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Verifiable measurement-based quantum
random sampling with trapped ions
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Quantum computers are now on the brink of outperforming their classical
counterparts. One way to demonstrate the advantage of quantum computa-
tion is through quantum random sampling performed on quantum computing
devices. However, existing tools for verifying that a quantum device indeed
performed the classically intractable sampling task are either impractical or
not scalable to the quantum advantage regime. The verification problem thus
remains an outstanding challenge. Here, we experimentally demonstrate effi-
ciently verifiable quantum random sampling in themeasurement-basedmodel
of quantum computation on a trapped-ion quantum processor. We create and
sample from random cluster states, which are at the heart of measurement-
based computing, up to a size of 4 × 4 qubits. By exploiting the structure of
these states, we are able to recycle qubits during the computation to sample
from entangled cluster states that are larger than the qubit register. We then
efficiently estimate thefidelity to verify theprepared states—in single instances
and on average—and compare our results to cross-entropy benchmarking.
Finally, we study the effect of experimental noise on the certificates. Our
results and techniques provide a feasible path toward a verifieddemonstration
of a quantum advantage.

In quantum random sampling, a quantum device is used to produce
samples from the probability distribution generated by a random
quantum computation1. This is a particularly challenging task for a
classical computer asymptotically2–4 and in practice5,6 and thus at the
center of recent demonstrations of a quantum advantage7–10. A key
challenge for such experiments, however, is to verify that the pro-
duced samples indeed originate from the probability distribution

generated by the correct random quantum computation. Verification
based only on classical samples from the device is fundamentally
inefficient11. In practice, the verification problem has been approached
using so-called linear cross-entropy benchmarking (XEB)7,12. The corre-
sponding XEB score is obtained by averaging the ideal probabilities
corresponding to the observed experimental samples. XEB is appeal-
ing since it has been argued that even achieving any non-trivial XEB
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score might be a classically computationally intractable task13,14 and
that it can be used to sample-efficiently estimate the quantum fidelity
of the experimental quantum state7,15. However, XEB requires a clas-
sical simulation of the implemented circuits to obtain the ideal output
distribution. The computational run-time of estimating XEB from
samples thus scales exponentially, rendering it practically infeasible in
the quantum advantage regime. Moreover, it is not always a good
measure of the quantum fidelity16–18. Another way classical verification
of quantum devices has been approached is via interactive proof
systems19,20, albeit at the cost of large device overheads21,22. Hence,
classical approaches to verification have limited applicability for
devices operating in the quantum advantage regime.

These challenges raise the question of whether there are quantum
verification techniques that could be used to efficiently verify quantum
random sampling experiments, even when their simulation is beyond
the computational capabilities of classical devices. Answering this
question in the affirmative, we turn to a different universal model of
quantum computation—measurement-based quantum computing
(MBQC)23,24. In contrast to the circuit model, a computation in MBQC
proceeds through measurements, instead of unitary operations,
applied sequentially to an entangled cluster state24. Roughly speaking,
a cluster state on an n ×m grid of qubits can be used to execute an n-
qubit, depth-m quantum circuit. Appropriately randomized, cluster
states turn out to be a source of random samples appropriate for
demonstrating a quantum advantage via random sampling25–27. Cru-
cially, though, each cluster state is fully determinedby a small set of so-
called stabilizer operators. By measuring the stabilizer operators using
well-characterized single-qubit measurements, preparations of these
cluster states can be efficiently verified28–33.

Here, we experimentally demonstrate efficiently verifiable quan-
tum random sampling in the MBQC model in two trapped-ion quan-
tum processors (TIQP). While cluster state generation in TIQP has
previously been limited to a size of 2 × 234, we overcome this limitation
with a two-fold approach. First, we use pairwise addressed Mølmer-
Sørensen entangling operations35,36 in a fully connected linear chain to
enable the efficient generation of clusters up to a size of 4 × 4 qubits.

Second, we make use of spectroscopic decoupling and optical
pumping37 to performmid-circuit readout and reset of qubits in order
to recycle them. In this way, we are able to sequentially measure rows
of the cluster and then reuse themeasuredqubits to prepare a new row
of the cluster, while maintaining entanglement with the remaining
qubits, see Fig. 1c. This allows us to sample from a cluster state on a
lattice that is larger than the size of the physical qubit register. This
combination of techniques provides a feasible path towards generat-
ing large-scale entangled cluster states using trapped ions.

We then estimate the fidelity of the experimental cluster states in
order to verify those states. Specifically, we apply a novel variant of
direct fidelity estimation (DFE)28,32 to estimate the single-instance
fidelity of a fixed cluster state, and the average fidelity of random
cluster states. The single-instance fidelity certifies the samples from a
fixed, random cluster state, and therefore a quantum advantage for
sufficiently large cluster states29. Conversely, the average fidelity of
random cluster states is a benchmark of the average performance of
the quantum processor in the quantum advantage regime38. Direct
(average) fidelity estimation is therefore a unified framework for ver-
ification and benchmarking ofMBQC, analogously to XEB. However, in
contrast to XEB, the fidelity estimation approach has several major
advantages: First, it is efficient in terms of both the required number of
experiments, and the complexity of the postprocessing. Second, it
requires knowledge only of the measurement noise as opposed to the
noise properties of all gates which is required for XEB16–18. Finally, the
fidelity gives a rigorous bound on the quality of the samples from a
single quantum state, whereas XEB is generally only accurate on
average.

