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Molecular Stokes-Einstein and Stokes-Einstein-Debye relations for water including
viscosity-dependent slip and hydrodynamic radius
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We perform molecular dynamics simulations of liquid water at different temperatures and calculate the water
viscosity, the translational and rotational water diffusivities in the laboratory frame as well as in the comoving
molecular frame. Instead of interpreting the results as deviations from the Stokes-Einstein and Stokes-Einstein-
Debye relations, we describe the translational and rotational diffusivities of water molecules by three models
of increasing complexity that take the structural anisotropy of water into account on different levels. We first
compare simulation results to analytical predictions for a no-slip sphere and a no-slip ellipsoid. We show that
the no-slip sphere can approximate laboratory-frame isotropic translational and rotational diffusivities but fails
to describe the anisotropic molecular-frame diffusivities. The no-slip ellipsoid can describe the translational
anisotropic molecular-frame diffusivities exactly but fails to describe the translational and rotational anisotropic
molecular-frame diffusivities simultaneously. Since an ellipsoidal model with slip boundary conditions is not
analytically tractable, we define a heuristic spherical model with tensorial slip lengths and tensorial hydrody-
namic radii. We show that this model simultaneously describes the laboratory-frame isotropic translational and
rotational diffusivities, as well as, in a restricted viscosity range, the anisotropic molecular-frame diffusivities.

DOI: 10.1103/PhysRevE.110.064610

I. INTRODUCTION

The Stokes-Einstein (SE) and the Stokes-Einstein-Debye
(SED) relations predict the translational and rotational dif-
fusivities of a sphere in a continuous viscous medium and
thus describe how a macroscopic spherical body moves in
fluids in the long-time limit [1–4]. According to these rela-
tions, the diffusivities are inversely linearly proportional to
the solution viscosity. The putative failure of these relations
to describe molecular diffusion in liquids and, in particular,
deviations from the linear viscosity dependence have been
intensely and controversially discussed [5–12]. It was sug-
gested early that the SE and SED relations can be reconciled
with experimental data by defining a viscosity-dependent slip
length [13–15]. Likewise, it has been pointed out that the SE
relation can be interpreted as a definition of the hydrodynamic
radius, which thereby would acquire a dependence on temper-
ature, particle type and solvent properties [6]. Experimentally,
translational diffusivities of molecules in liquids can be ac-
curately and consistently measured by various techniques
[16]. Rotational molecular diffusivities have been derived
from the fluorescence quantum yield of dyes [17], depolar-
ized Rayleigh scattering [13], dielectric relaxation times [15],
spin relaxation rates [8], and Kerr-effect spectroscopy [9].
One problem is that the rotational dynamics of molecules
exhibits a slow crossover from ballistic motion at short times
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to diffusive motion at long times, and that it is experimentally
difficult to reach the long-time diffusive behavior where one
can expect steady-state linear hydrodynamic predictions to
hold (as we demonstrate later). Besides, most molecules are
not spherically symmetric and therefore the translational and
rotational diffusivities are anisotropic in the molecular frame.
This indeed is the case for water, see Fig. 1(a), which has been
at the focus of previous discussions and is the subject of the
present paper. Carefully designed simulations are thus crucial,
because they allow analyzing water dynamics in the molecular
frame for all time scales, encompassing the crossover from
ballistic to diffusive behavior.

Molecular dynamics (MD) simulation studies have re-
ported translational and rotational diffusivities of different
water models along and around the three molecular axes
[18–20]. In one work the relation between the translational
diffusivity and viscosity for water at varying temperature has
been addressed [21]. However, a full exploration of the re-
lation between translational and rotational diffusivities and
viscosity is missing in literature.

The organization of this paper is as follows: In Sec. II,
we establish the methodological framework of our study. In
Sec. II A, we revisit the SE and SED relations for ellipsoidal
particles with stick boundary conditions as well as spherical
particles with both stick and finite slip boundary conditions.
After giving details on our simulation protocol and the extrac-
tion of viscosities from our simulations in Sec. II B, we outline
our method for determining molecular-frame translational and
rotational diffusivities in Sec. II C. In Sec. III, we present
our results and discuss the implications of our findings. We
determine in Sec. III A the viscosity and the molecular-frame
rotational and translational diffusivities of liquid water for a
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FIG. 1. (a) The molecular coordinate system (the so-called
Eckart frame [45]) we use for water. (b) Our simulated water shear
viscosity as a function of temperature in comparison with previous
simulations around 300 K [40–44,46].

