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ABSTRACT: While machine learning (ML) models have been
able to achieve unprecedented accuracies across various prediction
tasks in quantum chemistry, it is now apparent that accuracy on a
test set alone is not a guarantee for robust chemical modeling such
as stable molecular dynamics (MD). To go beyond accuracy, we
use explainable artificial intelligence (XAI) techniques to develop a
general analysis framework for atomic interactions and apply it to
the SchNet and PaiNN neural network models. We compare these
interactions with a set of fundamental chemical principles to
understand how well the models have learned the underlying
physicochemical concepts from the data. We focus on the strength
of the interactions for different atomic species, how predictions for
intensive and extensive quantum molecular properties are made, and analyze the decay and many-body nature of the interactions
with interatomic distance. Models that deviate too far from known physical principles produce unstable MD trajectories, even when
they have very high energy and force prediction accuracy. We also suggest further improvements to the ML architectures to better
account for the polynomial decay of atomic interactions.

1. INTRODUCTION
Methods for modeling atomistic systems range between
computationally cheap but less precise (e.g., classical force
fields), to computationally expensive but more precise [e.g.,
first-principles calculations based on density functional theory
(DFT), coupled-cluster method with single, double and triple
excitations (CCSD(T)), or quantum Monte Carlo techni-
ques1,2]. Machine learning force fields (MLFFs) are an
emerging technology that tries to favorably position itself by
being computationally efficient while simultaneously approach-
ing the more expensive methods in accuracy.3

Due to the many-body nature of the Schrödinger equation,
the computational cost of accurate ab initio methods grows
extremely fast (exponentially or steeply polynomially) with the
number of particles in a system.4,5 Conversely, approximate
methods with a lower computational cost inevitably need to
“cut corners” and therefore may not adequately represent the
full complexity of a system under study.6,7 As a result,
numerous quantum-chemical approximation methods have
been developed, each with its own trade-offs. The usefulness of
these methods lies in the detailed understanding of their
limitations, allowing one to choose the most appropriate
method for the task at hand.

Despite the vast potential of MLFFs, they may ultimately
only become trusted once their strengths and weaknesses are
similarly understood. For instance, a common problem of ML

models is that they do not extrapolate well beyond their
training domain,8 and MLFFs are no exception. Although
research into transferable models that are trained on well-
curated data sets that broadly cover chemical space is
ongoing,9−15 for the foreseeable future there likely will not
be a one-size-fits-all model. This necessitates a deeper analysis
of the underlying prediction strategy. The nonlinear nature of
complex ML models complicates our understanding of how
they form predictions, particularly when it comes to identifying
potential shortcomings. The current study serves as a crucial
step to address this issue: based on recent advances,16−18 we
present a method to uncover in detail the prediction strategies
and learned representations of MLFFs. On the basis of four
common chemical principles listed below, we examine to what
extent they are embodied by learning models.

Recently, several studies highlighted the need to move
beyond just the validation accuracy, because the validation
accuracy was shown to be insufficient to predict MD stability.
Therefore, the validation accuracy by itself is not a good
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measure of the degree to which chemical principles were
learned from the data.19−23

The FFAST software package24 is an example of a tool
designed for detailed analysis of MLFF prediction results,
including visualization of per-atom prediction errors, force
error densities, and challenging conformers. While such
analysis can be invaluable, the current study aims to go
beyond that by investigating the underlying GNN prediction
strategy and understanding why prediction errors occur, rather
than merely identifying whether and where they happen.

Training models is based on learning a mapping from atom
positions and atomic numbers to properties like the atom-
ization energy and the forces. It is generally hoped that models
can learn the underlying physics purely from such data, but an
analysis to which extent that is actually the case is so far
lacking. In this study, we aim to fill this gap by proposing a way
to systematically test the chemical plausibility of MLFF
predictions. To this end, we posit the following four chemical
principles:

I The strength of interactions is atom-type and
property dependent: the relevance of atomic inter-
actions predicted by MLFFs varies based on the atom
types involved and the property being predicted. This
atom-type and property dependence is particularly
pronounced in bonded interactions, whereas at longer-
range interactions, the dependence on the property
becomes less prominent.

II Different interaction range for intensive vs extensive
properties: extensive properties can be approximated by
evaluating the property on parts of the whole, and
summing these local contributions up to obtain the
property for the entire system.25 One could say the
whole is the sum of the parts (at least up to a given
accuracy). For intensive properties on the other hand,
the entire system must be taken into consideration, and
the whole is different from the sum of the parts.
Therefore, one expects a higher interaction range when
predicting intensive properties.

III Decrease of interaction strength with distance follows
a power law: at higher distance ranges, forces within
molecules often fall off with a power law.26 For instance,
forces between permanent dipoles fall off with r−4, and
London dispersion forces and dipole-induced dipoles fall
off with r−7 (when using the pairwise approximation).

IV Many-bodyness: the interaction strength should be
anisotropic, meaning in this case that the interaction
strength for equally distant atom pairs should differ
depending on other atoms in the neighborhood.27,28 We
call this property “many-bodyness”, and contrast it with
classical force fields, where interactions typically involve
4 or less directly bonded atoms. At higher distances, only
2-body terms are considered in widely used mechanistic
force fields.29,30

An overview of these principles with some illustrative results
can be found in Figure 1. We see in subfigure 1 that the

Figure 1. Using this study’s explainability framework to inspect whether the models learned four common chemical principles from the data.
Subfigure 1: mean interaction strengths for atom-pairs at a distance less than 3 Å on 1300 molecules from the QM9 data set. The color-scale is
logarithmic. Subfigure 2: interaction range (eq 8) for a model trained on atomization energy (extensive property) and HOMO energy (intensive
property) from the QM9 data set. Subfigure 3: median of the interaction strength across interatomic distance, compared to r−6, a typical decay for
the energy in London dispersion, e.g. as in the Lennard-Jones 12-6 potential (molecule: Ac-Ala3-NHMe from the MD22 data set). Subfigure 4:
spread of the interaction strength at different distances (each dot in the scatter plot is one atom pair in one conformation of Ac-Ala3-NHMe); for
selected distances, the maximum to minimum interaction strength is indicated by blue lines.
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interaction strength is atom-type dependent. Subfigure 2 shows
that the extensive property of energy has a smaller interaction
range than the intensive property of HOMO energy. Subfigure
3 shows that the median interaction strength at different
atomic distances does not follow a power law, particularly it
does not follow r−6. Subfigure 4 shows that interaction
strengths between atom pairs at the same distance differ, which
is due to the effect of other atoms in the neighborhood, a
phenomenon we call “many-bodyness” (see also Figure 2
bottom for an illustration).

