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1.  INTRODUCTION

Humans rapidly process scene information, allowing 

them to flexibly categorize and adaptively react to their 

immediate environment. Such highly efficient categori-

zation relies crucially on the visual system, which extracts 

visual features from the environment and integrates them 

into increasingly complex representations through a 

series of hierarchically organized brain regions in the 
ventral visual stream (Epstein & Baker, 2019; Grill-Spector 
& Weiner, 2014; Op de Beeck et  al., 2008). While this 
hierarchy of representations underlies successful cate-
gorization, the extent to which particular scene repre-
sentations in the ventral visual stream are relevant for 
categorization behavior is poorly understood. Specifi-
cally, it remains unknown i) where in the brain scene  
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representations relevant for behavior emerge, ii) what 
visual features these representations capture, and iii) to 
what degree the relevance of these representations for 
behavior varies given different task demands.

Concerning the first question, previous studies have 
used diverse methods to identify visual representations 
of simple and complex stimuli that are relevant for cate-
gorization behavior (DiCarlo & Maunsell, 2005; Majaj 
et al., 2015; Philiastides & Sajda, 2006; Philiastides et al., 
2006). One such method particularly suited for complex 
real-world stimuli is the neural distance-to-bound 
approach (Ritchie & Carlson, 2016), which links visual 
representations in the brain to behavioral responses via 
the distance of brain responses from a hyperplane in a 
high-dimensional response space estimated by a multi-
variate classifier. Analogous to the signal detection the-
ory (Green & Swets, 1966), where distance from a criterion 
negatively correlates with reaction time, points close to 
the hyperplane indicate weak sensory evidence, leading 
to longer RTs, while points far from the hyperplane indi-
cate strong sensory evidence, resulting in short RTs. 
Thus, given a negative relationship between neural dis-
tances and behavioral response times (RTs), the approach 
assumes that information in a given brain area is behav-
iorally relevant. In this context, behavioral relevance 
means that the information in a given brain region is rep-
resented in a way that allows linear readout of that infor-
mation into behavior (e.g., by an upstream brain area). 
Importantly, this definition of behavioral relevance does 
not imply a causal relationship, but rather that the neural 
representations are suitably formatted to influence 
behavior.

Using this approach, behaviorally relevant object rep-
resentations have been identified in early visual as well as 
high-level object selective regions (Carlson et al., 2014; 
Grootswagers et al., 2018; Ritchie & Op de Beeck, 2019). 
A recent study has extended these insights to represen-
tations of complex scenes, demonstrating that scene 
representations relevant for man-made versus natural 
categorization behavior arise in a time window from 100 
to 200 ms after stimulus onset (Karapetian et al., 2023). 
However, where in the brain such scene representations 
emerge remains unknown.

Concerning the second question, that is, the visual 
features that behaviorally relevant representations cap-
ture, prior research has suggested that representations in 
scene-selective regions capture a variety of visual fea-
tures, ranging from a low to a high level of complexity 
(MacEvoy & Epstein, 2011; Stansbury et al., 2013; Watson 
et al., 2014). However, for some basic distinctions such 
as categorizing scenes as man-made or natural, low-
level visual features such as the spatial frequency or the 
color of a scene may be sufficient (Oliva & Torralba, 2001). 

This suggests that not all visual features that are cap-
tured by scene representations might be required for 
every scene categorization behavior and raises the ques-
tion of what visual features underlie behaviorally relevant 
scene representations.

Regarding our third question of how the behavioral rel-
evance of scene representations varies across tasks, it 
has been shown that neural representations of scene cat-
egories in scene-selective regions remain relatively stable 
across tasks (Jung & Walther, 2021). However, there are 
systematic differences in behavioral responses when 
scenes are categorized according to various criteria, 
such as man-made or natural, open or closed, or as 
belonging to a certain basic-level category (e.g., a beach, 
a highway, etc.) (Greene & Oliva, 2009; Kadar & 
Ben-Shahar, 2012; Loschky & Larson, 2010). While some 
of these behavioral differences might be accounted for 
by image-level properties (Sofer et al., 2015), they may 
also reflect more fundamental differences in the way neu-
ral representations are translated into behavior during 
these tasks. For tasks that require access to information 
not aligned with the content of scene representations, the 
represented information might even interfere with task 
performance (Greene & Fei-Fei, 2014; Reeder et al., 2015; 
Seidl-Rathkopf et al., 2015; Wyble et al., 2013). However, 
to what extent varying task demands influence the rela-
tionship between scene representations and behavior 
remains unclear.

Here, we identified behaviorally relevant scene repre-
sentations in the brain, characterized them in terms of 
their underlying visual features, and investigated how 
their relationship to behavior varies given different task 
demands. For this, we linked fMRI data from human par-
ticipants viewing scene images to behavioral responses 
acquired in separate behavioral experiments for either a 
man-made/natural categorization task, a basic-level cat-
egorization task on the same scene images, or an orthog-
onal task on the fixation cross. To identify behaviorally 
relevant scene representations in the brain, we first local-
ized scene category representations using multivariate 
decoding (Haynes & Rees, 2006) and then determined 
which of these representations are relevant for man-
made/natural or basic-level categorization behavior by 
employing the neural distance-to-bound approach 
(Ritchie & Carlson, 2016). Next, to elucidate the nature of 
the behaviorally relevant representations, we determined 
what type of visual features, quantified as activations 
from different layers of deep neural networks, best 
explained these representations. Finally, to investigate 
how tasks that do not align with the content of scene 
representations impact the behavioral relevance of scene 
representations, we related scene representations to 
behavior in an orthogonal fixation task.
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2.  MATERIALS AND METHODS

2.1.  Participants

Thirty healthy adults with normal or corrected-to-normal 
vision participated in the fMRI study. All participants pro-
vided their written informed consent before taking part in 
the study and were compensated for their time. One par-
ticipant was excluded from the analyses due to incidental 
findings consistent with a recognized neurological disor-
der, resulting in a final sample of 29 participants (mean 
age = 24.4, SD = 3.7, 21 female, 8 male). The final sample 
size is comparable or larger than previous studies using 
decoding approaches for relating brain data to behavioral 
data (Carlson et  al., 2014; Grootswagers et  al., 2018; 
Karapetian et  al., 2023; Ritchie & Op de Beeck, 2019). 
The study was approved by the ethics committee of Freie 
Universität Berlin and was conducted in accordance with 
the Declaration of Helsinki.

2.2.  Experimental stimuli

We used 60 individual scene images from the validation 
set of the large-scale scene dataset Places365 (Zhou 
et al., 2018) (Fig. 1A). Half of the images depicted man-
made scenes and the other half natural scenes. The 
images were further subdivided into 6 basic-level catego-
ries (beach, canyon, forest, apartment building, bedroom, 
highway), with 10 exemplars for each category. To stan-
dardize the size and aspect ratio of the stimuli, all images 
were center cropped and resized to 480 x 480 pixels.

2.3.  Experimental design and procedure

2.3.1.  fMRI experimental paradigm

During the main fMRI experiment, participants were pre-
sented with individual scene images while fixating. Stim-
uli were presented for 500  ms at 12 degrees of visual 

Fig. 1.  Stimulus set and experimental paradigm. (A) Stimulus set used in the experiment. We used 60 scene images from 
the validation set of the Places365 dataset (Zhou et al., 2018). Half of the stimuli depicted man-made and the other half 
natural scenes and spanned 6 basic-level categories: beach, canyon, forest, apartment building, bedroom, highway. (B) 
fMRI paradigm. In a given trial, a scene image was presented for 500 ms overlaid with a white fixation cross, followed by 
an interstimulus interval (ISI) of 2,500 ms. In 20% percent of the trials, the fixation cross turned red instead of the stimulus 
presentation and participants were instructed to press a button. (C) Behavioral paradigm. Behavioral data were acquired 
with different sets of participants in either a previous experiment (Karapetian et al., 2023) or in an independent behavioral 
experiment with analogous trial structure but a different behavioral task. In a given trial, a scene image was presented 
for 500 ms, overlaid with a blue or green fixation cross (only for the man-made/natural and fixation tasks), followed by 
the presentation of a white fixation cross for a variable time between 500 and 700 ms. In the different experiments, 
participants were instructed at the beginning of a block to either report if a given scene image was a man-made or natural 
scene (man-made/natural task), if the color of the fixation cross was green or blue (fixation task), or if a given scene image 
belonged to a certain basic-level category of scenes or not (basic-level task).
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angle (width & height), overlaid with a central white fixa-
tion cross subtending 1 degree of visual angle (Fig. 1B). 
This was followed by an interstimulus interval of 2,500 ms. 
In 20% of the trials, the fixation cross turned red instead 
of a stimulus presentation, and the participants were 
tasked to respond with a button press. Stimulus order 
was pseudo-randomized within a given run, avoiding 
immediate repetition of the same stimulus. Each partici-
pant completed either 8 or 10 runs, with each run lasting 
7 min 46.5 s. In a given run, each stimulus was presented 
twice, resulting in 16 or 20 stimulus repetitions in total for 
a given participant.

