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Abstract
Convergence rates for L2 approximation in a Hilbert space H are a central theme in
numerical analysis. The present work is inspired by Schaback (Math Comp, 1999),
who showed, in the context of best pointwise approximation for radial basis function
interpolation, that the convergence rate for sufficiently smooth functions can be dou-
bled, compared to the best rate for functions in the “native space” H . Motivated by
this, we obtain a general result for H -orthogonal projection onto a finite dimensional
subspace of H : namely, that any known L2 convergence rate for all functions in H
translates into a doubled L2 convergence rate for functions in a smoother normed
space B, along with a similarly improved error bound in the H -norm, provided that
L2, H and B are suitably related. As a special case we improve the known L2 and H -
norm convergence rates for kernel interpolation in reproducing kernel Hilbert spaces,
with particular attention to a recent study (Kaarnioja, Kazashi, Kuo, Nobile, Sloan,
Numer. Math., 2022) of periodic kernel-based interpolation at lattice points applied to
parametric partial differential equations. A second application is to radial basis func-
tion interpolation for general conditionally positive definite basis functions, where
again the L2 convergence rate is doubled, and the convergence rate in the native space
norm is similarly improved, for all functions in a smoother normed space B.
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1 Introduction

A common situation in computational mathematics and approximation theory is that
one seeks to approximate a real-valued function f defined on a domain D, and belong-
ing to some Hilbert space H continuously embedded in L2(D), by the H -orthogonal
projection P f of f onto a finite-dimensional subspace V ⊂ H . Many error bounds
holding for all functions f ∈ H are known. Our aim in this paper is to provide
improved error bounds for functions g lying in a “smoother” normed space B contin-
uously embedded in H : we prove, under an appropriate relation between the spaces L2,
H and B (see (2) below), a doubled rate of convergence of ‖g− Pg‖L2 for g ∈ B, and
an analogous improved rate of convergence for the error in the H norm, ‖g − Pg‖H .

The finite-dimensional spaces we have in mind are varied: for example, V might
be a linear space of polynomials or splines; or radial basis functions of given shape
and a fixed set of nodes on R

d ; or a space of wavelets or kernels. The domain might
be Rd or an open subset of Rd , or a manifold such as Sd−1 := {x ∈ R

d : ‖x‖�2 = 1}.
For very many Hilbert spaces H and subspaces V error bounds of the following

form are known for ‖ f − P f ‖L2 :

‖ f − P f ‖L2 ≤ cn−κ‖ f ‖H for all f ∈ H , (1)

where n := dim(V ), ‖ · ‖H denotes the norm in H , and κ > 0 is a known constant.
Results of this kind lie at the heart of computational mathematics. If κ is the supremum
of all such constants then the result is one of best approximation.

The main aim of this paper is to show that if H and V are such that (1) holds, and
if B is an appropriate subspace of H (see (2) below), then an L2 error bound with a
doubled convergence rate holds for all functions in B: specifically, we will prove

‖g − Pg‖L2 ≤ c2n−2κ‖g‖B for all g ∈ B.

Moreover, under the same condition the error bound in the H norm will be shown to
have the same bound as in (1), specifically

‖g − Pg‖H ≤ cn−κ‖g‖B for all g ∈ B.

The relation between the linear spaces L2, H and B needed in this work, in addition
to the embedding of H in L2 and of B in H , is

|〈 f , g〉H | ≤ ‖ f ‖L2‖g‖B for all f ∈ H , g ∈ B. (2)

A relation of this kind, while not universal, often holds (especially after utilising
the freedom that exists in the choice of B), for example it may hold if 〈 f , g〉H has
a Fourier series definition, or if the inner product in H is the L2 inner product of
gradients. Simple examples are given in the next section.

The first result with the doubled-rate flavor appears to have been obtained by Sch-
aback in [11], in the special context of best pointwise approximation by radial basis
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function interpolation; see also [13]. The paper [11] is the inspiration for the present
doubled-rate result. An earlier progenitor is the Aubin–Nitsche lemma [2, 10].

A recent paper by Hangelbroek and Rieger [5], again in the context of radial basis
function interpolation, asked a different question, namely whether improved conver-
gence rates can be seen in norms other than L2. That paper encouraged us to seek the
above error bound in the H norm.

The results above are proved in a general Hilbert space context in Sect. 3, see
Theorem 1.

A potentially important area of application of the doubling results in this paper is to
kernel interpolation. If K (x, y) for x, y ∈ D is a given kernel, a kernel approximation
of a function f defined on D is an expression of the form

fn =
n∑

k=1

akK (tk, ·),

where t1, . . . , tn is a prescribed set of points in D, and a1, . . . , an ∈ R. The kernel
approximation is a kernel interpolant if fn is required to satisfy

fn(t j ) = f (t j ), j = 1, . . . , n.

While many kernels are used in practical applications (Gaussian kernels being perhaps
themost popular), of special interest to us is the case inwhich K (·, ·) is the reproducing
kernel of a reproducing kernel Hilbert space H , because in that case, as shown in
Sect. 4, kernel interpolation is equivalent to orthogonal projection with respect to the
H norm onto the finite-dimensional subspace defined by

V := Vt := span{K (t1, ·), . . . , K (tn, ·)}.

A theorem for the doubling phenomenon in a general reproducing kernel Hilbert
space H is stated and proved in Sect. 4, see Theorem 2. In Sect. 4.1 we apply the
results to recent high-dimensional computations based on kernel interpolation in a
reproducing kernel Hilbert space H [7, 8], in an application to parametric partial
differential equations. In this application the target function is known to be smooth,
and hence lies naturally in a smoother normed space B. It was in fact the observation
of faster-than-expected convergence in this application that gave birth to the present
project.

