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ABSTRACT
By simulation and asymptotic theory, we investigate the transition-path time of a one-dimensional finite-mass reaction coordinate crossing a
double-well potential in the presence of non-Markovian friction. First, we consider single-exponential memory kernels and demonstrate that
memory accelerates transition paths compared to the Markovian case, especially in the low-mass/high-friction limit. Then, we generalize to
multi-exponential kernels and construct an asymptotic formula for the transition-path time that compares well with simulation data.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0225742

Many biological conformational transitions, particularly pro-
tein folding, can be modeled as diffusion in a one-dimensional free-
energy landscape. While traditional ensemble-based experimental
techniques have been extensively used to explore protein folding
and unfolding kinetics, recently developed single-molecule experi-
ments determined transition-path times in nucleic-acid and protein
folding.1–10 The measurement of transition-path times is challenging
because transition paths, which correspond to the folding or unfold-
ing trajectory segment when the system actually crosses over the
barrier, are very short compared to the folding or unfolding time, as
shown in Fig. 1. The potential barrier for protein folding or unfold-
ing is typically higher than the characteristic thermal energy kBT;
for this reason, the protein spends most of the time in the folded
or unfolded state. The experimental measurements of transition-
path times, in turn, initiated novel theoretical and computational
approaches.11–18 Many of these studies considered Markovian mod-
els despite simulations and experimental studies suggesting that
protein-folding dynamics is non-Markovian.19–22 Accordingly, in
the past years, several studies on the effects of non-Markovianity on
transition paths have appeared.20,23–25 The importance of memory
for barrier crossing is shown in Fig. 1, where we plot simulation
trajectories for two different memory times, for a relatively short
memory time on the left and for a relatively long memory time on
the right. In Figs. 1(a) and 1(b), we highlight the effect of memory
on the first-passage time and show that a long memory time signifi-
cantly increases the time that the system waits in the potential min-
imum before crossing the barrier. This memory-slowdown effect

on the mean first-passage time occurs for long memory times, in
fact, for intermediate memory times barrier-crossing acceleration is
obtained, as has been discussed previously.26–28 The corresponding
transition paths in panels (c) and (d) demonstrate a more univocal
effect of memory time on the transition-path time; it transpires that
memory always induces a shortening of the transition-path time,
even when the memory time is very long. While the effect of mem-
ory on barrier-crossing mean first-passage times is by now rather
well understood, the effect of memory on transition-path times is
less explored. In this paper, we also investigate the effect of inertia in
combination with memory on the transition-path time, which is par-
ticularly relevant for proton-transfer processes that are characterized
by low friction.29,30

We model the dynamics of a one-dimensional reaction coordi-
nate by the generalized Langevin equation (GLE),31–40

mẍ(t) = −∫
t

t0

Γ(t − t′)ẋ(t′)dt′ −∇U(x(t)) + FR(t), (1)

where m is the effective mass, Γ(t) the memory kernel, t0 some initial
time, and∇U(x(t)) denotes the gradient of a potential U(x(t)) that
we take to be a double-well potential,

U(x) = U0[(
x
L
)

2
− 1]

2

, (2)
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FIG. 1. Simulation trajectories of a non-Markovian barrier-crossing system for barrier height βU0 = 3, rescaled inertial time τm/τD = 0.001 in panel (a), (c) short-memory
limit with memory time τ/τD = 0.01, and in panel (b), (d) long-memory limit with memory time τ/τD = 1. The horizontal dashed black lines indicate the two potential minima.
In panels (a) and (b), the horizontal red lines denote the first passage time τFPT and in panels (c) and (d), the transition-path time τTP . In panel (a), τFPT/τD ≃ 2, while the
mean first-passage time is given by τMFPT/τD = 8.3, in panel (b), τFPT/τD ≃ 195 and τMFPT/τD = 62, and the mean first passage times (MFPT) are calculated by averaging
over the entire trajectories. The vertical red lines in panels (c) and (d) highlight the last and the first time the reaction coordinate crosses a minimum before and after passing
the barrier, respectively. In panel (c), the transition-path time is τTP/τD = 0.190, while the mean transition-path time obtained from the average over the entire trajectory is
τMTP/τD = 0.33. In panel (d), τ̄TP/τD = 0.047 ± 0.013 is the average over the six transition-path times shown in the figure, while τMTP/τD = 0.038 is the mean over the entire
trajectory. The trajectories for long memory show pronounced oscillations in the minima and state-recrossings, meaning that the reaction coordinate immediately returns to
the opposite minimum after reaching a minimum and thus resembles trajectories of high-inertial systems.26,45,47

with U0 being the barrier height and L being the separation between
the potential maximum and minima. FR(t) denotes the random
force, characterized by a vanishing mean and the autocorrelation,