2.3.2.  Functional localizer task

To define regions of interest (ROIs), participants com-
pleted a functional localizer run at the beginning of the 
recording session. The localizer consisted of 15 s blocks 
of objects, scrambled objects and scenes (not used in 
the main experiment) interleaved with 7.5 s blocks of only 
the fixation cross on background as baseline. The images 
were displayed at a size of 12 degrees of visual angle, at 
the center of the screen for 400 ms, followed by a 350 ms 
presentation of the fixation cross. Participants were 
instructed to maintain fixation on the fixation cross and to 
press a button in case the same image was presented in 
two consecutive trials. In total, the localizer run included 
8 blocks of each image type, resulting in a duration of 
7  min 22.5  s. The order of the blocks was pseudo-
randomized, avoiding immediate repetition of the same 
type of block.

2.4.  fMRI acquisition, preprocessing,  
and univariate analysis

2.4.1.  fMRI acquisition

We collected MRI data using a Siemens Magnetom 
Prisma Fit 3T system (Siemens Medical Solutions, Erlan-
gen, Germany) with a 64-channel head coil. Structural 
scans were acquired using a standard T1-weighted 
sequence (TR = 1.9 s, TE = 2.52 ms, number of slices: 
176, FOV = 256 mm, voxel size = 1.0 mm isotropic, and 
flip angle = 9°). Functional images were acquired using a 
sequence with partial brain coverage (TR = 1 s, TE = 33.3 
ms, number of slices: 39, voxel size: 2.49  x  2.49  mm, 
matrix size = 82 x 82, FOV = 204 mm, flip angle = 70°, 
slice thickness = 2.5 mm, multiband factor = 3, acquisi-
tion order=interleaved, and inter-slice gap  =  0.25  mm). 
The acquisition volume fully covered the occipital and 
temporal lobes. Due to a technical update of the scanner, 
the voxel size as well as the FOV was slightly changed for 
the sequence used in the localizer experiment for 20 out 

of the 30 participants (voxel size: 2.5 x 2.5 mm, FOV = 
205 mm).

2.4.2.  fMRI preprocessing

We preprocessed the fMRI data using SPM12 utilities 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12 and cus
tom scripts in MATLAB R2021a (www​.mathworks​.com).

We realigned all functional images to the first image of 
each run, slice-time corrected them, and co-registered 
them to the anatomical image. Further, based on the 
functional images and tissue probability maps for the 
white matter and cerebrospinal fluid, we estimated noise 
components using the aCompCor method (Behzadi 
et al., 2007) implemented in the TAPAS PhysIO toolbox 
(Kasper et al., 2017). Finally, we smoothed the functional 
images of the localizer run with a Gaussian kernel 
(FWHM = 5). The functional images of the experimental 
runs were not smoothed.

2.4.3.  fMRI univariate analysis

We used a general linear model (GLM) to model the fMRI 
responses to each scene image in a given run. As the 
regressors of interest, we entered the onsets and dura-
tions of each of the 60 scene images, convolved with a 
hemodynamic response function (HRF). As nuisance 
regressors, we entered the noise components and the 
movement parameters as well as their first- and second-
order derivatives. In order to account for task- and region-
specific variability in the HRF (Polimeni & Lewis, 2021), 
we employed an HRF-fitting procedure as described in 
Prince et al. (2022). For this, we repeated the GLM fitting 
20 times, each time convolving all of the regressors of 
interest with a different HRF obtained from an open-
source library of HRFs derived from the Natural Scenes 
Dataset (Allen et al., 2022). After fitting all the GLMs, we 
extracted the beta parameter estimates for the scene 
image regressors from the GLM with the HRF that had 
resulted in the minimum mean residual for a given voxel. 
Please note that this approach does not introduce any 
positive bias to multivariate decoding analyses, since it 
only focuses on maximizing the overall fit to the data 
without using any condition-specific information. This 
procedure resulted in 60 beta maps (one for each scene 
image) for each run and participant.

For the localizer experiment, we used a separate 
GLM to model the fMRI responses. Onsets and dura-
tions of the blocks of objects, scrambled objects, and 
scenes defined regressors that were convolved with the 
canonical HRF. We only included movement parame-
ters as nuisance regressors in this GLM. For localizing 
functionally defined brain areas, we computed three 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.mathworks.com
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contrasts: scrambled > objects to localize early visual 
brain areas, objects  >  scrambled to localize object-
selective cortex, and scenes  >  objects to localize 
scene-selective cortex. This yielded three t-maps for 
each participant.

2.4.4.  Region-of-interest (ROI) definition

As ROIs, we defined early visual cortex (EVC), that is, V1, 
V2, and V3, as well as object-selective lateral occipital 
complex (LOC) and scene-selective parahippocampal 
cortex (PPA). For the definition of all ROIs, we followed a 
two-step procedure. First, we used masks based on a 
brain atlas with anatomical criteria for EVC (Glasser et al., 
2016) and masks based on functional criteria for LOC and 
PPA (Julian et al., 2012). We transformed these masks into 
the individual subject space. Next, we computed the over-
lap between the subject-specific masks and the corre-
sponding t-maps from the localizer experiment and only 
retained the overlapping voxels with p-values smaller than 
0.0001. For EVC, we used the scrambled > objects t-map, 
for LOC we used the objects > scrambled t-map, and for 
PPA we used the scenes  >  objects t-map. Finally, we 
excluded voxels that overlapped between any of the ROIs. 
This resulted in one EVC, LOC, and PPA ROI mask for 
each subject.

2.5.  Multivariate decoding of scene category 
information

To determine the amount of scene category information 
present in the fMRI response patterns, we used multivar-
iate decoding. For this, we trained and tested linear Sup-
port Vector Machine (SVM) classifiers (Chang & Lin, 2011) 
to distinguish whether a given fMRI response pattern 
belonged to a given scene category or not. We performed 
two types of decoding: man-made/natural decoding and 
basic-level decoding. For selecting train and test data for 
the classifiers, we used two different approaches: an 
ROI-based method targeting predefined regions and a 
spatially unbiased searchlight method for further specify-
ing the spatial extent of local effects (Haynes et al., 2007; 
Kriegeskorte et  al., 2006). We conducted all analyses 
separately for each subject and in the subject’s native 
anatomical space.

We formed pattern vectors based on the beta values 
from the voxels in a given ROI or searchlight. For this, we 
assigned all but four beta patterns for each scene image 
to the train set and the remaining four beta patterns to the 
test set. Please note that each beta pattern was based on 
data from a separate run, thereby avoiding potential false 
positives due to carry-over effects (Mumford et al., 2014). 
In order to improve the signal-to-noise ratio, for a given 

scene image we averaged betas from multiple runs into 
pseudo betas (Stehr et  al., 2023). For the train set, we 
averaged two betas into one pseudo beta and for the test 
set we averaged all four betas into one pseudo beta. 
Depending on whether participants finished 8 or 10 main 
experimental runs, this resulted in either 2 or 3 pseudo 
betas per scene image for the train set and one pseudo 
beta for the test set. For the man-made/natural decoding, 
we used data for all of the images for training and testing 
the classifier. For the basic-level decoding, we sampled 
data for 10 target images belonging to the given scene 
category (e.g., apartment building) and 5 distractor 
images for each of the other two categories (i.e., bed-
room, highway) within the same superordinate category 
(i.e., man-made) of the given target category, in order to 
balance the amount of positive and negative examples in 
the train set.