While some of these chemical and physical properties might
seem to be textbook knowledge, only qualitative guidelines can
be formulated with our limited understanding of many-body
quantum mechanics. On the other hand, ML models learn a
quantitative mapping between structures and QM properties
within the chemical space defined by a given data set. Hence, a
natural and so far unanswered question is whether these
quantitative predictions also obey the known qualitative
chemical and physical principles. This is the main challenge
addressed in the current work.

None of the discussed properties is given to the ML models
as an inductive bias, i.e., as an explicit part of their architecture
or loss function; therefore, it is merely a hope that such
principles will be learned from the data. In the current study,
we test each of these properties on different MLFFs.
Specifically, we show that the closer an MLFF agrees with
the above principles, the more stable its MD trajectories are.

Trying to analyze the prediction strategy of graph neural
networks (GNNs) applied to molecular data started soon after
using GNNs became popular in quantum chemistry. Early
approaches analyzed the atom-wise energy contributions or

introduced a test charge to measure the model’s reaction.31−33

This approach is still in use today, for instance in assessing the
robustness of the prediction.34

Using first-order explanation methods like layer-wise
relevance propagation35 can uncover which individual nodes
are relevant to the prediction.36−38 Other approaches yield
relevant clusters of atoms.39−41 Such first-order explanation
approaches are useful for a variety of chemical applications,42,43

but can not go beyond atomic or cluster relevances.
In contrast, higher-order relevance attributions18 can be

associated with many-body interactions44 and have helped to
corroborate the importance of such interactions in coarse-
grained protein systems.45

1.1. Overview of This Study and Its Contributions. We
focus our analysis on GNNs as a popular implementation of
MLFFs. We make use of a recently proposed XAI method,
called GNN-LRP,18 that allows to assign a relevance to
sequences of nodes in the graph. In a first step, we review
GNNs for quantum chemistry and XAI, specifically the GNN-
LRP method, and outline how this method can be used in
quantum-chemical applications.

We then extend GNN-LRP specifically for MLFFs. Making
use of the fact that molecular “graphs” are embedded in
Euclidean space, we propose a distance measure for sequences
of nodes and use it to compute the interaction range that a
GNN uses to form its prediction. Additionally, we develop a
measure for the interaction strength between atoms as seen by
the GNN. Lastly, we propose a measure for the many-
bodyness of the interaction strength.

We then apply these methods to the popular SchNet46 and
PaiNN47 architectures in various atomistic settings. SchNet

Figure 2. Overview of the explanation framework introduced in this study. A molecular input graph is processed by a black-box ML-model,
specifically a GNN. The prediction is related to the input graph in the form of relevant walks on the graph, which are obtained from GNN-LRP.18

We extend this analysis to quantum chemistry-specific settings: We provide a measure of the interaction strength between two atoms in a molecule
(eq 10); we define the range up to which the network considers significant interactions (eq 8); and we specify the many-bodyness, which is a
measure for how much the chemical neighborhood influences the interaction strength between two atoms (eq 12).
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and PaiNN use rotationally invariant and equivariant message
passing, respectively, which allows us to compare the
prediction behavior of both types of architectures. We provide
a detailed analysis of each of the four chemical principles stated
above and whether they are expressed in the models.
Additionally, we provide a way to go beyond the classic
“generalization error” as a performance metric, and use our
proposed analysis to predict the stability of MD-trajectories.

2. METHODOLOGY
2.1. Graph Neural Networks for Quantum Chemistry.

Most state-of-the-art MLFFs3 are from the family of GNNs.48

GNNs for quantum chemistry work in two phases. In the first
phase, each atom, indexed by k, gets represented as a point in a
high-dimensional “feature space”. This is achieved by
initializing the atoms to element-specific embeddings and
then iterating T-times a “message passing” step between atoms
within a certain cutoff distance, resulting for atom k in a vector
representation HT,k after the T-th message passing step. After
the feature representations are updated by several message-
passing steps, they encode the local chemical environment of
each atom and thus contain the relevant information about
molecular geometry and composition. Then, in the second
phase, a feed-forward neural network predicts molecular
properties from the atomic feature representations.

SchNet46,49 and PaiNN47 are variants of GNNs applied to
3D geometries. They derive a connectivity graph where the
graph nodes represent the atoms and the graph edges describe
to what extent neighboring atoms are directly interacting. The
connectivity of the graph is determined by a cutoff distance,
beyond which all direct connections between nodes (atoms)
are cut. A “cutoff-function”, usually a cosine,50 is applied to the
interactions to ensure that there is a smooth transition toward
the cutoff. A single message passing step is represented by a so-
called interaction block. For the considered architectures,
several interaction blocks are stacked to ensure that also distant
nodes can exchange information, as well as to allow the nodes
to build a more fine-grained embedding of their atomic
neighborhood. While SchNet solely learns scalar feature
representations in the first phase, PaiNN in addition learns
vectorial features.47 The rotational equivariant nature of those
vectorial feature representations makes PaiNN more data
efficient51 and, as a result, provides more stable MD
trajectories.52

The first phase of the GNN, the message passing step, can
be further divided into two individual steps, the aggregation
step and the combination step. In the aggregation step the
incoming “messages” from an atom’s neighboring atoms are
aggregated, and in the combination step the aggregated
messages are combined nonlinearly with the respective atomic
feature representation of the node. Hence, the GNN is of the
form

H H H r( ( , , ))t k
j k

t k t j kj1,
neigh( )

, ,=+
(1)

where μ and are message and combine functions,
respectively, and rkj is the distance between the atoms indexed
by j and k. The set neigh(k) specifies the neighbors of atom k
that are within the cutoff distance. The sum over the messages
of all neighboring atoms yields the aggregated message.

There is a large variety of models that follow the above
message-passing structure. One way to characterize these

models is by the rotation order they use for their features (for
an overview, see ref 53). For instance, SchNet is a
representative example of GNNs that are based on features
of rotation order l = 0, i.e. features that are invariant to
rotation. PaiNN is representative of models that use
equivariant message passing and uses features of both rotation
order l = 0 and l = 1 (the “vectorial features”, which are
equivariant under rotation). For more details about SchNet
and PaiNN, see Section S2. Other recent state-of-the-art
models are typically also including features with l ≥ 1. They
include NequIP,51 which can build features of arbitrary
rotation order, MACE,54 which uses an expansion in a
spherical basis and relies on many-body messages, and
SO3krates,55 which adds an equivariant attention mechanism.