In Sect. 5we obtain equivalent results for general radial basis function interpolation.
While some radial basis functions are positive definite, and hence in principle cov-
ered already by Sect. 4, we here consider general conditionally positive definite basis
functions. In this case H is the so-called “native space”, and B is a space of smoother
functions introduced by Schaback [11]. Improved convergence results for radial basis
function interpolation in the L2 and native space norms are given in Theorem 7. The
proof again rests on the fact that radial basis function interpolation is expressible as
orthogonal projection in the space H onto a finite-dimensional subspace.
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2 Examples of suitable spaces H,B

Example 1 Take H to be the space of real, continuous functions on [0, 1] that have
square-integrable first order derivatives. This is a well known Sobolev space, with
standard inner product

〈 f , g〉H :=
∫ 1

0
f (x)g(x) dx +

∫ 1

0
f ′(x)g′(x) dx .

Clearly H is continuously embedded in L2(0, 1), since for f ∈ H we have

‖ f ‖2L2
=

∫ 1

0
| f (x)|2 dx ≤

∫ 1

0
(| f (x)|2 + | f ′(x)|2) dx = ‖ f ‖2H .

Now define B to be a subspace of H for which also the second derivatives are
square-integrable. On integrating by parts, for f ∈ H and g ∈ B we obtain

〈 f , g〉H :=
∫ 1

0
f (x)g(x) dx + f (1)g′(1) − f (0)g′(0) −

∫ 1

0
f (x)g′′(x) dx,

which with the Cauchy–Schwarz inequality implies

|〈 f , g〉H | ≤ ‖ f ‖L2‖g‖L2 + | f (1)||g′(1)| + | f (0)||g′(0)| + ‖ f ‖L2‖g′′‖L2 .

For (2) to be satisfied the two central terms must vanish, since f (0) and f (1) are
not bounded functionals in L2(0, 1), thus we must define B to be the subspace of the
Sobolev space of order 2 for which g′(1) = g′(0) = 0. We then have

|〈 f , g〉H | ≤ ‖ f ‖L2

(‖g‖L2 + ‖g′′‖L2

) ≤ ‖ f ‖L2

(
2(‖g‖2L2

+ ‖g′′‖2L2
)
)1/2

,

thus (2) is satisfied if the norm in B is defined by

‖g‖2B := 2
(
‖g‖2L2

+ ‖g′‖2L2
+ ‖g′′‖2L2

)
.

Clearly B is continuously embedded in H , since

‖g‖2H = ‖g‖2L2
+ ‖g′‖2L2

≤ 1
2‖g‖2B for all g ∈ B.

Example 2 The next example shows that some care may be required in defining the
subspace B. We take H to be the same space as in the first example. Then another
possible inner product is

〈 f , g〉H := f (0)g(0) +
∫ 1

0
f ′(x)g′(x) dx . (3)
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Assuming that g has square-integrable second derivatives, we may integrate by parts
to obtain

〈 f , g〉H := f (0)g(0) + f (1)g′(1) − f (0)g′(0) −
∫ 1

0
f (x)g′′(x) dx .

Equation (2) is then clearly satisfied if we define B ⊂ H by

B = {g ∈ H : g′′ ∈ L2(0, 1) and g(0) = g′(0) = g′(1) = 0}, (4)

and take ‖g‖B := ‖g′′‖L2 , which again is easily seen to be a norm in B.
We demonstrate in Sect. 4 that H is continuously embedded in L2(0, 1) and likewise

that B is continuously embedded in H .

Example 3 Take H to be the space of real, continuous functions on [0, 1] which have
square-integrable first order derivatives andwhich are periodic in the sense that f (0) =
f (1) for f ∈ H . This is a Hilbert space with inner product

〈 f , g〉H :=
(∫ 1

0
f (x) dx

) (∫ 1

0
g(x) dx

)
+

∫ 1

0
f ′(x)g′(x) dx .

By Wirtinger’s inequality (see, e.g., [6, Theorem 258]), we obtain

∥∥∥∥ f −
∫ 1

0
f (x) dx

∥∥∥∥
2

L2

≤ 1

(2π)2
‖ f ′‖2L2

for all f ∈ H ,

which yields that ‖ f ‖2L2
≤ ( ∫ 1

0 f (x) dx
)2 + (2π)−2‖ f ′‖2L2

≤ ‖ f ‖2H for all f ∈ H .
Therefore H is continuously embedded in L2(0, 1).

Now define B to be a subspace of H , one inwhich the second derivatives are square-
integrable, and for which the first derivatives at 0 and 1 are equal. On integrating by
parts, and using the periodicity, we obtain

〈 f , g〉H :=
(∫ 1

0
f (x) dx

) (∫ 1

0
g(x) dx

)
−

∫ 1

0
f (x)g′′(x) dx

=
∫ 1

0
f (x)

(∫ 1

0
g(y) dy − g′′(x)

)
dx,

implying with the Cauchy–Schwarz inequality

|〈 f , g〉H | ≤ ‖ f ‖L2

(∫ 1

0

(∫ 1

0
g(y) dy − g′′(x)

)2

dx

)1/2

= ‖ f ‖L2

((∫ 1

0
g(y) dy

)2

+
∫ 1

0
|g′′(x)|2 dx

)1/2

,
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where in the last step we used the fact that
∫ 1
0 g′′(x) dx = g′(1) − g′(0) = 0.