To increase the robustness of the results, we repeated 
the splitting of the data into train and test sets, sam-
pling of target/distractor categories for the basic-level 
decoding, and the pseudo beta averaging 100 times 
while randomly shuffling the order of the betas. The 
resulting decoding accuracies were averaged across 
repetitions.

For the ROI-based method, we iterated this procedure 
across ROIs and for the searchlight-based method across 
searchlights. This resulted in one decoding accuracy for 
man-made/natural decoding and 6 decoding accuracies 
for basic-level decoding (one for each target category) for 
every ROI and one searchlight decoding map for every 
subject. Decoding accuracies and decoding accuracy 
maps for basic-level decoding were averaged across tar-
get categories. For later group-level statistical analyses, 
we normalized the searchlight decoding maps to the MNI 
template brain.

2.6.  Behavioral data

In order to identify behaviorally relevant scene represen-
tations, we linked the neural data recorded in the pres-
ent study to behavioral data from three different tasks: 
man-made/natural categorization, basic-level scene 
categorization, and fixation color discrimination. Man-
made/natural and basic-level categorization were cho-
sen for their ecological relevance, their well-documented 
utility for studying scene perception (e.g., Greene & 
Oliva 2009; Oliva & Torralba 2001, 2006), and their abil-
ity to probe scene perception at different levels of  
specificity. The fixation color discrimination task served 
as an orthogonal task, not requiring access to scene 
information.

Behavioral data for the man-made/natural categoriza-
tion and fixation tasks were recorded in a previous study 
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(Karapetian et al., 2023), while the data for the basic-level 
categorization task were recorded in an additional 
experiment with an independent set of 32 participants. 
One of these participants was excluded due to not finish-
ing the experiment (final sample N = 31, mean age = 26.1, 
SD = 5.42, 24 female, 7 male).

In the man-made/natural categorization and fixation 
task experiment, 30 participants were presented with the 
same scene images as used in the fMRI study and per-
formed either a man-made/natural categorization task on 
the stimuli or an orthogonal color discrimination task on 
the fixation cross (i.e., fixation task) while EEG was 
recorded. In each trial, a stimulus was presented for 
500 ms overlaid with a green or blue (randomly assigned) 
fixation cross, followed by a presentation of a white fixa-
tion cross for a variable time window between 500 to 
700 ms. Participants were instructed at the beginning of 
each block to either report if the presented stimulus was 
a man-made or a natural scene or to report the color of 
the fixation cross, as accurately and as quickly as possi-
ble. The experiment consisted of 20 blocks with 10 
blocks for each task.

In the basic-level categorization experiment, partici-
pants were presented with the same scene images as in 
the experiments mentioned above and were instructed to 
indicate with a button press if the present image belonged 
to a given basic-level scene category (e.g., apartment 
building) or not. The trial structure was equivalent to the 
other behavioral experiment, but fixation cross color 
change trials were not included. At the beginning of each 
block, participants were informed which basic-level 

scene category to categorize and were given example 
images (distinct from the experimental stimuli) for that 
given category. In a given block, only the 10 exemplar 
images of the given scene category and randomly sam-
pled distractor images from the same superordinate cat-
egory (man-made/natural) were presented. The 
experiment consisted of 24 blocks, 4 per scene category, 
and included 24 trials per image.

For all three behavioral experiments separately, we 
first averaged the response time (RT) data from the cor-
rectly answered trials for each subject and then averaged 
RTs across subjects to obtain the mean RT for each 
scene image and each task. On average, for a given sub-
ject, 23.2 (SD = 6.0) correct trials were included for each 
scene for the man-made/natural task, 26.0 (SD = 1.46) for 
the fixation task, and 20.8 (SD = 3.79) for the basic-level 
task. This resulted in one mean RT for each scene image 
and each task.

The mean accuracy across participants for the man-
made/natural categorization task was 80.4% (SD = 6.55), 
for the basic-level categorization task 88.1% (SD = 4.82), 
and for the distraction task 87.8% (SD = 5.82).

2.7.  Distance-to-bound analysis

We used the neural distance-to-bound approach (Carlson 
et al., 2014; Ritchie & Carlson, 2016; Ritchie et al., 2015) 
to determine if scene information represented in fMRI 
response patterns is behaviorally relevant for a given task 
(Fig.  2A). The neural distance-to-bound approach links 
the information in brain patterns to behavior by predicting 

Fig. 2.  Scene category representations and behaviorally relevant scene representations in visual cortex. (A) Neural 
distance-to-bound approach for identifying behaviorally relevant scene representations. For each subject, we derived neural 
distances from the fMRI response patterns by training SVM classifiers on part of the fMRI data and obtaining scene-specific 
distances from the hyperplane of the classifier for the left-out fMRI data for man-made/natural and basic-level decoding 
separately. Next, we obtained mean RTs (in a man-made/natural categorization task or a basic-level categorization task) 
across participants for each scene image and linked these RTs to the neural distances separately for each task using 
Pearson’s correlation. We iterated this procedure over ROIs or searchlights, resulting in ROI-specific correlation values or 
searchlight correlation maps. Negative correlations between neural distances and RTs at a specific location in the brain 
indicate that the representations at this location are relevant for behavior. (B) Scene category decoding in EVC, LOC, and 
PPA. Basic-level category as well as man-made/natural category could be decoded with accuracies significantly above 
chance in EVC, LOC, and PPA. (C) Distance-RT correlations in EVC, LOC, and PPA. There were negative correlations 
between behavioral RTs and neural distances for both man-made/natural and basic-level categorization in EVC and LOC, 
but not PPA. Colored lines below the bars represent the joint reliability of neural distances and RTs. Grey points indicate 
data points for individual subjects. Error bars depict the standard error of the mean across participants. Stars above or 
below the bars indicate significant results (p < 0.05, FDR-corrected). (D) Man-made/natural and basic-level decoding 
across the visual cortex. Searchlight man-made/natural decoding revealed significant decoding accuracies that were most 
pronounced in posterior and lateral parts of the occipital cortex, with decreasing accuracies toward anterior parts of the 
ventral-temporal cortex and posterior-parietal cortex. For basic-level decoding, there were significant accuracies across the 
whole ventral and dorsal stream with highest accuracies in the occipital cortex. (E) Distance-RT correlations for man-made/
natural and basic-level categorization across the visual cortex. Iterating the distance-RT correlation for man-made/natural 
categorization across searchlights showed negative correlations that were strongest at the border between the occipital and 
ventral-temporal cortex as well as at the border between the occipital and posterior parietal cortex. There were additional 
significant positive correlations which were strongest in the right occipital cortex. For basic-level categorization, negative 
distance-RT correlations were found in posterior and lateral parts of the occipital cortex.
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a relationship between RTs and distances of individual 
brain responses to a criterion in the high-dimensional 
neural response space. The concept of a criterion is 
based on signal detection theory (Green & Swets, 1966) 
and can be formulated in high-dimensional spaces as a 
hyperplane that is estimated when using multivariate 
decoding. The approach assumes a negative relationship 
between distances of individual brain response patterns 
to the hyperplane and RTs: points close to the hyperplane 
have weak sensory evidence and are difficult to catego-
rize, leading to longer RTs. Vice versa, points far from the 
hyperplane have strong sensory evidence and can be 

easily categorized, resulting in short RTs. If this predicted 
relationship holds true for observed brain response pat-
terns and behavioral responses, then it is assumed that 
information represented in these brain patterns is rele-
vant for behavior.