⟨FR(t)⟩ = 0,

⟨FR(t)FR(t′)⟩ = β−1Γ(t − t′),
(3)

where β = 1/kBT. Equation (1) neglects nonlinear friction and is
thus approximate41–43 but has been demonstrated to be accurate
for chemical-bond vibrations,44 dihedral-angle dynamics,45 protein
folding,21,22 and pair-reaction kinetics in water.46 As a memory
kernel, we choose in the first part of our paper, a single exponential,

Γ(t) =
γ
τ

e−
∣t∣
τ , (4)

where τ is the memory time and γ is the friction coefficient. For
the global discussion of the temporal scaling behavior, we introduce
diffusion and inertial times, respectively, as

τD = βL2γ,

τm =
m
γ

.
(5)

The diffusion time τD is the time it would take the reaction
coordinate to diffuse by L in the overdamped Markovian limit and
in the absence of a potential, the inertial time τm characterizes the
time scale of viscous dissipation of momentum.

In a previous work,16 it was shown for a Markovian system with
finite mass and in the large-barrier limit, the mean transition-path
time is given by

τMTP =
1

λ+(γ, m)
(log (βU0) + A(γ, m)), (6)
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FIG. 2. Rescaled mean transition-path time τMTP/τD as a function of the rescaled
inertial time τm/τD for various values of the rescaled barrier height βU0 for a
Markovian system (τ = 0). The symbols represent the simulation data, and the
lines represent Eq. (6). The dashed yellow horizontal lines and the green lines
show the asymptotic behavior in the overdamped limit, Eq. (9), and in the inertial
limit, Eq. (11).

where

λ+(γ, m) =
−γ +

√
Δ

2m
, (7)

A(γ, m) = log(
4
√

Δ
γ +
√

Δ
eC
), (8)

with Δ = γ2
+ 8mU0/L2 and C = 0.577 is the Euler–Mascheroni con-

stant. This result was obtained by approximating the potential as a
parabolic barrier.

In Fig. 2, we show the mean transition-path time τMTP as a func-
tion of the rescaled inertial time τm/τD and for various values of the
potential height U0 in the absence of memory effects, i.e., for τ = 0.
The colored lines show that Eq. (6) perfectly agrees with the simu-
lation data plotted with different markers. Equation (6) was derived
in the large barrier limit, but we observe that it well describes even
the case when βU0 = 1. The dashed yellow horizontal lines indicate
the asymptotic result in the overdamped limit τm/τD → 0, which is
given by13,16,17

τγ
MTP =

γL2

2U0
log (2eCβU0); (9)

the derivation of Eq. (9) from Eq. (6) is shown in Appendix A.
In the inertial limit τD/τm → 0, the mean transition-path time

is given by14

τm
MTP = ∫

∞

U0

dE
βe−βE

e−βU0 ∫

L

−L
dx

¿
Á
ÁÀ m/2

E −U(x)
. (10)

If we approximate the double-well potential by a parabolic
potential U(x) = −U0(x/L)2 around the barrier, we obtain in the
high-barrier limit βU0 ≫ 1, the asymptotic expression,12,16

τm
MTP ≃

√
m

2U0/L2 log (4eCβU0); (11)

the derivation is shown in Appendix B. The expression Eq. (11) is
represented by the dashed green lines shown in Fig. 2 and agrees
well with Eq. (6) in the inertial limit.