In the following, we denote for each atom, indexed by i,
ri

3 to be its position. In addition, we consider f :
to be the ML model with a scalar prediction. The domain of
the model in our case is the set of all possible geometric
configurations of atoms. Each molecule is represented by the
positions r( )i i of its atoms, indexed by i, and their respective
nuclear charges.
2.2. Explainable AI. ML models, in particular deep neural

networks, have demonstrated high predictive capabilities for a
broad range of tasks, including accurate inferences of molecular
electronic properties in the field of quantum chemistry.49

These models, while achieving high accuracy, are fundamen-
tally black boxes. In other words, they do not achieve the
objective of shedding light on the structure of the inferred
input−output relation, which is a more fundamental scientific
objective.56 Furthermore, the measured accuracy may conceal
whether the learned relation is physically meaningful, or
whether it arises from exploiting a confounder in the data, the
so-called Clever Hans effect.17,57,58

XAI (see e.g. ref 17) is a recent trend in ML, which aims to
gain transparency into these highly complex and powerful ML
models. Through specific algorithms operating on the structure
of the learned ML model, XAI helps clarify the strategy an ML
model uses to generate its predictions. XAI has multiple
applications: It enables, together with a human expert, to
validate an ML model, in particular, detecting features that an
ML model uses as part of a Clever Hans strategy (aka. shortcut
learning59). Another application of XAI is in serving as
scientific assistants,60,61 where, alongside a well-trained ML
model, it helps to identify candidate input−output relation-
ships for further testing by human observers in subsequent
targeted experiments.

The field and the set of proposed XAI methods is highly
heterogeneous. This is partly due to the broad range of
meanings of the terms such as “explainability” and “interpret-
ability,” as well as the diversity of practical use cases. However,
research has coalesced around specific problem formulations,
one of which is the problem of attribution.

Attribution assumes an input domain , an output domain
, typically real-valued, and a prediction function f :

linking instances in the input domain to values in the output
domain. In a quantum chemistry context, the input can be a set
of features describing the molecular geometry, and the output
the electronic property (e.g., atomization energy). Focusing on
a single prediction x → y with x x x( , ..., )d1= the
collection of input features and xy f ( )= the real-valued
output, we would like to compute for each input feature xi a
score Ri measuring the extent by which this feature has
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contributed to the output y. Many methods have been
proposed to compute these scores, e.g., refs 35, 62, and 63
with different properties in terms of robustness, computational
efficiency, and applicability. One such method, Integrated
Gradients,63 assumes that the function f is differentiable and
that the point x of interest is connected to a root point x̃
through a path xα parametrized by α, particularly x x0 = and
x1 = x, and decomposes the prediction y in terms of input
features via the equations

x
x

x x
y

y y
x

x( )
d

( )
d

i

d

i

i

R
1

i

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
= =

=

where for practical purposes the integral is discretized, typically
into 10−100 steps. Variants of the equation above, involving
multiple potentially nonlinear paths, are possible. For those
path-based methods to work well, one should assume that the
path remains on the data manifold, so that the model’s
behavior is evaluated on regions of the input space that are
physically meaningful. In a quantum chemical scenario, where
atomic coordinates or interatomic distances form the input
representation, one may be required to define an appropriate
path between the current molecule and some reference
molecule (e.g., a relaxation path). Such path may however be
unknown, or there may be multiple ones.

Alternative approaches to determine the scores Ri, which do
not require defining a root point or an integration path, are
gradient-based and propagation-based techniques. Both of
these techniques are related and only require one forward/
backward pass into the network. Propagation techniques,
unlike gradient-based techniques, yield explanations that are
conservative and continuous (see Section 2.3 and compare ref
64), and we will choose one such propagation-based technique
to further develop the explanation framework in this paper.
This technique is Layer-wise Relevance Propagation (LRP).35

LRP leverages the structure of the ML model that has
produced the prediction. In particular, it assumes the mapping
from input to output is given sequentially by the multiple
layers of a deep neural network, i.e., x → ... (Hj)j → (Hk)k → ...
→ y, where H( )j j and H( )k k denote the collection of activation
in two consecutive layers. LRP starts at the output of the
network, and decomposes the prediction y to neurons in the
layer below. These scores are then backpropagated from layer
to layer, using purposely defined propagation rules, until the
input features are reached. Let R( )k k be the scores resulting
from propagating from the top layer until the layer with
neurons indexed by k. Propagation to neurons of the layer
below can be achieved using a rule of the type

R
z

z
Rj

k

jk

j j k
k=

(2)

where zjk quantifies the contribution of neuron j to the
activation of neuron k. The multiple ways the scores zjk are
defined give rise to different LRP propagation rules (cf. ref 65
for an overview). Numerous instantiations of LRP have been
proposed, covering models as diverse as convolutional neural
networks,35,65 LSTMs,66 transformers,67 classical unsupervised
learning models,68,69 and GNNs.18 Unlike methods based on
integrated gradients, LRP benefits from the internal
abstractions of the neural network. In the context of a
quantum-chemical application, this allows to attribute the

prediction in terms of atoms and their relative distances
without having to define meaningful paths for the molecule in
the input space.

We note that all explanation techniques we have described
so far produce an attribution of the prediction onto individual
features, which in our quantum chemical scenario could be
atoms and interatomic distances. Note that for GNNs, as we
treat here, a decomposition onto individual atoms is readily
available from the GNN itself, because it predicts atomic
contributions to the final predicted quantity. These explan-
ations may provide useful insights into the model, but are
strongly limited in their expressive power and their ability to
generate useful hypotheses. For example, they do not say
anything about whether the property of interest is the result of
individual feature contributions (e.g., localized atom-wise
contributions), or whether it arises from the interactions of
many of these features (e.g., long chains of atoms spanning the
whole molecule). To tackle this question, it is essential to
move beyond classical attribution techniques and toward
higher-order explanations, that are able to capture those more
complex interactions.
2.3. Higher-Order Explanations for GNNs. Classical

first-order attribution methods, as specified above, are limited
to single feature attributions when predicting molecular
properties. Even in simple scenarios, this approach is
insufficient to understand the prediction strategy of the
model. We believe that it is important to understand not
only the relevance of each individual atom but also the nature
and strength of the interactions between atoms from the
model’s perspective.

A seemingly straightforward approach to obtain interaction
strengths would be to slightly perturb a given atom A in
various directions and record the change in atomic energy
contribution at a target atom B. One could then interpret the
change in B’s energy contribution as an indicator of the
interaction strength from A to B, and vice versa. We caution
that this approach is not as straightforward as it seems: A
change in interatomic distance necessarily induces changes in
other interatomic distances with respect to other atoms. Thus,
we are left with the original problem of determining the true
contributor of the observed energy change, not to mention the
risk of moving outside the manifold of the data distribution.
Changing the input to the model always carries this risk, which
is a known problem for explainability methods.70,71

Instead, we can proceed by extracting the contribution of
interacting atoms directly from the structure of the MLFF
model. This can be achieved in the context of GNN models by
the GNN-LRP method,18 which we present below. We recall
from Section 2.1, that a GNN associates at each layer t and for
each node (atom) j a representation Ht,j, which we abbreviate
in the following as Hj.