The last equation conforms with (2) if the last factor is used to define the norm
‖g‖B := (( ∫ 1

0 g(x) dx
)2 + ∫ 1

0 |g′′(x)|2 dx)1/2 in B.
To see that B is continuously embedded in H , we can argue in a similar way as

above to obtain

‖g′‖2L2
=

∥∥∥∥g
′ −

∫ 1

0
g′(x) dx

∥∥∥∥
2

L2

≤ 1

(2π)2
‖g′′‖2L2

for all g ∈ B,

since
∫ 1
0 g′(x) dx = g(1) − g(0) = 0. This immediately yields that ‖g‖H ≤ ‖g‖B

for all g ∈ B, as desired.

Example 4 Let D ⊂ R
d , d ∈ {1, 2, 3}, be a nonempty, bounded domain with Lipschitz

boundary. We check the relation (2) for the Sobolev spaces H = H1
0 (D) and B =

H2(D) ∩ H1
0 (D), which are natural Hilbert spaces to analyse variational solutions to

elliptic partial differential equations of the form

{
−∇ · (a(x)∇u(x)) = z(x) for x ∈ D,

u|∂D = 0,

where the functions a, z : D → R are called the diffusion coefficient and source term,
respectively. Standard elliptic regularity theory states that if the domain D is convex,
the diffusion coefficient a is Lipschitz continuous, and the source term z ∈ L2(D),
then the solution u belongs to B.

We can define 〈 f , g〉H := 〈 f , g〉L2(D) + 〈∇ f ,∇g〉L2(D) for f , g ∈ H so that

‖ f ‖L2(D) ≤ ‖ f ‖H for all f ∈ H ,

which implies the continuous embedding of H in L2(D).
Let f ∈ H and g ∈ B. We obtain by Green’s first identity that

〈 f , g〉H =
∫

D
f (x)g(x) dx −

∫

D
f (x)Δg(x) dx.

This allows us to estimate

|〈 f , g〉H | ≤ ‖ f ‖L2(D)(‖g‖L2(D) + ‖Δg‖L2(D)),

where the second factor specifies a norm ‖g‖B := ‖g‖L2(D) + ‖Δg‖L2(D) in B. We
note that this is not a Hilbert space norm, serving as a reminder that the requirement
on B is that it be a normed vector space continuously embedded in H , not necessarily
a Hilbert space.

It follows from the Poincaré inequality that there exists a constantC > 0 depending
on the domain D such that

‖ f ‖L2(D) ≤ C‖∇ f ‖L2(D) for all f ∈ H .
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Letting g ∈ B, we obtain by Green’s first identity that

‖∇g‖2L2(D) = −
∫

D
g(x)Δg(x) dx

≤ ‖g‖L2(D)‖Δg‖L2(D)

≤ C‖∇g‖L2(D)‖Δg‖L2(D).

This yields ‖∇g‖L2(D) ≤ C‖Δg‖L2(D) and thus ‖g‖H ≤ (1 + C2)1/2‖g‖B for all
g ∈ B. Hence B is continuously embedded in H .

3 Themain theorem

The following theorem captures the two improved error bounds described in the Intro-
duction. However, we here state the results in a more general way, replacing cn−κ by
M , where M > 0 depends on V and H .

Theorem 1 For a domain D ⊆ R
d , let H be a Hilbert space and B a normed space

of real-valued functions on D such that H is continuously embedded in L2(D) and
B is continuously embedded in H, and such that (2) holds. Further, let P be the H-
orthogonal projection operator onto a finite-dimensional space V ⊂ H. Assume that
for some M := M(V , H) > 0 we have

‖ f − P f ‖L2 ≤ M‖ f ‖H for all f ∈ H . (5)

Then for all g in B we have

‖g − Pg‖L2 ≤ M2‖g‖B,

and

‖g − Pg‖H ≤ M‖g‖B .

Proof We first apply (5) to f = g− Pg, noting that it belongs to H since g ∈ B ⊂ H
and Pg ∈ H . Using the idempotent property of P wehave P(g−Pg) = Pg−Pg = 0,
thus by (5) we obtain

‖g − Pg‖L2 = ‖(g − Pg) − P(g − Pg)‖L2 ≤ M‖g − Pg‖H . (6)

Now

‖g − Pg‖2H = 〈g − Pg, g − Pg〉H
= 〈g − Pg, g〉H ,
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since by definition g − Pg is H -orthogonal to every element of V . It follows using
(2) with f := g − Pg that

‖g − Pg‖2H ≤ ‖g − Pg‖L2 ‖g‖B . (7)

From (6) and (7) we now obtain

‖g − Pg‖2L2
≤ M2‖g − Pg‖2H
≤ M2‖g − Pg‖L2‖g‖B .

The first result now follows by cancelling ‖g − Pg‖L2 .
The second result, in squared form, then follows by substituting the first result

into (7). 
�

Remark. A similar argument to that above was used by Wendland in [13, Theorem
11.23].

4 Kernel interpolation in reproducing kernel Hilbert spaces

In this section we take H to be a reproducing kernel Hilbert space of real-valued
functions defined on a domain D. We show that the general theorem, Theorem 1,
has direct application to interpolation with respect to a set of kernels anchored at the
interpolation points.