We now consider the effect of memory on τMTP, employing a
harmonic approximation. For this, we first present analytical results
for the positional autocorrelation function C(t) = ⟨x(t)x(0)⟩.26,48

For the harmonic approximation of Eq. (1), we use U(x) = Kx2
/2,

where K is the second derivative of the double-well potential at
the minima, K = U′′(L) = 8U0/L2. Fourier transforming Eq. (1) for
t0 → −∞ and solving for x̃(ω), we obtain

x̃(ω) =
F̃R(ω)

K −mω2
+ iωΓ̃+(ω)

≡ χ̃(ω)F̃R(ω), (12)

which defines the response function χ̃(ω). The half-sided Fourier
transform Γ̃+(ω) of Γ(t) is given by

Γ̃+ = ∫
∞

0
dte−iωtΓ(t) =

γ
1 + iωτ

, (13)

while the Fourier transform of the symmetric random force
correlation Γ(t) is

Γ̃(ω) = Γ̃+(ω) + Γ̃+(−ω) =
2γ

1 + ω2τ2 . (14)

The Fourier transform of C(t) is given by C̃(ω) = β−1Γ̃
(ω)χ̃(ω)χ̃(−ω) and reads (see Appendix C)

C̃(ω) =
2γβ−1

(1 + ω2τ2
)
−1

(K − ω2
[m − τγ

1+τ2ω2 ])
2
+

ω2γ2

(1+ω2τ2
)

2

. (15)

This can be rewritten in a form that corresponds to the standard
result for the memory-less (i.e., τ = 0) harmonic oscillator,

C̃(ω) =
2γeffβ−1

(K −meffω2
)

2
+ ω2γ2

eff
, (16)

where we have introduced effective frequency-dependent expres-
sions for the friction coefficient and the mass, according to

meff = m − c1τγeff, (17a)

γeff =
γ

1 + c2τ2ω2 . (17b)

It should be noted that the potential curvature K is not renor-
malized. In the expressions for meff and γeff, we have introduced
two numerical constants that, in the harmonic case, take the val-
ues c1 = 1, c2 = 1 and will be used as heuristic parameters to account
for non-harmonic corrections. From the expression for the effective
friction, we see that γeff goes down as the memory time τ increases,
which explains the quasi-inertial behavior shown in Figs. 1(b) and
1(d) for long memory times.26 The poles of Eq. (16) in the low and
high friction limits are obtained as ω2

L = K/meff for Kmeff > γ2
eff and

ω2
H = −K2

/γ2
eff for Kmeff < γ2

eff, respectively. Using these characteris-
tic frequencies, we obtain from Eq. (17b), the effective friction in the
low-friction limit (see Appendix D),

γL
eff =

γ
1 + c2τ2K/m

, (18)
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while in the high-friction limit, we obtain Ref. 48 (see Appendix E),

γH
eff ≃ γ. (19)

Inserting Eq. (18) into Eq. (17a) and rearranging such as to
guarantee a positive effective mass, we obtain in the low-friction
limit,

mL
eff =

m
1 + c1τγL

eff/m
, (20)

while in the high-friction limit, it follows that

mH
eff =

m
1 + c1τγ/m

. (21)

To obtain the mean transition-path time τMTP for finite memory
time, we follow the approximate approach of a previous work28 and
use the effective parameters γL

eff and mL
eff in the low friction limit,

i.e., we insert the effective parameters (18) and (20) into Eq. (6) and
arrive at the expression,

τMTP =
1

λ+(γL
eff, mL

eff)
(log (βU0) + A(γL

eff, mL
eff)). (22)

Fitting the two constants to the simulation data, we obtain c1 = 0.1
and c2 = 0.025, as explained in Appendix F. Equation (6) was derived
for transition paths that move over a barrier, i.e., for a harmonic
potential with negative curvature,16 while our effective parameters
γeff and meff are calculated from the positional autocorrelation func-
tion in a harmonic potential, which is only well-defined for positive
curvature. As demonstrated in Ref. 13, the transition-path time in a
harmonic potential is perfectly continuous and well-behaved when
crossing from negative to positive curvature. This analytic continuity
justifies the combination of the two results for negative and positive
curvatures; the relatively large deviations of the fitting parameters
c1 and c2 from unity presumably stems from the fact that transition-
path times are rather different in harmonic potentials with different
signs of curvature.13

In Fig. 3, we show the mean transition-path time as a func-
tion of the rescaled memory time for various values of the rescaled
inertial time and for fixed potential barrier height βU0 = 3, a typi-
cal barrier height for protein-folding scenarios.22,49 Equation (22),
depicted by the colored lines, agrees well with the simulation data

FIG. 3. Rescaled mean transition-path time τMTP/τD as a function of the rescaled
memory time τ/τD for various values of the rescaled inertial time τm/τD and fixed
potential height βU0 = 3. The symbols represent the simulation data, and the lines
represent Eq. (22).