In order to assess the performance of the fidelity-derived certifi-
cates, we compare them to the available—but inefficient—classical
means of certification of the samples, which is still possible in our
proof-of-principle demonstration. In the single-instance case, we
compare the experimental performance of the single-instance fidelity
estimate to the empirical total-variation distance (TVD) of the sampled
distribution. In the average case, we compare the average fidelity

Fig. 1 | Overview of the experiment. a Sketch of the ion trap quantum processor.
Strings of up to 16 ions are trapped in a linear chain. Any single ion or pair of ions
can be individually addressed by means of steerable, tightly focused laser beams
(dark red) to apply resonant operations Rj or Mølmer-Sørensen entangling gates
MSi,j. Global detection, cooling (blue), and repumping (pink) beams are used to
perform a mid-circuit reset of part of the qubit register35. b Implemented cluster
states. Cluster states with local rotation angles βi 2 f0, π

4 , . . . ,
7π
4 g up to a size of

4 × 4 qubits are created in the qubit register. Each cluster state is defined by its N
stabilizers Sk which are given by rotated X operators ~Xk =Xk ðβk Þ at each site
k = 1,…, N multiplied with Z operators on the respective neighboring sites.
c Recycling of qubits. Using sub-register reset of qubits, we prepare cluster states
that are larger than the qubit register. For example, using four ions, we prepare
cluster states of size 2 × 3. d Single-instance verification. In order to verify single

cluster state preparations with fixed rotation angles β, we measure it in different
bases. Toperform fidelity estimationwemeasureuniformly randomelements of its
stabilizer group,which is obtainedbydrawing a randomproductof theN stabilizers
Sk, indexed by a length-N random bitstring indicating for each Sk whether it parti-
cipates in the product. To sample from the output distribution, we measure in the
X-basis. These samples are verified in small instances by the empirical total-
variation distance (TVD). e Average-case verification. To assess the average quality
of the cluster state preparations, we performmeasurements on cluster states with
random rotations. By measuring a random element of the stabilizer group of each
random cluster state, we obtain an estimate of the average fidelity. From the
samples from random cluster states in the X-basis, we compute the cross-entropy
benchmark (XEB) by averaging the ideal probabilities pβ(x) corresponding to the
samples x and the cluster with angles β.
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estimate to the average XEB score. Additionally, we study the effect of
native noise sources on the different measures of quality.

Our work thus provides a clear and feasible path towards verified
quantum advantage. It does so by developing a new approach to ver-
ifying random cluster states based on a variant of DFE, introducing the
use of qubit recycling in order to generate large clusters, and
demonstrating the feasibility of the proposed techniques in the pre-
sence of experimental noise.

Results
Sampling and verification protocols
In the circuit model, natural examples of random computations are,
for instance, circuits composed of Haar-random two-qubit gates39, or
composed of native entangling gates and random single-qubit gates7.
In contrast, in MBQC, a universal quantum computation can be rea-
lized by adaptively performing single-qubit rotations around the Z-axis
on a cluster state andmeasuring in theHadamardbasis conditionedon
the outcomes of previous Hadamard-basis measurements24,27,40. This
leads to a natural notion of randomMBQC wherein those single-qubit
Z-rotations are applied with angles chosen randomly from an appro-
priate discretization of the unit circle26,27. Adaptively performing
single-qubit rotations then becomes superfluous since they are chosen
randomly anyway, and an outcome pattern on the square lattice
defines both, an effective quantum circuit given the random rotations,
and the outcomes of measuring that circuit. Hence, repeatedly mea-
suring a fixed, random cluster state without adaptive rotations is
equivalent to measuring many different quantum circuits chosen
randomly from an ensemble defined by the random rotations, see
Supplementary Fig. 2.

The largest discretization in the choice of single-qubit rotations
leading to a computationally universalMBQC scheme consists of eight
evenly spaced angles, corresponding topowers of theT gate. In exactly
the same way as for circuit-based sampling schemes3,12, there is strong
complexity-theoretic evidence that for m ≳ n approximately reprodu-
cing the outcome statistics of such random measurements is classi-
cally intractable26,27. In fact, in both cases, even producing samples
from a quantum state with a non-vanishing or only slowly vanishing
fidelity is likely classically hard16,41. Quantum advantage aside, the
effective computations implemented by random cluster states gen-
erate a unitary 2-design27 and therefore yield a reliable average-
performance benchmark for measurement-based computations42.

Concretely, the MBQC random sampling protocol we apply is
then the following26,27 (see Fig. 1, and SupplementaryNote 3 for explicit
circuits):

• Prepare a cluster state on N = n ×m qubits on a rectangular lattice
by preparing eachqubit in the ∣+ i state and applying controlled-Z
gates between all neighbors.