A naive application of LRP to this architecture would start at
the output and redistribute the predicted value backward,
traversing the multiple atom representations at each layer. The
procedure would stop when the first layer is reached, where
relevance scores can be mapped to atoms according to their
representation in the first layer. This procedure, however, does
not account for the way the different atoms have exchanged
messages in the higher layers. GNN-LRP addresses this
shortcoming by recording the path that relevance propagation
messages have taken, and this is achieved by applying a slight
modification to eq 2
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R
z

z
Rjkl

jk

j j k
kl... ...=

(3)

In other words, we strip the pooling operation ∑k and retain
the index k in the propagated relevance score. Propagating
through all layers of the GNN, we end up accumulating more
and more indices, resulting in relevance scores over sequences
of nodes (referred to as “walks” ). These walks are of length
T + 1, where T is the depth of the GNN. So far, for the
simplicity of the presentation, we have assumed that each atom
is represented by one neuron. However, in real GNNs, it is
represented by m neurons, meaning H H( )j j

b
b
m

1= = . Taking this
into account, we need to extend eq 3 as

R
z

z
Rjkl

b

c

jk
bc

b j j k
b c kl

c
...

,
...=

(4)

where b denotes a neuron associated with node j, c denotes a
neuron associated with node k, and zjkbc quantifies the
contribution of the neuron b in node j to the activation of
neuron c in node k.

A visual description of the method, along with an
explanation of how it is used to quantify the model’s physical
properties, can be seen in Figure 2. The GNN-LRP method is
theoretically founded in the higher-order Taylor decomposi-
tion of the model’s prediction and can be seen as a
generalization of LRP35 and deep Taylor decomposition.72

Furthermore, as shown in ref 18, it satisfies the axiom of
conservation, namely

R y=
(5)

where y is the predicted value at the output of the GNN. The
latter allows us to view the GNN-LRP explanation as a
decomposition of the GNN output (e.g., predicted molecular
energy) in terms of all the walks on the molecular graph.
The complexity of the explanation method increases
exponentially with the number of layers, however, there are
ways to lessen the computational complexity from exponential
to polynomial.73,74

2.4. Walk-Importance and Walk-Distance. In the
following, we describe how we use the walk-relevances
obtained from GNN-LRP18 to evaluate different properties
of the model and its prediction strategy (for an algorithm, see
Section S1). One quantity we will use throughout is the
measure of importance for a walk which we define by

Z
R( )

1= | |
(6)

where R= | |. Note that ( ) is a probability
distribution of , i.e., ( ) has values between 0 and 1, and

( ) 1= , where Ω is the set of all walks for a given
atomistic system.

One of the questions we are interested in is how long the
range of interactions between atoms, as seen by the model, are.
In particular, for any higher-order message we can consider
some distance d( ) that a walk traverses on the molecule.
One natural option for such a distance measure is the diameter
of the smallest sphere that encloses all atoms in the walk .
This is given by

r rd( ) max
i j

i j
, (7)

where ∥·∥ denotes the Euclidean norm. In the remainder of
this text, we use this distance measure, for example, when we
develop more advanced concepts like the interaction range of
an MLFF.
2.5. Interaction Range. An important factor to evaluate is

the distance at which atoms still have a significant influence on
one another. Although short-range interactions, particularly
those between directly bonded atoms, dominate the total
energy of a molecule, it is the long-range interactions that,
despite their small magnitude, are responsible for interesting
macroscopic behavior like protein folding.6,75,76

However, modeling long-range interactions in MLFFs also
brings a significant computational cost, as the number of
interacting atoms scales roughly cubically with distance (due to
the increasing volume of the cutoff sphere). For these reasons,
it is crucial to get a sense of the range of interaction which the
model still takes into account.

Table 1. Interaction Range and Many-Bodyness Statisticsa

model property data interaction range measures many-bodyness γ̅ (eq 13)

λ0.001
thresh (eq 8) λ1

pow (eq 9) λ4
pow (eq 9)

3L SchNet energy QM9 4.14 1.62 2.75 0.85
3L SchNet dipole QM9 6.34 2.64 3.37 1.40
3L SchNet HOMO QM9 7.04 3.10 3.93 0.87
3L SchNet LUMO QM9 7.01 3.03 3.76 0.95
3L PaiNN energy QM9 3.88 1.64 2.44 0.92
3L PaiNN dipole QM9 4.18 1.68 2.70 1.10
3L PaiNN HOMO QM9 6.97 2.56 3.43 0.93
3L PaiNN LUMO QM9 6.96 2.63 3.56 1.10
1L PaiNN energy Ac-Ala3-NHMe 8.55 2.63 4.41 0.70
2L PaiNN energy Ac-Ala3-NHMe 5.57 2.18 3.17 0.54
3L PaiNN energy Ac-Ala3-NHMe 4.03 2.26 2.98 0.80
4L PaiNN energy Ac-Ala3-NHMe 2.92 1.79 2.50 1.00
5L PaiNN energy Ac-Ala3-NHMe 2.57 1.71 2.29 1.70

aFor the experiments with QM9 data, networks were trained and evaluated on the indicated property. For the experiments with Ac-Ala3-NHMe,
networks were trained on energies and forces, and evaluated on the energies. For the interaction range, the thresholded range (eq 8) with pmin =
0.001 is displayed, and additionally the first and fourth generalized expectation of the walk-length distribution (eq 9 with a = 1 and a = 4). The
many-bodyness has been evaluated with eq 13. For an extended table, see Table S1.
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We propose to measure interaction range by looking at the
maximum distance among walks that are important, i.e., not
assigned a non-negligible probability, as measured by eq 6. To
this end, we set a probability threshold pm i n =
0.001max ( ) based on which we can search for a
walk with maximum distance

dmax ( )
p

0.001
thresh

( ) min

=
{ | } (8)

Note that not including an importance threshold, or setting it
to zero, would be akin to always return the theoretically
maximum walk length, which is independent of the solution
learned by the GNN model.

As an alternative measure of interaction range, we consider a
high-order statistic of the distribution of walk lengths. A simple
such statistic, that retains a distance-based interpretation, is the
“generalized expectation”

d( ( ) )a
a apow 1/= [ ] (9)

where a is a parameter. Setting a = 1 corresponds to measuring
the expected distance, and a = ∞ the maximum distance. With
the same aim of focusing on large distances, but discarding
negligibly probable ones, we opt for the value a = 4 in our
experiments, which is closely related to the kurtosis commonly
used to model peaks in a data distribution.