wide temperature range. Subsequently, we characterize the
molecular water rotational and translational diffusivities by
three models of increasing complexity that take the structural
anisotropy of water into account on different levels: After a
short discussion of the hydrodynamic radii following from the
SE and SED relations for a spherical model with stick bound-
ary conditions in Sec. III B 1, we show in Sec. III B 2 that
the anisotropic translational diffusivity of a water molecule
can be described by an ellipsoidal model with stick bound-
ary conditions, whereas it is not possible to describe the
anisotropic rotational and translational diffusivities simulta-
neously via this model. Finally, in Sec. III B 3, we show that
the SE and SED relations can be simultaneously satisfied for
low temperatures by fitting viscosity-dependent anisotropic
hydrodynamic radii and slip lengths for a spherical model
to the data. While this does not prove that hydrodynamics
works down to molecular length scales, it shows that previous
attempts to demonstrate the violation of the SE and SED
relations are often unwarranted and that molecular anisotropy
as well as appropriate boundary conditions are crucial for the
success of future hydrodynamic models on molecular scales.

II. METHODS

A. Stokes-Einstein and Stokes-Einstein-Debye relations

1. Ellipsoid with stick boundary conditions

The diffusivity of a particle in a viscous fluid is given by
the Einstein relation D = kBT/ζ [22], where we have replaced
the mobility μ by the friction coefficient ζ = 1/μ. Using the
Stokes friction for the translations of a general ellipsoid with
stick boundary conditions [23], the SE relations along the
principal axes of the ellipsoid, denoted by superscripts x, y,

z, read

Dx
t = kBT

(
χ0 + r2

x α0
)

16πηrxryrz

Dy
t = kBT

(
χ0 + r2

y β0
)

16πηrxryrz

Dz
t = kBT

(
χ0 + r2

z γ0
)

16πηrxryrz
, (1)

where rx, ry, rz are the semiaxes of the ellipsoid, η is the fluid
shear viscosity, and χ0(rx, ry, rz ), α0(rx, ry, rz ), β0(rx, ry, rz ),
γ0(rx, ry, rz ) are elliptic integrals; see Sec. S1 in the Supple-
mental Material (SM) [24] for details. Analogously, the SED
relations for the rotational diffusivities around the principal
axes of the ellipsoid read [23]

Dx
r = 3kBT

(
r2

y β0 + r2
z γ0

)
16πηrxryrz

(
r2

y + r2
z

)

Dy
r = 3kBT

(
r2

x α0 + r2
z γ0

)
16πηrxryrz

(
r2

x + r2
z

)

Dz
r = 3kBT

(
r2

x α0 + r2
y β0

)
16πηrxryrz

(
r2

x + r2
y

) . (2)

Given the viscosity η as well as the diffusivities in the molec-
ular frame (defined in Sec. II C), the effective values of the
semiaxes rx, ry, rz can be extracted via a least-squares fit of
the data to Eqs. (1) or (2), or a combination of both. We fit the
data using the Levenberg-Marquardt algorithm [25], where we
choose initial values from a three-dimensional grid. The main
questions are whether a unique global minimum exists and
whether the obtained values for the hydrodynamic radii are
reasonable and indeed solve the SE and SED relations.

Even though the SE and SED relations cannot be solved in
closed form for general ellipsoids, one can gain some intuition
by considering the case of a slightly deformed sphere. In this
case, we let r0 := rx = ry and rz = r0(1 + ε) with |ε| � 1.
The SE and SED relations Eq. (1) and Eq. (2), respectively,
are expanded in terms of ε up to first order. The SE relation
for the translational diffusivity then reads

Dx,y
t � kBT

6πηr0

(
1 + 2

5
ε

)

Dz
t � kBT

6πηr0

(
1 + 1

5
ε

)
, (3)

whereas the SED relation for the rotational diffusivity reads

Dx,y
r � kBT

8πηr3
0

(
1 + 6

5
ε

)

Dz
r � kBT

8πηr3
0

(
1 + 1

5
ε

)
. (4)