To test the predicted relationship between neural dis-
tances to the hyperplane and RTs, we obtained distances 
for every scene image. For this, we used the SVM classi-
fiers and predicted the test data with the procedure 
described above. This yields not only predicted labels 
but also decision values—a unitless measure indicating 
how close or far data points are from the hyperplane.  
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To obtain distances from the hyperplane, we took the 
absolute values of these decision values. For man-made/
natural decoding, these distances were all obtained from 
the same decoder, while for basic-level decoding these 
values were obtained from 6 different decoders (one for 
each target category) and concatenated subsequently. 
We iterated this procedure over ROIs and searchlights, 
resulting in a vector with 60 values (one for each scene 
image) for each ROI, and searchlight. Finally, we cor-
related the vectors of distances with the vector of mean 
RTs for each ROI and searchlight using Pearson’s cor-
relation. This yielded distance-RT correlations for each 
ROI, searchlight and subject. Please note that overall, 
qualitatively similar results were obtained with accuracies 
instead of RTs as behavioral measure (see Supplemen-
tary Information Fig. S1), demonstrating that the observed 
relationships are not idiosyncratic to RTs.

For estimating a joint measure of reliability for neural 
distances and RTs, we employed the procedure pro-
posed by Ritchie and Op de Beeck (2019). Specifically, 
we first calculated the split-half reliability for neural dis-
tances and RTs separately, then applied the Spearman-
Brown formula to estimate the reliability of the full data 
sets, and finally computed the square root of the product 
of the reliability coefficients based on RTs and neural dis-
tances. This was done separately for each ROI and for 
each task. Please note that these reliability values are 
expected to be positive. In cases where we found nega-
tive distance-RT correlations, we inverted the reliability 
values for visualization.

2.8.  Model-based distance-to-bound analysis

To examine what type of visual features best explains 
behaviorally relevant scene representations in the brain 
given different tasks, we used the neural distance-to-
bound approach in combination with deep neural net-
work (DNN) modeling and commonality analysis (Mood, 
1971; Reichwein Zientek & Thompson, 2006). The basic 
rationale (Fig. 3A–C) involved first extracting activations 
from different DNN architectures and layers as an approx-
imation of visual feature representations at different lev-
els of complexity (Bankson et  al., 2018; Groen et  al., 
2018; Reddy et al., 2021; Xie et al., 2020). The assump-
tion that these activations approximate a gradient of fea-
ture complexity is based on demonstrations of a 
hierarchical correspondence between representations in 
DNNs and the human brain (Cichy et al., 2016; Güçlü & 
Gerven, 2015). Next, in order to link neural network acti-
vations, brain response patterns, and behavioral RTs, we 
derived distances to the hyperplane based on the neural 
network activations for the man-made/natural and basic-
level task separately. Finally, to determine which model 
activations accounted for behaviorally relevant scene 
representations, we estimated the shared variance 
between model distances, neural distances, and RTs 
from different tasks using commonality analysis.

In detail, as models we used the ResNet-50, ResNet-18 
(He et  al., 2015), AlexNet (Krizhevsky et  al., 2012), and 
DenseNet161 (Huang et  al., 2018) architectures, pre-
trained on the Places365 dataset (Zhou et  al., 2018) 

Fig. 3.  Visual features underlying behaviorally relevant scene representations. (A) Extraction of activations from various 
deep neural network layers. As a proxy for visual feature representations, we extracted activations for scene images 
from the validation set of Places365 as well as for our experimental stimuli from various DNN architectures and layers. 
(B) Deriving scene-specific distances from neural network activations. For linking the network activations to distances 
based on fMRI data and behavioral RTs, we first reduced the activations using PCA. Next, for every layer and network 
separately, we trained SVM classifiers on either a man-made/natural or a basic-level scene classification task using 
the network activations and then tested the classifiers on the activations for our experimental stimuli. This yielded 
distances from the hyperplane for each of our experimental stimuli and every layer and network. (C) Commonality analysis 
approach. To quantify how well model distances explain the shared variance between distances based on fMRI data and 
behavioral RTs, we assessed the shared variance between neural distances, model distances, and behavioral RTs using 
commonality analysis for the man-made/natural and basic-level task separately. (D) Shared variance for man-made/natural 
categorization in EVC. We found significant positive R2 values in all of the layers and networks except for the first layer in 
ResNet18, ResNet50 and DenseNet161 and the last layer in ResNet18. R2 values peaked in early/intermediate layers for 
all networks. (E) Shared variance for man-made/natural categorization in LOC. R2 values were significant in all networks 
and layers except for the first layer in DenseNet161 and the last layer in ResNet18. For all networks, R2 values peaked in 
intermediate layers. (F) Shared variance for basic-level categorization in EVC. We found significant R2 values in layers 2–4 
for ResNet18, layers 3–5 for ResNet50, and in all layers except layer 1 for AlexNet and DenseNet161. R2 values peaked 
in intermediate layers for all networks. (G) Shared variance for basic-level categorization in LOC. We found significant R2 
values in layers 2–4 in ResNet18 and ResNet50, in layers 2–5 in AlexNet, and in layers 2–6 in DenseNet161. R2 values 
peaked in intermediate layers for all networks. Colored dots below the lines indicate significant layers. Shaded areas 
represent the SEM across participants. Horizontal error bars depict the 95% confidence intervals of the peak layer index. 
No horizontal error bar for a given layer indicates that the 95% confidence interval included only the value of the peak 
layer index. The gray line depicts the shared variance between brain distances and reaction times which corresponds to 
the upper limit for the shared variance between brain, models, and behavior.
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(retrieved from https://github​.com​/CSAILVision​/places365). 
A control analysis using randomly initialized networks 
revealed that pre-training on scenes significantly contrib-
uted to the observed effects (see Supplementary Informa-
tion Fig.  S3). We chose to examine different DNN 
architectures to ensure that a given pattern of results is not 
idiosyncratic to a given architecture but can be generalized 
to a given hierarchical level regardless of the specific archi-
tecture. For the man-made/natural task, we extracted acti-

vations for 1,200 images from the validation set of 
Places365 (Zhou et al., 2018) as well as for our experimen-
tal stimuli. The Places365 images were sampled from 80 
categories (half man-made, half natural), including the six 
categories from our stimulus set, and contained 15 images 
per category. For the basic-level task, we extracted activa-
tions for all the available images from the validation set of 
Places365 for each of the 6 basic-level scene categories 
used in the experiment (i.e., ~100 images per category) as 

https://github.com/CSAILVision/places365


10

J.J.D. Singer, A. Karapetian, M.N. Hebart et al.	 Imaging Neuroscience, Volume 3, 2025

well as for our experimental stimuli. For the extraction, we 
focused on a selection of layers, including all pooling layers 
and the last fully connected layer for AlexNet, the output of 
all residual blocks and the last fully connected layer for the 
ResNets, as well as the first pooling layer, the output of all 
the DenseBlocks, and the last fully connected layer for 
DenseNet161. For the man-made/natural task, we reduced 
the network activations for every layer to a dimensionality 
of 1,000 by using PCA on the activations for the 1,200 
images from the validation set of Places365 (except for the 
fully connected layers that already had a dimensionality of 
<1,000). For the basic-level task, the dimensionality of the 
activations was reduced to the number of available training 
samples (~200 samples), as this represents the upper limit 
for dimensionality reduction with PCA. For both types of 
classification, we applied the estimated parameters to the 
activations for the train images as well as our main experi-
mental stimuli.

Next, we trained and evaluated SVM classifiers sepa-
rately for the man-made/natural and the basic-level task. 
For man-made/natural classification, we used the reduced 
activations for the 1,200 Places365 validation images for 
training for every layer and network separately, then tested 
the trained SVM classifiers on the reduced activations for 
our 60 experimental stimuli, and finally derived a distance 
to the hyperplane for each scene image. This resulted in 
60 distances for each layer and network. For basic-level 
classification, we trained and evaluated a classifier for 
each of the 6 basic-level scene categories separately. We 
used the reduced activations of all the available images 
for a given target category (e.g., apartment building) and 
from half of the randomly sampled images from both of 
the distractor categories (e.g., bedroom, highway) within 
the same superordinate category (e.g., man-made) for 
training. We then tested the classifiers on the reduced 
activations from the 10 experimental images from the 
given target category and derived a distance to the hyper-
plane for each scene image, for every layer and network 
separately. To increase the robustness of the resulting dis-
tances, we repeated the sampling of target and distractor 
images 100 times and averaged the results subsequently. 
Finally, we concatenated the distances for the 10 test 
images of each target category, resulting in 60 distances 
for each layer and network. The resulting decoding accu-
racies based on neural network activations can be found 
in the Supplementary Information (Fig. S4).

