)

)
−
(
af ′

d′f ′

)
∆η

(1)
k −

(
0
f ′

)
∆η

(2)
k(A49)

where we used eqs. A4 and A3. The second term evaluates the potential at the updated

position which, a priori, might differ in V and Ṽ . Solving the line for the position in the
above equation yields

∆η
(1)
k =

1

f ′
∆t

2
∇U(qk) . (A50)
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With this qk+1 = q̃k+1, and thus d′b′(qk+1)−d′b̃′(q̃k+1) = d′∆t2 ∇U(qk+1). Then the line for
the momentum yields

0 = d′
∆t

2
∇U(qk) + d′

∆t

2
∇U(qk+1)− d′f ′ · 1

f ′
∆t

2
∇U(qk)− f ′∆η(2)

k

= d′
∆t

2
∇U(qk+1)− f ′∆η(2)

k

m
∆η

(2)
k =

d′

f ′
∆t

2
∇U(qk+1) (A51)

7. OABAO

a. Algorithm

pk+1/3 = e−
ξ∆t

2 pk +
√
kBTm(1− e−ξ∆t) η(1)

k (A52a)

qk+1/2 = qk +
∆t

2m
pk+1/3 (A52b)

pk+2/3 = pk+1/3 −∆t∇V (qk+1/2) (A52c)

qk+1 = qk+1/2 +
∆t

2m
pk+2/3 (A52d)

pk+1 = e−
ξ∆t

2 pk+2/3 +
√
kBTm(1− e−ξ∆t) η(2)

k (A52e)

Here, two random numbers η
(1)
k ∼ N (0, 1) and η

(2)
k ∼ N (0, 1) need to be drawn per full

update cycle.

b. Update operator

O′A′BA′O′
(
qk
pk

)
= O′A′BA′

(
qk
d′pk + f ′η(1)

k

)

= O′A′B
(
qk + a′d′pk + a′f ′η(1)

k

d′pk + f ′η(1)
k

)

= O′A′
(
qk + a′d′pk + a′f ′η(1)

k

d′pk + f ′η(1)
k + b(qk + a′d′pk + a′f ′η(1)

k )

)

= O′
(
qk + a′d′pk + a′f ′η(1)

k + a′d′pk + a′f ′η(1)
k + a′b(qk + a′d′pk + a′f ′η(1)

k )

d′pk + f ′η(1)
k + b(qk + a′d′pk + a′f ′η(1)

k )

)

=

(
qk + a′d′pk + a′f ′η(1)

k + a′d′pk + a′f ′η(1)
k + a′b(qk + a′d′pk + a′f ′η(1)

k )

d′d′pk + d′f ′η(1)
k + d′b(qk + a′d′pk + a′f ′η(1)

k ) + f ′η(2)
k

)
(A53)

c. Update function

(
qk+1

pk+1

)
= UOABAO(η

(1)
k , η

(2)
k ;xk, V )
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=

(
q̄k+1

p̄k+1

)
+

(
a′b(qk + a′d′pk + a′f ′η(1)

k )

d′b(qk + a′d′pk + a′f ′η(1)
k )

)
+

(
2a′f ′

d′f ′
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η

(1)
k +

(
0
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)
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with q̄k+1 = qk + 2a′d′pk and p̄k+1 = d′d′pk. Thus for most potentials,

UOABAO : R2 → Γ

UOABAO : (η
(1)
k , η

(2)
k ) 7→ xk+1 . (A55)

If e.g. a′b(qk + a′d′pk + a′f ′η(1)
k ) = −2a′f ′η(1)

k , the contribution of η
(1)
k to the position

update cancels, and the the image of UOABAO is a line parallel to the p-axis.



3.4 Supporting Information for part B

The content of this section has not been published in any form prior to this thesis.

3.4.1 SI: Introduction

To further test Girsanov reweighting for splitting methods in underdamped Langevin dy-

namics, we conducted molecular simulations for the [Ca-Cl]+ dimer in aqueous solvent. Dis-

sociation rates were determined from molecular dynamics (MD) simulations, initially using

the unbiased potential energy function. Calculations were then repeated using a repulsive

bias applied in the bounded state to accelerate dissociation events. The biased dissociation

rates were reweighted using Girsanov reweighting and compared to the reference rates from

unbiased simulations. Successful Girsanov reweighting would yield reweighted rates close to

the reference rates.

We tested Girsanov reweighting for four different integrators: ABOBA, AOBOA, BOAOB

and OBABO. These integrators are named according to the sequence of application of the

partial integration steps A, B and O, see Section 3.3. Steps that appear twice indicate two

half partial steps. All integrators used in this study are symmetrical, meaning they have the

same order when read forwards or backwards, which is why they are referred to as symmetric

splitting methods. Expressions for random number differences ∆ηk necessary to calculate the

relative path probabilities are provided in Tab. 1 of the paper in Section 3.3.

3.4.2 SI: Results

MD simulations of a [Ca-Cl]+ dimer surrounded by explicit water in a cubic box were carried

out at a temperature of 300K using a parametrized force field (see computational details

in Section 3.4.4). For dissociation events, the ion-ion distance d effectively describes the

reactant (bounded) and product (unbounded) states. Consequently, the progression of d can

be used to register dissociation events and measure escape times (Section 2.3.1). Additionally,

dissociation can be accelerated by biasing the potential at d values corresponding to the

reactant state.