A reproducing kernel Hilbert space (RKHS) is a Hilbert space in which point
evaluation is bounded. By the Riesz representation theorem, for every RKHS there
exists a kernel K (·, ·), with the properties

K ( y, ·) ∈ H for all y ∈ D, (8)

and

〈K ( y, ·), f 〉H = f ( y) for all f ∈ H and y ∈ D, (9)

the latter being the reproducing property.
It is easily seen, using

K ( y, x) = 〈K ( y, ·), K (x, ·)〉H ,

that the reproducing kernel is symmetric,

K ( y, x) = K (x, y) for all y, x ∈ D.
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The kernel is unique (but not necessarily known). The reproducing kernel is positive
definite, in the sense that

N∑

j=1

N∑

k=1

b j K (t j , tk)bk ≥ 0 (10)

for all N ∈ N, all choices of points t j and all real b j , j = 1, . . . , N , with equality
if and only if all b j vanish. The reverse is also true, that to every positive definite
kernel there is a reproducing kernel Hilbert space H . For further information about
reproducing kernel Hilbert spaces, see [1] or the more recent source [13, Chapter 10].

Example 2 continued Recall that H is the space of continuous real-valued functions
f defined on [0, 1] whose first derivatives are square-integrable, and that the inner
product in H is given by (3). It can easily be seen using that inner product that the
kernel

K (x, y) := 1 + min(x, y)

satisfies both (8) and (9) for all f ∈ H , and that K (x, y) is therefore the reproducing
kernel of H .

We can now show that H is continuously embedded in L2(0, 1) and that B defined
by (4) is continuously embedded in H . By using the reproducing property f (x) =
〈 f , K (·, x)〉H for all f ∈ H and x ∈ [0, 1], we obtain

‖ f ‖2L2
=

∫ 1

0
| f (x)|2 dx =

∫ 1

0
〈 f , K (·, x)〉2H dx ≤

∫ 1

0
‖ f ‖2H‖K (x, ·)‖2H dx

= ‖ f ‖2H
∫ 1

0
K (x, x) dx = 3

2
‖ f ‖2H for all f ∈ H , (11)

which means that H is continuously embedded in L2(0, 1). Let g ∈ B. To show the
continuous embedding of B in H , we integrate by parts and use (4) to obtain

‖g‖2H = g(0)2 +
∫ 1

0
|g′(x)|2 dx

= g(1)g′(1) − g(0)g′(0) −
∫ 1

0
g(x)g′′(x) dx

≤ ‖g‖L2‖g′′‖L2 ≤
√
3

2
‖g‖H‖g‖B,

where the final step follows from (11). Therefore ‖g‖H ≤
√

3
2‖g‖B , showing the

continuous embedding of B in H .
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For the general case, a kernel interpolant of a function f ∈ H is an approximation
of the form

fn( y) :=
n∑

k=1

akK (tk, y), (12)

where t1, . . . , tn are distinct points in D, and the coefficients ak are determined by
the interpolation condition

fn(tk) = f (tk), k = 1, . . . , n. (13)

The linear system necessarily has a unique solution (ak)nk=1, because of the positive
definite property (10) of the reproducing kernel.

Kernel methods have a long history, tracing back to Grace Wahba’s seminal work
on splines [12]. They have an important role in radial basis functions see [13], and
have recently been used in high dimensional approximation, see for example [4, 7, 8,
14, 15].

The kernel interpolant fits the scenario of the Introduction and Theorem 1 as long
as there exists a suitable subspace B ⊂ H such that (2) is satisfied. The first step is to
define

V := span{K (t1, ·), K (t2, ·), . . . , K (tn, ·)},

which by property (8) is a finite-dimensional subspace of H .
The crucial point is the observation that, for H a reproducing kernel Hilbert space,

the kernel interpolant fn is the H -orthogonal projection of f on V ⊂ H . This is an
immediate consequence of the reproducing property (9) together with the interpolation
condition (13), because for all f ∈ H we have

〈 f − fn, K (tk, ·)〉H = f (tk) − fn(tk) = 0,

from which it follows that f − fn is H -orthogonal to every element of V .
The following proposition thus is an immediate consequence of Theorem 1.

Theorem 2 Let H be a reproducing kernel Hilbert space continuously embedded in
L2(D) and with kernel K , and let B be a normed space continuously embedded in H
such that (2) holds. For t1, . . . , tn a set of distinct points in D, let fn be the kernel
interpolant defined by (12) and (13). Assume that for some c > 0 and some κ > 0 we
have

‖ f − fn‖L2(D) ≤ cn−κ‖ f ‖H for all f ∈ H .

Then for all g in B ⊂ H, with kernel interpolant gn using the same points t1, . . . , tn,
we have

‖g − gn‖L2(D) ≤ c2n−2κ‖g‖B,
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and

‖g − gn‖H ≤ cn−κ‖g‖B .

4.1 A concrete application to kernel interpolation

In recent years there has been increasing interest in the use of kernel interpolation in
challenging large-scale computations. In particular, in the papers [7, 8] kernel inter-
polation was used for the solution of a parametric partial differential equation with a
very large number of parameters—in the first paper detailed calculations were carried
out with 10 and 100 independent parameters, while in the second paper the number
of parameters was extended to 1000.

Our purpose in this subsection is not to review the substance of those papers, but
rather to present the high-dimensional setting encountered there, and to identify (in the
notation of the present paper) the function spaces H and B, along with the reproducing
kernel K of H . We will be then be able to see that Theorem 2 applies directly to the
computations in those papers, and hence be able to explain the higher than expected
rates of convergence reported there.

