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ABSTRACT 

The climate change is expected to have significant impacts on the water resources in 

Afghanistan, which could exacerbate existing challenges related to water availability, water 

quality, and water management in the future. Therefore, this study investigated the impact of 

climate change on water availability in Upper Kabul River Basin (UKRB) in Afghanistan by 

analyzing the past and future streamflow dynamics and hydrology related parameters (e.g., water 

balance components).  A hydrological model was developed in UKRB using the Soil and Water 

Assessment Tool (SWAT) from 2009-2019, calibrated from 2010-2016 and validated from 2017-

2018. The model was built, calibrated and validated on daily and on monthly time intervals to 

provide a comprehensive analysis of the model’s accuracy. The performance of SWAT 

hydrological model is done by comparing the simulated results to the observed runoff in the Upper 

Kabul River Basin. SWAT was capable of estimating surface runoff with satisfactory to very good 

accuracy in 6 observation station across the UKRB during calibration and validation. Four regional 

climate models (RCMs) were used to project the climate change impact scenarios for the baseline 

(1986-2005), and future periods of 2030-2049 (hereafter 2040s), and 2080-2099 (hereafter 2090s). 

The future hydrology projections were built under RCP4.5 and RCP8.5 scenarios. The 

precipitation and temperature from the RCMs were bias corrected using three bias correction 

methods including the linear scaling (Ls), delta change (Dc) and empirical quantile mapping 

(Eqm). The bias corrected results in the baseline period were validated with APHRODTE 

precipitation and temperature data which is used as observations in the absence of in situ 

measurements. The precipitation and temperature outputs from bias correction methods were 

analyzed based on monthly, seasonal and annual intervals, and then the outputs from the linear 

scaling method were used in SWAT model for further climate change impact analysis.  

The results indicated that all three bias correction methods improved the raw data of climate 

model outputs (RMCs), reduced the biases in precipitation and temperature variables based on 

APHRODITE datasets. However, the outputs from linear scaling performed better than empirical 

quantile mapping in capturing the distribution of precipitation, maximum temperature (Tmax) and 

minimum temperature (Tmin) in the historical period. Therefore, the Linear method was selected 

for further water availability assessment in the study area. According to the bias correction results, 

under the RCP4.5 scenario, the annual temperature is expected to increase by 1.9 °C in the 2040s 

and 2.3 °C in the 2090s. However, under the RCP8.5 scenario, the increase in mean annual 
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temperature is projected to be more severe, with an increase of 3.1 °C in the 2040s and 6.1 °C in 

the 2090s. In addition, this study also examined how the extremes in temperature and precipitation 

might change in the future, specifically looking at six indices: annual total wet day precipitation 

(PRCPTOT), extremely wet days (R99p), monthly minimum value of daily minimum temperature 

(TNn),  monthly maximum value of daily maximum temperature (TXx), warm nights and warm 

days over the course of the 21st century (2006-2100) in UKRB.  

Results showed that temperatures increased in all seasons, with earlier peaks occurring in June 

instead of July in both periods of 2040s and 2090s. The results also show that, there was a 

significant increase in extremes of maximum and minimum temperature’s trend indicating that the 

future temperature is getting hotter. The future mean annual precipitation observed to be increase 

in the 2040s and 2090s compared to the baseline, however, an insignificant decreasing trend of 

annual precipitation observed during 2006-2100. The future mean annual precipitation will 

increase by 5 % in 2040s and 1 % 2090s under RCP4.5 over the study area. Moreover, under 

RCP8.5, the mean annual precipitation is expected to increase by 9 % in 2040s and almost + 2% 

in 2090s compared to the baseline. The annual spatial precipitation changes range from -3 % to 

+27 % in the 2040s and from -8 % to + 17% in the 2090s under RCP4.5. Similarly, under RCP8.5, 

it ranges from -3 % to +44 % in the 2040s and from -10 % to +27 % in the 2090s. The future 

hydrological results show that there will be an increase in mean annual runoff and mean annual 

total water yield in the 2040s and 2090s compared to the baseline period in UKRB. The results of 

our study also revealed a backward shift in the annual discharge peaks from May and June to 

March and April in Tang-i-Gulbahar and Shukhi stations, while in Tang-i-Saidan station, the 

runoff peak shifted from April to March in both periods of 2040s and 2090s in UKRB due to 

climate change. The results also show that there has been a significant increase in the future actual 

evapotranspiration (ET) and potential evapotranspiration (PET) in the UKRB under both RCP4.5 

and RCP8.5 scenarios. However, decreases in mean annual snowfall, snowmelt, sublimation, 

percolation and ground water recharge is expected in the future under both RCP4.5 and RCP8.5 

scenarios. The decrease in snowmelt and glacier melt could also lead to changes in the timing and 

volumes of river flow which can impact the water availability for agriculture, urban use, and 

hydropower generation. Overall, this study contributes to the growing body of knowledge on 

climate change impacts on water resources and emphasizes the need for continued research in this 

field. 
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ABSTRACT (DEUTSCH) 

Es wird erwartet, dass der Klimawandel erhebliche Auswirkungen auf die Wasserressourcen in 

Afghanistan haben wird, so dass sich die bestehenden Herausforderungen in Bezug auf 

Wasserverfügbarkeit, Wasserqualität und Wassermanagement in Zukunft noch verschärfen 

könnten. Daher wurden in dieser Studie die Auswirkungen des Klimawandels auf die 

Wasserverfügbarkeit im Einzugsgebiet des Oberen Kabul Flusses (UKRB) in Afghanistan 

untersucht, wobei die vergangene und künftige Abflussdynamik sowie der Einfluss auf die 

Wasserhaushaltskomponenten analysiert wurden. Mit dem Soil and Water Assessment Tool 

(SWAT) wurde für den Zeitraum 2009-2019 ein hydrologisches Modell entwickelt, von 2010-

2016 kalibriert und von 2017-2018 validiert. Das Modell wurde in täglichen und monatlichen 

Zeitschritten erstellt, kalibriert und validiert, um eine umfassende Analyse der Genauigkeit des 

Modells zu ermöglichen. Die Güte des hydrologischen Modells wird durch den Vergleich der 

simulierten Ergebnisse mit dem beobachteten Abfluss im Einzugsgebiet des Oberen Kabul 

bewertet. SWAT war während der Kalibrierung und Validierung in der Lage, den 

Oberflächenabfluss an 6 Beobachtungsstationen im gesamten UKRB mit zufriedenstellender bis 

sehr gute Genauigkeit zu simulieren. Im Anschluss wurden die Daten von vier regionalen 

Klimamodellen (RCMs) wurden, um die hydrologischen Auswirkungen des Klimawandels für die 

Basisperiode (1986-2005) und die zukünftigen Zeiträume 2030-2049 (im Folgenden 2040er) und 

2080-2099 (im Folgenden 2090er) abzuschätzen. Die zukünftigen Projektionen wurden auf Basis 

der Szenarien RCP4.5 und RCP8.5 erstellt. Der Niederschlag und die Temperatur aus den RCMs 

wurden mit Hilfe von drei Methoden einer Bias-Korrektur unterzogen (Linear Scaling Ls; Delta-

Change, Dc; Empirical Quantile Mapping, Eqm). Die Bias korrigierten Ergebnisse für den 

Basiszeitraum wurden mit APHRODITE-Niederschlags- und Temperaturdaten validiert, die in 

Ermangelung von In-situ-Messungen als Beobachtungen verwendet werden. Die Ergebnisse der 

Bias-Korrektur wurden auf der Grundlage monatlicher, saisonaler und jährlicher Zeitschritte 

evaluiert, wobei die Ergebnisse der Ls Methode in SWAT für weitere Analysen der Auswirkungen 

des Klimawandels verwendet wurden. 

Die Ergebnisse zeigten, dass alle drei Methoden zur Bias-Korrektur die Rohdaten der 

Klimamodell-Outputs (RMCs) verbesserten und den Bias der Niederschlags- und 

Temperaturreihen auf der Grundlage der APHRODITE-Datensätze reduzierten. Die Ergebnisse 

der Ls-Methode zeigten bessere Ergebnisse bei der Korrektur von Niederschlag, 
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Maximaltemperatur (Tmax) und Minimaltemperatur (Tmin) im historischen Zeitraum als die Eqm 

Methode. Daher wurde die lineare Methode für die weitere Analyse der Wasserverfügbarkeit im 

Untersuchungsgebiet ausgewählt. Nach den Ergebnissen der Bias-Korrektur wird unter dem 

RCP4.5-Szenario ein Anstieg der Jahrestemperatur um 1,9 °C in den 2040er Jahren und um 2,3 °C 

in den 2090er Jahren erwartet. Unter dem RCP8.5-Szenario wird der Anstieg der mittleren 

Jahrestemperatur jedoch mit einem Anstieg von 3,1 °C in den 2040er Jahren und 6,1 °C in den 

2090er Jahren voraussichtlich stärker ausfallen. Außerdem wurde in dieser Studie anhand von 

sechs Indizes (jährlicher Gesamtniederschlag an Regentagen, PRCPTOT; extrem feuchte Tage, 

R99p; monatliches Minimalwert der täglichen Minimaltemperatur, TNn; monatlicher 

Maximalwert der täglichen Maximaltemperatur (TXx), warme Nächte und warme Tage im Laufe 

des 21. Jahrhunderts (2006-2100)), untersucht, wie sich Temperatur- und Niederschlagextreme in 

der Zukunft verändern könnten.  

Die Ergebnisse zeigten, dass die Temperaturen in allen Jahreszeiten anstiegen, wobei die 

Spitzenwerte in beiden Zeiträumen (2040 und 2090) eher im Juni als im Juli auftraten. Gleichzeitig 

war ein signifikanter Anstieg der Extremwerte der Maximal- und Minimaltemperaturen zu 

verzeichnen, was darauf hindeutet, dass die Temperaturen in Zukunft heißer werden. Der künftige 

mittlere Jahresniederschlag nimmt in den 2040er und 2090er Jahren im Vergleich zum 

Basisszenario zu, wobei jedoch im Zeitraum 2006-2100 ein geringer Rückgang des 

Jahresniederschlags zu beobachten ist. Der künftige mittlere Jahresniederschlag wird unter 

RCP4.5 im Untersuchungsgebiet in den 2040er Jahren um 5 % und in den 2090er Jahren um 1 % 

zunehmen. Darüber hinaus ist unter RCP8.5 zu erwarten, dass der mittlere Jahresniederschlag in 

den 2040er Jahren um 9 % und in den 2090er Jahren um fast 2 % gegenüber dem Ausgangswert 

zunehmen wird. Die jährlichen räumlichen Niederschlagsänderungen reichen von -3 % bis +27 % 

in den 2040er Jahren und von -8 % bis + 17 % in den 2090er Jahren unter RCP4.5. Unter RCP8.5 

reicht die Spanne von -3 % bis +44 % in den 2040er Jahren bis -10 % bis +27 % in den 2090er 

Jahren. Die hydrologischen Ergebnisse zeigen, dass der mittlere jährliche Abfluss und der mittlere 

jährliche Gesamtwasserertrag in den 2040er und 2090er Jahren im Vergleich zum Basiszeitraum 

im UKRB ansteigen werden.  

Die Ergebnisse unserer Studie zeigen auch eine Verlagerung der jährlichen Abflussmaxima von 

Mai /Juni auf März/April in den Stationen Tang-i-Gulbahar und Shukhi, während sich in der 

Station Tang-i-Saidan die Abflussspitze in beiden Zeiträumen der 2040er und 2090er Jahre im 
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UKRB aufgrund des Klimawandels von April auf März verschiebt. Die Ergebnisse zeigen auch, 

dass es einen signifikanten Anstieg der zukünftigen tatsächlichen Evapotranspiration (ET) und der 

potenziellen Evapotranspiration (PET) im UKRB sowohl unter dem RCP4.5 als auch dem RCP8.5 

Szenario geben kann. Es wird jedoch erwartet, dass der mittlere jährliche Schneefall, die 

Schneeschmelze, die Sublimation, die Perkolation und die Grundwasserneubildung sowohl unter 

dem RCP4.5- als auch unter dem RCP8.5-Szenario zurückgehen werden. Der Rückgang der 

Schneeschmelze und der Gletscherschmelze könnte auch zu Veränderungen des Zeitpunkts und 

der Menge des Abflusses führen, was sich auf die Verfügbarkeit von Wasser für die 

Landwirtschaft, die urbane Nutzung und die Wasserkrafterzeugung auswirken kann. Insgesamt 

trägt diese Studie zum wachsenden Wissen über die Auswirkungen des Klimawandels auf die 

Wasserressourcen bei und unterstreicht den Bedarf an weiterer Forschung in diesem Bereich. 
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1 INTRODUCTION 

Climate change is increasingly acknowledged as a critical global issue, exerting significant 

impacts on hydrological processes, including precipitation, evapotranspiration, and runoff (Sediqi 

and Komori, 2023). These changes pose significant challenges to the sustainability of water 

resources worldwide (Shiru et al., 2020; Sediqi and Komori, 2023). Moreover, the climate change 

can have negative consequences on the natural ecosystem, as well as a severe impact on social life 

and economic development (Calvin et al., 2023). In developing countries like Afghanistan, which 

is characterized by its arid and semi-arid climate, the impacts of climate change are particularly 

critical and acute. The Kabul River Basin (KRB) is one of the five major river basins in 

Afghanistan is crucial to the socio-economic stability of the country and the neighboring country 

Pakistan, is increasingly vulnerable to the risks and disruptions caused by the impact of climate 

change. The KBR which (Figure 1-1) generates 40 % of the country’s total runoff serves as the 

main water source for millions of people in both Afghanistan and Pakistan, providing essential 

water for domestic use, agriculture, and hydropower generation (Ahmad and Wasiq, 2004). 

However, recent research indicates that the hydrological dynamics of the KRB are being 

profoundly changed by the impact of climate change, raising concerns about the future water 

availability in the basin.  

1.1 Overview of climate change in Afghanistan 

Afghanistan is categorized as a semi-arid area and is a landlocked country with a total area of 

652,864 sq.km. It is located at crossroads of Central Asia and South Asia between latitudes 29.5°N 

- 38.5° N and longitudes 60.5°E - 75°E. The country extends 1,300 km from northeast to southwest, 

and about 600 km from north to south. Afghanistan is introduced with a high mountainous terrain 

which the Hindu Khush, the westernmost extension of the Karakorum and the Himalayas, and 

Pamir ranges are the famous rising over 7000 m from see level. Afghanistan shares the border with 

six counties including Tajikistan, Uzbekistan, Turkmenistan, Pakistan, Iran and China. Afghanistan 

has abundant water resources, more than 80 percent derived from snow and glaciers melt in the 

Hindu Kush mountains (Ahmad and Wasiq, 2004). Water resources endowment in Afghanistan is 

significant on an annual per capita basis with five major river basins (MEW and JICA, 2019) 

including the Kabul River Basin (KBR), Helmand River Basin (HRB), Harirud-i-Murghab River 

Basin (HMRB), North River Basin (NRB) and Amu River Basin (ARB), Figure 1-1. Annual 
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available water resource is said to be 75 billion m3 (Surface water: 57 billion m3, Groundwater: 18 

billion m3) as total for the entire country (MEW and JICA, 2019).  

Afghanistan is among the countries most vulnerable to the impacts of climate change, primarily 

due to its geographical location, socio-economic conditions (e.g., low adaptive capacity), and the 

past/ongoing conflicts which hampers effective climate adaptation strategies (Kreft et al., 2015; 

Aich, N. Akhundzadah, et al., 2017). The key sectors, including water, energy, and agriculture are 

among the most vulnerable to climate change in Afghanistan (Aich, N. Akhundzadah, et al., 2017).  

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2021) 

identifies South Asia, including Afghanistan as a climate hotspot, where rising temperatures, 

shifting precipitation patterns, and increased the frequency of extreme weather events are expected 

to have severe consequences in the future. Studies show that Afghanistan has already experienced 

a warming of approximately 1.8°C since the mid-20th century, a trend that is expected to continue, 

with the projections indicating a further air temperature increase of 2.5°C to 3°C by the mid-21st 

century (2050s) under a high-emission/RCP8.5 scenario (IPCC, 2021). This temperature warming 

trend is particularly concerning for Afghanistan's water resources, which are heavily dependent on 

snowmelt and glaciers from the Hindu Kush mountain range. The glaciers and snowpack’s in the 

country act as natural reservoirs, gradually releasing water into the Rivers, thereby sustaining the 

river’s flow during the dry seasons. However, studies have shown that the accelerated melting of 

glaciers, coupled with reduced snowfall, is leading to a decline in the volume and timing of surface 

runoff in the in rivers, particularly in the KRB (Shroder et al., 2016). This in fact shows that 

Afghanistan's average annual precipitation is expected to become more erratic, with longer dry 

spells interspersed with intense rainfall events, increasing the likelihood of both droughts and 

floods (Shahid, 2018).  

The precipitation of the country has been estimated around 300 mm per year, while in the north 

overall, annual precipitation averages 400 mm per year (Ahmad and Wasiq, 2004). This 

precipitation hardly satisfies the incremental water demand of the country, while precipitation 

varies geographically (MEW and JICA, 2019). The country has a harsh climate of the continental 

type and the severity of winter is accentuated by the range of high mountain altitudes. Winter and 

spring are the seasons of most variable weather, where most of the annual precipitation occurs in 

these seasons (December to May) (Mills, 2013). Additionally, more than 80% of the annual rainfall 

is in the form of snow at the highlands of above 2,500 m in elevation. The snow line is between 

4,000-5,000 m, so there is little permanent snow and there are few glaciers (Ahmad and Wasiq, 
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2004). The snow melt starts in March, peaks in May and lasts until June or July. Summers in 

Afghanistan are warm, and there is no rainfall during the summer months. As a result, droughts are 

frequent, creating food security problems for many Afghans. Runoff from the mountains into the 

rivers is heavy for a brief period during the spring thaw, sometimes causing floods and landslides. 

For the rest of the year, runoff tends to be irregular and low. Particularly in summer, there is no or 

low stream flow in rivers, except those feds by snow and glaciers. Agriculture is the mainstay of 

Afghanistan’s economy, with approximately 80% of the population engaged in it. However, since 

most of the irrigation facilities were destroyed by years of war, the occurrences of floods and 

erosion are increasing due to devastated river basins and deteriorating water-retaining capacity, 

causing damage to downstream irrigation systems (MEW, 2019). 

Afghanistan has a population of 29 million, with 79% living in rural areas (HydrateLife, 2012). 

Only 27% of the population has access to improved water resources, dropping to 20% in rural areas 

(HydrateLife, 2012). The situation is even worse regarding access to improved sanitation facilities, 

with only 5% of the population having access nationwide, and just 1% in rural areas, ranking 

Afghanistan among the worst in the world (HydrateLife, 2012). According to a survey by the 

United Nations Children’s Fund (UNCF), the lack of clean drinking water has been fatal to 

Afghanistan’s children, with 102 out of every 1,000 children born dying before reaching the age 

of five. One major reason for these appalling statistics is that infrastructure has been destroyed by 

years of war. As a post-conflict country, Afghanistan faces significant challenges in securing 

reliable water for drinking, agriculture, and food security. 

1.2 The Kabul River Basin and its Importance 

The Kabul River Basin (KRB) is located in the eastern part of Afghanistan (Figure1-1). The 

KBR is a critical water source for Afghanistan, particularly for the densely populated regions 

around Kabul city and the agricultural heartlands of Nangarhar province (Favre & Kamal, 2004). 

The basin covers approximately 70,000 square kilometers, encompassing a diverse range of 

ecosystems from high-altitude glaciers to arid plains (Favre & Kamal, 2004). The river, which is 

700 km long, flows 460 km in Afghanistan and 240 km in Pakistan, receiving substantial flows 

from several tributaries. The river’s flow is primarily fed by snowmelt from the Hindu Kush, 

making it highly sensitive to temperature fluctuations.  The KRB generates almost 40% of 

Afghanistan’s total runoff and drains 12% of its area. It has the highest annual flows (24 bcm) but 

the smallest area (79,000 km²), followed by the Amu Darya Basin (17 bcm) with an area of about 
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242,000 km², and the Helmand River Basin (14 bcm) with the largest area (320,000 km²) (Ahmad 

and Wasiq, 2004). The basin’s hydrology is complex, with significant seasonal variations driven 

by the melting of snow in the spring and summer, which coincides with the peak agricultural 

demand for water. Surface water resources supply approximately 28% of the total irrigated area 

(Mills, 2013; Mohammad Tayib Bromand, 2015) and account for 35% of Afghanistan’s 

population. The basin includes the Kabul urban area, which is one of the biggest engines of 

economic growth and has the fastest population growth rate in the country. The KRB is divided 

into eight sub-basins, as shown in Figure 1-1, based on climate, hydrology, and physiography 

according to the IWRM procedure of 2011. The significance of the KRB extends beyond 

Afghanistan's borders, as the river flows into Pakistan, where it merges with the Indus River. This 

transboundary nature of the river adds another layer of complexity to water management in the 

region, with potential implications for regional security. As water scarcity becomes more 

pronounced due to climate change, the competition for water resources between Afghanistan and 

Pakistan is likely to intensify, potentially leading to conflicts (Mustafa et al., 2018). The strategic 

importance of the KRB, therefore, cannot be overstated, as it underpins both national and regional 

stability.  

 

Figure 1-1: Major river basin in Afghanistan (a), and the major division of watersheds in KRB 

(b). (Source: National Atlas of Afghanistan and MEW 2011). 
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1.3 Impact of climate change on the Kabul River Basin 

Recent hydrological studies and climate models have provided a grim outlook for the future of the 

KRB. Ahmad et al. (2023) conducted an analysis using global climate models to project the future 

flow of the Kabul River under various climate scenarios. Their findings suggest a potential 

reduction in the average annual flow by up to 20% by 2050, driven by reduced snow cover and 

earlier snowmelt Ahmad et al. (2023). This reduction in flow is expected to have severe 

consequences for water availability during the critical summer months when demand for irrigation 

and drinking water is highest. Moreover, the timing of water flow is also projected to shift, with 

peak flows occurring earlier in the year due to earlier snowmelt, which may result in water 

shortages later in the summer (Ahmad et al., 2023). This seasonal mismatch between water 

availability and demand poses a significant challenge for water resource management in the KRB. 

Additionally, the increased frequency of extreme weather events, such as heavy rainfall and floods, 

threatens to disrupt the already fragile water infrastructure in the region, further complicating the 

management of water resources (Ilyas et al., 2022). As a result of climate change, a decline in water 

availability would directly impact agricultural productivity, exacerbating food insecurity in the 

region already struggling with high levels of poverty and malnutrition. Water scarcity in the KRB 

could also exacerbate existing social tensions and contribute to conflict. Afghanistan has a history 

of localized disputes over water resources, and as climate change reduces the availability of water, 

these conflicts are likely to become more frequent and intense (Gioli et al., 2014). Moreover, the 

transboundary nature of the Kabul River adds an international dimension to these challenges, as 

both Afghanistan and Pakistan depend on its waters. The lack of a comprehensive bilateral 

agreement on water sharing between the two countries could lead to increased tensions as water 

becomes scarcer (Mustafa et al., 2018). As the climate change impact continues to alter the region's 

hydrological regime, the implications for water resources and water security, agriculture, energy, 

and regional stability are profound.  

The key objective of the study is to analyze the current water availability, and the potential 

changes in future water resources (e.g., runoff, snowmelt, groundwater recharge, actual 

evapotranspiration, potential evapotranspiration) under climate change in the Upper Kabul River 

Basin (UKRB), under RCP4.5 and RCP8.5 scenarios for the period of 2040s (2030-2049) and 

2090s (2080-2099). Therefore, this study aims to analyze the current water availability, and the 

climate-induced potential impacts on future water resources in Upper Kabul River Basin (UKRB) 

which includes three watersheds; the Logar watershed, the medium Kabul river watershed, and the 
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Ghorband & Panjshir watershed using the SWAT hydrological model and the Regional Climate 

Models (RCMs) under RCP4.5 and RCP8.5 scenarios for the period of 2040s (2030-2049) and 

2090s (2080-2099). By understanding the specific vulnerabilities and risks associated with climate 

change in the KRB, stakeholders can develop more effective strategies to safeguard this critical 

water resource for future generations. 

1.4 Problem statement 

Currently, the Kabul River Basin (KRB) faces severe water resource challenges, particularly in 

Kabul city, where groundwater levels are rapidly declining due to population growth, groundwater 

pollution, and climate change, Table 1-1 (Mills, 2013). The basin's population has tripled since the 

last century, increasing water demand as surface water supplies diminish and groundwater 

consumption rises, leading to aquifer depletion (Bromand, 2015). In Kabul, 85% of the population 

relies on groundwater, primarily from shallow aquifers (Figure 1-2). Recent studies show a 

significant decline in groundwater levels, with drops of over 15 meters in parts of the city between 

2003 and 2016 (Zaryab et al., 2017). Groundwater levels are decreasing at an annual rate of 1.7 

meters (Zaryab et el., 2017), driven by the growing population, which has doubled since the 1990s. 

Many shallow wells, springs, and karizes have dried up, making sustainable water management 

crucial for urban and rural communities. 

   
 

Figure 1-2: A child is filling his pots with a hand pump in Kabul city (a) (Source: newslens.pk), 

and the hand-pump made by DACAAR to support the drought and conflict-affected communities 

in Afghanistan (b) (Source: DACAAR, 2021). 
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Table 1.1: Decrease in ground water level in the last 34 years in the KRB [6]. 

Year Water Level change (m) Decline (m/year) 

1982-2003 6 0.28 

2003-2016 15 1.15 

 

Other studies confirm this alarming trend. For example, (Brati, Ishihara and Higashi, 2019) 

reported a 0.77 meters/year decline in groundwater levels over the past decade (Figure 1-3). Mack, 

et. al., (2013) observed a similar decline in Kabul, despite some improvement in rural areas due to 

normal precipitation after the early 2000s drought (Figure 1-3). Some of the key issues in the KRB 

include: 

1. Increasing water deman due to rapid population growth, especially in Kabul. 

2. Loss of water recharge zones and increased floods due to climate change, urbanization and 

deforestation. 

3. Water scarcity exacerbated by climate change which disrupting weather patterns. 

4. Increasing the gaps between water supply and demand due to climate change impacts. 

5. Declining groundwater levels and reduced access to safe water for domestic, agricultural, and 

environmental needs. 

 

The impact of climate change on water resources and water availability is significant, specially 

for surface runoff and ground water recharge. To explore the relationship between climate change 

and water availability, we want to develop the SWAT hydrological model and perform bias 

corrections of the RCMs output under RCP4.5 and RCP8.5 in the UKRB. threfore, this study 

addresses the following research questions: 
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Figure 1-3: Left graphs: Monthly depth to water at Afghanistan Geological Survey wells; a 20 

wells at shomali, and b 167 wells in center of Kabul city,  from September 2004 to 2012 in the 

Kabul Basin-Afghanistan (Mack, Chornack and Taher, 2013), Right map: Location of ground 

water wells in Kabul city. 