Unless otherwise noted, in all figures in this article, the
threshold-based measure defined in eq 8 is used. We consider
both measures valuable, and to show that the conclusions
drawn in this paper are not dependent on the choice of range
measure, both measures are reported for all experiments in
Table 1.
2.6. Attributing Atom Interaction Strength. We now

want to consider the strength of interaction between two
atoms i and j. Chemically, the interaction strength between two
atoms in a molecule is not well-defined. The presence of other
atoms in the neighborhood and the resulting many-body
behavior makes it impossible to measure the 2-body
interaction strength in isolation. Nevertheless, multiple
approaches to measure the interaction strength exist. For
example, the Laplacian of the electron density at a critical point
along the bond path can be seen as correlating with the
interaction strength.77

In this study, we develop a new measure for the interaction
strength as seen by a GNN. We focus on two different
approaches. In the first approach we want to consider all
possible walks that traverse the atoms i and j, but can also
traverse other atoms in the molecule. We call this the inclusive
interaction strength, because it is incorporating the context of
the interacting atoms as well. We define this interaction
strength by

s ( )ij
i j

incl

{ } (10)

Another approach to measure the interaction strength would
be to consider all walks that contain only the atoms i and j.
In other words, it consists exclusively of walk contributions
corresponding to interactions between i and j, without the
incorporation of the surrounding atoms. Formally, this can be
given by

s ( )ij
i j

excl

set( ) ,{ ={ }}

where set( ) is the set of atom indices in .
We decided that it is generally more important to measure

the interaction strength of two atoms in the context of their
surrounding, therefore we use the inclusive measure sijincl in the
remainder of this text.
2.7. Measuring Many-Bodyness. We refer to many-

bodyness as the property where the interaction strength
between two atoms is influenced by other atoms in the
neighborhood. In other words, we mean by many-bodyness the
influence of interactions that are of degree higher than 2-body.
In the context of MLFFs, measuring many-bodyness is of
particular interest because it highlights a fundamental differ-
ence from mechanistic force fields. To illustrate this, assume a
simplified force field based on a two-body expansion. In this
case, the atom−atom interaction energy is fully isotropic: no
matter where in the molecule the two atoms are positioned,
the energy contribution will always be the same. Even real-
world force-fields that do use higher-order terms usually do not
go above 4-body terms. And these 4-body terms are only
among chains of covalently bonded atoms. Atom pairs at
higher (nonbonded) distances are modeled with 2-body terms
only in mechanistic force fields.29,30

This is incompatible with physical reality: the atomic
neighborhood that atoms are embedded in plays a fundamental
role in their interaction. The promise of MLFFs is that they
learn to capture this many-body nature better, but it has yet to
be shown to which amount this is actually the case.

We propose a definition for the many-bodyness of atom−
atom interactions within a molecule. We would like to express
by how many orders of magnitude the interaction strength
differs for equally distant pairs of atoms. We define

r rs s RR ij i j{ } { = } (11)

to be the set of atom−atom interaction strengths for which the
distance is R. This formulation is based on the continuous
distribution of distances. In practice, where we have limited
amounts of data, the condition of equality has to be relaxed to
approximate equality: ∥ri − rj∥ ≈ R. In other words, we are
distributing the atom pairs into bins along the interatomic
distance. Then, we define the many-bodyness at a distance R as

i
k
jjjjj

y
{
zzzzzR

P s
P s

( ) log
( )
( )

R

R
10

100

10

{ }
{ } (12)

and, for easier comparison, also the average many-bodyness as
a scalar

R
R R1

( ) d
R

max 0

max

(13)

where P100(.) and P10(.) are percentile functions that return the
100th and 10th percentile. We use the 10th instead of the
zeroth percentile to be less sensitive to outliers. Using base 10
for the logarithm instead of e is chosen such that the resulting
quantity can be interpreted as orders of magnitude.

Note that this measure of many-bodyness would be equal to
0 for 2-body classical force fields (beyond the bonded cutoff
distance), because all atom pairs of same elements at equal
distance lead to the same energy contribution.

3. RESULTS
To analyze the first two chemical principles (i) strength of
interactions is atom-type and property dependent, and (ii)
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intensive properties require larger interaction range than
extensive properties, we train SchNet and PaiNN models on
four properties of the QM9 data set. The properties are
atomization energy, dipole moment, and highest occupied
molecular orbital (HOMO) energies and lowest unoccupied
molecular orbital (LUMO) energies. For the other two
chemical principles (iii)−(iv), we trained SchNet and PaiNN
on the molecule Ac-Ala3-NHMe from the MD22 data set. The
models were trained using SchNetPack.78,79 For details of how
the networks in this study were trained, cf. Section S6.
3.1. Chemical Principle 1: The Strength of Inter-

actions Is Atom-Type and Property Dependent. The
nature of chemical interactions is fundamentally tied to the
electronic configurations and corresponding atomic numbers
of the elements involved. Within MLFFs, atomic numbers are
encoded per-atom during training, resulting in learned
interaction strengths that differ for each atom type, as
expected. Figure 3 illustrates the averaged interaction strength
between four pairs of elements in the QM9 data set. We
removed molecules containing fluorine from our evaluation set
due to its low occurrence, with only 3 molecules in the
evaluation set containing it. The atom pairs for four models
each of the SchNet and PaiNN architectures are categorized
into two length-scales: bonded (<1.6 Å) and nonbonded (>1.6
Å) interactions. Examination of these matrices reveals a clear
atom-type and property dependence that the models have
captured during training.

Interestingly, the interaction patterns differ significantly
when comparing models within one architecture trained on
different properties, and, for some properties, are drastically
different when comparing the relevance between two
architectures. This disparity is particularly evident when
analyzing the “bonded” interactions occurring within the
0.5−1.6 Å range (first row in Figure 3). For instance, while
nitrogen−nitrogen interactions are deemed to be the strongest
for energy prediction in SchNet, they are the weakest in the
PaiNN architecture. Although we cannot definitively assert
which representation is more accurate, it is reasonable to
assume that a correct quantum projection exists for an atom-
centered molecular basis representation.80 In particular, a
recent study introduced a second quantization framework that
partitions long-range many-body dispersion interaction energy
into atom−atom (or fragment−fragment) contributions.81

While this approach has not yet been extended to the total
interaction energy, it can, in principle, be generalized to
accomplish this. This in turn would enable a similar interaction
strength analysis as was done in the current study and serve as
a sort of “ground truth” for correct interaction strength
distributions. The discrepancy of interaction patterns between
architectures underscores the importance of employing
explainable artificial intelligence (XAI) techniques to analyze
and interpret these complex relationships.

As we extend our examination to nonbonded interactions,
we observe that the interaction patterns become more

Figure 3. Mean log interaction strength for pairs of elements separated into “bonded” (<1.6 Å) and “nonbonded” (>1.6 Å), and different quantum
chemical properties. The networks are 3-layer SchNet and PaiNN trained on the QM9 data set.