Trajectories were started from configurations equilibrated in the bounded state A and

propagated until the unbounded state B was reached. From each trajectory, an escape time

was determined. Repeating the experiment a sufficient number of times yields a statistically

representative distribution of escape times, from which a mean first passage time (MFPT)

and dissociation rate kMFPT
AB can be calculated (Eqs. 2.41-2.42). For each integrator, kMFPT

AB

was computed from 3000 trajectories using the unbiased potential, which we also refer to

as the target potential. The free energy as a function of ion-ion distance d for the target

potential is given in Fig. 3.1.a (green). The corresponding distribution of escape times from

trajectories generated using the ABOBA integrator is shown in Fig. 3.1.b (green). The
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Figure 3.1: a: Free energy profile for ion-ion distance d of [Ca-Cl]+ model system for the
unbiased (target, green) and biased (simulation, blue) potentials. b: Cumulative distribution
function and histogram of escape times for 3000 trajectories in the biased (simulation, blue)
and 3000 trajectories in the unbiased potential (target, green) using the ABOBA integrator.
c: Time derivative of the product state probability ρB(t) propagated by transition matrices
(lag time τ = 0.06 ps) at the simulation (blue) and target (green) potential, as well as by
a reweighted transition matrix (orange) using the ABOBA integrator. Full lines correspond
to sets of 3000 trajectories, dotted lines correspond to different sets of 1000 trajectories.
d: Dissociation rates as a function of lag time τ for simulation (blue) and target (green)
potentials, as well as for reweighted dynamics (orange) using the ABOBA integrator.

distribution of escape times and the shape of the empirical cumulative distribution function

(ECDF) corresponds to what we expect for a first order Poisson process[85]. The resulting

rates kMFPT
AB for all integrators are given in Tab. 3.1. All results are between 7.3 × 10−4

and 7.6 × 10−4 ps−1, with rates varying slightly between integrators. ABOBA and OBABO

produce faster rates, while for AOBOA dissociation is slightly slower.

It is our intention to examine if we can speed up dissociation by biasing the potential,

but retrieve the actual, unbiased rate using Girsanov reweighting. Accordingly, a bias U(d)

(Fig. 3.1.a, red) was added destabilizing the bounded state, resulting in a new potential

which we refer to as the simulation potential (Fig. 3.1.a, blue). 3000 new trajectories were

propagated for each integrator. The distribution of escape times for the ABOBA integrator

is also shown in Fig. 3.1.b (blue). Similarly as for the target potential, the distribution of

escape times and shape of the ECDF correspond to what is anticipated for a first order Poisson

process. As expected, escape times are on average shorter than for the target potential, with

the ECDF shifted left to smaller values. The dissociation rate kMFPT
AB at the simulation

potential is between 1.65 × 10−3 and 1.74 × 10−3 ps−1 (Tab. 3.1), about 2.3 times higher
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Simulation Target
kMFPT
AB [ps−1] kprop

AB [ps−1] krew
AB [ps−1] kMFPT

AB [ps−1] kprop
AB [ps−1]

ABOBA 1.74× 10−3 1.73× 10−3 6.95× 10−4 7.56× 10−4 7.55× 10−4

AOBOA 1.65× 10−3 1.65× 10−3 6.59× 10−4 7.32× 10−4 7.31× 10−4

BOAOB 1.68× 10−3 1.68× 10−3 6.77× 10−4 7.41× 10−4 7.40× 10−4

OBABO 1.69× 10−3 1.68× 10−3 6.79× 10−4 7.54× 10−4 7.54× 10−4

Table 3.1: Rates from mean first passage times (kMFPT
AB ) and from density propagation (kprop

AB )
for the simulation and target potentials and using dynamical reweighting (krew

AB ).

than at the target potential. This means the total simulation time to estimate rates at the

simulation potential is about a factor of 2.3 smaller.

As an alternative to calculating MFPTs, the trajectories can be used in Markov State

Models (MSM) to build transition matrices T(τ) (Section 2.3.3) using d as collective variable

(CV). Transition matrices can be used to propagate probability densities (Eqs. 2.50-2.51).

Starting from an initial probability density representing local equilibrium in the bounded

state (and being zero everywhere else), ion-ion dissociation is depicted by the transfer of

probability density towards the unbounded state over time. The dissociation rate kprop
AB can

then be estimated from the time derivative of the probability to be in the product state ρB(t)

(Eq. 3.7, Section 3.4.4). Time derivatives for density propagation as a function of simulation

time d
dtρB(t) propagated by transition matrices built from 3000 trajectories using the ABOBA

integrator are shown in Fig. 3.1.c (full blue and green lines for simulation and target potentials,

respectively). Similar curves for other integrators are shown in Fig. 3.2.a,b,c. Maxima of

these curves estimate kprop
AB . The resulting rates are provided in Tab. 3.1 and match rates from

MFPTs very closely for all integrators at both simulation and target potentials. This indicates

dissociation rates can reliably be computed employing analysis of density propagation by

transition matrices (Section 3.4.4).

Using Girsanov reweighting (Section 2.4.2), we estimated a transition matrix T(τ) for the

target potential from trajectories simulated at the simulation potential. Similarly as before,

this matrix was used to propagate a well-chosen starting probability density, from which

the product state probability ρB(t) was determined as a function of time. The evolution of

d
dtρB(t) from the reweighted transition matrix (Fig. 3.1.c, full orange line) approximates the

reference at target potential (Fig. 3.1.c, full green line) well. This was also observed for other

integrators in Fig. 3.2.a,b,c. The resulting reweighted dissociation rate krew
AB (Tab. 3.1) ranged

from 6.6 × 10−4 to 7.0 × 10−4 ps−1, close to reference values at the target potential. More

precisely, reweighted rates underestimate target rates by about 8 to 10%. This promising

result demonstrates that Girsanov reweighting effectively recovers unbiased rates even when

the simulation potential produces dissociation rates approximately 2.3 times higher than the

target potential.
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Figure 3.2: Top: Time derivative of the product state probability ρB(t) propagated by tran-
sition matrices (lag time τ = 0.06 ps) at the simulation (blue) and target (green) potential,
as well as by a reweighted transition matrix (orange) for different integrators AOBOA (a),
BOAOB (b) and OBABO (c). Full lines correspond to sets of 3000 trajectories, dotted lines
correspond to different sets of 1000 trajectories. Bottom: Dissociation rates as a function
of lag time τ for simulation (blue) and target (green) potentials as well as for reweighted
dynamics (orange) for different integrators AOBOA (d), BOAOB (e) and OBABO (f).