1.5 Research Questions 

In this study, the main research questions that will be considered are:. 

1. How has climate (e.g., precipitation and temperature) changed in recent decades, and what will 

be the change in future climate over time compared to the baseline? 

Under this question, the sub questions are addressed: 

• How have annual precipitation and temperature trends changed from the baseline period 

(1986-2005) to the 2040s and 2090s in Upper Kabul River Basin.  

• What are future projections of the temperature and precipitation magnitude under RCP4.5 

and RCP8.5 scenarios compared to the baseline?  

• How do bias correction techniques (e.g., linear scaling, quantile mapping, and delta change) 

improve precipitation and temperature in climate models against APHRODITE data? 

2. How will the climate change impact water availability in the UKRB under RCP4.5 and RCP8.5 

in 2040s and 2090s? 

Under this question, the sub questions are addressed: 
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• How will climate (temperature and precipitation) influence the hydrology (e.g., surface 

runoff, evapo-transpiration, and groundwater recharge)? 

• How do climate change-induced shifts in temperature and precipitation influence the shift 

in runoff regimes (peaks) to earlier or future months? 

• Can a SWAT hydrological model be developed for future climate studies and water 

availability in data-poor regions like the KRB?  

1.6 Objective of study 

The key objective of the study is to analyze the current water availibility, and the potential changes 

in future water resources (e.g., runoff, snowmelt, groundwater recharge, actual evapotranspiration, 

potential evapotranspiration) under climate change  impact in the Upper Kabul River Basin under 

RCP4.5 and RCP8.5 scenarios for the period of 2040s (2030-2049) and 2090s (2080-2099).  

The comprehensive study and management of water resource for now and late 21st century will 

lead to more sustainable water resources in the basin and even in the country. One of the main 

solutions to evaluate the current water resources is to take a modeling approach in which the 

restricted data available are used for model calibration and validation, but then if the model is 

deemed valid, model predictions can be used to provide a deeper understanding of the runoff 

drivers in the basin. Therefore, this study will contribute to the overall understanding of the 

hydrological characteristics in the UKRB through the evaluation of the SWAT (Soil and Water 

Assessment tool) model’s performance. Moreover, the study will provide a comprehensive analyze 

in the impact of climate change on future water resources in UKRB, considering multiple aspects 

such as precipitation, temperature, runoff, and groundwater recharge. The study will also contribute 

to provide actionable information for effective water resource management and adaptation 

strategies in the KRB. The key objectives of this study summarized as following: 

1. Estimation of presend and future surface runoff and water balance by utilizing the Soil and 

Water Assessment Tool (SWAT) hydrological model in UKRB. 

2. Assessment of the future (2040s, 2090s) precipitation and temperature variation, compared 

to the historical period (1986-2005) and performing of three bias correction methods. 

3. Projection of the future climate change impacts on surface runoff and total water 

availability under RCP4.5 and RCP8.5 scenarios. 
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2 LITERATURE REVIEW 

Climate change is increasingly acknowledged as a critical global issue, exerting significant 

effects on hydrological processes, including precipitation, evapotranspiration, and runoff (Sediqi 

and Komori, 2023). These changes pose significant challenges to the sustainability of water 

resources worldwide (Shiru et al., 2020; Sediqi and Komori, 2023). Also, the climate change can 

have negative consequences on the natural ecosystem, as well as a severe impact on social life and 

economic development (Calvin et al., 2023). 

The Intergovernmental Panel on Climate Change (Calvin et al., 2023) report shows that the 

global surface temperature in 2011-2020 was 1.1 °C higher than 1850–1900, with larger increases 

over lands (1.59°C) than over oceans (0.88 °C) (Masson-Delmotte et al., 2021; Calvin et al., 2023). 

Also, the global surface temperature between 2001–2020 increased 0.99 °C compared to the period 

of 1850-1900 (Masson-Delmotte et al., 2021). Changes observed in the earth’s climate since the 

early 20th century are primarily driven by human activities (e.g., burning fossil fuel and 

agriculture), and natural processes especially anthropogenic factors that cause increase in 

greenhouse gas level in the earth’s atmosphere, raising the earth’s average surface temperature 

(Calvin et al., 2023; Intergovernmental Panel on Climate Change (IPCC), 2023). The rise in global 

temperature is highly related to change in hydro-climatic variables and sea-level rise (Tadese, 

Kumar and Koech, 2020; Hoegh-Guldberg et al., 2022).  

Hydrological systems, especially snow and glaciers can be impacted by global climate change, 

altering the timing and amount of runoff in mountainous areas (Arian et al., 2016). The Hindu 

Kush-Karakoram- Himalaya (HKKH) region has the highest density of glaciers outside the poles 

and feed many larger rivers in Asia, which Indus river is one of them (Bokhari et al., 2018). 

Previous studies showed that, the HKKH region is expected to see a higher rate of mean surface 

temperature rise towards 2100 than the global average (Ahmad et al., 2015; Iqbal et al., 2018). 

Increasing temperature will change the precipitation pattern, consequently, the runoff in river and 

the water cycle will be significantly affected in the region (Iqbal et al., 2018) including the KRB 

being one of the major tributary for the Indus river. A study showed that, an increase of 0.39 °C 

was observed in temperature of Central Asia from 1979 to 2011 (Hu et al., 2014). While, studies 

predicted a mean temperature increase of up to 6.5 °C compared to the pre-industrial period by the 

end of this century across Central Asia (Kreft et al., 2015; Reyer et al., 2017). Ridley et al. (2013) 

found that the Karakorum will receive more precipitation due to an increase of westerly 
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disturbances. This is confirmed by (Mukhopadhyay and Khan, 2014) which projects warming up 

to 2 °C and a slight increase of precipitation (8–10%) until 2050 for the Upper Indus River Basin 

including the Hindukush region. 

Afghanistan is categorized as a semi-arid country in terms of climate; the annual average 

precipitation of the country has been estimated about 300mm, which hardly satisfies the 

incremental water demand of the whole country, although precipitation varies geographically 

(MEW and JICA, 2019). The key sectors, including water, energy, and agriculture, are among the 

most vulnerable to climate change in Afghanistan (Aich, N. A. Akhundzadah, et al., 2017a). Winter 

precipitation accounts for 80 % of the country's total water resources while in summer, water 

resources are not enough to satisfy crop’s water demand (Akhtar et al., 2021). The temporal gap 

between precipitation and peak demand is currently more or less closed by the fact that a high share 

of precipitation is snow melting in late spring or summer. It is expected that this rather 

advantageous pattern will change due to climate change, with the basin receiving less snow but 

more rainfall, resulting in the tendency for a quicker response of the basin on rainfall. 

Consequently, there would be an increased mismatch between water availability and water demand, 

which would widen the gap. 

The country frequently experienced severe weather conditions or climatic events, resulting in 

significant economic and human losses (Aich, N. A. Akhundzadah, et al., 2017a; UC Louvain, 

2020). For example, the deadliest disaster event recorded between 2000 and 2018 was a cold spell 

occurring in January and February 2008, which resulted in 1,317 fatalities (UC Louvain, 2020). 

However, the main disaster types affecting the country are floods and drought. Moreover, between 

2000 and 2018, Afghanistan experienced 66 floods, accounting for nearly 56 % of recorded 

disasters, resulting in a total of 2,374 deaths (34.4% of total fatalities). However, a drought 

impacted 8,710,000 people over the same period (UC Louvain, 2020). The most impactful disaster 

event in terms of affected population in Afghanistan was a drought in year 2000, where more than  

2.5 million people suffered from water shortages and famine (UC Louvain, 2020). 

The snow and glaciers in Afghanistan are at high risk, especially in summer season the snow 

and glacier cover is retreated and high melting occurs due to climate change (Arian et al., 2016). 

Afghanistan has 3,940 glaciers covering an overall area of 2,677 km². So far, almost 13.8% of the 

glacier area was lost from 1990 to 2015, Figure 2-1, and this reduction is expected to continue 

(ICIMOD, 2018; Maharjan et al., 2021). The glacier area lost was 3.6 % between 1990 and 2000; 

4.7 % between 2000 and 2010; and nearly 6 % from 2010 to 2015 (Maharjan et al., 2021). This 
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shows that the loss percentage has been greater in recent decades. Figure 2-2 shows the variations 

in loss of glacier’s area at different elevations. The analyses by (Maharjan et al., 2021) indicated 

that, the maximum area loss was at elevations from 4,700 m to 5,200 m from see level (m.s.l). The 

largest glacial area loss was 47 Km2 at elevations from 4,900 m to 5,000 m.s.l and above that there 

have been no significant changes in glacial areas. Whereas, the investigations showed that glacial 

areas below 3200 m.s.l have completely disappeared in Afghanistan (Maharjan et al., 2021). 

 

 

Figure 2-1: The change in glaciers area in Afghanistan (Source: S.B. Maharjan et al., 2021). 

 

Figure 2-2: Distribution of glacial area and changes in area from 1990 to 2015 at 100 m 

elevation zone (Source: S.B. Maharjan et al., 2021). 
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Glaciers play a critical role in the supply of drinking water and irrigation. Currently, the early 

melting of glaciers, combined with spring precipitation, is triggering catastrophic floods laden with 

rocks. Research by the International Centre for Integrated Mountain Development and Ministry of 

Energy and Water (ICIMOD/MEW) indicated that in some regions of Afghanistan, the number of 

glaciers and glacial lakes has increased. This is likely due to larger glaciers breaking up because of 

climate change (Bjelica, 2021). Glacial Lake Outburst Floods (GLOFs) often come from these new 

glacial lakes. For instance, in a recent incident on 12 July 2018, flash floods originating from a 

glacial lake at an elevation of 4,500 m traveled approximately 14 km down a tributary in Panjshir 

province (ICIMOD, 2018). This event caused the loss of at least 10 lives, destruction of 

infrastructures, damage of fertile agricultural lands, and the closure of major roads (ICIMOD, 

2018). About 85% of Afghanistan's total agricultural yield is produced by irrigation, which 

consumes 98 % of the water used. However, irrigation performance at the basin level is poor 

(Akhtar et al., 2018, 2021). Kabul River Basin (KRB), which covers more than 12% of 

Afghanistan's territory, generates approximately 26 % of the country's total annual stream-flow. 

The basin accounts for 35 % of population, and has the fastest population growth rate in the country, 

plays a key role in developing the country’s economic growth. 

Recently Sidiqi et al. (2018) conducted a study on climate change projections in the Kabul River 

Basin (KRB) using three Global Climate Models (GCMs). Their findings indicated that the mean 

annual temperature is projected to increase by 1.8 °C, 3.5 °C, and 4.8 °C by the 2020s, 2050s, and 

2090s, respectively. Their results also indicated a projected increase in mean annual precipitation. 

Other study was conducted on climate change and its implications for stream flow in the KRB (Wi 

et al., 2015). The study utilized GCMs to project the mean annual temperature for the future period 

(2050s). Their results indicated that under RCP4.5 and RCP8.5 scenarios, the mean annual 

temperature is expected to increase by 2.2 °C and 2.8 °C, respectively. However, the study does 

not identify a clear trend in precipitation (Wi et al., 2015). Moreover, a study conducted by 

McSweeney et al. (2010) indicate an increase of 0.6 °C in mean annual temperature since 1961. 

Their results also revealed a slight decrease in mean annual precipitation, averaging 2 % per decade. 

However, it is important to note that the analysis of past data in this study relied on station data 

with significant data gaps. Additionally, in this study, the explanatory power of the projections is 

limited due to the coarse resolution of the CMIP3 global models, which have a resolution of 2.5 

degrees, particularly given the extremely mountainous character of the country. 

Valentin Aich (2016) used reanalysis data from Global Soil Wetness Project Phase 3 (GSWP3) 
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to identify changes in the past and an ensemble of 12 downscale Regional Climate Models (RCMs) 

for future projections. They found that the climate models projected an increase in future 

temperature trend, with the magnitude depending on the global carbon emissions. Their results also 

indicated projected temperature increases ranges by 1.7 °C (RCP 4.5), and 2.3 °C (RCP 8.5) for 

the period of 2006 to 2050, while for the longer time frames of 2006 to 2099, the projected 

temperature increases ranges by 2.7 °C (RCP 4.5), and 6.4 °C (RCP 8.5) (Aich and Khoshbeen, 

2016; Aich, N. A. Akhundzadah, et al., 2017b). The mentioned events and studies highlight 

Afghanistan’s vulnerability to climate change, indicating insufficient adaptation to both current 

and future challenges. The findings demonstrate that temperatures are projected to rise in the 

country, while the trends in precipitation show both increases and decreases without a clear pattern. 

Although few studies exist (e.g., McSweeney et al. 2010; Mukhopadhyay & Khan 2014; Aich et 

al. 2017) related to climate change in Afghanistan, there is a limitation in terms of the lack of bias 

correction and/or downscaling for the GCMs and RCMs data, specifically in the KRB. However, 

the basin serves as a crucial water source for domestic and agriculture. Recently, a study examined 

the climate change impacts on water resources in the Kabul River Basin (Akhtar et al., 2021), but 

neglected bias correction and uncertainty associated with global climate models, and also only used 

one RCM for future water evaluations. 

Previous studies have focused either on the whole KBR, using Global Climate Models (GCMs) 

(Sidiqi, Shrestha and Ninsawat, 2018) or on the lower section of the basin (Wi et al., 2015), but 

there is not a specific study on the Upper Kabul River Basin using Regional Climate Models 

(RCMs). Therefore, to develop sustainable plans for managing water resources against climate 

change, preparing for the recurring natural hazards (e.g., floods and droughts), and to prevent 

financial losses and causalities under climate change, there is a high demand to evaluate the present 

and possible future water availability in the UKRB. On the other hand, the region analyzed in this 

study has not been holistically covered in the scientific literatures. This fact adds more to the 

importance of this study. Additionally, temperature and precipitation are very significant weather 

elements with significant impacts on hydrology. Therefore, the bias correction of precipitation and 

temperature is essential before applying any climate or hydrological impact studies. Thus, the main 

objective of this study is to provide a robust evaluation of climate change impacts on water 

availability in the UKRB. We evaluated the historical (1986-2005) and future periods of 2040s and 

2090s. This assessment includes the evaluation of three bias correction techniques for precipitation 

and temperature data from the RCMs of CORDEX South Asia datasets. 
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2.1 SWAT hydrological model 

The Soil and Water Assessment Tool (SWAT) has been widely used, and is a semi-distributed 

hydrological model designed to simulate the impact of land use and climate changes on water 

resources (Arnold et al., 1998). The SWAT model (Arnold et al., 1998; Neitsch et al., 2011) is a 

distributed parameter and continuous time simulation model, developed by Dr. Jeff Arnold for the 

United States Department of Agriculture and Agriculture Research Services (USDA and ARS). 

The SWAT model has been developed to predict the hydrological response of un-gauged 

catchments to natural inputs as well as the manmade interventions. Both the water quantity and 

quality, and the sediment transportation can be assessed by this model. The model is; (a) physically 

based, (b) uses readily available inputs, (c) is computationally efficient to operate, and (d) is 

continuous time and capable of simulating long terms for computing the effects of land use 

management and the climate changes. The SWAT operates on a daily time step and is designed to 

predict the impact of land use change and climate change on water resources, sediment 

transportation, and agricultural chemical yields (Arnold et al., 1998; Abbaspour, 2015). The model 

is capable of simulating a high level of spatial details by dividing the watershed into a large number 

of sub-watersheds and the hydrologic response unit (HRU). Major model components include 

weather, hydrology, soil temperature, plant growth, nutrients, pesticides, and land management. 

The water balance of each HRU in SWAT is represented by four storage volumes, including: snow, 

soil profile (0-2 m), shallow aquifer (typically 2-20 m), and deep aquifer (> 20 m). Flow generation, 

sediment yield, and non-point-source loadings from each HRU in a sub-watershed are summed, 

and the resulting loads are routed through the channels, streams, ponds, and/or reservoir to the 

watershed outlet. The hydrological cycle which simulated by SWAT model is based on the water 

balance equation, which considers the shallow aquifer and unsaturated zone above the impermeable 

layer as a unit. The hydrologic processes are based on the following water balance equation (1): 

SW𝑡 =  𝑆𝑊0 + ∑ ( 𝑅𝑑𝑎𝑦  −  𝑄𝑠𝑢𝑟𝑓  −  𝐸𝑎
𝑛
𝑖 = 1  − 𝑊𝑠𝑒𝑒𝑝  −  𝑄𝑔𝑤 )                          (1) 

Where, SWt is the final soil water content (mm H2O), SW0 is Initial soil water content (mm H2O), 

Rday is the amount of precipitation on day i (mm H2O), Qsurf  is the amount of surface runoff on day 

i (mm H2O), Ea is the amount of evapotranspiration on day i (mm H2O), Wseep is the amount of 

water percolation or amount of water entering the vadose zone from soil profile on day i (mm H2O), 

Qgw is the amount of return flow on day i (mm H2O), and t is time in days. 
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The soil profile is subdivided into multiple layers that support soil water processes, including 

infiltration, evaporation, plant uptake, lateral soil flow, and percolation to lower layers in the 

SWAT model (Arnold et al., 1998). The soil percolation component of SWAT uses a storage 

routing technique to predict flow through each soil layer in the root zone. Downward flow occurs 

when field capacity of a soil layer is exceeded and the layer below is not saturated. Percolation 

from the bottom of the soil profile recharges the shallow aquifer (Neitsch et al., 2011). If the 

temperature in a particular layer is less or equal to 0 ºC, no percolation is allowed from that layer. 

Lateral subsurface flow in the soil profile is calculated simultaneously with percolation. The 

contribution of groundwater flow to the total stream flow is simulated by routing a shallow aquifer 

storage component to the stream (Arnold, Allen and Bernhardt, 1993). SWAT also simulates the 

sediment and nutrients dynamics. Sediment yield is calculated based on the Modified Universal 

Soil Loss Equation (MUSLE) in this model (Williams, 1975). The total amounts of nitrates in 

runoff and subsurface flow is calculated from the volume of water in each pathway with the average 

concentration. Phosphorus however is assumed to be a relatively less mobile nutrient, with only 

the top 10 mm of soil considered in estimating the amount of soluble phosphorus removed in runoff. 

A loading function is used to estimate the phosphorus load bound to sediments (McElroy et al., 

1976). SWAT calculates the number of algae, amount of dissolved oxygen and carbonaceous 

biological oxygen demand (CBOD - the amount of oxygen required to decompose the organic 

matter transported in surface runoff) entering the main channel with surface runoff (Thomann, R.V. 

and Mueller, 1987).  

In comparison of SWAT to other hydrological models such as the Hydrologic Engineering 

Center's Hydrological Modeling System (HEC-HMS) and MIKE SHE, multiple sources highlights 

their defferent applications and strengths. HEC-HMS is a lumped model primarily used for flood 

simulation and lacks the detailed spatial variability that SWAT offers (Aawar and Khare, 2020). 

MIKE SHE, on the other hand, provides a fully integrated approach to surface and groundwater 

modeling but is more data-intensive and computationally demanding compared to SWAT (Ougahi, 

Karim and Mahmood, 2022). In contrast to these models, SWAT’s strengths lie in its flexibility 

and ability to simulate various land-use and agricultural practices alongside hydrological processes. 

This feature is particularly important, where land-use changes, such as deforestation and urban 

expansion, significantly affect water resources. Moreover, SWAT's relatively low data requirement 

compared to MIKE SHE makes it more feasible for use in data-scarce regions like the KRB. Also, 

the integration of SWAT with GIS and its modular structure allows for greater flexibility in 
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modeling land use, soil types, and climatic factors, making it particularly suited for regions with 

diverse topography and limited data availability (Ougahi, Karim and Mahmood, 2022).  

2.2 Global and regional application of SWAT in Climate Change Impact Studies 

The SWAT model widely used in many studies for different purpose globally and regionally to 

assess the impact of climate change on water resources, including the streamflow, water quality, 

and the sediment transports.. Some examples are the use of  SWAT model in continental-scale 

hydrology and water quality assessment for Europe (Abbaspour, 2015), water resource 

management and water balance assessment (Ayoubi and Dongshik, 2016; Adib et al., 2020; Nasiri, 

Ansari and Ziaei, 2020), snowpack and snow melt changes assessment in Himalayas (Singh et al., 

2017; Tuo et al., 2018; Liu, Cui and Li, 2020), and the climate change impacts on water resources 

and hydrology (Mohanty et al., 2012; Narsimlu, Gosain and Chahar, 2013; Giang et al., 2014; Iqbal 

et al., 2018; Forero-Ortiz, Martínez-Gomariz and Monjo, 2020). 

Globally, numerus studies have employed the SWAT to simulate hydrological responses to 

various climate change scinarios, for instance, research conducted in the United States, Europe, 

and the Asia has demonstrated the model’s ability to integrate climate change ouputs (e.g., GCMs 

or RCMs) with localized lund use and soil data (Ficklin et al., 2009; Arnold et al., 2012). These 

studies generally indicate that climate change leads to altered precipitation patterns, increased 

frequency of extreme events, and significant shifts in water availability across regions. For 

example, Mississippi River Basin and the Rhine Basin has highlighted the risk of increased 

flooding and water scarcity under future climate scenarios, showcasing SWAT's utility in assessing 

water-related climate vulnerabilities (Jha et al., 2006; Guse, Reusser and Fohrer, 2014). The major 

advantage of SWAT is that this model can evaluate the hydrological parameters in ungagged 

watersheds, assess the relative impact of alternative inputs (e.g. changes in climate parameters, 

vegetation etc.) on water quality and quantity. The model has gained a wide global acceptability 

and currently more than hundreds of peer-reviewed research papers have been published based on 

SWAT model application. 

Regionally, SWAT has been applied to more localized watersheds in Africa, South America, 

and Asia, espicailly in Afghanistan where water management challenges are often more 

pronounced due to limited infrastructure and data. In African basins like the Blue Nile, studies 

using SWAT have illustrated potential reductions in streamflow due to projected decreases in 

rainfall and rising temperatures (Mengistu and Sorteberg, 2012). Similarly, in South Asia, 
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particularly the Ganges and Brahmaputra river basins, the model has been employed to assess the 

impacts of glacier retreat and monsoon variability on water resources (Immerzeel, van Beek and 

Bierkens, 2010).  

Recent studies using the SWAT model have highlighted significant climate change impacts on 

water resources in the KRB. The SWAT model has been applied to simulate the basin’s 

hydrological responses to projected climate scenarios, showing substantial shifts in streamflow and 

water availability due to rising temperatures and changing precipitation patterns.  Research by 

(Sidiqi and Shrestha, 2021) indicates that increased temperatures in the KRB are accelerating 

snowmelt from the surrounding Hindu Kush mountains, which leads to higher runoff during spring 

but a significant reduction in water availability in the summer months when demand is highest. 

Additionally, a study by Ahmadzai et al. (2021) found that under future climate scenarios, due to 

warming trend, the snowmelt will intensify in mountains that feed the Kabulr River, potentially 

increase streamflow in short term but cuasing longterm water shortages.  As a consequence, the 

frequency and intensity of extreme weather events such as floods and droughts are likely to 

increase, placing further strain on water management in the KRB.  Further, research by Sharifi et 

al. (2021) highlights that the seasonal variability in water availability in the Kabul River Basin is 

projected to increase. The winter months, which traditionally receive snowfall that contributes to 

spring and summer runoff, may see reduced snowpack, while the summer months could experience 

increased glacial melt. This leads to a mismatch between water supply and demand, especially 

during the agricultural growing season when irrigation is most needed. Bromand (2015) utilized 

SWAT to simulate streamflow changes under various climate scenarios. These studies highlighted 

that future precipitation and temperature changes could lead to shifts in runoff patterns, which 

would exacerbate the already stressed water availability in the basin. A study (Ougahi, Karim and 

Mahmood, 2022) analysed the climate change impacts on water balance in the KRB under RCP4.5 

and RCP8.5 scenarios. The study demonstrated that climate change could lead to significant 

reductions in water availability in the KRB, particularly during dry seasons, which is critical for 

planning sustainable water management practices in this semi-arid area. This research also 

highlighted the importance of incorporating both climate and land use changes in hydrological 

assessments. These studies underline the value of using the SWAT model to assess the complex 

hydrological impacts of climate change in the KRB and to inform adaptive water resource 

management strategies. Therefore, this study also selected SWAT to build a hydrologic model and 

estimate the impact of climate change on water resource in UKRB. 
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3 STUDY AREA 

3.1 Location 

The Kabul River originates from the Paghman mountains on the west and Koh-e-Safi mountains 

on the east of Kabul province. The Kabul River is 700 km long (435 miles) is part of the Indus 

catchment (Houben and Tunnermeier, 2005). The Kabul River Basin (KRB) lies in the north-east 

quarter of Afghanistan which contains all Afghan rivers that join the Indus River in Pakistan. The 

Kabul basin accounts for 35 % of the population’s water supply, and has the fastest population 

growth in Afghanistan (Ghulami et al., 2022). The upper part of KBR (Figure 1-1 and Figure 3-1) 

comprises three primary river systems: the Ghorband & Panjshir river, the Logar river, and the 

Kabul river. The study covers an area of 26,043 km2, located at a latitude of (33.6° – 35.9° N) and 

longitude of (67.63° – 70.30° E). The north and northeast part of the basin is situated in the 

highlands of the Hindukush mountains which are drained by the Ghurband and Panjshir rivers and 

are the main source of water for agriculture and domestic consumptions.  

 

Figure 3-1: Location of study area (The Upper Kabul River Basin). 
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3.2 Topography 

The elevation of the basin varies from of 995 m to 5,694 m  above sea level (msl), and shown 

in figure 3-1. Topography of the study area is alpine with the steep slopes. The northern areas 

consisting high mountains with rocks, sharp peaks and heavy slopes, while the southern portions 

include mainly low mountain ranges, foothills, and plain areas. Some of the north mountain’s peaks 

have permanent snow caps and glaciers.  

3.3 Geology 

The Kabul river is situated at intersection of three major translational and extensional fault 

systems that have enabled and shaped three interconnected, largely fluvial aquifers (Logar, Kabul, 

Paghman) that are 20 -70 m thick and composed of course sand to gravelly colluvial detritus (Eqrar 

and Shroder, 2016). The higher permeability occur where the coarse clastic are uncemented, but 

deeper buried clastic may be slightly cemented to produce lower permeability (Eqrar and Shroder, 

2016). The surface of KRB is host to groups or regions of largely mountain runoff-fed tributaries 

that collectively from the river system, which is subdivided into a number of sub basin of greater 

or lesser importance.  

