Theoretical Biology: Modeling and Simulation of
Biological Systems and Laboratory Methods

INAUGURAL-DISSERTATION

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie
der Freien Universitat Berlin
vorgelegt von

CHRISTOPH WIERLING

aus Munster, Deutschland

November, 2008



Die vorliegende Arbeit wurde in der Zeit von August 1999 bisvidmber 2008 am Max-
Planck-Institut fur molekulare Genetik in Berlin-Dahlemder Abteilung von Herrn Prof.
Dr. Hans Lehrach in der Arbeitsgruppe von Herrn Dr. Ralf Hgrangefertigt.

1. Gutachter: Prof. Dr. Hans Lehrach
Max-Planck-Institut fiir Molekulare Genetik

2. Gutachter: Prof. Dr. Volker Erdmann
Freie Universitat Berlin

Disputation am 26. Mai 2009




Contents

Contents . . . . . . L e ii
Listof Figures . . . . . . . . . . e Y
Listof Tables . . . . . . . . . . lvi
SUMMAIY . . . . o e e e e 1
Zusammenfassung (German Summary) . . . . . .. ... e 2
1 Introduction 3
1.1 Outline . . . . . . e 5
1.2 Biological Systems . . . . . . . . . . ... 6
1.2.1 Somitogenesis . . . . . . . 7
1.2.2 Cell-cell Communication and Signal Transduction ...... ... . 11
1.2.21 NotchSignaling . . .. ... .. .. ... ... ...... 11
1.222 WntSignaling . . ... ... ... ... ... ..... 12
1223 FGFSignaling . . . . ... .. ... .. ... . . ..., 14
1.3 Computational Modeling of Biological Systems . . . . . . ... .. ... 16
1.3.1 Mathematical Modeling of Biological Systems Usingl@ary Dif-
ferential Equations . . . . . . .. ... L o 17
1.3.1.1 Modeling of Biochemical Reactions . . . ... .. .. .. 17
1.3.1.2 Modeling of Gene Expression . . . . . .. ... ...... 20
1.3.2 Data Resources for Systems Biology . . . . . . . ... ... ... 21
1.3.2.1 Pathway and interaction databases . . . . ... .. .. 2. 2
1.3.3 Software Applications for Modeling and Simulation . . . . . .. 24
1.3.4 Mathematical Models of Somitogenesis . . . . .. .. .. ...... 27
1.4 Experimental Techniques for Gene Expression Analysis . . . . . . . .. 30
141 cDNAArray Technology . . . . . ... ... ... ... ....... 30
142 1ImageAnalysis . . . . . . . . . . . ... 32
1.5 Objectives . . . . . . . e 35
2 Results 37
2.1 PyBioS - Modeling and Simulation Platform . . . . . . ... .. ... .. 37



Contents

2.2

2.3

2.1.1 Overviewof PyBioS . .. ... ... .. .. .. .. ... ... ... 38
2.1.2 Modelstructure . . . . . . ... 40
2.1.3 Model Construction . . . ... .. ... ... .. ... 42
2.1.4 Quantitative Simulation . . . .. ... ... .. .. .. .. ..., 46
2.1.5 Visualization . . . . . ... ... 49
2.1.6 AnalysisModules . . ... ... ... ... .. ... .. . .. ... 50
2.1.7 System'sPerformance . . .. .. ... . ... ... ... 52
2.1.8 Summaryofthelnventions . . . . . . .. ... ... ... ..... 4 5
Modeling of Biological Systems - Somitogenesis . . .. ...... ... .. 56
2.2.1 Modeling Oscillatory Notch Signaling . . . . . .. . ... .. .. 57
2.2.2 Modeling Oscillatory Wnt Signaling . . . . . . .. .. ... ... 59
2.2.3 Coupling Wnt, Notch, and FGF signaling . . . . . . ... . ... 62
Modeling of Laboratory Methods - DNA Array Experiments. . . . . . . . 66
2.3.1 Implementation of the Simulation Tool . . .. ... ... .... 67
232 DataSets . . ... . .. .. 68
2.3.2.1 Design of Artificial SampleSets . . . ... ... ... .. 68
2.3.3 SimulationModel . ... .. .. ... .. ... .. .. . . 70
2.3.3.1 Generation of Signal Intensities . . . . ... ...... 70
2.3.3.2 FilterModel . . .. ... ... ... ... .. . . 72
2.3.3.3 LocalDistortions . . . . ... ... ... ... ..., 72
2334 SpotShape . .. ... ... . .. ... 72
2.3.3.5 BackgroundNoise . . . . ... ... . ... ... .. ... 73
2.3.4 Data Evaluation and Quality Measurement . . .. ... . ... 74
2341 ImageAnalysis . .. ... .. ... ... 74
2.3.4.2 Evaluation of Gridfind and Quantification Quality . . . 74
2.3.4.3 Statistical Evaluation of Differential Expressia . . . . . 74
2.3.5 Simulation of Local Distortions . . . . . ... ... ... .. .. 75
2351 SpotShifting. . . ... ... ... 75
2352 PinShifting ... ... ... . ... .. .. 77
2.3.6 Simulation of Different SpotShapes . . . . . ... .. .. .... 77
2.3.7 Simulation of Background Noise . . . . . ... .. ... ... ... 80
2.3.7.1 Global BackgroundNoise . . . . . ... .. ... ..... 80
2.3.7.2 Local backgroundnoise . . . . ... ... ... ... .. 80
2.3.8 Simulation of the Influence of Background Noise on tkprEssion
Analysis . . . .. e 80
2.3.8.1 SummaryoftheFindings . . ... ............. 83




Contents

3 Discussion 86
3.1 PyBIioS - a Modeling and Simulation Platform for CelluReaction Networks 87
3.1.1 Predictionin the Face of Uncertainty . . ... .......... 89
3.1.2 Applications . . . . ... 91
3.2 Modeling Biological Systems . . . . . .. ... ... ... ........ 92
3.3 Modeling of Laboratory Methods - DNA Array Experiments. . . . . . . . 92
Bibliography 95
A Appendix 115
A.1 Concepts, Tools, and Methods used for the setup of thepatational simu-
lation platforms . . . . . . .. 115
A.1.1 Object-oriented programming . . . . . . . . . .. ... .. ... 115
A.l.2 Python . . . . . . . e 116
A.1.3 Zope Web Application Server . . . .. .. ... oL 161
A.1.4 Numerical Solvers for ODEsand DAEs . . . . . ... ... ... 116
A.1.5 Computation of Conservation Relations . . . . .. ... ...... . 117
A.2 Modeling of Somitogenesis . . . . . . . . .. .. .. .. 0 119
A.2.1 Kintics Used Within the Somitogenesis Model . . . . ... .. .119
A.3 Modeling of DNAArrays . . . . . . o o v i i i e 20
A.3.1 cDNA Array DataUsedforModeling . . .. ... ......... 24
A.3.2 Data acquisition in DNA array experiments . . . . ... .. .. .121
A.3.3 Mathematical Description of a Crater Spot . . . . ... .. .. .122
Publications 125
Acknowledgments 127




List of Figures

1.1 Overviewofthethesis . ... .. .. ... ... .. .. .. .. ...
1.2 Schematic illustration of somitogenesis

1.3 Canonical Notch signaling pathway . . . . . . ... ... ... .. ...
1.4 Canonical Wnf3-catenin signaling pathway . . . . . . .. .. ... ...
1.5 Overview: FGFsignaling. . . . .. ... ... ... .. .. .......

1.6 Kinetic laws for biochemical reactions . . . . . . . . . . . . ... ....

1.7 Kinetic laws for generegulation . . . .. ... ... ... ... ..., .
1.8 Models ofherlandHes7autoinhibition . . . . . . ... ... ... ....

2.1 PyBioSWebiterface . ... ... ... .. . ... ...
2.2 UML-diagram of the PyBioSontology . . . . . . .. ... ... .....
2.3 Descriptionofanaction. . . . .. ... ... .. . 0L o
2.4 Manual model generationin PyBioS . . . . ... ... ... ... . ...
2.5 Generic database interface (part1) . . . . . . . . .. .. ... ...
2.6 Generic database interface (part2) . . . . .. . . ... ... ... ...

2.7 Elements for graphical representationin PyBioS . . . ...... . ... ...
2.8 Parameterscan . . . . . . . ...

29 Scalingof PyBioS . . . . . . . .
2.10 Notchmodel . . . . . . . . . .. . . .
2.11 Model of Hes7 autoinhibiton . . . . . . ... ... ... ... ......
2.12 Wntsignalingmodule . . . . . . . .. ... ... ..
2.13 Wnt signaling model within PyBioS . . . . . . . ... ... ... ....
2.14 Wntsignaling: Simulationresults . . . . . ... ... ... ... ...
2.15 FGFmodel . . . . . . ..
2.16 Simulation pipelineand array layout . . . . . . ... ... . ... . ...
2.17 Experimental reference for simulation data.

2.18 Spotshifting. . . . . . . ..
2.19 Pinshifting. . . . . . . . .
2.20 Experimental block center deviation. . . . . . . .. ... . ... ... ..

Vi

. 16

78
79



List of Figures

2.21 Spotshapeexamples. . . . . . . . . . .. ... . 79
2.22 Background noiseexamples. . . . . . . . ... L 00 e 81
2.23 Local background noise correlation. . . . . . . ... ... .. 82
2.24 Statistical tests for simulated fold-changes . . . . ...... . ... ..... 85
3.1 Booleannetwork. . . . .. .. .. ... 89

Vii




List of Tables

11
1.2
1.3
1.4
1.5

2.1

3.1

Species characteristics in somite formation. . . . . . ... ... .. ..

Cyclic genes of somitogenesis . .

Databases useful for modeling of cellular systems. . . .. ... ... ..

Statistics on reactions in pathway databases . . . . . .. ... ... ..

Modeling tools frequently used in systems biology.

Definition, modeling, and critical effects of simulatiparameters. . . . . . .

Projects in which PyBioS is used.

viii

23
24
25



Summary

Mathematical modeling and simulation techniques havestiout to be valuable tools for the
understanding of complex systems in different areas ofarebeand engineering. In recent
years this approach came to application frequently alséalogy resulting in the establish-
ment of the research area systems biology. Systems bialegytd understand the behavior
of complex biological systems by means of mathematical@pgres. This requires the in-
tegration of qualitative and quantitative experimentdbdato coherent models. Currently,
systems biology usually investigates biochemical reactietworks of cellular systems. A
challenging task is the construction of large models thaiires computer-assisted data in-
tegration, simulation and evaluation.

In this work | have elaborated technical bases for the coerpagsisted modeling of bio-
logical systems and experimental techniques. For this¢ ll@veloped the program PyBioS
that provides a user-friendly Web applicatidrt € p: / / pybi os. nol gen. npg. de) and
brings in automation for several important tasks requidtie development, implemen-
tation, and simulation of cellular models. For the desavipof cellular reaction systems
PyBioS makes use of object-oriented programming, wellbdisteed methods for the mathe-
matical description of biochemical reaction systems basedrdinary differential equation
systems, and novel interfaces to biochemical pathway daésie.g., Reactome, KEGG). In
addition PyBioS provides several different functions foe ainalysis and visualization.

The benefit obtained by mathematical modeling of biologsystems using PyBioS is il-
lustrated for segmentation of the body (somitogenesis}.gs, taking place during embryo-
genesis. The parameterized somitogenesis model | haveogedecomprises three signaling
pathways, namely Notch, Wnt, and FGF that are known to beaetdor somitogenesis. The
model shows a regular oscillation controlled by extradatlMvnt3a. Below a critical thresh-
old concentration of Wnt3a the oscillation that is conedlby Wnt signaling arrests and
approaches a steady state. These findings are conform tdragpéal observations found
during determination of somite boundaries.

Besides the analysis of biological systems, modelingegiias can also be used for the
evaluation of biotechnological experimental techniquesstudy this | have perfomed sim-
ulations of DNA array hybridization experiments for the lexion of critical parameters
during subsequent image and data analysis. Therefore Idaavied out simulation stud-
ies on several error parameters arising in complex hylaiin experiments, such as spot
shape, spot position and background noise. My results slennfreasurement errors can be
balanced by the analysis tools.


http://pybios.molgen.mpg.de

Zusammenfassung (German Summary)

In verschiedenen Bereichen der Natur- und Ingenieursnsssgften hat sich die mathema-
tische Modellierung als ein geeignetes Werkzeug erwiagarkomplexe Systeme besser zu
verstehen. Dieser Ansatz findet auch immer haufiger Anwemduder Biologie und fihrte
zur Etablierung der Systembiologie. Die Systembiologisueht mit Hilfe mathematischer
Anséatze das komplexe Verhalten biologischer Systeme beaseerstehen. Dies erfordert
die Integration qualitativer und quantitativer Daten ith&cente Modelle. Derzeit werden in
der Systembiologie haufig biochemische Reaktionsnetaveshkuléarer Systeme betrachtet.
Eine besondere Herausforderung stellt dabei die Modetigggrosser Systeme dar, die eine
massive, computergestitzte Datenintegration, Simulainm Auswertung erfordert.

In dieser Arbeit habe ich Grundlagen fir die computergestiModellierung bi-
ologischer Systeme und experimenteller Verfahren er@tbei Das von mir hier-
fur entwickelte Programm PyBioS bietet eine benutzerfdiche Web-Schnittstelle
(htt p: // pybi os. nol gen. npg. de) und automatisiert viele Schritte, die fur die Er-
stellung, Implementierung und Simulation zellularer Mideleerforderlich sind. Fur die
Beschreibung der Modelle wurden dabei objektorientierisdze der Informatik, etablierte
Methoden der Modellierung biochemischemischer Reaksigsteme basierend auf gewohn-
lichen Differentialgleichungssystemen, sowie neuargganittstellen zu Datenbanken bio-
chemischer Reaktionswege (z.B. Reactome, KEGG) genutzt baplementiert. Zudem
bietet PyBioS verschiedene Funktionalitaten fir die Asalynd Visualisierung.

Unter Verwendung von PyBioS wird am Beispiel der embryom&egmentierung (Somi-
togenese) gezeigt, wie mathematische Modellierung zurst&ednis biologischer Systeme
beitragen kann. Das von mir entwickelte parametrisierted®loumfasst die Signalwege
Notch, Wnt und FGF, von denen bekannt ist, dass sie an derrBieierung der Somiten-
bildung beteiligt sind. Das Modell zeigt eine von extrazktem Wnt3a kontrollierte Os-
zillation. Unterhalb einer kritischen Wnt3a Konzentratibricht die vom Wnt Signalweg
kontrollierte Oszillation ab und geht in einen stationaZeistand tber, der den Beobachtun-
gen fur die Determination einer Somitengrenze entspricht.

Neben der Analyse biologischer Systeme kann Modellierurop &iir die Evaluation bio-
technologischer, experimenteller Methoden genutzt werBeées wurde fir DNA-Array Hy-
bridisierungsexperimente genauer untersucht. Anhandl&rter Daten wurden kritische
Parameter der anschliessenden Bild- und Datenanlayserteéwelierfir habe ich Simu-
lationsstudien verschiedener experimenteller Paranketeplexer Hybridisierungsexperi-
mente, wie z.B. der Spot-Form und Spot-Position, oder demerjrundrauschen, durchge-
fuhrt. Meine Ergebnisse zeigen, wie Messfehler anhandige&r Analyseprogramme kom-
pensiert werden kdnnen.


http://pybios.molgen.mpg.de

1 Introduction

For a long time research in molecular biology has been faxles the analysis of specific

components of the cellular network (genes, proteins, noditab) one by one. By this ap-

proach thousands of genes have successfully been ch&éeadtand functionally annotated.
But biological systems are complex and their charactegsdre a result of a highly inter-

woven interaction network continuously developing thriotigne and space. Fundamental
characteristics of living systems, like the assimilatibmotrients, growth and reproduction,

or the perception of (environmental) signals and their @ssing can be narrowed down ba-
sically to a single unit all living things are composed ofe ttell (Schwann and Schleiden,
1839, 1847). Thus, the understanding of the charactegisficellular systems is essential,
but it requires an approach that takes into account bothactiens on the molecular level as
well as physiological functions that are characteristiche whole organism. In particular

in the light of understanding developmental processes dtigenic and complex diseases
that cannot be pinned down to a single gene or componentsysipproaches become in-
creasingly important.

During the last decade this gave rise to a new research abéalagy called systems biol-
ogy. Systems biology explanations of physiology and disesh®uld be multi-level (Noble,
2002b); from molecular pathways and regulatory networtkgugh cells and organs, ulti-
mately to the level of the whole organism or even to an ecesysWith the use of computer
models for such processissilico predictions can be generated on the state of the disease or
the effect of the individual therapy (Kitano, 2002; HerwigdalLehrach, 2006). Models are
partial representations and their aim is to explain whidtudees of a system are necessary
and sufficient to understand it (Noble, 2002b). The perforceaof a model is mainly defined
by its predictive power.

Systems biology is going to revolutionise our knowledge iskdse mechanisms and the
interpretation of data from high-throughput technolog®gstems biology is the coordinated
study of biological systems by (1) investigating the comgrus of cellular networks and their
interactions, (2) applying experimental high-through@odl whole-genome techniques, and
(3) integrating computational methods with experimentadres (Klipp et al., 2005). This
approach requires an integration of experimental and ctetipnal methods and, thus, an
iterative process of data mining and data gathering (e@m &cientific literature, databases
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and experiments), data integration, computational modelnd analysis, and finally valida-
tion of specific observations that were not explainable tedfand (Kitano, 2002).

Using data mining steps, one agglomerates sufficient ddtailthe generation of model
prototypes of the biological system under investigatioverually, using analysis methods,
the mathematical model is refined, cross-validated witlameggo internal and external fea-
tures, for example using parameter estimation (Moles €2@03), and it is used to formulate
new hypotheses that in turn are subject to further expetiah@vestigation.

Systems biology methodology and approaches evolved sapidhe last years driven by
the new high-throughput technologies. A significant impulgas given by the large se-
qguencing projects, such as the human genome project, wésciited in the nearly complete
sequence of the human and other genomes (Lander et al., 260ter et al., 2001). This
knowledge builds the theoretical basis to compute gendatay motifs, to determine the
exon-intron structure of genes and to derive the codingesszpiof potentially all genes of
many organisms. From the genome sequences probes for wétodeng DNA arrays have
been constructed that allow to monitor the transcriptomel! lef most genes active in a given
cell- or tissue type. Proteomics technologies have beeth taseentify translation status on
a large scale (2D-gels [Klose, 1975; Klose et al., 2002], arsectrometry, reverse phase
protein arrays [Paweletz et al., 2001]). Protein-protaberaction data involving thousands
of components were measured to determine information opribteome level (von Mering
et al., 2002). Multiple databases of diverse aspects obbiocal systems exista variety
of experimental techniques have produced gene and proterpnession data from various
tissues and samples and important disease-relevant patlinaee been investigated. Infor-
mation on promoter regions and transcription factors islavie for nearly all genes. This
information - although extremely helpful - cannot be ustissufficiently, because of the lack
of integrative analysis tools. To validate such data in fystesn-wide hierarchical context
ranging from DNA to RNA to protein to interaction networksddiarther on to cells, tissues,
organs or even the whole individual, one needs to correladergegrate such information.
Thus, an important part of systems biology is data integnathat provides a foundation for
the development of computational models.

As mentioned above models should be generated on a mudlitasis, but need to be
grounded on the molecular- and cellular-level so that ainoots spectrum of knowledge
can be established. The question of the most suitable agiptoaystem-level understanding
has been addressed by Noble (2002b, 2006). He discusseabti@m-up’ and 'top-down’
approach to understand biological systems. The bottonpppoach starts with all the in-
dividual genes, proteins, metabolites, etc. and theiwviddal reactions and interactions to

!Pathguide: The Pathway Resource Listt p: / / www. pat hgui de. or g
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come up with an integrated molecular model for the predictibgeneral system properties.
On the other hand, the top-down approach starts with theabhmhaviour of systems (as in
classical physiology with the analysis of the circulatoygtem, the respiratory, the immuno-
logical, and so on) and then progressively identifies antbegp the elements of each system
S0 as to deduce the underlying functions (Noble, 2006, p. B6jh approaches have their
strengths and limitations that lead to the 'middle-out’ eg@eh originally proposed by Syd-
ney Brenner and adopted by Denis Noble (2006, p. 79). Itstae simple and pragmatic
concept of starting at any level as long as enough data isablaito feed into a simula-
tion for the purpose of systems analysis. However, a crypaadt is that models are always
partial representations and their aim is explanation: tmsWhich features of a system are
necessary and sufficient to understand it (Noble, 2002b).

Modeling and simulation techniques are valuable toolstierunderstanding of complex
biological systems. A computational approach offers thesgmlity to use simulations for
the prediction of the dynamical behavior of biological gyss according to the defined mod-
els, and to test the validity of the underlying assumptidfisafio, 2002). To this end, it
IS necessary to construct computer-executable modelataatonsistent with experimental
observations. The development of such a model is an iteratiocess of (1) model design
based on existing knowledge, (2) simulation and modelysigl which results in (3) the
generation of new hypotheses that can be proven by expesnrethe wet lab and used
anew for model-refinement. This hypothesis-driven apgrdesed onn silico experiments
will support the experimental design or help to investiggiestions that are not accessible
to experimental inquiry. Noble (2002a) states that "phiggjical analysis requires an under-
standing of functional interactions between the key coneptsof cells, organs and systems,
as well as how these interactions change in disease statesirgues that there is no alter-
native to copying nature and computing these functionaratdtions to determine the logic
of healthy and disease states.

1.1 Outline

In this work | present different applications of modelinghimlogy and biological research
(Fig. 1.1). In the following sections | will outline the mddeg of biological systems and
discuss modeling tools currently used in systems biologg Section 1.3). Later, in the
Results, | will introduce the modeling and simulation systeyBioS, which | have developed
in the course of this thesis (see Section 2.1) and deployédfévent biological problems.

In particular, the PyBioS modeling system was used to buidoael on somitogenesis
(described in Section 2.2), which is a fundamental procesmgl vertebrate development.
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( Modeling in Biology )
Modeling System Modeling of biological Mc_>deI|ng of an
processes experimental platform

. Somitogenesis .
[ PyBioS ] [ (Wnt, Notch, FGF) ] [ cDNA chip platform ]

Figure 1.1: Overview of the thesis.

The model captures central components known or assumeditvdieed in somitogenesis
(that is introduced in Section 1.2.1). The model takes imooant three signaling path-
ways triggered by signaling of Notch (Section 1.2.2.1), \(8gction 1.2.2.2) and Fgf (Sec-
tion 1.2.2.3), as well as subsequent genes known to be tedug these pathways.

Furthermore, | have applied modeling strategies to theuati@in of an experimental tech-
nique used in modern molecular biology. As, for example,mam in engineering, modeling
of technical processes can also help significantly by thiuatian of experimental platforms.
In Section 1.4.1 | will introduce DNA arrays that became a own standard for expression
profiling in molecular biology and in Section 2.3 | will evalie error sources subject to
cDNA arrays by the use of a computational model.

1.2 Biological Systems

Coordinated interactions between the different cellutanponents give rise to the aston-
ishing complex but well coordinated processes of livingamigms, such as the develop-
ment of a multicellular organism (cf. Gilbert, 2003). Fundntal for development is the
differentiation—the structural and functional speciafisn of cells and tissues during onto-
genesis. A first step during the differentiation processighér animals is the formation of
the germ layers ectoderm, endoderm, and mesoderm duritgilgéisn. Later on during
early embryogenesis many animal species undergo a segroamithe body axis. In verte-
brates this segmentation is called somitogenesis and ginecsds that are formed during this
process are the somites. In the following | will give a briefroduction on somitogenesis
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and a more detailed description of the molecular pathwagsdbntrol this developmental
process.