In the papers [7, 8] the space D inwhich the parameters lie is [0, 1]d , with d typically
large. The function space H is a Sobolev space of dominating mixed smoothness
α ∈ N. It is a space of periodic functions (that is, each function in H is 1-periodic
with respect to each component of the argument), which is a natural high-dimensional
generalisation of Example 3 in Sect. 2. However, it proves to be simpler to use a Fourier
representation to describe the space and its norm.

Specifically, for arbitrary α > 1/2 we define f to be in the space H := Hα,γ if

‖ f ‖2α,γ :=
∑

h∈Zd

rα,γ (h)| f̂ (h)|2 < ∞, (14)

where

f̂ (h) :=
∫

[0,1]d
f ( y)e−2π ih· y d y,

and where for h ∈ Z
d

rα,γ (h) := 1

γsupp(h)

∏

j∈supp(h)

|h j |2α, (15)

with supp(h) := { j ∈ {1, . . . , d} : h j �= 0}. The inner product in H is

〈 f , g〉α,γ :=
∑

h∈Zd

rα,γ (h) f̂ (h)ĝ(h) < ∞. (16)

(To avoid confusion we note that the present definition of the parameter α follows
[8], not [7]. The two definitions differ by a factor of 2.)
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The above definition of the norm in H incorporates “weights” γu, which are pre-
scribed positive numbers, one for each subset u ⊆ {1, . . . , d}. It is by now well known
that if the weights are omitted (that is, by setting each γu equal to 1), then most prob-
lems become “intractable” as d → ∞. In the paper [7] much effort is devoted to
choosing weights that ensure that the interpolation error is bounded as d → ∞, but
that topic is outside the scope of this paper. For the present purposes we can assume
that the weights are all given.

It is easily seen (by verifying the properties (8) and (9)) that H is a reproducing
kernel Hilbert space, with reproducing kernel

K ( y, x) =
∑

u⊆{1,...,d}
γu

∏

k∈u
ηα(yk, xk) =

∑

h∈Zd

e2π ih·( y−x)

rα,γ (h)
,

where

ηα(y, x) :=
∑

h �=0

e2π ih(y−x)

|h|2α ,

which can be expressed explicitly as a multiple of B2α({y− x}), where Bτ denotes the
Bernoulli polynomial of degree τ , and the braces indicate taking the fractional part of
the argument.

To apply Theorem 2 it remains to identify a suitable embedded subset B ⊂ H . The
following proposition tells us that we may take B := H2α,γ 2 which is a weighted
Hilbert space of dominating mixed smoothness of order 2α, so having twice the
smoothness parameter of H , and with each weight γu replaced by its square.

Proposition 3 With Hα,γ defined as above, there holds

|〈 f , g〉α,γ | ≤ ‖ f ‖L2‖g‖2α,γ 2 for all f ∈ Hα,γ , g ∈ H2α,γ 2 ,

where the inner product and norm are defined by (16) and (14), and γ 2 :=
(γ 2

u)u⊆{1,...,d}.

Proof From (16) and the Cauchy–Schwarz inequality we have

∣∣〈 f , g〉α,γ

∣∣ =
∣∣∣∣∣∣

∑

h∈Zd

f̂ (h)ĝ(h) rα,γ (h)

∣∣∣∣∣∣

≤
⎛

⎝
∑

h∈Zd

| f̂ (h)|2
⎞

⎠
1/2 ⎛

⎝
∑

h∈Zd

|̂g(h)|2rα,γ (h)2

⎞

⎠
1/2

= || f ||L2 ||g||2α,γ 2 ,

where we used rα,γ (h)2 = r2α,γ 2(h), which follows immediately from (15). 
�
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The following corollary now follows from the proposition above and Theorem 2
with H replaced by Hα,γ and B replaced by H2α,γ 2 . It is stated in a form that shows
directly the doubling of the convergence rate.

Corollary 4 For given α > 0, let Hα,γ be the reproducing kernel Hilbert space con-
structed as above.With Kα,γ denoting the corresponding reproducing kernel, let fα,γ ,n

be the kernel interpolant for this kernel that satisfies (12) and (13). Assume that for
some c > 0 and some κ > 0 we have

‖ f − fα,γ ,n‖L2 ≤ cn−κ‖ f ‖α,γ for all f ∈ Hα,γ . (17)

Then for all g ∈ H2α,γ 2 ⊂ Hα,γ we have

‖g − gα,γ ,n‖L2 ≤ c2n−2κ‖g‖2α,γ 2 ,

and

‖g − gα,γ ,n‖α,γ ≤ cn−κ‖g‖2α,γ 2 .

A final comment is that in the papers [7, 8] the hypothesis (17) was established
with κ = 1

2α − δ for arbitrary δ > 0, a result known (because of the restricted nature
of the interpolation points used there) to be not improvable for general f ∈ Hα,γ .
Since the target function f in those papers is known to be infinitely differentiable,
and hence lying in H2α,γ 2 , the results in those papers can now be supplemented by
the conclusions of this corollary. In particular, the asymptotic rate of convergence in
the L2 norm is now proven to be (at least) n−α rather than merely n−α/2, while the
asymptotic convergence rate in the Hα,γ norm (for which no previous estimate was
available) is now known to be n−α/2. We note that Corollary 4 also gives values for the
“constants” in the new bounds. Those constants may be very large, and in the context
of [7, 8] may also depend strongly on d through the appearance of the H2α,γ 2 norm.