3.4 Climate 

The climate of the Kabul River Basin is characterized by cold winters and hot summers, with less 

or no precipitation and streamflow in the summer, except the rivers and streams fed by snowmelt 

and glaciers (Sidiqi, Shrestha and Ninsawat, 2018). June to August experiences the highest 

temperatures in the KRB with July being the warmest month (38°C), and the coldest months occur 

from November to February with a minimum in January -11°C) in the study area (UKRB). The 

average monthly temperature is recorded 34.2 °C in Naghlu station, 24 °C in Payin Qargha station, 

20.3 °C in Pul-i-Surkh station, 25.2 °C in Pul-i-Ashawa station, and 28 °C in Tang-i-Gulbahar 

station in the KRB (Figure 3-2). The lower part of the basin is warmer than the upper parts of the 

basin. The annual potential evapotranspiration (PET) is approximately 1600 mm in the Kabul river 

basin (Akhtar, 2017). Precipitation is the main driver of variability in the water balance over a 

space and at a time. Changes in precipitation have very important implications in hydrology and 

water resources (Bruce, 2017). Hydrological variability over time is influenced by variations in 

precipitation over daily, seasonal, annual and decadal time scales in a watershed/basin (Cao et al., 

2021). The precipitation amount and type vary significantly due to elevations and season in the 
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basin, figure 3-2. The mean annual precipitation for the period 1986-2005 is 428 mm, while the 

average annual temperature is 7.6 °C based on 20 years of APHRODITE dataset over the UKRB. 

Based on ground observations, the annual precipitation records show 350 mm from 2009 to 2019 

in UKRB. Higher precipitation occurs in winter and early spring seasons (December to May), while 

less or no precipitation occurs in summer. February and March have the higher precipitation 

compared to other months in a year. 

       

       

         
 

Figure 3-2: The climograph of Naghlu (a), Payin Qargh (b), Pul-i-Surkh (c), Pul-i-Ashawa (d), 

and Tang-i-Gulbahar (e) stations in the UKRB. The map showed in the upper left corner shows the 

location of the meteorological stations in the UKRB. 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  22 

 

3.5 Hydrology 

The schematic hydrology representation of KRB is shown in figure 3-3, provided by (World 

Bank, 2010). Topographic map with stations location and rivers network is shown also in the figure 

3-3. The high elevation in the KRB is almost 6,200 msl and the lowest elevation is 380 msl (Figure 

3-3). The current study includes three main rivers; including the Kabul River, the Logar River, and 

the Ghorband & Panjshir River. Naghlu reservoir is the outlet point of the basin. More details about 

the rivers explained in the below sections. The annual average water flow is around 140 Million 

m3 (Mm3) at Maidan station, 490 Mm3 at Tang-i-Gharu station, and 3,400 Mm3 at Naghlu station 

in the Kabul river. Only 15% of flow at Naghlu is contributed by the Kabul River (Mills, 2013). 

The water-flow contribution originates from the northern tributaries which are largely fed by 

snowmelt and glaciers. The glaciers represent a long-term asset that stabilizes the water supply in 

summer months and are the source of steady streamflow. 
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Figure 3-3: Schematic Diagram of the Kabul River Sub-basins: (1) Logar and Upper Kabul 

sab-basin; (2) Panjshir sub-basin; (3) Lower Kabul sub-basin (World Bank, 2010), and (B) 

Topographic map with stations location and river networks in the Kabul River Basin. 

 

3.5.1 Kabul River 

The Kabul sub basin include three small rivers which enters the Kabul city region are; the 

Maidan river, Paghman river, and Qargha river shown in Figure 3-3 (Zaryab et al., 2017). The 

Kabul river also called medium river. All three rivers originate from the high mountain ranges 

located upstream of Kabul city. These rivers join at different confluences throughout Kabul city 

and flow through the center of Kabul. The Maidan river is formed by numerous small streams in 

west of Kabul city. The River changes its name to Kabul river before it enters the city and flows 

across the city where joining the Paghman and Qargha tributaries and then flows further until 

Naghlu dam where it joins into Panjshir river (Mills, 2013; Eqrar and Shroder, 2016). The main 

water projects and users of the Kabul river are Qargha reservoir, Shatoot irrigation and water supply 

to Maidan Shar and Tang-i-Saidan. When the Maidan river reaches Kabul city it has little or no 

water due to high water withdrawal for irrigation. After the confluence with the Panjshir river, the 
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river continues and called as Kabul River (Mills, 2013). The historical monthly flow in Tang-i-

Gharu station located in Kabul river is shown in the Figure 3-4. 

3.5.2 Logar River 

The Logar sub basin drains a dry and hilly watershed south of the Kabul city and comprises 

approximately 75 % of the drainage area of the Logar-Kabul area. There is modest but significant 

irrigated agriculture along the Logar river valleys in upstream of Kabul city. The main water users 

from Logar rivers are: Chak-e-Wardak dam for hydro power production, the irrigated agricultural 

lands along the river, and the Kol-e-Hasmat Khan wetland located in south of Kabul city. The 

average annual flow recorded almost 230 Million m3 at Kajab and 300 Mm3 at Sang-i-Naweshta 

stations (Figure 3-4). 

3.5.3 Ghorband and Panjshir rivers 

Ghorband river which is 130 km long originate from the Hindu Kush mountains, flowing 

through Parwan province. The river forms the Ghorband basin until it joins the Panjshir river. The 

Salang river which is 438 km long is the tributary of the Ghorband river. The average annual flow 

is about 730 Mm3 at Pule Ashawa station, situated in this river (Figure 3-4). The river joins with 

the Panjshir river in Baghram district of Charikar province (Favre and Kamal, 2004) and then the 

river (Mills, 2013).  

The Panjshir River takes its source near the Anjuman Pass and flows southward through the 

Hindu Kush mountains. After its confluence with Ghorband river, this river called Panjshir river. 

It has 150 kilometers long and joins the Kabul River at town of Surobi distruct (Favre and Kamal, 

2004). The Panjshir watershed is formed by the Panjshir river and it’s tributary; Ghorband, Salang, 

and Shatul rivers. The upper portion of this watershed consists of steep mountain valleys in the 

Hindu Kush mountain range, which reaches over 6,000 m.s.l and remains snow covered throughout 

the year. The southern portion of the Panjshir watershed opens into the broad and gently sloping 

fertile Shomali Plain which has some of the most important irrigated lands. Although the drainage 

area of the Panjshir River at Shukhi is smaller at approximately 84% compared with the Kabul 

river, but it’s average annual streamflow is larger almost 6 times than Kabul river. The mean annual 

water flow of Panjshir river is 1,710 Mm3 at Gulbahar station (Figure 3-4). The combined flow 

from above two rivers is 3,080 Mm3 observed at Sukhi stations (Mills, 2013). Panjshir and 

Ghurband rivers together provide roughly 14 % of annual flow of the whole Kabul river basin 
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(Ayoubi, 2017). The Waterflow contributions from the Ghurband & Panjshir Rivers are primarily 

due to snow and glaciers melt (Eqrar and Shroder, 2016).  

   

   

 
 

Figure 3-4: Historical hydrographs (1959 -1979) in Tang-i-Gharu station on Kabul river, Sangi-

Nawishta on Logar river, Pul-Ashawa on Ghorband river, Gulbahar station on Panjshir river, 

and Shukhi station on Panjshir river of the Kabul river basin (Source: AWARD, 2013). 
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3.6 Land use and land cover classification 

The land cover data obtained from Food and Agriculture Organization (FAO) in Afghanistan 

(FAO, 2010). The land use map of UKRB includes thirteen major classes which includes 

intensively agricultural area, rainfed area, fruit trees, vineyard, barren land/sand cover, forest close 

and needle leaved areas, rangeland, marshland, urban area, irrigated agricultural land (marginal 

irrigation), forest with undifferentiated areas, shrubs with degenerated forests, and water bodies. 

The dominant land cover in UKRB is the rangeland, which covers 75 % of the study area, Table 3-

1. Land use change has a major impact on runoff and evapotranspiration due to changes in land 

area allocation for settlement or urbanization, cutting forests, removing trees and plants, changing 

agricultural areas to rangelands or barren lands. Table 3-1 shows the land cover classification area 

in the UKRB in Afghanistan. The Kabul River Basin presents a diverse pattern of land use, shaped 

by its topography, hydrographic characteristics, and settlement patterns (Ougahi, Karim and 

Mahmood, 2022). This basin, which extends across both highland and lowland areas, is defined by 

its rugged mountainous regions in the north and northeast and low-lying plains and valleys in the 

south. In northern Hindukush mountains, due to limited accessibility and defficult terrain, 

agriculture is largly confined to terraced farming along the river valleys. These regions are often 

characterized by rangelands and areas of forest, though forest cover has significantly declined due 

to deforestation. The lower basin, featuring flatter terrain and proximity to water sources supports 

extensive agriculture, especially irrigated crops like wheat, maize, rice and barley. Rapid 

urbanization, especially around Kabul, has led to significant land-use changes, impacting both 

agriculture and natural water systems (Khatiwada, Pradhananga and Nepal, 2024). The mid-

elevation regions are dominated by grazing lands and pasture, while the upper basin marked by 

mountainous areas, consists primarily of forests and rangelands. These land use patterns are 

influenced by both natural and human-induced factors like deforestation, population growth, and 

climate change impacts (Khatiwada, Pradhananga and Nepal, 2024). As the population continues 

to grow, sustainable land and water management are crucial to balance development needs with 

environmental conservation.  

The land use data was sub divided into thirty-one classes. The land use map was prepared based 

on SWAT requirements and reclassified into thirteen major classes, Figure 3-5. The land use data 

preprocessed and was projected to UTM Zone 42 N using the raster projection in ArcMap before 

it was used in SWAT. Land use is a major factor in hydrological modeling for streamflow and 

evapotranspiration estimation in the basin. 
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Figure 3-5:The spatial variation of Land use and Land cover types in UKRB ((FAO, 2010)). 

 

Table 3.1:Shows Land use classifications in the UKRB ((FAO, 2010)). 

No Land cover Types Area (Km2) Area (%) 

1 Intensively cultivated (1 or 2 crop/yr) 1552.0 6.0 

2 Rainfed Ag. land 521.5 2.0 

3 Fruit trees 259.1 1.0 

4 Vineyard 189.7 0.72 

5 Barren/sand cover 2050.9 7.9 

6 Forest close and open needle leaved 160.5 0.6 

7 Rangeland 19534.2 `75.0 

8 Marshland 78.1 0.3 

9 Urban areas 445.8 1.7 

10 Irrigated Ag. land (marginal irrigation) 638.8 2.5 

11 Forest undifferentiated 10.8 0.01 

12 Shrubs/degenerated forest 72.4 0.3 

13 Water/snow 529.0 2.0 

 
Total 26,043 100 
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3.7 Soil characteristics and discription 

Soil profile has great effects on water flow due to its infiltration rates. Soil texture describes the 

proportion of different sized mineral particles that are found in a soil (Jones, Caon and Yigini, 

2023). The main particle size classes are broadly clay (<0.002mm), silt (0.02-0.63mm) and sand 

(0.063-2.0mm). Texture is measured by sieving, or by feeling the grains by rubbing the soil 

between your fingers. Particle size classifications may vary in different countries. Furthermore, 

large sand particles can be described as coarse, medium and fine. The Kabul River Basin has 

diverse soil types due to its varied topography, climate, and geological history. The main soil 

texture in study area is loam with hydrologic soil group of class c and d (Table 3-2). A description 

of the specified soil types within this region is as below: 

• Lithosols-Cambisols-Rankers: Lithosols are shallow soils found on steep slopes, often 

characterized by a lack of significant soil development due to limited depth and high rock content. 

Lithosols are typically found in mountainous regions and are prone to erosion (Schad, 2016). The 

Cambisols are with limited horizon development, often found in areas where soil formation 

processes are relatively young or interrupted (Schad, 2016). They are moderately weathered soils, 

found in a variety of landscapes including slopes and valleys, and are typically fertile enough to 

support agriculture, especially when well-drained. The Rankers are shallow, acidic soils typically 

found on steep slopes, formed from non-calcareous parent material. Rankers are usually found in 

upland areas with cool climates and are characterized by a thin organic layer overlying rock (Schad, 

2016). The combination of Lithosols, Cambisols, and Rankers in the KRB indicates areas with 

varied topography, where soil development is influenced by the erosion processes and parent rock 

material. These soils are common in mountainous regions of Afghanistan, where steep slopes and 

rugged terrain dominate. 

• Xerosols: are soils found in arid and semi-arid regions, characterized by low organic matter 

content and limited leaching (Jones, Caon and Yigini, 2023). These soils are often calcareous and 

exhibit a coarse texture. They are associated with desert or semi-desert climates and support 

drought-resistant vegetation. The Lithosols-Xerosols combination in the KRB indicates areas with 

arid to semi-arid conditions, likely in the lower elevations or regions receiving limited 

precipitation. These soils reflect the dry climate and the erosional forces acting on the landscape. 
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• Calcaric Fluvisols: Fluvisols are young, fertile soils typically found in river valleys and 

floodplains, formed from alluvial deposits (ICIMOD, 2012). Fluvisols are characterized by layers 

of sediments deposited by flooding rivers, making them rich in nutrients and suitable for 

agriculture. Moreover, Calcaric term indicates the presence of calcium carbonate in the soil, which 

often results from the weathering of calcareous rocks or the deposition of calcareous sediments 

(ICIMOD, 2012). Calcaric Fluvisols are therefore fertile, well-drained soils found in areas with 

significant alluvial activity. In the KRB, Calcaric Fluvisols are likely found along the riverbanks 

and floodplains, where the periodic flooding deposits fertile sediments. These soils are crucial for 

agriculture in the region, supporting crops due to their nutrient richness (ICIMOD, 2012). 

• Glacial Soils: Soils associated with glaciers are typically poorly developed, consisting of a 

mixture of unsorted glacial till, including rock fragments, sand, silt, and clay (Shroder, Ahmadzai 

and Ellis, 2007). Glaciers contribute to the formation of various landforms like moraines, outwash 

plains, and glacial valleys. The soils in glacial regions are often young and lack well-defined 

horizons due to the recent deposition of material by retreating glaciers (Shroder, Ahmadzai and 

Ellis, 2007). The Glaciers in the KRB are primarily found in the high mountain ranges, such as the 

Hindu Kush ranges. 

The soil physical properties such as soil texture, available water content, hydraulic conductivity, 

soil bulk density and organic carbon content for different layers of each soil type are required when 

modeling the hydrology of a basin by SWAT. Soil type has great effects on surface runoff due to 

its infiltration rate. In this study, soil data obtained from FAO/UNESCO website (FAO, 1971). The 

digitized soil map of the world, at 1:5,000,000 scale was in the geographic projection and converted 

to UTM projections (WGS1984, UTM Zone 42N) using the raster projection in Arc-map before 

using in SWAT. Figure 3-6 shows the soil classification type in the UKRB.  

Table 3.2: Shows area of soil class. SHG is soil hydrologic group. 

ID Soil Type Area Km2 Area (%) Texture SHG 

1 Lithosols- Cambisols-Rankers 9484.7 36.4 Loam C 

2 Lithosols- Xerosols 12271.0 47.1 Loam D 

3 Calcaric Flurisols 4005.7 15.4 Loam D 

4 Glaciers 281.5 1.1 UWD D 

Total 26042.9 100   
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Figure 3-6: Soil classification type in study area (FAO, 1971). 

 

3.8 Weather Data 

The weather data is among the most important inputs required for the SWAT to estimate the 

hydrology of a basin. It is good to have a meteorological station within the watershed of interest, 

but sometimes obtaining representative weather data for watershed-scale hydrological modelling 

can be difficult and time consuming (Fuka et al., 2014). The daily precipitation, Tmax, and Tmin 

covering the period from 1st January 2009 to 31st December 2019 was collected from 21 

meteorological stations within UKRB in Afghanistan. Figure 3-7 shows the location of meteoritical 

stations in UKRB. Among these meteorological stations, the daily precipitation and temperature 

data of 13 stations were obtained from National Water Affairs Regulation Authority (NAWARA) 

and only daily precipitation of 8 stations were obtained from Ministry of Agriculture, Irrigation 

and Livestock (MAIL) in Afghanistan (Table 3-3). The remaining weather parameters, i.e. wind 

speed, relative humidity and solar radiation were not available for the study area, therefore, the 

Hargreaves method used in the SWAT modeling. 
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Figure 3-7: Locations of the meteorological and hydrological stations in UKRB. 

 

Table 3.3: Shows the stations name, elevation and data availability in UKRB (MAIL, 2019; 

NAWARA, 2019). 

No Name Lat Long Elev (m) Owner Precipitation Temperature 

1 Bagh-i-Lala 35.15 69.22 1698 NAWARA Yes Yes 

2 Bagh-i-Omomi 35.15 69.29 1587 NAWARA Yes Yes 

3 Doabi 35.35 69.62 2059 NAWARA Yes Yes 

4 Keraman 35.28 69.66 2232 NAWARA Yes Yes 

5 Khawak 35.56 69.89 2405 NAWARA Yes Yes 

6 Naghlu 34.64 69.72 998 NAWARA Yes Yes 

7 Omarz 35.38 69.64 2042 NAWARA Yes Yes 

8 Pul-i-Ashawa 35.09 69.14 1624 NAWARA Yes Yes 

9 Pul-i-Surkh 34.37 68.77 2216 NAWARA Yes Yes 

10 Payin-i-Qargha 34.55 69.04 1970 NAWARA Yes Yes 

11 Qala-i-Malik 34.58 68.97 2211 NAWARA Yes Yes 

12 Tang-i-Gulbahar 35.16 69.29 1625 NAWARA Yes Yes 

13 Tang-i-Saydan 34.41 69.1 1870 NAWARA Yes No 

14 Badam Bagh 34.55 69.118 1803 MAIL Yes No 

15 Gul Khana 34.506 69.202 1793 MAIL Yes No 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  32 

 

16 Kapisa Agri 35.026 69.346 1471 MAIL Yes No 

17 Kohestan 35.088 69.329 1536 MAIL Yes No 

18 Logar 33.988 69.046 1922 MAIL Yes No 

19 Dashtak 35.38 69.48 3401 MAIL Yes No 

20 Charikar 35.043 69.185 1559 MAIL Yes No 

21 Seya Gerd 34.999 68.858 1848 MAIL Yes No 

 

Note: NAWARA= National Water Affairs Regulation Authority, MAIL: Ministry of Agriculture, 

Irrigation and Livestock. 

 

3.9 Gap filling (observed precipitation and temperature) 

Most of the hydro-meteorological stations have missing values (gaps) for months or even for 

years, due to the past several years of war and the technical problems in KRB. So, to fill the gaps 

of the precipitation and temperature data, the Inverse Distance Weighting (IDW) interpolation 

method is used in GIS. The IDW was selected based on stations elevation and distance. The average 

values from nearest stations calculated to extract the value for target station. For some stations 

which their closest stations also had gaps in the same period of time, the average of all past years 

(e.g., 2009-2019) calculated for that station and were used in the model. The maximum and 

minimum temperature data were available only for 12 stations inside the basin which belongs to 

NAWARA, but the temperature data from 11 station were used in the modeling because Tang-i- 

Saidan station had gaps for many years, therefore excluded in this study. Table 3-3 shows the 

station details including coordinates, elevation, and data availability in the study area. The 

Hargreaves method was chosen for estimation of Potential Evapotranspiration (PET), because this 

method use the minimum, maximum and mean air temperatures only for calculation of PET 

(Neitsch et al., 2011). 

3.10 Hydrology (discharge) data 

Daily observed discharge data from January 2010 to September 2018 in 6 hydrological stations 

installed on different tributaries in KRB were acquired from NAWARA. The discharge data were 

used during calibration and validation process of the SWAT model. The choice of these stations 

was made in a way to make sure that there were no storage areas or reservoirs or any major 

diversions that could possibly influence the discharge at the monitoring points. Table 3-4 shows 

characteristics of the selected hydrologic stations used in calibration and validation. 
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Table 3.4: Shows the observed flow stations used during calibration and validation periods. 

No Stations Latitude Longitude Elevation (m) Location 
Drainage area 

(Km²) 

1 
Pul-i-

Ashawa 
35.0888 69.141886 1624 Gurband river 4008 

2 
Sang-i- 

nawishta 
34.41818 69.191130 1813 Logar river 9718 

3 Shukhi 34.93616 69.484394 1374 Panjshir river 10840 

4 
Tang-i-

Gulbahar 
35.15932 69.288683 1625 Panjshir river 3527 

5 
Tang-i-

Saydan 
34.40897 69.104411 1870 Maidan river 1642 

6 
Tangi-i-

Gharu 
34.56988 69.402169 1775 Kabul river 12810 
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4 METHODOLOGICAL APPROACH USED 

The methodology adopted in this study includes the application of Soil and Water Assessment 

Tool (SWAT) for current water availability analysis, bias corrections of precipitation and 

temperature from four RCMs, and the impact of climate change on hydrology in the Upper Kabul 

River Basin (UKRB) in Afghanistan. A detailed description of method is given in the following 

sections. 

4.1 Development of SWAT hydrological model for UKRB 

A distributed hydrologic model can be used for analyzing hydrologic process, planning, and 

managing water resources, investigating water quality, and predicting climate change. Thus, the 

Soil and Water Assessment Tool (SWAT 2012, VER 2018/Rev 670) (Arnold et al., 1998; 

Srinivasan et al., 1998; Winchell et al., 2013) is used to estimate the runoff, analyze the 

components of water balance, and to predict the impacts of climate change on water availability 

in the UKRB.  

During the modeling setup, the first procedure performed was the watershed delineation. The 

basin was delineated using the Geographic Information System (GIS) tool. The SWAT model is 

able to divide the basin to sub-basins and Hydrologic Response Units (HRUs). Therefore, after 

completing watershed delineation, three spatial datasets like; slope, land use, and soil type were 

used to determine HRUs. The input data were preprocessed before using in the model. Using the 

HRU as a basis, all the components of water balance can be determined for similar lands having 

the same topography, land use, and soil types, assuming that similar lands would share similar 

hydrologic characteristics (Ayoubi and Dongshik, 2016; Kouchi et al., 2017; Mengistu, van 

Rensburg and Woyessa, 2019). The details of procedure for a basin delineation and HRUs can be 

found in (Neitsch et al., 2011; Winchell et al., 2013). Afterwards, the preprocessed climatic data 

were fed to the model, containing rainfall, minimum temperature and maximum temperature. The 

data gaps were filled using the Inverse Distance Interpolation method (IDW) in meteorology 

stations, and the SWAT weather generator (WGEN) process. The runoff generation method was 

set to be estimated with the Soil Conservation Curve Number (SCS-CN) method, and the potential 

evapotranspiration was estimated using Hargreaves equation (2), (Neitsch et al., 2011). The 

Hargreaves equation used in SWAT was published in 1985 as temperature-based method 

(Hargreaves and Samani, 1985). 
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𝜆𝐸0 = 0.0023 . 𝐻0 . (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 . (𝑇𝑎𝑣𝑒 + 17.8 )                                                      (2) 

Where, 𝜆 is the latent heat of vaporization (MJ Kg -1), 𝐸0 is potential evapotranspiration (mm day-

1), 𝐻0 is the extra-terrestrial radiation (MJ M-2 day -1), Tmax is the maximum air temperature for a 

given day (0C), Tmin is the minimum air temperature for a given day (0C), andTave is the mean air 

temperature for a given day (0C). The channel water routing was simulated by variable storage 

routing, and the rainfall distribution was simulated by mixed exponential method. After all the 

above processes were completed, the SWAT simulation was activated.  

The SWAT model was set to run continuously on daily base, and on monthly intervals from 1st 

January 2009 till 31st December 2019 (11 years), and a one-year warm-up period (2019) was 

selected to stabilize the model. Thus, a 10-year period of hydrologic variables was simulated for 

the studied basin (excluding the warm-up period). Most researchers in hydrology related studies 

have used the Nash-Sutcliffe Efficiency (NSE) and R2 to assess the model accuracy and 

applicability. Hence, the NS equation is selected in our study during calibration and validation 

process. During winter, the Kabul Basin receives and stores a substantial amount of snowfall, and 

during summer the snow melts from the high altitudes. Therefore, the snowmelt has been 

considered during development and calibration of the SWAT model for UKRB. Equation (3) 

illustrates how snowmelt is calculated in SWAT: 

SNO𝑚𝑙𝑡 = 𝑏𝑚𝑙𝑡  ∗  sno𝑐𝑜𝑣  ∗
𝑇𝑠𝑛𝑜𝑤 + 𝑇𝑚𝑎𝑥

2
  −  𝑇𝑚𝑙𝑡                                                           (3) 

Where, SNOmlt is the amount of snow melt per day (mm water equivalent), bmlt is the melt factor 

(mm day-1 °C-1), snocov is the fraction of the hydrological response unit’s area covered by snow, 

Tsnow is the temperature below which precipitation is considered as snow fall (°C), Tmax is the 

maximum temperature on a given day (°C), and Tmlt is the base temperature above which snow 

melt is allowed. The model incorporates the leap year in its calculations automatically. The 

Equation (4) can be used to estimate the snow melt factor or bmlt. 

𝑏𝑚𝑙𝑡 =
𝑏𝑚𝑙𝑡6  +  𝑏𝑚𝑙𝑡12

2
  +  

𝑏𝑚𝑙𝑡6  −  bmlt12

2!
 𝑆𝑖𝑛  [

2𝜋

365
 (𝑑𝑛  −   81)]                         (4) 

Where, bmlt is the snow melt factor (mm day-1 °C-1), bmlt6 is the melt factor for 21 June (mm day-

1 °C-1), bmlt12 is the melt factor for 21 December (mm day-1 °C-1), and dn is the day number of 

the year, where 1 is for 1st of January and 365 is for 31st December  (Winchell et al., 2013; Iqbal 

et al., 2018).  
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After calibration and validation of the model, the bias corrected precipitation and temperature 

data added to analyze the future climate change impact on runoff and water availability in UKRB. 

The framework, showing the major procedures in the simulation process is summarized in Figure 

4-1. The following paragraphs describes the details related to the data input processing used for 

the simulation of the hydrology in the UKRB. 

 

Figure 4-1: Flowchart for the processing of data, model setup, calibration and validation in 

UKRB. 

 

4.2 Input Data for SWAT 

Data gathering and processing is the main important and first step in hydrological modeling and 

climate change impact assessment. The spatial data required for SWAT includes Digital Elevation 

Model (DEM), land cover and land use, and soil characteristics. In addition, the meteorological 

data is required to model the basin includes daily rainfall, maximum temperature, minimum 

temperature, relative humidity, wind speed, and solar radiation. The hydrology data is required for 

calibration and validation steps. In this study, the data collected, preprocessed and used to estimate 

the water availability in the UKRB includes: 
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1. Digital Elevation Model (DEM) obtained from (U.S. Geological Survey, 2014).  