Figure 4. Interaction range. (A) SchNet and PaiNN interaction ranges (eq 8) calculated for models trained on various properties of the QM9 data
set. Energy is an extensive property, while dipole moment, HOMO and LUMO are intensive properties. (B) Examples of interaction strength for
several molecules from QM9. The chosen atom is highlighted in purple, and the color scale ranges from dark blue (indicating weak interactions) to
yellow (indicating strong interactions).
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consistent across all properties and architectures. The atom-
type dependence is visually preserved; however, it is now more
closely related to the average distance between atom pairs.
There is one interesting exception: As already seen at the
“bonded” distance, once again for the PaiNN energy model,
the nitrogen−nitrogen interaction strength is weak, whereas it
is the strongest in all the other settings. The observed decay of
interaction strength with distance will be analyzed in more
detail within Section 3.4.
3.2. Chemical Principle 2: Intensive Properties

Require Larger Interaction Range than Extensive
Properties. The QM9 data set provides several quantum
chemical properties, of which some are extensive and some are
intensive. Extensive properties can be thought of as “the whole
is the sum of the parts”, i.e., additive local contributions sum
toward the final quantity. Intensive properties are the opposite,
where the quantity can only be determined by taking into
consideration the entire molecule.

The extensive property we considered is the atomization
energy. The intensive properties were the dipole moment,
HOMO and LUMO energies. As described above, separate
models of SchNet and PaiNN were trained for each property.
The interaction range was determined with Formula 8. Figure
4A shows that training on the intensive properties causes the
models to learn to use a longer interaction range than the
extensive properties, which is what we expected. Figure 4B
illustrates a difference of 2 Å in the interaction range of SchNet
models trained on energies and dipole moments for three
molecules from the QM9 data set.

The interaction ranges learned by SchNet and PaiNN are
remarkably similar for three properties. SchNet and PaiNN
have different message-passing schemes, with SchNet being
rotation invariant, and PaiNN rotation equivariant. The only
property in which they diverge is the dipole moment. This
discrepancy is interesting, because although the dipole moment
is considered an intensive property, it can potentially also be

Figure 5. Interaction strength of atom pairs in the tetrapeptide Ac-Ala3-NHMe. (A) Distance matrix of one conformation of Ac-Ala3-NHMe. (B)
Atomic interaction strengths for 1 to 5-layer PaiNNs. All matrices were computed for the same randomly chosen conformer as in A. (C) Structure
of Ac-Ala3-NHMe. (D) Atomic interaction strengths as a function of distances for PaiNNs with 1 to 5 interaction layers, evaluated on Ac-Ala3-
NHMe from MD22. The black lines indicate the median and the best fit of an exponential function, while the blue dashed line represents decay
with r−6, a common model for London dispersion decay. (E) Examples of interaction strength for chosen (purple) atoms averaged over 100
conformations. The colorscale is consistent with B.
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seen as an extensive property: Since the overall dipole is
computed as a charge-weighted sum of (centered) position
vectors, each atom only needs to predict its local charge
density. This local charge density prediction could potentially
be treated as similar to localized energy-contributions, so from
the perspective of the model, the dipole moment could be
treated like an extensive property. PaiNN’s interaction range
for the dipole moment is similar to that of the energy, which
would indicate that PaiNN indeed treats the dipole moment
like an extensive property.
3.3. MD Stability as an Additional Performance

Measure. Data sets used for benchmarking MLFFs often
come from single trajectory MD simulations.82,83 In such data
sets, the vast majority of samples are drawn from a small set of
metastable states (local minima of the potential energy
surface). As a result, state-of-the-art MLFFs achieve very low
test errors, but this accuracy stems from the fact that the
network has a rather “easy” interpolation task where many
conformations are close to the energy minima. As an additional
performance measure, it has been proposed to perform MD
simulations with the MLFF and count how many simulations
are unstable.21,52

All following experiments were computed from networks
trained on the Ac-Ala3-NHMe molecule (Figure 5C) from the
MD22 data set.83 Ac-Ala3-NHMe is a tetrapeptide containing
42 atoms and can exist in a folded and unfolded state, which
makes it particularly interesting to analyze.

To show how the explainability framework in this study can
be used to identify models which use chemically implausible
prediction strategies, we trained 5 versions of PaiNN with
different hyperparameters. The goal was to create a spectrum
of models which range between common hyperparameters46,84

to rather extreme hyperparameters which we anticipated to
lead to models with chemically implausible representations.
We varied the amount of interaction layers L of PaiNN
between 1 and 5 and adjusted the cutoff c such that L·c = 15 Å,
which is more than enough to cover the entire length of Ac-
Ala3-NHMe even in its unfolded state. The range of networks,
with “unreasonable” parametrizations at both ends, was chosen
purely for didactic purposes: All networks were able to achieve
a very low test error (see paragraph below) and interesting
behavior can be observed at both ends of the spectrum.

For instance, it was known from previous studies46,84 that
cutoff lengths around 5 Å are well suited for MLFFs, and going
significantly below 5 Å, as we did here, impedes performance,
but it is not entirely clear why such short cutoff lengths do not
work well (see Section 3.5).

Additionally to the number of interaction layers and the
cutoff length, the number of radial basis functions and the
embedding sizes were adjusted to keep the five networks
comparable (see Table 2): The number of radial basis
functions were varied such that their spacing along the
distance between atoms is the same for all models. The
embedding size was varied such that the total number of
parameters is roughly equal. The 1-layer network is an
exception, we set its embedding size to a larger value to
keep its generalization error similar to the other networks.
While it was not possible to keep the final generalization errors
exactly equal, we note that all errors were far below what is
generally considered “chemically accurate” (1 kcal/mol).

We conducted 30 MD simulations of Ac-Ala3-NHMe, with
three simulations for each of 10 different starting config-
urations. The time-step of the integrator was 0.5 fs and the MD

trajectories were run for 1 ns, totaling 2 million time-steps. The
simulations were performed in the canonical (NVT) ensemble
at 500 K with a time constant of 5 fs. An MD trajectory was
considered unstable if the potential energy of the molecule
went outside the range −200 to 200 kcal/mol. In practice, this
typically means that an atom of the molecule dissociated,
which leads to an abrupt change in the energy. Table 2 shows
how many MD trajectories per network were unstable.

It can be seen that the 1- and 5-layer networks were
unstable, whereas the 2-, 3- and 4-layer networks were mostly
stable. Note that the differences in force RMSE (root mean
squared error) between the stable and unstable networks were
negligible, with the most unstable network (1 layer) having
one of the lower force errors. This indicates that the test error
is not a good measure of how well a network will actually
generalize, a finding that we replicate from other studies.20,21,52

In the following sections, we will relate the interaction range
and many-bodyness obtained from the adapted explainability
framework introduced in this paper to the MD stability of
these networks.
3.4. Chemical Principle 3: Interaction Strength

Decreases Polynomially with Distance. It is generally
expected that the interaction strength between atoms beyond
covalent bonds decreases with distance. However, there is no
universal functional form to express this decrease. For example,
the Coulomb force decreases with the inverse of the squared
distance r−2. Due to electric field screening effects, the effective
decrease is typically much more rapid. In the Lennard-Jones
potential, London dispersion forces decrease with r−7 (due to
the r−6 term in the potential). What most decay laws have in
common is that the decrease is proportional to a polynomial of
the distance. We therefore expected to find that the interaction
strength as seen by MLFFs would also decrease polynomially,
which would directly imply that the interaction energy and the
forces similarly decrease polynomially.