Using commonality analysis, we finally determined the 
common variance between the network distances, neural 
distances, and behavioral RTs for each task separately. In 
commonality analysis, the common variance that can be 
explained in a given outcome variable by two predictor 
variables is defined as the amount of variance explained by 
both predictors in the outcome variable minus the unique 

contribution of each of the predictors. In simplified form, 
this term can be written as: C(AB)=R2

y.A+R2
y.B-R2

y.AB, where 
R2 is the explained variance in a multiple regression model 
with the mean RTs as outcome variable (y) and either neural 
distances (A), network distances (B) or both (AB) as predic-
tor variables. We fitted the corresponding multiple regres-
sion models and computed the commonality based on the 
R2 values, resulting in shared variance estimates for each 
network, layer, ROI, and subject. Additionally, we used the 
shared variance between neural distances and behavior 
(R2

y.A) as an upper limit for the commonality between neural 
distances, network distances, and behavior.

2.9.  Statistical analyses

For statistical testing, we used non-parametric sign per-
mutation tests at the group-level (Nichols & Holmes, 
2002). We obtained null distributions for a statistic 
(decoding accuracies, distance-RT correlations) by ran-
domly permuting the sign of the results at the participant 
level 10,000 times. Next, we obtained p-values for the 
observed data by comparing their statistic to that of the 
null distribution. We used one-sided tests for decoding 
accuracies and R2 values, as well as two-sided tests for 
distance-RT correlations and differences between decod-
ing accuracies.

To correct for multiple comparisons, we used two dif-
ferent approaches. In the case of only a limited number of 
tests (i.e., <10) such as multiple ROIs or neural network 
layers, we used the Benjamini-Hochberg FDR-correction 
without dependency (Benjamini & Hochberg, 1995). 
When applying a large number of tests such as for testing 
across searchlights (i.e., ~100,000), we used a cluster-
based correction (Maris & Oostenveld, 2007). For this, we 
first thresholded the p-values from the non-parametric 
sign permutation tests at p < 0.001. Then, we clustered 
the thresholded p-values by spatial adjacency and com-
puted the maximum cluster size for each permutation. 
Next, we determined the p-value for each cluster in the 
observed data by comparing the cluster size of a given 
cluster to the maximum cluster size distribution. Finally, 
we thresholded the cluster p-values at p < 0.05.

To compute 95% confidence intervals for the hierar-
chical level, that is, the layer index where there was the 
peak R2 value obtained by the commonality analysis, we 
used bootstrapping. First, we took 100,000 random sam-
ples with replacement from the participant-specific R2 
values. We computed the mean over participants for 
each bootstrap sample and detected the index of the 
layer with the peak R2 value across network layers. Finally, 
we used the 2.5% and 97.5% percentiles of the boot-
strap distribution as the lower and upper bound of confi-
dence intervals.
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3.  RESULTS

3.1.  Largely distinct representations in visual cortex 
are negatively correlated to RTs for different 
categorization tasks

First, in order to identify scene category presentations that 
could potentially be relevant for categorization behavior, 
we determined where information about scene category is 
present in the brain using multivariate decoding. For this, 
we trained SVM classifiers on the fMRI data to predict 
either if a given brain activity pattern belonged to a man-
made or a natural scene or if the scene belonged to one of 
six basic-level scene categories (Fig. 1A) and tested the 
classifier on left-out data. We performed this analysis 
across three key regions of interest: early visual cortex 
(EVC), lateral occipital complex (LOC), and parahippo-
campal place area (PPA). An extended analysis including 
additional scene-selective regions, specifically occipital 
place area (OPA) and retrosplenial cortex (RSC), yielded 
similar results to those observed in PPA (see Supplemen-
tary Information Fig.  S2). Additionally, we employed a 
spatially-unbiased searchlight procedure (Haynes & Rees, 
2006; Kriegeskorte et  al., 2006) to uncover scene cate-
gory representations beyond predefined ROIs. We per-
formed significance testing using sign-permutation tests 
for all results. For a small number of multiple comparisons 
(<10, i.e., across ROIs, DNN layers), we applied an FDR-
correction (Benjamini & Hochberg, 1995) and for multiple 
comparisons across searchlights we applied a cluster-
based correction (Maris & Oostenveld, 2007).

For man-made/natural decoding as well as for basic-
level decoding, we found accuracies significantly above 
chance in all ROIs (p < 0.001, Fig. 2B), suggesting the 
presence of scene category representations in these 
regions. This result was as expected from these regions’ 
central role in processing complex visual stimuli (Epstein 
& Baker, 2019; Grill-Spector & Weiner, 2014; Op de Beeck 
et  al., 2008). Searchlight decoding revealed that man-
made/natural decoding as well as basic-level decoding 
was significantly above chance (p < 0.05) throughout the 
ventral and dorsal visual stream. Man-made/natural 
decoding was highest in posterior and lateral parts of the 
occipital cortex and decreased toward anterior parts of 
the cortex, while basic-level decoding was strongest in 
posterior parts of the occipital cortex and decreased sim-
ilarly toward anterior parts of the cortex (Fig.  2D). 
Together, these results suggest a widespread presence 
of scene category representations as candidates for 
behaviorally relevant representations along both the ven-
tral and dorsal stream (Walther et al., 2009, 2011).

Having identified scene category representations in 
the brain, we sought to determine to what extent these 
representations are relevant for different scene categori-

zation tasks by using the distance-to-bound approach 
(Ritchie & Carlson, 2016, Fig. 2A). We first obtained mean 
RTs for the man-made/natural task and for the basic-
level task across participants for each scene image. 
Then, we derived neural distances for each scene image 
from the SVM classifiers trained on the fMRI response 
patterns. We correlated these neural distances with 
behavioral RTs across the 60 scene images separately 
for each task and repeated this procedure across ROIs 
and searchlights.

For man-made/natural categorization, we found nega-
tive distance-RT correlations in EVC and LOC (both 
p < 0.001, Fig. 2C) but not in PPA (p = 0.488), suggesting 
that scene representations in EVC and LOC are relevant 
for man-made/natural categorization behavior, without 
positive evidence for a role of PPA. For basic-level scene 
categorization, we found negative distance-RT correla-
tions in EVC and LOC (both p < 0.002, Fig. 2C), but not in 
PPA (both p = 0.304). This indicates that scene represen-
tations in EVC and LOC are relevant for basic-level scene 
categorization behavior, without positive evidence for 
PPA, and suggests that representations in similar brain 
regions contain information relevant for different scene 
categorization tasks.

Searchlight analysis further revealed significant nega-
tive distance-RT correlations (p < 0.05, Fig. 2E) for man-
made/natural categorization at the border between the 
occipital and ventral temporal cortex and between the 
occipital and posterior parietal cortex, but not in the par-
ahippocampal cortex. For basic-level scene categoriza-
tion, negative distance-RT correlations were found in 
posterior and lateral parts of the occipital cortex (p < 0.05, 
Fig. 2E). To further investigate if the voxels with negative 
distance-RT correlations were distinct or overlapping 
between tasks, we calculated the overlap between the 
significance maps for the man-made/natural and basic-
level scene task and quantified the overlap in percent of 
overall significant voxels for a given task. This revealed 
that only 2.21% of the significant voxels for the basic-
level scene task and 13.01% of significant voxels for the 
man-made/natural task overlapped with the significant 
voxels of the other task, respectively. In contrast to the 
ROI results, this suggests that while there is a partial 
overlap of behaviorally relevant representations for man-
made/natural and basic-level scene categorization, the 
representations linked to behavior in the two tasks are 
largely distinct. That is, different subsets of the same 
evoked neural representations are linked to behavior 
depending on the task.