Example 5 We consider the rate doubling phenomenon numerically for the Korobov
spaces H := H1,γ and B := H2,γ 2 with positive weights γ = (γu)u⊆{1,...,d} when
d = 10. These spaces are equipped with norms given by (14) for α = 1 and α = 2,
respectively. We consider here the product weights given by γu = ∏

j∈u γ j , where

we set γ j = 0.5 j−1.5 for j ∈ {1, . . . , d}.
The kernel interpolant is constructed using the reproducing kernel K1 of H , and

the point set is given by

t� =
{

�z
n

}
, � ∈ {0, . . . , n − 1},

where the generating vector z ∈ N
d is obtained by using the component-by-component

(CBC) algorithm described in [3] for the product weights γ = (γu)u⊆{1,...,d} in H .
We compute the L2 approximation errors for

f (x) = K1(x, e−11), x ∈ [0, 1]d ,

123



   10 Page 14 of 22 BIT Numerical Mathematics            (2025) 65:10 

Fig. 1 Numerical L2 approximation errors for the functions f and g considered in Example 5

where 1 ∈ R
d is a vector of ones and e denotes Euler’s number, as well as

g(x) = K2(x, e−11), x ∈ [0, 1]d ,

where K2 denotes the reproducing kernel of B corresponding to the squared weights
γ 2. Now f ∈ H and g ∈ B, but f /∈ B. In this setting, it is known that the ker-
nel interpolant satisfies (1) with κ = α/2, see [7, Theorem 3.2]. Thus the expected
convergence rates are −0.5 and −1.0 for f and g, respectively.

The L2 approximation errors ‖ f − fn‖L2 and ‖g− gn‖L2 were obtained by using a
1000-point Monte Carlo approximation. The numerical results are displayed in Fig. 1.
As expected, the function f belonging to H , but not B, exhibits a convergence rate
close to −0.5 while the function g has a convergence rate close to −1.0.

5 Radial basis function interpolation

Radial basis functions provide an important andwell studiedmethod for approximating
a continuous function given its values at scattered data points, see [13]. Our aim here
is not to provide a guide to radial basis functions, but rather to demonstrate how the
general Theorem 1 can be extended to radial basis function interpolation. In general
we follow the conventions of the monograph [13].

Definition 5 A real, even, continuous functionΦ : Rd → R is said to be conditionally
positive semi-definite of order m ≥ 0 if for all n ∈ N and all choices of points
t1, . . . , tn ∈ R

d we have

n∑

k=1

n∑

j=1

akΦ(tk − t j )a j ≥ 0 (18)
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for all a = (a1, . . . , an) ∈ R
n that satisfy

n∑

k=1

ak p(tk) = 0 for all polynomials p of degree less than m. (19)

It is said to be conditionally positive definite of order m if equality in (18) holds only
for a = 0. We note that the condition (19) becomes increasingly restrictive on the
coefficients ak as m increases.

We will assume that the order m in the definition takes its smallest possible value.
Some popular choices for Φ in the context of radial basis function interpolation

include Gaussians, multiquadrics, radial powers, and thin-plate splines. New stable
bases for conditionally positive definite kernel-based spaces have been recently devel-
oped in [9].

Example 6 The thin-plate spline Φ( y) := ‖ y‖2�2 log ‖ y‖�2 is conditionally positive
definite of order 2.

In the special casem = 0 the condition (19) is vacuous, and a conditionally positive
definite functionΦ yields a kernelΦ( y, x) := Φ( y− x) that is positive definite in the
sense of (10). Some important radial basis functions are known to be the conditionally
positive definite of order m = 0. These include Gaussians, inverse multiquadrics and
Wendland’s compactly supported radial basis functions [13]. Here, however, we shall
concentrate on the general case of order m ≥ 0.

While all of the basis functions used in practice are radial, in the sense of depending,
like the thin plate spline, on the �2 norm of the argument, we shall not make any such
general assumption in this section, though in line with convention we shall continue
to speak of radial basis functions, or RBFs.

We now suppose that a continuous function f is defined on a bounded domain
Ω ⊂ R

d with Lipschitz boundary. We assume that f has known values at n distinct
points t1, . . . , tn ∈ Ω , which we wish to interpolate with the help of the conditional
positive definite Φ of order m ≥ 0.

There is an essential condition on the interpolation point set, namely that it be
Πm−1-unisolvent. Here Πm−1 denotes the set of polynomials on R

d of degree less
than or equal to m − 1, and Πm−1-unisolvency means that the only polynomial of
degree less than m that vanishes at all the points t1, . . . , tn is the zero function. If
m = 0 the set Πm−1 is empty, and the unisolvency condition is not needed.

The radial basis function interpolant of f using the point set t has the form

s f ,t( y) = f t( y) + pt( y), (20)

where, with the notation Φ(x, y) := Φ(x − y),

f t( y) =
n∑

k=1

akΦ(tk, y), (21)
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with a = (a1, . . . , an) ∈ R
n constrained by (19), and pt ∈ Πm−1. The function

s f ,t , and its components f t and pt , are then uniquely determined by the interpolation
condition

s f ,t(tk) = f (tk) for k = 1, . . . , n, (22)

with the uniqueness following from the fact that

n∑

k=1

akΦ(tk, ·) + pt(·) = 0, (23)

with a constrained by (19), implies

n∑

j=1

n∑

k=1

akΦ(tk, t j )a j +
n∑

j=1

a j pt(t j ) = 0,

in which the last term vanishes by (19), and hence

n∑

j=1

n∑

k=1

akΦ(tk, t j )a j = 0,

which in turn implies a1 = · · · = an = 0, after which (23) yields pt = 0 and hence
s f ,t = 0.