(symbols). In Ref. 23, the authors derived an expression for τMTP
in the overdamped case for a power-law memory kernel, using
the same procedure as in Ref. 16. They found that the transition-
path time in the non-Markovian case is always smaller than in the
Markovian case and monotonically decreases with increasing mem-
ory time. We also observe a monotonically decreasing τMTP with
τ shown in Fig. 3, particularly for small masses and for interme-
diate memory times. It is also interesting to note that the mean
first-passage time decreases with increasing memory time τ for inter-
mediate values of τ, but that for long memory time, the mean
first-passage time asymptotically increases as τMFP ∼ τ2

/τD
26 with

τ. The mean first-passage time thus shows a behavior that is very
different from the mean transition-path time.

We now study the scenario of a double exponential memory
kernel, described by the kernel,

Γ(t) =
γ1

τ1
e−

∣t∣
τ1 +

γ2

τ2
e−

∣t∣
τ2 , (23)

where we define γ = ∫
∞

0 Γ(t)dt = γ1 + γ2 as the total friction coeffi-
cient. To obtain an explicit formula for the transition-path time with
this more complex friction kernel, we sum the single-exponential
formula Eq. (22) with frictional weights, according to

τMTP =
γ1

γ
1

λ+(γL
eff,1, mL

eff,1)
(log (βU0) + A(γL

eff,1, mL
eff,1))

+
γ2

γ
1

λ+(γL
eff,2, mL

eff,2)
(log (βU0) + A(γL

eff,2, mL
eff,2)), (24)

where the subscripts of the effective mass and effective friction
coefficient denote which friction coefficient and memory time are
considered. This form of the formula can be rationalized by drawing
a parallel with the mean first-passage time for a multi-exponential
friction kernel:27,28 the MFPT has an overdamped and an energy-
diffusion contribution. For a multi-exponential memory kernel, the
overdamped term is additive in the exponential components, but
the energy-diffusion term is inversely additive. For the transition-
path time, there is no analog of an energy-diffusion contribution,
and for this reason, we are left with a pure addition of the contri-
butions for each term in the multi-exponential memory kernel. In
Fig. 4, we compare Eq. (24) to simulation data as a function of γ2/γ1
for a rescaled inertial time τm/τD = 0.01, potential barrier height
βU0 = 3, and fixed memory time τ2/τD = 31.6 for various values of
τ1/τD. We choose a relatively small inertial time because in the iner-
tial limit, the transition-path time becomes almost independent of
the memory time, as shown in Fig. 3. The agreement between the
simulation data and Eq. (24) shown in Fig. 4 is good, in particular
for τ1/τD = 0.0316 and τ1/τD = 0.316, since for these memory-time
values, the transition-path time is rather constant, as shown in Fig. 3.
For the intermediate value of τ1/τD = 0.1, one notices some disagree-
ment between the simulation data and Eq. (24), which we rationalize
by the fact that around τ/τD = 0.1, the transition-path time simula-
tion data shown in Fig. 3 vary significantly with τ/τD in a fashion
that is not perfectly matched by the formula Eq. (22). We also note

J. Chem. Phys. 161, 114104 (2024); doi: 10.1063/5.0225742 161, 114104-4
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FIG. 4. Mean transition-path time for a double-exponential memory kernel as a
function of the ratio between the two friction coefficients γ2/γ1 for fixed inertial time
τm/τD = 0.01, memory time τ2/τD = 31.6, and potential barrier height βU0 = 3
for various values of τ1/τD. The symbols represent the simulation data, and
the lines represent Eq. (24). The horizontal blue dashed lines denote predictions
according to the single-exponential formula in Eq. (22) based on τ1/τD to the
left-hand side and based on τ2/τD to the right-hand side.

that the scaling of the vertical axis shown in Fig. 4 is smaller than
that shown in Fig. 3, which increases deviations.