Surprisingly, we also found significant distance-RT 
correlations that were positive for man-made/natural cat-
egorization (p < 0.05), which were confined to the right 
occipital cortex only. A positive correlation between 
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neural distances and RTs violates the predictions of the 
neural distance-to-bound approach and suggests that a 
scene representation with a strong category signal leads 
to a slow RT in the task and vice versa. This implies inter-
ference between scene representations in the occipital 
cortex and behavior in the man-made/natural task.

Taken together, these results suggest that while there 
is a widespread presence of scene representations that 
are potentially relevant for categorization behavior across 
tasks, partially overlapping but largely distinct subsets of 
these representations in the early visual and object-
selective cortex, but not the parahippocampal cortex, 
contain behaviorally relevant information depending on 
the task demands.

3.2.  Features derived from intermediate neural 
network layers best explain behaviorally  
relevant scene representations in the visual  
cortex across tasks

While our findings so far suggest that largely distinct 
scene representations in the visual cortex are relevant 
for the different scene categorization tasks investigated, 
they leave open what types of visual features underlie 
these behaviorally relevant scene representations. We 
investigated this question in terms of feature complexity. 
As a proxy for low- to high complexity visual features, 
we used activations extracted from different layers of 
deep neural networks (for similar approaches see: 
Bankson et  al., 2018; Greene & Hansen, 2020; Groen 
et  al., 2018; Reddy et  al., 2021; Xie et  al., 2020) and 
asked to what extent these activations account for the 
link between scene representations and behavioral 
responses, separately for each task (for a visualization of 
the procedure, see Fig. 3A–C). We linked network activa-
tions to RTs and fMRI data using the neural distance-to-
bound approach (Ritchie & Carlson, 2016) and 
determined which layer’s activations best explain the 
shared variance between RTs and fMRI data using com-
monality analysis (Mood, 1971; Reichwein Zientek & 
Thompson, 2006). We focused on EVC and LOC since 
we found significant distance-RT correlations only in 
these regions. We applied right-tailed sign-permutation 
tests, testing for positive R2 values. We discuss the 
results ordered by task and then by region.

For man-made/natural categorization, we found sig-
nificant R2 values in EVC for most of the networks and 
layers (all p < 0.030, Fig. 3D) except for the first layer in 
ResNet50 and DenseNet161 and the last layer in Res-
Net18 (all p > 0.168). In LOC, we found significant R2 val-
ues for most networks and layers (all p < 0.001, Fig. 3E) 
except for the first layer in DenseNet161 and the last 
layer in ResNet18 (both p > 0.642).

For basic-level scene categorization, we found signifi-
cant R2 values in EVC for layers 2–4 in ResNet18, for lay-
ers 3–5 in ResNet50, and all layers except layer 1 in 
AlexNet and DenseNet161 (all p < 0.041, Fig. 3F). In LOC, 
we found significant R2 values in layers 2–4 for ResNet18 
and ResNet50, in layers 2–5 for AlexNet, and in all layers 
except layer 1 for DenseNet161 (all p < 0.040, Fig. 3G).

In sum, we observed consistently significant R2 values 
across networks in most network layers, except for the 
first and last layer, in both ROIs for man-made/natural 
categorization. For basic-level categorization, consis-
tently significant R2 values were primarily in early to inter-
mediate layers in both ROIs. These findings suggest that, 
for man-made/natural categorization, visual features 
spanning most hierarchical levels contribute to the 
shared variance between brain and behavior. For basic-
level scene categorization, visual features primarily from 
early to intermediate layers account for parts of the vari-
ance shared.

Next, we determined which visual features explain the 
shared variance most strongly between brain and behav-
ior by determining the layers with the highest shared vari-
ance. We use the following convention for reporting 
statistics: peak layer index [lower, upper] 95% (boot-
strapped) confidence interval.

For man-made/natural categorization, we found that 
the shared variance in EVC peaked in early to intermediate 
layers for all networks (Fig. 3D, ResNet18 = 4 [3, 4], Res-
Net50 = 4 [3, 4], AlexNet = 2 [2, 4], DenseNet161 = 4 [3, 4]). 
In LOC, the shared variance peaked in intermediate layers 
for all networks (Fig. 3E, ResNet18 = 4 [4, 4], ResNet50 = 4 
[4, 4], AlexNet = 4 [4, 4], DenseNet161 = 4 [4, 4]).

For basic-level scene categorization, we found that 
the shared variance in EVC peaked in intermediate layers 
in all networks (Fig. 3F, ResNet18 = 3 [3, 4], ResNet50 = 4 
[4, 4], AlexNet = 5 [2, 5], DenseNet161 = 5 [4, 5]). In LOC, 
peaks were found in intermediate layers as well (Fig. 3G, 
ResNet18 = 4 [3, 4], ResNet50 = 4 [3, 4]), AlexNet = 4 [2, 
5], DenseNet161 = 4 [4, 5]).

Together, these results suggest that behaviorally rele-
vant scene representations for the two different categori-
zation tasks are both best explained by mid-level visual 
features.

3.3.  Opposite brain-behavior correlations in a 
man-made/natural categorization task and an 
orthogonal fixation task

While we identified and characterized scene representa-
tions relevant for different scene categorization tasks, 
their relation to behavior might yet differ again for tasks 
that are not aligned with the represented scene informa-
tion. Previous research showed that viewing scenes while 
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performing an orthogonal task can impair performance 
(Greene & Fei-Fei, 2014; Reeder et  al., 2015; 
Seidl-Rathkopf et al., 2015; Wyble et al., 2013). However, 
to what extent scene representations interfere with 
behavior in an orthogonal task remains unknown. To 
investigate this, we determined the behavioral relevance 
of scene representations for the orthogonal task of 
reporting the color of the fixation cross.

In the experiment investigating man-made/natural cate-
gorization, participants viewed scenes and colored fixation 
crosses simultaneously, while performing categorization 
and fixation cross color discrimination in alternating blocks. 
This suggests the hypothesis that the content of scene 
representations interacted with performance in the fixation 
task, which would be evident in a significant relationship 
between scene representations and fixation task RTs. 
Please note that participants in the fMRI experiment were 
neither engaged in the fixation task nor were they pre-

sented with different fixation cross colors during the pre-
sentation of the images. Thus, evidence supporting the 
above hypotheses would indicate that processing scenes, 
even when not task-relevant, engages representations that 
can interfere with performance in orthogonal tasks such as 
fixation cross color discrimination. Analogous to the pro-
cedures outlined above for identifying behaviorally relevant 
scene representations, here we correlated scene-specific 
distances derived from the man-made/natural decoders to 
RTs from the fixation task.

In contrast to the negative correlations for the man-
made/natural task, we found positive correlations 
between neural distances and fixation task RTs in EVC 
and LOC (Fig.  4A, both p  <  0.003), but not in PPA 
(p = 0.073). Searchlight analysis further revealed positive 
distance-RT correlations that were most pronounced at 
the border between occipital and ventral-temporal cor-
tex (Fig.  4B, p  <  0.05). That is, scene representations 

Fig. 4.  Behavioral relevance of scene representations for an orthogonal fixation task. (A) Correlations between RTs in 
the fixation task and neural distances in EVC, LOC, and PPA. We found significant positive correlations in EVC, LOC but 
not PPA. Colored lines above the bars represent the joint reliability of neural distances and RTs. Grey points indicate data 
points for individual subjects. Error bars depict the SEM across participants. Stars above the bars indicate significant 
results. (B) Correlations between RTs in the fixation task and neural distances in the visual cortex. We found positive 
correlations that were strongest at the border between occipital and ventral-temporal cortex. (C) Correlations between 
mean RTs for the man-made/natural and the fixation task. We found a negative correlation between RTs in the fixation and 
the man-made/natural task.
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with a strong category signal were found to be associ-
ated with slow responses in the fixation task and vice 
versa for scene representations with a weak category 
signal and speeded responses. In addition, we asked if 
the representations that showed a positive correlation 
with behavior in the fixation task were the same or differ-
ent from the representations that exhibited a negative 
correlation with behavior in the man-made/natural cate-
gorization task. By computing the overlap between the 
voxels with significant negative correlations with RTs in 
the man-made/natural categorization and fixation tasks, 
we found only a small overlap of 9.48%. This indicates 
that scene representations relevant for the man-made/
natural categorization and fixation task were largely dis-
tinct. Together, these findings suggest that scene repre-
sentations at the border between the occipital and 
ventral-temporal cortex, which are largely distinct from 
the behaviorally relevant representations for man-made/
natural categorization, interfere with behavior in the fixa-
tion task.