3.4.3 SI: Outlook

Lag times for transition matrices from path reweighting have been chosen carefully. Rates as

a function of lag times are shown in Fig. 3.1.d for the ABOBA integrator and Fig. 3.1.d,e,f

for the other integrators. At very short lag times, reweighted rates underestimate the target

rates, while at long lag times, reweighting breaks down completely. In between, there is

a plateau region of lag times where reweighting is stable and performs well. While more

extensive investigation is required for a detailed understanding of this behavior, the following

remarks could be a starting point:

• Breakdown of reweighting at high lag times could be caused by insufficient sampling

of the path ensemble. As paths get longer, the path probabilities generally become

smaller, making reweighting more challenging. Sufficiently sampling of paths at the

simulation potential to reweight so a path ensemble at the target potential is emulated

is expected to require more data. Simulating more dissociation trajectories is expected

to improve reweighting at higher lag times.

• High precision libraries might be necessary to implement the computation of ratios of

very small numbers.

• Biasing and subsequent Girsanov reweighting in combination with MSMs might be sen-
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sitive to the choice of CV along which the bias is applied as well as the CV space on

which the MSM is built[104, 106]. In the current setup, d is used for both, although

correlated motion in the explicit water solvent might be involved. The coordination

number of the ions has been identified in literature[141, 142] as a CV exhibiting corre-

lations.

For the current model system, the chosen lag time is sufficient to predict accurate rates,

evidenced by the proximity of rates calculated from density propagation to those calculated

from mean first passage times (Tab. 3.1). Notice that this is not a given for more involved

processes, as many processes require molecular relaxation times τmol for the system to relax in

the product state. At times smaller than τmol, orthogonal degrees of freedom are expected to

exhibit correlated motion with the MSM collective variables, leading to correlation functions

and corresponding transition matrices that are unreliable. While transitions in the current

system evidently can be accurately described using transition matrices at small lag times,

this might not be the case for processes in systems that are more involved. Consequently,

more research is necessary towards the convergence of path reweighting at higher lag times.

On a more general level, error estimation for path reweighting would be beneficial. There

is a trade off between gain in computational time through biasing, but loss of precision. It

would be of interest to optimize biasing functions that facilitate reliable reweighting of the

dynamics with maximal speed up. Path reweighting of course has the advantage that from

trajectories at a single simulation potentials, dynamics can be reweighted to different target

potentials.

3.4.4 SI: Methods

Computational Details for Dynamics

A cubic box of solvent of cell size 1.25 nm including one Ca2+ and one Cl− ion, similar as

in Ref. 141, was generated using GROMACS’[41] solvate and genion functionalities. Subse-

quently, the tleap and parmed programs of AmberTools22[143] were used to generate input

and topology files, using the TIP4P-EW[144] water model and with corresponding Amber

ion parameters using 12-6-4 Lennard-Jones (LJ) parameters for the calcium[145] and chlo-

ride[142] ions. These parameters have been documented to have superior structural features

over the traditionally used 12-6 LJ parameters. All dynamics were performed in OpenMM[40].

The ABOBA, AOBOA, BOAOB and OBABO integrators for Langevin dynamics were im-

plemented using OpenMM’s CustomIntegrator class, which allows definition of new variables

and customized application of integration steps necessary for writing out all data required

for the path reweighting. Dynamics were carried out with an integration time step of 1 fs at

a temperature of 300K with a friction rate of 2 ps−1 and using periodic boundary conditions

with the particle mesh Ewald (PME) scheme and a cutoff of 0.6 nm for non-bonded inter-
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actions. Notice that PME can technically only be applied to systems of neutral net charge.

Administering it to the calcium chloride dimer in water is done by implicitly introducing

a uniform background charge density which effectively neutralizes the system[146]. This is

an unphysical approximation, and leads to artificial dynamics. Furthermore, the small cell

size is expected to perturb the solvation free energy of the ions, as well as the ion-ion in-

teractions[147]. These effects are expected to have a significant influence on the dissociation

rate, yet in a way that is similar for the target and simulation potential. Consequently, while

dynamics of this small system are not a completely reliable physical representation of true

calcium chloride dissociation, they are nevertheless useful to demonstrate the performance

of dynamical reweighting methods in molecular dynamics simulations, and reweighting is

expected to perform similarly in larger, more realistic model systems.

Free Energy Profile

In order to get an idea of the population distribution along d, a 100 ns well-tempered meta-

dynamics simulation was carried out using the ABOBA integrator, biasing d at a deposition

rate of 2 ps−1 or every 500 time steps, and using Gaussians of initial height of 0.4 kJmol−1

and a standard deviation of 0.01 nm, while using a biasing factor of 8. During metadynamics,

a one-sided harmonic barrier of 1000 kJmol−1nm−2 was put at d = 0.55 nm. The resulting

free energy surface is shown in Fig. 3.1.a (green) and corresponds to the target potential for

which we aim to calculate dissociation rates.

Unbiased Trajectories

Unbiased reference trajectories were initialized in the bounded state and equilibrated for

400 ps. To avoid escape from the bounded state during equilibration, the PLUMED[148]

software package was applied to put one-sided harmonic restraints (i.e. walls) on the ion-ion

distance d at 0.33 nm with a spring constant of 5000 kJmol−1nm−2 as well as on the coordina-

tion number at 6.5 with a spring constant of 3000 kJmol−1 per unit of coordination number

squared. The UPPER WALLS keyword was used for the one-sided harmonic restraints while

the COORDINATION keyword was used to define the coordination number, which calls the

default switching function in PLUMED to do so. After equilibration, restraints were removed

and trajectories were run up until a dissociation event was recorded, using PLUMED’s com-

mittor functionality to stop trajectories once an ion-ion distance of larger than 0.45 nm was

registered. Ion-ion distances were written out at every time step.