From Eqs. (3) and (4), one can see that the deformation of a
sphere along a single axis impacts both the translational and
rotational diffusivities along (around) the perpendicular axes
more strongly than along (around) the same axis. This effect
is more pronounced for the rotational diffusivities and will be
relevant for our modeling later on.
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2. Sphere with finite slip

The SE expression for the translational diffusivity of a
spherical particle with a general slip boundary condition is
given by [22,26]

Dt = kBT

6πηr ft
, (5)

where r is the hydrodynamic sphere radius and η the fluid
shear viscosity. The slip correction factor is ft = 1+2b/r

1+3b/r [27]
and depends on the slip length b, which is related to the
surface friction coefficient λ via b = η/λ [28]. In the stick
limit (b/r = 0) one has ft = 1 and in the slip limit (b/r → ∞
as realized for bubbles) one has ft → 2/3. Analogously, the
SED expression for the rotational sphere diffusivity reads
[22,26,29]

Dr = kBT

8πηr3 fr
(6)

with the correction factor given by fr = 1
1+3b/r [27] with

the limits fr = 1 for b/r = 0 and fr → 0 for b/r → ∞. For
molecules one expects finite correction factors ft and fr with
values between the asymptotic limits [13,14].

Based on translational and rotational diffusivity data the
hydrodynamic radius and slip length can be extracted as fol-
lows: Combining Eqs. (5) and (6) leads to

Dr

D3
t

= 27π2(kBT )−2η2 f 3
t

fr
, (7)

which only depends on the ratio r/b. Knowing the viscosity,
r/b can thus be obtained from the ratio Dr/D3

t by numerical
inversion, though it is not a priori clear whether a solution
exists. Having determined r/b the hydrodynamic radius r then
follows from Eqs. (5) or (6). Again, the main questions are
whether the inversion is possible and whether the obtained
values for r and b are reasonable. Note that since Eq. (7) is
a third-order equation in b/r, inversion is possible analyti-
cally. As a check, we numerically evaluate Cardano’s formula
for Eq. (7) and find identical solutions. Note furthermore
that third-order equations can have up to three solutions. In
our case, if inversion with positive hydrodynamic radius r
is possible, then there are two solutions, one with positive
and one with negative slip length. In the following, always
the solution with positive slip length b is considered. The
solutions involving negative slip lengths are shown in Sec. S10
in the SM [24].

B. Molecular dynamics simulations

We here calculate translational and rotational diffusivities
from 10 ns long MD simulation trajectories of N = 1410
SPC/E water molecules [30] in a mean volume of roughly
V = (3.5 nm)3 using the GROMACS 4.6 simulation package
[31–35] with a time step of �t = 2 fs. We use a Parrinello-
Rahman barostat [36,37] at 1 bar and a velocity-rescaling
thermostat [38]. We vary the water shear viscosity by chang-
ing the temperature T from 280 K to 380 K in steps of 20 K.

The water viscosity η is determined from momentum fluc-
tuations [39,40] using extended trajectories of 300 ns (see
Sec. S2 and S3 in the SM for details [24]) and is shown as a

function of temperature in Fig. 1(b). In agreement with exper-
iments, η decreases drastically with increasing temperature,
which demonstrates that the SE and SED relations can be
sensitively probed in pure water by changing temperature. We
favorably compare our results for η in Fig. 1(b) to previous
simulation results around 300 K [40–44]. An Arrhenius fit
of η according to η(T ) = η0 exp(Eη/kBT ) with η0 = (7.4 ±
0.6) × 10−3 mPa s and Eη = (11.2 ± 0.2) kJ/mol [red line in
Fig. 1(b)] describes the data rather well, which suggests that
the viscosity involves a thermally assisted barrier crossing
process.

C. Molecular-frame translational and rotational diffusivities

To obtain molecular-frame translational diffusivities, we
first project the laboratory-frame water displacement �r(t ) =
r(t ) − r(0), where r(t ) is the oxygen position of a given water
molecule at time t , onto the comoving molecular coordinate
frame according to [18,19]

�α(t ) =
t/�t∑
i=1

[
(r(i�t ) − r((i − 1)�t )) · ê(i−1/2)

α

]
ê(i−1/2)
α , (8)

where α ∈ {x, y, z}. The unit vectors êα in the molecular
frame are shown in Fig. 1(a), and we define half-step unit
vectors as ê(i−1/2)