• Apply single-qubit rotations Z(β) = e−iβZ/2 with random angles β 2
f0, π

4 , . . . ,
7π
4 g to every qubit.

• Measure all qubits in the Hadamard basis.

We note that the state preparation steps 1 and 2 can also be
achieved by time-evolving an initial state ∣+ i�N under an Ising
Hamiltonian on an n ×m lattice with random local fields depending on
the βk

26,27, but the gate-based approach outlined here is more suitable
for TIQP.

Using a variant of DFE, we assess the quality of both single cluster
states with local Z rotations, and the average quality of such state
preparations. In DFE, we estimate the fidelity Fðρ, ∣ψ� ψ

�
∣Þ= ψ

�
∣ρ∣ψ

�
of a

fixed experimental state ρ by measuring random operators from the
stabilizer group of the random cluster state ∣ψ

�
and averaging the

results, see Methods for detail. The stabilizer group is the group gen-
erated by the N stabilizers of the random cluster. Each stabilizer Sk is
the product of a rotated X-operator at site k—given by XkðβÞ= e�iβXk=2—

and Z-operators on the neighboring sites, giving rise to a characteristic

star shapeon the square lattice, see Fig. 1b. Importantly, all elements of
the stabilizer group are products of single-qubit operators.Our trust in
the fidelity estimate therefore only depends on our ability to reliably
perform single-qubit measurements, which we verify. In order to
measure the average fidelity over the set of cluster states, we prepare
random cluster states and for each statemeasure a random element of
its stabilizer group. We then average the results to obtain an estimate
of the average fidelity. At a high level, fidelity estimation thus exploits
our ability to measure the experimental state in different bases. It
requires a number of experimental state preparations that is inde-
pendentof the size of the system,making it scalable to arbitrary system
sizes, seeMethods for details.Wenote thatwe alsomeasured awitness
for the fidelity29 and find that it is not practical in a scalable way for
noisy state preparations, as we detail in Supplementary Note 1.

Given the relatively small system sizes of the experiments in this
work, we are also able to directly compute non-scalable measures of
quality that make use of the classical samples only. This enables us to
compare fidelity estimation with inefficient classical verification
methods in different scenarios. To classically assess the quality of
samples from a fixed experimental state preparation, we use the TVD
dTV(P,Q) =∑x∣P(x) −Q(x)∣/2. The TVDquantifies the optimal probability
of distinguishing the experimentally sampled distribution Q and the
ideal one for a noiseless cluster P. The TVD is the classical analog of the
trace distance dTrðρ, ∣ψ

�
ψ
�

∣Þ=Trðjρ� ∣ψ
�
ψ
�

∣jÞ=2, which quantifies the
optimal probability of distinguishing the sampled quantum states ρ
and ∣ψ

�
ψ
�

∣. The fidelity F upper-bounds the trace distance43 and
therefore the TVD of the sampled distributions as

dTV ≤dTr ≤
ffiffiffiffiffiffiffiffiffiffiffi
1� F

p
: ð1Þ

The root infidelity
ffiffiffiffiffiffiffiffiffiffiffi
1� F

p
can therefore be used to certify the classical

samples from ρ. We note that it is a priori not clear how tight this
bound is in an experimental scenario and how experimental noise
affects the different verificationmethods. In order to classically assess
the average quality of the quantum device, we estimate the linear XEB
fidelity between Q and P, which is defined as
f linðQ, PÞ= 2n

P
xQðxÞPðxÞ � 11. The average XEB fidelity over the ran-

dom cluster states measures the average quantum fidelity in the
regime of low noise16–18, see Supplementary Note 5.

Experimental implementation
We implement the randomMBQC sampling and verification protocols
in two ion-trap quantumprocessors. Quantum information is encoded
in the S1/2 ground state and D5/2 excited state of up to 16 40Ca+ ions
confined in a linear Paul trap36,37. We use these devices to implement
two sets of experiments. First, we generate rectangular n ×m random
cluster states of up to 16 ions by appropriately entangling the
respective ions in a linear chain using pairwise addressed Mølmer-
Sørensen-gates35,36. In a second, proof-of-principle set of experiments
on a device with an extended control toolbox yet somewhat lower
fidelities, we make use of spectroscopic decoupling and optical
pumping to recycle qubits to demonstrate a more qubit-efficient way
to sample from large-scale entangled cluster states. By construction,
the 2D cluster states require entangling gates between neighboring
qubits only. As a consequence,whengenerating the cluster fromtop to
bottom, once the first row has been entangled to the second, we can
measure the qubits of the first row. Once measured, these qubits can
be reset to the ground state, prepared in their appropriate initial states
and entangled as the third row of the cluster state, and so on. Due to
the local entanglement structure of the cluster state, themeasurement
statistics obtained in this way are identical to the statistics that would
be obtained from preparing and measuring the full cluster state
at once.