A possible explanation for this interference might be 
that scene representations that evoke a strong category 
signal in the brain take away processing resources from 
the fixation task, thereby slowing the RT. Based on this 
explanation, we expected to observe a similar relation-
ship between the RTs in the man-made/natural categori-
zation task and the fixation task, namely that scenes that 
are solved faster in the man-made/natural categorization 
task lead to slower RTs in the fixation task and vice versa. 
To test this, we correlated the RTs from the man-made/
natural categorization task with the RTs from the fixation 
task. We found a negative correlation between the RTs of 
the two tasks (r = -0.367, p = 0.004; Fig. 4C), indicating 
that scene images that are solved fast in the man-made/
natural task are associated with long RTs when pre-
sented during the fixation task and vice versa. This sug-
gests that scene processing interferes with performance 
in the fixation task, corroborating the interference effect 
between scene representations and behavior in the fixa-
tion task.

In sum, these results provide evidence that a subset of 
scene representations in the visual cortex is relevant for 
behavior even in tasks beyond scene categorization. Yet, 
the relevance of scene representations for behavior dif-
fered for the fixation task and the scene categorization 
tasks. While scene representations are suitably formatted 
to guide categorization behavior, they interfere with 
behavior in the fixation task. This further corroborates the 
notion that the task demands critically affect the relation-
ship between scene representations and behavior.

4.  DISCUSSION

In the present study, we identified and characterized 
behaviorally relevant scene representations as well as 
their dependence on the task by relating fMRI responses 
to behavioral RTs in different tasks using the neural 
distance-to-bound approach (Ritchie & Carlson, 2016). 
The study yielded three key findings. First, we were able 
to decode both man-made/natural as well as basic-level 
scene categories along both the ventral and dorsal 
stream. However, neural distances were negatively cor-
related to categorization RTs in largely distinct regions of 
the ventral visual stream for each task. This suggests that 
although scene category representations overlap for the 
two tasks, mostly distinct subsets of these representa-
tions are linked to behavior depending on the task. Sec-
ond, distances derived from intermediate layers of deep 
neural networks best explained the shared variance 
between brain and behavior for both tasks, suggesting 
that mid-level visual features best account for behavior-
ally relevant scene representations for these tasks. Finally, 
we observed opposing patterns of correlation between 
neural distances and RTs for the fixation task and the 
man-made/natural task. While for man-made/natural RTs 
there was a negative correlation, for fixation RTs we found 
a positive correlation. This indicates that scene represen-
tations can either be formatted to guide behavior or inter-
fere with behavior depending on the task demands. 
Together, these results elucidate the relationship between 
neural representations of scenes and behavioral perfor-
mance by demonstrating how specific visual features and 
the task context mediate this relationship.

4.1.  Largely distinct behaviorally relevant scene 
representations in visual cortex for different 
categorization tasks

By employing the neural distance-to-bound approach 
(Ritchie & Carlson, 2016), we identified partially overlap-
ping but largely distinct scene representations relevant for 
man-made/natural and basic-level scene categorization 
behavior. These representations were localized at the bor-
der between the occipital and ventral-temporal cortex for 
man-made/natural categorization and in posterior and lat-
eral parts of the occipital cortex for basic-level categori-
zation, but interestingly not in the parahippocampal 
cortex. These findings align with object recognition stud-
ies (Carlson et al., 2014; Grootswagers et al., 2018; Ritchie 
& Op de Beeck, 2019) showing behaviorally relevant rep-
resentations in both the early and high-level visual cortex 
and with studies, suggesting that representations in dif-
ferent brain areas are flexibly accessed for different tasks 
(Birman & Gardner, 2019; Kang & Maunsell, 2020). Thus, 
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our findings challenge the view that information for cate-
gorizing natural images is only read out from the high-
level visual cortex (Majaj et  al., 2015) and suggest that 
representations from both the early and high-level visual 
cortex might be flexibly read out in perceptual decision-
making (Contier et al., 2024; Jagadeesh & Gardner, 2021).

Our findings complement and extend a recent charac-
terization of behaviorally relevant scene representations 
over time (Karapetian et al., 2023) by spatially localizing 
these representations in the brain and by extending them 
to different scene categorization tasks. The presence of 
behaviorally relevant scene representations in LOC, but 
not PPA, is in line with studies emphasizing the role of 
LOC in scene recognition (Linsley & MacEvoy, 2014; 
MacEvoy & Epstein, 2011; Stansbury et al., 2013). How-
ever, the presence of behaviorally relevant representations 
in EVC and the absence of evidence of behaviorally rele-
vant representations in PPA for any scene categorization 
task in our data conflicts with the pivotal role of PPA in 
scene recognition (Aguirre et  al., 1998; Epstein & 
Kanwisher, 1998) and with findings of behaviorally relevant 
representations in PPA, but not EVC (Groen et al., 2018; 
King et al., 2019; Walther et al., 2009, 2011). One potential 
explanation for this discrepancy might be the information 
participants relied on for performing the tasks. Given the 
behaviorally relevant representations in LOC, which is 
associated with object representations, it is likely that par-
ticipants relied on object information for the categorization 
tasks rather than other information such as spatial layout, 
which is more strongly associated with PPA (Park et al., 
2011). This is in line with research suggesting that PPA 
primarily processes the spatial aspects of a scene rather 
than categorical divisions (Kravitz et  al., 2011). Thus, in 
tasks emphasizing spatial aspects of a scene, PPA might 
be behaviorally relevant, while in tasks prioritizing other 
types of visual information, other regions might become 
behaviorally relevant. Another related explanation is the 
amount of processing time available to participants in our 
experiments. Previous experiments used very short image 
presentations (<50 ms) followed by a mask, effectively lim-
iting the depth of processing of the scene (Walther et al., 
2009, 2011). This might constrain subjects to rely on more 
global features such as the layout of the scene for the task 
in contrast to more fine-grained information which is pro-
cessed later (Bar et  al., 2006; Hegdé, 2008; Schyns & 
Oliva, 1994; Sugase et al., 1999). In sum, rather than con-
tradicting the pivotal role of PPA in scene processing, our 
findings suggest that other areas involved in processing 
scenes such as EVC and LOC might also represent behav-
iorally relevant information depending on the perceptually 
available information and the task demands.

Surprisingly, we found a positive correlation between 
neural distances in the right occipital cortex and RTs in 

the man-made/natural task. These findings are not cap-
tured by the original formulation of the neural distance-
to-bound approach (Ritchie & Carlson, 2016), which 
assumes a negative relationship between neural dis-
tances and RTs, where large distances are associated 
with fast RTs and vice versa. Instead, we observed a 
case of the opposite pattern: large distances were asso-
ciated with slow RTs and vice versa, suggesting poten-
tial interference between scene representations and 
behavior in the man-made/natural task. This interference 
is hard to reconcile with the role of the occipital cortex in 
visual processing. One possible explanation for these 
positive correlations is that they may be spurious and 
influenced by a bias in the classifier’s hyperplane toward 
a specific category (e.g., man-made, natural). Such 
biases in the distance-RT correlations toward one cate-
gory of a given category division (e.g., animate over 
inanimate) have been reported previously (Carlson et al., 
2014; Grootswagers et al., 2017, 2018; Karapetian et al., 
2023; Ritchie et al., 2015). This would suggest that the 
positive correlation is an artifact of the classification pro-
cess. Fully understanding this phenomenon requires 
simulations of different data regimes in combination with 
an in-depth geometrical analysis of the estimated hyper-
plane and its relationship to individual data points, which 
is a promising avenue for future studies.