With that foundation, we now turn to defining H and B for RBF interpolation. We
first define the linear space generated by all functions of the form (21),

FΦ :=
{

n∑

k=1

akΦ(tk, ·) : t1, . . . , tn ∈ Ω, a ∈ R
n satisfying (19), and n ∈ N

}
.

An inner product on FΦ can be defined by

〈 f t , gu〉FΦ :=
n∑

k=1

�∑

j=1

akΦ(tk, u j )b j , (24)

where n, � ∈ N,

f t =
n∑

k=1

akΦ(tk, ·), gu =
�∑

j=1

b jΦ(u j , ·), t1, . . . , tn, u1, . . . , u� ∈ Ω,

(25)

with both a and b satisfying (19).
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That this is an inner product follows from the conditional positive definiteness of
order m of the function Φ.

To accommodate our polynomial interpolant s f ,t , the space FΦ clearly needs to be
augmented by the polynomial space Πm−1. To facilitate working with polynomials,
following [13, Chapter 10], letting Q := dimΠm−1 be the dimension of Πm−1, we
now choose a fixed Πm−1-unisolvent point set ξ1, . . . , ξ Q ∈ Ω . With respect to this
point set let {p1, . . . , pQ} be the Lagrange basis for Πm−1, so that pi (ξ j ) = δi, j ,
allowing every polynomial in Πm−1 to be written uniquely as

p =
Q∑

i=1

p(ξ i )pi .

One consequence is that while Φ(x, ·) itself does not belong to FΦ , the combination
Φ(x, ·) − ∑Q

i=1 pi (x)Φ(ξ i , ·) does belong to FΦ , because for every polynomial p ∈
Πm−1 we have p(x) − ∑Q

i=1 pi (x)p(ξ i ) = 0.
Every element in the sum space FΦ + Πm−1, as noted already, has a unique repre-

sentation of the form (20). An inner product in the space FΦ + Πm−1 is

〈 f , g〉FΦ+Πm−1 = 〈 f t + p, gu + q〉FΦ+Πm−1

:=
n∑

k=1

�∑

j=1

akKΦ(tk, u j )b j +
Q∑

i=1

f (ξ i )g(ξ i ),
(26)

where f t and gu are given by (25) with a and b satisfying (19), p, q ∈ Πm−1, and

KΦ(x, y) := Φ(x, y) −
Q∑

i=1

pi (x)Φ(ξ i , y) −
Q∑

i ′=1

pi ′( y)Φ(x, ξ i ′)

+
Q∑

i=1

Q∑

i ′=1

pi (x)pi ′( y)Φ(ξ i , ξ i ′).

Note that with the aid of (19) the inner product in FΦ +Πm−1 can also be written as

〈 f , g〉FΦ+Πm−1 =
n∑

k=1

�∑

j=1

ak

(
Φ(tk, t j ) −

Q∑

i=1

pi (tk)Φ(ξ i , t j )

−
Q∑

i ′=1

pi ′(t j )Φ(tk, ξ i ′) +
Q∑

i=1

Q∑

i ′=1

pi (tk)pi ′(t j )Φ(ξ i , ξ i ′)

)
b j

+
Q∑

i=1

f (ξ i )g(ξ i )
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=
n∑

k=1

�∑

j=1

akΦ(tk, t j )b j +
Q∑

i=1

f (ξ i )g(ξ i ).

The linearity of the inner product is obvious, and the positivity with g = f now
follows immediately from the conditional positive definiteness of Φ.

We now denote byFΦ the closure of FΦ with respect to the inner product (24), and
by Nφ the closure of Fφ + Πm−1 with respect to (26), so that

NΦ = FΦ + Πm−1.

The space NΦ is called the “native space” associated with the conditionally positive
definite basis function Φ. The native space NΦ will be our Hilbert space H in the
sense of Theorem 1.

It is known (see [13, Theorem 10.20]) that NΦ is a reproducing kernel Hilbert
space with reproducing kernel

K (x, y) := KΦ(x, y) +
Q∑

i=1

pi (x)pi ( y).

Indeed, it is easy to verify that K (x, ·) belongs to the finite dimensional space FΦ +
Πm−1, and then that the reproducing property (9) holds for functions in that space,
after which it extends to the native space by taking a limit.

Moreover, it is readily seen that the kernel interpolant fn for the kernel K satisfies
exactly the defining properties (20), (21), and (22) assumed for the RBF interpolant
s f ,t . Since the interpolant is unique, it follows that s f ,t = fn is the kernel interpolant
in the sense of Sect. 4.

We now define a finite dimensional subspace of NΦ in which the RBF interpolant
s f ,t lies,

Vt :=
{

n∑

k=1

akΦ(tk, ·) + p : p ∈ Πm−1, a ∈ R
n and satisfying (19), n ∈ N

}
.

From the reproducing property (9) we have

〈 f − s f ,t , K (tk, ·)〉NΦ
= f (tk) − s f ,t(tk) = 0.

Since {K (t1, ·), . . . , K (tn, ·)} is a basis for Vt , this proves that s f ,t is theNΦ orthog-
onal projection of f ∈ NΦ on Vt .