We tested this hypothesis using the 1−5-layer networks
introduced above. Figure 5B presents exemplary interaction
matrices for a single conformation of the tetrapeptide,
alongside a matrix of pairwise atomic distances. These
interaction matrices display the interaction strengths between
atom pairs for the five different models, enabling qualitative
comparison. In the 1-layer model, the interaction strengths are
nearly uniformly distributed across all distances. As the number
of layers increases, the interaction matrices become more

Table 2. Test Accuracies and MD Instability for Versions of
PaiNN with Various Amounts of Interaction Layersa

NL cutoff Nrbf Nemb. property RMSE MAE MD failures

1 15 60 512 energy 0.13 0.10 22/30
forces 0.25 0.19

2 7.5 30 157 energy 0.17 0.13 0/30
forces 0.25 0.18

3 5 20 128 energy 0.11 0.09 0/30
forces 0.14 0.10

4 3.75 15 111 energy 0.28 0.22 4/30
forces 0.27 0.19

5 3 12 100 energy 0.41 0.33 11/30
forces 0.33 0.24

aThe cutoffs are measured in Å, energy in kcal/mol, and forces in
kcal/mol/Å. RMSE: root mean squared error, MAE: mean absolute
error. Data splits (ntotal = 85k): ntrain = 0.85 × ntotal, nval = 0.1 × ntotal,
ntest = 0.05 × ntotal.
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diverse, indicating stronger interactions between atoms in close
proximity and diminishing interaction strengths as the distance
grows. This qualitative observation is quantitatively supported
by statistical analyses across multiple samples, as shown in
Figure 5D. It shows the relationship between the interatomic
distance and the interaction strength. We first note that all
networks show some decay with distance, but the degree with
which the strength decays differs considerably. The 1-layer
network plateaus after around 5 Å, which is chemically
implausible and an indication for the poor MD stability of this
network.

While the interaction strength decays in all of the four other
networks, none of them exhibit a power law decay. In all cases,
a decay modeled with an exponential is a better fit (see the
helper lines in the plots indicating the best fit of an exponential
curve). With each added interaction layer, the decay is faster.
However, it is not immediately clear from this why the 5-layer
network is unstable in MD trajectories, whereas the 4L
network is mostly stable. We return to this question in Section
3.5.

In GNNs, the number of walks between two atoms
decreases exponentially with distance. For an approximate
formula for this decrease, see Section S3. The number of walks
between two atoms is directly related to their interaction
strength. Recall from eq 10 that the interaction strength is
formed as a sum of the relevances of each walk between two
atoms. Therefore, what the fact that the number of walks
decreases exponentially means is that an exponential decrease
of the interaction strength is “baked in” to GNNs, as long as
they have a cutoff which is shorter than the length of the
atomistic system that they operate on. Such an architectural
constraint is also called an inductive bias in ML literature. An
obvious question is what would happen in the absence of such
an inductive bias, i.e. what representation would the model
learn if a decay of the interaction strength is not architecturally
forced. We turn to this question next.
3.4.1. Interaction Strength without a Cutoff. For the 1-

layer network discussed above, we observed that it does not
learn a consistent decay of the interaction strength and
plateaus after about 5 Å. However, GNNs are usually trained
with at least three interaction layers to form many-body
representations, so the fact that the 1-layer network did not
learn a decay does not imply that GNNs will fundamentally fail
to learn a decay of the interaction strength.

In order to test whether the failure to learn a decay after 5 Å
is an isolated issue of having only one interaction layer, we
trained PaiNNs with 3 interaction layers, with a cutoff length
of 15 Å, which is longer than the maximum length of the
molecule. To further “free” the network from range constraints,
we also removed the cosine cutoff, which is applied in many
GNN-MLFF architectures and forces a cosine-shaped decay of
the message features toward the end of the cutoff distance.

The results show that in the absence of a cutoff and even
without a cosine cutoff function applied, the model does not
learn a chemically appropriate decay of the interaction strength
(Figure 6, right). While the interaction strength does decay
initially, it increases again at higher distances. The tendency of
the model training to increase the interaction strengths at
higher distances is an effect which we observed throughout this
study, and is explored in more depth in Section 3.6. For the
PaiNN model with a cosine-cutoff function applied, the
interaction strength does decay with distance and does not
increase again. However, due to the results of the model

without cosine cutoff, we know that this continuous decrease
of the interaction strength is the effect of the cosine cutoff and
not a learned behavior. This indicates that the models indeed
will not learn the correct quantum chemical representation
without architectural constraints.

To investigate whether this chemical implausibility of the
interaction strength reveals weaknesses in the learned
representations, we performed the same MD-stability tests as
described in Section 3.3. Note that the forces RMSE of both
networks were similar, at 0.163 and 0.159 kcal/mol/Å,
respectively. Despite this excellent validation error, the MD
stability differed drastically. Only 1 out of 30 trajectories of the
model with the cosine cutoff was unstable, compared to 24 out
of 30 trajectories of the model without cosine cutoff. This
indicates that networks that appear to be chemically
implausible based on our analysis, do in fact extrapolate
badly to new data, even if they seem indistinguishable from
well functioning networks based solely on validation error.
3.5. Chemical Principle 4: Many-Bodyness. We defined

the many-bodyness of atomic interactions as the base-10 log
ratio of the strongest to the weakest interaction strength for
atom pairs at the same distance (Section 2.7). The expectation
is that atomic interactions are influenced by other atoms in the
neighborhood, modulating the interaction.

We contrast the expectation of many-bodyness of the
interaction as seen by MLFFs with classical force fields. The 2-
body terms in classical force fields are fully isotropic, as the
effect of other atoms can not be taken into consideration by
definition. 3- and 4-body terms do take other atoms into
consideration and would lead to the possibility of at least some
many-bodyness even in classical force fields. However, 3-, 4-
and higher order terms are typically only applied to (chains of)
covalently bonded atoms. This means that atom pairs at higher
distances will experience strictly isotropic interactions in
classical force fields.