α = (êα (i�t ) + êα ((i − 1)�t ))/2. Obviously,
�r(t ) = ∑

α �α(t ). Using Eq. (8), we define the translational
mean-squared displacement (MSD) matrix as

Mαβ (t ) = 〈(�α(t + τ ) − �α(τ )) · (�β(t + τ ) − �β(τ ))〉,
(9)

where α, β ∈ {x, y, z} and the average is calculated over all
water molecules and reference times τ . We next define the
translational MSDs in the molecular frame by partial summa-
tion as 〈

�r2
α (t )

〉 =
∑

β

Mαβ (t ), (10)

so that the laboratory-frame MSD is recovered by 〈�r2(t )〉 =∑
α〈�r2

α (t )〉. Note that translational molecular-frame MSDs
were previously defined as the diagonal components Mαα

[18–20], which show distinct scaling behavior compared to
the laboratory-frame MSD. This demonstrates the relevance
of the off-diagonal components of M, in particular when
the validity of the SE relation is concerned; see Sec. S4
in the SM [24].

The rotational MSDs around the molecular axes are
calculated according to [18,19]〈

�ϕ2
α (t )

〉 = 〈(�ϕα (t + τ ) − �ϕα (τ ))2〉 (11)

with the angular displacements defined as

�ϕα (t ) =
t/�t∑
i=1

1

2

∑
β,γ

εαβγ êβ (i�t ) · êγ ((i − 1)�t ) (12)

for α, β, γ ∈ {x, y, z} and where εαβγ denotes the
three-dimensional Levi-Civita symbol [47]. The translational
diffusivities in the laboratory and molecular frame
follow from the MSDs as Dlab

t = limt→∞〈�r2〉/6t and
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FIG. 2. (a) Translational and (d) rotational MSDs for SPC/E water at T = 300 K. The insets show the time-dependent MSD power-law
exponent, which is 2 for ballistic and 1 for diffusive motion. (b) Translational diffusivities as a function of temperature in the laboratory
frame, Dlab

t , and along the molecular axes, Dx,y,z
t . For reference, the laboratory-frame translational diffusivity of SPC/E water from Ref. [44] is

included. (e) Rotational diffusivities around the molecular axes, Dx,y,z
r , and its average Davrg

r . (c) Corresponding translational and (f) rotational
rescaled diffusivities as a function of the viscosity η. Fits according to Dr,t/T ∼ η−k are shown as solid lines. The power-laws k = 1 are
indicated by black straight lines.

Dα
t = limt→∞〈�r2

α〉/2t , the rotational diffusivities are given
by Dα

r = limt→∞〈�ϕ2
α〉/2t for α ∈ {x, y, z}.

Note that, since the SPC/E water model is nonorthotropic,
couplings between the translational and rotational diffusiv-
ities described by the coupling coefficients Dαβ

t,r = Dβα
r,t =

limt→∞〈�rα (t )�ϕβ (t )〉/2t are expected and enter the de-
scription as nondiagonal elements in the grand-diffusivity
matrix [48,49]. As we aim to describe water diffusivities by
analytically tractable orthotropic models, these couplings are
not considered in the present work, but can be included in
future studies.

III. RESULTS

A. Translational and rotational diffusivities

The simulated laboratory and molecular translational
MSDs as well as the rotational MSDs according to Eqs. (10)
and (11) are shown in Figs. 2(a) and 2(d) for an exemplary
temperature of T = 300 K, results for different temperatures
are given in Sec. S5 in the SM [24]. One observes a slow
crossover from ballistic to diffusive behavior, which is illus-
trated by the time-dependent MSD power-law exponent in
the insets, which changes from 2 for short times to 1 for
long times. The sum of all molecular translational MSDs (or-
ange broken line) perfectly overlaps with the laboratory-frame
MSD (purple line) in Fig. 2(a), as expected.