2. Land use and land cover data obtained from Food and Agriculture Organization in 

Afghanistan (FAO, 2010). See more details is in section 3.6. 

3. Soil data obtained from FAO-website and is available worldwide (FAO, 1971). See more 

details is in section 3.7.Daily precipitation and temperature obtained from the National Water 

Affairs Authority (NAWARA) and from Ministry of Agriculture, Irrigation and Livestock 

(MAIL) in Afghanistan (MAIL, 2019; NAWARA, 2019). See more details is in section 3.8. 

4. To project the future climate change impacts, the precipitation and temperature data obtained 

from South Asia Domain of Coordinated Regional Downscaling Experiment (SA-

CORDEX), and their corresponding CMIP5 driving GCMs hosted by the German Climate 

Computing Centre (DKRZ) (CMIP5-DKRZ, 2021). See more details is in section 4.7.2. 

 

The data source with their spatial and temporal resolutions used in the SWAT are depicted in the 

Table 4-1. The SWAT hydrological model integrates data with different spatial resolutions, such 

as soil, land cover, and elevation by using a structured modeling approach. This ensures that these 

datasets, despite their varying scales, contribute effectively to simulating water flow, sediment 

transport, and nutrient cycling (Srinivasan and Arnold, 1994; Neitsch et al., 2011). The SWAT 

starts with DEM to delineate the watershed into multiple sub-basins (Srinivasan and Arnold, 1994). 

 

Table 4.1: Sources of data used for the present and future simulations of runoff in the UKRB. The 

data description includes, data type, time period the data used and the provider of the data. 

Data Type Name Resolution Period  Source 

Spatial data 

DEM 30 m - 

USGS Website, 

https://earthexplorer.usgs.gov 

Land use 30 m - 

FAO/MAIL,https://www.fao.org/publi

cations/card/en/c/21ba617f-cbaa-498f-

a8cd-0ec49daea6ab/ 

Soil type 

1:5000,000, 

or 50 km - 

Harmonized world soil database 

v1.2 | FAO SOILS PORTAL | Food 

and Agriculture Organization of the 

United Nations 

Meteorological data 
Precipitation, 

Temperature Daily 2009-2019 NAWARA, MAIL 

Hydrological data Discharge Monthly 2010-2018 NAWARA 

Historical and future data 

APHRODITE data 
Precipitation, 

Temperature 0.25° 1986-2005 

https://www.chikyu.ac.jp/precip/englis

h/products.html 

RCMs output 

(RCP4.5 & RCP8.5) 

Precipitation, 

Temperature 0.44° 

2030-2049 

2080-2099 

https://esgf-data.dkrz.de/search/cmip5-

dkrz/ 

https://earthexplorer.usgs.gov/
https://www.fao.org/publications/card/en/c/21ba617f-cbaa-498f-a8cd-0ec49daea6ab/
https://www.fao.org/publications/card/en/c/21ba617f-cbaa-498f-a8cd-0ec49daea6ab/
https://www.fao.org/publications/card/en/c/21ba617f-cbaa-498f-a8cd-0ec49daea6ab/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.chikyu.ac.jp/precip/english/products.html
https://www.chikyu.ac.jp/precip/english/products.html
https://esgf-data.dkrz.de/search/cmip5-dkrz/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
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The DEM is usually at a finer resolution (e.g., 30m or 90m) and determines topography, 

drainage networks, and flow direction. The DEM is usually at a finer resolution (e.g., 30m or 90m) 

and determines topography, drainage networks, and flow direction (Srinivasan and Arnold, 1994).  

SWAT further divides sub-basins into Hydrologic Response Units (HRUs). The HRUs are 

homogeneous land units created by overlaying soil, land use, and slope classes which allows 

SWAT to simulate water and nutrient cycles for specific land characteristics (Neitsch et al., 2011). 

This is how SWAT integrates the different resolutions of input data such as landcover, soil and 

slope classes. SWAT defines different slope categories within sub-basins, which allows it to 

capture variation in runoff due to terrain steepness. The overlay of these datasets leads to the 

creation of HRUs, each of which has a unique combination of soil type, land cover, and slope class. 

Each HRU behaves homogeneously with respect to hydrological processes, meaning it has 

consistent infiltration, runoff, evapotranspiration, and nutrient dynamics (X. Zhang, R. Srinivasan 

and M. Van Liew, 2008). 

To combine datasets of different resolutions effectively, SWAT uses the following approaches: 

1) resampling and aggregation method which coarser datasets like landcover may be resampled or 

aggredated to match the DEM or to fit within the sub-basin boundaries. For example, land cover 

data at 1km resolution might be averaged or reclassified into fewer categories to align with the 

smaller sub-basins created from a higher-resolution DEM., and 2) the dominant or threshold 

approach during defining the HRUs (Gassman et al., 2007). So, in this study, we used the threshold-

based method in the SWAT for overlaying of the datasets and creating the HRUs. After simulating 

processes at the HRU level, SWAT aggregates results back up to the sub-basin and watershed level. 

This approach allows the model to produce meaningful watershed-scale outputs despite the initial 

variation in data resolution (Abbaspour et al., 2015). 

4.3 Digital Elevation Model (DEM) 

Digital Elevation Model (DEM) is used to define the topography of study area, delineate the 

sub-basin and stream networks in the modelling process. The resolution of the DEM is the most 

critical input parameter when developing a SWAT model (Gassman et al., 2007). In general, the 

quality of the DEM strongly has impacts on final output of the hydrological model (Chaubey et al., 

2005; Ayoubi, 2017). Therefore, it is wise to use the finest available DEM data for model 

application, if available. In this research the Shuttle Radar Topographic Mission (SRTM) DEM 
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with 30 m resolution obtained from USGS website (https://earthexplorer.usgs.gov) (U.S. 

Geological Survey, 2014). To prepare the DEM of the study area, 9 tiles of DEM were obtained, 

merged and then clipped in Arc GIS. These tiles are in 30m x 30m resolution and 1 x 1-degree 

latitude and longitude wide. The DEM was filled in the ArcMap using the raster editor tool and 

converted from geographic coordinate system (GCS) to Universal Transverse Mercator (UTM) 

coordinate system before using in SWAT. The statistical parameters of sub basin such as, slope 

gradient, slope length, and stream network characteristics (for instance: primary, secondary, mean 

rivers) calculated and derived from DEM during the model construction. The maximum elevation 

ranges to 5,694m and the minimum elevation ranges to 995m from see level in the UKRB (Figure 

3-1 in chapter 3).  

4.4 Model calibration  

The successful application of a hydrologic model is highly dependent on the calibration, 

sensitivity and uncertainty analysis of parameters (Abbaspour, 2015; Mengistu, van Rensburg and 

Woyessa, 2019). In this study, two steps were used for calibration of the model; 1) the manual 

calibration helper in SWAT for parameterizations until a convenient result of simulated discharge 

obtained and; 2) the automatic calibration approach using the Sequential Uncertainty Fitting 

version-2 (Sufi-2) algorithm in the SWAT-CUP (SWAT Calibration and Uncertainty Program) 

(Abbaspour, Johnson and van Genuchten, 2004; Abbaspour, 2015). Sufi-2 is one of the stochastic 

calibration programs in SWAT-CUP and is a semi-automated inverse modelling procedure based 

on Latin Hypercube Sampling. A detailed description of SUFI-2 can be found in (Abbaspour, 

Johnson and van Genuchten, 2004; Abbaspour, 2015). In this study first the daily calibration, 

following the monthly calibration was performed using discharge at 6 gauging stations. The 

calibration performed from January 2010 to December 2016 (i.e., 7 years) in the UKRB. SUFI2 

has many options of model performance indicators. For this study, the Nash-Sutcliffe coefficient 

(NS) was used as a major objective function in the calibration and validation process  (Nash and 

Sutcliffe, 1970). The coefficient of determination (R2), percent bias (PBIAS) (Yapo, Gupta and 

Sorooshian, 1996), and Kling-Gupta efficiency (KGE) coefficient (Gupta et al., 2009) were also 

additional criteria used for the evaluation. Equations (5), (6), (7), (8) were used to calculate the 

performance indices by comparing the observations and estimated discharge in 6 stations. 

NS =  1 −  
∑ (Qo,i−Qs,i)

2
i

∑ (Qo,i−Qs)
2

i

                                                                                                  (5) 

https://earthexplorer.usgs.gov/
https://www.sciencedirect.com/science/article/pii/S2214581819301326#eq0005
https://www.sciencedirect.com/science/article/pii/S2214581819301326#eq0010
https://www.sciencedirect.com/science/article/pii/S2214581819301326#eq0015
https://www.sciencedirect.com/science/article/pii/S2214581819301326#eq0020
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R2 =
∑ [(Qo,i−Qo)(Qs,i−Qs)]

2
i

∑ (Qo,i−Qs) ∑ (Qs,i−Qs)
2

i

 

i

                                                                                             (6) 

PBIAS =
∑ (Qo,i−Qs,i)∗100n

i=1

∑ (Qo,i)n
i=1

                                                                                              (7) 

KGE =  1  −  √(r − 1)2  +   (
σs

σO
− 1)

2

+   (
μs

μo
− 1)

2

                                                   (8) 

Where in equations (5-8), Q is discharge, Q is mean of discharge, o and s are observed and 

simulated, i is the ith observed or simulated value, r is the linear scaling correlation between 

observed and simulated, σ is the standard deviation and μ is the mean. 

Generally, the model simulations are called satisfactory if NSE > 0.50, the R2 > 0.60 and the 

PBIAS is to be in range of approximately ± 25% (D. N. Moriasi et al., 2007). A higher efficiency 

value indicates a more accurate prediction of observations, that’s why authors tend to prefer higher 

values over lower ones (i.e., KGE = 1). Negative values of PBIAS indicate that the model 

overestimates flow while the positive values of PBIAS indicate underestimated flow (D. N. Moriasi 

et al., 2007).  

4.5 Sensitivity and Uncertainty analysis 

The sensitivity analysis conducted based on One-at-a-time (OAT) sampling method to see the 

impact of parameters independently to streamflow. Then, the sensitivities of all parameters selected 

by one-at-a-time option were further prioritized by global sensitivity analysis option in SWAT-

CUP. To prioritize the sensitive parameters, the p-value and t-state of global sensitivity procedure 

were used (Abbaspour et al., 2015; Mengistu, van Rensburg and Woyessa, 2019). The sources of 

model uncertainty could be from driving variables (e.g. inputs), the conceptual model itself, the 

uncertainty in measured data, or the uncertainty during parametrization (Abbaspour et al., 2015; 

Mengistu, van Rensburg and Woyessa, 2019). The propagation of all sources of model uncertainty 

to parameters and model outputs is expressed as the 95 % probability distributions. The 95 % 

probability distribution were calculated at the 2.5 % and 97.5 % levels of cumulative distribution 

of an output variable and it is called 95 % prediction uncertainty (95PPU) (Abbaspour et al., 2015). 

SWAT-CUP uses two statistical indicators to quantify all the sources of uncertainty includes the 

p-factor which is the percentage of observed data enveloped by the modelling results (95PPU), and 

the R-factor which is the thickness of the 95PPU envelop.  
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4.6 Model Validation 

Validation is essential to trust the model’s performance (D. N. Moriasi et al., 2007).  The 

observed daily discharge was available from January 2017 to December 2018 (i.e. 1 year & 9 

months) and have been used to validate the SWAT model at daily and monthly time scales in upper 

Kabul river basin. 

4.7 Bias correction of temperature and precipitation from RCMs 

Bias correction is the process of removing the systematic biases in the RCMs output with reference 

to the observed data for the historical period and applying the developed method for bias correction 

of future data (Dutta and Bhattacharjya, 2022). Tow types of data were used for bias corrections 

and climate change analysis: (1) the global APHRODITE (Asian Precipitation – Highly Resolved 

Observational Data Integration Toward Evaluation) precipitation and temperature dataset, 

available publicly; (2) Regional Climate Models (RCM) datasets (Table 4-2). The different data 

types used in this study, methods and tools used for performing bias corrections are explained in 

the sections bellow.  

4.7.1 Historical data description (APHRODITE) 

Due to lacking access of historical observations of daily precipitation and temperature in Kabul 

river basin, analyzing the climate data based on ground station is complicated and couldn’t be 

possible. Therefore, the global APHRODITE (Asian Precipitation – Highly Resolved 

Observational Data Integration Towards Evaluation) precipitation and temperature grid datasets 

which are available in the public domain are used and accepted as observations for baseline period 

(Table 4-2). According to Ghulami (2017) the APHRODITE precipitation and temperature dataset 

is more suitable and was already validated based on ground station’s for the Kabul river basin, so 

in the lack of sufficient surface observations, these data were used as a baseline reference to 

perform bias correction and to validate the RCMs dataset. Figure 4-2 shows the location of 

APHRODITE grid stations selected in this study.  

The APHRODITE daily data cover a long period of more than 50 years (1951–2007) with a 

spatial resolution of 0.25° that is based on a dense network of rain-gauge data for Asia, including 

the Himalayas, South and Southeast Asia and mountainous areas in the Middle East. The  grid 

datasets are created primarily with  data obtained from a rain-gauge observation network  using an 

interpolation scheme (Yatagai et al., 2012). 
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Figure 4-2: Location of selected Aphrodite climate grid stations in the upper Kabul river basin. 

4.7.2 Climate projection experiments (SA-CORDEX) 

Temperature and precipitation data were obtained from the Regional Climate Models (RCMs) 

of the South Asia domain of CORDEX (Coordinated Regional Downscaling Experiment) hosted 

by the German Climate Computing Centre (DKRZ) (CMIP5-DKRZ, 2021). CORDEX focuses on 

high-resolution climate information produced by different dynamical and statistical downscaling 

techniques, and aims to provide coordinated sets of high-resolution regional climate projections 

worldwide. Most of the CORDEX-RCM simulations are openly available through the Earth System 

Grid Federation (ESGF) and through regional data portals that are widely used for vulnerability, 

impacts, and adaptation (VIA) studies, which in turn guide decision-making at regional and local 

levels (Nikulin and Legutke, 2016). Four RCM models under RCP4.5 and RCP8.5 were used in 

the study (Table 4-2). The CORDEX RCM’s data is presented on a 0.44° x 0.44° grid resolution; 

however, it still required bias correction before analysis.  

In order to use the gridded precipitation and temperature products as inputs for hydrological 

applications and climate impact studies, it is necessary to assess the accuracy of these products 
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against the reference datasets. The RCM’s data was selected based on its availability for 

Afghanistan and considering the previous climate change studies (Aich, N. A. Akhundzadah, et 

al., 2017b; Ghulami, Babel and Shrestha, 2017; Sidiqi, Shrestha and Ninsawat, 2018). The future 

analysis was performed in two periods; the 2040s (2030-2049), and the 2090s (2080-2099) which 

were then compared with the baseline period of 1986-2005 to summarize the results. 

Table 4.2: Description of the Aphrodite data and the regional climate models selected for this study. 

Precipitation and temperature gridded dataset 

Name of product Resolution Domain Institution Availability Reference 

APHRODITE 

MAV1101R1 
0.25°x 0.25°     

Monsoon 

Asia 60° 

E-150° E, 

15°S-55°N 

Japan 

Meteorolog

ical Agency 

(JMA) 

1951-2007 

https://www.chi

kyu.ac.jp/precip

/english/product

s.html 

 

CORDEX SA RCMs (Regional Climate Models) 

Model RCMs Driving GCMs Institution Domain Resolution Reference 

1 RCA4 CCCMa-CanESM2 SMHI WAS-44 
0.44° x 

0.44° 

https://esgf-

data.dkrz.de/sea

rch/cmip5-dkrz/ 

 

2 RegCM4-4 
NOAA-GFDL-

ESM2M 
IITM WAS-44 

0.44° x 

0.44° 

3 
REMO200

9 

MPI-M-MPI-ESM-

LR 
MPI-CSC WAS-44i 

0.44° x 

0.44° 

4 RCA4 MIROC-MIROC5 SMHI WAS-44 
0.44° x 

0.44° 

WAS: Stands for South Asia domain, 44 is the grid resolution, and suffix i mean regular grid; 

SMHI: Swedish Meteorological and Hydrological Institute, Rossby Centre (Sweden); IITM: Indian 

Institute of Tropical Meteorology (India); and MPI-CSC: Max Planck Institute for Meteorology - 

Climate Service Center at Germany. 

4.7.3 Bias correction Methods 

Temperature and precipitation in the RCMs often shows significant biases due to systematic 

model error or discretization and spatial averaging within grid cells which prevents the use of 

RCM’s data as direct input for hydrological modeling (Teutschbein and Seibert, 2012). Therefore, 

bias correction procedures are essential to minimize the biases between simulated variables with 

the observations. Following the evaluation of bias correction methods in previous studies 

(Teutschbein & Seibert 2012; Mendez et al. 2020), three bias correction methods were used to 

adjust the biases in historical and future daily precipitation and temperature over UKRB, including 

the linear scaling (Ls), Delta change (Dc) and the Empirical quantile mapping (Eqm) methods. The 

Ls and Dc methods were performed using the CMhyd (Climatic Model data for hydrologic 

https://www.chikyu.ac.jp/precip/english/products.html
https://www.chikyu.ac.jp/precip/english/products.html
https://www.chikyu.ac.jp/precip/english/products.html
https://www.chikyu.ac.jp/precip/english/products.html
https://esgf-data.dkrz.de/search/cmip5-dkrz/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
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modeling) tool (Rathjens et al., 2016). However, the  Eqm method was performed using the Q-map 

package (functions: ‘fitQmapQUANT’ and ‘doQmapQUANT’) in the R programming language 

(Lukas, 2016). The Eqm method was selected because the previous studies showed that this method 

yielded the best results for precipitation bias correction (Gudmundsson et al., 2012a; Enayati et al., 

2021). The present study applied a variety of evaluation techniques, including visual comparison 

of simulations against APHRODITE data and the application of quantitative performance metrics. 

Standard deviation and correlations were also compared to assess the performance of each RCM 

and each bias correction method using Taylor diagrams. More details related to methods used are 

described in the following sections. 

4.7.4 CMhyd (Climatic Model data for hydrologic modeling) Tool 

CMhyd is designed to extract and perform bias corrections for each station. The underlying idea 

is to identify biases between observed and simulated historical climate variables to parametrize a 

bias correction algorithm that is used to correct simulated historical climate data. Figure 4-3 shows 

the methodology used for bias correction of Ls and Dc using CMhyd in this study. Bias correction 

procedures employ a transformation algorithm for adjusting climate model output (Rathjens et al., 

2016). 

Several bias correction methods have been incorporated for temperature and precipitation bias-

correction in CMhyd with the ability to analyze on a daily timescale. These methods are Linear 

scaling (Ls), Delta change (Dc), Distribution mapping (Dm), Local intensity scaling (Li) for 

precipitation, Power transformation (Pt) for precipitation, and Variance scaling (Vs) for 

temperature (Teutschbein and Seibert, 2012; Rathjens et al., 2016). Bias correction methods are 

assumed to be stationary, i.e. the correction algorithm and its parametrization for current climate 

conditions are assumed to be valid for future conditions as well. Thus, the same correction 

algorithm is applied to the future climate data. However, it is unknown how well a bias correction 

method performs for conditions different from those used for parametrization (Rathjens et al., 

2016). A good performance during the evaluation period does not guarantee a good performance 

under changed future conditions. A previous study (Teutschbein and Seibert, 2012) provided 

mathematical descriptions for all these methods. Following the evaluation of bias correction 

methods in previous studies (Teutschbein and Seibert, 2012; Mendez et al., 2020), the Ls and Dc 

methods were selected to adjust the temperature and precipitation for the baseline and future 

scenarios using CMhyd tool. 
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Figure 4-3: Method used for delta change and linear scaling approach using CMhyd tool. 

4.7.5 Linear Scaling (Ls) method: 

Linear scaling (Ls) is the most straightforward bias correction approach used in several studies 

(Teutschbein and Seibert, 2012; Shrestha, Acharya and Shrestha, 2017; Selvakumar and 

Gunavathi, 2021). Ls adjusts the mean monthly values with a perfect agreement with the mean 

monthly observations. Precipitation is corrected with a factor based on the ratio of long-term 

monthly mean observed and control data. Temperature is corrected with help of an additive term 

based on the difference of long-term monthly mean observed and control data, (Teutschbein and 

Seibert, 2012). The applied correction factors and addends are assumed to remain unvaried even 

for future conditions (Teutschbein and Seibert, 2012). However, the Ls approach can correctly 

adjust the climatic factors only when the monthly mean values are included (Selvakumar and 

Gunavathi, 2021). The method can be expressed in the equations 9-12. 

𝑃𝐶𝑜𝑛𝑡
∗ (𝑖) = 𝑃𝑟𝑎𝑤 (𝑖)  × [  

µ𝑚 (𝑃𝑜𝑏𝑠 (𝑖))

 µ𝑚 (𝑃𝑟𝑎𝑤 (𝑖))
 ]                                                                                (9) 

𝑃𝑆𝑐𝑒𝑛
∗ (𝑖) = 𝑃𝑟𝑎𝑤 (𝑖)  × [  

µ𝑚 (𝑃𝑜𝑏𝑠 (𝑖))

 µ𝑚 (𝑃𝑟𝑎𝑤 (𝑖))
 ]                                                                             (10) 

APHRODITE data 
1. Precipitation 
2. Temperature 

RCMs-Baseline 
1. Precipitation 
2. Temperature 

Bias correction methods 
usd in CMhyd 

Identify bias/Parameterize bias 
correction algorithms 

RCMs-Future 
1. Precipitation 
2. Temperature 

Apply bias correction algorithms. 

Bias-corrected 
Results 

Analyzed the 
future changes  
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𝑇𝐶𝑜𝑛𝑡
∗ (𝑖) =  𝑇𝑟𝑎𝑤(𝑖) +  µm (𝑇𝑜𝑏𝑠(𝑖)) − µm(𝑇𝑟𝑎𝑤(𝑖))                                                      (11) 

𝑇𝑆𝑐𝑒𝑛
∗ (𝑖) =  𝑇𝑟𝑎𝑤(𝑖) +  µm (𝑇𝑜𝑏𝑠(𝑖)) − µm(𝑇𝑟𝑎𝑤(𝑖))                                                      (12) 

Where, P* and T* represent the final bias-corrected precipitation and temperature, Cont and Scen 

shows the control (historical) and future periods, Praw and Traw shows raw precipitation and 

temperature from RCMs, respectively. (i) is time interval (daily), Pobs, Tobs is the observed 

precipitation & temperature, and µm is the mean values for the month. 

4.7.6 Delta Change (Dc) method: 

Delta change method is comparatively simple and widely used in future climate change 

projections (Selvakumar and Gunavathi, 2021). This method computes differences between current 

and future RCM simulations and adds these changes to the observed time series. Applying the Dc 

method assume that GCM/RCM simulate relative changes more reliably than absolute values 

(Ghulami et al., 2022). The advantage of Dc approach is to consider the relative changes, and 

therefore these changes can be applied to the baseline observations any time they become available 

(Ghulami et al., 2022). The Dc method was used for precipitation and temperature data using 

equations (13-14); more details about the Dc could be found in (Teutschbein and Seibert, 2012; 

Rathjens et al., 2016) respectively. 

𝑃𝐶𝑜𝑟𝑟(𝑖) =  𝑃𝑜𝑏𝑠(𝑖) ∗  
𝜇𝑚 (𝑃𝐶𝑜𝑟𝑟(𝑖))

𝜇𝑚(𝑃𝑟𝑎𝑤(𝑖))
                                                                                  (13) 

𝑇𝐶𝑜𝑟𝑟(𝑖) = 𝑇𝑜𝑏𝑠(𝑖) + 𝜇𝑚(𝑇𝑐𝑜𝑟𝑟(𝑖)) − 𝜇𝑚(𝑇𝑟𝑎𝑤(𝑖))                                                      (14) 

Where Pobs, Praw and Pcorr denote observed, raw and corrected precipitation, while Tobs, Traw and 

Tcorr are observed, raw and corrected temperature on the day (ith) of the month (m) respectively, 

and μm denotes the monthly mean values.  

4.7.7 Empirical quantile mapping (Eqm) 

In general, the quantile mapping (Qm) methods implement statistical transformation for post-

processing of climate modeling outputs. There are several Qm methods for adjusting the 

precipitation and temperature bias correction methods, and may not necessarily have a similar 

capability in the correction of biases in the RCM’s output (Enayati et al., 2021). These methods 

include the Empirical quantile mapping (Eqm), Empirical robust quantile mapping (ERQM), 
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Parametric transformation functions (PTF), Distribution derived transformation (DIST), 

Smoothing splines (SSPLIN), and Quantile delta mapping (QDM). The Eqm method was selected 

in this study because the previous studies showed that the this method performed the best results 

in bias correction (Gudmundsson et al., 2012a; Enayati et al., 2021). Eqm is a non-parametric 

method using the non-parametric transformation function (Qian and Chang, 2021). Eqm estimates 

values of the empirical cumulative distribution functions (CDFs) of observed and modeled time 

series for regularly spaced quantile levels (0, 0.01…, 0.99, 1.00). Accordingly, Eqm uses the linear 

interpolations to adjust a datum with unavailable quantile values (Enayati et al., 2021). The bias 

corrected future projection at time-t via quantile mapping can be mathematically expressed as 

below equation. 

𝑥°(𝑡) =  𝐹𝑜,ℎ 
−1 [ 𝐹𝑚,𝑓 (𝑥𝑚,𝑓(𝑡))]                                                                                                                    (15) 

Where, 𝑥° (t) denote the estimated future observation at time t during the projection period. This 

is obtained by bias correcting future model simulation via a transfer function g (  ), such that 𝑥° (t) 

= g [xm,f (t)].  𝐹𝑜,ℎ
−1 is inverse of CDF for the historical observations, Fm, f is CDF of the future climate 

models, and 𝑥𝑚,𝑓 (𝑡) is future climate model data at time t. 

4.7.8 Taylor Diagrams 

Taylor diagrams are used for evaluation of the results against the observations, and designed to 

graphically show which of several approximate representations (in this case, a collection of climate 

models) is most realistic or how close a set of patterns match observations (Taylor, 2001). This 

diagram, facilitates the comparative assessment of different models. It is used to quantify the degree 

of correspondence between the modeled and observed variables (in our case precipitation and 

temperature) in terms of three statistics: the Pearson correlation coefficient (R), the root-mean-

square error (RMSE), and the standard deviation (Std). The R should be as close to 1 as possible. 

RMSE should be as small as possible and close to zero, and the Std of the model results should be 

as close as possible to the Std of the observations.  