The generalization of Eq. (24) to a memory kernel consisting of
N exponentials is straightforward and reads

τMTP =
N

∑
i=1

γi

γ
1

λ+(γL
eff,i, mL

eff,i)
(log (βU0) + A(γL

eff,i, mL
eff,i)), (25)

which is an explicit formula for the mean transition-path time of a
reaction over a barrier for general multi-exponential memory in the
presence of inertial effects.

In conclusion, starting from the GLE, we derived an asymp-
totic formula for the mean transition-path time in the presence of
a single-exponential memory function using the previously derived
expression, Eq. (6), in the Markovian limit.16 Our approach is
based on asymptotic expressions for the effective mass and effec-
tive friction coefficient in the harmonic approximation that account
for non-Markovian effects.48 The asymptotic result in Eq. (22)
agrees perfectly with the simulation data and shows that the mean
transition-path time decreases monotonically with increasing mem-
ory time. The transition-path time saturates for small and large
memory times and varies only in a rather narrow range of interme-
diate memory-time values where the memory time is comparable
with the diffusion time scale; the influence of memory on the mean
transition-path time is most dramatic for small mass or high friction.
We also investigate the double-exponential memory kernel scenario,
where the additive expression Eq. (24) describes the simulation data
quite well. Based on these results, we propose an explicit formula
in Eq. (25) for the mean transition-path time in the presence of a
general multi-exponential memory function. Together with our pre-
viously derived asymptotic formulas for the mean first-passage time
for finite mass and multi-exponential friction kernel,27,28 we thus
have a general description of the reaction kinetics of non-Markovian
systems in terms of their mean first passage or waiting times and
their mean transition-path times.

We acknowledge support from the Deutsche Forschungsge-
meinschaft Grant No. CRC 1114, Project No. 235221301-B03, by the

ERC Advanced Grant No. 835117 NoMaMemo, and by the Infosys
Foundation.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

L. Lavacchi: Conceptualization (equal); Formal analysis (equal).
R. R. Netz: Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

APPENDIX A: TRANSITION-PATH TIME
IN THE OVERDAMPED LIMIT

In the overdamped limit, we have Δ = γ2
+ 4mKbar = γ2

+ 8mU0/L2
≃ γ2, where Kbar = 2U0/L2 is the magnitude of the

potential curvature at the top. By inserting this value for Δ into
Eq. (8), we obtain

A = log(
4
√

Δ
γ +
√

Δ
eC
) ≃ log(

4γ
2γ

eC
) = log (2eC

). (A1)

For λ+, we obtain

λ+ =
−γ +

√

γ2
+ 4mKbar

2m

=
−γ +

√

γ2
(1 + 8m U0/γ2L2

)

2m

≃
γ(−1 + 1 + 4mU0/γ2L2

)

2m
= 2U0/γL2. (A2)

Inserting these limiting values into Eq. (6), we arrive at Eq. (9), which
agrees with the asymptotic result in Ref. 16.

APPENDIX B: TRANSITION-PATH TIME
IN THE INERTIAL LIMIT

The mean transition-path time follows from the transition-path
time distribution as

τMTP = ∫

∞

0
dt pTP(t) t. (B1)

In the inertial limit, the transition-path time is a function of the total
energy and given by

τTP(E) = ∫
L

−L

dx
√

m/2
√

E −U(x)
. (B2)
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In the canonical ensemble, the distribution of transition-path times
is given by

pTP(t) =
∫
∞

U0
dE e−βEδ(t − τTP(E))

∫
∞

U0
dE e−βE . (B3)

For a parabolic barrier, the distribution can be rewritten as

pTP(t) =

√
2βU0

m
βU0

cosh(
√

2βU0
m t/2)

sinh3
(

√
2βU0

m t/2)

× exp

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
βU0

sinh2
(

√
2βU0

m t/2)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B4)

which in the limit of high barrier βU0 ≫ 1 becomes

pTP(t) ≈ 4

√
2βU0

m
βU0 exp

⎡
⎢
⎢
⎢
⎢
⎣

−

√
2βU0

m
t − 4βU0e−

√
2βU0

m t
⎤
⎥
⎥
⎥
⎥
⎦

. (B5)

The maximum of the distribution is obtained for
t =
√

m
2βU0

ln (4βU0), and the corresponding mean transition-
path time is given by Eq. (11).