1.2.1 Somitogenesis

During gastrulation the embryo shapes into three germ $ay@r) the endoderm, the pre-
cursor of the gut and its associated glands, (2) the mesodieenprecursor of the skeleton,
smooth muscle, connective tissue, and vascular systen{3amide ectoderm, the precursor
of the epidermis and the nervous system. Following gasiomathe dorsoventral axis is
specified by signals from the node (which is the homolog in secand chicken of the frog
Organizer, a region of the dorsal lip of the blastopore thdnown for its crucial role in
organizing the formation of the main body axis). During tpiecess the ectoderm thick-
ens, rolls up, and pinches off to form the neural tube andaleuest. Below the neural
tube a rod of specialized cells derived from the mesoderteddhe notochord elongates
and forms the central axis of the embryo. On both sides of titeamord the unsegmented
paraxial mesoderm or presomitic mesoderm (PSM) is formatgibts segmented later on in
an anterior-to-posterior sequence while the embryo el@sgat the tail bud (Alberts et al.,
2008). During this segmentation process that is called wg®nesis small epithelial spheres,
the somites, form along the length of the embryo (Fig. 1.Z/)e somites eventually give
rise to the vertebrae and ribs, the dermis of the dorsal #kénmuscles of the back, and the
skeletal muscles of the body wall and limbs (Gilbert, 2003465). The number of somites
and time period of their formation is highly constrainedhita given species, but varies
widely between different species (cf. Tab. 1.1). The finahber of somites ranges from less
than 50 (in a frog or a bird) to more than 300 (in a snhake) (Aket al., 2008).

Table 1.1: Specific values on somitogenesis for different organisi8sickney et al. (20002 Gilbert
(2003);3Tam (1981)

Organism Number of somites Duration for a single somite fornation

zebrafish about 30 ca. 30 minutes
chicken 50 ca. 90 minutes
mouse 653 ca. 120 minutes

Major components of somitogenesis are periodicity, epaheation, specification, and
differentiation. In mouse embryos the first somites formha posterior headfold region
around embryonic day 7.75 (E7.75). Subsequently, new ssmattise at regular intervals in
a strict anterior-to-posterior sequence from the unse¢gddnSM (Hofmann et al., 2004).

The molecular process underlying somitogenesis has bedredtin detail. It has been
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shown that targeted inactivation NbtchandDeltain mice leads to an impairment in somi-
togenesis (Conlon et al., 1995; de Angelis et al., 1997)s $hggests that Notch signaling is
involved in somitogenesis.

The periodic formation of equally sized somites implicdbed a molecular, gene-regulatory
oscillator is involved in somitogenesis. The first gene tdenl to oscillate during somitoge-
nesis in chicken embryos washairyl(Palmeirim et al., 1997). A second avibhairy-related
gene found to cycle in the PSMashairy2, which is closely related to mammalian gdthes1
(Jouve et al., 2000Heslis described as a downstream target of Notch signaling (fagea
and Ohtsuka, 1999). It has a basic helix-loop-helix (bHLHYifrand acts as a transcriptional
repressor (Sasai et al., 1992). Subsequently, severalg¢hes showing a cyclic behaviour
during somitogenesis were identified in fish, frog and moumsplicating that the oscillator
is conserved in vertebrates (Dequéant and Pourquié, 2008).

In 2001 Bessho et al. cloned another downstream Notch effesimedHes7from mouse.
Hes7has also a bHLH motif and was revealed to be specifically egaedin the PSM in a
dynamic mannerHes7was found to be controlled by Notch signaling and to encode al
transcriptional repressor (Bessho et al., 2001).

Another gene that has been identified to be required for theagsing oNotchlandDII1
(Delta ligand) in the paraxial mesoderm Byesenilinl(Wong et al., 1997). Moreover, in
the chicken embrytunatic fringe(Lnfg), which encodes a glycosyltransferase that can mod-
ify the Notch receptor, has been shown to be activated pesgth by Notch signaling in the
PSM (Dale et al., 2003). Overexpresslnggin the paraxial mesoderm abolishes the expres-
sion of cyclic genes including endogendusfq itself and leads to defects in segmentation
(Dale et al., 2003).

In zebrafish, all the cyclic genes identified so far belondneoNotch pathway. In amniotes
(reptiles, birds and mammals), also genes of Wnt signalimy EGF signaling have been
identified to oscillate in the PSM with periods correlatinghithe time for somite formation.
In mouse Axin2, a key negative feedback inhibitor of the Wnt pathway (se#i®e1.2.2.2),
has been found to show an analogous cyclic behavior. Morgoliservations for the hypo-
morphicWnt3amutation vestigial tail\{t) in mice implicate an involvement of Wnt signaling
in somitogenesis (Aulehla et al., 2003).

In a large scale microarray study conducted by Dequéant €G6) multiple genes have
been identified that show an oscillatory behavior in the PSiMng) somitogenesis. When
ordered by their time of maximum expression in the segmiemtatiock cycle, the cyclic
genes could be assigned to two mutually exclusive mainelsistith opposite phase. One
of the clusters contains known cyclic genes regulated byiNahd FGF signaling and the
other includes those controlled by Wnt signaling (Tab..1.2)

A first theoretical model for the sequential positioningafrstes was introduced by Cooke
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Figure 1.2: Somite formation in the vertebrate embryo.  (A)Schematic illustration of a chicken
embryo. (B) While the embryo elongates at the tail bud, pairs of somigggilarly pinch off syn-
chronously from the anterior tip of the presomitic mesod¢éR8M) in an anterior-to-posterior se-
gquence. The morphogenic Wnt3a/Fgf gradient (blue) movesinlal direction through the PSM. It
acts as a determination front (blue line) and defines in coatlain with the intracellular clock the
position of the border between prospective somites. Aalahld Herrmann (2004) proposed that the
morphogenic gradient drives the clock ("clock on") andglfi€are below a certain threshold level of
the morphogen the clock cannot enter a new cycle ("clock déshed line) and a new somite bound-
ary is defined. Thus the size of a somite is given by the distgrassed by the determination front
during one oscillation of the segmentation clock. Somitesdenoted by Sl, SlI, Slil, etc. where the
most recently formed somite is Sl. Prospective somitesametgd by SO, S-1, S-1l etc. (adapted from
Pourquié and Tam, 2001; Aulehla and Herrmann, 2004; DedqaéahPourquié, 2008)
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Table 1.2: Clusters of some of the cyclic genes identified by Dequéaadt €006) using microarrays.
Genes of the Notch-FGF cluster show a mutually exclusivieatain compared to those of the Wnt
cluster.

Notch cluster Hesl Lfng Nrarp Nkdl Hes5 Heyl Bcl9l

Fgf cluster Spry2 Efnal Hspg2 Egrl Dusp6 Bcl2lll Shp2

Wntcluster Axin2 Dactl Myc Has2 Dkkl Sp5 Tnfrsfl9 Phldal

and Zeeman (1976). They postulated the existence of a "thouka maturation wave called
the "wavefront". In that model the clock is assumed to be #&mradellular oscillator that is

phase-linked throughout the embryo and the wavefront isr tf rapid cell change moving
slowly down the long axis of the embryo. When cells are inrtpeirmissive phase of the
oscillator while passing the wavefront, they undergo adaieration in locomotory and/or
adhesive properties. According to their anterior-posteoody position the wavefront hits
the cells at successively later time points.

Molecular evidence supporting the clock-and-wavefrontieldas been found. Aulehla
and Herrmann (2004) proposed a model that takes into aceamotphogen gradient estab-
lished by the signaling molecules Wnt3a and Fgf8. This gnaidis placed along the PSM.
Both Wnt3aandFgf8 are expressed in the tail bud and, while the embryo growseataih
bud in caudal direction, the concentration of these mokscdecays during further elonga-
tion of the embryo, since the expression of these signaliolgaoules is restricted to the tail
bud area. The molecular clock is supposed to be establishgeres of the Wnt, Notch
and FGF signaling pathways and their target genes. The segtiom process is illustrated
in Fig. 1.2B. While the embryo elongates at the tail bud, $air somites regularly pinch
off synchronously from the anterior tip of the presomiticsoderm (PSM) in an anterior-to-
posterior sequence. The morphogenic Wnt3a/Fgf gradiememio caudal direction through
the PSM. It acts as a determination front and defines in coatioim with the intracellular
clock the position of the border between prospective s@anAellehla and Herrmann (2004)
proposed that the morphogenic gradient drives the clodkdgkoon™) and, if cells are below
a certain threshold level of the morphogen, the clock sto@edk off'). When the deter-
mination front passes cells that are in the permissive pbbfee segmentation clock a new
somite border is defined. Thus the size of a somite is giverhbydistance passed by the
determination front during one oscillation of the segmgateclock.
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1.2.2 Cell-cell Communication and Signal Transduction

For development and survival, cells must be able to reachémging environmental con-
ditions. Therefore, during evolution, different mechamssfor the perception, intracellular
transduction and interpretation of signals coming fromswl# the cell has evolved. Cells
react with an appropriate response to the signal, like adaptation of the metabolism to
compensate external stress. In addition to intracelldaptation, cell-cell comunication is
also essential for the development of multicellular orgars. Different mechanisms for the
transmission of signals from one cell to another are knowitbé®&, 2003). In juxtacrine
interactions cell membrane proteins on one cell surfa@ract with receptor proteins on an
adjacent cell surface. This can only happen, when cellsiarated next to each other. An
example for a juxtacrine interaction is the interactionmmsn the Notch receptor and the
Delta ligand (cf. Fig. 1.3). Another mechanism of short aiste cell-cell communication
is the paracrine interaction, where signaling proteinsoaklled paracrine factors or growth
and differentiation factors, GDFs) synthesized by one ddfilise over a small distance to
induce changes in nearby cells. This happens for instane& Wnt and FGF signaling is
activated by their respective extracellular signaling @cales. A third mechanism of cell-
cell communication is based on endocrine factors (hormjdhasare secreted into the blood
and travel to places far away from their production site teretheir effects. Notch, Wnt and
FGF signaling are signal transduction pathways belongiribe first and second interaction
mechanism, respectively. These pathways and their funchiming somitogenesis will be
discussed in the following in more detalil.

1.2.2.1 Notch Signaling

Notch signaling, triggered by a juxtacrine interactiomngmits signals between cells that
are in direct contact with each other. Core components ofNibteh signaling apparatus
are (1) a Delta-type ligand, (2) a Notch-type receptor anda(8anscription factor of the
CBF1/Su(H)/LAG1 (CSL) family. The canonical Notch sigmajipathway is depicted in
Fig. 1.3. Proteins of the Delta- and Notch-type are singlesgransmembrane proteins car-
rying repeats of the epidermal growth factor (EGF) motifageéllularly (Rebay et al., 1991).
A characteristic of EGF repeats is that they mediate direntact between a ligand and a
receptor (Rebay et al., 1991). When complexed to a Delta-bgand (in mammals these
are the Delta-like ligands DLL1, DLL2, and DLL3, and the Jaddgigands JAG1 and JAG2),
Notch undergoes a conformational change. Once this has tdlee, its cytoplasmatic do-
main can be cleaved by the protease Presenilinl, a membee abtmplexy-secretase and
the Notch intracellular domain (pb) is released. The peptide translocates into the nucleus
and binds to a dormant transcription factor of the CSL fatmreby replacing a co-repressor
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Figure 1.3: The canonical Notch signaling
pathway. Key-players of the pathway are
a Delta-type ligand, the Notch receptor and a
transcription factor of the CSL family. When
complexed with a Delta-type ligand, a part of
the cytoplasmatic domain of the Notch protein
is cleaved off. This Notch intracellular domain
(Nicp) translocates into the nucleus and acts as a
co-activator of the transcription factor CSL acti-
vating target-genes of the Notch signaling. This
activation happens by a replacement of the CSL
co-repressor complex by a co-activator complex
(adapted from Lai, 2004).

and activating the transcription factor (Lai, 2004; Gilp@003). This implies that Np is
usually necessary for the activation of Notch target gelmetst is by far not sufficient to ful-

fill this task. Indeed, each of the Notch targets is not alwagts/ated when Notch signaling
is active. The expression of a specific Notch target gene-regolated by other transcrip-
tion factors and/or signaling pathways (Bray and Furrid@)1). This complex mechanism
of gene regulation allows for the activation of specific getiat are appropriate for different

developmental settings. Thus a major biological role ofddadignaling is to control the
developmental fates of cells and the regulation of pattermétion. Whether a cell predom-
inantly expresses the ligand or the receptor is of high Bamce in this context.

1.2.2.2 Wnt Signaling

Whnt signaling is a paracrine interaction and it acts in nwusrcellular processes including
cell proliferation, survival, and differentiation. It telthas a significant impact on devel-

opment and disease (Logan and Nusse, 2004; Moon et al.,.280d)mple outline of the
current model of the canonical Wnt signaling pathway is showFig. 1.4. A central player
of this pathway is the proteifi-catenin. It functions as a co-activator of genes regulated
by the DNA-binding proteins of the lymphoid enhancer-bigfactor 1 (Lef) family or the

T cell-specific transcription factor (Tcf) family, with wtt 3-catenin can form heterodimers.
Free cytoplasmatif-catenin has a high turnover-rate. When Wnt signaling isedroff, (3-
catenin is continuously phosphorylated by the active gigrosynthase kinasg3(GSK33),
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Figure 1.4. The canonical Wntf3-catenin signaling pathway. In cells that are not exposed
to the extracellular signaling molecule Wnt (left panebe tscaffold proteins Axin and APC can
recruit GSK3 for the continuous phosphorylation @gfcatenin, that becomes subsequently poly-
ubiquitinated and degraded by the proteasome. Therebyotientration of3-catenin remains low
and genes regulated iB¢catenin as a co-activator will not be transcribed. Whels@ke exposed to
Wwnt, the Frizzled receptor supported by the Lrp5/6 recegaor bind this glycoprotein. The percep-
tion of the extracellular signal activates Dsh and rectthiésdestruction complex (Axin/APC/GSIR3

to the membrane, where Axin is subsequently dephosphedylahd committed to destruction. This
results in a decreased degradatiopefatenin by continuous Axin-dependent phosphorylatiodime
ated by the Axin/APC/GSK@ complex. Thereby, unphosphorylatpecatenin accumulates in the cy-
toplasm and nucleus, and finally interacts with Tcf/Lef tatrol transcription of target genes (adapted
from Logan and Nusse, 2004; Reya and Clevers, 2005; Cadighhia, 2006).

which is part of a large destruction complex formed by thdfetthproteins Axin and adeno-
matous polyposis coli (APC). Phosphorylafe@atenin is a substrate for poly-ubiquitination
and eventually proteasome-mediated degradation. Free3&G8HKs a very low phosphory-
lation activity for 3-catenin, but complexed with Axin and APC its phosphorgiatactivity
for 3-catenin increases tremendously (Dajani et al., 2003). 3i¢gmialing is activated by se-
creted Wnt ligands, cystein-rich glycoproteins that cdariact with members of the frizzled
(F2) family, seven-transmembrane receptor proteins, andgiglalso with the single-pass
transmembrane protein low density lipoprotein (LDL) recegelated proteins 5 and &1p5
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andLrp6). Both, Fz andLrp5/6 act as receptors of the recipient cell and probably interact
with each other when binding the Wnt ligand. Binding of WntRzn, which is the primary
receptor for Wnts (Bhanot et al., 1996), leads to the adtimafphosphorylation) of the in-
tracellular phosphoprotein Dishevelled (DSH or DVL) thablpably recruits Axin and the
destruction complex to the plasma membrane. This probasiylts in a dephosphorylation
and degradation of Axin (Tolwinski and Wieschaus, 2004} ith@resumably supported by
phosphorylation thereby inhibition of GSIRJy active protein kinase B (PKB, Akt) (Naito

et al., 2005). As a consequence the cytoplasmatic and mueles of 3-catenin increases.
Finally, by interaction with Lef/Tcf3-catenin activates the transcription of target genes, and
thus Wnt signaling is switched on (Logan and Nusse, 2004).

1.2.2.3 FGF Signaling

Signaling mediated by fibroblast growth factors (Fgf) hasrbgemonstrated to play a major
role in embryonic, fetal and postnatal vertebrate devekmrGoldfarb, 1996; Martin, 1998;
Boéttcher and Niehrs, 2005). Fgf molecules are secrete@ipobelonging to the paracrine
signaling factors (Gilbert, 2003; Thisse and Thisse, 20Bgj molecules can bind to specific
Fgf receptors (Fgfr), which are located in the cell membrané are members of a large
group of receptor tyrosine kinases. In human and mouse ywemt different Fgf genes
are known (Ornitz and Itoh, 2001; Itoh and Ornitz, 2004, 200&t signal by activating a
smaller family of cell surface receptors encoded by foutinlis genes (Fgfr1—4), which can
produce numerous Fgfr isoforms through alternative sgli¢dohnson and Williams, 1993;
Schlessinger, 2000). Fgfr receptors are single-passniam&rane proteins with cytosolic
tyrosine kinase activity.

FGF signaling (Fig. 1.5) is induced by binding of an Fgf ligato an Fgf receptor and
the subsequent assembly of receptor homo- or heteroditdirisli and Schlessinger, 1990;
Bellot et al., 1991) resulting in autophosphorylation ofitiple tyrosine residues of the Fgfr
receptor (Goldfarb, 1996; Mohammadi et al., 1996). Furtiwee, it has been discovered that
for the Fgf/Fgfr interaction heparin or heparin sulfatetpoglycans (HSPG) are required,
which stabilize the formation of the receptor dimer (Yayaorale, 1991; Schlessinger et al.,
2000).

Signaling complexes are recruited by the active Fgf recaqmmplex resulting in multiple
phosphorylation events. One of these events is the activati the Ras/mitogen activated
protein kinase (MAPK) cascade which activates, amonggrsttErk that in turn regulates
the activity of downstream kinases or transcription fagtorhe adaptor protein Frazhas
been shown to link Fgfr activation to the Ras/MAPK cascadee PTB (phosphotyrosine
binding) domain of Frs@ interacts with Fgfr (Ong et al., 2000), following the tynesiphos-
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Figure 1.5: Overview of FGF signaling.  Activated Fgfr can stimulate multiple pathways. It
can result in an activation of PISK/Pdk/Akt, PRBIPKC, or the Ras/IMAPK cascade. A detailed
description of Fgf activated pathways is given in the maixt.tgAlberts et al., 2008; Groth and
Lardelli, 2002; Bottcher and Niehrs, 2005; Dailey et al.02pD

phorylation of Frs& by active Fgfr. Viaits SH2 (Src homology 2) domain the adaptotein
Grb2 can bind to phosphorylated Fes2nd, in addition, recruit Sos to the plasma membrane
that is linked with its proline-rich sequence motif to the BEbrc homology 3) domain of
Grb2. Sos acts as a guanine nucleotide exchange factor (GEfRe membrane associated
GTPase Ras. Sos mediated exchange of GDP by GTP turns Rés atttive form Ras/GTP.
Ras/GTP in turn activates a cascade of MAP kinases, in whiitthesRaf phosphorylates and
activates Mek that in turn activates Erk by phosphorylatidhe deactivation of the MAP
kinases is facilitated by phosphatases. The deactivafi®as is mediated by a GTPase ac-
tivating protein (GAP) that stimulates the GTPase actigitiRas whereby inactive Ras/GDP
Is formed.

Another pathway that concomitantly can get activated by B@Raling is the PI3-ki-
nase/Akt pathway (Fig. 1.5). Three different routes aredesd by which the PI3-kinase/Akt
pathway can get activated (Boéttcher and Niehrs, 2005)t, firosphatidylinositol 3-kinase
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(PI13-kinase) directly binds to the active Fgfr receptor.c@al, via Frs2/Grb2 the Grb2-
associated binder-1 (Gab1l) docking protein is bound ansl tyedsine-phosphorylated, re-
sulting in the recruitment and activation of PI3-kinasedgiaet al., 2001; Ong et al., 2001).
Third, Ras/GTP can recruit the catalytic subunit p110 of-Rifase to the plasma mem-
brane and activate it (Rodriguez-Viciana et al., 1994; Raebal., 2000). When activated,
P13-kinase phosphorylates phosphatidylinositol 4,plisphate (PI(4,5Mp at the 3 posi-
tion of the inositol ring resulting in phosphatidylinodi®4,5-trisphosphate (PI(3,4,3)P
PI(3,4,5)R is associated to the plasma membrane and can be bound bynproseing a
pleckstrin homology (PH) domain. By this a kind of interactiphosphoinosite-dependent
protein kinase 1 (PDK1) and Akt (also called protein kinas®BPKB) are recruited to the
plasma membrane. PDK1 phosphorylates and by this activddesActive Akt acts as a
kinase and performs phosphorylation of multiple targetgins. One of these targets is the
glycogen synthase kinasg3GSK3B) that also has a pivotal role in Wnt signaling.

A third target that is activated by FGF signaling is the phmdjpase & (PLCy). PLCy
activates the inositol phospholipid signaling pathway bsagage of PI(4,5)Pinto inosi-
tol 1,4,5-trisphosphate (4 and diacylglycerol. Both molecules act as second messgnge
triggering an increase of the interacellular’Ckevel and an activation of protein kinase C
(PKC).

Several components of the FGF signaling are supposed tddwamné for somitogenesis
and are included in the mathematical model that | have dpeeli the course of my thesis,
presented in Section 2.2.3.

1.3 Computational Modeling of Biological Systems

Mathematical modeling and computer simulations can helmtterstand the internal nature
and dynamics of complex systems such as biological systechsheey can help to reveal
links and relations that are not directly obvious. The depsient of a computer model for
a given biological system involves several steps (Klipplgt2®05, p. 9). At first one has
to outline the problem that should be addressed by the maoadkefamulate questions that
should be answered by it. Later on, one has to collect all #ta that is required for its
implementation. Next, one has to decide about the modettsiiet This includes (1) the
level of description, e.g., whether it deals with interagtmolecules or cells, (2) the choice
of a deterministic or stochastic approach, (3) the use afrelis or continues variables, and
(4) the choice of a steady-state, temporal, or spatio-teatpescription.
A very common way of modeling biological systems makes userdinary differential

equations (ODESs). This approach is described in more dat&éction 1.3.1 where | intro-
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duce frequently used kinetic laws, which are also appliegidation 2.2 for the development
of a mathematical model on somitogenesis.

Creating a fundamental knowledgebase on cellular reac@on their components is the
first essential step in the development of computer modelsditular processes. This is al-
ready done by several projects resulting in large pathweahbdaes that are described in Sec-
tion 1.3.2 and that provide a valuable resource for modelmiymodeling tools. Moreover,
there are also databases on kinetic parameters or evefedétaietic models of particular
processes or pathways. Furthermore, | introduce most irapiostandards for exchanging
biological models and pathway data.

In Section 1.3.3 | present state-of-the-art tools for dyicamomputational modeling. Com-
puter tools allow the analysis of the dynamic behavior of iba&ction networks given the
model parameters. Very important features of such systesrfeainstance the estimation of
model parameters from experimental data and the analyige diehavior of the system with
respect to changes of these parameters. | give an overvidgwedeatures of several tools.

Finally in this section | present published mathematicatlei® describing different aspects
of somitogenesis.

1.3.1 Mathematical Modeling of Biological Systems Using
Ordinary Differential Equations

The compilation of mathematical models for biological sys$ requires knowledge about
many system components (e.g., genes, enzymes, regulatetabolites) as well as their
different states (e.g., active, phosphorylated, methglagtc.) and the interactions they par-
ticipate in. Latter involves the stoichiometry of the reaats (substrates and products, i.e.
the objects that are converted quantitatively) and the amapts which influence the reac-
tion directly, but are not consumed or produced, i.e. thaydehe reaction unchanged. This
defines the structure (topology) of a model. Another infdfarethat is relevant to the devel-
opment of continous models are the reaction kinetics. Foln e@action of a model one has
to know the kinetic law and its parameters, or make plausissaimptions for it.