Taylor diagrams have been primarily used to evaluate models designed to study climate change 

and other aspects of Earth's environment (Sun et al., 2018). Taylor also noted the geometric 

connection between correlation, standard deviation, and the central pattern RMSE, and found that 

all three could be plotted simultaneously (Taylor, 2001). Generally, the plotted values are derived 

from climatological monthly, seasonal, or annual means. Because the different variables (e.g., 

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Root_mean_square_deviation
https://en.wikipedia.org/wiki/Root_mean_square_deviation
https://en.wikipedia.org/wiki/Standard_deviation
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precipitation and temperature) may have widely varying numerical values, the results are 

normalized by the reference variables. The ratio of the normalized variances indicates the relative 

amplitude of the model and observed variations. Taylor diagram combines various statistical 

indicators for multiple models on a single quadrant: The correlation coefficient values, the x-axis, 

the y-axis, delimit arcs with standard deviation values, and the internal semi-circles correspond to 

the RMSE values. The statistical indicators show the performance of the individual models in 

comparison with the observations. The RMSE measures the differences between values predicted 

by a model or estimator and the values observed. It is a good measure of accuracy. Meanwhile, the 

correlation coefficient is a measure of the correlation (linear dependence) between two variables. 

Taylor diagrams can be constructed with a number of different open source and commercial 

software packages, including: MATLAB, Python and R programming language.   

4.7.9 Need for Taylor Diagrams 

When we need to check the quality of several simulated models vs. the observations with 

different statistical tests, we should first compute the statistical analyses between the observations 

and future model’s data, then check each of the results and decide that one of the applied models 

has the better result in compare to the observations. This process is not easy when we have several 

models under various scenarios and for multiple parameters simultaneously. In this situation, the 

best method to achieve and analyses the best results in a short time will be the using of Taylor 

diagrams. 

4.7.10 How to compute Taylor Diagram? 

In general, the Taylor diagram characterizes the statistical relationship between two fields, a test 

field (a field simulated by a model) and a reference field (observations) Taylor (2005). The reason 

that each point in the two-dimensional space of the Taylor diagram can represent three different 

statistics simultaneously (i.e., the centered RMS difference, the correlation, and the standard 

deviation) is that these statistics are related by the following formula: 

E′2
=  σƒ 2 +  𝜎𝑟2 − 2σƒ 𝜎𝑟  𝑅                                                                                                       (16) 

Where R is the correlation coefficient between the test and reference fields, E' is the centered 

RMS difference between the fields, and σƒ 2 and 𝜎𝑟2 are the variances of the test and reference 
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fields, respectively. The construction of the diagram (with the correlation given by the cosine of 

the azimuthal angle) is based on the similarity of the above equation and the Law of Cosines: 

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos ∅                                                                                                         (17) 
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5 RESULT AND PERFORMANCE EVALUATION  

5.1 Calibration and validation of SWAT (current scenario) 

Model performance is usually evaluated by measuring the simulated result versus the 

observations (e.g., discharge, precipitation, temperature, sediment, etc…) in a study area. In this 

section, the results from SWAT is described in a daily and subsequently in a monthly time period 

for assessment of water availability in UKRB.   

5.1.1 Daily flow results  

The daily hydrologic model of UKRB was calibrated for the period of 2010-2016 and validated 

for 2017-2018 based on observed discharge availability. The daily graphical comparison of 

simulated and observed streamflow during calibration and validation is shown in Figure 5-1. 

Model performance was satisfactory to good across the basin with worse results being obtained in 

dry areas (e.g. Sangi-i-Nawishta station in Logar river) in Table 5-1. Meanwhile, the uncertainty 

was recorded at maximum range in the peaks simulated by SWAT. There is an underestimation of 

the flow peak for some years in calibrated stations. The simulated baseflow was in a very 

reasonable fit in all stations, except for Pul-i-Ashawa, where the falling limb shows higher 

baseflow in August and September compared to the observations. Total drainage area of UKRB is 

almost 26,000 km2 and the terrain is differing from a very mountainous to flat areas with dissimilar 

climatic conditions. Therefore, to account the orographic effects, precipitation  laps rate (mm 

H2O/Km) and temperature laps rate (°C/Km) were adjusted by adding the elevation bands in the 

sub-basins (95 sub-basin) (Neitsch et al., 2011; Arnold et al., 2012). 

The statistics of model performance indicators for daily calibration and validation are shown in 

Figures 5-2  and 5-3. The main objective function used was the Nash-Sutcliffe (NS) coefficient. 

For Tangi Gulbarhar, the daily results of NS statistics showed a very good correlation, which was 

0.85 during calibration and 0.90 during validation, respectively. The NS was 0.73 and 0.68 for 

Shukhi station, 0.59 and 0.03 for Pul-i-Ashawa, 0.58 and 0.70 for Tang-i-Gharu, 0.63 and 0.57 for 

Tang-i-Saidan during calibration and validation, respectively. Whereas, the NS was 0.44, 0.14 at 

Sang-i-Nawishta station and was satisfactory over the calibration and validation period, 

respectively. 
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Figure 5-1: Comparison of daily observed and simulated streamflow during calibration (2010-

2016) and validation (2017-2018) at Tangi-gulbahar, Pul-i-ashawa, Shukhi, Tang-i-gharu, Tang-

i-saidan, and Sang-i-Nawishta stations located in UKRB. 95PPU shows the 95 percent prediction 

uncertainty. 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  52 

 

Table 5.1: Daily statistical results during calibration and validation in 6 stations of UKRB. Cal= 

calibration, Val= validation in the table. 

 
Tang-i-Gulbahar Pul-i-Ashawa Shukhi Tang-i-Gharu Tang-i-Saidan Sang-i-Nawishta 

 
Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val 

p-factor 0.83 0.47 0.74 0.3 0.73 0.19 0.16 0.20 0.38 0.23 0.64 0.07 

r-factor 1.00 0.00 0.74 0.00 0.75 0.00 0.09 0.12 0.90 0.06 1.71 0.00 

R2 0.85 0.92 0.61 0.74 0.73 0.75 0.74 0.72 0.59 0.69 0.61 0.43 

NS 0.85 0.9 0.59 0.03 0.73 0.68 0.72 0.70 0.56 0.57 0.48 0.14 

PBIAS % 5.1 -4.7 2.5 -36.3 -3.7 -16.2 3.30 10.1 24.8 -14.2 0.55 69.5 

 
Very good good Very good good good satisfactory 

 

 

Figure 5-2: Comparison of observed and simulated daily discharge by scatter plots, and its 

statistical results during calibration period (01.2010- 12. 2016) in 6 station of UKRB. 
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Figure 5-3: Comparison of observed and simulated daily discharge by scatter plots, and its 

statistical results during validation period (01. 2017- 09. 2018) in 6 station of UKRB. 

 

To further evaluate the daily runoff results of the SWAT in UKRB, the water volumes of two 

station from deferent watersheds (from upstream and downstream) were analyzed and compared. 

The difference in the daily streamflow volume of Tang-i-Gulbahar station at Panjshir river, and 

Tang-i-Saidan station at Kabul river are summarized in Table 5-2. The volume of runoff at Panjshir 

River is about 10 times greater than the volume of runoff at the Kabul river. The Logar river and 

Kabul rivers in UKRB derive their flow from winter and spring precipitation. While, the flow in 

the Panjshir river is mainly from snowmelt and glacier melt. The base flow of the Logar and Kabul 

sub-basin during the summer months is very low when the demand for irrigation water is greatest, 

whereas there is a substantial base flow in the Panjshir watershed. 
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Table 5.2: Comparison of UKRB Subbasins at two-gauge stations from (2010-2018). 

Station DA (Km2) 
AF 

(m3/Sec) 

AAF 

(Mm3/yr) 

Yield  

(m3/sec/Km2) 

Yield  

(l/sec/Km2) 

Yield/TA 

(Mm3/yr/km2) 

Tang-i-Gulbahar station at 

Panjshir river. 
2703 50 1,590 0.0182 18.17 65.88 

Tang-i-Saidan station at 

Kabul river. 
1642 5 150 0.0024 2.38 5.28 

Note: DA= Drainage area, AF= Average Flow, AAF= Annual Average flow, TA= Total Area 

 

5.1.2 Monthly calibration results 

The SWAT was calibrated for monthly runoff from 2010 to 2016, and validated from 2017 to 

2018 for assessing the monthly hydrologic response in UKRB. The monthly runoff also shows that 

the model performance is quite satisfactory to good across the basin with worse results being 

obtained for Sangi-i-Nawishta station. The monthly graphical comparison of simulated and 

observed streamflow during calibration and validation is depicted in Figure 5-4.  

The peaks in runoff shows underestimation for some years in all stations during calibration, 

(specifically is much lower for Sang-i-Nawishta at Logar river), while it is overestimated in some 

stations during validation. Although the timing of the discharge peaks is accurate for the 

calibration and validation periods, the PBIAS is still within the range in the results recorded for 

the UKRB. It is obvious from observed and simulated hydrographs (Figure 5-4) that the magnitude 

of water flow varies from year to year and usually is higher between May and August. The runoff 

peak starts in April followed by June and July each year and lasts until the end of August. Shukhi 

station at Panjshir river recorded the highest annual peak flows in June 2015 and 2016. Similar 

flow peaks can also be seen in the validation graphs (Figure 5-4). Generally, it can be seen that the 

SWAT model produced statistically satisfactory results in comparison with observations at various 

watersheds.  

The percentage of bias (PBIAS) measures the average tendency of the simulated data to be larger 

or smaller than their observed counterparts (Golmohammadi et al., 2014). The optimal value of 

PBIAS is 0.0, with low magnitude values indicating an accurate model simulation. Positive values 

indicate under-estimation bias, and negative values indicate over-estimation bias (Golmohammadi 
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et al., 2014). Moreover, the PBIAS is in a good range for all stations, except Sang-i-Nawishta. The 

PBIAS results showed as following during calibration and validation respectively.  

• Tang-i-Gulbahar: 4.2 % underestimation in calibration, 4.8 % overestimation in validation. 

• Pul-i-Ashawa: 2.6 % underestimation in calibration, 36 % overestimation in validation. 

• Shukhi: 3.7 % and 16.2 % overestimation in calibration and validation, respectively. 

• Tang-i-Gharu: 1.1 % and 10.5 % underestimation in calibration and validation, respectively.   

• Tang-i-Saidan: 22 % underestimation in calibration,  14 % overestimation in validation. 

• Sang-i-Nawishta: 58 % and 69 % underestimation in calibration and validation, respectively.  

 

 

Figure 5-4: Comparison of monthly observed and simulated stream flow during calibration 

(2010-2016) and validation (2017-2018) at Tangi-gulbahar, Pul-i-ashawa, Shukhi, Tang-i-

gharu, Tang-i-saidan, and Sang-i-Nawishta stations located in UKRB. 
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5.1.3 Monthly statistical results 

The Nash-Sutcliffe (NS) coefficient was used as a main objective function during monthly 

calibration process. Three other objective functions were also selected and analyzed: namely the 

coefficient of determination (R2), the percent bias (PBIAS) and Kling-Gupta efficiency (KGE). 

Table 5-3 shows the monthly statistical results from SWAT model. The monthly NS results was 

91 % for Tangi Gulbarhar, 79 % for Shukhi, 66 % for Pul-i-Ashawa, 85 % for Tangi-Gharu, 75 % 

Tang-i-Saidan, and 54 % for Sang-i-Nawishta stations, respectively during calibration. All stations 

had good to very good agreements between simulated and observed runoff, except Sang-i-

Nawishta which is satisfactory in this study.  

The monthly validation results showed the NS of 0.93 for Tangi Gulbarhar, 0.74 for Shukhi, 

0.16 for Pul-i-Ashawa, 0.79 for Tang-i-Gharu, 0.68 Tang-i-Saidan, and 0.21 for Sang-i-Nawishta 

stations, respectively in Table 5-3. The lower values of NS in Sang-i-Nawishta could be due to 

observed discharge error or the input precipitations in SWAT. The overall range of NS achieved 

in this study was in agreement with other similar studies performed at larger basins (Abbaspour et 

al., 2015; Ayoubi and Dongshik, 2016; Akhtar et al., 2021). In addition, good corresponding 

between other model outputs and measured data (soil moisture, evapotranspiration, etc.) might 

increase confidence in the model calibration.  

 

Table 5.3: Monthly summary statistical results during calibration and validation in 6 stations of 

UKRB. Cal= calibration, Val= validation in the table. 

 
Tangi Gulbahar Puli Ashawa Shukhi Tangi Gharu Tangi Saidan Sangi Nawishta 

 
Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val 

p-factor 0.83 0.47 0.74 0.3 0.73 0.19 0.42 0.11 0.38 0.19 0.64 0.05 

r-factor 1.0 0.0 0.7 0.0 0.0 0.0 1.4 0.0 0.9 0.0 0.1 0.0 

R2 0.92 0.95 0.67 0.82 0.79 0.8 0.89 0.83 0.78 0.78 0.79 0.73 

NS 0.91 0.93 0.66 0.16 0.79 0.74 0.85 79 0.75 0.68 0.54 0.21 

PBIAS 4.2 -4.8 2.6 -36.3 -3.7 -16.2 1.1 10.5 22.5 -13.9 58.1 69.6 

KGE 0.89 0.88 0.80 0.27 0.82 0.78 0.85 0.71 0.69 0.76 0.34 0.017 
 

v. good good v. good good good satisfactory 

 

In the calibration period, the mean and standard deviation values of simulated runoff versus 

observed runoff values are analyzed and shown in Table 5-4 for monthly interval. Based on the 

statistical results and the differences which were of small magnitude, it can be verified that the 
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SWAT model adequately simulated the runoff and hydrological parameters in UKRB, 

demonstrating its quality and potential as a numerical tool for water resources management. 

Table 5.4: The mean and standard deviations of disrcharge in calibration and validation periods. 

 
Calibration (Discharge) Validation (Discharge) 

Stations Name 

Mean  Std-Dev Mean Std-Dev 

Sim Obs Sim Obs Sim Obs Sim Obs 

Tang-i-Gulbahar 49.0 51.2 52.1 56.9 60.9 58.1 63.5 57.9 

Pul-i-Ashawa 21.6 22.2 21.7 23.3 22.2 16.3 24.0 14.8 

Shukhi 100.4 96.8 89.2 102.7 112.4 96.7 98.0 89.7 

Tang-i- Gharu 11.1 11.3 15.7 13.8 7.8 8.7 6.8 9.1 

Tang-i-Saidan 4.0 5.2 6.2 7.5 4.6 4.0 3.8 3.3 

Sang-i-Nawishta 3.0 7.1 6.4 8.8 1.1 3.6 1.7 5.1 

Sim= Simulation, Obs= Observed, Std = Standard Deviation 

5.1.4 Monthly Flow Duration Curve (FDC) 

It is essential to understand the hydrological behavior of watersheds to get more precise results 

for planning all demands for water use, through reference flow procedures Rosario et al., (2017). 

One of the alternatives to determine water availability in a watershed is the construction of flow 

duration curves (FDC). Discharges with probability of exceedance equal to or over 90 % are 

essential in hydrological studies for planning water supply, since they indicate the quantity of water 

that can be guaranteed with the corresponding certainty level. Discharges with probability of 

exceedance of 50 % are important to evaluate the maximum possible flow to be regularized. The 

probability of exceedance equal to or lower than 10 % are applied in studies associated to extreme 

flood events (Oliveira et al., 2015).  

Figure 5-5 illustrates the monthly simulated versus observed runoff duration curves in the period 

of 2010-2018 in the UKRB. By observing the FDC, it can be observed that the simulated flow 

frequency was same as observed in Tang-i-Gulbahar station at Panjshir river. The simulated flow 

frequency was underestimated compared to observed flow between 15 % - 20 %, and between 35% 

- 50% of probability of exceedance but in contrary the flow frequency was overestimated over 70% 

probability of exceedance in Pul-i-Ashawa station at Ghurband river.  

In the Shukhi station at Panjshir river, the simulated flow was under estimated below 20% of 

probability of exceedance, while it was overestimated under 40% of probability of exceedance, and 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  58 

 

as well as over 80% of probability of exceedance. Concerning the Kabul and Logar rivers, the 

simulated FDC shows underestimation between 30 % - 60 % of probability of exceedance, but 

overestimated over 80 % of probability of exceedance. In Tang-i-Saidan station, the simulated FDC 

was underestimated below 49 % and overestimated above 80 % of probability of exceedance. The 

Sang-i-Nawishta station, the simulated flow was underestimated compared to observed flow in 

below 80 % of probability of exceedance. The magnitude of difference was high in highest flow 

rates in most stations. Over 80% probability of exceedance level is considered safe for determining 

assured water supply in the basin. 

 

Figure 5-5: Flow duration curve of discharge in six hydrological stations in UKRB. 

 

5.1.5 Monthly water balance 

The outputs provided by the model are very exhaustive covering all the components of water 

balance, spatially and temporally. The sub components of the water balance that are more 

significant and were used for analyses include: precipitation, total water yield, actual 

evapotranspiration (ET). The water yield includes the surface runoff, lateral flow and base flow (or 

shallow groundwater). In other words, the total water yield is the equivalent depth in mm of flow 
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past the outlet of the watershed. These components are expressed in terms of monthly or annual 

depth of water in mm over the entire watershed area. The monthly water balance components 

including rainfall, water yield and evapotranspiration from 2010-2019 in the UKRB is depicted in 

the Figure 5-6. Average monthly total water yields (combined surface flow, lateral flow, and 

groundwater flow) supply the river flow with peaks starting in March and continues to August. 

Between February and July, the surface flow contributed more than lateral flow and groundwater 

flow with the high peaks 27 mm in May. This is due to contributions from rainfall and snow mostly 

in winter and spring months (December to May). The river flow also was mainly supplied by 

ground water (baseflow) all over the year with higher peaks between May and July. Between 

August to February, the figure obviously shows that the contribution of ground water flow was 

greater than surface runoff. Because in these months the occurrence of rain and snowfall was 

minimal, and it may be partly attributed to melt of snow and glaciers in the UKRB Figure 5-6. It 

can be seen that the water losses due to evapotranspiration are greater than water yield in UKRB.  

 

 

Figure 5-6: Simulated monthly water balance components in the UKRB. 

5.1.6 Annual water balance 

The temporal annual distribution of major water balance is depicted in the Figure 5-7, which 

includes the average annual precipitation, water yield, evapotranspiration and the groundwater 

recharge in UKRB. As shown in Figure 5-7 , the inter annual variation of rainfall for the period 

2010 to 2019 was from 287 mm to 544 mm with minimum rainfall occurred in 2018 and maximum 

rainfall occurred in 2019. While the inter annual variation of water yield was from 113.8 mm to 
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199.5 mm for the same period. This shows that there is some degree of fluctuations in the rainfall 

and runoff pattern in the study area.  

 

Figure 5-7: Simulated annual water balance components for UKRB (2010-2019). 

 

By inserting an input of 406 mm average precipitation, the model simulation showed the output 

as 148 mm total water yield that accounts for 39 % of the basin water balance. While due to larger 

potential evapotranspiration of 1,790  mm, the average ET was estimated greater than the total 

water yields as 246.6 mm or 61 % of the total hydrological parameters that goes back to 

atmosphere. The surface runoff accounts for 24 % and the total aquifer recharge accounts 15.1 % 

of the annual hydrological cycle in UKRB, figure 5-8. Moreover, the soil characteristics of the 

basin allow percolation of 61 mm. 

5.1.7 Annual cumulative runoff 

The annual cumulative runoff calculated for each year and shows a very close result between 

observed and simulated runoff (Figure 5-9). From the cumulative runoff results, it is also indicated 

that model predicted runoff is in good agreement with observations, except the Sang-i-Nawishta 

station.  
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Figure 5-8: The annual water balance, precipitation and snowmelt outputs from SWAT in UKRB 

from 2010-2019. 

 

 

Figure 5-9: Annual cumulative of observed and simulated runoff from 2010 to 2018 at Six 

hydrologicalstations located in UKRB. 
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The total annual runoff from two stations; Tang-i-Gulbahar (TG) and Pul-i-Ashawa (PA) 

situated in the upper basins of study area were compared with Shukhi station which is located in 

the lower subbasins of the UKRB (Figure 5-10). The average annual total runoff from TG + PA 

together were estimated at 2,248 Million m3 per year, while there are 3,158 Million m3 per year 

of average annual runoff at the Shukhi station. The total runoff from January 2010 to September 

2018 showed higher flow at Shukhi compared to the sum of the TG and PA stations. In addition, 

there are some other small river basins which contribute to the total runoff in Shukhi. This indicates 

that the model estimated the runoff and hydrology parameters well in UKRB.  

 

Figure 5-10: Comparison of annual runoff from 01.2010 to 09.2018 between Shukhi station and 

total of Tang-i-Gigabar (TG) and Pul-i-Ashawa (PA) stations. The Shukhi station located in 

lower sub-basin, while the TG and PA stations located in upper Subbasins. 

 

5.1.8 Spatial hydrological outputs 

The spatial hydrological outputs of the SWAT model, after calibration and validation, are 

presented in Figure 5-11 for the period 2010-2018. The spatial maps in Figure 5-11 include key 

parameters such as precipitation, snowmelt, surface runoff, soil available water content (SWAve), 

percolation, groundwater recharge (GW), evapotranspiration (ET), potential evapotranspiration 

(PET), total water yield (Total WYLD), and sediment yield (Sidm-YLD) for the sub-catchments 

within the Upper Kabul River Basin (UKRB). The elevation of the high mountains significantly 

influenced the spatial distribution of hydrological parameters across the UKRB. The northern part 

of the basin experiences higher precipitation and snowfall, whereas the southern regions exhibit 

considerably less rainfall and snowfall. Correspondingly, surface runoff, soil percolation, 
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groundwater contribution to streams and rivers, and total water yield are greater in the higher 

elevation catchments compared to the lower elevation ones. However, the soil available water 

content is higher in the southern, lower elevation catchments of the UKRB, as depicted in Figure 

5-11.  

The spatial maps also indicate that both ET and PET are greater in the southern and western 

parts of the basin, where higher temperatures contribute to increased water evaporation and 

evapotranspiration. This results in more water transitioning to the gaseous phase and water losses 

due to evapotranspiration in the lower elevation areas. Sediment yield is notably higher in the 

mountainous regions, particularly around the peaks, while most other sub-catchments exhibit 

sediment loadings of less than 50 tons per hectare within the UKRB. It is important to note that 

sediment transport along watercourses was outside the scope of this study and, therefore, was not 

calibrated as part of the SWAT model. 
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Figure 5-11: The spatial maps of hydrological parameters including the precipitation, snowmelt, 

surface runoff, soil available water content (SWAve), percolation, groundwater recharge (GW), 

evapotranspiration (ET), potential evapotranspiration (PET), total water availability or water 

yield (Total WYLD) and sediment yield (Sidm-YLD) in the UKRB. 
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5.1.9 Sensitivity parameter results 

Identifying sensitive parameters enables us to focus only on those parameters which impacts 

most the model output during calibration process. However, during the calibration of SWAT 

model for runoff, 11 parameters (Table 5-5) out of 27-tested hydrology parameters (Table 5-6) 

were found to be the most sensitive for the runoff changes in UKRB. The five most sensitive 

parameters include SOL_AWC, GWQMN, PLAPS, SMFMX and ESCO. The sensitive 

parameters are ranked from top to bottom concerning the p-value and t-state. The rest of the 

parameters had either very small impacts or didn’t had effects on runoff , thus removed from the 

further iterations during calibration of the model. Some previous studies (Mohammad Tayib 

Bromand, 2015; Akhtar, 2017; Ayoubi, 2017) in the Kabul river basin also adjusted some of these 

parameters. 

 

Table 5.5: The most sensitive parameters contributing flow during calibration in UKRB. 

Parameter Name Details Min Max Fitted t-Stat p-Value S. Rank 

v__SOL_AWC 

Available water capacity of 

the soil layer (mm H2O/mm-1 

soil)  

0.0 0.2 0.1438 40.99 0.0000 1 

v__GWQMN 

Threshold depth of water in 

the shallow aquifer required 

for return flow to occur (mm 

H2O) 

700 900 888.33 7.697 0.0000 2 

v__PLAPS.sub 
Precipitation lapse rate 

(mm/km) 
33 100 75.321 -7.395 0.0000 3 

v__SUB_SMFMX 

Maximum melt rate for snow 

during year (mm H2O°C-

1day-1)  

0.0 5.0 1.5583 -6.880 0.0000 4 

v__ESCO 
Soil evaporation 

compensation factor 
0.9 1.0 0.9424 -2.684 0.0077 5 

v__SUB_TIMP 
Snowpack temperature lag 

factor 
0.0 1.0 0.8550 -2.581 0.0104 6 

v__SMFMN 

Minimum melt rate for snow 

during the year (mm H2O °C-

1day-1) 

0.0 5.0 1.8583 2.539 0.0117 8 

r__CN2.mgt SCS runoff curve number 0.0 0.1 0.0454 -2.449 0.0150 9 

v__SUB_SMTMP 
Snowmelt base temperature 

(°C) 
-5.0 5.0 -1.1167 1.696 0.0911 10 

v__SUB_SFTMP Snowfall temperature (°C) 2.0 4.0 3.9567 1.578 0.1157 11 

v: existing parameter replaced by a given value, r: existing parameter multiplied by (1+ a given 

value). 
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Table 5.6: Shows the parameters range during calibration process in UKRB. The numbers with St are the stations number; e.g, 

St11=Tang-i-Gulbar), St 17= Pul-i-Ashawa, St 27=Shukhi, St 51=Tang-i-Gharu, St 62=Tang-i-Saidan, and St 65= Sang-i-Nawishta 

stations. Also, v, a, and r indicate that the existing parameter replaced by a given value, the value added to the existing parameter, and 

the existing parameter value is multiplied by (1+ a given value), respectively.  