Biased Trajectories

To generate a bias in the bounded state, a short well-tempered metadynamics simulation was

performed using the ABOBA integrator in combination with PLUMED. After equilibration

in the bounded state as described above, metadynamics were started, biasing the ion-ion
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distance d at a deposition rate of 0.1 ps−1, depositing Gaussian biases of height 0.4 kJmol−1

and standard deviation 0.01 nm while using a biasing factor of 6. Metadynamics were in-

terrupted after deposition of just ten Gaussians, with the reactant state only partially filled

and thus long before a conventional metadynamics experiment would be completed. The

positions and heights of the deposited Gaussians are saved to file, and can subsequently be

used as a constant bias in the bounded state. In other words, we performed an incomplete

metadynamics simulation in the bounded state solely for the purpose of constructing a small

reactant state bias.

Biased trajectories were initialized and equilibrated in the bounded state in an equivalent

way as for the unbiased reference trajectories, i.e. using the same restraints and equilibration

times. Similarly as before, restraints were removed after equilibration and a committor

function was used to stop simulations when trajectories reach the unbounded product state.

For the biased trajectories, the ion-ion distance d and the bias at the current step are saved

at every time step using PLUMED. Additionally, the terms

ηk ·∆ηk +
1

2
(∆ηk)

2 (3.1)

necessary for calculating M [x |x0] (Eq. 2.91) are computed using OpenMM’s CustomIntegra-

tor class and written out at every time step using OpenMM’s reporter functionalities. The

expression of ∆ηk depends on the integrator used (Section 3.3).

Calculation of kMFPT
AB

3000 trajectories were simulated at both the target and simulation potential. For each tra-

jectory, the escape time was determined by measuring the time it took for the trajectory to

reach a predetermined border value of d on the product side, which we chose to be relatively

close to the barrier peak at d = 0.40 nm. Notice that due to partly neglected recrossing, this

can lead to an overestimation of the rate. This effect is expected to influence the target and

simulation escape rates similarly, and thus dynamically reweighting rates from trajectories at

the simulation potential should still be a good estimate for rates at the target potential, as

long as the border value is applied consistently. Mean first passage times and corresponding

dissociation rates can then be calculated using Eqs. 2.41 and 2.42. The distributions of escape

times for target and simulation potential are shown in Fig. 3.1.b.

Calculation of kprop
AB

For both potentials, all 3000 trajectories were truncated after the first trajectory point exceed-

ing the border value of d = 0.40 nm, and combined to generate a transition matrix, similar to

what is typically done in Markov State Models. The ion-ion distance d was discretized in 100

bins, where the lower border of the last bin was made to correspond to the border value of
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0.40 nm. In this way, the last bin functions as a sink state representing the product state B,

and trajectories are assumed to stay in that state once it has been reached. After choosing a

lag time τ , count matrices can be built for each trajectory, and subsequently added together

and row normalized to obtain a transition matrix T(τ). Detailed balance is not enforced in

doing so. Transition matrices can be used to propagate densities

pT (t+ aτ) ≈ pT (t)Ta(τ) , (3.2)

which is an approximation compared to the continuous propagation of densities[106] because

Markovianity is not guaranteed (Section 2.3.3). An initial density is chosen to match local

equilibrium in the bounded state, i.e. for d ≤ 0.32 nm, and zero everywhere else, and is

propagated using the transition matrix constructed from the escape trajectories. From the

evolution of the probability density in time (Fig. 3.3), transition rates can be estimated using

conventional rate theory.

For a first order non-reversible reaction A → B, the rate equation can be written in terms

of the reaction constant kAB:

−dcA(t)

dt
=

dcB(t)

dt
= kABcA(t) . (3.3)

Using cA(t) = ρA(t)N/V , where ρA(t) =
∫
x∈A ρ(x, t)dx is the probability to be in state A

and equivalent for B, this can be rewritten in probability densities

−dρA(t)

dt
=

dρB(t)

dt
= kABρA(t) (3.4)

and solved as

ρA(t) = ρA(0)e
−kABt . (3.5)

Since we’ve initiated the density in local equilibrium at the reactant state A and zero every-

where else, we let ρA(0) = 1. Furthermore, we assume ρA(t) + ρB(t) = 1 as we expect very

low probability densities in the transition zone between reactant and product state at any

time. Correspondingly, Eq. 3.5 can be expressed in terms of the product state B as:

ρB(t) = 1− e−kABt . (3.6)

Taking the time derivative yields

d

dt
ρB(t) = kABe

−kABt (3.7)

from which the rate constant can be obtained directly through kAB = max
(

d
dtρB(t)

)
.

From the discretized probabilities p(t) propagated using Eq. 3.2, ρB(t) can be estimated
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Figure 3.3: Evolution of probabilities p(t) in the reactant state A as a function of time, prop-
agated using Eq. 3.2 with transition matrices at lag time τ = 0.06 ps built from trajectories
at the simulation potential (full) and target potential (dotted), as well as with reweighted
transition matrices (dashed). Propagation from reweighted dynamics follows propagation at
target potential closely.

using

ρB(t) = pT (t) · hB (3.8)

where hB is a reactant state mask array with unit elements in the bins associated with the

product state and zero elsewhere. In our case, the reactant state B corresponds to the sink

state in the last bin, so hB is zero everywhere except for its last element, which is one,

and ρB(t) simply corresponds to the last element of p(t). For propagation with a transition

matrix of lag time τ , the time derivative was calculated as

d

dt
ρB(t) ≈

ρB(t+ τ)− ρB(t)

τ
(3.9)

from which kprop
AB was estimated by finding the maximum value.