1.3.1.1 Modeling of Biochemical Reactions

Kinetics of biochemical reactions can be described by thesnaation law, which says that
the reaction rate is proportional to the probability of tledlision of the respective reactants
(Guldberg and Waage, 1879).
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For a reversible reaction of the form
v,
mSy+neS 4+ S

m1P1+m2P2+~-~+ijj (11)
V—

with substrates;Sind products Rthe general mass action law reads

vV=0v, —v_ =k_ H[SZ]” — ke H[Pj]mj, (1.2)

wherev_, andv._ are the respective reaction rates of the forward and backsearctionsk_.
andk._ are their respective kinetic or rate constants, giydand[F;] are the substrate and
product concentrations with their respective molecuksit; andm.

The concentration change of the substrates and produgisatesely is given by

d&iz] =n;v d[;:]] =-—m;v. (1.3)

An important assumption for the classical deterministreskic modeling as it is described
here, is that all reactants are homogeneously distributed.

Based on the mass action law, kinetics for several spec#iction mechanisms can be

derived. For instance, for the irreversible enzymatic sulstrate reaction catalyzed by E
that reads

kl kQ
E+S—— ES—— E+P
k—

(1.4)

Michaelis and Menten (1913) derived a kinetic law that wasrlaxtended by Briggs and
Haldane (1925). It reads as follows:

Vmax [S]

UMM = m . (1.5)

This kinetic law shows a saturation behavior (Fig. 1.6A){hmva maximum V;,....) that is
proportional to the enzyme concentration, (. o« F). K,, is the substrate concentration for
which the reaction rate is half maximal.

If a protein or enzyme has several binding sites instead ahglesone, e.g., a protein
complex that is composed of several subunits like a honaotedr, the binding of one ligand
may change the binding affinity to further ligands. This ptr@enon is called cooperativity.
It has already been described in 1910 by Hill for the bindih@xygen to hemoglobin. A
kinetic law describing this behavior is given by the Hill egjon. Let us assume we have an
enzymek, with two binding sites for the substrate S and the followiegation

E, +2S

.S, (1.6)
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and the binding constant is defined by

[E.5,]

Kp=-—>"°=_ 1.7
ARG &)
then the Hill equation reads
_ Kp[S]"
VHill = Vmaz 1 + KB[S]h’ (18)

where the quantity: is denoted the Hill coefficient. An example of the Hill kineis plotted
in Fig. 1.6B.

UM]V[([S]avmaxaKm) vHill([S]avmaxaKBah>
Vg oo Vo
Vmax/Q —r
| |
|
0- : 0
Ko [S] [S]
(A) Michaelis Menten function (B) Hill function (with ~ > 1)

Figure 1.6: Examples of some standard kinetic laws for biochmical reactions. In (A) the effect
of different K,,, values is illustrated(B) Example of a Hill kinetic.

For a set of reactions the concentration change of a singgonpent is given by the sum
of in- and out-fluxes as follows

d

([ji] = ngu;  with i=1....m (1.9)
j=1

(Glansdorff and Prigogine, 1971). In this ordinary diffietial equation (ODE) systerib;]
denotes the stoichiometric coefficient of tit componenty; is the reaction rate of the
jth reaction, andq;; is the concentration of thé&h component in thgth reaction. The
mathematical model is described by systems equations ant@lequations (Equation 1.9).
To do time course simulations this ODE system can be solvethéyse of a numerical
integrator or, if it is simple enough, also analytically.

Besides biochemical conversion reactions, associatidrdessociation processes are cru-
cial for modeling of cellular interaction networks. Assatmon and dissociation usually de-
scribe a reversible process of two or several componentddia a single complex. The
rate of dissociation can be described by the mass action talita dissociation constant
K p, a specific equilibrium constant that measures propens@yomplex to dissociate. The
inverse value of, is known as the association or affinity constant. For exanfplethe
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following reaction

nA +mB (1.10)

Kp is defined as
Kp = 7] (1.11)

1.3.1.2 Modeling of Gene Expression

Similarly as for metabolic reactions, gene regulation dao he described by coupled dif-
ferential equations. The change in the level of each genBElMcan be introduced by two
different terms, a positive term for transcription (MRNAn#yesis) and a negative term for
MRNA degradation. The expression of a gene, i.e. its trgtgmm, depends on one or several
other components known as transcription factors. For bi@sate law for the mRNA synthe-
sis of a gene—or, if transcription is neglected, the cowesing protein synthesis—depends
on the concentration of the respective transcription facto

A kinetic law that is often found in literature for the degtion of gene regulation by a
modifier (co-activator) is the Hill kinetic in a slightly mdegkd form compared to Eq. 1.8:

™

h' (@, 055, m) = W (1.12)
whered;; > 0 is the threshold value for the influence of transcriptiortdag on the ex-
pression of gene, andm > 0 a steepness parameter. The function ranges from 0 to 1,
and increases monotonically as — oo (Fig. 1.7A). In order to express a repression in
whichz; is an inhibitor one can ude (z;, 0,5, m) = 1—h* (x;, 6;;, m) ((Fig. 1.7B); de Jong
(2002)). Form > 1, the Hill kinetic has a sigmoid shape that is in agreement axperi-
mental evidence (Yagil and Yagil, 1971). As an alternatova Hill kinetic, gene expression
can, e.g., also be described by non-continuous functiocis asl a step function (Fig. 1.7C)
or a logoid function (Fig. 1.7D).

A general description for the kinetic modeling of gene ragjoh has been introduced by
Schilstra and Bolouri (2002) and Schilstra and Nehaniv 80T hey give a logic semantic
for the description that takes also into account inhibitamd activation as well as effects
like cooperativity and competition. A simplified rate lawatitan also be derived from the
general description given by Schilstra and Bolouri is idtroed by Mendes et al. (2003) and
reads as follows

n]

[Ag]™
=V H( nHK )xl}(m) (1.13)
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€X; €X;
Hj J Hj J

(A) Hill function (B) modification of (A) for the descrip-
tion of inhibition

st(z;,0;) I*(x;,0;,9)
1 4. : 1 .
0 0
‘9]' ZEj ‘9]' l’j
(C) step function (D) logoid function

Figure 1.7: Examples of kinetic laws often used for gene redatory processes.  (AHill function
h*, (B) a modification of (A) that can be used for the descripton ofdition »~ = 1 — T, (C) step
functions™, (D) logoid function/™, (de Jong, 2002).

or a modification of this

' [Ag]™
=V H( "3+K"3>X1;[(1+W€—+&”:)' (1.14)

In Eq. 1.14 the inhibitorg; and activatorsl, act independently of each othéf.is a basal
rate of transcription, i.e. when there is no action of intuts or activators. The constaris,
andK,, indicate concentrations at which the effect of the respedtihibitor or activator is
half of its saturating value. The Hill coefficients andn; regulate the sigmoidicity of the
curve. This kinetic description of gene regulation is usedhie mathematical model on
somitogenesis described in Section 2.2.

1.3.2 Data Resources for Systems Biology

The development of mathematical models of cellular systeupgires a lot of information on
different aspects of the system. Data typically arises fseweral levels of cellular informa-
tion quantified by different functional genomics technaésgsuch as DNA, RNA or protein
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sequence data, gene expression data from array experjrabatglance data of proteins and
metabolites from diverse experimental techniques (e.gssspectrometry, 2D-gels, blots),
information on protein-protein interactions or proteindifications, or kinetics of enzyme

activities or binding affinities, among others. The mostamant resource for such informa-
tion is the scientific literature and human expertise aggi@ted in public databases. In par-
ticular for the development of mathematical models, stesidad resources that provide their
data in a computational amenable and reusable manner asfesgile resource. Tab. 1.3
gives a brief list of some important databases. A large ctatipnh of relevant database re-
sources is given in Galperin (2008). Moreover, the journatisic Acids Research offers a
yearly database issue in January, providing a broad owefieiverse databases.

1.3.2.1 Pathway and interaction databases

Pathway databasgare particularly interesting for modeling approachesesithey offer a
straightforward way of building network topologies by thmatated reaction systems. These
databases provide integrated representations of furatiorowledge of the different com-
ponents of a biological system and constitute a foundatiothie topology of mathematical
models. The databases KEGG (Kanehisa and Goto, 2000; Kanehial., 2008), Reac-
tome (Joshi-Tope et al., 2005; Vastrik et al., 2007), and3gmo(Karp et al., 2005) contain
metabolic reactions and several signal transduction pathw KEGG (Kyoto Encyclope-
dia of Genes and Genomes) is a reference knowledgebasmgfigiormation about genes
and proteins, biochemical compounds, reactions, and pgthwit provides 240 reference
pathways$ that are linked to genes and reactions of multiple eukasyatel many microor-
ganisms. It can be accessed via the Web, FTP, and Web seriReastome is managed as
a collaboration of the Cold Spring Harbor Laboratory, thedpean Bioinformatics Institute
(EBI), and the Gene Ontology Consortium. It uses a very peespecification (ontology)
of components and interactions that comprises details@mohsbmetry, localisation, refer-
ences to external databases, etc. This covers also predésseomplex formation events
or translocations of molecules. A further pathway datalesie a similar scope is BioCyc
that covers pathway data &scherichia coli(EcoCyc), and predicted metabolic pathways
of other microorganisms (MetaCyc), and human (HumanCye}fabases with a specific fo-
cus on signaling events are BioCarta, Spike (Elkon et aD820TRANSPATH (Schacherer
et al., 2001), STKE, NetPath, and the Pathway Interacticiatizese (PID). An inherent as-
pect of the pathway concept is protein-protein interac8ahject of the databases IntAct
(Hermjakob et al., 2004; Kerrien et al., 2007) or DIP (Xeonaret al., 2000). Gene regula-

2pathguide - the pathway resource list:t p: / / www. pat hgui de. or g/
3KEGG Release 48.0, Oct. 2008
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Table 1.3: Databases useful for modeling of cellular systems.

Database URL

Pathway databases

KEGG http://ww. genone. j p/ kegg/

Reactome http://ww. react one. or g/

BioCyc http://biocyc.org/

EcoCyc http://ecocyc. org/

MetaCyc http://metacyc. org/

HumanCyc htt p://humancyc. or g/

BioCarta http://ww. bi ocart a. conl

Spike http://ww. cs.tau.ac.il/ spike/

TRANSPATH http://ww. bi obase. de/

STKE http://stke.sciencenag. org/

NetPath http://ww. net pat h. or g/

PID http://pid.nci.nih.gov/
Protein interaction databases

IntAct http://ww. ebi.ac. uk/intact/

DIP http://di p. doe-nbi . ucl a. edu/

Databases on gene regulation
RegulonDB  http://regul ondb. ccg. unam nx/
TRED http://rul ai.cshl.edu/ TRED
TRANSFAC http://ww. bi obase. de/

Databases on kinetic parameters
BRENDA http://ww. brenda- enzynes. i nf o/
SABIO-RK http://sabio.villa-bosch. de/

Model databases
JWS http://jjj.biochem sun. ac. za/
BioModels http://bi onodel s. org/
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tion processes and gene regulatory networks are not yetasbuesuch detail like metabolic
processes or signaling. However, there are databasesdhairformation on transcription
factor binding sites such as RegulonDB (Salgado et al., QGBED (Zhao et al., 2005), and
TRANSFAC (Wingender et al., 2000; Matys et al., 2006). Theklaf uniform data models
and data access methods of the existing almost 224 intenacind pathway databases make
data integration very difficult (Cary et al., 2005). Tab. lldstrates the overlap of several of
these pathway resources in human.

Table 1.4: Numbers of overlapping reactions/interactions from défe pathway databases that can
be mapped to each other in respect of identical substrategraducts (ConsensusPathDB, Oct. 2008;
Kamburov et al., 2008).

Reactome Kegg Humancyc Pid Biocarta Netpath Intact Dip MintHprd  Biogrid  Spike
Reactome 4246 261 122 109 81 34 98 32 52 312 208 126
Kegg 261 1658 213 0 4 0 0 0 0 0 0 0
Humancyc 122 213 1322 0 2 0 1 2 2 7 3 2
Pid 109 0 0 3741 285 100 71 48 78 352 249 202
Biocarta 81 4 2 285 2221 69 52 36 44 145 115 173
Netpath 34 0 0 100 69 1915 58 34 124 819 508 235
Intact 98 0 1 71 52 58 6995 312 2816 3285 1621 4330
Dip 32 0 2 48 36 34 312 1216 393 823 638 443
Mint 52 0 2 78 44 124 2816 393 13176 7446 4545 5939
Hprd 312 0 7 352 145 819 3285 823 7446 37952 18721 11854
Biogrid 208 0 3 249 115 508 1621 638 4545 18721 28206 10738
Spike 126 0 2 202 173 235 4330 443 5939 11854 10738 22230

Besides topological information about cellular reacti@tworks, also kinetic data, like
kinetic laws and kinetic constants, are of particular ies¢for the generation of mathematical
models. Two databases that are concerned with such dateREBBA (Schomburg et al.,
2004) and SABIO-RK (Wittig et al., 2006).

Mathematical models of a biochemical reaction system haes lmade available to the
scientific community in form of a publication often depidia diagram of the reaction system
or a list of the reaction equations, along with a mathemkdieacription (e.g., as a differen-
tial equation system), and lists of kinetic parameters amtentrations of specific states.
Recently, model databases have been setup, such as the d@tsMitatabase (Novere et al.,
2006) or JWS (Olivier and Snoep, 2004). Both are free, cksth databases of curated,
published, quantitative kinetic models of biochemical aatiular systems. For instance, the
BioModels database currently provides 87 curated and 46&cocsted models.

1.3.3 Software Applications for Modeling and Simulation

The computation of time courses of a biochemical reactictesy based on a given pathway
structure and its kinetic scheme, that is required for satioihs, has already been discussed
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1970 by Garfinkel et al. It arises from fundamental researchiochemical reaction kinet-
ics (e.g. Michaelis and Menten, 1913). The first simulatiba diochemical system (the
peroxidase reaction) was carried out by Chance (1943), wkd a mechanical differential
analyzer to solve mathematical equations.

Table 1.5: Modeling tools frequently used in systems biology.

Application URL

Gepasi http://ww. gepasi . org/

COPASI http://ww. copasi . org/

E-Cell http://ww.e-cell.org/

ProMoT/Diva htt p://ww. npi - magdebur g. npg. de/ pr oj ect s/ pr onot /
Virtual Cell http://ww. nrcam uchc. edu/

Systems Biology Workbenchht t p: / / sys- bi 0. or g/

Cell Designer http://ww. cel | desi gner. org/

PyBioS http://pybi os. nol gen. npg. de/

During the past decades in the course of the computatiomalutton more and more
software applications were developed that can be used éodéiscription of the dynamic
behavior of biological systems. In Tab. 1.5 several sofenagplications are listed. A very
comprehensive list of such software applications can bedai the SBML homepade

Often general-purpose applications such as MathematicHr@dfh Research) and Matlab
(MathWorks) are used that are designed for the computatidnvesualization of any type
of mathematical model. Although these software tools arg advanced, they have a steep
learning curve, require a lot of mathematical backgrounoWkadge, and are not designed
for the setup of biological models. This gave rise to the tgument of many other software
applications that better meet the desired requirements.

One of the first applications designed for simulation of bemical reaction systems is
Gepasi that was developed in the beginning of the 1990ies. dtstand-alone-application
and comes up with a user-friendly interface for the simalaand analysis of biochemical
systems (Mendes, 1993, 1997; Mendes and Kell, 1998). Itiggstime course and steady
state simulation and the ability to explore the behaviorhef tnodel over a wide range of
parameter values using a parameter scan that runs one sonudta each parameter com-
bination. Gepasi can be used to characterize steady st&tesmetabolic control analysis
(MCA, Kacser and Burns, 1973; Heinrich and Rapoport, 19™) linear stability analy-
sis and is capable of doing parameter estimation with experial data. The successor of
Gepasi is COPASI that has similar but improved functionssorde extensions (Hoops et al.,

‘http://sbm . org/ SBM._Sof t war e_Gui de/ SBM__Sof t war e_Sunmary

25



http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

1 Introduction

2006).

E-Cell is based on the modeling theory of the object-ori@r8abstance-Reactor Model
(Tomitaet al., 1999; Takahashi et al., 2003). Models arstranted with three object classes,
Substance, Reactor, and System. Substances representastables, Reactors describe op-
erations on state-variables, and Systems represent lagipaysical compartments. It pro-
vides different classes of standard Reactors (e.g., Mishikenten formula). Time course
calculation is done by the use of a simulation engine. Nurakintegration is supported by
first-order Euler or fourth-order Runge-Kutta method.

ProMoT/Diva consists of the modeling tool ProMoT and theldation environment Diva
(Ginkel et al., 2003). The workbench deals with modular ni&dad can handle differential
algebraic equation (DAE) systems. Modeling is supported fgyaphical user interface and
a modeling language. The modeling tool provides the pdggibo use existing modeling
entities out of knowledge-bases.

The Virtual Cell is a web-based client-server architectwirth a central database of user
models. It provides a formal framework for modeling biocheath electro-physiological,
and transport phenomena while considering the sub-cello¢alization of the molecules
that take part in them (Slepchenko et al., 2003).

The Systems Biology Workbench (SBW) provides a server ttigt @ a broker between
different modeling and simulation tools (clients) via a c¢oon interface (Hucka et al.,
2002). These clients (add-ons) cover graphical tools fodeh@opulation, deterministic
and stochastic simulators and analysis tools like the ratemn of MetaTool (Pfeiffer et al.,
1999).

CellDesigner provides an advanced graphical model reptaisen along with an easy to
use user-interface and an integrated simulation engineaffashi et al., 2003). For the devel-
opment of a model CellDesigner supports a rich set of grapkiements for the description
of biochemical and gene-regulatory networks. Networkslzaconstructed from compart-
ments, species, and reactions. CellDesigner comes witiga faumber of predefined shapes
that can be used for different types of molecules, such agipsjy receptors, ion channels,
small metabolites, etc. In CellDesigner it is also possibléndicate phosphorylations or
other modifications. The program also provides severalsdonspecial reaction types like
catalysis, transport, inhibition, and activation.

All these software applications provide the ability to defammodel step by step, e.g., by
entering the reaction details as plain text or by the use miesgraphical interfaces. Entering
reaction details step by step is very important, but can fmeceery cumbersome and error-
prone, in particular for large biochemical reaction netygoin this context, the visualization
of the reaction network of a model is also very important. ¢tiams for the visualization
of reaction networks are only provided by some of the abovetimeed software applica-
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tions. In particular none of them provide a flexible way foe #wutomatic visualization of
parts of a reaction network that is very important, e.g.,l&oge models that are ofter very
complex. Moreover, often one is interested in comparingugtion results directly with the
underlying network structure, to understand the dynamstesy behavior in the context of
the reaction network. This is also a feature that is not glediby current software appli-
cations. To overcome these limitations it was necessargveldp a software application,
namely PyBioS, that provides those features and could fos¢he setup of a quite large
model on somitogenesis that incorporates different siggadathways and gene regulatory
feedback mechanisms.

Since the diverse software applications provide diffefeatures, a well defined format for
data exchange and documentation of the components antresact a model is pivotal. This
demand resulted in the development of several data formapathway data and mathemat-
ical models. The BioPAXformat is a very general and expressive format and is dedifyme
handling information on pathways and topologies of biocicahreaction networks. Other
formats that are designed for the description of mathemlanodels of biochemical reaction
systems are the Systems Biology Markup Language (SBML, Hetlkal., 2003, 2004) and
CellML (Lloyd et al., 2004).

1.3.4 Mathematical Models of Somitogenesis

Mathematical modeling turns out to be significantly useful the description and under-
standing of cellular processes and can be used for hypethesting and making experi-
mentally testable predictions. There are already multipéghematical models describing
different cellular processes, such as metabolic pathwkgglycolysis (e.g. Teusink et al.,
2000; Hynne et al., 2001), signal transduction pathwaysg, MAP kinase signaling (e.g.
Huang and Ferrell, 1996; Hatakeyama et al., 2003) or WNTadigng (Lee et al., 2003),
gene-regulatory processes (e.g. Elowitz and Leibler, R@f¥ahe cell cycle (e.g. Goldbeter,
1991; Tyson et al., 1996; Novak et al., 1999).

There are also several mathematical models describingl@efirocesses of somitogene-
sis. For instance, Lewis (2003) has worked out a mathentaticeel for oscillation during
somitogenesis in zebrafish. The model takes into accouhittiggene and its corresponding
protein that acts as a repressor for its own expression {F8d@\). The model is described by
two time-dependent delay differential equations

SBioPAX: ht t p: / / www. bi opax. or g
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WOT_ apm(t 1))~ blp(o), (1.19)
AL~ flpte ~ T,0) — elm) (116)

where [p] and [m] denote the protein and mRNA concentrations, respectivelg, the
translation rate, andlandc are the decay rates of the protein and mRNA, respectivelg. Th
MRNA synthesis is described by

k

f(p)) = T+ P /pE (1.17)

which describes the inhibitory effect of the protein thatsaas a dimer on the mRNA
transcription.T’ = T,, + T, is the time delay given due to transcripti@h, and translation
T,. For sustained oscillation it is assumed that the lifetimeie MRNA and protein are
very short compared with the total decay tiffie For sustained oscillation the peak of the
protein concentration is shifted slightly behind that af thRNA concentration.

Based on the work of Lewis (2003), Hirata et al. (2004) haveked out a model for
the description of the oscillatory behavior ldés7expression in mouse. They analysed the
model in respect to the protein half live that turned out asugial parameter. Based on
the simulation results of their model they could show thaak life of 20 min for the Hes7
protein provides a sustained oscillation, while an incee@ms30 min results in a damped
oscillation which is in accordance to experimental findings

Zeiser et al. (2008) have converted the model of Hirata €2804), which is described
by two delay differential equations, into an ordinary diffietial equation system consisting
of five different components (see Fig. 1.8B). It takes intcoamt separate variables for both
the mRNA and the protein. Furthermore, the cytosolic proigifirst ubiquitinated before
degradation. All reactions are described by linear kirse¢iecept for the inhibition of the
gene expression that is described by a Hill kinetic (cf. Bact.3.1) and the ubiquitination
that is described by a Michaelis-Menten kinetic (cf. Settid.1). Zeiser et al. (2008) could
mimic the qualitative results found by Hirata et al. (2004¢@ding to the half life of the
ubiqutinated protein without explicit specification of ené delay.

Althoughherlandher7in zebrafish can form a sustained oscillator, it is not su#fitio
form a robust molecular clock for somitogenesis. Surpglsinzebrafish embryos lacking
bothherlandher7 or embryos injected witherlandher7 morpholinos still form abnormal
somites (Henry et al., 2002). This observation indicatasfiirther components are involved
in the molecular clock controlling somitogenesis. Ortlgnles of the zebrafish hairy and
enhancer of split genes, whose expression oscillate dsongtogenesis, have also been
detected in amniotes (where they are called Hes genes)hik&en HES1 HAIRYZ and
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Figure 1.8: Models of molecular autoinhibitory circuits. (A) Model of herl autoinhibition pro-
posed by Hirata et al. 2004B) Model of Hes7autoinhibition developed by Zeiser et al. (2008). The
model considers compartmentalization whergad M. are the mRNAs in the nucleus and cytosol,
respectively, and Pand R are the respective proteins each in the nucleus and cytBs19 is the
ubiquitinated protein targeted for degradation.