The diffusivities are calculated from the MSDs by linear
fits in the time interval from 100 ps to 1000 ps, where the data
exhibit diffusive behavior, and are corrected for hydrodynamic
finite-size effects [50,51] (see Sec. S6 in the SM [24] for de-
tails). Recently, a frequency-dependent finite-size correction
to the diffusivity has been proposed in Ref. [52]. The results
following from uncorrected data are shown in Sec. S11 in
the SM [24]. In the time range we use for the fits, SPC/E

water behaves as a Newtonian Markovian fluid and a possible
frequency dependence of the viscosity in Eqs. (5) and (6) can
be neglected [53]. The results in Figs. 2(b) and 2(e) show that
all diffusivities increase with temperature, as expected based
on the viscosity scaling in Fig. 1(b). The translational as well
as the rotational diffusivities are anisotropic: For example, the
translational diffusivity along the y axis Dy

t is about 1.5 times
higher than Dz

t , in agreement with previous findings [18,19],
the rotational diffusivity around the y axis Dy

r is reduced by
roughly a factor of two compared to Dz

r , in qualitative agree-
ment with experiments [54] and simulations [20].

In Figs. 2(c) and 2(f), the rescaled diffusivities D/T are
plotted against the viscosity η together with power-law fits
according to D/T ∼ η−k , the fitted exponents k are listed
in Table I. According to Eqs. (5) and (6) one would expect
k = 1 for viscosity-independent radius r and slip length b.
In fact, the laboratory-frame translational diffusivity data in
Fig. 2(c) are in perfect agreement with k = 1. The molecular
anisotropic translational diffusivities are within their errors
consistent with k = 1 as well. This is in agreement with

TABLE I. The exponents k from the fits of the translational and
rotational diffusivities to the viscosity according to D/T ∼ η−k .

k

Lab frame translation Dlab
t 1.00 ± 0.06

Molecular translations Dx
t 1.04 ± 0.06

Dy
t 0.96 ± 0.06

Dz
t 1.02 ± 0.07

Molecular rotations Dx
r 0.85 ± 0.04

Dy
r 0.79 ± 0.03

Dz
r 0.94 ± 0.05

Davrg
r 0.88 ± 0.04
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FIG. 3. (a) Hydrodynamic laboratory-frame radii rlab
t (filled blue circles) and rlab

r (open red circles) for the translational and rotational
diffusion of a water molecule as a function of the viscosity η. The radii are calculated via Eq. (13) using Dlab

t and Davrg
r , respectively. (b), (c)

Axis-specific hydrodynamic radii rα
t (b) and rα

r (c) from the anisotropic translational and rotational diffusion of a water molecule as a function
of the viscosity η, calculated via Eq. (13). rα

t,r is calculated from Dα
t,r for α ∈ {x, y, z}. ravrg denotes the average of the results for r over all axes.

The laboratory-frame results from subfigure (a) are included as purple squares. For comparison, in (a)–(c), the geometric water radius rv is
included as black circles linearly interpolated by a dashed line.

previous simulation studies [7,10,11] and experiments [55].
In contrast, some simulations reported smaller exponents, as
reviewed recently [56], which has been argued to be due to
the different simulation methods used to estimate the shear
viscosity [11].

The molecular rotational diffusivities in Fig. 2(f) exhibit
significantly lower exponents, the diffusivity Davrg

r averaged
over all three directions is characterized by k ≈ 0.88 (see
Table I), which indicates significant deviations from the SED
relation. In related MD simulations, the rotational diffusivity
of the water dipole vector in the laboratory frame was found
to be characterized by an exponent k = 0.75, not so far from
our result [57]. Note, however, that in these simulations a
different definition of the angular displacement was used and
the viscosity was estimated from the relaxation time of the
coherent intermediate scattering function [57]. Also, in that
work, the exponent k was estimated from a fit according to
D ∼ (T/η)k in contrast to our definition D/T ∼ η−k , which
follows from the definition of the SE and SED relations in
Eqs. (5) and (6). In Sec. S7 in the SM [24] we show that the
deviation in k between these two different fit expressions is
however rather small.

B. Hydrodynamic radii and slip lengths

In the following we will describe the molecular water
rotational and translational diffusivities by three models of in-
creasing complexity that take the structural and slip anisotropy
of water into account on different levels. Analytical results
are only available for orthotropic models, we therefore cannot
regard translational-rotational couplings in the diffusivities, as
briefly mentioned in Sec. II C.

1. Sphere with stick boundary conditions

The SE and SED relations for a spherical particle with stick
boundary conditions in a viscous fluid are given by Eqs. (5)
and (6), where the corresponding slip correction factors are
set to one, i.e., ft = fr = 1. Rearranging these equations for

r, it is easy to define hydrodynamic radii

rt = kBT

6πηDt
, rr =

(
kBT

8πηDr

)1/3

, (13)

for the translational and rotational diffusion along the molec-
ular frame axes, respectively. Although Eq. (13) is derived for
an isotropic sphere, we heuristically use the expression to de-
fine different radii in the different directions of the molecular
frame.