No 
Parameter 

Name 
Details of Abbreviations 

Abs 

SWAT 

 Value 

SWAT  

Default 

Calibrated Parameters Range 

 

Min Max  St 11 St 17 St 27 St 51 St 62 St 65 

1 v__Plaps.sub Precipitation lapse rate (mm/Km) -1000 1000 0 210 210 180 20 0 75.32 

2 v__Tlaps.sub Temperature lapse rate (C/km) -10 10 0 -4 -3.5 -2 -4 -4 
-

0.282 

3 v__SFTMP.sno Snowfall temperature -20 20 1 -2.908333 -7.737 2.817 1.31875 -1.181 3.957 

4 v__SMTMP.sno  Snowmelt base temperature -20 20 0.5 4.355 1.8853 -0.45 0.787 -0.556 
-

3.512 

5 v__SMFMX.sno 
Maximum melt rate for snow during year 

(occurs on summer solstice) 
0 20 4.5 4.408334 5.2486 2.958 4.0475 1.6148 2.425 

6 v__SMFMN.sno 
Minimum melt rate for snow during the 

year (occurs on winter solstice) 
0 20 4.5 1.858333 0.1 0.5 4.1375 0.8639 1.558 

7 v__TIMP.sno Snowpack temperature lag factor 0 1 0.5 _ _ _ 0.9075 _ 0.027 

8 v__SOL_AWC.sol Available water capacity of soil 0 1 0.064 0.02 0.245 -0.04 0.16 0.05 0.2 

9 v__SLSUBBSN.hru Average slope length (m) 9 150 9.14 140 140 150 75.981514 140 140 

10 v__HRU_SLP.hru Average slope steepness (m/m) 0 1 0.72 0.08 0.002 0.005 0.004523 0.0209 0.005 

11 v__OV_N.hru Manning's "n" value for overland flow 0.01 35 0.15 5 5 5.293   7.4415 28 

12 v__LAT_TTIME.hru Lateral flow travel time (days) 0 180 0 150 150 150 69.416199 20 25 

13 v__ESCO.hru Soil evaporation compensation factor 0 1 0.95 0.8506 0.8665 0.762 0.581434 0.615 0.953 

14 v__EPCO.hru Plant uptake compensation factor 0 1 1 _ _ _ _ _ 0.75 

15 v__SURLAG.hru Surface runoff lag time (days) 0.05 24 4 1 1 1 1 1 3 

16 a__SHALLST.gw 
Initial depth of water in the shallow 

aquifer (mm) 
0 5000 1000 1500 300 _ _ 500 538.8 
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17 a__DEEPST.gw 
Initial depth of water in the deep aquifer 

(mm) 
0 5000 2000 3000 500 _ _ 1000 1797 

18 v__GW_DELAY.gw Groundwater delay (days) 0 500 31 584.5 180.25 200 200 270 153.3 

19 v__ALPHA_BF.gw Baseflow alpha factor (days) 0 1 0.048 0.7 0.5 0.5 0.5 0.5   

20 v__GWQMN.gw 

Threshold depth of water in the shallow 

aquifer required for return flow to occur 

(mm) 

0 5000 1000 669.583313 347.4 500 500 900 970.9 

21 v__GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.2 0.02 0.03 0.02 0.02 0.02 0.1 0.038 

22 v__REVAPMN.gw 
Threshold depth of water in the shallow 

aquifer for "revap" to occur (mm) 
0 1000 750 800 1000 950 950 600 500 

23 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1 0.05 0.0506 0.0201 
1E-

04 
0.000101 0.0506   

24 r__CN2.mgt SCS runoff curve number 35 98 79 0.051875 0.1902 0.166 -0.154945 0.0194 0.019 

25 r__SOL_K(..).sol Saturated hydraulic conductivity 0 2000 6.4 _ _ 0.037 _ _ _ 

26 r__SOL_BD(..).sol Moist bulk density 0.9 2.5 1.2 _ _ 0.088 _ _ 1.653 

27 v__RCHRG_DP.gw Deep aquifer percolation fraction 0 1 0.05 _ _ _ _ _ 0.149 
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5.2 Bias Correction Results 

5.2.1 Baseline Period – Statistical and graphical Results 

Taylor diagrams have been used to analyses the monthly results of bias corrected precipitation 

and temperature over the historical period. The figure 5-12 and figure 5-13 show the results from 

each RCM, and the RCM’s mean with the APHRODITE data by indicating the standard deviation 

(Std), correlation coefficient (r), and root mean square error (RMSE) in all three methods used. 

The observation point is indicated with a black point in the bottom line, which is a reference 

period. Based on the Taylor diagrams, the performance of all three methods were good and 

followed the similar pattern with the APHRODITE data. 

The delta change method indicated the best correlation for all three variables of precipitation, 

Tmax and Tmin in our results (Figure 5-13), however, this approach does not adjust the RCM 

simulations but rather uses the observations and only the RCM change signals (Teutschbein and 

Seibert, 2012). So, this implies that the Dc method cannot be evaluated for the control/historical 

run because it corresponds to the observed climate and therefore gives the perfect simulation by 

definition. Therefore, the results of this method were also shown in this study but ignored in the 

further hydrologic evaluations. Between other two methods, the Ls results were closer to the 

observation for temperatures and precipitation (Figure 5-13), while commonly, the uncertainty is 

larger in precipitation of the climate models. The standard deviation of Ls method is closer to the 

standard deviation of APHRODITE observations compared to the Eqm method (Figure 5-13). 

The correlation coefficient (r2) in Ls method is smaller than Eqm for precipitation which is 0.28 

and 0.30, respectively. However, the r2 of Ls is greater than Eqm method which is 0.95 for 

maximum and 0.96 for minimum temperatures, while in Eqm it is 0.93 for Tmax and 0.94 for 

Tmin, respectively.  

The RMSE results shows a smaller value in Eqm method than Ls which is 26.6 and 29.6, 

respectively. As mentioned earlier that the Delta change (Dc) method results are same as 

observation in the historical period, therefore all the statistics of Dc and APHRODITE data are 

similar, therefore, it is ignored in this study. Additionally, we tried to show the result of Dc as 

well in order to see the differences of the methods and decrease the uncertainty in the model’s 

output. But still all methods fit the observations of temperature and precipitation. Therefore, the 

Ls method is selected for future analyzing of precipitation and temperature in the UKRB. Table 

5-7 describes statistical value of the three methods for precipitation, maximum temperature, and 
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minimum temperature over historical period against the APHRODITE data. The statistical result 

shows, all methods were able to reduce the MBE to zero or close to zero for Tmax and Tmin, and 

showed 0.56, 0.56 and 6.22, for Ls, Dc and Eqm methods respectively in precipitation. The 

Pearson correlation coefficient (r) is 0.53 for Ls and 0.55 for Eqm in precipitation, while in Tmax 

the (r) is 0.97 for both Ls and Eqm. Additionally, the (r) is 0.98 for Ls and 0.97 for Eqm in Tmin, 

respectively. The MAE and MSE is greater in Ls than Eqm in bias corrected precipitation, while 

both are smaller in Ls compared to Eqm method for the Tmax and Tmin. 

 

 

Figure 5-12: Taylor diagrams display a statistical comparison of bias-corrected; (a) 

precipitation, (b) Tmax, and (c) Tmin vs APHRODITE data for each climate model. The radial 

distance from the origin is represented by blue dashed lines showing the standard deviations 

(Std) line. 
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Figure 5-13: Taylor diagrams showing the comparison of methods for the RCM’s mean vs 

APHRODITE-data for the monthly precipitation, Tmax and Tmin in the baseline period. 

 

Table 5.7: Statistical results of the bias corrected precipitation, maximum temperature and 

minimum temperature from Ls, Dc and Eqm methods against the APHRODITE (accepted as 

observations) data. 
  

Precipitation  T-max T-min 

No Errors Ls Dc Qm Ls Dc Qm Ls Dc Qm 

1 ME 0.56 0.56 6.22 0.00 0.00 0.00 0.07 0.00 -0.95 

2 MAE 21.09 0.57 20.86 1.69 0.00 1.87 1.43 0.00 2.30 

3 MSE 878.88 0.71 709.55 4.68 0.00 5.88 3.29 0.00 7.42 

4 RMSE 29.65 0.84 26.64 2.16 0.03 2.42 1.82 0.02 2.72 

5 MBE 0.56 0.56 6.22 0.00 0.00 0.00 0.07 0.00 -0.95 

6 PBIAS % 1.60 1.60 17.70 0.00 0.00 0.00 2.90 0.00 -39.50 

7 r 0.53 1.00 0.55 0.97 1.00 0.97 0.98 1.00 0.97 

8 r2 0.28 1.00 0.30 0.95 1.00 0.93 0.96 1.00 0.94 

9 KGE 0.53 0.98 0.33 0.97 1.00 0.94 0.96 1.00 0.56 

10 Std-O 31.01 31.01 31.01 9.39 9.39 9.40 8.62 8.62 8.62 

11 Std-M 30.10 31.58 16.79 9.32 9.39 9.00 8.58 8.62 6.89 

 

Mean Error (ME), Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Bias Error (MBE), Percent Bias (PBIAS%), Pearson Correlation 

coefficient (-1<= r <= 1), Coefficient of Determination (0<= r2 <= 1) gives the proportion of 

the variance of one variable that is predictable from the other variable, Kling-Gupta efficiency 

between simulation and observed (0<=KGE<=1), standard deviation of observed (Std-O), 

standard deviation of modelled (Std-M). 

 

 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  71 

 

Figure 5-13 illustrate the long-term average of monthly precipitation and temperature over the 

historical period (1986-2005) using the Ls, Dc and Eqm methods to show the temporal differences 

between observations and the climate outputs. It can be seen that Eqm overestimates the mean 

monthly precipitation in dry months starting from May to January, while underestimated the 

precipitation in wetter months compared to the observations (Figure 5-14). While the Ls and Dc 

methods both shows the same results and is closer to the observations. The Eqm method also 

show over-estimation of Tmax values in the first half of the year (January to July), while indicated 

under-estimation values for the remaining months (August to December). The Tmin was under-

estimated in all seasons compared to the observations using Eqm method. While the Ls and Dc 

methods again shows the best simulation estimations for both maximum and minimum 

temperatures compared to the baseline period (Figure 5-14). The annual comparison of bias 

corrected precipitation, Tmax and Tmin compared to the APHRODITE annual data is shown in 

the figure 5-15. 
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Figure 5-14: Mean monthly results using different bias correction methods over the historical period 

(1986-2005) for (a) precipitation, (b) Maximum temperature, and (c) minimum temperatures. The Obs 

indicates APHRODITE data, Qm indicates Quantile mapping, Dc shows Delta change and Ls shows 

Linear scaling results in the figures. 

 

 

Figure 5-15: Show the annual bias-corrected precipitation, maximum temperature and minimum 

temperature in the baseline period over the UKRB. The Qm method under-estimated both the 

annual maximum temperature and annual minimum temperature compared to the observations. 
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5.2.2 Future Bias Corrected Precipitation 

5.2.2.1 Monthly precipitation variations 

Figure 5-15 indicates the future monthly precipitation variation compared to the baseline. To 

calculate the future monthly change over the baseline period, the future values of each model 

were compared with its baseline value for each month over the UKRB. The monthly precipitation 

change is different in every RCM which is typical for climate models in general. The black line 

in the Figure 5-15 shows the baseline or reference precipitation, while the red line shows the 

average of the RCM’s precipitation. Based on the Ls method, in the 2040s, the future monthly 

precipitation shows a decrease in March, while show an increase in September and December in 

both RCP4.5 and RCP8.5. In 2090s, the monthly precipitation showed a decrease from March to 

June and shows an increase between Jun to December based on both RCP4.5 and RCP8.5, 

respectively. 

In the 2040s, the future monthly precipitation difference compared to the baseline was between 

-10 mm (in March) to +12mm (December) based on RCPs 4.5. However, the future monthly 

precipitation difference compared to referenced period is -10 mm to +30 mm based on RCP8.5. 

Also, in the 2090s, the maximum monthly precipitation increases to 32 mm and 35 mm in RCP4.5 

and RCP8.5, respectively. Meanwhile, both RCP4.5 and RCP8.5 shows a decrease of monthly 

precipitation in March (20 mm to 40 mm) compared to the baseline period. The future 

precipitation indicated a large variation between the RCM outputs, Figure 5-16. The bias-

corrected precipitation shows very large daily variations in some stations located in the lowland 

areas, while there are fewer anomalies in the stations located in the high elevations of 

mountainous areas. Therefore, in this study, precipitation and temperature data from 25 grid-

points were selected for analysis.  

5.2.2.2 Seasonal precipitation variation 

The seasonal precipitation variations are depicted in the Table 5-8. The table shows that the 

precipitation shows a decrease of -8 % and -12.3 % in spring season compared to the baseline in 

2040s and 2090s respectively under RCP4.5. While it shows a drop of -2 % in near future (2040s) 

and -12 % in the far future (2090s) of the same season under RCP8.5 scenario. However, the 

precipitation shows an increase in other three seasons compared to the baseline period under both 

RCPs. The precipitation increases 6 to 35 % in 2040s and 0 to 18 % in 2090s of RCP4.5, while it 
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shows the increase of 9 % to 21 % in 2040s, and 12 % to 18 % in 2090s under RCP8.5 scenario. 

 

 

Figure 5-16: Monthly mean bias corrected precipitation from the RCMs output for the future 

period of 2040s and 2090s. 

 

Table 5.8: Seasonal precipitation change in UKRB. 

RCP (Period) Change in Spring 

(MAM

) 

Summer 

(JJA) 

Autumn 

(SON) 

Winter 

(DJF) 

RCP4.5 

(2040s) 

Precipitation  -8% 6% 35% 13% 

RCP4.5 

(2090s) 

Precipitation  -12.3% 18% 0% 12% 

RCP8.5 

(2040s) 

Precipitation  

-2% 9% 17% 21% 

RCP8.5 

(2090s) 

Precipitation -12% 18% 13% 12% 
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5.2.2.3 Annual precipitation variation 

The boxplots in the Figure 5-17 show the future mean annual projected precipitation. To 

calculate the future annual precipitation, the changes were applied to the annual mean of the 

RCMs against the baseline period, which were 428 mm/year. The mean annual precipitation 

values under RCP4.5 range to 449 mm/year and 431 mm/year in 2040s and 2090s, and under 

RCP8.5 ranges to 458 mm/year and 438 mm/year for the 2040s and 2090s, respectively. The 

mean annual precipitation change show that under RCP4.5, there will be an increase in annual 

precipitation of about +5% (21mm) in 2040s, and an increase of about +1% (3.2 mm) in 2090s. 

Moreover, under RCP8.5, the annual precipitation is expected to increase by +9 % (37 mm) in 

2040s, and about +2 % (10 mm) in 2090s compared to the baseline period (Table 5-9). The annual 

precipitation for whole period of 2006-2100 are shown is Figure 5-18. 

 

 

 

Figure 5-17: Future precipitation projections of the UKRB in Afghanistan. 
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Figure 5-18: Future annual precipitation in the UKRB using the linear scaling, quantile 

mapping and the delta change methods. 

 

Table 5.9: Annual mean precipitation changes in the UKRB. 

    Values (mm) Abs Change (mm) Change (%) 

RCPs Methods 2040s 2090s 2040s 2090s 2040s 2090s 

RCP4.5 Linear Scaling 449 431 21 3 5% 1% 

RCP8.5 Linear Scaling 458 438 30 10 6% 2% 

RCP4.5 Quantile mapping 483 462 55 34 11% 7% 

RCP8.5 Quantile mapping 498 452 70 24 14% 5% 

RCP4.5 Delta change 447 422 19 -6 4% -1% 

RCP8.5 Delta change 461 466 33 38 7% 8%  

Baseline  428 428 _ _ _ _ 

 

5.2.3 Future Bias corrected Temperature 

5.2.3.1 Monthly Temperature variations 

Figure 5-19 shows the mean monthly projected temperature changes compared to the baseline 

in Upper Kabul River Basin (UKRB). The monthly temperature shows a higher temperature 

values compared to the baseline from January to July using all three methods (Ls, Dc, and Eqm). 

The temperature is even getting worse in 2090s of RCP8.5 in UKRB. Even though, the 

temperature values are different in all three methods but still the pattern is the same in all figures.  
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The monthly temperature shows an overestimation from December to July in both periods 

under RCP4.5, while in other months the changes are minimal. Additionally, the monthly 

temperature shows increase in all months for 2040s and 2090s under the RCP8.5 scenario. The 

monthly temperature peaks represent a one-month backward shift from July to June. 

Consequently, the future temperature will get warmer in all season, especially in spring, summer 

and winter seasons. This shift is expected to result in an earlier snowmelt in the high mountainous 

areas and accordingly affects the hydrological regime and the water resources in the region. 

 

 

a 
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Figure 5-19: The future projections (a) Monthly maximum temperature, and (b) Monthly 

minimum temperature for the future period in 2040s and 2090s under RCP4.5 and RCP8.5 

scenarios in UKRB. 

 

Table 5-10 represents the monthly temperature absolute changes in °C from the baseline 

period. Based on the linear scaling results in 2040s, the average monthly temperature will increase 

between 0.2 °C to 3.6 °C based under RCP 4.5, and 1.1 °C to 5.1 °C based under RCP 8.5, 

respectively. Also, in 2090s, the average monthly temperature will increase from 0.1 °C to 6.1 °C 

based on RCP4.5, and 1.6 °C to 8.7 °C based on RCP 8.5, respectively. However, September and 

October of 2090s showed a negative temperature of -0.7 °C and -0.3 °C based on Rcp4.5. The 

results showed that a higher monthly temperature change rate is shown in spring and summer 

seasons (January–June) in the 2090s under RCP8.5 in all methods. 

 

 

 

b 
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Table 5.10: Changes in future monthly temperature (°C) for the 2040s and 2090s comparted 

to the baseline period (1986-2005). The negative values show decreases in temperature. 

2040s Linear scaling Delta change Quantile mapping 
 

Rcp4.5 Rcp8.5 Rcp4.5 Rcp8.5 Rcp4.5 Rcp8.5 

Jan 2.7 4.6 5.4 6.9 4.2 4.6 

Feb 3.2 5.1 7.7 9.0 5.0 5.6 

Mar 3.6 4.7 8.1 9.4 4.1 4.5 

Apr 3.0 4.1 7.0 8.4 2.7 3.1 

May 3.1 4.5 6.7 8.1 2.6 3.1 

Jun 2.8 4.2 3.9 5.3 1.6 2.2 

Jul 1.6 3.0 0.5 1.9 0.8 1.2 

Aug 0.6 1.9 -1.7 -0.3 -1.0 -0.5 

Sep 0.2 1.1 -3.6 -2.2 -2.4 -2.2 

Oct 0.2 1.1 -2.7 -1.2 -2.3 -2.1 

Nov 0.4 2.0 -1.2 0.3 -1.9 -1.4 

Dec 1.7 3.2 1.2 2.8 1.1 1.3 

 

2090s Linear scaling Delta change Quantile mapping 
 

Rcp4.5 Rcp8.5 Rcp4.5 Rcp8.5 Rcp4.5 Rcp8.5 

Jan 4.7 7.1 8.6 11.3 6.0 8.6 

Feb 6.0 8.7 11.2 13.6 8.1 10.6 

Mar 6.1 8.6 11.6 14.1 7.1 9.6 

Apr 4.9 8.1 9.9 12.4 5.1 8.1 

May 5.4 8.7 8.4 11.0 5.4 8.2 

Jun 4.2 6.6 3.0 5.8 3.6 6.3 

Jul 1.8 3.6 -1.3 1.4 1.1 3.8 

Aug 0.1 2.2 -4.3 -1.5 -1.9 1.2 

Sep -0.7 1.6 -6.1 -3.2 -3.8 -0.9 

Oct -0.3 2.0 -4.5 -1.8 -3.3 -0.5 

Nov 1.4 3.7 -1.1 1.2 -1.4 1.3 

Dec 3.0 5.4 2.6 5.1 2.2 4.5 
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5.2.3.2 Seasonal temperature variations 

The future seasonal variations of average temperature in upper Kabul river basin is depicted in 

the Figure 5-20 from the linear scaling method. The average temperature increases in all seasons, 

and in both periods under RCP4.5 and RCP8.5. In the 2090’s, the changes in seasonal temperature 

is much greater than 2040s in both RCP4.5 than RCP8.5.  

In 2040s, the seasonal temperature will increase from 0.2 °C in Autumn to 3.2 °C in spring 

under RCP4.5, while in 2090s, the seasonal temperature is expected to increase from 0.1 °C in 

Autumn to 5.5 °C Spring. Moreover, in 2040s, the seasonal temperature is expected to increase 

from 1.4 °C to 4.5 °C under RCP8.5, while in 2090s it would increase from 2.4 °C to 8.5 °C in 

the UKRB. 

     

Figure 5-20: Seasonal mean temperature changes from the baseline in the UKRB. results from 

linear scaling method. 

5.2.3.3 Annual temperature variations 

The bias-corrected annual temperature from 2006 to 2100 are shown in Figure 5-21 for the 

linear scaling, quantile mapping and the delta change methods. The annual temperature changes 

pattern is increasing in all methods and showed the same pattern in all mentioned methods. The 

temperature gets worse under RCP8.5 compared to the RCP4.5 in the figures. 
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Figure 5-21: Future annual temperature in the UKRB using the linear scaling, delta change, 

empirical quantile mapping methods. 

 

The future long-term mean annual temperature change compared to the baseline is depicted in 

the boxplots in Figure 5-22. The mean annual temperature in the baseline period is shown 7.6 °C. 

The future annual temperature under the RCP4.5 is predicted to 9.5 °C in 2040s, and 10.7 °C in 

2090s based on linear scaling method. Under RCP8.5, the future annual temperature changes 

were projected to 10 °C and 13.7 °C for the 2040s and 2090s, respectively. The boxplots also 

show that the future mean annual temperature is getting worse in 2090s under RCP8.5. The annual 

projected temperature is depicted in Table 5-11. The mean annual temperature change shows an 

increase of +1.9 °C in 2040s and +3.1°C in 2090s under RCP4.5. Likewise, under RCP8.5, the 

mean annual temperature increases by +2.4 °C in 2040s and 6 °C in 2090s respectively. 
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Figure 5-22: Means annual temperature changes compared to the baseline in UKRB. 

 

Table 5.11: Future annual temperature changes compared to baseline in the UKRB. 

 RCPs Methods 2040s 2090s 

1 RCP4.5 Linear scaling +1.9 °C +3.1 °C 

2 RCP8.5 Linear scaling +2.4 °C +6.1 °C 

3 RCP4.5 Quantile mapping +1.2 °C +2.3 °C 

4 RCP8.5 Quantile mapping +1.6 °C +5.1 °C 

5 RCP4.5 Delta change +2.6 °C +3.1 °C 

6 RCP8.5 Delta change +4.0 °C +5.7 °C 

 

5.2.4 Changes in spatial distribution 

The spatial distribution of annual precipitation, Tmax and Tmin anomalies are depicted in the 

Figure 5-23 and Figure 5-25-26, respectively over the future periods using the Ls method. The 

results suggest that the spatial precipitation is likely to  decrease in the north and northeast part of 

the basin (-3%, -3%), while it shows an increase in the southern part of the basin in 2040s (27% 

and 44%) under both RCP 4.5 and RCP 8.5. Likewise, in 2090s the annual spatial precipitation 

shows a decrease in some part of the north of the basin (-8%, -10%) under RCP4.5 and RCP8.5, 

while it shows a 17% and 27% increase of precipitation under both RCP4.5 and RCP8.5 

respectively, in the UKRB (Figure 5-23). The Figure 5-24 illustrates the spatial changes in future 
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precipitation for each regional climate model (RCM) across the sub-catchments of the Upper 

Kabul River Basin during the 2040s, 2090s, and the baseline period (1986-2005), under RCP4.5 

and RCP8.5 scenarios. According to the CanESM2 climate model, the maximum precipitation 

during the baseline period is approximately 650 mm. In the 2040s, this increases to between 800 

mm and 1000 mm, and reaching nearly 1200 mm by the 2090s under both RCP scenarios. The 

minimum precipitation during the baseline period is 300 mm, which rises to between 400 mm 

and 450 mm in the 2040s, and nearly 500 mm in the 2090s, again under both RCP4.5 and RCP8.5. 

Based on CanESM2 projections, precipitation is expected to decrease in the northern sub-

catchments while increasing in the southern part of the basin. Similarly, the Remo2009 model 

shows a baseline maximum precipitation of 650 mm. However, by the 2040s, precipitation 

decreases to 550 mm under both RCPs, with a slight increase to between 550 mm and 600 mm 

by the 2090s under RCP4.5 and RCP8.5. Unlike CanESM2, the Remo2009 model projects a clear 

decrease in precipitation in the southern part of the basin.  

The RegCM4-4 model projects an increase in precipitation compared to the baseline period, 

rising from 650 mm to 700 mm in the future. This increase is observed in both the northern and 

southern parts of the basin. In contrast, the Miroc5 model shows a future decrease in precipitation 

compared to the baseline period. The maximum precipitation is projected to be around 550 mm 

in the 2040s under both RCPs, increasing slightly to between 550 mm and 600 mm by the 2090s. 

In summary, the results from the RCM ensemble indicate that precipitation is likely to decrease 

in the northern sub-catchments, while increasing in the southern and eastern parts of the UKRB. 

The contradictory behavior of precipitation changes in the Upper Kabul River Basin (UKRB), 

where annual precipitation decreases in higher elevation regions and increases in lower elevation 

areas under both the RCP 4.5 and RCP 8.5 climate scenarios, can be explained by several 

interrelated physical and meteorological processes. 

5.2.4.1 Orographic Effects 

In mountainous regions, moist air is forced to rise when it encounters high terrain (Minder, 

2010). As the air rises, it cools and condenses, causing precipitation. In a warming climate, 

changes in temperature can alter how air masses interact with topography (Minder, 2010). In 

addition, Climate change may affect the sources of moisture (shift in moisture sources) and the 

prevailing wind patterns, leading to less moisture being available for uplift in higher elevations. 

Reduced snowfall or shifting atmospheric patterns might limit the amount of moisture reaching 
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high altitudes. Moreover, Higher elevations tend to experience stronger warming compared to 

lower areas (Prein et al., 2017).This is the case in the UKRB (Figure 5-23 and 5-24) which reduce 

snowfall and increase evaporation, leading to an overall reduction in precipitation at higher 

altitudes.  

5.2.4.2 Regional Hydrological and Evaporation Changes 

As temperatures increase, higher elevations may experience enhanced evaporation, especially 

from surface water bodies or soil, leading to a reduction in net precipitation (i.e., more moisture 

is lost than gained). Additionally, warmer temperatures can result in more intense precipitation 

events at lower elevations, causing higher runoff and potential localized increases in precipitation 

(Viviroli et al., 2011). This, combined with more efficient moisture recycling due to increased 

evapotranspiration from vegetation and soil, could explain the increased precipitation in the lower 

areas of the UKRB. Moreover, both scenarios RCP4.5 and RCP8.5 projects warming (Figures 5-

23 and 5-24) but at different magnitudes. Under RCP 8.5 (a higher emissions scenario), the 

increased warming may exacerbate the processes described above, leading to even more 

pronounced reductions in precipitation in high-altitude areas due to stronger evaporation and 

atmospheric circulation shifts. At the same time, lowland areas might experience an increase in 

extreme rainfall events, boosting total annual precipitation. In summary, the contradictory 

behavior in precipitation patterns between high and low elevations in the UKRB can be attributed 

to complex interactions between temperature-driven changes, atmospheric dynamics, orographic 

processes, and evaporation patterns. Climate change may disrupt established precipitation 

regimes, causing less precipitation in mountain areas (due to reduced snow and altered storm 

tracks) and more in lower regions (due to increased convection and storm intensity).  
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Figure 5-23: Future changes in spatial distribution of annual precipitation compared 

to the baseline period (1986–2005). 