HEY2 and mouseHes] Hes7 Hesj andHeyl Dequéant and Pourquié 2008). Moreover,
cyclic expression of other Notch pathway genes were idedtifas for example delta-like 1
(DII1) and lunatic fringel(fng) in mouse. Today, it is well established that Notch sigrealin
plays an important role in the clock mechanism. However,mietch signaling is impaired
or abolished, still somites can be formed, suggesting thditianal factors must be involved,
such as components of Wnt signaling and FGF signaling asopeapby Aulehla and Her-
rmann (2004). One component of the Wnt signaling that has fimend to oscillate during
somitogenesis is Axin2 (Aulehla et al., 2003). Based oreddiit data that suggest an oscil-
lation of Wnt signaling activity in the presomitic mesodef@EM), Aulehla and Herrmann
(2004) proposed a negative feedback loop involvixin2 as a target of Wnt signaling and
the subsequent destabilization of Axin2 protein that camfanother molecular oscillator.
Moreover, they outline that there is a tight link between \Aiml Notch signaling cascades in
the oscillating part of the PSM and they suggest that thdlasons of Notch signaling ac-
tivity are dependent on Wnt3a. Furthermdfgf8 RNA was shown to form a gradient along
the PSM and, by increasing the local concentration of Fgégm in the PSM, the somite
size was reduced, whereas the inhibition of FGF signalisgltein larger somites (Dubrulle
et al., 2001). These observations indicate the importahEgf8 in determining the position
at which a segment boundary will form. In addition to the Fgf8dient that is formed in the
PSM with a high concentration in the tail bud and a decreasaterior direction, a second,
parallel gradient formed by Wnt3a was also identified (Aldedt al., 2003).
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A first mathematical model of somitogenesis integratingddpWnt and FGF signaling
was developed by Goldbeter and Pourquié (2008). The modsdtisp by three separate
models for FGF, Wnt and Notch signaling, respectively, eaith independent oscillators.
Goldbeter and Pourquié (2008) showed that coupling of theetlmscillators can lead to
synchronized oscillations in the three signaling pathway® complex periodic behavior,
depending on the relative periods of oscillations in the¢hpathways.

In the course of my thesis | have developed a comprehensitreematical model of somi-
togenesis that includes additional components of Notch,ald FGF signaling and assumes
other cross-talks between the pathways. It is introduc&eition 2.2.

1.4 Experimental Techniques for Gene Expression
Analysis

Besides the analysis of biological systems, modelingesjras can also be applied to biotech-
nological experimental techniques. One particular teginaiof high interest in molecular ge-
netics is gene expression analysis. Today the genome saxjoéseveral species is known.
Among the first genomes to be sequenced have been those ofisomerganisms likéy-
coplasma genitaliunfFraser et al., 1995) dfscherichia col(Blattner et al., 1997) and later
also those of eukaryotes ranging frddaccharomyces cerevisigéoffeau et al., 1996) to
mouse (Waterston et al., 2002), rat (Gibbs et al., 2004) hantan (Lander et al., 2001; Ven-
ter et al., 2001). The availability of large scale sequerata dave rise to the development of
new high-throughput technologies for transcriptome agigjysuch as DNA arrays.

DNA array technologies are of particular interest, singe tilanscriptional state gives a
shapshot of the gene expression state and thus an overviee génes that might be active
at a particular time point. Of course this information isd@id by degradation rates, post-
translational modifications, activations or inhibitions.

1.4.1 cDNA Array Technology

DNA array technology is nowadays frequently used in trapsmme analysis for the gener-
ation of genome-wide gene expression profildBNA arrays benefit from the biochemical
feature of hybridization. Hybridization describes thedinmy of two complementary strands
of nucleic acids to each other via hydrogen bonds, where tmgntarity refers to the rule

5For a review se@he chipping forecasNature Genetics, Vol. 21, Suppl. Issue 1, 1989 chipping forecast
Il, Nature Genetics, vol 32 Suppl., 2002;Tdre chipping forcast IlINature Genetics, Vol. 37, Suppl. (6s),
2005
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of Watson and Crick. This rule says that adenine (A) can biydhine (T) via two hydro-
gen bonds and cytosine (C) can bind guanine (G) via threeolggthre-bonds. For decades
hybridization has been used in molecular biology for ddfartechniques such as Southern
blotting and Northen blotting. By these techniques DNA orARiNat was separated by gel
electorphoresis is transfered to a filter membrane, anddafosed to a radioactively labeled
oligonucleotide probe. DNA or RNA fragments which are coempéntary to the probe can
such be identified.

DNA arrays are a massively parallel version of these tealesq Thousands of DNA
samples are immobilized as spots within micrometers to edlclr on a surface (e.g. a
nylon filter or a glass slide) and hybridized with a labeleshpke. The immobilized samples
usually have known sequences and are denotgaes The labeled sample that has to
be identified is called thearget The target sample is usually derived from total mRNA of
the cells which are under investigation. After digitalipatof the hybridized array image,
a numerical value, the signal intensity is assigned to eachep It is assumed that this
signal intensity is proportional to the number of molecutéghe respective gene in the
target sample, and hence changes in signal intensities eamdrpreted as concentration
changes. It should be pointed out that this is only valid ag kas the intensity-concentration
correlation is approximately linear. Nonlinearities nmtigitcur, for instance, by saturation
effects or if the concentration falls below the detectionifiof the DNA array.

By this extensive parallel expression analysis it is pdsdibstudy not one or a few genes
at a time, as it is the case for Southern blots or Northerrsplait thousands of genes in
parallel with a single experiment. Hence, DNA arrays aredaali experimental platform for
systems biology.

The first DNA array platform was the macroarray developeca late 1980s (Poustka
et al., 1986; Lehrach et al., 1990; Lennon and Lehrach, 1991} technique employs PCR
products of cDNA clones that are immobilized on nylon filteembranes and hybridized
with radioactively labeled target material. The hybridiaa pattern is detected using a phos-
phor imager. cDNA macroarrays typically have a size of 82 cnt to 22 x 22 cnt and
cover up to 80 000 different cDNA clones. Multiple studiesptoyed this technique (Gress
etal., 1992, 1996; Granjeaud et al., 1996; Nguyen et al 5;1Bkmeis et al., 2001; Herwig
et al., 2001; Kahlem et al., 2004).

cDNA microarrays are another DNA array platform. Here, cDiSApotted on glass slides
by a robot. The immobilized probes are hybridized by floueetly labeled target material.
Microarray chips are small (1.8 1.8 cnt) and allow the spotting of tens of thousands of
different probes. cDNA microarrays are widely used in geaaesearch (Schena et al.,
1995, 1996; DeRisi et al., 1996, 1997; Spellman et al., 1848;et al., 1999; Bittner et al.,
2000; Whitfield et al., 2002; Adjaye et al., 2005). A specifitvantage of this technology
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is that the sample target and the control target can be ldbatd different fluorochromes
(Cy3 and Cy5 dyes; e.g. Amersham Pharmacia Biotech, Saata,(IA) and used for the
same hybridization. Afterwards, two scanning proceduresparformed for the different
fluorochromes, respectively. This yields two images, onbesample target and another of
the control target.

A third platform is commercial oligonucleotide chips: Qiigucleotides are either spotted
orin situsynthesized on slides. Latter method is applyed by the fittaigraphic procedure
used for the production of Affymetix chips. These chips eletgrize a single gene by the use
of a set of approximately 20 oligonucleotide probes of largd—25 nucleotides (Lockhart
et al., 1996; Wodicka et al., 1997; Lipshutz et al., 1999)eSéhprobes are denoted as per-
fect matches (PM), because they are perfectly complemetdgrarts of the mRNA of the
respective gene. For the detection of nonspecific and baugkgdrhybridization, mismatch
(MM) oligonucleotides are synthesized that differ only e tcentral position 13 from the
PM oligonucleotides. Chips are typically small (18L.8 cn?). The target sample is labeled
with a single fluorochrome, so two chips are required to campaample and a control. An-
other commercial platform is that of Agilent. These chips aroduced by an inkjet printing
technology, known from printers, that has been adapted®ntanufacturing. Agilent chips
utilize 60mers as probes (Hughes et al., 2000, 2001).

1.4.2 Image Analysis

The mentioned DNA array platforms provide the experimemtatule of this gene expres-
sion analysis technique. The second part is data analyaisstlone by the bioinformatics
module. Output of the experimental platform is a digitizgttdization image. First step of
the analysis pipeline is image analysis. In this step eachegspot of the scanned DNA array
image is assigned a numerical value that represents thal sigensity. Essential for this is
the correct identification of each spot center, and a cogeantification of the pixel neigh-
borhood around the identified center of each spot. Sinceigmalsintensities determined
during image analysis are the input data to any further poegssing steps and fold-change
analysis or clustering analysis, the quality of image asialis essential for any results that
can be gaind by subsequent procedures.

Commonly, image analysis is a two-step procedure: In thiesfiep, the grid finding, a grid
is determined whose nodes describe the center postitiotie girobe spots. In the second
step, the quantification of signal intensities, a certakeparea around the respective spot
center is used to compute the signal intensity. For imaglysisaseveral commercial prod-
ucts are available, e.g., ImaGene (BioDiscovery), Gertesp@MicroDiscovery), GenePix
(Axon), AIDA (Raytest), and Visual Grid (GPC Biotech). Moneer, academic groups have
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developed their own software, e.g., ScanAlyze (Stanforvéraity), FA (Max Planck Insti-
tute for Molecular Genetics, Steinfath et al., 2001), andBBGpot (University of California,
San Francisco, Jain et al., 2002). All these products diffeseveral points, e.g., the array
platforms they are designed for, the degree of automatrmhilee usability. Very importanat
points are of course the correct spot identification and gfigation, that depends on the im-
plemented algorithms, and manual settings required bysbg like clicking the corners of
the spotted area. Hence, image analysis programs can édiehsnanual, semiautomated,
and automated according to the degree of user interaction.

Grid Finding

Spots of the array are usually arranged in a rectangular Dué to experimental problems of
the spotting procedure, the center of a spot is usually reattgxat its ideal grid position, e.g.,
sub-grids can be shifted against each other, spots cantbeédsirregularly in each direction,
and irregular spot shapes can make the spot identificatioa difficult. The purpose of grid
finding is to assigne all spots to their corresponding grisifomn and to identify the correct
center of each spot. The procedures comprise mostly geianogkerations, like rotations
and projections of the digitized image. In the first step efghid finding the global borders
of the originally reactangular grid are identified. Duringther steps smaller sub-grids are
found, and finally the individual spot positions are idertifi Common basic steps of the
grid finding procedure are (1) a pre-processing of the piathes, (2) the detection of the
spotted area, and (3) the spot finding (Steinfath et al., RO0he purpose of the first step
is to amplify signal pixels, while reducing noise, e.g. byftalg a theoretical spot mask
across the image and assign those pixels to grid nodes thattble highest correlation to
the theoretical spot shape. Therefore, the theoretical Spape should be similar to most
of the spots, e.g., a two-dimensional gaussian distribsitb@ghe might be appropriated. The
second step identifies the quadrilateral of the spotted &®eathis step several of the above
mentioned programs require user interaction by manualitdefirof the spotted area, e.g., by
clicking the edges. They are semiautomated (e.g., Visudl) GFully automated programs
provide an automatic corner detection (e.g., FA). In thedtkiep of this procedure each node
of the grid is detected and local maxima are identified thatlae centers of the spots.

Quantification of Signal Intensities

Once the centers of the spots have been identified, a ceft@hgrea around each spot
center is used to compute the signal intensity. Potentiat®the quantification has to cope
with are background noise due to unspecific binding, ovargleffects of spots that are next
to each other, or irregular spot shapes. The quantificatigiinbe done in two different
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ways: Segmentation tries to separate the foreground pixatdelong to the spot, from its
surrounding background pixels (Jain et al., 2002). Thempa mtensity and potentially

also a background value can be calculated from the respeat®as. Another quantification
method is the spot shape fitting that tries to fit a particulabgbility distribution, e.g., a two-

dimensional Gaussian spot shape around the spot centesiditad intensity is computed as
a weighted sum of the pixel intensities and the fitted der{Sitginfath et al., 2001).

Databases of Expression Data

Microarray data provide a valuable resource in the intégpien of the transcriptome levels
of genes. Large repositories store these data from mublitplies such as the Gene Expres-
sion Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2@@TNCBI and the ArrayExpress
(Brazma et al., 2003; Parkinson et al., 2007) at EMBL-EBIle3én databases provide free
distribution and shared access to comprehensive genesskpnedatasets. Data include sin-
gle and multiple channel microarray-based experimentsoreay the abundance of mMRNA,
genomic DNA and protein molecules. Data from non-arrayetdsigh-throughput func-
tional genomics and proteomics technologies are alsowaadhincluding SAGE, and mass
spectrometry peptide profiling.

Reliability of Array-based Expression Data

The reliability of data produced by these experiments aed tleproducibility are crucial
for this research. To ensure both reliability and reproblility a sophisticated experimental
design is necessary. This includes for example the ideatidic of error parameters that af-
fect the hybridization data during the data generationgssc Influences of systematic and
statistical errors due to biotechnological methods (faanegle mMRNA preparation, PCR,
hybridization), as well as due to devices and array-mediagfample robots, filters, glass-
slides) and their effects on evaluation software and dlgms (image analysis, statistical
tests, clustering algorithms) must be estimated. Theseaswf error are frequently dis-
cussed in the context of calibration and normalization afroarray data (e.g. Dudoit et al.,
2002; Huber et al., 2002; Kepler et al., 2002; Schuchhardk €2000).

In the course of my thesis | have developed a computer mod#iéossimulation of cDNA
macroarrays that takes into account several sources af dtrenables scientists to judge
which parameters are critical and how the experimentabesi data evaluation might be
improved. The computer model is introduced in Section 2.8rédver, using this model, |
performed simulations of DNA array hybridization expermtsefor the evaluation of critical
parameters during subsequent image and data analysis.
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1.5 Objectives

The objectives of my thesis are (1) the development of a nglahd simulation platform for
biological systems, (2) the use of the modeling platformtiigr development of a molecular
model of the mouse segmentation clock that plays a centeinsomitogenesis, and (3) the
application of modeling strategies on cDNA arrays.

Modeling and simulation platform. Computational models of biological systems are
essential parts of systems biology. While the mathemadiestription of molecular reaction
networks, e.g., by systems of ordinary differential equagi(ODES), is well established, the
availability of advanced computational tools for the masragnt and simulation of those
systems that tend to be large and complex, is still subjectitcent research. Therefore, |
envisage the development of a modeling and simulationgotatfor biological, in particular
cellular and biochemical reaction systems. The computatitwol shall be able to represent
essential information of a molecular reaction system thaecessary for the construction of a
mathematical model. The tool shall apply modern conceptdbject-oriented programming
that serves as a flexible structure for data representatio®@andability. The system shall
come with a user interface for the development of models asthall serve as a model
repository. Moreover, it shall be able to integrate datanfroublic pathway databases in
order to use those data for model development.

Development of a molecular model of somitogenesis. Somitogenesis is a funda-
mental developmental process taking place during vertelaabryogenesis. There is ev-
idence supporting a model of a morphogen gradient and a mlakeclock responsible for
the serial determination of somite formation. Aulehla aretrfhann (2004) have proposed a
model of the molecular clockwork comprising Wnt, Notch ar@F=signaling. It is assumed
that the clock is driven by Wnt signaling downstream of WntBae morphogen gradient is
established in mouse by Wnt3a and Fgf8, both are producéxitail bud, but with a decay
in the anterior PSM. The objective is to develop a matherahtiodel of the molecular clock
and its connection to the morphogen gradient. The modelisadalble to describe properties
of somitogenesis, the arrest of the molecular clock beloertam Wnt3a concentration and
provide evidence of experimentally observed oscillatibalock components.

Modeling of cDNA arrays. In engineering sciences modeling and simulation techisique
have proven to be significantly helpful for the evaluationewhnical processes. In a similar
manner also modeling can be applied to laboratory methodsoolern molecular biology.
Gene expression analysis based on complex hybridizatialysia have increased rapidly in
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about the last ten years. Although complex hybridizatiopeginents are based on a data
production pipeline that incorporates a significant amadietror parameters, the evaluation
of these parameters has not been studied yet in sufficieait.d&h objective of my thesisis to
model cDNA hybridization experiments and to use the modesiimulation and subsequent
statistical evaluation of error parameters of the expemtadedata production pipeline.
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In the first part of this chapter | introduce the modeling amduation system PyBioS that

| have developed in the course of my thesis (Section 2.1).striee the general concept
and design of the PyBioS system, its user interface, itsusfgatures and demonstrate its
usability even for large biochemical reaction systems. hie $econd part of this chapter
| show the application of modeling and simulation to an ekpental laboratory method
(DNA array experiment) and to cellular processes.

Furthermore, | have created a model for the developmentaless somitogenesis. The
model describes general features of the molecular segti@néock known to take place in
segmental pattern formation during embryonic development

The presented work on experimental and biological systdiostrates the usability of
modeling and simulation techniques for biology and showgipact on current research in
molecular biology.

2.1 PyBioS - Modeling and Simulation Platform

A modeling system for cellular reaction networks has to agulesh several requirements. It
must have a well-defined internal structure for the repragiem of model components and
reactions, and optionally functionalities for the storafja model in a well defined structure,
standardized format or database. Further desired aspeces aser-friendly interface for
model development, a graphical representation of reangtworks, a detailed description of
the mathematical model, integrated engines for detertigros stochastic simulation along
with graphical representations of their results, and fonatities for model analysis and
model refinement. This is a very broad spectrum of functitieal

Current modeling systems for biochemical research arellysissigned for small- and
medium-sized models. Most of them do not have functiomalifor the visualization of the
model’s reaction network or are able to display only therentdpology, what makes the
work with large models quite difficult. Furthermore, curremodeling systems provide none
or very rudimentary interfaces to major pathway databasesh as KEGG or Reactome.
Latter point is extremely relevant, since the alternatovedde computer models by hand is
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time-consuming and often error-prone.
To overcome these limitations | have invented the modelnthsamulation system PyBioS
that is described in the following in more detail.

2.1.1 Overview of PyBioS

PyBioS is an object-oriented environment for the develapraed simulation of mathemat-
ical models of biological systems, which | have designed @kloped at the Max Planck
Intitute for Molecular Genetics (Wierling, 2006; Klipp dt,&2005; Wierling et al., 2007). Itis
designed as a software application for the World Wide Web user interface is depicted in
Fig. 2.1. PyBioS serves as a hierarchical object orient¢éabdae to store models of cellular
systems. Each model represents the model objects in adheralrobject-oriented manner
corresponding to cellular and molecular hierarchy. Fotainse, a model can hold a cell
object that consists of a cytosol object and a nucleus gbjdatre the cytosol compartment
in turn can hold other objects, such as those representotgips or other compounds like
metabolites. Model objects are entities of the abstBamObjectclass that represents biolog-
ical objects. Derived from this class are concrete clagsdsdlogical entities that are subdi-
vided into container-like object&f@vironmenty. The latter can contain other BioObjects and
non container-like objects. This hierarchical struct@rélustrated in Fig. 2.1A. Container-
like object classes are Cell, Compartment, Complex and i@bsome. Non container-like
object classes are Gene, pre-mRNA, mRNA, Polypeptide efPrand Enzyme (of which
also Polymerase, Spliceosome, RNase, Ribosome and Rraeaslerived from). Addi-
tional information such as annotation, sequence-datanpeters and initial concentrations
are stored as object’s properties. Actions, which descehetions between different objects,
are attached to BioObjects, e.g., a metabolic reactionusthto its catalyzing enzyme.
Certainly, small subsystems can be modeled and analyzeatrie extent in isolation by
assuming steady and simplified boundary conditions. Bubas &s these boundary con-
ditions become variable—as given for a system as complelteasdil—it is clear that also
this subsystem might behave differently in the context ofcaercomprehensive model. For
instance ATP, one of the most important energy sources irceligis involved in diverse
cellular processes and for example a massive consumptidhRby a single process might
have an important impact on other processes; this impathwailbe discovered as long as
the ATP concentration is handled as a constant parametes arvariable of the isolated
subsystem. Such constraints are, for example, also relémacellular signal transduction,
where different signaling pathways can have an effect oh ettter through cross-talks.
Thus, PyBioS is particularly developed for the analysisaofé models. Here, automated

htt p: // pybi os. nol gen. npg. de
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Figure 2.1: PyBioS Web interface.The user can choose a particular model from the model repgsit
(A) and inspect its hierarchical structure via tledettab (B) that also provides functionalities to
edit the model. Thé&letworktab provides an automatically generated wiring diagrarhefreaction
network(C), in which rectangular nodes represent the BioObjects, (@emes, compounds, proteins,
etc.), and circular nodes the reactions (actions). Thenario the diagram differ between mass-flow
(black arrows) and information-flow (green and red arrowld)e Reactiongab lists all reactions of
the model(D). Via the Simulationstab the user can run individual simulations. Time courdab®
concentrations or fluxes are visualized graphicéy.
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import/export functions to populate models and an autanggneration of the mathematical
model (ordinary differential equation system; ODE systam)essential.

PyBioS provides a broad spectrum of different functionsnadel design and develop-
ment, simulation and analysis. It has different features éine outlined below and are intro-
duced in the following sections.

* Object-oriented model design

» User interface for the development of individual modelduding interfaces to path-
way databases such as KEGG, Reactome, and ConsensusPathDB

« Visualization of the model’s network structure (modelatqgy)
» Automatic generation of the deterministic mathematicatel (ODE system)
* Numerical simulation using standard numerical integmsato

« Methods for model analysis, like computation of conseovatelations, detections of
steady-states, stability analysis and parameter scan

» Repository of models and kinetics

2.1.2 Model structure

PyBioS employs an object-oriented strategy that was Ihitiatroduced by Stoffers et al.
(1992). The authors used classes for metabolic entitiesbawahemical reactions for the
modeling and simulation of metabolic systems.

Models in PyBioS have hierarchical object-oriented sticeet. Each model is stored in a
separatéVodel object that contains the objects representing the biockbgiatities. Biologi-
cal entities, like genes, MRNAs, proteins, compounds, megy complexes or compartments,
are derived from the same claB&Object BioObjects might have different properties. For
instance, if a Michaelis-Menten kinetic is used, paransdike K, or V,,.. are properties of
the accordingenzymeinstance. Properties have a value, e.g., a floating poinbeur®rop-
erties might also be annotations, sequence-data, etheforore, one or severactionscan
be bound to a BioObject. An action describes a biochemieadtien, physical process or a
group of similar reactions or processes. Actions are desdrin more detail below. Fig. 2.2
gives an overview of the defined classes of biological objaat] the information that is ex-
pected to be stored by these objects. Some of these Bio®pjgetCompartment, Complex
or Chromosome, are container-like objects (derived fromdhstract clas&nvironmeny

40




2 Results

BioObject SequenceObject Environment
id sequence ZF
actions .
concentration ’ SimulationEnvironment
: getSequence()
getld() getSequenceLength() -
getActions() : simulate(
getConcentration(
BioObject |Sequence0bject| | BioObject | SequenceObject
A A
BioObject Environment
Gene
7 7
A A Chromosome
pre_mRNA
Spliceosome Polymerase
Compartment
| Ribosome | | RNase |
Complex
Polypeptide
ZF Protease Cell
Protein

Figure 2.2: UML-diagram of the PyBioS ontology. According to UML notation, arrows point on
classes from which other classes are derived. Centraledasgthe current version of PyBioS are the
abstract classeBioObjectand Environment All classes which represent biological objects are de-
rived from BioObject. BioObject has properties (in objedented programming denoted attributes)
and methods (the diagram shows only some attribute and chetkemples). Properties are for in-
stance the name of a BioObjeat] or its initial concentrationdoncentration Methods are functions
which belong to a certain class and operate on its attributesher objects, that are passed along by
the method call; e.ggetld() or getActions()return the object name or a list of the object’s actions,
respectively. Concrete classes, likene Enzymeor Cell inherit from BioObject(and possibly other
classes as well), which means that they have all the saniteustts (but likely other values) and offer
the methods of their parent class(es).
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which can hold other BioObjects. All these classes definerdalagy that is used for the
internal representation of a model.