As seen already in Section 3.4 (Figure 5DE), the interaction
strengths as seen by MLFFs differ significantly at the same
distance. At first thought, one may assume that the 1-layer
network has no many-bodyness, because it considers only 2-
body terms. However, this is not true: In the 1-layer network,
each atom receives input from all other atoms in the molecule,
and then integrates all of these “messages” into its final

Figure 6. 3-layer PaiNNs on Ac-Ala3-NHMe, with a cutoff length of
15 Å. This length is more than the maximum length of the molecule,
so each atom in each layer of the GNN “sees” all other atoms directly.
Left: with a cosine cutoff function; Right: without any cutoff function.
The forces RMSE was 0.163 and 0.159 kcal/mol/Å respectively, so
both networks had an almost equal validation error. The MD
instability was 1/30 with cosine cutoff function, and 24/30 without.
The dotted line is the best fit of a monomial function to the data.
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prediction. A 1-layer GNN is therefore not equivalent to 2-
body terms.

We also compared the many-bodyness across interaction
distances (Figure 7A). It is known that local interactions
should be influenced by the other atoms in the neighborhood,
which is therefore what we expected to find in GNNs. We
found that the many-bodyness grows with increasing distance
in the 3-, 4- and 5-layer networks. For the 2-layer network, the
many-bodyness stays roughly constant and increases only
slightly for larger interatomic distances, and for the 1-layer
network it decreases with distance.

The many-bodyness of the 5-layer network seems excessively
high: It reaches a value above 4 even at relatively short
distances (below 8 Å), which means that the interaction
strengths differ by a factor of more than 10,000. We
hypothesize that this high many-bodyness is not physical and
is an indicator as to why the MD-trajectories that were run
with this network are often unstable.
3.6. How Does Training a GNN Change the

Interaction Range? Using our measure of the interaction
range can not only be used on the fully trained network.
Instead, the evolution of these measures can be tracked
throughout the training of the GNN. Doing this analysis
uncovers that the interaction range is increased significantly
during training, but only after the error on the test set already
almost converged (Figure 7B). As the validation error
approaches a plateau, the interaction range keeps increasing.
We hypothesize that this is because the error can initially be
reduced by taking into consideration only the immediate
surrounding of each atom, whereas to remove the last
remaining bits of error, a wider context needs to be considered.

A noteworthy finding is that training of the model increases
the interaction range in all cases, even when the range in the
untrained model (i.e., a model with randomly initialized
weights) starts out higher than what is likely physically
appropriate, as is the case in the 1-layer network. Figure 7C
shows this effect: For each of the 1- up to 5-layer PaiNNs, the
trained variant has a longer interaction range than the
untrained one. For the 1-layer variant, the intuitive interaction
range measure which is shown in this figure does not
distinguish between trained and untrained, because in both
cases, the threshold for the range cutoff is higher than the
length of the molecule. The interaction range measure based
on the fourth moment of the walk distribution (Table 1)

however shows that the range of the trained 1-layer network is
indeed significantly higher.

4. DISCUSSION
MLFFs have recently become highly popular, because they are
considered a useful compromise between classical force fields
(quick, less accurate) and first-principles electronic structure
calculations (slow, more accurate). A zoo of different kernel
and neural network models (e.g., refs 13, 51, 52, 54, 85−87)
have emerged, offering many possible modeling approaches.

Throughout the use of such MLFFs, the community has
been striving to gain a deeper understanding of their potential
limitations. For general applications in the sciences, XAI
methods have proven to be invaluable.61,88−91 Moreover, XAI
methods have been used to debug models, to gain novel
insights and to capture whether or not suspected/expected
structures or knowledge are embodied in the respective ML
architectures.17,92 However, the use of XAI methods in
theoretical chemistry has so far been rather limited (some
approaches are e.g. refs 42, 80, and 93), which may be partly
due to the fact that first-order explanation techniques are
insufficient to capture the complexities of atomistic systems.

In this work we have developed an explanation framework
based on higher-order explanations18 and applied it to two
popular MLFFs (SchNet and PaiNN). This framework was
then used to examine to what extent these models reflect
known chemical principles after training. We found that the
models were able to extract physical relationships from data
just by learning to predict a set of energies and forces.

At the same time, one important property, namely that the
interaction strength between atom pairs should decrease with a
power law, was violated. Indeed, we showed theoretically and
experimentally that a fundamental limitation of current GNN
architectures is that the interaction strength decreases
exponentially. Especially when imposing a cutoff distance of
4−5 Å, as is common in state-of-the-art MLFFs, this
exponential decay leads to distances above 10 Å being barely
reachable. This finding can be taken as guidance to design
improved GNNs that fulfill power-law properties (or
interaction distributions as proposed in ref 81) and can in
this manner closer reflect chemistry and physics.

A somewhat troubling finding was that several different
instantiations of the GNNs we used (e.g., the variants using
too few or too many layers, or unsuitable cutoffs) differed

Figure 7. (A) The many-bodyness γ measured on several bins along the atom-pair distance. Note that the measure of the many-bodyness (eq 12) is
logarithmic (base 10), i.e., a value of 1 unit of many-bodyness indicates that the lowest to the highest interaction strength in a bin differs by a factor
of 10. Networks: 1−5-layer PaiNNs trained and evaluated on Ac-Ala3-NHMe. (B) Evolution of the energy RMSE and the mean interaction range
(eq 8) during training. Error bars represent standard deviation. The 3-layer PaiNN architecture was trained on Ac-Ala3-NHMe. (C) Interaction
range (eq 8) for untrained and trained (on Ac-Ala3-NHMe) variants of the PaiNNs with 1−5 interaction layers.
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significantly in their learned prediction strategy, despite them
all having a very low test-set error. This means that a model
does not necessarily have to reflect the known chemical
principles in order to yield a good test-set error. It had been
shown previously20,21,52 that the test-set error is not necessarily
indicative of MD stability�a finding clearly replicated in this
study. However, with the XAI-based analysis we propose, we
can obtain deeper insights. We can show that models which
deviate too far from the principles we proposed will produce
unstable MD trajectories, despite these models’ low test-set
error.

Our findings suggest that ML models applied to chemical
systems can still benefit from several improvements. This could
lead to enhanced transferability in compositional and structural
chemical spaces as well as scalability in terms of system size.

These results show a tangible benefit of analyzing MLFFs
with explainability methods. Specifically, they confirm that
MLFFs can indeed learn the fundamental physical and
chemical principles as expected, which allows a more confident
transition of MLFFs from exploratory research to real-world
applications.
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Müller, K.-R.; Montavon, G. Higher-Order Explanations of Graph
Neural Networks via Relevant Walks. IEEE Trans. Pattern Anal. Mach.
Intell. 2022, 44, 7581−7596.

(19) Miksch, A. M.; Morawietz, T.; Kästner, J.; Urban, A.; Artrith, N.
Strategies for the construction of machine-learning potentials for
accurate and efficient atomic-scale simulations. Mach. Learn.: Sci.
Technol. 2021, 2, 031001.

(20) Stocker, S.; Gasteiger, J.; Becker, F.; Günnemann, S.; Margraf, J.
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