For calculation of rates from density propagation kprop
AB , a lag time of τ = 0.06 ps was used.

Figures showing time derivatives of propagation of product state densities d
dtρB(t) (Fig. 3.1.c

and Fig. 3.1.a,b,c) were generated using transition matrices with the same lag time.

Calculation of krew
AB

Reweighted transition matrices modeling dynamics at the target potential from trajectories

simulated at the simulation potential were calculated using path reweighting formulations as

delineated in Section 2.4.2. MSMs are built similarly as above for kprop
AB , with the addition that

each count in the count matrix is weighted by thermodynamical reweighting factor g(x0) and

dynamical reweighting factor M [x |x0] for the corresponding path x of length τ (Eq. 2.97).

This can be achieved straightforwardly at little extra cost using the terms in Eq. 3.1 saved

during simulation of the biased trajectories. Once the reweighted transition matrix was

calculated, density propagation and rate estimation were carried out as before (Eqs. 3.2-3.9).
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Since transition matrices model dynamics at the target potential, the initial density should

match local equilibrium in the unbiased bounded state. As can be seen in Fig. 3.3, density

propagation by the reweighted transition matrix follows that by the transition matrix at the

target potential closely. Dissociation rates from Girsanov reweighting (krew
AB , Tab. 3.1) and

corresponding figures for time derivatives of product state densities (Fig. 3.1.a,b,c in orange)

were generated with transition matrices of lag times τ = 0.06 ps.
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Chapter 4

Conclusions

This work has explored the potential for estimating reaction rates of high activation energy

processes using molecular dynamics (MD) simulations combined with enhanced sampling

techniques. Eyring’s Transition State Theory (TST) remains the most widely used method

for estimating reaction rate constants as it relies only on key thermodynamic quantities,

bypassing the need for full dynamical trajectories. However, TST assumes a single, well-

defined transition state in quasi-equilibrium with the reactant state—a simplification that

can lead to inaccuracies in systems with complex reaction pathways, dynamic fluctuations

or strong solvent effects. In contrast, MD-based approaches rely on explicit simulations of

molecular trajectories and capture the detailed molecular pathways and fluctuations, offering

potentially higher accuracy for complex reaction environments. This shift from TST to MD-

based methods marks a fundamental change in theoretical approach, highlighting the need to

examine the applicability and reliability of MD-based rate estimates, especially for processes

with high energy barriers. Through a series of case studies, this work evaluates the efficacy of

MD-based rare event methods, and additionally explores dynamical reweighting techniques

to enhance their applicability and accuracy.

Part A The study begins by investigating the thermal cis-trans isomerization of retinal,

a rare event that plays a key role in the photocylce of biological light responses. Density

functional tight-binding (DFTB) was used to model the potential energy surfaces (PES) of

two retinal analogues in vacuum. In the gas phase, ground-state isomerization exhibits a well-

defined, high energy transition state for which Eyring’s TST is expected to provide accurate

rate constants. Consequently, TST can serve as a reference to evaluate reaction rates from

MD-based methods. Rare event methods based on numerical sampling, such as infrequent

metadynamics, yielded rate constants consistent with TST in the classical limit. However,

effective dynamics-based methods like Kramers’ theory produced rate constants that were

several orders of magnitude higher. This discrepancy is attributed to the limitations of the

dihedral angle to function as a one-dimensional reaction coordinate. Notably, out-of-plane

wagging of substituents on the double bond showed strong correlation with the dihedral
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angle, suggesting that the isomerization mechanism involves coordinated motions beyond

mere rotation. This indicates the need for a multidimensional approach to accurately model

the reaction dynamics.

To investigate this further, MD simulations were set up for a retinal analogue modeled by

a classical force field. Consistent with the DFTB findings, effective dynamics along the dihe-

dral angle reaction coordinate produced rates significantly higher than those from infrequent

metadynamics. An enhanced reaction coordinate was converged by incorporating correlated

degrees of freedom using the path adaptive sampling approach. This path-based approach

improved the accuracy of rate estimations, revealing higher free energy barriers and yielding

rates closer to those from infrequent metadynamics. Similarly, grid-based models, such as

the square-root approximation, applied to multidimensional free energy surfaces, produced

rates in excellent agreement with those from infrequent metadynamics.

As systems become more complex, with rugged PES and less clearly defined transition

states, the assumptions of TST become less viable. This is likely the case, for example,

if more of the protein environment around the retinal cofactor were to be included in the

simulations. In such scenarios, rare event methods utilizing MD simulations become crucial.

Our study demonstrates that MD simulations can yield reasonable rate constants, even when

using ab-initio MD, despite the enormous difference between achievable simulation times and

actual reaction times. Recent advances in potential energy models, including reactive force

fields[29], neural network potentials[30], semi-empirical electronic structure methods[31–33]

and QM/MM approaches[34], make it increasingly feasible to model complex reaction dy-

namics using MD. Coupled with rate theory and enhanced sampling techniques, MD is now

applicable to a broader array of processes, including reactions in complex solvent environ-

ments[149], enzyme catalysis[150,151] or polymer rearrangement[152].

Not all methods are straightforward to apply, however, with methods based in effec-

tive dynamics proving highly sensitive to the choice of reaction coordinate. An intuitive

one-dimensional reaction coordinate, even with clear timescale separation and a well-defined

distinction among reactant, transition, and product states, was ultimately inadequate; rate

estimates differed by several orders of magnitude from those obtained via numerical simula-

tion. While optimized reaction coordinates yielded more accurate rates, identifying reliable

candidates is nontrivial. Various methods have been developed to address this[23,89,153–155].

Infrequent metadynamics also faces limitations in more complex systems, particularly where

slow processes occur orthogonal to the biased coordinate[85,122] or where the reactant state

exhibits multiple subminima[156, 157]. Grid-based methods offer a promising alternative,

supporting multidimensional effective dynamics and producing rates very close to those from

numerical simulation.