Experimentally, we make use of mid-circuit readout capabilities44

using an EMCCD camera to read out a subset of the qubits, while
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spectroscopically decoupling the remaining qubits from the readout
beams, see Fig. 2. After the readout, we re-cool the ion string using a
combination of Doppler cooling and polarization-gradient cooling for
a total of 3ms. Then we employ two rounds of optical pumping using
addressed 729 nm pulses in combination with a global 854nm quench

beam to reset the qubits to the ∣0i ground state37, while the remaining
qubits are spectroscopically decoupled. This completes the reset and
we can now prepare the measured qubits in their new states and
entangle them to the remaining qubits of the cluster, see Fig. 2. This
procedure enables us to sample from entangled quantum states with
more qubits than the physical register size of the used quantum pro-
cessor. Specifically, to prepare an n ×m cluster state at least n + 1
repeatedly recycled qubits are required, and the required circuit depth
(and recycling steps) decreases as the number of available physical
qubits increases.

For every state, we perform sampling and verification measure-
ments. We measure the state in the Hadamard basis in order to per-
form sampling. For verification, we measure a random element of its
stabilizer group. When verifying a single instance of a state prepara-
tion, we repeat this procedure for a fixed state and then estimate the
fidelity from the random stabilizer measurements and the TVD from
the classical samples. To estimate the average performance of the
device, we repeat the procedure for random states and estimate the
average fidelity and the average XEB fidelity, see Fig. 1d, e. Finally, for
the 2 × 2 cluster, we study the effect of increasing global (local)
dephasing noise on the verification performance by adding small (un)
correlated random Z-rotations before and after each entangling gate.

Experimental results
We first measure the fidelity and TVD of single random cluster state
preparations for various cluster sizes. The results demonstrate that the
root-infidelity provides meaningful upper bounds on the TVD, see
Fig. 3. Importantly, while the efficiently measurable and computable
root infidelity estimate is guaranteed to bound the TVD per Eq. (1),
these scalable bounds are not tight. This is seen in Fig. 3 as a gap
between the root infidelity upper bound and themeasuredTVDvalues.
Indeed, it is expected that reproducing the full quantum state (as
measured by the fidelity) is a more stringent requirement thanmerely
reproducing the outcome distribution in one particular measurement
basis (asmeasured by the TVD). Hence, the efficient quantummethods
require higher fidelities for the corresponding certificate to meet the
quantum advantage threshold. Notably, above the cluster size of 3 × 3
qubits, empirically estimating the TVD with sufficient accuracy is
practically infeasible due to the exponentially growing state space. In
the proof-of-principle experiments, where recycling is used, we see the
same qualitative behavior, although the overall root infidelities are

Fig. 2 | Sketch of the circuit with qubit recycling. a Recycling. After detection, a
measured qubit is either still in the ∣1i state ("dark” outcome) or in one of the two S
levels ("bright” outcome). We reset it to the ∣0i state by first applying an addressed
π-pulse (1) on the ∣S0i ! ∣D0i-transition. A subsequent global 854 nm quench pulse
(2) transfers population from all D-levels to the P3/2 manifold, from which (3)
spontaneous decay occurs, preferentially to the ∣0i state in the S manifold. We
repeat this process twice, which is sufficient to return about 99% of the population
to the ∣0i state. b Circuit. The individual qubits are prepared in a product state
depending on the random angles βi and entangled via XX interactions and some
single-qubit gates (white boxes) to create a cluster state; see SupplementaryNote 3.
Themeasurement of the qubits is achieved by exciting the P↔ S transition. In order
to perform a circuit with recycling, a coherent π-pulse on the S ! D0 transition

(denotedbyHS) is applied to `hide' the qubits which should not bemeasured in the
D-manifold. After themeasurement, the chain is cooled using polarization-gradient
cooling. The resetmakes use of local pulses on themeasured qubit that transfer the
remaining population of ∣S0i to the D5/2-manifold (denoted by P) and global pulses
that transfer the population of that manifold back to ∣0i. Prior to the reset, all
unmeasured qubits are `hidden' in the S1/2-manifold. For this, the populationwhich
was in ∣0i prior to the measurement is coherently transferred back to ∣Si via a π-
pulse (H�1

S ), and the population which is in ∣1i is transferred to ∣S0i via a π-pulse on
the D ! S0 transition (HD). After the reset procedure (a), a π-pulse (H�1

D ) is applied
to the unmeasured qubits to transfer the population which was previously in ∣1i
back from S0.

Fig. 3 | Experimental results for single-instance verification. Root infidelity esti-
mate