In Fig. 3(a), we show the hydrodynamic radii rlab
t and rlab

r
for the translational and rotational diffusion of SPC/E water in
the laboratory frame following from the diffusivities Dlab

t and
Davrg

r obtained in Sec. III A, respectively. We include for com-
parison the slightly temperature-dependent geometric radius
rv , which is the radius of a sphere with the molecular volume
v = V/N of a water molecule, where V is the mean volume of
the simulation box and N is the number of water molecules.
We find that rlab

t and rlab
r remain fairly constant over the whole

range of viscosities and stay well below the geometric ra-
dius rv . Furthermore, the radii for translational and rotational
motion in the laboratory frame are in good agreement, with
noticeable differences only arising at the highest viscosity.
This suggests that the laboratory-frame diffusion of a water
molecule can be well approximated by a spherical model with
stick boundary conditions.

We now turn to the anisotropic molecular frame results. In
Figs. 3(b) and 3(c), we show the hydrodynamic radii rα

t and rα
r

for the translational and rotational diffusion, respectively, of a
water molecule along the three molecular axes α ∈ {x, y, z}
following from the diffusivities Dα

t,r obtained in Sec. III A.
For the translational motion, see Fig. 3(b), we find that the
hydrodynamic radii rt remain fairly constant over the whole
range of viscosities, and stay below the geometric radius rv .
The radii for the diffusion along the three distinct molecular
axes are clearly different, where the hydrodynamic radius for
translations along the z axis is largest and the radius for trans-
lations along the y axis is smallest, reflecting the anisotropy in
diffusion discussed in Sec. III A.
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FIG. 4. (a) Sketch of ellipsoid with semiaxes corresponding to the hydrodynamic radii for the translation of a water molecule at T = 280 K
obtained from Eq. (1). (b) Hydrodynamic radii rx

t , ry
t , rz

t for the translating ellipsoid as a function of viscosity η for each axis. (c) Sketch of
ellipsoid with semiaxes corresponding to best fit of the hydrodynamic radii with rα

r > 0, α ∈ {x, y, z}, to the rotations of a water molecule at
T = 280 K obtained from Eq. (2). (d) Hydrodynamic radii rx

r , ry
r , rz

r for the best fitting rotating ellipsoid with rα
r > 0, α ∈ {x, y, z}, as a function

of viscosity η for each axis.

Regarding the rotational motion, in Fig. 3(c), we again
find that the hydrodynamic radii are fairly constant over the
whole range of viscosities, stay below the geometric radius rv ,
and, as for the translational case, display a clear anisotropy.
However, for the rotational motion, the hydrodynamic radii
for rotations around the y axis are largest and the radii for
rotations around the z axis are smallest. None of the radii rt

and rr coincide for a given axis, as would be suggested by
the first-order expansion in Eqs. (3) and (4). On the contrary,
we note that the rotational radius along one axis corresponds
approximately to the average taken over the translational radii
along the two perpendicular axes, e.g., rz

r ≈ (rx
t + ry

t )/2, and
vice versa (see Sec. S8 in the SM [24] for details). Neverthe-
less, one needs six different radii to describe the translational
and rotational diffusivities in the molecular frame. This is
in contrast to the results in the laboratory frame, which are
both well described by a single radius. This suggests that the
spherical model with stick boundary conditions is not suitable
to simultaneously describe the anisotropic translational and
rotational diffusivities of an SPC/E water molecule in the
molecular frame, and generalizations are needed.

2. Ellipsoid with stick boundary conditions

Because of the shortcoming of the spherical model with
stick boundary conditions, we now generalize the sphere to
an ellipsoid with arbitrary semiaxes rx, ry, and rz and stick
boundary conditions.