While this study primarily focuses on infrequent metadynamics and effective dynamics-

based methods, other rate methods are valuable for capturing complex reaction dynamics.
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One notable example is Variational Transition State Theory (VTST)[158,159], an extension

of TST that refines the transition state by minimizing the reaction rate, thereby adapting the

dividing surface to better match the true dynamic behavior of the system. Methods based

on the generalized Langevin equation[38] including Grote-Hynes (GH) theory[160] address

another limitation of TST. New approaches[161, 162] incorporate the effects of friction and

solvent dynamics by introduction of a memory kernel, allowing more accurate modeling of

rates in condensed phases and in systems where environmental interactions significantly im-

pact the barrier crossing. Other approaches, such as transition path sampling (TPS)[14, 78]

and weighted ensemble (WE)[163,164] methods are useful for reactions with long timescales

and complex intermediates, as they emphasize the sampling of critical reaction paths and

weighted trajectory segments. Finally, reactive flux (RF)[79,165] methods account for recross-

ing corrections by refining the initial TST rate calculation, improving accuracy in dynamic

environments where barrier crossing events are prevalent. Furthermore, quantum effect such

as tunneling and zero-point energy are not incorporated in classical MD methods, but can

significantly impact rates in reactions involving light atoms, low temperatures or narrow barri-

ers. Quantum dynamics approaches like ring polymer molecular dynamics (RPMD)[166,167]

allow more explicit treatment of quantum behavior, though at higher computational cost.

Part B The second part of the thesis focuses on Girsanov reweighting, a technique that

allows for the estimation of dynamical properties at a target potential from trajectories sim-

ulated at a different, simulation potential. This method is particularly useful for accelerating

the sampling of rare events. The research investigates the applicability of Girsanov reweight-

ing for various integrators from splitting methods for underdamped Langevin dynamics, a

common framework for MD simulations at constant temperature. By analyzing the image of

update operators for the integrators, the study establishes conditions for absolute continu-

ity, ensuring that any path possible at the target potential is also possible at the simulation

potential. This ensures that the reweighting is valid and can be reliably used to estimate

dynamical properties at the target potential. The study formulates a general method for

deriving computable expressions for relative path probabilities of various integrators using

the reweighting-on-the-fly approach. It could be extended to other splitting methods such as

stochastic position Verlet (SPV)[168] and stochastic velocity Verlet (SVV)[168].

The reweighting expressions for various integrators are tested through MD simulations of a

[Ca-Cl]+ dimer in aqueous solvent. By comparing dissociation rates obtained from simulations

at an unbiased potential with those reweighted from biased simulations, we confirm that

Girsanov reweighting can accurately recover unbiased rates. This is evident across various

integrators, with reweighted rates consistently within 8-10% of the reference rates, despite

the simulation potential displaying dissociation rates approximately 2.3 times higher. These

findings validate the reliability of Girsanov reweighting in recovering true dissociation rates

and underscore its potential for enhancing the efficiency of molecular dynamics simulations.
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Overall, this thesis underscores the challenges and complexities associated with estimating

reaction rates for rare events using MD simulations. While traditional methods like TST

provide valuable benchmarks, enhanced sampling techniques and reweighting methods have

the potential to offer significant improvements in applicability, accuracy and efficiency. The

insights gained from retinal isomerization studies demonstrate the capacity of MD simula-

tions in combination with enhanced sampling techniques to yield accurate rate constants,

even when achievable simulation times and actual reaction times are substantially different.

This emphasizes the potential of these methods in a wide range of applications. Further-

more, the importance of the choice of reaction coordinates to capture the full dynamics of

complex processes is highlighted. The development of Girsanov reweighting formulations for

underdamped Langevin dynamics addresses a critical need for reliable reweighting in MD

simulations, enabling more accurate estimations of dynamical properties.
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Appendix A

Derivations for the Reactive Flux

Formalisms

A.1 Derivation of Linear Rate Relation from Onsager’s Re-

gression Hypothesis

The linear relationship between the correlation function in Eq. 2.43 and the microscopic rate

can be derived from a more fundamental principle called Onsager’s regression hypothesis. The

regression hypothesis states the relaxation of macroscopic nonequilibrium disturbances is gov-

erned by the same laws as the regression of spontaneous microscopic fluctuations in an equi-

librium system[4]. It is assumed that nonequilibrium disturbances are in the linear regime,

that is, that deviations from equilibrium are linearly related to the perturbations that move

the system away from equilibrium. This is in most cases a good approximation for nonequi-

librium deviations which remain close to or slightly removed from equilibrium[4]. Onsager’s

regression hypothesis can be considered a special formulation of the so-called fluctuation-

dissipation theorem.

For a general dynamical variable X(t) = X(q(t),p(t)), spontaneous fluctuations at equi-

librium are denoted as

δX(t) = X(t)− ⟨X⟩ . (A.1)

While the fluctuations themselves are expected to average out at equilibrium conditions,

i.e. ⟨δX(t)⟩ = 0, one can obtain important information on the dynamics of the system by

studying equilibrium correlations between the fluctuations, i.e. ⟨δX(t)δX(0)⟩ for correlations
at a time t. More specifically, the regression hypothesis relates decay of these correlations to

nonequilibrium relaxation. Say X(t) has been prepared in a nonequilibrium state at t = 0.

According to the regression hypothesis, relaxation can be written down mathematically as

∆X̄(t)

∆X̄(0)
=

⟨δX(0)δX(t)⟩〈
(δX(0))2

〉 (A.2)
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where ∆X̄(t) = ⟨X(t)⟩ne − ⟨X⟩ is the average nonequilibrium decay to equilibrium. The

regression hypothesis thus proposes an equivalence between relaxation from spontaneous

fluctuations from equilibrium on one hand (right side of Eq. A.2) and deviations that have

been externally prepared on the other hand (left side of Eq. A.2).