ffiffiffiffiffiffiffiffiffiffiffi
1� F

p
(hexagons), and empirical TVD (stars) for single instances of random

MBQC cluster states with recycling (blue) and without (pink). Note that the horizontal
axis is labeled with the cluster size n×m and scaled with qubit number nm. The root
infidelity upper-bounds the TVD per Eq. (1). Colored error bars represent the 3σ
interval of the statistical error. Uncorrelated measurement noise reduces or increases
themeasured statefidelity compared to the true fidelity asymmetrically depending on
its value, such that the shown values are lower bounds to the true statefidelity, see the
Methods section for details. The worst-case behavior of the measurement noise is
represented by gray error bars. In the non-recycling experiment, the register size is
increased between the 2× 3 and the 3×3 instance, leading to a decrease in the local
gate fidelities. Modeling the noise as local depolarizing noise after each entangling
gate (dotted lines), we obtain effective local Pauli error probabilities after the two-
qubit gates of 5.3%, 2.6%, and 1.0%, for the recycling data, for the large-register non-
recycling data, and the small register non-recycling data, respectively; see Supple-
mentary Note 5. The shaded green area is the acceptance region corresponding to an
infidelity threshold of 8.6% arising in the rigorous hardness argument as sketched in
Supplementary Note 4. Since the accuracy of the TVD estimate scales with the system
dimension already for cluster sizes of 4 ×3 and 4×4 infeasible amount of samples
would be required for an accurate estimate, and hence these are not shown. See
Supplementary Table 1 for experimental details.
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higher. This is likely due to imperfect re-cooling, which only cools the
system to low motional occupation of �n � 2 phonons. While the
Mølmer-Sørensen (MS) gate is insensitive to themotional occupation to
first order45, higher phonon number leads to a larger sensitivity to
calibration errors. Moreover, the recooling process takes 3ms, during
which the system experiences some dephasing. Hence, the recycling
and non-recycling experiments are not directly comparable. It is,

however, anticipated that the technical limitations can be overcome
through the use of mid-circuit ground-state cooling and faster recy-
cling schemes, such that comparable fidelities between the two
methods can be achieved, as would also be required for realizing
quantum error correction.

Figure 4 shows the results of the fidelity and TVD measurements
for an increasing amount of noise on the 2 × 2 cluster state in com-
parison to numerical simulations. We observe an increasing gap
between TVD and upper bound from the root infidelity estimate (cf.
Eq. (1)) with the amount of noise in a fixed quantum circuit. These
results indicate that output distributions of states subject to a sig-
nificant amount of dephasing noisemay still have a TVDwell below the
root infidelity. Comparing the experimental results with the simula-
tions also allowsus todeduce the natural noisefloor in the experiment.

We then measure the fidelity of cluster state preparations, aver-
aged over the random circuits, and show the results in Fig. 5. We
compare the fidelity estimates to the classical estimates of fidelity via
XEB depending on the relative dimensions of the cluster, since in the
circuit model the quality of XEB as a fidelity estimator depends on the
circuit depth17,18. We observe a consistently larger variance of the XEB
estimate of the fidelity than of the direct fidelity estimate, and deviates
for the 2 × 5 cluster. This may be due to the fact that the XEB fidelity
depends on the type and strength of the experimental noise, but also
the specific dimensions of the cluster state and the effective circuit
ensemble16–18. Hence, while XEB generally seems to reflect the order of
magnitude of the true fidelity, extreme caremust be taken when using
the XEB as an estimator of the fidelity.

Discussion
We conclude that direct (average) fidelity estimation provides an
efficient and scalablemeans of certifying both single instances and the
average quality of measurement-based computations. This is the case
since the sample complexity of the fidelity estimate for arbitrary
generalized stabilizer states is independent of the size of the system
and the postprocessing is efficient. Larger systems can therefore be
verified with the same number of experiments as we have performed.

More generally, our results demonstrate that the measurement-
based model of quantum computation provides a viable path toward
efficient verification of quantum random sampling experiments, which
is not known tobepossible in the circuitmodel. In particular, all known
methods for fidelity estimation28,46 in general scale exponentially with
the number of qubits. We also note that, although MBQC is formally
equivalent to the circuitmodel, relating a quantum circuit to anMBQC
requires a space-time mapping and a feedforward procedure. Hence,
our verification protocol at the level of the cluster state has no direct
analog in circuit-based computations. While the experiments in this
work are still far from the quantum advantage regime, we have suc-
cessfully demonstrated how to use qubit recycling to perform large-
scale MBQC with a qubit number that can be quadratically larger than
the used ion register. This will enable TIQP comprising on the order of
100 ions and depth 50 to achieve a fully verified quantum advantage in
sampling from cluster states with more than 50 × 50 nodes.

Besides trapped ions, several other platforms are compelling
candidates for demonstrating a verifiable quantum advantage via
random cluster state sampling. Examples include arrays of Rydberg
atoms inoptical tweezers, where the creationof large atomarrays47 has
recently been demonstrated. Another leading platform for cluster
state generation is photonics48, and continuous-variable optical sys-
tems where cluster states with up to 30,000 nodes have been
experimentally prepared49,50. Currently, these states are still Gaussian
states and therefore not useful for quantum computing, but it is
intriguing to think about how the non-standard topologies of
continuous-variable cluster states might be exploited. Traditionally,
such continuous variable systems have been used for boson sampling,
rather than quantum circuit sampling. While boson sampling is not a

Fig. 4 | Single-instance verification with artificially added phase noise. Root
infidelity estimate

ffiffiffiffiffiffiffiffiffiffiffi
1� F

p
(hexagons) and empirical total-variation distance dTV

(stars) of a 2 × 2 cluster state with artificially introduced local (pink) and global
(green) phase noise—Z-rotations with rotation angle drawn from a Gaussian dis-
tributionwith varianceσ2—before and afterMølmer-Sørensen gate applications as a
function of the noise strength σ, see Methods for details. Solid (dashed) lines show
simulated root infidelity (total-variation distance) for the respective types of noise.
The experimental data (top axis) is shifted with respect to the simulations (bottom
axis) due to the fact that there is residual noise when no artificial noise is intro-
duced. The value of the relative shift givenby0.045π (dashedvertical line)provides
an estimate for the natural noise strength. Colored error bars represent the 3σ
interval of the statistical error. The systematic measurement error of the fidelity
estimate is represented by gray error bars.