 

The temperature and precipitation anomaly calculation are a way to quantify the deviation of a 

given value from a reference value. It is commonly used in climatic science to assess the changes 

in over time. The precipitation equation can be expressed as follows:  

Pr anomaly = 100* (Baseline Pr – Future Pr)/ Baseline Pr                                   (18) 

Where, the Pr is the precipitation values, and 100 is used to change the precipitation anomaly in 

percentage. The Precipitation anomaly represents the deviation from the reference. Observed Pr is the 

actual precipitation values at a specific time and location. While, the reference Pr is the baseline 

precipitation values used for comparison.  
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Figure 5-24:The baseline and future precipitation changes in the climate models including: A) 

CanESM2, B)  Remo2009, C) RegCM4-4, D) Miroc5, and E) the ensemble of all 4 RCMs in the 

UKRB. 

 

Also, the spatial changes in annual Tmax and annul Tmin indicate that the temperature will 

get warmer in the future (relative to the reference period- 1986-2005) under both RCP4.5 and 

RCP8.5 all over the UKRB (Figure 5-25). The Tmax obviously shows a higher temperature 

increase in the north part of the basin which is a mountinouse area of Hindukush. The annual 

Tmax increase is projected 6.1 °C in 2090s under the worse scenario of RCP8.5. In 2040s, the 

annual Tmin shows the higher temperature changes in the south part of the basin (Logar 

Watershed), while it shows the maximum changes in the northern and southern part of the basin 

in 2090s, in the UKRB (Figure 5-26). 

E 
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Figure 5-25: Changes in future spatial distribution of annual maximum temperature 

compared to the baseline period (1986–2005) over the upper Kabul river basin. 

 

The temperature anomalies are calculated based on the equation 19. 

Temperature anomaly = Baseline temperature - Future temperature                                 (19)  

 

Where, temperature anomaly represents the deviation from the reference temperature. 

Observed temperature is the actual temperature value at a specific time or location and reference 

temperature is a baseline temperature value used for comparison. 
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Figure 5-26: Changes in future spatial distribution of annual minimum temperature 

compared to the baseline period (1986–2005) over the upper Kabul river basin. 

 

The figures 5-27 and 5-28 illustrate the spatial changes in future maximum and minimum 

temperatures from each RCM across the sub-catchments for the 2040s and 2090s compared to 

the baseline period (1986-2005), under RCP4.5 and RCP8.5 scenarios in the Upper Kabul River 

Basin (UKRB). The maps display outputs from four regional climate models (RCMs), includes: 

CanESM2, Remo2009, RegCM4-4, and Miroc5. In the maximum temperature maps, orange 

represents the highest temperatures, while light blue indicates the lowest. Similarly, in the 

minimum temperature maps, orange still denotes maximum temperatures, but green is used for 

the minimum values. These maps highlight clear differences in temperature and precipitation 

across the UKRB, especially in relation to the region's topography, which has a more pronounced 
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impact than the cardinal directions of the catchment area. Future maximum temperature changes 

are observed throughout the study area under both RCP4.5 and RCP8.5 scenarios, with the most 

extreme changes occurring under the worst-case scenario (RCP8.5) in all four models. The 

southern part of the basin, which consists of lower-elevation sub-catchments, shows a warmer 

temperature compared to the northern parts, which are at higher elevations. 
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Figure 5-27: The baseline and future maximum temperature changes in the climate models 

including: A) CanESM2, B)  Remo2009, C) RegCM4-4, D) Miroc 5, and E) the ensemble of all 

4 RCMs in the UKRB. 
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Figure 5-28: The baseline and future minimum temperature changes in the climate models 

including: F) CanESM2, G)  Remo2009, H) RegCM4-4, I) Miroc5, and J) the ensemble of all 4 

RCMs in the UKRB. 

5.2.5 Extreme trend results 

This study also examined how the trend of annual extreme temperature and precipitation might 

change in the future over the course of the 21st century (2006-2100) in UKRB, specifically 

looking at six indices: annual total wet day precipitation (PRCPTOT), extremely wet days (R99p), 

monthly minimum value of daily minimum temperature (TNn),  monthly maximum value of daily 

maximum temperature (TXx), warm nights and warm days shown in Table 5-12 and Figure 5-29, 

and is defined by the Expert Team on Climate Change Detection Monitoring and Indices 

(ETCCDMI), jointly sponsored by World Meteorological Organization (WMO) commission of 

Climatology (CCI) and the Climate Variability and Predictability (CLIVAR) (Vincent et al., 

2005). The analyzed annual precipitation trend shows an insignificant decrease from 2006 to 

2100, especially under RCP4.5 and after 2082, while the annual extremes of minimum and 

maximum temperature show a significant increase under both RCPs 4.5 and 8.5 scenarios with a 

p-value of 0, indicating that the climate is getting hotter.   In addition, there was not a significant 

trend change in future extreme precipitation. The number of warm nights and warm days shows 

J 
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an increase in the future, specifically the significant increase will occur in the end of the century 

(Figure 5-29).  

Table 5.12: Extreme indices studied in this research. RR is the precipitation in the table. 

ID Indicator Name Units  Indicator definitions 

PRCPTOT Annual total wet day 

precipitation 

mm  Let RRij be the daily precipitation amount on day i in period j. 

If i represent the number of days in j, then PRCPTOTj = ∑(RRij) 

R99P Extremely wet days: 

Annual total PRCP 

when RR > 99th 

percentile 

mm  Let RRwj be the daily precipitation amount on a wet day w (RR 

≥ 1.0mm) in period i and let RRwn99 be the 99th percentile of 

precipitation on wet days in the period. If W represents the 

number of wet days in the period, then: R99Pj=

∑ RRwj where RRwj > RRwn99W
W=1  

TNn Min Tmin: Monthly 

minimum value of 

daily minimum temp 

°C  Let TNij be the daily minimum temperatures in month i, 

period j. The minimum daily minimum temperature each month 

is then: TNij = min (Tnij) 

TXx Max TMax: Monthly 

maximum value of 

daily maximum 

temp…  

°C  Let TXij be the daily maximum temperatures in month i, 

period j. The maximum daily maximum temperature each 

month is then: TXij= max (Txij) 

TN90p Warm nights %  Number of days when monthly value of daily minimum 

temperature TN > 90th percentile 

TX90p Warm days %  Number of days when monthly value of daily maximum 

temperature TX > 90th percentile 
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Figure 5-29. The six future annual indices; Precipitation in wet days (PRCPTOT), Extremely 

precipitation (R99p), Monthly minimum value of daily minimum temperature °C (TNn), Monthly 

maximum value of daily maximum temperature °C (TXx), Warm nights, and Warm days for the 

period of 2006-2100 from the ensemble of 4 RCMs in the upper Kabul River basin. The 

visualization of the plot is in an annual series along with trends computed by linear least square 

(solid blue line). The statistics of linear trend fitting are displayed on the top of the plots. 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  99 

 

5.3 Climate change impacts on water resources  

This section examines the results from the impact of future climate change on surface runoff 

and water availability in the UKRB under RCP 4.5 and RCP 8.5 scenarios. The study used the 

bias corrected precipitation and temperature results from the linear scaling method. The data were 

used from 24 grids (stations) in the SWAT hydrological model for analyzing the baseline and the 

future scenarios. Further details about the analyzed results are provided in the subsequent section 

below. 

5.3.1 Monthly variation in streamflow under RCP4.5 

Figure 5-26 illustrates the response of the climate change on the monthly surface runoff for 

the 2040s and 2090s under RCP4.5 and RCP8.5. The baseline (1968-2005) runoff is showed in 

black line and the models mean showed in the red lines.  The results indicate how the 

temperature’s increase had impacted the water flow in UKRB, subsequently causes a decrease in 

discharge in the summer season,  while shows increases in flow peaks during the winter and 

spring seasons. The future monthly flow peak showed a backward shift to March and April 

instead of May and June in Tang-I-Gulbahar and Shukhi stations, while in Tang-i-Saidan station, 

the flow peaks shifted from April to March in both period of 2040s and 2090s.  

In 2090s, the water availability is projected to reduce compared to 2040s under both RCPs 4.5 

and 8.5 scenarios. The results from each RCM showed a different pattern of monthly runoff. The 

CanESM-2 and the RegCM4-4 models are wetter climate model, which shows higher discharge 

peaks compared to the baseline and the other models. In contrary the Miroc-5 and Remo-2009 

showed a lower monthly discharge peaks compared to the historical period and other two 

aforementioned RCMs. Based on monthly discharge results, future seasonal water availability 

could be expected to vary in UKRB (Figure 5-30). In this study, the ET and the percolation both 

were not validated due to the unavailability of data. 

5.3.2 Monthly variation in streamflow under RCP8.5 

The monthly future surface runoff simulations are also depicted in the Figure 5-30 for the 

higher emission scenario (RCP8.5). The results indicate that, increases and decreases in 

hydrological variations tended to be more extreme under RCP 8.5 and in the end-century (2090s). 

In this scenario, the runoff values decreased further in summer months compared to RCP4.5. The 

monthly future discharge is projected to increase in the first four months of the year (January to 
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April), and decrease in the summer months (May to August). The magnitude of differences varies 

depending on the month and scenario. Comparing with the baseline’s streamflow, the future 

monthly streamflow is projected to decrease over time in UKRB. Generally, the results showed 

that the overall patterns of streamflow changes in response to climate change are similar in 

RCP4.5 and RCP8.5. However, the magnitude of change is much higher under the RCP8.5 

scenario, which assumes a higher greenhouse gas emissions and therefore more severe climate 

change impacts. Specifically, the period of 2090s is projected to be much drier under the RCP8.5 

scenario compared to the RCP4.5 scenario, meaning a greater reduction in streamflow in that 

period. 

 

Figure 5-30: Future response of stream flow compared to the baseline under RCP 4.5 and RCP 

8.5 for Tang-i-Gulbahar station (upper figure), Shukhi Station (Middle) and Tang-i-Saidan 

Station (lower). The black line shows the discharge for historic (1986-2005) and the red line 

shows discharge from Mean RCMs for two future periods 2040s and 2090s. 
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5.3.3 Annual variations in streamflow under climate change 

The basin-wide projected annual changes in streamflow, percolation, green waterflow change 

(actual evapotranspiration), potential evapotranspiration, precipitation, snowfall and snowmelt 

for the 2040s and 2090s period are depicted in Figure 5-31. The results indicated that, there is an 

increase in annul streamflow and the total annual water yield in 2040s and 2090s compared to the 

baseline period in UKRB. The annual surface runoff throughout the UKRB is projected to 

increase 18 mm in 2040s, and 15 mm in 2090s based on RCP4.5. likewise, the annual surface 

runoff is projected to increase 15 mm in 2040s and 28 mm in 2090s under RCP8.5 (Figure 5-31). 

In contrary, the annual snowfall, snowmelt, sublimation from snow surface, percolation, and the 

groundwater recharge showed a decrease compared to the annual baseline in UKRB. The 

increment of annual surface runoff in UKRB is due to an increase in the annual precipitation and 

decrease in percolation, groundwater recharge, and the rapid glaciers and snow melt. The result 

also shows that, increases in temperature is impacting the actual evapotranspiration (ET) and 

potential evapotranspiration (PET) which will increase in the future.  

The annual snowfall decrease includes -38.5 mm and -80 mm for 2040s and 2090s, 

respectively under RCP4.5. In addition, the snowfall is expected to decrease -48 mm, and -122 

mm for 2040s and 2090s, respectively under RCP8.5. The annual snowmelt indicated to decrease 

-26 mm, and     -57 mm for 2040s and 2090s based on RCP4.5. Under RCP8.5, the annual 

snowmelt indicated to decrease -34 mm, and -86 mm for the 2040s and 2090s. The decreasing of 

snowfall and snowmelt in the future could likely be due to impact of climate change, specifically 

the increase of higher temperature and changing the pattern of precipitation from snowfall to 

rainfall in UKRB. The snow and glaciers will be melting faster and in the earlier months of the 

year. Also, both the snowfall and snow melt show maximum decrease in the 2090s under both 

RCPs 4.5 and 8.5. 

 The results also show, the groundwater contribution is decreasing in the future. Under RCP4.5, 

the decrease in groundwater contribution is -7.5 mm and -15.8 mm for the 2040s and 2090s, 

respectively. Meanwhile, under RCP8.5, the decrease is larger with -9 mm and -20 mm for the 

same periods, respectively. Similarly, soil percolation is projected to decrease as well, with a 

decrease of -9 mm and -21 mm in 2040s and 2090s under RCP4.5, and a larger decrease of -12 

mm and -27 mm in 2040s and 2090s under RCP8.5, respectively. These changes in groundwater 

and soil percolation have significant implications for the water resources in the UKRB, as they 
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can affect the overall water availability and contribute to the changes in surface runoff. The 

Annual actual evapotranspiration (ET) and potential evapotranspiration (PET) shows an increase 

in both RCPs compared to the baseline and in both periods of 2040s and 2090s in UKRB. The 

actual evapotranspiration (ET) has increased significantly under RCP4.5 by 12.6 mm in 2040s 

and by 11 mm in 2090s, while under RCP8.5 the ET significantly increased by 21 mm and 14 

mm for the 2040s and 2090s, respectively. The increase in annual ET is more prominent in the 

2090s under RCP8.5 (Figure 5-31). Additionally, the magnitude of the increase in PET is 

significantly higher by 2090s under RCP8.5. The annual PET shows an increase of 77 mm and 

128 mm for the 2040s and 2090s under RCP4.5, while under RCP8.5 PET increases will be 92 

mm and 244 mm for the 2040s and 2090s in UKRB. An increase in PET is primarily driven by 

the increases in temperature, which is the main factor affecting the future actual and potential 

evapotranspiration.  

The lateral soil flow contribution is shown very low in UKRB and therefore in the future 

climate change analysis didn’t show any significant changes under both RCPs. Our findings are 

similar to the findings of (Giang et al., 2014; Lutz et al., 2014). Overall, the annual discharge is 

projected to increase, consequently there will be more surface runoff in the basin annually, but 

there is also likely to face the problem with uneven seasonally and spatially distribution of water 

resources. 
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Figure 5-31: (a) The annual hydrological components for baseline and RCMs , (b) Changes of 

annual hydrological components for 2040s and 2090s compered to baseline, under RCP 4.5 

and RCP 8.5. 

 

Water yield is defined as the net amount of water flowing past a point on a stream during a 

given period (Villamizar, Pineda and Carrillo, 2019). The results suggest that water yield within 

UKRB will increase in the future, except in 2090s under RCP4.5. In the baseline period, the 

annual water yield shows 142 mm which changed to 153 mm and 148 mm under RCP4.5, and 

141 mm and 149 mm under RCP8.5 for 2040s and 2090s, respectively. Based on the results, it 

appears that the UKRB may have sufficient annual water resources due to the projected increase 

in annual streamflow and total water yield. However, there may still be challenges with the 

seasonal and spatial distribution of water resources, particularly during the summer season when 

the runoff values are projected to decrease further under RCP8.5. This suggests that while overall 

annual water supply may be sufficient, there may still be issues with water availability during 

periods of high demand (Summer season). 

5.3.4 Seasonal variations in streamflow under climate change 

The future seasonal streamflow is presented in Figure 5-32. The seasonal streamflow in the 

UKRB shows larger variations during the rainy season (December to May) compared to the dry 
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season (June to November). Additionally, compared to the baseline period, there is an increase in 

the seasonal streamflow during the rainy season over time and decreases in dry season. This may 

indicate that the amount of water flowing in the rivers during the winter and early spring seasons 

are increasing however, decreasing in the summer and autumn seasons. These streamflow 

increments were more accentuated in rainy season and in the long term, with an increase of 

approximately 45 % of streamflow from December to May under RCP8.5 for the period of 2090s. 

Unlike to rainy season, there is a decrease in future dry season’s streamflow compared to baseline, 

except the 2040s of RCP4.5.  

Future projected hydrology results revealed that, the impact of climate change on the 

hydrology of UKRB is significant, as the results show an increase in the rainfall but a decrease in 

snowfall due to the changing precipitation pattern. This change in precipitation pattern will also 

affect the snow and glaciers melt which is expected to decrease in the future due to higher average 

temperatures. Specifically, the projected results indicate that there will be less snow and glacier 

melt in the 2090s under RCP8.5. These changes in precipitation patterns will have a significant 

impact on the water resources in the study area and may cause water scarcity in the summer 

season, which could lead to drought conditions. 
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Figure 5-32: The seasonal changes in; (a) snowfall, (b) surface runoff, (c) lateral flow, (d) 

water yield, (e) evapotranspiration (ET), and (f) potential evapotranspiration (PET) for dry 

and wet seasons in UKRB. The results are showed for the baseline, 2040s and 2090s periods 

under RCP4.5 and RCP8.5. 
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6 DISCUSSION AND CONCLUSION 

6.1 Discussion 

The study utilized the regional climate models (RCMs) output to simulate and analyze the 

future climate in the UKRB. However, to improve the accuracy of the RCMs’ precipitation and 

temperature projections, three bias correction methods were applied and the results validated with 

APHRODITE data due to lacking access of local historical data. The impact of climate change 

on water resources in the UKRB was then assessed using the soil and water assessment tool 

(SWAT) and GIS software. The details of discussion part of this study are explained in the below 

sections. 

6.1.1 Discussion on bias correction  

It is well established that precipitation and temperature simulations from RCMs often provide 

bias representation of observations, and hence making bias correction necessary before being 

used for climate impact studies (Gudmundsson et al., 2012b; Teutschbein and Seibert, 2012). 

Previous studies found that different bias correction methods have relatively good performance 

in correcting the raw simulations to the observed in different aspects (Teutschbein and Seibert, 

2012; Tadese, Kumar and Koech, 2020; Enayati et al., 2021). For instance, the linear scaling (Ls) 

and local intensity scaling (Lis) methods performed well in reducing the mean and 90th percentile, 

while the distribution mapping (Dm) and power transformation of precipitation (Pt) methods 

performed better in correcting the probability and intensity of wet days, additionally, the delta 

change (Dc) method matched observations of current conditions and consequently outperformed 

by definition (Teutschbein and Seibert, 2012). Likewise, the performance of non-parametric 

transformations (e.g., Empirical quantile mapping (Eqm)) was best in reducing biases of 

precipitation in the RCMs (Gudmundsson et al., 2012b). Therefore, in this study the linear scaling 

(Ls), delta change (Dc) and empirical quantile mapping (Eqm) methods were selected. Each of 

these methods has its own strengths and weaknesses, and by using a combination of methods, we 

were able to account for different aspects of bias in the climate models. This approach helped to 

increase the accuracy and reliability of the data used to analyze the impacts of climate change on 

water resources in UKRB. On the other hand, the discussion highlights the importance of using 

bias correction methods to improve the accuracy and reliability of climate models output to use 

for future climate and hydrology assessment, and the importance of selecting appropriate method 
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for further climate change impact study on water resource in the UKRB. The result demonstrates 

that all methods could remove biases in RCM’s precipitation and temperature. However, the Dc 

method indicated the best statistical and graphical correlation in this study, its limitations were 

also acknowledged. As noted by Teutschbein and Sebert (2012), the Dc does not adjust the RCM 

simulations themselves in the baseline period, but rather uses the observations and only the RCM 

change signals for the future projection. This implies that the delta change method cannot be 

evaluated for the control run, as it corresponds to the observed climate and thus provides a perfect 

match to the observations by definition. Therefore, the linear scaling method was selected as the 

better option for climate change impact study in this research. The selection considered both the 

statistical and graphical correlation between the corrected data and APHRODITE data. 

Our findings indicate that the Ls method performed better than Eqm in capturing the 

distribution of monthly precipitation and temperature in the historical period. This suggests that 

the linear scaling method was able to correct the bias more accurately in precipitation and 

temperature of the RCMs. Additionally, the graphical correlation in long-term annual projected 

precipitation compared to APHRODITE data showed better results by linear scaling than quantile 

mapping in the historical period. The study findings also revealed that the bias correction methods 

had a higher degree of uncertainty in precipitation compared to temperature values in RCMs, as 

shown by RMSE statistics in Table 5-7. This could be due to using the remote sensing 

(APHRODITE) data for bias correction of RCMs instead of observed data. Our results are 

consistent with previous studies Lutz et al., (2014) which has reported significant variations in 

precipitation and low variations in temperature values between RCMs in five larger river basins 

in Asia. Additionally, there results indicated that the Kabul river basin has a higher degree of 

uncertainty than other river basins in Asia (Lutz et al., 2014).  

According to the data presented in Table 5-7, under the RCP4.5 scenario, the annual 

temperature is expected to increase by 1.9 °C in the 2040s and 2.3 °C in the 2090s. However, 

under the RCP8.5 scenario, the increase in mean annual temperature is projected to be more 

severe with an increase of 3.2 °C in the 2040s and 6.1 °C in the 2090s. These projections suggest 

a significant warming trend in the UKRB which could have worse implications for the region’s 

seasonal water resources including the surface runoff and ground water flow contributions 

(Figure 5-32). The several key climate indicators and trends with a focus on total annual 

precipitation, extreme precipitation, temperature extremes, and the frequency of warm nights and 
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warm days are also discussed in this study. The analysis reveals an insignificant decrease in 

annual total wet day precipitation trend and there is no significant change in the future extreme 

precipitations and remains relatively stable over the analyzed period. The minimum and 

maximum temperature extremes indicate a highly statistically significant increase under both 

RCP4.5 and RCP8.5. This implies that the climate is getting hotter in the UKRB, with more 

extreme temperatures in the future (Figure 5-29). The results suggest that the impacts of climate 

change on temperature extremes are likely to be more significant than those on precipitation, at 

least in the region and period covered by the study. The number of warm nights and warm days 

is also projected to increase significantly in the future and is expected to be most pronounced 

after 2050 and toward the end of the century. The analysis reveals that while annual precipitation 

trend may see a slight decrease in the mountainous north part of the basin, the climate is 

experiencing significant warming trends with more extreme temperatures, and an increase in the 

number of warm nights and warm days trend. These findings are indicative of the ongoing impact 

of climate change on weather patterns and temperature extremes.  

Previous studies in Hindu Kush Himalaya region including the KRB suggested an increase in 

precipitation and temperature which are expected to lead to more snow melt and glacier melt in 

the region (Iqbal et al., 2018). So, our findings are also in line with some prior researches 

conducted in the KRB  (Wi et al., 2015; Sidiqi, Shrestha and Ninsawat, 2018). The rise in air 

temperature projected in the UKRB will lead to increase in actual and potential 

evapotranspiration, increased runoff in a shorter period, droughts mainly in the summer season 

resulting to a greater water stress in the study area, particularly in the lower parts of the basin 

including the Kabul city. Also, the interannual shifts of temperature will affect the precipitation 

pattern and snowmelt in UKRB. Also, the increasing extreme temperature will intensify the 

droughts in the summer months which will accelerate the water stress process in the study area.  

6.1.2 Discussion on current hydrology (2010-2019) 

Hydrological modeling performance refers to how accurately a model predicts the behavior of 

the system being studied compared to actual observations. The performance of SWAT 

hydrological model is done by comparing the simulated results to the real-world discharge 

observations in the Upper Kabul River Basin (UKRB). The model was built, calibrated and 

validated on daily and monthly time intervals to provide a comprehensive analysis of the model’s 
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accuracy. This type of evaluation is essential in ensuring that models are reliable tools for 

predicting the behavior of natural systems and can be used to make informed decisions. The 

statistical Nash-Sutcliffe (NS) efficiency performance of runoff was generally satisfactory to very 

good agreement between the simulated and observed discharge over the UKRB during calibration 

and validation. However, we noticed that there was uncertainty in the model’s ability to simulate 

flow peaks, with underestimations occurring in some years at the calibrated stations (Figure 5-1). 

The simulated baseflow was in a reasonable fit in all calibrated stations except for the Pul-i-

Ashawa station on Ghurband river, where there was higher baseflow in August and September 

compared to the observations. According to previous studies, underestimation occurs in 

hydrological modeling due to observation errors, biases in precipitation inputs, and hydrological 

modeling uncertainties (D. N. Moriasi et al., 2007).  

The monthly results showed that the model performance was good to very good in most of the 

stations, with monthly NS values ranging from 66% to 91% of correlations between simulations 

and observation flow. However, the Sang-i-Nawishta station had a lower NS value of 54% 

indicating that the model's performance was only satisfactory in that station. The possible reasons 

behind the lower values of NS in Sang-i-Nawishta station between observed and simulated runoff 

could be due to errors in the input precipitation or observed discharge data used in the model. The 

Shukhi station in Panjshir river had the highest annual peak flows in June 2015 and 2016 (Figure 

5-4). This information provides an indication of the variability of the water flow in the region and 

can be used to validate the results of the hydrological model used in the study. The statistical 

results of SWAT showed small differences, indicating that the model is adequate for simulating 

the hydrology and runoff. The text concludes that the SWAT model has demonstrated its quality 

and potential as a numerical tool for water resources management in this study. By inserting an 

input of 406 mm average precipitation, the model simulation showed the output as 148 mm total 

water yield that accounts for 39 % of the basin water balance. While due to larger potential 

evapotranspiration of 1,790  mm, the average ET was estimated greater than the total water yields 

as 246.6 mm or 61 % of the total hydrological parameters that goes back to atmosphere rather 

than contributing to the water yield. The surface runoff accounts for 24 % and the total aquifer 

recharge accounts 15.1 % of the annual hydrological cycle in UKRB, figure 5-7.  

The study showed that between 2010 and 2019, the evapotranspiration is the major water loses 

component in the study area. In this study, the ET and ground water were not validated during 
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the hydrological model processing due to lacking access to observed data. This means that the 

accuracy of the model’s representation of these processes is uncertain, as there was no comparison 

between the model’s prediction and actual measurements or observations for these two variables 

in UKRB. Thus, it seems reasonable to assume that these two critical components were well 

simulated but obviously consists some minor uncertainty. Despite this, "very favorable" runoff 

results were achieved at multiple locations by SWAT model. 