APPENDIX C: DERIVATION OF THE FOURIER
TRANSFORM OF THE POSITION AUTOCORRELATION
FUNCTION

Using the Fourier transform of the generalized Langevin
equation,

x̃(ω) =
F̃R(ω)

K −mω2
+ iωΓ̃+V(ω)

≡ χ̃(ω)F̃R(ω), (C1)

we can write the autocorrelation function as

C(t) ≡ ⟨x(t)x(0)⟩ = ∫
dω
2π

eiωt
∫

dω′

2π
⟨x̃(ω)x̃(ω′)⟩

= ∫
dω
2π

eiωt
∫

dω′

2π
χ̃(ω)χ̃(ω′)⟨F̃R(ω)F̃R(ω′)⟩

= kBT ∫
dω
2π

eiωt
∫

dω′

2π
2πδ(ω + ω′)Γ̃R(ω)χ̃(ω)χ̃(ω′)

= kBT ∫
dω
2π

eiωt Γ̃R(ω)χ̃(ω)χ̃(−ω), (C2)

where we used ⟨F̃R(ω)F̃R(ω′)⟩ = kBT2πδ(ω + ω′)Γ̃R(ω). From this,
the Fourier transform of the autocorrelation function follows as

C̃(ω) = β−1Γ̃R(ω)χ̃(ω)χ̃(−ω). (C3)

APPENDIX D: LOW-FRICTION LIMIT

In low-friction limit, Eq. (16) is dominated by the pole,

ω2
L = K/meff for

Kmeff

γ2
eff
> 1. (D1)

Inserting Eq. (D1) into Eq. (17b), we arrive at a quadratic equation,

γeff =
γ

1 + c2τ2 K
m−c1τγeff

,

γeff(m − c1τγeff + c2τ2K) = γ(m − c1τγeff),

γ2
eff − γeff(

m
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For small τ, we obtain

γeff =
m
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2c1
+
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±
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m
+
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and taking the minus sign,

⇒ γeff ≃ γ − γ
c2τ2K

m
. (D2)
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For large τ, we obtain
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and taking the minus sign,

⇒ γeff ≃
γm

c2τ2K
. (D3)

Combining the two limits Eqs. (D2) and (D3), we obtain the
expression,

γL
eff =

γ
1 + c2τ2K

m

. (D4)

Inserting Eq. (D4) into Eq. (17a), we obtain the expression,

mL
eff = m −

c1τγ
1 + c2τ2K/m

. (D5)

APPENDIX E: HIGH-FRICTION LIMIT

In the high-friction limit, Eq. (16) is dominated by the pole,

ω2
H = −K2

/γ2
eff

Kmeff

γ2
eff
< 1. (E1)

Inserting this expression into Eq. (17b), we obtain

FIG. 5. Rescaled mean transition-path time τMTP/τD as a function of the rescaled
memory time τ/τD for various values of the rescaled inertial time τm/τD as shown
in Fig. 3 and fixed barrier height βU0 = 3. The symbols represent the simulation
data, and the lines represent Eq. (22) for different values of the constants c1 and
c2, as given in the legend.

γeff =
γ

1 − τ2K2
/γ2

eff
=

γγ2
eff

γ2
eff − τ2K2 ,

γ2
eff − γγeff − τ2K2

= 0,
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γ
2
±
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4
+ τ2K2,

and taking the positive sign,

⇒ γH
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⎢
⎢
⎢
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1/2⎤
⎥
⎥
⎥
⎥
⎦

≃ γ.

APPENDIX F: FIT PROCEDURE FOR OBTAINING
c 1 AND c 2

In Fig. 5, we show the same simulation data as in Fig. 3
and compare to Eq. (22) for different values of the two constants
c1 and c2. The values c1 = 0.1, c2 = 0.025 lead to the best overall
agreement with the simulation data. The dotted–dashed line for the
values c1 = 0.1, c2 = 0.01 describes the simulation data well for low
mass but is off for high mass τm/τD = 0.01 and τm/τD = 0.1.
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