Fig. 5 | Experimental results for average performance verification. Average
fidelity estimate from direct fidelity estimation (DFE) (pink hexagons), from linear
XEB (triangles), and from logarithmic (log) XEB (diamonds, see Methods for the
definition) using 1000 random cluster states and 50 shots per state. Based on
calibration data for the gate fidelities of single-qubit gates f1Q = 99.8%, two-qubit
gates f2Q = 97.5 ± 0.5%, andmeasurements fM = 99.85%,wecompute a prediction for
the fidelity (gray shaded line).We extract an effective local Pauli error probability of
1.7% (dotted line), see Supplementary Note 5. Colored error bars represent the
statistical 3σ error. For uncorrelated measurement noise, the fidelity estimate
provides a lower bound to the true state fidelity. Gray error bars represent the
worst-case systematic measurement error.
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universal model for computation, its efficient verification is possible
for both photon-number51 and Gaussian52 input states. In practice,
however, the verification measurements are entirely different in type
compared to the sampling experiments, requiring a different appara-
tus. In contrast, for verifying MBQC states as performed in this work,
the difference between sampling and verification is only local basis
rotations. This makes MBQC a particularly compelling candidate for
verifiable quantum random sampling.

Methods
Verification protocols
MBQC with cluster states is amenable to various types of verification.
In particular, we can perform single-instance verification, that is, ver-
ification of a single quantum state using many copies of that state. We
also perform average verification, that is, an assessment of the quality
of state preparations averaged over the ensemble of measurement-
based computations defined by the random choices of single-qubit
rotation angles β. We distinguish classical means of verification in
which we only make use of classical samples from the cluster state
measured in a fixed (the Hadamard) basis, and quantum means of
verification in which we measure the cluster state in various
different bases.

Single-instance verification. In order to perform single-instance ver-
ification we apply DFE28, which uses single-qubit measurements on
preparations of the target state ∣ψ

�
. Since the target state vector ∣ψ

�
for

our random sampling problem is a locally rotated stabilizer state, with
stabilizer operators Si, ρ= ∣ψ

�
ψ
�

∣ is the projector onto the joint + 1-
eigenspace of its N stabilizers. We can therefore expand ρ as the uni-
form superposition over the elements of its stabilizer group
S = hS1, . . . , SNi, where 〈S1, …, SN〉 denotes the multiplicative group
generated by S1, …, SN. The fidelity can then be expressed as

F =
1

2N
X
s2S

hsiρ =
1

2N
X
s2S

X
σ = ± 1

hπσ
s iρ � σ, ð2Þ

where s =π +
s � π�

s is the eigendecomposition of the stabilizer s into its
±1 subspaces, and h�iρ =Tr½ρ�� denotes the expectation value. This
suggests a simple verification protocol where in each run a uniformly
random element of S is measured on ρ. Averaging over the measure-
ment outcomes σ then gives an unbiased estimate of the fidelity
according to Eq. (2). Since the measurement outcomes σ are bounded
by 1 in absolute value, we can estimate the average up to error ϵ using a
number M of measurements from S that scales as 1/ϵ2 and is inde-
pendent of the number of qubits.

We also directly estimate the TVD between the empirical dis-
tribution and the ideal distribution. Note that estimating the TVD is
sample-inefficient since the empirical probabilities need to be esti-
mated, requiring exponentially many samples11. It is also computa-
tionally inefficient since the ideal probabilities need to be computed.

Average-case verification. We measure the average quality of the
cluster state preparations ρβ by their average state fidelity

F : =Eβ ψβ

D
∣ρβ∣ψβ

Eh i
ð3Þ

with the generalized cluster state ∣ψβi with random angles
β 2 f0, π

4 , . . . ,
7π
4 g

n×m
. Here, Eβ½�� denotes the expectation value over

random β ∈ [8]nm, where we let [8] = {1, 2, …, 8} and
[k]l = [k] × ⋯ × [k] l times.