Onsager’s regression hypothesis can be applied to a two-state reaction A ⇌ B by making

use of the occupation functions defined in Eq. 2.38. Inserting hA(t) as dynamical variable in

Eq. A.2, we obtain
⟨hA(t)⟩ne − ⟨hA⟩
⟨hA(0)⟩ne − ⟨hA⟩

=
⟨δhA(0)δhA(t)⟩〈

(δhA(0))
2
〉 . (A.3)

Assuming separation of timescales (τmol ≪ τrxn), the nonequilibrium relaxation is expected

to follow the linear rate laws of Section 2.3.1, for which solutions were given in Eq. 2.40.

Comparing to the left hand side of Eq. A.3, we can write

exp (−kt) =
⟨δhA(0)δhA(t)⟩〈

(δhA(0))
2
〉 for t > τmol . (A.4)

This is a remarkable result, as the phenomenological rate k is written directly in terms

of microscopic equilibrium correlation functions, allowing us to compute macroscopic rate

constants directly from microscopic equilibrium dynamics such as the dynamics obtained

from molecular dynamics simulations. Notice the exponential relation will only hold for

times larger than the molecular relaxation time, i.e. for t > τmol, since for smaller times the

correlation functions on the right-hand side will represent correlations in microscopic motions

including recrossings from state B to A before committing to one of the two states[14]. The

right-hand side can be rewritten as

⟨δhA(0)δhA(t)⟩〈
(δhA(0))

2
〉 =

⟨hA(0)hA(t)⟩ − ⟨hA⟩2

⟨hA⟩ − ⟨hA⟩2
(A.5a)

=
⟨hA(0) (1− hB(t))⟩ − ⟨hA⟩2

⟨hA⟩ (1− ⟨hA⟩)
(A.5b)

=
⟨hA⟩ − ⟨hA(0)hB(t)⟩ − ⟨hA⟩2

⟨hA⟩ ⟨hB⟩
(A.5c)

=
⟨hA⟩ (1− ⟨hA⟩)

⟨hA⟩ ⟨hB⟩
− ⟨hA(0)hB(t)⟩

⟨hA⟩ ⟨hB⟩
(A.5d)

= 1− ⟨hA(0)hB(t)⟩
⟨hA⟩ ⟨hB⟩

(A.5e)

where we have used the fact that h2
A(t) = hA(t) and hB(t) = 1 − hA(t). Combining and

rearranging yields

CAB(t) ≡
⟨hA(0)hB(t)⟩

⟨hA⟩
= ⟨hB⟩ [1− exp (−kt)] for t > τmol (A.6)
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where CAB(t) corresponds to the time correlation function defined in the reactive flux for-

malisms of Section 2.3.2. For small times t ≪ τrxn where τrxn = 1/k, the exponential can be

approximated by its first-order expansion exp (−kt) ≈ 1− kt giving

CAB(t) = ⟨hB⟩ kt for τmol < t ≪ τrxn . (A.7)

Using the definition k = kAB + kBA in combination with the detailed balance relation

kAB ⟨hA⟩ = kBA ⟨hB⟩, this can be rewritten in terms of microscopic rates:

CAB(t) = kABt for τmol < t ≪ τrxn (A.8)

and equivalent for kBAt.

A.2 Time Derivation of the Correlation Function

The reactive flux is defined as the time derivative of the time correlation function

kRF
AB(t) =

d

dt
CAB(t) =

d

dt

⟨hA(0)hB(t)⟩
⟨hA⟩

. (A.9)

In principle the time derivative can be brought into the ensemble averaging directly giving〈
hA(0)ḣB(t)

〉
/ ⟨hA⟩ where the dot indicates a time derivative. One could then continue from

there by expressing the time derivation of hB(t) directly. We end up with a more intuitive

expression, however, if we first shift the time back according to t′ → t′− t for any time t′. At

equilibrium conditions, a constant time shift should not influence the correlation functions,

and consequently

kRF
AB(t) =

d

dt

⟨hA(−t)hB(0)⟩
⟨hA⟩

= −

〈
ḣA(−t)hB(0)

〉

⟨hA⟩
(A.10)

where the minus sign appears because generally d
dx [f(−x)] = −df

dx (−x). Remember the

dependence of the occupation functions on time is implicit, hA(t) = hA(s(t)). Consequently,

the chain rule has to be used to express the time derivative

ḣA(t) =
d

dt
hA(s(t)) = ṡ(t)

d

ds
hA(s(t)) = −ṡ(t)δ

(
s(t)− s‡

)
(A.11)

where δ (s) is the Dirac delta function. Filling in in Eq.A.10 yields

kRF
AB(t) =

〈
ṡ(−t)δ

(
s(−t)− s‡

)
hB(0)

〉

⟨hA⟩
. (A.12)

After shifting back time t′ → t′ + t the expression in Eq. 2.45 is obtained:

kRF
AB(t) =

〈
ṡ(0)δ

(
s(0)− s‡

)
hB(t)

〉

⟨hA⟩
. (A.13)
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A.3 From the Reactive Flux Formalism to Transition State

Theory

A relatively simple and commonly used expression for the rate constant can be formulated

in the transition state theory (TST) framework introduced in Section 2.3.4. In TST, two

additional assumptions are added starting from the reactive flux formulations:

3. States on the dividing surface are populated as though at equilibrium with reactants

4. Trajectories that cross the dividing surface lead directly to products with no recrossing

events

The numbering has been copied to comply with the complete list of assumptions made in

TST listed in Section 2.3.4.