One or multiple actions can be assigned to a BioObject. Eatibraholds a directed
reaction and a kinetic law (Fig. 2.3A). The directed reatiiescribes the mass flow from
the substrate(s) to the product(s), as well as the molagu(atoichiometry) with which they
take part in the reaction.

Substrates and Products (denofednd P, respectively) as well as the catalyzing enzyme
(denotedE) are stored as lists associated to the action. The elemétiiese lists are ref-
erences to BioObjects together with their respective Btometric coefficients. Further lists
for modifiers (e.g., activators, inhibitors, etc.) can bded] if required. Reversible reactions
are either constructed by defining the backward reactionseparate action or by using a
rate law that already considers this behavior and thus ntigbbme negative. In the latter
case reversibility is indicated by a flag, which is an attrébaf the used rate law. Kinetic
laws are formulated in an abstract fashion by a list that ists®f parameter and variable
references and fundamental mathematical operations,(;}0g,exp, ...) and parentheses.
The final kinetic law term is constructed from the lists of swates, products, the enzyme,
and other modifiers. The respective lists are used by prextekimetic laws. A database of
predefined kinetic laws is provided by PyBioS. Although nkeior assignment of actions
to BioObjects is established, it makes sense for, e.g., zyneatic reaction to attach it to the
enzyme that catalyzes the given reaction. Autocatalytctiens can be assigned to the sub-
strate itself. Chemical reactions that take place in thedxs of any catalyst can be assigned
to the compartment-object they belong to or to a pseudocbhjkrose only task is to repre-
sent this action. An action that describes a transport ggocan be bound to a membrane- or
transporter complex-instance.

From the individual rate laws of each action the ODE systengeiserated. This is de-
scribed in Section 2.1.4.

2.1.3 Model Construction

As outlined in section 1.3, the development of a model of dogical system requires a
lot of information, like information on the components okttkystem, the reactions they
are involved in (topology and stoichiometry of the reactnmtwork) and the kinetics of the
individual reactions, which includes the kinetic laws ahélit respective kinetic parameters.

Comprehensive information about topology and stoichignaétbiological reaction sys-
tems is already available from suitable pathway databas@®ertunately, information about
reaction kinetics is limited, especially for large systems

The first step of modeling is the collection of objects anatieas as well as appropriate
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(A)
Action attributes Representation of. Example
Name (id): Reaction identifier e.g. Phosphorylation
Enzyme (E): Ei...E; e.g. Hexokinase
Substrates (S): i1 S1...14 S ATP, Glucose
Products (P): J1 Pr.. . jm Py ADP, Glucose 6-phosphate

Modifiers (M): M, ... M,

Reaction: WS+ -+ S ATP + Glucose
— 1 P4+ jm P, — ADP + Glucose 6-phosphate
Kinetics: v=f(5) v= KDG|CKATP+K(;|1/[7X'I["IA3-}T}I[S;ITCF]>[GIC}+[Glc} ATH
(B)
FEnzyme ... -Substates
Hexokinase ATP alpha-D-Glucose

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

R01786
Products

ADP alpha—D-Glucose 6—phosphate

Figure 2.3: Description of an action. (A)Action data structure.F, S, P, and M are list of size
k,l,m,n, respectively. These lists reference BioObjects that mrelved in the reaction and their
stoichiometric coefficientdB) Graphical representation of the hexokinase action (ddite@s show
the elements of the substrate, product, and enzyme ligecésely).
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kinetics that are relevant to the model. Using these datap@type can be developed.
PyBioS provides three methods for model creation: (1.) k&@a3ystems Biology Markup
Language (SBML), (2.) via scripts using the applicationgveanmer interface (API) of
PyBioS, or (3.) via the Web interface.

Import and export of models using SBML provides the abildyekchange models from
PyBioS with other systems biology software applicationsrabver, this makes it possible
to reuse existing SBML models as for example provided by tiod/Bdels model repository
(cf. Section 1.3.2).

The API that is implemented as a Web Service makes PyBioSusaful for other soft-
ware applications, which do not include a simulation endigghemselves. For instance,
PyBioS is used by the Gene Network Genera(@eNGe) as an engine for the simulation of
gene regulatory networks (Hendrik Hache, pers. comm.).

The third method to create a model in PyBioS is via its Welrfate®. Model components
and reactions can be added manually. (Fig. 2.4).

Alternatively to the development of an individual model ldang each reaction one by
one, PyBioS has an interface to several major public pathdegbases to retrieve path-
way data automatically. The generic database interfacgBidS accomplishes three major
tasks: (1.) it provides a Web interface that enables thetosetrieve reaction-relevant data
from the provided databases according to the users neellst gathers the information of
different databases in such a way that it can be used for tpelgion of a single model,
and (3.) it carries out the population of the PyBioS model &yieving the relevant data
from the according databases. The general database c#tdvées references to the different
database-specific low-level interfaces. Latter provid¢hmes that are used by the general
database interface for data retrieval, e.g., SQL-queddbd Reactome MySQL-database.
Since BioObjects within PyBioS that were created using #italthse interface refer to their
corresponding source database entry, additional infoomatf the objects, such as diverse

accession numbers, is still available. Low-level integafor the pathway databases Reac
tome, KEGG, and ConsensusPathDB are implemented (cf.oBeLi.2).

The population of a model via the Web interface of the gerdatabase adapter is simple.
One can search for reactions of a specific gene or metabaijtalternatively, reaction of a
specific pathway (Fig. 2.5A). From the list of results, therusan select several or all reac-
tions to be created within the new model (Fig. 2.5B). Thedfstactions that are selected for
subsequent creation can be extended step by step withoesiofi further database searches.
Finally, the user can inspect the list of selected reactagen, choose appropriate kinetic
laws from a predefined list (Fig. 2.6A), and instruct PyBio%d¢d those reactions to the cur-

’ht t p: / / genge. nol gen. npg. de
3ht t p: // pybi os. nol gen. npg. de
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(A) Model hierarchy
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Irreversible kinetic of action ActivationOfErk:

Parameters:
ActivationOfErk_massi_k:

Variables:
Erk:(Reactome_70101)

ATP:(Reactome 70101)
Mek (bis-phosphorylated):(Reactome 70101)

ActivationOfErk massi k * Erk * ATP * Mek (bis-phosphorylated) |

Change kinetic law |

|0.00043051727130128 i

gl

Figure 2.4: Manual model generation in PyBioS.The hierarchical model structuf@) is estab-

lished by adding individual BioObjects, e.g., a prot¢B), one by one. Reactions are added by
assigning the participating objects to the respectivs,listy., substrate or product list, and selection
of an appropriate rate law from the kinetics reposity. Parameter values of the rate law and initial
values of the participating objects can be assigned separat
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rent model (Fig. 2.6B). All objects and reactions populdigdhe generic database interface
still provide references to their originating databaseiest This feature enables an auto-
mated annotation of all model components in order to, esgg@ate the model components
with their respective external association numbers. Aalddlly, the database references
make it easier to merge models with other models and thugppats the integration and
re-usability of models.

In the following, the different features of the Web intedaare outlined. Fig. 2.1 shows
several features of the Web interface. A specific model candpected via different views
that are accessible by several tabs. These views provida@sentation of the hierarchical
model structure, a listing of the model reactions, a gragdhigpresentation of the model net-
work (a wiring diagram of the model), user interfaces for@mtion and analysis and other
functionalities. The "Construction tab" provides the asct the generic database interface
and supports an easy model design. The user can search étionsaof a specific gene,
metabolite or pathway (Fig. 2.5A). From the list of resulte user can select several or all
reactions for model population (Fig. 2.5B). The list of réaas that are selected for creation
can be extended step by step with reactions of further de¢edearches. All objects and reac-
tions populated by the generic database interface stiligeareferences to their originating
database entries. This feature enables an automated aonatzall model components and
makes it easy to extend the model by further database request

2.1.4 Quantitative Simulation

Reaction equations and rate laws that are defined by thenactoe used for the automatic
generation of the ordinary differential equation (ODE)tsyss. The time change in the
concentration of all species is given by the following balance equation

d

Si a ,
([it] :Znijvj(S) 1= 1,...,771, (21)
j=1

wherer is the number of reactionsp the number of species, ang; the stoichiometric
coefficient ofS; in the reactionj, which is positive for the production ¢f;, negative for its
degradation and otherwise defaults to zeradenotes the velocity of reactignthat is given
by its rate law.S is a vector of concentrations of all specigs

PyBioS supports deterministic simulation by numericaégmation of first order ODE-
systems. It offers the use of the solvers LIMEX and LSODA (ted SciPy in the modeling
interface) to get the numerical solution of the initial valproblem. LSODA (Hindmarsh,
1983; Petzold, 1983) is a solver for ordinary differentiquations written in the program-
ming language Fortran and a variant of the LSODE package. aldgwithm used in this
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Search term:
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Citric acid cycle (TCA cycle) (Homa sapiens) had

Citric acid cycle (TCA cycle) (Mus musculus)

Citric acid cycle (TCA oycle) (Rattus norvegicus)

Citric acid cycle (TCA cycle) (Gallus gallus)

Citric acid cycle (TCA cycle) (Tetrandon nigrowviridis)

Citric acid cycle (TCA cycle) (Drosophila melanogaster)

Citric acid cycle (TCA cycle) (Caenorhabditis elegans)

Citric acid cycle (TCA cycle) (Cryptococcus neoformans A/0)

Citric acid cycle (TCA cycle) (Saccharomyces cerevisiae)
)
)
)
)
)
)

Citric acid cycle (TCA cycle) (Schizosaccharomyces pombe)
Citric acid cycle (TCA cycle) (Cyanidioschyzon meralag)
Citric acid cycle (TCA cycle) (Thalassiosira pseudonans)
Citric acid cycle (TCA cycle) (Arabidopsis thaliana)

Citric acid cycle (TCA cycle) (Oryza sativa)

(
{
(
Citric acid cycle [TCA cycle) (Neurospora crassa)
I
(

Find according reactions in the database

(B)

Search term: Search specificity: Database:

Reactome Ver. 19 |#

lo Feactome Yer. 201
citric acid cycle medium Reactome Wer. 22
high Reactome Ver. 26
BioCye
search again
[N [N
c|r|e
i i

wud
CRk

show select|l Acetyl CoA [mitochondrial matrix] + 1 H20 [mitochondrial
| @ |matrix] + 1 Oxaloacetate [mitochondrial matrix]

SIW 5';3“ 1 Citrate [mitochandrial matrix]

Inr

Info

|show select|1 cis-Aconitate [mitochondrial matrix] + 1 H2O [mitochondrial
F L matriv
show select 1 (1R 25]-1-Hydroxypropans- 1,2 3-tricarboxylate
| & [mitochondrial matrix] + 1 NAD+ [mitochondrial matrix]
17 show select|1 2-Oxoglutarate [mitochondrial matrix] + 1 Thiamin
=2 0O | O diphosphate [mitochondrial inner membrane)
[ show select 1 3-carbaxy-1-hydraxypropyl- TRP [mitochondrial matrix] + 1
—— O | O |Lipoamide [mitochondrial inner membrane]
show select|1 S-succinyldihydrolipoamide [mitochondrial matrix] +
M | M |CoA-SH [mitochondrial matrix]
show selectl Dihydrolipoamide [mitochondrial inner membrane] + 1 FAD
O 1 O [[mitochondrial matrix]

i show setect|’] FADH2 [mitochondrial matrix] + 1 NAD+ [mitochondrial
matrix]

Inr

Inr

1

Im

Info

=
i [ehow setect 1 GDP [mitochandrial matrix] + 1 Orthophosphate

O |[mitochondrial matris] + 1 Succiny-CoA [mitochondrial matrix]
g [ehew select|’] ADP [mitochondrial matrix] + 1 Orthophosphate
= O |[mitochondrial matris] + 1 Succing-CoA [mitochondrial matrix]

show |select

L] 1 Succinate [mitochondrial matrix]

Datatype:

[ -
) compound or gene name
® pathway

v

similar to your search term:

Selected reactions

Datatype:
C compound or gene name

@ pathway

|T1 Citrate [mitochondrial matrix] + 1 CoA-SH [mitochondrial matrix]
|T1 cis-Aconitate [mitochandrial matrix] + 1 H20 [mitochondrial matrix]
51 (1R 2%)-1-Hydraxypropane-1 2 3-tricarbowylate [mitochondrial matrix]
|T
=
5
=
5
=
5
5

=1 Fumarate [mitachondrial matrid]

1 2-Oxoglutarate [mitochondrial matrix] + 1 CO2 [mitochondrial matrix]
+1 NADH [mitochondrial matrix] + 1 H+ [mitochandrial matrix]

1 3-carboxy-1-hydroxypropyl-TPP [mitochondrial matrix] + 1 CO2
[mitochondrial matrix]

1 S-succinyldibydrolipoamide [mitochondrial matrix] + 1 Thiamin
diphosphate [mitochondrial inner membrane]

1 Succinyl-CoA [mitochondrial matrix] + 1 Dihydrolipoamide
[mitochondrial inner membrane]

1 FADHZ2 [mitochondrial matrix] + 1 Lipoamide [mitochondrial inner
membrans]

1 FAD [mitochondrial matrix] +
[mitochondrial matrix]

1 GTP [mitochondrial matrix] + 1 Succinate [mitochondrial matrix] + 1
CoA-SH [mitochondrial matrix]

1 ATP [mitochondrial matrix] + 1 Succinate [mitochondrial matrix] +1
CoA-SH [mitochondrial matrix]

1 MADH [mitochondrial matri>] + 1 H+

Figure 2.5: Generic database interface (figure 1). (Apearch for citric acid cycle pathways (TCA).
(B) Listing of the TCA related reactions available in Reactome.
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(A)

Reactions selected for population

1 Acetyl-CoA [mitachondrial matrix] + 1 H20

[mitochondrial matrix] + 1 Cxaloacetate [mitochondrial — |-> v U e (e meiE] e < ) S-St

[mitochondrial matrix]

matrix]
actionid: enzyme/gene: compartment: kinetic:
Feaciome'er??_70375 Citrate Synthase Holoenzyme [mitochondrial matrix] mitochondrial matrix 82995 |reversibleReactionsiultipleSubstratesimassi  Ehanae
1 Citrate [mitochondrial matrix] 5 1 cis-Aconitate [mitochondrial matrix] + 1 H2O
[mitochondrial matrix]
actionid: enzyme/gene: compartment: kinetic:
Reactomever22_70971 acaonitase 2. mitochondrial [mitochondrial matrix] mitochondrial matrix 82998 |reversibleReactionsiultipleSubstratesimassi  Ehange

1 cis-Aconitate [mitochondrial matrix] + 1 H2O 1 (1R 25)-1-Hydrosypropane- 1,2 3-tricarboxylate

v
[mitochondrial matrix] [mitochandrial matrix]

actionid: enzyme/gene: compartment: kinetic:

Reactomever22_70970 acaonitase 2. mitochondrial [mitochondrial matrix] mitochondrial matrix 82998 |reversibleReactionsiultipleSubstratesimassi  Ehange

1 2-Oxoglutarate [mitochondrial matrix] + 1 CO2
-> | [mitochandrial matrix] + 1 NADH [mitochondrial matrix] + 1
H+ [mitochondrial matrix]

enzyme/gene: compartment: kinetic:

1 (1R 2S)-1-Hydroxypropane- 1,2 3-tricarbosxylate
[mitochondrial matrix] + 1 MAD+ [mitochondrial matrix]

Reactomeverz2_70I67 Izocitrate Dehydrogenase Holoenzyme (mitochondrial mitochondrial matrix 82995 |reversibleReactionsiultipleSubstratesimassi  Ehangs

1 S-succinyldibydrolipoamide [mitochandrial matrix] + 1 1 Succiny-CaoA [mitochondrial matrix] + 1

> v
CoA-SH [mitochondrial matrix] Dihydrolipoamide [mitochondrial inner membrane]
enzyme/gene: compartment: kinetic:
ReactomeverzZ_70959 alpha-ketoglutarate dehydrogenase complex, S-succi mitochondrial matrix 82995 |reversibleReactionsiultipleSubstratesimassi  Ehangs

1 FADHZ [mitochondrial matrix] + 1 NAD+ [mitochondrial ™ 1 FAD [mitochondrial matrix] + 1 NADH [mitochondrial

matrix] matrix] + 1 H+ [mitochondrial matrix]
actionid: enzyme/gene: compartment: kinetic:
Reactomever22_71036 alpha-ketoglutarate dehydrogenase complex. FADHZ mitochondrial matrix £ |reversibleReactions/MultipleSubstratesimassi  E1angs

(B)

= [ % organelle envelope (Compartment)
= [ & mitochondrial inner membrane (Compartment)
[1 & Dihydrolipoamide [mitochondrial inner membrane] (Compound)
= [ % cell (Compartment)
B [ & intracellular [Cormpartment)
= [ w5 evtoplasm [Compartment)
= [ & mitochondrion (Compartment)
= [ 8 mitochondrial lumen (Compartment)
= O & mitochondrial matrix (Campartment)
[ & alpha-ketoglutarate dehydrogenase complex, FADHZ linked [mitochondrial matrix] (Cormplex)
[ & alpha-ketoglutarate dehydrogenase complex, S-succimddihydrolipoamide linked [mitochondrial matrix] {Complex)
[ & |socitrate Dehydrogenase Holoenzyme {mitochondrial, MAD+) [mitochondrial matrix] (Complex)
W Citrate Synthase Holoenzyme [mitochondrial matrix] (Complex)
W H20 [mitochondrial matrix] (Compound)
s NAD+ [mitochondrial matrix] (Compound)
W H+ [mitochondrial matrix] (Compound)
w5 Acety-CoA [mitochondrial matrix] (Compound)
[ 8 Oxaloacetate [mitochondrial matrix] (Compound)
W 2-Oxoglutarate [mitochondrial matrix] {Compound)
W FAD [mitochondrial matrix] (Compound)
[ & NADH [mitochondrial matrix] (Compound)
[ s CoA-SH [mitochondrial matrix] (Compound)
W 02 [mitochondrial matrix] (Compound)
W Citrate [mitochondrial matrix] (Compound)
W 1R 25} 1-Hydroxypropane- 1,2 3-tricarbmeylate [mitochondrial matrix] (Compound)
W cis-Aconitate [mitochondrial matrix] (Compound)
W FADHZ [mitochondrial matrix] {Compound)
[ 8 S-succinvldiiydrolipoamide [mitochondrial matrix] (Compound)
O & Succiny-CoA [mitochondrial matrix] (Compound)
[ & aconitase 2, mitochondrial [mitochondrial matrix] (Polypeptide)

Figure 2.6: Generic database interface (figure 2). (Alisting of reactions selected for population.
(B) PyBioS model automatically generated via the generic dawinterface.
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solver switches between stiff and non-stiff methods autarally. PyBioS uses the interface
to LSODA which is available from SciPyThe solver LIMEX (Deuflhard et al., 1987; Deu-
flhard and Nowak, 1987) is an extrapolation integrator fer sblution of linearly-implicit
differential-algebraic systems (DAEs) written in Forttait combines an implicit one step
method with step size extrapolation to permit an adaptiverobof step size and order.

PyBioS has an integrated interface for simulation ("Sirhafetab™). One selects several or
all components (reactions) and starts a simulation for argiime range. The time courses
of the selected component concentrations (reaction fluxesyubsequently plotted into a
graph. Simulation results can also be plotted into a reactetwork graph as described in
the following paragraph.

2.1.5 Visualization

PyBioS model networks are defined by the BioObjects and teions. Since a model
of as few as 10 or 20 BioObjects becomes already very complexal diverse substrates,
products and modifiers, a visualization of the underlyingdeicstructure is of substantial
benefit. Therefore, the biological network can be made masdyeaccessible by a graphical
representation. An example of the visualization integtatePyBioS is shown in Fig. 2.1C.
In PyBioS, two kinds of nodes are used representing Bio@bj@tsualized by rectangles)
or actions (visualized by circular nodes), respectiveig.(2.7). Relations between BioOb-
jects and actions are visualized by directed arrows. Thaweeolor or style indicates either
mass flow (black) or information flow (any other color or linglg). The direction of the
mass flow arrow indicates the mass flow, i.e. a BioObject ishastsate, if the arrow points
from the BioObject node to the reaction node; otherwises & product. Information flow
arrows always pointing from BioObject nodes to action nodewxe they represent BioOb-
jects, which catalyze or modify the particular action, bxg eonsumed or produced by the
respective reaction.

The PyBioS visualization interface can generate grapmegaesentations of parts of the
reaction network. Therefore, the user defines a subset ofisea to be displayed. This
generates a network graph that can manually extended gndion one of the BioObject
nodes and selecting further reactions of the selected Bem®Dthat are not displayed in the
current graph. In a similar way, reactions can also be reohdrem the current network
graph. This feature provides a very flexible functionality the inspection of the reaction
network. In particular, this is very helpful for the inspect of large models. Furthermore,
concentration values of the BioObjects or kinetic paranseté the reactions can also be

“http: // ww. sci py. org
Sttp://elib.zib.de/ pub/elib/codelib/LI MEX4 2A1
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Nodes
Model Component
Reaction
Arrows
Consumption (mass flow) Activation (information flow)
E— —_—
Production (mass flow) Inhibition (information flow)
R —_—

Regulation (information flow)
_—_—n-—-

Association (no mass or information flow)

Figure 2.7: Elements for graphical representation in PyBi&. Node and arrow symbols used for
the graphical representation of reaction networks withiBiBS.

modified within the graphical reaction network.

Moreover, simulation results can be displayed within tregbr For instance, reaction and
BioObject nodes can be colored according to the simulagsults of a specific time point.
This highlights those BioObject that have very high or lomecentration, or reaction that
have a very fast or slow flux. Furthermore, the user can clicka apecific node to display
the time course simulation results of the component or flux.

2.1.6 Analysis Modules

The object-oriented model of the biological system as weitsaderived mathematical model
can be used for further analyses and consistency checkmdtance, it is possible to identify
steady states, compute conservation relations and pedarameter scans.

Steady State Search

By definition, when the system has reached a steady stateptioentration of the metabo-
lites does not change in time. The steady state of a systemactions is characterized
mathematically bylS/d¢ = 0, whereS is the vector of concentrations of the components
ando is the null vector. In a nonlinear system this equation care lsaveral solutions.

Two different methods for steady state search are availal®gBioS. First, an approach
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that depends on a root finding method to get the steady stagaisumerical algorithm and
second, a progressive simulation, that is calleddhect search Starting with simulation
results of a user-defined time interval, the root finding apph computes the roots of the
ODE system by using the MINPACK subroutine HYBRID Which is a modification of the
method described by Powell (1970).

The direct searchperforms a progressive time course calculation. Startiitlg the time

interval[t, t,] specified by the user, a seri€g, --- , S, ., is calculated, where
Sti,l
S, = : t=n,---,n+k (2.2)
Sti,m

is a vector with the concentrations of all species at timmeThe direct searchalgorithm
checks whether a steady state is reached by regarding
154

— S lle<e =0, k—1 (2.3)

ndj+1 nt-j H

for a user defined threshotd Here, || - ||, denotes the Euclidean norm. If this equation is
satisfied for twenty consecutive time points in the inteffvalt, ], it is assumed that the
steady state is reached. Otherwise, another evaluatipststes for the intervat,, . 1, to,, 1 1]
This is repeated up tbtimes (in the current version= 10) until the steady state is found.
In case of an unsuccessful search, the algorithm abortsspadts this.

Stoichiometric Matrix and Conservation Relations

Frequently, the amount of material of several moleculacigsanvolved in a cellular reaction
network is conserved, e.g.,

n(ATP) + n(ADP) + n(AMP) = const. (2.4)

wheren() denotes the amount of substance.