We first consider the translational diffusivity of the el-
lipsoid. In Fig. 4(b), we show the semiaxes rx

t , ry
t , and rz

t
of the ellipsoid obtained from the translational diffusivities
of a water molecule as a function of the solution viscosity,
obtained using the method described in Sec. II A 1 via Eq. (1).
The radii are unique and exactly reproduce the diffusivities
extracted from our MD data, i.e., the error of the fit is zero.
We find that the hydrodynamic radii rx

t , ry
t , and rz

t are quite
different for all viscosities. The lowest radii are found for
the z axis, i.e., along the dipole axis of the water molecule,
whereas the radii for the x axis are almost twice as large as rz

t .
The hydrodynamic radius in the y direction, i.e., orthogonal
to the HOH-plane, is by far the largest, approximately four
times as large as rx

t and ten times with respect to rz
t . While the

radii rx
t , and rz

t stay fairly constant with viscosity, ry
t steadily

increases with increasing viscosity. A sketch of the ellipsoid
with semiaxes corresponding to the hydrodynamic radii for
the translation of a water molecule at T = 280 K is shown in
Fig. 4(a).

We next consider the rotational diffusivity of the ellipsoid.
In contrast to the translational case, the rotating ellipsoid
model Eq. (2) cannot be fit to the MD data perfectly, i.e., the
error of the fit is finite. In Fig. 4(d), we show the semiaxes
rx

r , ry
r , and rz

r of the best fitting ellipsoid, i.e., the global
minimum of the least-squares loss function with the condi-
tion that rα

r > 0 for α ∈ {x, y, z}. The error of the rotational
diffusivities predicted by the ellipsoidal model with respect to
the MD data is shown in Sec. S9 in the SM [24]. We find that,
in contrast to the translational case, the hydrodynamic radii
remain fairly constant with viscosity. The hydrodynamic radii
in the y direction are smallest, whereas the radii for the z axis
are largest.

This is in contrast to the results in the translational case,
where the semiaxis ry

t is largest. Due to this inconsistency of
shapes, cf. the sketches in Figs. 4(a) and 4(c), we conclude that
also the ellipsoidal model with stick boundary conditions is
not suitable to simultaneously describe the anisotropic transla-
tional and rotational diffusivities of an SPC/E water molecule
in the molecular frame, whereas the translational motion alone
is well described by the ellipsoidal model. As a consequence,
we will generalize the boundary conditions in the next section.

3. Sphere with finite slip

We now depart from the assumption of stick boundary
conditions and allow for finite slip. In order to increase the
complexity of our model as little as possible, and since no
analytical solution for the diffusivities of an ellipsoid with
finite slip is available, we use a spherical model with finite
slip, as is described in Sec. II A 2.

We solve Eq. (7) for the ratio r/b and obtain the hydrody-
namic radius r from Eq. (5). Once the hydrodynamic radius is
known, the slip length b follows from the ratio b/r. In order
to check for possible anisotropies in the extracted values of
the radius and the slip length, we extract hydrodynamic radii
rx, ry, rz and slip lengths bx, by, bz using the molecular-frame
diffusivities obtained in Sec. III A. Since deformation of a
sphere along one axis impacts both translational and rotational
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FIG. 5. (a) Hydrodynamic radii rx , ry, rz and (b) slip lengths bx ,
by, bz obtained from Eq. (7) as a function of viscosity η for each
axis. rlab and blab are calculated from the translational laboratory-
frame diffusivity Dlab

t and the average rotational diffusivity Davrg
r . For

comparison, the geometric water radius rv is included in (a) as black
circles linearly interpolated by a dashed line.

diffusivities along the two perpendicular axes more strongly,
as follows from Eqs. (3) and (4), we extract the hydrodynamic
radius and slip length for one axis by using the average dif-
fusivities along the two perpendicular axes in Eq. (7). For
example, to extract rz and bz, we use Dt := (Dx

t + Dy
t )/2 and

Dr := (Dx
r + Dy

r )/2 in Eq. (7). The results for the hydrody-
namic radii and slip lengths when using alternative combina-
tions of diffusivities are shown in Sec. S10 in the SM [24].

In Figs. 5(a) and 5(b) the effective radii rα and the slip
lengths bα for each axis are shown as a function of the solution
viscosity. For now, we concentrate on rlab and blab (purple
squares). In Figs. 5(a) we include for comparison the geo-
metric radius rv , as introduced in Sec. III B 1. We see that
the hydrodynamic radii do not change much with viscosity,
except at the highest viscosities, and are slightly smaller than
rv , which is a physically intuitive result. The effective radius
is more or less constant with the average 〈rlab〉η = 0.14 nm.
For high viscosities (low temperatures) the radius increases,
which one could interpret as a consequence of enhanced water
binding, as one would intuitively expect. In contrast, the slip
length blab varies, but stays around blab ≈ 0.1 nm. This sug-
gests that the translational and rotational diffusion of water
in the laboratory frame can indeed be explained by a spherical
model with finite slip, whereas the characterization as a sphere
with stick boundary conditions holds only approximately;
see Fig. 3(a).