The Upper Kabul River Basin (UKRB) is characterized by a significant variation in altitude, 

with elevations ranging from 995 meters above sea level (msl) at its lowest point to 5,694 meters 

msl in the glaciated and snow-covered northern areas. This vast difference in altitude, along with 

the alpine topography, plays a critical role in shaping the hydrological dynamics of the basin. The 

altitude may impact the hydrology and climate in the UKRB by the orographic and climatic 

influences, glacier and snowmelt contribution. The steep topography, with sharp peaks and deep 

valleys in the UKRB, creates a pronounced orographic effect, where moist air masses are forced 

upward over mountains, cooling and condensing to form precipitation (Minder, 2010). This leads 

to substantial differences in weather patterns between the higher-altitude northern regions and the 

lower-altitude southern regions. The climatic contrasts in deferent altitudes significantly 

influence the timing and distribution of water resources throughout. The northern regions, with 

peaks covered by permanent snow and glaciers are also crucial for sustaining streamflow in the 

UKRB. Glaciers act as natural reservoirs, storing water during winter and releasing it as meltwater 

during the warmer summer months. This meltwater is essential in maintaining the river's flow 

during dry periods, stabilizing water supplies, and supporting agriculture and ecosystems in 

downstream regions. The presence of glaciers at such high altitudes ensures a steady streamflow, 

even during periods of reduced rainfall. The role of elevation in water flow dynamics are very 

significant in the basin (Barnett, Adam and Lettenmaier, 2005). The steep slopes increase the 

velocity of water runoff, contributing to faster-moving streams that converge in the lower, flatter 

parts of the basin. This transition from steep, mountainous terrain to gentler foothills and plains 

influences both the quantity of water available downstream. In contrast, the southern, lower-

altitude areas, while still contributing to water flow, rely more heavily on rainfall and lack the 

buffering effect provided by glaciers and snowpack. 
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6.1.3 Discussion on future water availability under climate change 

This section discusses the impact of climate change on the future runoff estimation and other 

hydrological parameters in UKRB. The study compared the baseline period (1986-2005) with 

that of the future periods of 2040s and 2090s under RCP4.5 and RCP8.5 scenarios.  

The future runoff shows that, seasonally a decrease in summer discharge is shown, while 

increasing discharge peak occurred during winter and spring seasons due to temperature increase 

(Figure 5-30). The results also revealed a backward shift in the monthly runoff peaks from May 

and June to March and April in Tang-i-Gulbahar and Shukhi stations, while in Tang-i-Saidan 

station, the runoff peak will shift from April to March in both periods of 2040s and 2090s. These 

shifts in the timing of runoff can have significant impacts on the availability of water resources 

for various related sectors such as agriculture, industry, and domestic use, which may further 

exacerbate water stress in the region. For instance, the shifts suggest that the snowmelt will occur 

earlier in the year, resulting in a rapid increase and a larger runoff for a shorter period, which may 

lead to more floods in the spring and droughts in the summer months. Our research highlights the 

seasonal shifts in runoff which is consistent with findings from (Mohammad Tayib Bromand, 

2015). This study similarly reports that rising temperatures will lead to earlier snowmelt, shifting 

runoff peaks to earlier months and resulting in reduced summer flow. Also, the backward shift in 

runoff peaks observed in our study, resonates with findings from (Iqbal et al., 2018). This earlier 

snowmelt, coupled with increased winter and spring runoff, could exacerbate spring flooding, 

while the reduced summer flows could lead to droughts later in the year. Consiquently, the study 

highlights the climate change increases the risk of more frequent and intense floods during the 

wet season and potential droughts during the dry season. Additionally, (Baig and Hasson, 2023) 

suggests that these altered streamflow patterns could increase flood inundation risks, especially 

in low-lying areas during the peak snowmelt seasons. Our findings align with this, indicating that 

more rapid snowmelt during spring could result in flash floods, further complicating water 

resource management in the basin. 

Our study suggests that the annual total water yield in the UKRB is expected to increase in the 

2040s and 2090s of RCP4.5 due to precipitation increase, while it shows a decline in the 2040s 

and increase in the 2090s under higher emission scenario (RCP8.5). Our study also showed that 

under the RCP8.5, the changes in hydrological parameters tend to be more extreme. In particular, 

the monthly runoff shows a further decrease during summer months compared to the RCP4.5 
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scenario, indicating that the effects of climate change are expected to be more sever in the future 

if we continue with the high greenhouse gas emissions. Additionally, our study suggests that the 

annual total water yiled is expected to increase in the future under both RCP4.5 and RCP8.5 

scenarios, but with variations across seasons. This aligns with study of (Hashmi et al., 2020) wich 

similarily predicts an increase in overall annual runoff. The increment of annual surface runoff is 

due increased in the annual precipitation, and there are other factors that may offset this increase, 

for instance, decreased in percolation and groundwater. Other factors such as changes in land use, 

soil moisture, and temperature could also potentially impact the hydrological cycle and contribute 

to changes in streamflow patterns. However, while annual runoff may increase, it is not uniformly 

distributed, with potential decreases during critical dry periods. This suggests that even though 

total runoff increases, water availability during summer months may still be constrained, leading 

to seasonal water stress. 

Morover, our research shows a projected decrease in snowmelt, snowpack sublimation, and 

percolation in both future scenarios, which would impact both surface and groundwater resources. 

This finding is supported by (Azizi and Asaoka, 2020) which also highlights the importance of 

snowmelts in regulating river flows and ground water recharge in the KRB. The reduction in 

snowmelt will decrease groundwater recharge and further exacerbate water scarcity during the 

summer months in the UKRB, when water demand is highest. Moreover, there will be a decrease 

in future annual percolation and groundwater recharge, which could further reduce the water 

availability in the summer season. Similarly, (Sidiqi, Shrestha and Ninsawat, 2018) predicted the 

reduced percolation which could offset the benefits of increased precipitation, reducing 

groundwater availability and negatively impacting water supplies in the summer season in the 

KRB. 

Our research also notes a significant increase in actual and potential evapotranspiration (ET 

and PET) under both RCP4.5 and RCP8.5 scenarios, particularly under RCP8.5 in the 2090s. This 

is consistent with  (Akhtar et al., 2022), which also identifies rising ET as a major factor 

influencing water availability in the KRB. The increased evapotranspiration reduces the amount 

of water available for surface runoff and groundwater recharge, compounding the challenges 

posed by climate change in the study area. The rising ET rates suggest that even with increased 

precipitation, less water will remain available for human use, exacerbating water shortages. . 

Increasing in the rate of ET meaning that more water is being lost from the land surface, resulting 
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in a decrease in the amount of water available for surface runoff, groundwater recharge, and other 

hydrological processes. This is an important finding as ET plays a crucial role in the water cycle, 

and the increase in the ET can have significant impacts on the hydrological balance of the region. 

This information is important in understanding the impacts of climate change on the hydrological 

cycle in the region and can aid in developing effective water management strategies. Also, Our 

research findings are align with previous hydrology studies referenced as (Giang et al., 2014; Lutz 

et al., 2014).  

Additionally, the large elevation variation within the UKRB ranging from 995 msl to 5,694 

msl defines the basin’s hydrological processes. The glaciated peaks in the north of the basin play 

a crucial role in water storage and release, while the lowland areas depend on this meltwater for 

a stable water supply. Understanding these dynamics is essential for effective water management, 

especially in the face of changing climatic conditions. The higher-elevation areas, which 

experience prolonged snow and glacier melt are crucial for ensuring water availability during the 

summer months when precipitation is low (Huss and Hock, 2018). However, climate change 

poses a risk to these glaciated regions, with rising temperatures threatening to reduce snowmelt 

and accelerate glacial retreat (Huss and Hock, 2018). This could lead to diminished water supplies 

in the future, particularly for lower-elevation areas that depend on this seasonal meltwater. 

Therefore, the stark altitude difference within the UKRB necessitates careful water resource 

management in the basin.  As a conclution of the discussion, our research findings align closely 

with previous studies on the impacts of climate change on surface runoff and the water availability 

in the Kabul River Basin. The common threads across all studies include the shifts in runoff 

timing, the increased risk of floods and droughts, and the complex interplay between rising 

precipitation and temperature, reduced snowmelt, and increased evapotranspiration. Together, 

these studies underscore the urgent need for integrated water resource management strategies in 

the Kabul River Basin to address the challenges posed by changing hydrological patterns, 

particularly in the face of high greenhouse gas emissions and future climate scenarios.  

6.1.4 Limitation of the study 

Throughout the research study, several limitations were encountered, such as the issue of 

spatial variability in weather data for building the current hydrological model.In developing 

countries such as Afghanistan, obtaining realistic time series observed data is difficult due to 

limited resources. Only a few stations which managed by the government, provide the data 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  114 

 

making it difficult to obtain long-term historical daily data, including precipitation, temperature, 

wind, solar radiation, and humidity which are essential for achieving accurate hydrological 

results. Another major limitation is the unavailability of dependable historical daily weather data 

that could be considered representative for all elevations within the basin. The Ministry of Energy 

and Water (MEW) in Afghanistan started collecting and analyzing water level data at a few 

hydrology stations in the Helmand River Basin in 1946 (MEW and JICA, 2019). By 1976, 153 

hydrological stations had been installed and operated until 1980 with data collected, analyzed, 

stored and published in annual water-year books. However, after the civil war, these services 

stopped until 2000 (MEW and JICA, 2019). When the new government developed, MEW 

installed 29 hydro-meteorological stations across the Kabul river basin from 2004 (Ayoubi, 

2017). However, most of these stations were not unable to record data due to technical difficulties 

and insecurity, resulting in missing values for months or even years. Furthermore, the majority of 

the stations installed in the plain areas cannot provide a representative picture of the hydro-

meteorological conditions in the high elevations of the mountainous areas. This is due to the large 

variation in elevation between the upstream and downstream areas of the basin.  

To compensate for missing data, particularly for precipitation and temperature, two methods 

were employed in this study. The first method used was the Inverse Distance Weighting (IWD) 

interpolation technique in GIS, which utilized the elevation and distance of each station to 

calculate average values from nearby stations. The second method involved calculating the 

average daily values from previous years for stations where surrounding stations also had missing 

data for the same time period. Another limitation of the study is the lack of future landcover 

change which can have a significant impact on hydrological processes in the future. Landcover 

change can impact soil properties, vegetation cover, and surface runoff which in turn can impact 

the water availability. However, due to the unavailability of data on future landcover change, this 

study did not consider its impact on the hydrological model. Furthermore, the study did not 

consider the impact of potential future changes in population and water demand on water 

resources. As the population in the KRB is expected to increase in the future, it is important to 

consider the impact of this on water resource and to plan for future water demand in future studies. 

Finally, the study only considered two greenhouse gas emission scenarios (RCP4.5 and RCP8.5), 

and did not consider other potential future scenarios. It is important to consider a range of 

scenarios in order to fully understand the potential impacts of climate change on water resources. 
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6.2 CONCLUSIONS 

The research investigated the impact of climate change on surface runoff and water resources 

availability in Upper Kabul River Basin (UKRB) by comparing the baseline period with two 

future period under RCP4.5 and RCP8.5 scenarios using the SWAT. The study presented the 

capability of SWAT model for simulation of surface runoff by performing calibration and 

validation of the model. Three statistical methods were used for correcting bias in climate model 

outputs namely linear scaling, delta change and empirical quantile mapping. By applying bias 

correction techniques to RCM’s output, the accuracy of the historical and future precipitation and 

temperature data was improved and the discrepancies between the RCM’s data and APHRODITE 

data (e.g., precipitation and temperature) were significantly reduced, leading to a better 

understanding of the future changes in climate and hydrology in UKRB. The linear scaling 

method performed better in terms of reducing uncertainty and matching the projected and 

APHRODITE data in this study, and its results were used in hydrological analysis. The study 

focused on how changes in surface runoff, evapotranspiration (ET), and groundwater occurs on 

monthly and annual basis. The study predicts a significant increase in mean annual temperature 

in 2040s and 2090s based on the RCP4.5 and RCP8.5 scenarios in UKRB. The increase in 

temperature is likely expected to be higher under RCP8.5 than RCP4.5. 

Moreover, the projections show a backward shift in temperatures peak, and the temperature 

peaks in June instead of July. The study predicts an increase in mean annual temperature by +1.9 

°C in 2040s, and +3 °C in 2090s based on RCP4.5 compared to the baseline. Similarly, the 

projected annual temperature increase is expected to be +2.4 °C in 2040, and almost +6 °C in 

2090s based on RCP8.5 scenario compared to the baseline. There is a 95 % confidence that a 

significant increase in the trend of future temperature projection during 21st century (2006-2100) 

in the upper Kabul river basin exist. The study found that under RCP4.5, there will be an increase 

in mean annual precipitation of about +5% (21mm) in 2040s, and an increase of about +1% (3.2 

mm) in 2090s. Moreover, under RCP8.5, the mean annual precipitation is expected to increase 

by +9 % (37mm) in 2040s and about +2 % (10mm) in 2090s compared to the baseline. Unlike 

the annual precipitation, the trend of future annual precipitation for the period of 2006-2100 

shows an insignificant decrease with P-value= 0.35, and P-value=0.63 (based on Mann-Kendall 

trend test) under RCP4.5 and RCP8.5, respectively in UKRB.  

The SWAT model was built, calibrated, and validated using real-world discharge observations, 

and the Nash-Sutcliffe efficiency was used to evaluate the performance of the model. The 
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predicted results from the SWAT model between the 2010 to 2018 showed a good agreement 

between the simulated and observed runoff across the UKRB during calibration and validation. 

There were some uncertainties in simulating flow peaks, as well as some discrepancies in the 

baseflows of some stations. The good performance of the SWAT hydrological model in a 

mountainous area like UKRB highlights its potential for accurately assessing the water resource, 

and the impact of climate change on water resources in other river basins in Afghanistan. Overall, 

the results demonstrate the potential of the SWAT model as a reliable tool for water resources 

estimation and management. However, some uncertainty remains regarding the accuracy of the 

model's representation of groundwater due to a lack of observed data. The study showed that 

evapotranspiration is the major water loss of the water balance component in the study area during 

the period of 2010-2019. 

The future hydrological results show that there will be an increase in mean annual runoff in 

2040s and 2090s compared to the baseline period in UKRB. This increase is due to increase in 

annual precipitation; however, the study predicts a decrease in annual snowfall, snowmelt, 

sublimation from snow surface, percolation, and the groundwater recharge. The decrease in 

snowmelt and glacier melt could also lead to changes in the timing and volumes of river flow 

which can impact the seasonal water availability for agriculture, urban water consumption, and 

hydropower generation. The monthly runoff peaks also revealed a backward shift to March and 

April instead of May and June in Tang-i-Gulbahar and Shukhi stations, while in Tang-i-Saidan 

station the runoff peak shifted from April to March in both periods of 2040s and 2090s in UKRB. 

However, the shifts in the timing of runoff will lead to significant impacts on water availability 

for various sectors, exacerbating water stress in the region. Seasonally, the UKRB will experience 

a decrease in summer runoff, but an increase in winter and spring runoff peaks due to climate 

change. Also, the runoff seasonal variations in the future will increase the gaps between water 

availability and demand, particularly during the dry season.  

As a conclusion drawn from the findings of this study, climate change is expected to have 

significant impacts on future water availability in the UKRB. Increase in temperature is likely to 

lead to changes in precipitation patterns which could result in more frequent floods (high peaks 

in runoff) in the winter and spring, and droughts in the summer. The projected decrease in water 

availability during the dry season could lead to negative consequences on agriculture, livestock, 

and food security in the future in UKRB, if it’s not managed. This imbalance in the seasonal 

availability of water resources can have significant implications for the management of water 
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resources, including the need for appropriate infrastructures (e.g., check dams, ponds and 

reservoirs), careful management and planning strategies, and effective water conservation 

practices to ensure sustainable water use, and to address the climate change risk. The findings 

also highlight the need and importance of implementing effective climate adaptation and 

mitigation strategies to help mitigate the impact of climate change on water resources in the study 

area. Overall, these findings can aid the policymakers and researchers who are working in climate 

change implication studies and water resources management in the region. Additionally, this 

study contributes to the growing body of knowledge on climate change impacts on water 

resources and emphasizes the need for continued research in this field. 

6.3 RECOMMENDATIONS 

The findings indicated that climate change is likely to impact a range of sections as critical 

variables such as precipitation (both in quantity and intensity), temperature, surface runoff, 

ground water recharge, evapotranspiration, snowfall and snowmelt. In particular, the projected 

changes in surface runoff showed a high and low flow conditions in the river network of UKRB, 

which can challenge the water resources management. The application of SWAT hydrological 

modeling approach in this study provides valuable insights into historical and future climate 

projections impact on water resources in Kabul river basin and water sustainability. In light of the 

findings, the study underscores the urgent need for effective water resource management 

strategies and climate change adaptation plans/polices, mitigate the consequences of climate 

changes on water resources, ecosystems and the local communities, and to increase the resilience 

under climate change in the KRB. Key measures or strategies to consider includes: 

1. Nature based solutions are recommended for both climate changes mitigation and adaptation. 

• Controlling the land degradation by limiting and monitoring the human activities, for 

instance deforestation, and increase the reforestation to reduce the surface runoff  and 

flooding, increase the groundwater recharge, and mitigate the soil erosions. 

• Initiate and increase the grassland restoration activities in the heavily degraded grasslands. 

• Maintain intact ecosystem such as the existing wetlands for water storage, ground water 

recharge, and retain carbon stocks, and prevent the land grabbing by local communities 

around to prevent the land use change . The good example of this can be the Kol-i-Hashmat 

Khan wetland located in the Kabul city. 
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2. Institutional and public strengthening regarding water consumption and climate change 

adaptation: 

• Initiate and conduct the public awareness programs among local communities at schools 

and mosques regarding water conservation and climate change impacts. Engaging the 

local communities in water management decisions can foster more sustainable water 

management. For example, emphasize the role of individuals in reducing water waste and 

encourage responsible water use habits. 

• Enhancing institutional capacities for water management & conservation practices, and 

climate change adaptation is crucial. 

• Coordination among the government agencies involved in water and agriculture sectors, 

stakeholders, and communities to develop integrated water management approaches. This 

can lead to more effective water resources management and conservation efforts. 

 

3. Long-term monitoring and forecasting systems 

Strengthening the basin’s monitoring infrastructure to better predict hydrological changes and 

implement timely responses. 

• Deploy and increase the hydro-met stations at different elevations in KRB to record and 

monitor the local climate change such as; precipitation, temperature, solar radiations, 

humidity, wind speed, discharges etc. 

• Establish a glacier monitoring system to regularly assess and monitor the water 

availability in KRB. 

• Establish/or develop the early warning systems for droughts and floods can minimize their 

impacts in the future. 

4.  Establish and Enhance the Water Storage Conservations 

• Developing additional water storage facilities, such as rain harvesting systems (check 

dams and ponds), reservoirs to buffer against the variability in water availability. 

• Promote sustainable agricultural practices to maximize water-use efficiency during dry 

seasons in Kabul river basin. developing more efficient irrigation methods, like drip or 

sprinkler irrigation systems, which can reduce water loses and improve crop yields. 

 

5. Climate Resilient Agriculture 



 

PhD. thesis, Ayoubi Tooryalay,  Freie Universität Berlin/2024                                                                                  119 

 

• Encouraging the adoption of drought-resistant crop varieties, and farming practices (crop 

rotation) that are less water-intensive. This will help water savings, mitigate the impact of 

water scarcity on food security in the future in KRB. 

6. Policy Strengthening; 

• Formulate policies and procedures at regional scale that promote sustainable water use 

and protect critical water resources. These plans should include strategies for water 

allocation, drought management, flood control, and groundwater recharge. The climate 

changes projections should also integrate to ensure resilience of changing conditions in 

the future.  

 

By implementing these strategies, it is possible that KRB can ensure the long-term sustainability 

of its water resources and enhance its resilience to the impacts of climate change. These insights, 

with the international significance of the Kabul River basin, contribute to the global 

understanding of hydrological processes and are of interest to a broad international audience.  
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8 APPENDIXES 

8.1 The climate trend statistical results 

The Mann-Kendall and Shapiro Wilk trend test statistical results for bias corrected annual and 

seasonal precipitation and temperature in the baseline period is showed in tables A-1 and A-2. 

Table A-1: The Man-Kendall and Shapiro wilk trend results for the annual precipitation, 

maximum and minimum temperature in UKRB. 

Annual -Mann-Kendall (MK) Trend 
Annual -Shapiro Wilk Trend 

 MK (S) K’s Tau V (S) P Value NS (Z) 
Sen's slope  

beta (Slope) CI_low CI_up p-value 

Precipitation 6.0 0.0316 950.0 0.8711 0.1622 
0.7700 -1.04 -8.97 6.89 0.88 

T Max 68.0 0.3579 950.0 0.0297 2.1738 
0.1150 0.0816 0.0061 0.1571 0.0483 

T Min 64.0 0.3368 950.0 0.0410 2.0440 
0.0775 0.0661 -0.0062 0.1384 0.09 

 

Table A-2: The Man-Kendall and Shapiro wilk trend results for the seasonal precipitation, 

maximum and minimum temperature in UKRB. 

Seasonal -Mann-Kendall (MK) Trend 
Seasonal -Shapiro Wilk Trend 

 MK (S) K’s Tau V (S) P Value NS (Z) 
Sen's slope  

beta (Slope

) 

CI_low CI_up p-value 

Spring Precipitation -34 -0.18 950 0.284 -1.07 
-3.07 

-2.89 -8.56 2.77 0.33 

Winter Precipitation 18 0.09 950 0.581 0.55 
0.83 

0.8 -3 4.61 0.683 

Summer TMax 68 0.36 950 0.030 2.17 
0.09 

0.08 0.01 0.15 0.032 

Winter TMin 46 0.24 950 0.144 1.46 
0.08 

0.06 -0.02 0.15 0.173 

 

The positive Kendall’s tau value denotes the positive trend and the negative Kendall’s tau value 

express the negative or decreasing trend. The bold values in cells shows the significance of p-va

lue which is less than 0.05. 
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8.2 Extreme climatic indices  

Extreme climatic indices result for precipitation and temperature during the historical period 

(1986-2005), and future period (2006-2100) under RCP 4.5 and RCP8.5 in UKRB in Afghanistan. 

The results are the output from linear scaling method using the RClimDex software. 

RClimDex is developed and maintained at Climate Research Branch of Meteorological Service 

of Canada (Zhang, Yang and Canada, 2004). The initial development was funded by the Canadian 

International Development Agency through the Canada-China Climate Change Cooperation (C5) 

project (Zhang, Yang and Canada, 2004). The RClimDex is designed to provide a user-friendly 

interface to compute indices of climate extremes. It computes all 27 core indices recommended 

by the Expert Team for Climate Change Detection Monitoring and Indices (ETCCDMI) as well 

as some other temperature and precipitation indices with user defined thresholds. A main 

objective of constructing climate extremes indices is to use for climate change monitoring and 

detection studies. The RClimDex includes a data quality control procedure, before the indices can 

be computed (Zhang, Yang and Canada, 2004). The RClimDex has tree steps including; the 

preprocessing of data, Quality control of data and calculation of core indices for climate variables. 

In this study we focused on following indices for the climate change evaluation in UKRB and the 

statistical results shown in Table A-3.  

1. Total wet day annual precipitation (prcptot) 

2. Extremely wet days (r99p) 

3. Warm nights (tn90p) 

4. Warm days (tx90p) 

5. Minimum value of daily minimum temperature (°C) (tnn) 

6. Maximum value of daily maximum temperature (°C) (txx) 

7. Mean Maximum temperature (°C) (TMAXmean) 

8. Mean Minimum temperature (°C) (TMINmean)
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Table A-3: The p-value results and slope of the 27 climatic indices in UKRB.    

Slope STD of Slope P_Value 

  Indices Indicator Name Baseline RCP4.5 RCP8.5 Baseline RCP4.5 RCP8.5 Baseline RCP4.5 RCP8.5 

1 cdd Consecutive dry days (Days) 0.41 0.018 0.034 0.4 0.046 0.03 0.32 0.697 0.258 

2 csdi Cold spell duration indicator (Days) -0.3 -0.277 -0.533 0.35 0.048 0.065 0.41 0 0 

3 cwd Consecutive wet days (Days) 0 -0.042 -0.035 0.08 0.015 0.015 0.96 0.005 0.019 

4 dtr Diurnal temperature range (°C) 0.02 0.004 0.008 0.02 0.001 0.001 0.35 0 0 

5 fd0 Frost days (Days) -0.77 -0.401 -1.031 0.41 0.032 0.04 0.08 0 0 

6 gsl Growing season Length (Days) 0.11 0.409 0.992 0.37 0.044 0.048 0.77 0 0 

7 id0 Ice days (Days) -0.68 -0.363 -0.356 0.72 0.033 0.027 0.36 0 0 

8 prcptot Annual total wet-day precipitation (mm) -0.85 -0.432 -0.396 3.96 0.32 0.274 0.83 0.181 0.151 

9 r10mm Number of heavy precipitation days -0.09 0.007 0.007 0.14 0.009 0.008 0.5 0.451 0.404 

10 r20mm Number of very heavy precipitation days 0.04 0.001 0.001 0.06 0.004 0.004 0.47 0.866 0.766 

11 r95p Very wet days (mm) 1.09 0.054 0.148 2.14 0.204 0.181 0.62 0.793 0.417 

12 r99p Extremely wet days (mm) 0.71 0.037 0.062 1.33 0.146 0.169 0.6 0.802 0.715 

13 rx1day Max 1-day precipitation amount (mm) 0.14 -0.021 0.022 0.31 0.055 0.081 0.66 0.704 0.788 

14 rx5day Max 5-day precipitation amount (mm) 0.42 0.033 0.035 0.84 0.091 0.117 0.62 0.716 0.766 

15 sdii Simple daily intensity index (mm/day) 0.01 0.001 0.002 0.02 0.002 0.002 0.53 0.669 0.117 

16 su25 Summer days 1.12 0.398 1.06 0.69 0.047 0.038 0.12 0 0 

17 TMAXmean Mean Tmax (°C) 0.08 0.035 0.075 0.04 0.002 0.002 0.05 0 0 

18 TMINmean Mean Tmin (°C) 0.07 0.031 0.066 0.04 0.001 0.001 0.09 0 0 

19 tn10p Cool nights -0.45 -0.217 -0.375 0.24 0.023 0.025 0.08 0 0 

20 tn90p Warm nights 0.51 0.198 0.435 0.33 0.015 0.034 0.15 0 0 

21 tnn Minimum value of daily Tmin (°C) 0.05 0.048 0.092 0.06 0.006 0.006 0.38 0 0 

22 tnx Max Tmin (°C) 0.04 0.02 0.063 0.05 0.002 0.003 0.44 0 0 

23 tx10p Cool days -0.52 -0.206 -0.361 0.22 0.022 0.023 0.03 0 0 
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24 tx90p Warm days 0.51 0.2 0.427 0.33 0.016 0.034 0.14 0 0 

25 txn Min Tmax (°C) 0.09 0.043 0.084 0.06 0.007 0.006 0.17 0 0 

26 txx Maximum value of daily Tmax (°C) 0.03 0.027 0.068 0.06 0.003 0.003 0.62 0 0 

27 wsdi Warm spell duration indicator (days) 0.75 0.235 0.717 0.33 0.032 0.096 0.03 0 0 

The graphical results of the trend assessment for the 27 climatic indices are showen in the folowing figure A-16 for the baseline (1986-

2005) and the future period of 2006-2100 under two RCPs (4.5 and 8.5) scenarios. 
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Figure A-16: Extreme indices during the base period (1986-2005) and future (2006-2100) in UKRB. The visualization of the plots is 

in annual series, along with trends computed by linear least square (solid line) and locally weighted linear regression (dashed line). 

The statistics of linear trend fitting are displayed on the plots.
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