Such conservation relations can be computed by the netwpdtdgy, which is given by
the reactions and their stoichiometry. This topology of tbaction network describes the
mass flow and is embodied in the stoichiometric matrix

N=| : - (2.5)

Shttp://ww. netlib. org/ m npack
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A column of the matrix corresponds to a distinct reactiorhefinodel and a row corresponds
to a single molecular species (BioObjeat)s the number of reactions amal is the number
of species. An element;; # 0 indicates that a certain BioObject takes part in a particula
reaction. The conservation matiixcan be obtained by computing the nullspace (kernel) of
the stoichiometric matriN using the relatioN = 0.

Since itis conventional to compute the right nullspdece(whereT denotes the transposed
matrix) is calculated from

NT'TT =0 (2.6)

using the block diagonalization algorithm described byuStér and Schuster (1991).

Parameter Scan

A parameter scan can be performed to analyze the behavibeahbdel. The possibility
to consider the effect of one parameter on the concentsatbthe metabolites and on the
fluxes of the reactions is given by regarding the system iadstestate. In steady state, the
system is independent of time and an implicit dependencheotbncentrations and fluxes
on a parameter can be viewed. One parameter is varied in a igitezval and the according
steady states are computed by the direct search or root dimdethod. The results of the
parameter scan (steady state concentrations or fluxesugiviin parameter) are available as
graphics or tab-delimited files. The parameter scan istithsd by an artificial model shown
in Fig. 2.8.

2.1.7 System’s Performance

Since molecular interaction data becomes massively dlaithrough the Internet and by
rapidly evolving high-throughput techniques, strategiad methods for the integration of
these data into biological models are required. Small systef 20 or less objects can di-
rectly be translated into mathematical models by hand. KMewéhe creation of models with
several dozens, hundreds or even thousands of objects aieasile anymore without an
automation of this process. Therefore, the huge amountpdréxental data as well as text-
book data—which become increasingly available in a contjmurtally amenable manner—
are excellent sources for this purpose. PyBioS supportstibmalities for the integration
of external data sources. An interface to the metabolic dbthe KEGG database enables
the automated generation of models with a single or sevathlyays. Since the model cre-
ation is one central step in the process of model design¢ébng behavior is of interest.
Therefore, metabolic models of different sizes in the nundieeactions and objects were
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Figure 2.8: Parameter scan. (A)Reaction network of the artificial modgB) A scan for parameter
k; in the interval [0,10] indicates that the concentrationSfis independent and, and S, are
dependent of this parameter. This is confirmed by its aralysiolution. Similarly, flux changes can
be analyzedC).
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created using the interface to the KEGG database. This sdng® models with 20 objects
and 11 reactions up to 1668 objects and 2365 reactions. fptiBcation, all reactions are
considered to take place in the same compartment and ardeddziemass action rate laws.
Kinetic parameters and initial concentrations are in&d with a value of 1. The CPU-time
required for this model creation process was measured2Fé. shows that the duration of
the creation process scales linearly with the model sizhigmexample with metabolic sys-
tems derived from the KEGG database. In parallel, the dumagquired for the simulation
of the time-interval [0,10] and [0,1000] (arbitrary unitsing the SciPy-solver was measured
for each model. Here, a quadratic relation of time versusehside (given by the number of
reactions) was found (Fig. 2.9B). It should be noted thasthrulation time depends strongly
on the complexity of the kinetic laws. The scaling behavissame published models is also
illustrated in Fig. 2.9B.

2.1.8 Summary of the Inventions

A modeling and simulation system for biochemical and calluéaction networks called Py-
BioS was developed. PyBioS has a Web-based user interfatieefareation of models and
their subsequent simulation and analysis. Compared to syiseems biology software appli-
cations, PyBioS has some unique features that make moddbgerent and simulation more
efficient. It is, for instance, an interface to external paii databases that makes it possible
to import individual reactions, e.g., of a particular pa#tlyinto a PyBioS model. Moreover,
PyBioS has a unique functionality to visualize results afreetcourse simulation along with
the reaction network graph of the whole model or parts of ibrébver, PyBioS provides
several standard functions for the analysis of a model, asatomputation of conservation
relations, steady state search, or performing a paramederts evaluate the influence of a
particular parameter on the steady state of the system.oByBas successfully used for the
establishment of a molecular model of somitogenesis thaeisented in the next section.

PyBioS has been selected as one of the top three contribuifdhe Heinz-Billing Award
for Scientific Computation of the Max Planck Society in 2005.

54




2 Results

A
600 A
0
=]
& 400 .
[&]
()
9,
Q
E
200 A
O L L
0 1000 2000 3000
number of reactions
B
1000 \
10 T
L i i
E
800 6 | * 1 1
i - Holo
L * G i
w Q § SE*D + * + y
o 600 | 0 4oy o4l + L + L + . *, % a
5 0 10 20 30 4074 % ,
8 *% ¥ g
2]
o V4
E 400 r N * i
% . +
W EE f;
* #* + ﬁ/*’
200 . ;ﬁ@ . /:ﬁ: + i
T -
i+ p *i::r ”"F/%jr "
0 * bt - tit/TJ’Jr I
0 1000 2000 3000

number of reactions

Figure 2.9: Scaling behavior of PyBioS for systems of diff@nt sizes.(A) Time required for the
model creation; the straight line shows a linear regresg®nSimulation for the time-interval [0,10]

(+) and [0,1000] (*) using the numerical integrator of Scgikhe straight lines show quadratic regres-
sions, respectively. The inserted graphi®ishows the scaling behavior of some models from the Py-

BioS models repository: (A) CellCycle-1991Tys-2, (B) @xltle-1991Goal, (C) CellCycle-1991Tys,
(D) MAPKcasc-2000Kho, (E) CircClock-2002Vil, (F) Metalimh-2000Teu, (G) CircClock-1999Lel,
(H) CellCycle-1997Nov, (1) Hynne; (A)-(H) are imported v&BML from an SBML-model reposi-
tory; (1) is described in Hynne et al. (2001).
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2.2 Modeling of Biological Systems - Somitogenesis

As described in Section 1.2.1 somitogenesis is a generalesggtion process taking place
during vertebral embryogenesis. During somitogenesihelml blocks (the somites) reg-
ularly pinch off from the presomitic mesoderm (PSM) and eualy give rise to the axial
skeleton, the skeletal muscles and the dermis of the batka#tsumed that the general reg-
ulatory mechanisms underlying somitogenesis are moressrsienilar across all vertebrates.
There is evidence that somitogenesis is based on a moletotkrand a determination front
established by a morphogenic gradient (cf. Section 1.Ednmouse, as well as several other
mammals, it is proposed that the determination front isbéisteed by Wnt3a and Fgf8, two
secreted signaling molecules that are produced in theudiblmd whose concentrations de-
cay while the embryo elongates posteriorly (cf. Fig. 1.2|ehla and Herrmann 2004). The
clock is assumed to be established by the signaling pathWagsNotch, and FGF that are
cross-linked with each other.

A general characteristic of somitogenesis is the regulandbion of equally sized somites
that sequentially pinch off from the PSM. The duration thaakes to form a single somite
varies between different species, but is species-specifitdb. 1.1). Also species-specific is
the number of vertebrae (vertebrae are derived from sueeessmites). It ranges from a few
vertebrae in platyfish or frog to several hundreds in som@aginous fishes or long-bodied
teleosts such as eels (Richardson et al., 1998).

On the molecular level several genes have been identifiestitbade during somitogenesis
(cf. 1.2.1). This is, for example, in mouse and many otheciggeAxin2 and Dkk1, com-
ponents of the Wnt signaling pathwayng andHes7 which play a role in Notch signaling,
andDusp6andSpry2 which are known to be regulated by FGF signaling, but alsblbtch
signaling.

Different mathematical models describing the moleculacpsses underlying somitoge-
nesis have already been proposed in the past (cf. Sectiof).1Several of them study the
negative feedback regulation of thes gene by itself. But as outlined in Section 1.3.4
this autoregulatory mechanism is not sufficient for the dpson of molecular clock that
controls somitogenesis. Goldbeter and Pourquié (2008i&esloped a first model that in-
tegrates Notch, Wnt, and FGF signaling.

The mathematical model of somitogenesis that | have deedlbpre is based on the con-
ceptual model proposed by Aulehla and Herrmann (2004) aadapted to current knowl-
edge about the segmentation clock in mouse. It comprisesaesomponents known or
assumed to be related with somitogenesis and being memb#rs Notch, Wnt and FGF
signaling pathways. In the following | introduce two separascillatory models for the
Notch and Wnt signaling pathways, respectively, and desdheir individual features. Af-
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Figure 2.10: Notch model. Diagram of the Notch signaling pathway model.

terwards, cross-links between the individual signalinthpays and their connections to the
FGF signaling are introduced and correlated with phenotogical aspects of somitogen-

esis. Kinetic parameters used within the models are erlaitom Lee et al. (2003) and

Goldbeter and Pourquié (2008) or, where no values were foutiee literature, appropriate

assumptions were used to reproduce the expected quaibahavior.

2.2.1 Modeling Oscillatory Notch Signaling

The canonical Notch signaling pathway is described in 8acti2.2.1. A general overview
of the pathway is shown in Fig. 1.3. Key-players of the pathexee a Delta-type ligand and
the Notch receptor. Once the Notch receptor is activatetidligand, the Notch intracellular
domain is cleaved off and can translocate into the nucleddragger the activation of target
genes.
Using PyBioS a mathematical model of the Notch signalindgnway was implemented;

its reaction network is depicted in Fig. 2.10. The model cosgs the synthesis and post-
translational modification of Notch, the release of the Natdracellular domain (NoD)
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due to the activation via the Delta ligand and its phosplatiph by Axin:GSK3:Dvl, its
import into the nucleus, and the transcriptional activatid the target genekfng, Spry2
Duspg Nkd1/2andHes7by nuclear NCD. The Hes7 protein is a transcriptional inhibitor of
itself as well as the other genes that are also under thead@itN|cp (Lfng, Spry2 Duspg
Nkd1/2.

Necessary for oscillation of a molecular interaction netwnis a negative feedback loop
(Tiana et al., 2007), whereas "negative feedback loop" lsirdefines a loop with an odd
number of repressors. Besides this, a sufficient large tieheyds also necessary to generate
oscillations. This can be achieved, for example, by theothiction of a finite time delay,
by a sharp response by some of the variables (e.g., desdnbadill kinetic as shown in
Fig. 1.7A), or by a saturated degradation (e.g., descrilyeal lichaelis Menten kinetic as
shown in Fig. 1.6).

As described in Section 1.3.4 a molecular oscillator witii@ Notch signaling pathway
can be established byes7whose protein is known to be a repressor of its own expression
It is described by the following ODE system.

& [HesTRst= —un + vy 2.1
< [HesTIe = o — v 2:8)
& HesT"= v, + v, 29)
%[Hes?] 2 Ly — vy — vy + v (2.10)

The rate laws of the different reactions are:
Hes7 mRNA export from nucleoplasm into cytosol

vo = kg - [HesTme omnl with  ky = 0.1min ™" (2.11)
Hes7 protein export form nucleoplasm into cytosol
vy = ky - [HesThoer™1 with  k; = 0.1min™* (2.12)
Hes7 import into the nucleoplasm
Vo = ko - [HesT oo with  ky = 0.1min ™" (2.13)
Transcription of Hes7

Kis"
| I . . )<
[Hesr?nuceopasrTnzg + K’lgn”

Protein

Vg = Vg(
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with a3 = 0.0nM - min~'; V5 = 0.2min"'; Kig = 0.05min""; nigy = 2.0 (2.15)

Degradation of Hes7 protein

[H esToraun
= Vmy - 2.16
T Ky + [HesTao (2.16)
Km;, =0.001; Vm; = 1.5 (2.17)
Translation of Hes7 mRNA into protein
vs = ks - [HesToh) (2.18)
ks = 0.1min " (2.19)
Degradation of Hes7 mRNA
[H esT o
= Vmg - 2.20
0T T Kng + [HesTomd (2.20)
Vmg = 0.1; Kmg = 0.01min ! (2.21)

The initial concentrations for an oscillatory state are:

[HesTReeomst — (. 473350 nM
[HesTome = 14.691751 nM
[HesTaow]l = 0.489142 nM

[HesTReomsy — (.915924 nM

The implemented model is shown in Fig. 2.11. The model hasaiatory behavior with
a period of 110 min and shows, as expected, a time delay bettheeconsecutive model
components.

Another oscillatory circuit that can produce oscillatiogshe activation of the Notch re-
ceptor via Lfng, the subsequent expressioties7via Nicp, and finally the negative feed-
back onLfng expression by Hes7.

2.2.2 Modeling Oscillatory Wnt Signaling

The canonical Wnt signaling pathway is described in Secti@®?.2 (cf. also Fig. 1.4). A
graphical illustration of the somitogenesis’ Wnt signglimodule is depicted in Fig. 2.12.
A central component of the model is the destruction comptmsisting of APC, Axin, and
GSKS3p that continuously phosphorylat@scatenin and thus targets it for degradation by the
proteasome. The destruction complex is stabilized by thuspimorylated scaffold protein
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Figure 2.11: Model of Hes7 autoinhibition. (Left) Network of the reaction systeniRight) Simu-
lation results of the oscillatoriies7model.
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Figure 2.12: Wnt signaling module. Simplified illustration of the Wnt signaling model used viith
the somitogenesis model.

Axin whose expression is under the control@tatenin. When Wnt signaling is activated
by Wnt3a the destruction complex gets recruited to the phasm@mbrane by interaction with
the activated Wnt/Frizzled receptor and Dvl. SubsequeAtiyn is dephosphorylated and
undergoes decay. This effect can be intensified by inhibifdvosphorylation) of the kinase
GSK3B through activated Akt.3-catenin that acts as a co-activator faxin expression is
continuously synthesized. Without a Wnt3a signal its catregion is low, since it is contin-
uously phosphorylated by the destruction complex and timgeted for degradation. When
the destruction complex is destabilized through a Wnt3aadjghe-catenin concentration
can increase and subsequently induce a del@yaad expression that in turn results in the
reformation of the destruction complex. Eventually, tieiads to a decrease of tfecatenin
concentration and of th&xin expression until the Axin concentration reaches a criteas|
and the cycle is restarted from the beginning. Unlgkeatenin and Axin, Dvl and GSK3
have a low turnover-rate so th@tcatenin and Axin are the key players of this process.

To prove the described concept of a self-oscillating mdbecaock established by the
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components of the Wnt signaling pathway, | have developeari@sponding mathematical
model of this pathway with PyBioS. Fig. 2.13 shows a detailiegbhical representation of the
implemented model. Lee et al. (2003) developed a matheatatiodel of Wnt signaling in
great detail, but without focusing on a potential osciltgtbehavior of the pathway induced
by a negative feedback as described above. For implememthat is presented here, | used
several of the kinetic parameters from the model develogdcele et al. Missing parameter
values of the model were adapted to reproduce expected ptemdogical findings.

Based on the developed model predictions for the descnigifoWwnt signaling during
somitogenesis were generated. It is known that in the gosteart of the PSM the Wnt3a
concentration is high so that Wnt signaling can take plagaceSwWnt3a is only produced
in the tail bud of the embryo and undergoes a permanent dédoayVnt3a concentration
at a certain position within the PSM decreases continupusijle the embryo elongates at
the tail. Once the Wnt3a concentration goes below a certa@shold value Wnt signaling
arrests. Using the mathematical model, | have performedIlatons for both system states,
the "on" state and the "off" state of Wnt signaling. This wasel by setting the external
Wnt3a concentration to 1.0 nM and 0.0 nM, respectively. Tiit@ioed simulation results are
shown in Fig. 2.14.

When Wnt signaling is activated by an external Wnt3a stimiflon" state of the Wnt
signaling), a cyclic behavior of many components of the aligng pathway can be observed.
This oscillatory behavior is a result of the delayed negsfieedback loop that is established
by the 3-catenin controlled gene expression of Axin. The paramstéthat was used for
the simulation presented here generates an oscillatidnavgeriod of about 110 min. As
the Wnt3a concentration declines (as it is observed in thd)RBe oscillation arrests (see
Fig. 2.14 "Wnt signaling off"). For the "off" state, the camtration of the destruction com-
plex (APC-P/Axin-P/GSKB) is, compared to the "on" state, relatively high and, as @eon
guence of this, th@-catenin concentration is close to zero.

2.2.3 Coupling Wnt, Notch, and FGF signaling

A system of coupled oscillators underlying the segmemntatiock has been proposed by
Aulehla and Herrmann (2004); Dequéant et al. (2006) and Bagfuand Pourquié (2008).
In contrast to a single autonomous oscillator, a system apleal oscillatory networks might

account for the robustness of the segmentation process.

Based on the models of Notch signaling and Wnt signaling segnated model of both
pathways was established. Furthermore, the integrate@lmas$ extended by components
of FGF mediated signaling. Major components of the integt&GF module are depicted in
Fig. 2.15. Itincludes two pathways, one is the activatioAkif via the active FGF receptor
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Figure 2.13: Wnt signaling model as implemented within PyBaS.
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Figure 2.14: Simulation results of Wnt signaling. When Whnt signaling is on (Wnt3a is present)
oscillations can take place. Without an extrinsic Wnt3aaighe-catenin concentration is low and
the oscillation stops.
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Figure 2.15: FGF model.Diagram of the FGF signaling pathway elements.

and PI3-kinase. The other is the MAPK pathway via the FGFaxdSOS, Grb2, and Frs2
are also include, but not shown in Fig. 2.15), Ras, Raf, Me#,fanally Erk.

Different cross talks between the Notch, Wnt, and FGF siggadre also implemented
in the integrated model. One cross talk is establish betwaetwe Akt and GSKB. In this
interaction GSKB can become phosphorylated and by this inhibited. A secakdidi the
positive regulation oDusp6expression by active Erk. However, Dusp6 is a phosphatase th
can dephosphorylate Erk. This negative feedback of DuspBrkitan also account for an
oscillator.

The integrate model consists of 118 components and 16lioaact
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2.3 Modeling of Laboratory Methods - DNA Array
Experiments

Besides the analysis of biological systems, modeling amdilsition strategies can also be
applied to biotechnological experimental techniques. Qaxticular technique of high in-
terest in molecular genetics is gene expression analysig IENA array technology. An
introduction to DNA array technology is given in Section.1.4

Summarizing, DNA array technology is based on the hybrithraof labeled ssDNA to
its complementary strand called probe. Different probediged as spots on planar surfaces,
like glass slides or nylon filters. The experimental datawes used for the presented model
originates from cDNA array experiments spotted on nyloerfdf but the presented approach
can also be applied to arrays based on glass slides, sinpediblems for the quantification
and statistical evaluation are very similar. Crucial for ®Bixperiments is the reliability of
the produced data and their reproducibility. To ensure Ipelilability and reproducibility
a sophisticated experimental design is necessary. Thigdes the identification of error
parameters that affect the hybridization data during tha daneration process. Influences
of systematic and statistical errors due to biotechnokldgicethods (for example mRNA
preparation, PCR, hybridization) as well as due to devicesaray media (for example
robots, filters, glass slides) and their effects on evadmasoftware and algorithms (image
analysis, statistical tests) must be estimated. | havelal@®d a computer simulation that
takes into account several sources of error, such as varsatif spot shapes, spot positions,
and local and global background noise. The simulation enmrent was used to judge the
influence of these parameters on subsequent data anatysisstance image analysis and
the detection of differentially expressed genes. The ptesemodel and simulation study
was published in BMC Bioinformatics (Wierling et al., 2002)

The hybridization signal intensities that were used astidita for the simulation study
is taken from experimental data. The data was derived as wataas from six cDNA nylon
filters each of which was spotted with the same set of 14208fisbh cDNA clones and
each was hybridized independently with the same complgetaf an mMRNA pool obtained
from zebrafish gastrula stage embryos. The output are séifiéier images containing well-
defined error parameters. In each series only a single psgamas varied at once in order
to measure its effects on data analysis. The range of paganaiation was adapted to real
experiments that were used as experimental referencedairtiulations.

After creating the simulated data, the effect of the erraiapeeters on the subsequent
data analysis pipeline was measured. Two modules of theipgare highlighted: Image
analysis and statistical analysis of differentially exgs®d genes, although the simulation tool
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is not restricted to these applications. | chose image aisabecause it is the first module
of the data analysis and builds the basis for all furtheraedeand statistical analysis of
differentially expressed genes because it is one of the midsted applications of gene
arrays.

The images were analyzed with three different image pratggsograms. Parameters
that are judged in this study are variations of the spot mrstcaused by different exper-
imental artifacts and different sources of backgroundeoiSor gene expression profiling
twelve filters with varying local background and experinadiytdetermined signal varia-
tions were simulated, six of them correspond to hybridaraiwith atreatmentand six of
them correspond to hybridizations with a compt®ntrol target. | analyzed how many ex-
perimental repetitions are necessary to detect a giveh ¢éwdifferential expression. The
significance of the differential expression was judged byaRies computed by the Welch
t-test (cf. Herwig et al., 2001).

2.3.1 Implementation of the Simulation Tool

The simulation tool is written in the object-oriented sting language Python. Some com-
putation intensive functions are implemented in the prognéng language C and can be
used as modules in Python. Obijects like filters, spots oritligation-data are stored as
persistent objects by the use of Zépd-ig. 2.16A illustrates the implemented simulation
pipeline. It takes a set of expression data as input (I usexkparimental signal distribution
of hybridization data, see section A.3.1) and their posita the array. During the simula-
tion pipeline several perturbations can be performed. @igiensities can change due to the
up- or down-regulation of gene expression, independentifitions that effect signal dif-
ferences of identically spotted duplicates can arise, gistematic error happens during the
spotting process due to pin-dependent differences in tleuatof transfered PCR-product.
Perturbations of systematic or non-systematic spot osgirors and varying spot shapes are
also considered. These perturbations result in the inpat (@iéer object, which references
its spot objects) used for the array image simulation. Ddpegon the type of array (filter or
glass slide) different levels of global or local backgrounmise can be considered here. The
simulation parameters that are under investigation inghigly are listed in Tab. 2.1. The
output of one array simulation is a parameter file (that dostthe values of the variation
parameters), a file with the input data for the array imageikition (that contains signal and
background intensities and the spot positions) and theentaglf as a 16 bit Tiff-file.

"ht t p: / / www. zope. or g/
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input: spot- filter membrane with six fields
signals/positions
up/down regulation of expression signals field with 384 blocks
(caused by the biological system) I P
signal perturbation (reason
<—— for signal variations of identical
spotted duplicates)
pin dependent transfer factor Tl - T
_ . . "y S -a
(effects signal intensities) R w A
systematic error 24 R . 1
<——— spot position variation (pin variation) AR,
non systematic error // // \\\
~<——— spot shape ,’/ //l \\‘
spot objects 1 7 ° L 2
_— (global
<—— background noise 5 8 6 10 6
local
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(input data to the
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filter image block with 25 spots

Figure 2.16: Simulation pipeline and array layout. (A) Diagram of the filter simulation pipeline.
The parameters highlighted in blue are the parameters tiiag varied (cf. Tab. 2.1).B) Layout of

a filter membrane with 57 600 spot positions5Ac 5 spotting pattern is shown; spots with identical
position numbers (e.g. No. 9) indicate duplicates. -1 dematconstant anchor spot which is identical
for each block.

2.3.2 Data Sets

The quality of an expression analysis strongly depends erigtribution of the signal in-
tensities and the spot positions on the filter (e.g., ouispiaffects). To deal with a realistic
situation, results of real experiments were used as ingatfdathe construction of the arti-
ficial data and the statistical expression analysis.

2.3.2.1 Design of Artificial Sample Sets

In order to detect differentially expressed genes with greexnental setup, the cDNA clone
array is hybridized with two mRNA targets of different ongione target commonly orig-
inates from a reference tissue (‘control’), the secondetaggiginates from treated tissue,
where 'treated’ refers to a certain chemical treatment, tantwor a disease (‘treatment’).