Wendland [13, Theorems 10.20 and 10.21] shows that the inner product inNΦ can
be written explicitly (under conditions satisfied by all the usual basis functions Φ) as

〈 f , g〉NΦ
:= (2π)−d/2

∫

Rd

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω +

Q∑

k=1

f (ξ k)g(ξ k), (27)
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where ̂ denotes the so-called generalized Fourier transform of order m, see [13,
pg. 103]. A crucial fact, generalizing Bochner’s characterisation of positive semidefi-
nite functions as those with non-negative Fourier transforms, is that Φ̂ is non-negative
and non-vanishing for Φ a slowly increasing continuous and even, positive definite
function of order m ≥ 0, see [13, Theorem 8.12]. For simplicity we shall assume that
Φ̂ is a non-increasing radial function.

A useful fact is that the generalized Fourier transform of order m of a polynomial
in Πm−1 vanishes, see [13, Proposition 8.10], thus f and g in the first term of (27)
may without change have arbitrary polynomials in Πm−1 added.

There is a subtlety in the definition (27), namely that the appearance of (generalized)
Fourier transform of f implicitly requires that f be defined on the whole of Rd .
Functions in FΦ have an obvious extension fromΩ toRd , and therefore so do functions
in NΦ . The subtle point is that the target function f must also be assumed to have a
suitably smooth extension from Ω to the whole ofRd , which may not be a reasonable
assumption in practice.

A second subtlety is that f (ξ i ) (like any point evaluation) is not a bounded func-
tional in L2(Ω). To overcome this technical difficulty we will where necessary below
replace the usual L2 norm by the larger norm

‖ f ‖L2(Ω) :=
⎛

⎝‖ f ‖2L2
+

Q∑

i=1

| f (ξ i )|2
⎞

⎠
1/2

.

We now take H = NΦ , which is embedded in L2(Ω) since

‖ f ‖2L2(Ω) = (2π)−d/2
∫

Rd
| f̂ (ω)|2dω +

Q∑

i=1

| f (ξ i )|2 ≤ max(Φ̂(0), 1)‖ f ‖2NΦ
.

Finally, we come to define B: we take B = NΦ∗Φ to be the Hilbert space for which

‖ f ‖2NΦ∗Φ
:= (2π)−d/2

∫

Rd

| f̂ (ω)|2
Φ̂(ω)2

dω +
Q∑

k=1

| f (ξ k)|2 < ∞. (28)

We note that the semi-norm in the first term of (28) with its squared denominator
seems to have appeared first in Schaback’s rate doubling argument [11]. We follow
here his notation.

That B = NΦ∗Φ is embedded in H = NΦ follows in the same way as the embed-
ding of NΦ in L2.

The following proposition will allow us to apply results analogous to Theorem 1
to radial basis function interpolation.

Proposition 6 Let Φ be a real, even, continuous and conditionally positive definite
function of order m ≥ 0 defined on R

d . With H = NΦ and B = NΦ∗Φ we have

|〈 f , g〉H | ≤ c‖ f ‖L2‖g‖B for all f ∈ H , g ∈ B,
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for some constant c > 0.

Proof From (27) and repeated Cauchy–Schwarz inequalities we obtain

|〈 f , g〉H | :=
∣∣∣∣(2π)−d/2

∫

Rd

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω +

Q∑

i=1

f (ξ i )g(ξ i )

∣∣∣∣

≤
(

(2π)−d/2
∫

Rd
| f̂ (ω)|2 dω

)1/2(
(2π)−d/2

∫

Rd

|̂g(ω)|2
Φ̂(ω)

2 dω

)1/2

+
( Q∑

i=1

| f (ξ i )|2
)1/2( Q∑

i=1

|g(ξ i )|2
)1/2

≤ c‖ f ‖L2‖g‖B,

as desired. 
�

Now we can state the following extension of Theorem 1.

Theorem 7 Let Φ be a real, even, continuous and conditionally positive definite func-
tion of order m defined on R

d and let Ω be a bounded domain in R
d with Lipschitz

boundary. Let t := {t1, . . . , tn} be a Πm−1-unisolvent and distinct set of points in Ω

that includes {ξ1, . . . , ξQ}. Let H be the native spaceNΦ with inner product (27), and
let B be the subspace of H with norm (28). Finally, let s f ,t ∈ H be the radial basis
function interpolant of f defined by (20), (21) and (19). Assume that for some c > 0
and some κ > 0 we have

‖ f − s f ,t‖L2 ≤ cn−κ‖ f ‖H for all f ∈ H . (29)

Then for all g ∈ B ⊂ H we have

‖g − sg,t‖L2 ≤ c2n−2κ‖g‖B,

and

‖g − sg,t‖H ≤ cn−κ‖g‖B .

Proof Because f − s f ,t vanishes on the point set ξ (remembering that ξ =
(ξ1, . . . , ξ Q) is a subset of the interpolation point set t), the hypothesis (29) in the
theorem can be replaced by

‖ f − s f ,t‖L2 ≤ cn−κ‖ f ‖H for all f ∈ H .

Thus the conclusions of that theorem hold with the L2 norm replaced by the L2 norm.
But since g − sg,t also vanishes on the point set ξ , the results hold with L2 norms, as
stated. 
�
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6 Conclusion

We have investigated some consequences of a general condition (2) posed on a Hilbert
space H and a “smoother” normed space B of real-valued functions. This condition
ensures that the L2 rate of convergence for function approximation in H can be dou-
bled for functions belonging to a smoother normed space. We have presented several
examples of suitable spaces H and B which fall into this framework, with particular
emphasis on applications to kernel interpolation in reproducing kernel Hilbert spaces
as well as radial basis function interpolation.
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