The fourth assumption is introduced by considering the limit of t → 0+ in the reactive

flux formulation. Evaluating the reactive flux kRF
AB(t) in this limit corresponds to assigning

the end state (either B or A) of any trajectory initiated at the transition state by evaluating

which state it is in an infinitesimal time interval later, i.e. by evaluating hB(t → 0+) in

Eq. A.13. In other words, a trajectory at the transition state at time t = 0 going towards

product state B at that time is assumed to lead directly to the product state and relax

there without recrossing. For trajectories initiated at the transition state, the state at an

infinitesimal time later is perfectly determined by the initial velocity along s[4,6]. If ṡ(0) > 0,

the trajectory ends up in B and hB(t → 0+) = 1, whereas if ṡ(0) < 0, the trajectory ends up

in A and hB(t → 0+) = 0. Consequently, the numerator of the reactive flux in Eq. A.13 will

be

〈
ṡ(0)δ

(
s(0)− s‡

)
hB(t → 0+)

〉
=





〈
ṡ(0)δ

(
s(0)− s‡

)〉
if ṡ(0) > 0

0 if ṡ(0) < 0
(A.14)

Finally, the third assumption is introduced to further simplify this expression. Assuming

the transition state is at thermal equilibrium with the reactant state, the ensemble distribu-

tion of ṡ at the dividing surface corresponds to the Maxwell-Boltzmann distribution (Eq. 2.7)

and thus is even around zero. Furthermore, thermal equilibrium predicts distributions of po-

sition s and velocity ṡ are uncorrelated. Consequently, the numerator can be rewritten as

〈
ṡ(0)δ

(
s(0)− s‡

)
hB(t → 0+)

〉
=

〈
1

2
|ṡ|
〉

‡

〈
δ
(
s(0)− s‡

)〉
(A.15)

where ⟨. . . ⟩‡ denotes an ensemble average over all points on the dividing surface, i.e. where
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s is constrained at s‡. The reactive flux in the limit t → 0+ can then be written as

kRF
AB(t → 0+) =

1

2
⟨|ṡ|⟩‡

〈
δ
(
s(0)− s‡

)〉

⟨hA⟩
(A.16)

=
1

2
⟨|ṡ|⟩‡

exp
(
−βF (s‡)

)

exp (−βFA)
(A.17)

=
1

2
⟨|ṡ|⟩‡ exp

(
−β∆F ‡

)
. (A.18)

This is the TST rate kTST
AB in Eq. 2.59.

202



Appendix B

Rate and Transition Matrices

B.1 Spectral Decomposition of the Transition Matrix

The transition matrix can, as any diagonalizable matrix, be written as a linear combination

of the left eigenvectors, right eigenvectors and eigenvalues:

T(τ) =

nc−1∑

i=0

λi(τ)l
(i)
(
r(i)
)T

(B.1)

where l(i) ∈ Rnc ∀i = 0, . . . , nc − 1 are the left eigenvectors, r(i) ∈ Rnc ∀i = 0, . . . , nc − 1

the right eigenvalues and λi(τ) the eigenvalues of transition matrix T(τ). The eigenvalue

decomposition, also called the spectral decomposition, can be considered a principle compo-

nent analysis of the dynamics, where the principle modes (the eigenvectors with the largest

eigenvalues) represent the main modes of probability flow between the system’s metastable

substates. The magnitudes of the corresponding eigenvalues express how slow or fast the prob-

ability flow occurs. Because the transition matrix is a row-stochastic matrix[169], it always

has one eigenvalue which is equal to one, with all other eigenvalues guaranteed to be smaller,

1 = λ0 > |λ1| ≥ |λ2| ≥ · · · ≥ |λnc−1| ≥ 0. For dynamics satisfying the detailed balance

condition, the left and right eigenvectors are related by the stationary distribution[105,106]

l(i) = diag (π) r(i) ∀i , (B.2)

and are orthogonal to one other

l(i) · r(j) =
(
l(i)
)T

r(j) = δi,j ∀i, j . (B.3)

203



For the case of repeated application of the transition matrix to predict propagation over a

time aτ , the matrix power in Eq. 2.51 can thus be written as

Ta(τ) =

nc−1∑

i=0

[λi(τ)]
a l(i)

(
r(i)
)T

. (B.4)

Since for i ̸= 0 all eigenvalues |λi| < 1, the factors [λi(τ)]
a for i ̸= 0 will decay to zero

exponentially for increasing value of a. For exponential decay, the lifetime ti is defined as the

time it takes for the population to reduce by a factor 1/e. This happens at a value of a where

[λi(τ)]
a = 1/e or, in other words where a = −1/ lnλi(τ). The corresponding propagation

time necessary to reduce the population by 1/e is the process lifetime

ti = aτ = − τ

lnλi(τ)
(B.5)

which is the definition of the implied timescale of the process also given in Eq. 2.52. Raising

the eigenvalue λ0 = 1 to the power a does not change the weight of the corresponding

process, and thus for high values of a the term for i = 0 will be the only one remaining. The

eigenvectors for i = 0 hence represent the stationary process, with l(0) = π while r(0) is a

vector where every element is one. As a result, applying Eq. 2.51 to any starting distribution

ρ(0) will yield π as a → ∞.

B.2 Rate and Transition Matrix for the Two-State System

For a two-state system and assuming Markovianity, the rate matrix Q is written as[102]

Q =


−kAB kAB

kBA −kBA


 . (B.6)

The eigenvalues of Q are θ0 = 0 and θ1 = −(kAB + kBA) = −k with k the phenomenological

rate constant introduced in Section 2.3.1. Using Eq. 2.53, the first implied timescale is

t1 = − 1

θ1
=

1

k
= τrxn (B.7)

where τrxn is the reaction time introduced in Section 2.3.1. For a two state system under

Markovian conditions, the first implied timescale thus corresponds to the reaction time. The

eigenvalues of the transition matrix T(τ) = exp (τQ) are λ0 = 1 and λ1 = exp(−kτ).
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