In this simulation setup the signals for the control targgtridization were taken from
a signal-distribution derived from corresponding expetmal data of 14 208 clones (see
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Table 2.1: Definition, modeling, and critical effects of simulationrpmeters.

Parameter ‘ Model ‘ Variation Critical effect?)

Spot variation spot shift SD from ideal position SD> 0.15-0.2 mne= 16.7-22.2 %)
(Gaussian distribution)

Pin variation block shift SD from ideal position SD > 0.12-0.167 mns 13.3-18.6 %3
(Gaussian distribution)

Spot shape a) two-dimensional a) no variation (fixed

Gaussian distribution
b) Crater spot distribution
c) Plateau spot distributio

SD = 0.1482 mm)
b) radius of crater
n ¢) no variation (fixed radius

b) radius> 0.1995 mme 22.2 %42:4.5)

Global background

Local background

of cylindric plateau
spot= 0.342 mm)
fixed mean/SD derived from not critical®
experimental data
signal/background ratio

additive signal from a
Gaussian distribution
additive signal from
fractal clouds

mean signal/background ratio 25

1) pearson correlation 0.95.

(2) percent of spot radius relative to the mean spot distance.

() For VisualGrid and FA; AIDA did not become critical for thenaaneter range used for the simulations in
this study.

(4) Only analysed with FA.

®) For radius> 0.228 mm the automatic gridfind failed.

(6) Not critical for global background noise that is comparableur experimental reference data.

section A.3.1 for the experimental setup); the experimentages were analyzed with the
in-house developed image analysis FA (see section A.3dedlians and the coefficients of
variation (CV = standard deviation/mean) were calculatethfthe replicates of each clone.
These data were used as the experimental reference. FifysBalvs the distributions of

these medians and CVs. If reproducibility is perfect, thei€W, if it is poor the CV tends to

higher values. The CVs of the raw data are most frequentligenirterval between 0.4 and
0.5 (Fig. 2.17B). These values are fairly high since a CV bffér example means that nearly
50 % of the measurement is caused by error. However, it shithier be an upper bound for
initial data reproducibility. Only then error parameteende identified more clearly. In

published studies, the CV is in the range of 10 %—-25 % (e.gwidest al., 2001; Salin et al.,

2002) since raw data undergoes intensive data normalizatid calibration. The signals for
the treatment target hybridization were derived from thelianes of the experimental refer-
ence signals by upregulating 5 000 clones (35.2 % of all dpremmdomly. The coefficients
of these upregulations—the expression ratios—are unljodistributed between 1 and 10.
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The signals of the other 9 208 clones remained unchanged.dg8ptal sets consist of values
for the 14 208 clones that were screened for differentialfyressed genes. The input signal
intensity for the spots corresponding to the constatbidopsis thalianacDNA clones of
the experimental reference was always the same. For thessipn analysis, six images
of filter hybridization experiments were simulated for betbgnal sets, respectively. Signal
intensity variations as described in the following paratrrand local background noise vari-
ations (see below) were carried out for each filter. The spptirder was identical with the
experimental reference.

2.3.3 Simulation Model
2.3.3.1 Generation of Signal Intensities

Schuchhardt et al. (2000) have shown that a strong cowala&xists for spot intensities
spotted by the same pin. Spots in the same block are spottdtelsame pin. Clones that
are spotted in different blocks are spotted by differenspirhus the amount of material that
is transfered to the array varies from pin to pin, and thiatret pin specific variation can be
described for the 384 pins of a gadget by the following pirtrdiation P(Y")

P(Y)=N(1,07); o1 =0.43. (2.22)

Here N(1,0%7) denotes a Gaussian normal distribution with mean 1 andneeial. The
standard deviationg;, was derived from experimental data: Clones with identR&4-
well microtiter plate positions were spotted by the same pirthe experimental reference,
A. thalianacDNA of identical amplicons was spotted in each block as d@robnBased on
this information the mean CV over all pins was calculated asetl agr;.

On one filter the signal distributioR(X;;) of replicates is defined as follows

P(Xi) = N(yi - 2z, (i - 2 - 02)?); 02 = 0.2 (2.23)

with ieIN; i€ [l,w] . : . L
_ _ z; is the mean signal for clongtaken from the median signal
jeN; jellm]

distribution of experimental data (cf. Fig. 2.17),denotes the pin dependent factor for pin

derived from the distribution?(Y"). For the simulations presented here the number of pins

iIsw = 384 and the number of clonesis = 14 208. Using the duplicate correlation (0.8)

of the constant experimental. thalianaclone signals and; one can calculate, = 0.2,

because they are associated with each other (M. Steinfath,, pomm., proof is not shown).

Thusos, is the CV for identical PCR-products that were spotted bystmae pin.
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Figure 2.17: Experimental reference for simulation data.Distribution of the hybridization signals
used as experimental referencd) Histogram of medians of 14 208 clones from 12 replicatesieac
(B) Histogram of coefficients of variation.
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2.3.3.2 Filter Model

The simulated images are generated by an intensity funatibich yields an intensity value
for each pixelk. The presented model is based on empirical assumptions.givén by a
continuous function of the positianon the filter,/(r), as follows:

I(r) IZAjf(Ir—er+9(r)+€ (2.24)

whereA,; is the given spot intensity, is a function that describes the local and global back-
ground.e denotes a stochastic perturbation, andr;| is the Euclidean distance to the center
of spotj. The nine spot centers closestrtare considered, due to the fact, that the pixelized
spot shape is given by a squdre x 19 pixel matrix and the usual distance between two
spot centers is 7.89 pixel for the image resolution usedighghper (0.114 mm/pixel). Here
f(Jr —r;|) is a spot shape distribution which describes the spot slsgeebelow). The pixel
intensity (k) is given by

M} (2.25)

I(k) = {maxr](r)

with V = 16 for a 16 bit imager, is the center of the pixél. The square brackets denotes

the integer function, that returns the largest integertless or equal to the value in brackets.
The spot intensitiesl; are taken from a real experiment (see above, intensityilalision

see Fig. 2.17). To determine the locatiorof the spots | assume that the probes are spotted

approximately in an orthogonal grid.

2.3.3.3 Local Distortions

Local distortions of the spots are considered. Due to themx@ntal procedure two different
spot distortions are introduced: spot shifting and pintstgf Both of them are modeled by
randomly Gaussian distributed shifting of the spot-centelative to their theoretical spot-
centers. For spot shifting the distortions are indepenfigregach spot; for pin shifting they
are equal for all spots of one block @ 5 spots, because they were spotted by the same pin.

2.3.3.4 Spot Shape

Due to the experimental procedure of the array preparatiwnarray surface type, and the
nature of the fixed DNA material, the spot shapes are diftefidare | introduced three dis-
tribution models of spot shapes that are based on expemt@ntience:
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(a) a normalized two-dimensional Gaussian distributiotma&igiven SD §)

1 _orp?
f(r—r;) = e T, (2.26)

202

(b) a normalized two-dimensional Gaussian distributiothva given SD §;) of which
another concentric Gaussian-distribution (S.F with a scaling-factorS € (0,1) is sub-
tracted. The resulting spot resembles a crater like sp@eshEhe derivation of the equation
is shown in Appendix A.3.3.

1 (r*rj)Z

_erp? _emp?
f(r—r;|) = < 126 i —S——e 3 )x(l—S)l, (2.27)

2moy 2mos

(c) a normalized cylindric distributed shape with a givetliua d that forms a plateau-like
spot:

Lif r—r; <d
r—r.l) = md?? 7= 2.28
Fr =) { 0, if |r—r;>d (2.25)
These spot models were used because they are commonly alisewith spotted array
data on nylon and glass supports respectively and are indguessumed as quantification
models by image analysis programs. More irregular spoteshtyat do not have a common
spot distribution can also be observed (e.g., Jain et 2R but are not considered here.

2.3.3.5 Background Noise

Two different sources of background noise can be distinmasa global background due to
the scanner noise or filter surface, and a local backgrouadalinhomogeneous hybridiza-
tion to the filter that looks like smear.

Global background noise. The global background is described by a randomly Gaussian
distributed noise that is equal for the whole filter. It carvaged by its mean and SD.

Local background noise. As a model for the local background, fractal clouds as de-
scribed in Saupe (1988) are used. They are generated withitioint displacement method
with a fractal dimension of 0.4 and then scaled to a given mimn/maximum-range, which
defines the intensity level of this background. The model evassen for local background,
because the intensity level of a given pixel depends on ighbers. This results in images
that look quite the same as the background of experimentgés By the use of a pseudo
random number generator, reproducible fractals wereaxdeat
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2.3.4 Data Evaluation and Quality Measurement
2.3.4.1 Image Analysis

To illustrate the power of using simulated data for the judgtrof image analysis software,
the following programs were used: (1.) FA, which is a fullyt@uated image analysis
software—no manual effort for the positioning of the grichiscessary, (2.) AIDA, which
needs some manual interaction for the positioning of thd, gtnd (3.) Visual Grid, for
which the whole grid has to be adapted manually (see als®mreekt3.2). These programs
have been chosen, because they are frequently used at dtuténand have already been
utilized intensively for image analysis (FA: Steinfath et 2001; Visual Grid: Herwig et al.,
2001). Furthermore, they are representative for the @iffelevels of automation of image
analyses.

2.3.4.2 Evaluation of Gridfind and Quantification Quality

The following two steps are essential for the analysis ofrigybation imagesgridfind and
quantification First the gridfind has to locate the exact positions of thespnd then the
signal intensities are assigned to each spot by the quaitic For instance, the image
analysis FA does a Gaussian spot shape fit for quantificaBtinfath et al., 2001). The
performance of the different image analysis programs astdeby the following quality
parameters:

1. The mean distance between simulated and calculatedepets. Here, the simulated
spot center refers to the exact position of the spot centgrnwias used for the simu-
lation. The calculated spot center refers to the spot céh#tiwas determined by the
image analysis software.

2. The Pearson correlation between simulated and caldulatensities. The simulated
intensity refers to the intensity value used for the simateand the calculated intensity
is the intensity value determined by the image analysis\swé.

The first parameter measures the quality of the gridfind. Eeersd is a measure for the
quality of the whole image processing.

2.3.4.3 Statistical Evaluation of Differential Expressio  n

For testing statistical significance of differential exgg®n we calculated P values according
to the Welch test (Welch, 1947). This test is an unpairedt-tdt assumes that the two
samples ("treatment” and "control") are distributed adowy to Gaussian distributions with

74




2 Results

meansiyeament@Nd/icontrol F€SPECtively, and judges the hypothesis whethgfiment= /tcontrol-
Here, in contrast to Student’s t-test, it is not assumedibtt sample distributions have the
same variance. The test statisfi,has the form

7279 (2.29)
VEE

Here,z andy denote the sample meart&, ande denote the sample variances andnd
m are the respective sizes of the treatment and the contrgllsarigh and low values of
the test statistic then indicate significantly differentgde means. This test has been applied
to differential expression analysis of array data in sdvaralies, for example Herwig et al.
(2001) and Dudoit et al. (2002).

The quality of an expression profile analysis based on arady i@ highly dependent on
the number of repeated sample measurements, and of thepmepgration, hybridization
and signal quantification procedure. The latter can be opéicheither experimentally by
improving array preparation and hybridization, or compaotally by employing better al-
gorithms for the image analysis software, such that can w#hlpreparation errors. The
improvement of each method is limited. Major critical paeders are local distortions of the
spots, variations of the spot shape and outshining effagtstal neighbor spots or massive
background noise. These parameters have been analyzasltineis (see Tab. 2.1).

In the following series of images are presented for whicly onle parameter was changed,
respectively.

2.3.5 Simulation of Local Distortions

For the following simulation it was assumed the spots to ltavstant Gaussian shape with-
out background noise. Thus only the effects of local digiog are tested. Fig. 2.18 and 2.19
show the influence of spot-shifts on the gridfind and quaatite.

2.3.5.1 Spot Shifting

Spot shifting was simulated with SDs between 0 amtii2 mm from its ideal positions
(Fig. 2.18). The mean distance between adjacent spot sewss0.9 mm. This param-
eter became critical (correlation 0.95) for SDs in the range of 0.15-0.2 mm concering
the quantification done with any of the three programs (Fig8R). The quantification is of
course influenced by the quality of the gridfind. This meaias the critical range in terms
of spot shifting is about a fifth of the distance of adjacemtg@nters.

In Fig. 2.18C only the quality of the gridfind is judged. Theoergiven by the mean
distance between the calculated spot center determineaebiyntage analysis software and
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Figure 2.18: Spot shifting. Every spot was shifted randomly relative to the ideal grigipan

by a Gaussian distributed distance with a given standaréiti@mvo. (A) A simulated imageg =
0.1824 mm. In (B) the pearson correlation between simulated and calculatedsities is plotted
versus the standard deviation of the spot centers fromitest grid nodes. In@) the mean distance
between the calculated and the simulated spot centerstieghieersus the standard deviation of the
spot centers from their ideal grid nodes. The vertical limeé) and (C) correspond to the image
in (A). In (B) and (C) each point in the plot is determined byiregge analysis of a simulated image,
respectively.
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its simulated center is relatively linear to its perturbatfor any of the tested programs. The
low quality for AIDA for small perturbations is due to a misgisub-pixel precision. This
means, that if e.g., the simulated spot center is not ida@niih the center of a pixel. The
output-result from AIDA lacks this sub-pixel precision.

2.3.5.2 Pin Shifting

The error due to pin variations is a systematic error for ptits in the same block, be-
cause they were spotted by the same pin (Fig. 2.19A). Pattiarts with SDs between 0 and
0.2 mm were simulated. This error became critical (correlatnf.95) for SDs of the pin
shifting greater than 0.12 mm for Visual Grid and greatent®a 67 mm for FA. The error of
the gridfind was linear to its perturbation (Fig. 2.19C). &élagain the low quality for AIDA
for small perturbations is due to the missing sub-pixel igien.

Fig. 2.20 shows the distribution of block center shifts nuieed for experimental data (the
block centers were manually determined with Visual Grid)t the results mentioned above
this means that the error due to pin shifting is never in tliggcat area for the majority of
blocks. Nonetheless, strongly depending on the used de(écg., spotting robots), this can
become a critical parameter.

2.3.6 Simulation of Different Spot Shapes

The spot shape that depends on several properties specgmotong procedure like the
spotting method, the carrier surface or the probe viscosdag modeled as a two-dimensional
Gaussian distributed shape, a crater-like shape (FigAz.Dland a plateau shape (Fig. 2.21K).
A mean SD 0f0.1482 mm for a two-dimensional Gaussian distributed spot shapehaa-
dled by all three image analyses (correlation alway8.99). Crater-like spot shapes were
simulated with crater-radii ranging frof0285 mm to 0.285 mm (in 0.0285 mm steps;

o1 = 0.1482 mm). To judge the influence of this parameter, the images weetyzed

by FA: Up to a crater-radius df.1995 mm FA analyzed them without any problems (cor-
relation always> 0.99). For crater-radii 00).228 mm and above (Fig. 2.21H-J) FA failed
due to problems during the gridfind. A third very idealizedtsphape—a plateau-like spot
shape—was also simulated, to see if this can be handeled bytekefore, a filter with
plateau spots with a radius 06f342 mm (not overlapping with neighbor-spots; half distance
between two neighbor-spots s44973 mm) was simulated and has been analyzed by FA
without any problems (correlatian 0.99).
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Figure 2.19: Pin shifting. Every block was shifted randomly relative to its ideal piositby a
Gaussian distributed distance with a given standard dewiat (A) simulated imagey = 0.114 mm,

(B) Pearson correlation of simulated and calculated intiessitependent on the standard deviation of
the block centers from their ideal positions (for AIDA ands\al Grid each data point is determined
by a single analysis of a simulated image and for FA threedifit images have been analyzed for
eacho, the asterisk depicts the mean and the error bars show thieurmand maximum value of the
three repetitions),&) mean distance between the calculated and simulated sperselependent on
the standard deviation of the block centers from their igesitions (each data point is determined by
a single analysis of a simulated image). The vertical lingd) and (C) correspond to the simulated

image in (A).
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Figure 2.20: Experimental block center deviation.Histogram of the distance of experimental block
centers from their ideal block centers (computed from 12&rpental filter-images each containing
48 x 48 blocks with5 x 5 spots respectively). Block positions were manually tagogdhe use of
Visual Grid and distances to the ideal grid—given by fieldhess—were calculated.

Figure 2.21: Spot shape examples(A—J) are examples of simulated crater spot shapes with rim
radii between 0.0285 mm and 0.285 mm in 0.0285 mm stelg$.is(an example of a plateau spot
shape (radius = 0.342 mm).
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2.3.7 Simulation of Background Noise

In the following all images were assumed to have constants§an spot-shapes and all
spot centers are located at the ideal grid nodes. Thus tifngrihas only to cope with the
background noise.

2.3.7.1 Global Background Noise

From the (non-spotted) border area of an experimental fittege with a 16 bit depth, the
noise level was found to be about 16000 with a standard demiat about 4000; the distri-
bution is similar to Gaussian (data not shown).

The simulated image shown in Fig. 2.22A has Gaussian bagkdmoise withy, = 16000
ando = 4000. The detection of the grid was nearly perfect for all imagalgsis programs
for thisimage. The correlations between input and outgetisities were always higher than
0.99. Hence a realistic global background noise as givehégxperimental reference does
not influence the quantification of the programs.

2.3.7.2 Local background noise

As a model for the local background, fractal clouds as desdrin Saupe (1988) were used
(Fig. 2.22B).

Fig. 2.23 shows the effect of local background-noise on thage analysis. For mean
signal/background ratios above 25 this error did not becoriteal, as far as any of the
three programs are concerned. Below a ratio of 20, coroeladecreases rapidly, espe-
cially for AIDA. Correlations for Visual Grid and FA decreasignificantly for mean sig-
nal/background ratios below 13. At this point the signatkgaound ratio becomes critical
for all programs. Thus it was chosen for a further statistest series (see below).

2.3.8 Simulation of the Influence of Background Noise on the
Expression Analysis

| investigated into the influence of local background noisdlee quality of the expression
analysis with varying numbers of repetitions. The signifwa of differentially expressed
genes was judged by the use of the Welch test as describedwigHst al. (2001).

A series of six images with variations in signal intensitikege to replicated spotting of
duplicates, and with a varying transfer quality for diffierpins as described in section 2.3.3.1
was simulated. Furthermore, different local backgrouniks imtensities scaled in the same
way as given for the mean signal/background ratio of 13 asrites in section 2.3.7.2 were
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Figure 2.23: Correlation for local background noise betwea simulated and calculated intensi-
ties. Pearson correlation between simulated and calculateqssititss depending on the intensity-level
of the fractal background given by the mean of all signakibacund ratios over all spots. Each data
point (asterisk) corresponds to the results of one imaglysisaThe used fractal background image
was always identical except for the signal/backgroundratil3. For this ratio, 7 different fractal
background images were simulated; correlation meédiamond) and standard deviations (error bars
representing the interval & o) were calculated.
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added. This was carried out for a control set with 14 208 difietest clones and for a test
set. For the latter signal intensities of 5 000 clones wereegplated with factors varying
between 1 and 10. Images were analyzed by three image pirag@segrams, namely FA,
AIDA, and Visual Grid. The source signal sets used for theviddal image simulations as
well as the analyzed data were used for the statisticalfgignce test. The test was carried
out for two, four, and six images of the control and test sgrespectively. This corresponds
to samples with four, eight, and twelve signals per clone series. Results are depicted
in Fig. 2.24. The rate of false positive clones is always Iéasg positive rate< 0.02).
For input data (Fig. 2.24A) with expression ratios belows] Fherely 42 % of the regulated
clones (sample size 12) could be identified (P vatu®.01). For expression ratios above
1.45 and sample size 12, almost all regulated clones coutiEpéfied. For ratios above 1.9,
a sample size of 8 was sulfficient for significant identificatad nearly all regulated clones.
For a sample size of 4 even with ratios between 9.55 and 10y098% of the regulated
clones could be identified, while for sample size 8 and 1% 98were found. After image
analysis the number of identified regulated clones decdesigmificantly. With the image
analysis FA and sample size of 12, more than 90 % significamtesl could be found for
expression ratios above 1.9 (Fig. 2.24B). AIDA (Fig. 2.24@y Visual Grid (Fig. 2.24D)
needed a sample size of 12 and ratios above 3.7 to detect gs Especially for expression
ratios between 1.45 and 1.9, with FA (sample size 12) 89 % efd¢gulated clones could
be identified, while AIDA identified only 67 % and Visual Grid 86. However, expression
ratios of smaller than 2 seem to be critical for this kind gbssion analysis. For expression
ratios above 2 the differences between sample size 8 ane X2latively small as compared
to sample size 4.

Fig. 2.24E shows a comparison of the CVs for sample size 12edfiput data signals and
of the signals quantified by the three different image preiogsprograms. The medians of
the CVs increase in the following order: input data (0.19,(6.21), AIDA (0.29), Visual
Grid (0.34). This result shows that data reproducibilityregases with the level of automation
of the image analysis programs.

2.3.8.1 Summary of the Findings

Complex hybridization experiments are based on a data ptithupipeline that incorporates
a significant amount of error parameters. Here | presentedidagion environment to judge
the influence of different parameters, like spot shaped, gpsitions, and local and global
background noise on the subsequent data analysis, sucltags amalysis and the detection
of differentially expressed genes. Image analysis can &ssifled by manual, semiauto-
mated, and automated procedures. While manual methodsmedystrong supervision by
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Figure 2.24: (on the previous pagdéjesults of statistical tests for simulated fold-changesTrue
positive rates of detected simulated fold-changes (P value01) as given by the Welch test. For
all test results, the false positive rate is below 0.02. tdjsam intervals have a width 6f45. The
absolute number of regulated clones per interval rangegdest 217 and 289.)A) Simulated signals
without image analysis (input for the image simulation)d after image analysis of the simulated
images with FA B), AIDA (C), Visual Grid ). For all expression ratio intervals results for 12 (red),
8 (green) and 4 (blue) repetitions are giveB) Histogram of the distribution of the CVs for sample
size 12; The medians of the CVs are the following: input d&ta9, FA: 0.21, AIDA: 0.29, Visual
Grid: 0.34.

the user and requires some initial guess, e.g., on the spiiqs, semiautomated methods
require much less interaction, but still need prior infotima (e.g., definition of the spotted
area). Automated methods try to find the spot grid without ugeraction. The simulation
studies have shown that the data reproducibility increasttsthe grade of automation of
the software. However for noisy hybridization images thaive very irregular structures,
manual methods might be the best choice. My results showthieasimulation tool is a
valuable resource for the identification and the rating odresources arising from hybridiza-
tion experiments. The simulated sets can be used as berchests for new data analysis
modules such as image analyses coming up in the course oegpression data analysis or
comparable array based methods.
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Modeling and simulation techniques are valuable tools fier understanding of complex
systems. In the course of my thesis | have applied modelnagesfies to biotechnological
laboratory methods and biological systems. During theylaats, high throughput technolo-
gies are more and more frequently used in biological rekealt particular, array-based
gene expression analysis became an important key technimiogenome and transcriptome
analysis. Such array-based analysis make use of compldygion pipelines that incorpo-
rate a significant amount of error parameters. In the prevobiapter (Section 2.3) | describe
an implemented model for the simulation of DNA-array expemts that was used to judge
the influence of critical parameters on subsequent imaggsasand differential expression
analysis. Parts of the model have already been used foi@ulitesearch by other scientists.
This is discussed in Section 3.3.