Another plausible explanation for the negative and 
positive correlations might be that they correspond to 
distinct neural mechanisms associated with feedforward 
and feedback processing. During early feedforward 
stages, easy-to-categorize images might evoke strong 
category signals, leading to fast RTs and a negative cor-
relation with behavior. In contrast, more difficult images 
may require additional processing enhancing the cate-
gory signal after the initial feedforward pass (Kar & 
DiCarlo, 2021; Kar et al., 2019), leading to slower RTs 
and a positive correlation. In this context, the positive 
correlation does not indicate interference with behavior, 
but rather reflects the additional processing needed for 
more difficult images. Since fMRI signals reflect both 
feedforward and feedback processes, it is likely that our 
results capture the combined effects of early and late 
processing stages. Future studies could explore this in 
more detail by using temporally-resolved methods such 
as EEG or MEG, or by manipulating feedback process-
ing through techniques such as backward masking.

4.2.  Mid-level visual features best explain 
behaviorally relevant scene representations  
in the visual cortex across tasks

We found that different layers contributed to the shared 
variance between neural distances and RTs for both 
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scene categorization tasks. For man-made/natural cate-
gorization most layers, excluding very early and late lay-
ers, consistently contributed to the shared variance. For 
basic-level categorization, primarily early to intermediate 
layers in EVC and LOC showed consistent contributions. 
Despite these differences, the layers that best explained 
the shared variance were consistently found in the inter-
mediate layers for both tasks. This suggests that mid-
level visual features best accounted for the link between 
brain and behavior for both scene categorization tasks. 
These results align with findings highlighting the impor-
tance of mid-level visual features such as curvature or 
texture (Renninger & Malik, 2004; Walther & Shen, 2014) 
for scene categorization. However, our findings also 
diverge from previous studies, which showed that high-
level conceptual features best explain variance in behav-
ioral similarity judgments for scenes and objects (Greene 
& Hansen, 2020; King et al., 2019). One potential reason 
for this divergence is that similarity judgments might be 
based on different visual features than categorization 
RTs. While categorization RTs might depend on more 
perceptual information of intermediate complexity 
(Eberhardt et al., 2016), judging the similarity of scenes 
might involve high-level features related to the semantics 
of a scene. Additionally, our findings challenge a body of 
research that has taken differences in RTs between man-
made/natural and basic-level categorization as evidence 
for participants’ stronger reliance on global, rather low-
level visual features for man-made/natural than for basic-
level scene categorization (Kadar & Ben-Shahar, 2012; 
Loschky & Larson, 2010; Oliva & Torralba, 2001, 2006). In 
contrast, our results suggest that mid-level visual fea-
tures best account for behaviorally relevant scene repre-
sentations across both tasks. Differences in visual feature 
use might be especially apparent under conditions of 
short presentation times and backward masking, where 
the amount of processing time biases humans to rely on 
the most rapidly available type of features. Given longer 
presentation times, as used in our experiments, partici-
pants might leverage other visual information in similar 
ways across tasks. Future studies might contrast differ-
ent characterizations of behavior in response to scenes 
and their relationship to brain data with respect to the 
available processing time for a better understanding of 
the relevance of distinct types of visual features for vari-
ous behavioral goals.

4.3.  Interference of scene representations with 
behavior in orthogonal fixation task

We found opposing patterns of correlation between neu-
ral distances and RTs in the man-made/natural task and 
the fixation task. In the man-made/natural task, strong 

category signals were associated with fast RTs and vice 
versa, suggesting that scene representations are suitably 
formatted to guide behavior. In contrast, for the fixation 
task, strong category signals were associated with slow 
RTs and vice versa. This suggests interference between 
scene representations and behavior in an orthogonal 
task. This interference could be due to automatic pro-
cessing of the content of a scene (Greene & Fei-Fei, 
2014) which might have interfered with the representation 
of the fixation cross color. Alternatively, attention might 
have been differentially captured by the scenes and 
diverted away from the fixation cross, thereby impairing 
performance in the fixation task (Reeder et  al., 2015; 
Seidl-Rathkopf et al., 2015; Wyble et al., 2013).

While previous studies have demonstrated that scene 
processing can impair orthogonal task performance 
(Greene & Fei-Fei, 2014), our results expand on these 
findings by linking the strength of a scene category signal 
with behavioral outcomes in an orthogonal task. Specifi-
cally, our results show not only that scene processing can 
interfere with performance in orthogonal tasks but also 
provide a quantitative link between the strength of neural 
scene representations and performance in an orthogonal 
task. This highlights the importance of scene recognition 
as a core cognitive process which cannot be easily sup-
pressed as well as demonstrates that the strength of neu-
ral scene representations is linked to behavior across 
different task contexts.

4.4.  Limitations

Several experimental factors potentially limit the general-
izability of our findings. First, our interpretation of behav-
ioral relevance is based on the distance-to-bound 
approach, which has several key assumptions. This 
approach relies on the assumption of a linear readout, as 
it uses linear classifiers as the basis for determining the 
relationship between neural representations and behav-
ior. However, there might be non-linear categorization 
processes, which are not captured by this approach. 
Thus, the absence of a significant distance-RT correla-
tion does not necessarily imply that the represented 
information is not behaviorally relevant. It may instead 
indicate that a linear readout model does not accurately 
capture how this information is used. Furthermore, the 
evidence provided by this approach is inherently correla-
tional, which limits the ability of making claims about the 
causal relevance of the neural representations for behav-
ior. Establishing causality would require direct manipula-
tions, such as brain stimulation (Bergmann & Hartwigsen, 
2021). These limitations highlight that using the distance-
to-bound approach is just one way to link brain and 
behavior, with other approaches such as non-linear 
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readout models and causal manipulations as potential 
avenues for future studies.

Second, our selected stimuli and tasks only repre-
sent a small subset of all possible tasks and naturalistic 
stimuli that could be used to investigate the link between 
scene representations and categorization behavior. The 
specific combination of task and stimulus set influences 
the representations and types of visual features that are 
relevant for the given behavioral responses, thus limit-
ing our results to these particular choices. We believe 
that focusing on ecologically relevant tasks such as 
man-made/natural and basic-level scene categoriza-
tion, using naturalistic stimuli that span a range of com-
mon scene categories, is a valuable step toward 
understanding the relationship between scene repre-
sentations and behavior. However, a comprehensive 
understanding of this relationship necessitates large-
scale neuroimaging datasets (Allen et al., 2022; Gifford 
et al., 2022; Hebart et al., 2023) in combination with a 
broad sampling of different behavioral tasks, which is 
an exciting future direction.

Lastly, our choice of task in the fMRI experiment might 
have limited the sensitivity to detect behaviorally rele-
vant representations. Participants performed a change 
detection task on the fixation cross in the fMRI experi-
ment which differed from both categorization tasks or 
the fixation task in the behavioral experiments and for 
which the scene images were not relevant. While prior 
research has shown that scene category representations 
in the occipito-temporal cortex emerge automatically 
with minimal attention (Li et al., 2002) and that visual rep-
resentations within the ventral visual stream are relatively 
unaffected by the task (Hebart et al., 2018; Harel et al., 
2014; Jung & Walther, 2021; Vaziri-Pashkam & Xu, 2017), 
the absence of a direct scene-related task could still 
have impacted our findings. Particularly representations 
in parietal and frontal brain regions are affected by the 
task (Bracci et  al., 2017; Hebart et  al., 2018; 
Vaziri-Pashkam & Xu, 2017). Thus, aligning the tasks in 
the fMRI and behavioral experiments could have 
expanded the detectable behaviorally relevant represen-
tations, particularly in areas beyond the ventral visual 
stream.

4.5.  Conclusion

Together, our findings reveal the spatial extent of the visual 
representations underlying categorization behavior for 
real-world scenes, identify mid-level visual features as the 
main contributor to these behaviorally relevant represen-
tations, and suggest that the behavioral relevance of 
scene representations critically depends on the task con-
text. These results contribute to the understanding of the 

neural mechanisms and visual features, enabling adaptive 
perceptual decisions in complex real-world environments.
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