Regarding the anisotropic molecular-frame diffusion, we
find that inversion of Eq. (7) is for all axes possible only for
the highest viscosity (lowest temperature), whereas for the
other viscosities, inversion for rz and bz fails. We therefore
concentrate on the results for rx and ry, for which inversion
of Eq. (7) is possible over the whole range of viscosities. We
see that the hydrodynamic radii rx and ry exhibit moderate
anisotropy, where ry is always larger than rx, and, in the case
where a solution for rz is found, rz is lowest. Interestingly,
the very same hierarchy is reflected in the translating ellipsoid
model with stick boundary conditions; see Fig. 4(b). Similarly
to the laboratory-frame results, the radii rx and ry increase
with higher viscosities. In comparison with the geometric
radius rv , the hydrodynamic radii rx are smaller, whereas ry is
similar to rv and approaches rv with increasing viscosity. For
the highest viscosity, ry even slightly surpasses rv . In contrast,
the different slip lengths, and especially by, vary significantly
with viscosity and exhibit a minimum at intermediate viscos-
ity. Interestingly, the slip lengths bx are rather similar to the
hydrodynamic radius, whereas by is always higher than ry,
and for the highest viscosity by is more than twice as large
as ry. Our anisotropic results reflect that water dynamics is
rather anisotropic over the whole range of viscosities η and the
isotropic model described by Eqs. (5) and (6) is not suitable
to describe the molecular-frame diffusion of water.

IV. CONCLUSION

In the present work, we perform molecular dynamics simu-
lations of SPC/E water at different temperatures and calculate
the viscosities as well as the rotational and translational self-
diffusion constants of water molecules in the laboratory frame
as well as in the anisotropic molecular frame. In the latter
case, we introduce the MSD matrix and show that a complete
decomposition of the translational laboratory-frame MSD into
the molecular-frame MSDs is possible only if the off-diagonal
components of the MSD matrix are taken into account.

We demonstrate that the translational diffusivities of
SPC/E water obey the SE relation for a general ellip-
soidal model with stick boundary conditions and viscosity-
dependent radii. We show that neither a spherical model
with stick boundary conditions nor an ellipsoidal model with
stick boundary conditions can simultaneously describe the
anisotropic translational and rotational diffusivities of SPC/E
water. We also show that the (isotropic) translational and
rotational diffusion in the laboratory frame can be only
approximately described by a spherical model with stick
boundary conditions.

We demonstrate that the (isotropic) translational and ro-
tational diffusivities of SPC/E water in the laboratory frame
obey the SE and SED relations if slip is taken into account for
a spherical model and if both hydrodynamic radius and slip
length are allowed to change with viscosity. The slip length
and the hydrodynamic radius of a single water molecule have
recently been determined by comparison of the frequency-
dependent friction response from the transient Stokes equation
and from simulations to r = 0.14 nm and b = 0.10 nm for
a system at T = 300 K, showing good agreement with our
results [58]; this lends support to our approach, which is appli-
cable to general molecules in different solvents. Regarding the
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anisotropic molecular-frame diffusion, a satisfactory descrip-
tion of the anisotropic diffusion in the molecular frame via a
spherical model with finite slip is only possible for the highest
viscosity (lowest temperature). For the other viscosities, only
two of the three axes can be described by the spherical model
with finite slip.

Our results suggest that continuum hydrodynamic equa-
tions remain useful down to molecular length scales, provided
the appropriate boundary conditions are used, which is rele-
vant for the growing field of nanofluidics [59]. However, our
results show that the anisotropy of the molecule proves to be
a crucial factor in the description of its diffusive behavior.
Our findings support the idea that an ellipsoidal model with

anisotropic radii and slip lengths, i.e., six model parameters
for six molecular-frame diffusivities, presumably can explain
the anisotropic diffusion of water molecules in the molecular
frame. We are not aware of an analytical solution for the dif-
fusion of an ellipsoid with arbitrary slip boundary conditions,
which is a topic for future research.
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