In order to classically estimate the average state fidelity, one can
make use of cross-entropy benchmarking (XEB) as proposed by
refs. 7,12. XEBmakes use of the classical samples from a distributionQ
and aims tomeasure how distinctQ is from a target distribution P. The

linear and logarithmic XEB fidelities between Q and P are defined as

f linðQ,PÞ : =2n
X
x

QðxÞPðxÞ � 1, ð4Þ

f logðQ, PÞ : = �
X
x

QðxÞ logPðxÞ, ð5Þ

respectively. Letting Pβ be the output distribution of ∣ψβ

E
and Qβ the

output distribution of ρβ after Hadamard-basis measurements, we can
estimate the average statefidelity from the average linear (logarithmic)
XEB fidelity

f linðlogÞ : =Eβ f linðlogÞðQβ,PβÞ
h i

, ð6Þ

assuming that the total noise affecting the experimental state pre-
paration ρβ is not correlated with ∣ψβihψβ∣. In order to estimate the
(average) XEB fidelities, we need to compute the ideal output prob-
abilities Pβ(x) and average those over the observed samples x. This
renders theXEBfidelities a computationally inefficient estimator of the
fidelity. They are sample-efficient estimators32, however, provided that
the target distribution Pβ satisfies the expected exponential shape for
deep random quantum circuits (or larger cluster states). That is, to
achieve an additive estimation error ϵ, a polynomial number of sam-
ples in n and 1/ϵ are required. In SupplementaryNote 5, we provide the
details of the estimation procedure. To date, XEB is the only available
means of practically verifying (on average or in the single-instance)
universal random quantum circuits.

Here, we observe that in the measurement-based model of
quantum computations fully efficient (i.e., computationally and sam-
ple-efficiently) average-case verification is possible using single-qubit
measurements. In fact, we observe that DFE can be extended to mea-
sure the average fidelity of random MBQC state preparations. To this
end, we observe that the average state fidelity (3) can be expressed
analogously to Eq. (2) as

F = 1
2nm

1
8nm

P
β2π

4�½8�nm
P

sβ2Sβ

P
σ = ± 1

hπσ
sβ
i
ρβ

� σ, ð7Þ

where Sβ denotes the stabilizer group of the locally rotated cluster
state ∣ψβi with rotation angles β, πσ

sβ
is the projector onto the σ-

eigenspace of sβ 2 Sβ, and. Hence, in order to estimate the average
state fidelity with respect to the choice of β, we simply need to sample
uniformly random rotation angles β, and elements sβ from the stabi-
lizer group Sβ and thenmeasure sβ on the state preparation ρβ of ∣ψβi,
yielding outcome σ ∈ { ± 1}. Averaging over those outcomes yields an
estimator of the average statefidelitywith the same sample complexity
as DFE has for a single instance. As discussed below, the only
assumption required to trust the validity of the result is that the noise
in the local single-qubit measurements does not behave adversarially.
DFE and direct average fidelity estimation thus provide a unified
method for efficiently assessing the single-instance quality and the
average quality of MBQC state preparations.

Finite sampling and error bars
When performing DFE of a fixed cluster state, the simplest protocol is
to sample anelement s 2 S of the stabilizer groupuniformly at random
andmeasure s once; cf. Eq. (2). In this case, the samples are distributed
binomially with ideal probability p=

P
shπσ

s iρ=2N , and the error on the
mean estimation is given by the standard deviation of the observed
binomial distribution. However, in practice, it is much cheaper to
repeat a measurement of a stabilizer than to measure a new stabilizer,
which requires a different measurement setting. This is why we esti-
mate the fidelity according to the following protocol. We sample K
stabilizers uniformly at random and measure each of them M times,
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obtaining an empirical estimate of the conditional expectation value
E½σjs�=Pσ = ± 1Tr½ρπσ

s �σ. In Supplementary Note 6, we show that the
variance of the fidelity estimator F̂ = ðKMÞ�1 PK

i = 1

PM
j = 1 σi, j, where σi,j is

the outcome of measuring stabilizer si the jth time, is given by

Var½F̂ �= 4
KM

ðE½ps �ð1�E½ps�ÞÞ+
4
K

1� 1
M

� �
Var½ps�: ð8Þ

Here, the expectation value and variance are taken over s 2 S and
ps =Tr½ρπ + 1

s �, respectively. Furthermore, the same results carry over to
the average fidelity estimate, since sampling from the stabilizer group
S of a single cluster state is now replaced by sampling a randomchoice
of angles β, and randomelement of the corresponding stabilizer group
Sβ, not altering the variance.

Eq. (8) gives rise to an optimal choice of K and M for a fixed total
number of shots K ×M, depending on the expectation value and var-
ianceof the stabilizer valuesps and the experimental trade-off between
repetitions of the samemeasurement and changing the measurement
setting. In particular, if the distinct elements of the stabilizer group
have a small variance over the imperfect state preparation ρ, a larger
choice of M might be advantageous. In practice, for the instances in
which we have abundant data, we subsample the data in order to
remain in the situationM = 1 of Eq. (2), while in the case of sparse data,
we make use of a larger number of shots M per stabilizer.

The variance of the estimate of the XEB fidelity is also given by the
law of total variance, generalizing Eq. (8), and spelled out in detail in
Supplementary Note 6. Finally, for the TVD, we estimate the error
using bootstrapping by resampling given the observed distribution.
Specifically, we repeatedly sample from the empirical distribution the
same number of times as the experiment and compute the TVD of the
samples to the sampled distribution. The resulting TVD follows a
Gaussian distribution of whichwe show the 3σ interval estimated from
1000 iterations.

Measurement errors
A key assumption for the efficient verification of the cluster states
prepared here is the availability of accurate, well-characterized single-
qubit measurements. A deviation in the measurement directly trans-
lates into a deviation in the fidelity estimate, and hence a high mea-
surement error in the worst case translates into a high error in the
resulting fidelity estimate. Because the single-qubit measurements we
use comprise single-qubit gates followed by readout in a fixed basis,
the measurement error has two main contributions: (i) imperfections
in the single-qubit rotations for the basis choice, and (ii) imperfections
in the readout.

The single-qubit gate errors arewell characterized by randomized
benchmarking, showing an average single-qubit Clifford error rate of
3 ± 2 × 10−4 35 for the recycling device and 14 ± 1 × 10−4 36 for the second
device. The native Z measurement is then performed by scattering
photons on the short-lived S1/2↔ P1/2 transition. Ions in the ∣0i statewill
scatter photons, while ions in the ∣1i state remain dark. Hence, there
are two competing contributions to the readout error. On the one
hand, long measurement times suffer from amplitude damping noise
due to spontaneous decay of the ∣1i state (lifetime ~1.15s) during
readout. On the other hand, for short readout times, the Poisson dis-
tributions for the two outcomes will start to overlap, leading to dis-
crimination errors. In the experiments presented here, the second
contribution is suppressed to well below 10−5 by using measurement
times of 1ms for the recycling device and 2ms on the non-recycling
device, leaving only a spontaneous decay error of <1 × 10−3 37 for the
recycling device and <2 × 10−3 for the non-recycling device. Hence, the
worst-case readout error is <1.5 × 10−3 per qubit for the recycling
device and <3.5 × 10−3 per qubit for the second device. Given the
single-qubit readout error e1, the overall measurement error on an n-
qubit device is then given by eM = 1� ð1� e1Þn.

Given a true pre-measurement state fidelity F, we consider the
effect of themeasurement errors on the estimatedfidelity F̂ . In the one
extreme case, the measurement errors flip the sign of the stabilizers
with value +1 on the pre-measurement state, but keep the sign of those
with a −1 outcome, resulting in a reduced state fidelity
F̂min = 2ðð1 + FÞ=2� eM � ð1 + FÞ=2Þ � 1. In the other extreme case, they
flip the sign of only the stabilizers with value −1 on the pre-
measurement state yielding F̂max = 2ðð1 + FÞ=2+ eM � ð1� FÞ=2Þ � 1. This
defines the worst-case error interval for F̂
as ½ðF̂ � eM Þ=ð1� eMÞ, ðF̂ + eM Þ=ð1� eMÞ�.

If on the other hand the measurement errors are benign, i.e.,
uncorrelated from the circuit errors, they will flip all stabilizers
regardless of their value on the pre-measurement state with equal
probability. In this case, the measured fidelity satisfies F̂ = F � ð1� 2eM Þ
so thatwe candeduce the true fidelity F from themeasuredfidelity and
the measurement error. Note that in this case, the measured state
fidelity is always a lower bound to the true state fidelity.

Noisy circuits
In order to study the influence of experimental noise on the reliability
and tightness of our bounds on the TVD, we artificially induce
dephasing noise on the 2 × 2 cluster. This simulates a reduced spin-
coherence time, which could come from laser phase noise ormagnetic
field noise. These are the dominant error sources in the experiment. To
this end, we pick a fixed instance of the 2 × 2 cluster and add small

Fig. 6 | Noisy circuits for the 2 × 2 cluster.Dephasing noise is simulated by adding
random (virtual) Z rotations on all qubits after the initial state preparation and after
each MS gate, see Methods. This amounts to roughly equidistant time steps. The
rotation angles for the Z rotations are drawn randomly from a normal distribution

with zeromean and standard deviation σ∈ [0, 0.2π] every 50 shots. For correlated
noise, the parameters in each time step are chosen equally and for uncorrelated
noise, they are chosen independently.
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random Z rotations on all qubits at roughly equidistant time steps.
Specifically, we apply virtual Z gates (i.e., realized in software as an
appropriate phase shift on all subsequent gate operations) after the
initial local state preparation gates, and again after each MS gate, see
Fig. 6. In each run of the experiment (with 50 shots each), we randomly
pick rotation angles for the virtual Z gates from a normal distribution
with 0mean and standard deviation σ. Here σ is a measure of the noise
strength and corresponds to a local phase-flip probability of ξ/2, where
ξ = 1� e�σ2=2. If we want to engineer global, correlated noise, we use
the same angle for all Z gates in a given “time-step”, whereas for
engineering local, uncorrelated noise we pick each angle indepen-
dently. We then average these random choices over 50 instances for
the fidelity estimate and 150 instances for the TVD. This averaging
turns the random phase shifts into independent (correlated) dephas-
ing channels in the case of local (global) noise. This effectively appears
as single-qubit depolarizing noise after every two-qubit gate with a
local Pauli error probability of 3γ/4, where γ = 1� e�0:310σ2

, where the
constant was obtained from a numerical fit to simulated data, see
Supplementary Note 5.

Data availability
The data used in this study are available open access at Zenodo:
https://doi.org/10.5281/zenodo.13983054.

Code availability
The code (which uses the Qiskit package53) used in the numerical
simulations and data analysis can be obtained from the authors.
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