Application of modeling approaches to biological systerasame very popular in recent
years in the course of systems biology. Since this is a veangaesearch area, there is
still a demand for appropriate computational tools. As dgidal systems are composed
of complex interaction networks consisting of thousandmdividual molecules each with
different functions, the demand for integrative systeneddgy platforms that can cope with
such large and complex interaction networks is high. Oné gioay thesis was to identify
and implement appropriate methods for the developmentiamaation of cellular reaction
networks. Therefore, | have developed the modeling and lation software application
PyBioS that is available through the Web. In Section 3.1 tuks the functionalities of
PyBioS further improvements.

Moreover, PyBioS was used for the modeling of signal transdo pathways and subse-
guent gene-regulatory target genes related to somitogen®sce biological reaction net-
works are highly interwoven and established mechanisnn @fte reused the developed mod-
els of Notch, Wnt, and FGF signaling including their regaatof gene targets is also of high
interest to areas of research. For instance Notch, Wnt,eo@ptor tyrosine kinase signaling
pathways are also very important for many aspects of celfutzcesses and not at least their
relevance for the onset of diseases, such as cancer (e.@h&taand Weinberg, 2000).
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3.1 PyBioS - a Modeling and Simulation Platform for
Cellular Reaction Networks

Compared to other systems biology software applicatioyBBidS has some unique features
that are particularly useful for the automated or semi-aatied model development or the
visualization of reaction networks along with simulatethéi course data. These features
makes PyBioS also applicable the work with large reactidworks.

Another feature that distinguishes PyBioS also from mamgiosystem biology applica-
tion is its Web-based user interface. Lee et al. (2008) coeaphive different Web-based
simulation tools including PyBioS. Advantages of Web-lohsenulation platforms are, for
example, that they operate through a Web browser and amefohe, easily accessible on
different platforms. Moreover, it is not necessary to ifisidocal copy of the software as
well as subsequent upgrades or bug fixes. However, Web-laagtidations do suffer from
a significant disadvantage in speed.

Another major demand from a modeling tool for the developnaed representation of
models of biological systems is the support for the visadilen of the reaction network.
Graphical representations of reaction networks prove ag iwelpful tools for the work in
systems biology. The graphical representation of a reastystem is not only helpful during
the design of a new model and as a representation of the nmout#obyy;, it is also helpful for
the analysis and interpretation for instance of simulatesults. Traditionally, diagrams of
interacting enzymes and compounds have been written infanmial manner of simple un-
constrained shapes and arrows. Several diagrammaticorstdtave been proposed for the
graphical representation (e.g., Kohn, 1999; Pirson e280D0; Kitano, 2003; Kitano et al.,
2005; Moodie et al., 2006) As a consequence of the differeafigsals the Systems Biology
Graphical Notation (SBGN) has been set up recently. It gievia common graphical no-
tation for the representation of biochemical and cellutarction networks. SBGN defines a
comprehensive set of symbols, with precise semanticsthiegeith detailed syntactic rules
defining their usage. Furthermore, SBGN defines how suchhgralpnformation is repre-
sented in a machine-readable form, to ensure its propagapexchange, and reproduction
of the graphical representation.

SBGN defines three different diagram types: (1) State Ttansdiagrams that are depict-
ing all molecular interactions taking place, (2) Activitjolv diagrams that are representing
only the flux of information going from one entity to anothand (3) Entity Relationship
diagrams that are representing the relationships betwienetit molecular species. In a
State Transition diagram, each node represents a given aftat species, and therefore a
given species may appear multiple times. State Transiiagrams are suitable for follow-
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ing the temporal process of interactions. A drawback ofeStaansition diagrams, however,
Is that the representation of each individual state of aispeesults quickly in very large
diagram and due to this it becomes difficult to understand witaractions actually exist for
the species in question. In such a case an Entity Relatigratiais more suitable. In an
Entity Relation diagram a biological entity appears onlg@n

SBGN defines several kinds of symbols, whereas two typesmbsis are distinguished:
nodes and arcs. There are different kinds of nodes defineattiRg state or entity nodes rep-
resent, e.g., macromolecules, such as protein, RNA, DNispocharide, or simple chem-
icals, such as a radical, an ion or a small molecule. Containdes are defined for the
representation of a complex, compartment or module. [Effetransition nodes are defined
for the representation of transitions like biochemicalctems, associations, like protein-
complex formation, or dissociations, like the dissociatda protein complex. The influence
of a node onto another is visualized by different types of aepresenting, e.g., consumption,
production, modulation, stimulation, catalysis, inhidit or trigger effect. Not all node and
arc symbols are defined for each of the three diagram typestaileld description of the dif-
ferent nodes, arcs and the syntax of their usage by the eliffeliagram types is given in the
specification of SBGN (see http://sbgn.org/). The SBGN thatadefines a more complex
representation than it is provided by PyBioS at the moment.

Besides graphical aspects, also modeling approach is@famte. Different theoretical
attempts have been made to describe biological systemsrrbieistic approaches are based
on the exact computation of changes during time. One apprt®t is often used, e.g.,
for the description of gene regulatory networks, are Baoleatworks (Kauffman, 1993;
Akutsu et al., 1999; de Jong, 2002). Boolean networks tateancount only two states
for a variable, true and false or 1 and 0. A Boolean nework fsndd by a given number
of binary variables and a set of Boolean rules—Ilogical esgimns that define the state of
a given output variable based on a set of given input varsabfen example of a Boolean
network is shown in Fig. 3.1.

An extension of Boolean models are discrete models. In astito the two different states
that are possible for Boolean models, variables of a disenetdel can take a limited number
of predefined discrete values.

Deterministic modeling using ordinary differential egoas (ODES) as used by PyBioS
has been applied very successfully to different problemiafolgy. Nevertheless, modeling
by differential equations ignores the stochastic naturei@bgy. In biochemical networks
an integer number of molecules react when they collide eftedlom times, driven by Brow-
nian motion. One assumption for the application of ODEs & the number of interacting
molecules is very large and stochastic effects averagerautinstance, this assumption ap-
plies in most cases to metabolic networks, but for the deson of gene expression events

88




3 Discussion

D Input Output
@ @ @ @ ViV, Vg ' ' !

<
-

<
N

<
w

v', = v; AND v,

v'; = NOT v,

[ N - I - <
H R OO R KR OO
H O HO®ORO® RO
PF R OO R KR OO
H ®OH OO0 O® OO
SR oI N > S SR R

Figure 3.1: lllustration of a Boolean network&() and its wiring diagramg). Applying the Boolean
rules ) to a given input state determines a certain output staggpfad from Akutsu et al., 1999).

this might be inappropriate (Elowitz et al., 2002; Raser @fshea, 2004; Tang, 2008).

Stochastic kinetics of well-mixed chemical systems canrelated using the exact meth-
ods of Gillespie (Gillespie, 1977). However, using stoticasmulations applied to large
models do not scale very well. A workaround are hybrid sohsj algorithms making use
of both deterministic and stochastic simulation where appate. The development of such
approaches is still subject of current research (Kiehl.e@D4; Griffith et al., 2006; Wilkin-
son, 2006).

3.1.1 Prediction in the Face of Uncertainty

Predicting effects of perturbations of complex biologisgktems is key to being able to
solve many important problems, in particular in the casewhan diseases. It is highly
likely, that such predictions will have to be based on coraputodels that represent all
relevant components of the networks involved as well as thegractions in sufficient detalil
and accuracy. Establishment of such models is however ccagdl by the fact, that relevant
parameters are either completely unknown, or can at beselbsumed under highly artificial
conditions.

Structure and behavior of any cell and any organism are m@ted by converting infor-
mation in the genome and the environment into the phenotypegh a series of molecular
processes. Dysfunctions in the molecular interaction agtgvcarrying out this process can
cause severe diseases such as cancer. Curing the diseaisksast ameliorating the symp-
toms, often involves by itself complex disturbances in ¢hestworks, with success depend-
ing, among other factors, on the genotype of the patient tlhérefore not too surprising,
that in many cases only a sometimes small fraction of pati@sponds to specific treatments,
while many might suffer often quite severe side effectsgRrss in the treatment of diseases
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in individual patients will therefore depend critically teing able to predict the effects of
such treatments, regarding the genomic predispositiomeopatient.

The capability to predict has been a main goal of science fr@rbeginning. In contrast
to the situation in many areas in physics, where it has beenilple to make highly accu-
rate predictions based on a small number of assumptionstategredictions of biological
processes depend on the behavior of complex networks ofcolale cellular, and even or-
ganismal interactions, which have been shaped by eventsdds of millions of years ago.
Itis therefore quite likely that predictions in biology Wilave to be based to a large extent, on
the detailed knowledge of the components of the networkdwed, as well as their interac-
tions. While inherently difficult to achieve, any progres®ur ability to predict the behavior
of these biological networks can have enormous practicaeguences. Improved predic-
tions on the response of individual patients could, for ep@ydecide between life and death
of the individuals involved, while improved predictions thre effect of drugs could very well
help to revolutionize drug development, and therefore leenamous economic value.

To allow such predictions, two basic strategies have beasidered: the identification of
statistical correlations in the therapy response of spdgiimarkers(e.g. transcripts, pro-
teins, metabolites, patterns of genomic methylation),eémd the modeling of the disease
and therapy, to represent accurately the biological psssem the individual patient. While
statistical procedures have been quite successful in peaglicting treatment responses, they
are, however, inherently a relatively blunt instrumentyable to detect very strong corre-
lations, which hold up across large groups, irrespectivineimultiple differences between
the individuals, which make up these groups. Predictiveetgydn contrast, can take into
account the individual situation in every patient, and ddabkrefore, in many cases, provide
more reliable predictions.

The establishment of such predictive models is however @oatpd by the lack of in-
formation on many of the reaction kinetics needed. Inforomabn the kinetics and kinetic
parameters is either not available at all, or, at best, igdas experiments often carried
out under conditions quite different from those in the liyicell. Concentrations of many
reactants are usually unknown, or it is simply not feasiblddgtermine them for every indi-
vidual patient. Thus, computational modeling approachestmrimarily face the challenge
of coping with this lack of information.

One approach to overcome this limitation could be a rigoraualysis of the model’s
parameter space, e.g., by sampling unknown kinetic pasas&om appropriate random
distributions and a subsequent statistical significarsteig Of course, such a kind of Monte
Carlo-based approach requires to run thousands of siranatilhis can only be performed
in parallel using distributed computing like grid compufirPyBioS is already designed for
such applications. Models can be developed within PyBiaSexported as model-specific
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software applications that no longer depend on the PyBia$eny itself. This makes it
possible to distribute the simulation tasks on a computestel. Using such a kind oh
silico approach, one can perform experiments that might allowigtieds about the effects
of specific perturbations that introduced into the model.

3.1.2 Applications

The PyBioS modeling and simulation system comes alreadyptication in several national
and international research projects. A major part of thé bas been developed during
the EMI-CD project supported by the European Union in itsneavork program 6 (FP6).
Table 3.1 gives an overview of different projects PyBioShigived in.

Table 3.1: PyBioS is developed and used in several projects suppoytéaelEuropean Union (EU)
and the German Federal Ministry of Education and Research.

Project Description

Projects supported by the European Union
EMI-CD European modelling initiative combating complesekses
ESBIC-D European Systems Biology Initiative combating

complex diseases

EMBRACE A European Model for Bioinformatics Research and
Community Education

CARCINOGENOMICS Development o vitro test methods
for identification of carciongenic substances

APO-SYS Apoptosis Systems Biology Applied to Cancer and &ID

Projects supported by the BMBF

METASTEM NMR Metabolic Profiling of the Stem Cell Niche
Mutanom Functional characterization of mutations causarcer
MoGLI Systems scale analysis and modeling of Hedgehog/GLI
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3.2 Modeling Biological Systems

In the past, investigations into cellular and molecularcpsses were done by the analysis of
particular pathways, e.g., metabolic or signal transdacgiathways, and the isolation and
characterization of components involved in these prosesBee results of these functional
characterizations and analyses of many single genes afrel@eimented in the literature,
and sometimes also systematically summarized in databases

Besides this, biological systems have features that artse their complex interaction
structure. In such systems, changes of a single componght mfluence several others and
due to this they show a significantly different dynamic bebiavFor instance, the variation
of a single transcription factor might influence the expi@s®f several of its target genes,
and this results in alterations of processes these targeiswlved in. Another example is
given by cross-talks between different signal transdagtiathways. As a consequence, in-
terwoven networks occur that make the system much more cogigadl and less predictable.
Thus, functions in biological systems rely on a combinabbthe network and the specific
elements involved, and, in this way, biological systemshniog better characterized as sym-
biotic systems (Kitano, 2002). To investigate their projest it is necessary to consider and
analyze the components in a broad context using a systemsaagbp For this purpose new
experimental methods were developed offering tools foratiedysis of different categories
of the biological system. Frequently the names of the newagmhes carry the suffiemics
as is the case with genomics, proteomics, metabolomiagssdrgtomics, or interactomics.
In the following some of the methods utilized by the discipk mentioned above are listed.
Often they display the same methodical approach by makiegtifigh-throughput tech-
nologies.

The prototype model of coupled Wnt, Notch, and FGF signalimigich | have imple-
mented in the course of my thesis is not only useful for thecidgison of somitogenesis
and other developmental processes, but it can also be us#tefetudy of disease or aging
processes.

3.3 Modeling of Laboratory Methods - DNA Array
Experiments

In Section 2.3 | have presented a simulation for complex idyzation experiments. This
was used to judge critical experimental parameters in gt of the following data analysis.
| studied critical parameter of the image analysis by theafiskeree different image analysis
programs representing different levels of automation efghdfinding and signal quantifi-
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cation. | showed that local distortions of the spot centi&esrion systematic spot shifting as
well as systematic errors resulting in block shifting dug@itoerrors did not become critical
for the reference experiments with the image analysis progr Also global background
noise did not become critical for the experiments studie.hd_ocal background noise
might become critical for filter experiments in some case=reH showed by the use of frac-
tal clouds as background—which looks very similar to the @niie real experiments—that
a mean signal/background ratio below 13 might become alifar some image analysis.
However, for the automation of complex hybridizations itghii be very helpful to check
these parameters during the following data analysis pipelThis can help to identifiy bad
experiments more efficiently. Furthermore it might help &tett sources of error during
the experimental procedure or improvements that were maldleough it is possible to get
a higher quality of the results by an improvement of the expental procedure and data
analysis algorithms, it is always limited (not at least by #vailable resources). Furthermore
variations of biological material can be expected. To cojfib this limitations repetitions of
the experiments are indispensable. Not at least due to ¢héhit array experiments are still
very expensive one wants to know how many repetitions aressecy to ensure a certain
quality for your expression analysis. For this purpose Islatistical analysis with 4, 8 and
12 repetitions using a Gaussian distributed noise of thetidpta witho, = 0.2. Here the
image analyses had to cope with changing local backgrouitigire same intensity level.
The results of the statistical analysis indicate that ferdHlferent image analyses expression
ratios below 2 become critical. The relatively poor perfarmoe for Visual Grid indicated by
the distribution of the CVs is probably due to the fact thas ffrogram does no local align-
ment of the spot position. Since here ideal spot positione wenulated this can explain the
relatively good correlation found in Fig. 2.23 for this prag. But due to the manual posi-
tioning of the global grid this might become a significant®euof error. AIDA and FA do
local alignments for the spot positions whereby this soofe®ise due to manual interaction
does not occur.

Automated expression analysis by chip technology will Ineeanore and more important
in the future, e.g., in biology for comprehensive studiesuoy kind of developmental pro-
cesses or in medicine for the study of genetically reasorsshdes. Therefore it is essential
to have a well characterized chip technology and subseagiaatnalysis. This can be sup-
ported significantly by well defined models and a whole pres@sulation. By using well
characterized radioactively labeled filter cDNA-arrayshbwed that the simulation of this
biotechnological method reveals for several parametersetiel when they become critical
for the follow up data analysis and how this can be improveattHérmore, the simulation
environment can also be easily used for the study of cDNAyarkmsed on glass slides,
where, e.g., background noise seems to be less criticafligtatrtions of spot positions and
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less well characterized spot shapes are more critical.

Since the simulation approach of DNA array hybridizatiopexments that is presented
in my thesis was already published 2002 in BMC Bioinform&(/ierling et al., 2002), its
results had already impact on further research of othenssie The models of macroarray
spot shapes developed and described in this thesis (peblial2002, Wierling et al.) have
been adopted by Ekstram et al. (2004) to fit the charactesisti microarray spot shapes
more precisely.
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Abbreviations

APC
bHLH
CSL
CVv
DAE
DAG
DSH
DVL
EGF
FZ

GAP

GEF

GSK3p
HTTP
IP3
Lefl

LPR5/6

NICD

adenomatous polyposis coli; a scaffold protein

basic helix-loop-helix; specific DNA-binding motif
CBF1/Su(H)/LAGL1 (CSL) family of transcription factors
coefficient of variation; CV = standard deviation / mean
differential algebraic equation

diacylglycerol

dishevelled protein in mouse

dishevelled protein in human

epidermal growth factor

frizzled; seven transmembrane receptor

GTPase activating protein; GAPs stimulate the GTPaseigctfactivated G
proteins

guanine nucleotide exchange factor; GEFs activate G piobBi promoting the
exchange of GDP by GTP

glycogen synthase kinas¢s3
hypertext transfer protocol
inositol-1,4,5-trisphosphate
lymphoid enhanced-binding factor 1

low density lipoprotein (LDL) receptor-related proteinsabd 6; single-pass
transmembrane protein

Notch intracellular domain
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ODE

PCR

ordinary differential equation

polymerase chain reaction

pers. comm. personal communication

PH

PI3-kinase
P1(4,5)P,
PI(3,4,5)R
PP2A
PSM

PTB

SD

SH2

SH3

Sos

Tcf

pleckstrin homology domain; some PH domains of intracatlsignaling molecules
can bind to PI(3,4,5)Pproduced by PI3-kinase

phosphatidylinositol 3-kinase
phosphatidylinositol 4,5-bisphosphate
phosphatidylinositol 3,4,5-trisphosphate
protein phosphatase 2A

Presomitic mesoderm

phosphotyrosine binding domain
standard deviation

Src homology 2 domain; protein domain that can bind to phospated tyro-
sine residues

Src homology 3 domain; protein domain that can bind to pestich motifs in
intracellular proteins

son of sevenless

transcription factor 1
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A Appendix

A.1 Concepts, Tools, and Methods used for the setup
of the computational simulation platforms

This section gives some background information on the qais¢eools, and methods that
used for the implementation of the computational modelimg) simulation platforms.

A.1.1 Object-oriented programming

The paradigm of object-oriented programming (OOP) is tipeagentation of complex fea-
tures by computationalbjectsthat provide the significant data and functionalities ofithe
counterpart in real world, where objeattributesrefer to data and objechethodsefer to
functionalities of the real object. Objects with identia#tributes and methods, but differing
in attribute values are subsumed irdasses Thus, classes describe attributes and meth-
ods of a group of objects. An object that belongs to a certlasscand refers to a specific
entity of the real world is also called anstance Thus, the terms object and instance are
synonymes. Objects can also refer other objects via theip@tes; such relations are called
links or associationsObject classes that summarize attributes and methodarfhnabmmon
among other classes, but which do not directly refer to imcs#a of the real world, are called
abstract classesA class can also inherit attributes and methods from anaiass, and the
derived class can define further attributes and methods.i$leallednheritance

For instance, let us assume we have a atefighat has the methods 'grow’ and 'divide’,
and the attribute 'volume’. Each time, when external natiseare available, 'grow’ is called
and changes the value of 'volume’ of the respective cellaimsg¢, until a critical volume
is reached. When this happens, 'divide’ is called and thkicsiance is replaced by two
daughter-cell instances, with reduced cell-volumes.

Classes, their attributes, methods, and links, as well @s ittheritance structure can be
represented by diagrams using the notation defined by tfiedimodeling language (UML).
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A.1.2 Python

Pythort is an interpreted programming language running on diffecgrerating systems.
Python permits for several coding styles, like structure@rocedural programming, func-
tional programming, or object-oriented programming. Aportant feature of Python is that
it is easily extensible by other compiled programming laagps like C, C++ or Fortran.
Latter became more and more unpopular because of its symiageveral Fortran libraries
especially for mathematical routines are still in use.

A.1.3 Zope Web Application Server

Zop¢€ stands for "Z Object Publishing Environment”, and it is a ve@iplication server pri-
marily written in the Python programming language. It coisgs a Web server, that enables
the interaction with the user, and an object-oriented @det@jathat is used by PyBioS to store
the models and make their objects persistent. Thereforexplicite file-format (or table
structure for a relational database) is required, sinceltss definitions and object relations
already define the required structure. Zope also maps otrjetitods to incoming HTTP
requests and thus it provides dynamic HTML representatidtise individual objects.

A.1.4 Numerical Solvers for ODEs and DAEs

The PyBioS modeling and simulation platform that is devetbm this thesis and is intro-
duced in section 2.1 can automatically generate a matheamhatodel, described by an ODE
system, from a given topology of a biological model and a $etooording kinetic laws.
Since these ODE systems often possess non-linear kinetioearly all cases they cannot
be solved analytically, but often numerically. PyBioS soiptp deterministic simulations by
numerical integration of first order ODE-systems. It offére use of the solvers LIMEX
and LSODA to get the numerical solution of the initial valuellem. LSODA (Hindmarsh,
1983; Petzold, 1983) is a solver for ordinary differentiglations written in Fortran and
it is a variant of the LSODE package. The algorithm used ia flulver switches between
stiff and non-stiff methods automatically. PyBioS uses ititerface to LSODA which is
available from SciP3; The solver LIMEX (Deuflhard et al., 1987; Deuflhard and Nowak,
1987) is an extrapolation integrator for the solution oéhnly-implicit differential-algebraic
systems (DAESs) written in Fortran. It combines an impliaiecstep method with stepsize
extrapolation to permit an adaptive control of stepsize@cler.

Ihtt p: // www. pyt hon. or g/

’ht t p: / / www. zope. or g/

Shtt p: / / www. sci py. org

tp://elib.zib.de/ publ/elibl/codelib/LI MEX4. 2A1
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A.1.5 Computation of Conservation Relations

For a biochemical reaction the reaction equation descritésh molecules are consumed or
produced in the reaction and with which molecularities tpasticipate. For a system of re-
actions this can be described by the stoichiometric mdtrig.a matrix of the stoichiometric
coefficients in which each line corresponds to a componethteaich row corresponds to a
reaction, e.g., for the following system of reactions

Slﬁsz
P

Msg

(A1)
the stoichiometric matriXV reads
R:i Ry
Sq -1
Sa
S 0 -1
N= "7 . (A.2)
Sy 0 1
ATP | -1 1
ADP\ 1 -1
Using this notation the system equations (cf. equation t.fage 19) can also be written as
as
whereS = (51,5,...,5,)" is a vector of the concentrations of the substanees-
(v1,v9,...,v,)T a vector of reaction rates, and = (py,ps,...,pn)" a vector of the pa-

rameters.

The model in reaction A.1 shows an interesting property attien networks that fre-
guently occurs. ATP and ADP are always converted into eabbratithout changing its
total amount. Such cycles, called moiety-conserved cy@dse when groups of atoms,
termed moieties, migrate through the network without beyigthesized or degraded (Klipp
et al., 2005).

The conservation relations described by the moiety-comsketycles reveal as linear de-
pendencies of the rows of the stoichiometric matrix.

The mathematical derivation of conservation relations+igamplemented in PyBioS—
is done as described by Klipp et al. (2005, pp. 165): A matiis considered that fulfills

GN = 0. (A.4)
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Due to Equation (A.3) it follows that
GS =GNv =0. (A.5)
Integrating this equation leads to the conservation rigaist
GS = const. (A.6)
The conservation matri& can be calculated from
N'GT" =0 (A.7)

using the block diagonalization algorithm described byh(8ter and Schuster, 1991).
Conservation relations can be used to simplify the systediffefrential equationsS =
Nwv that describe the dynamics of the reaction system. Thiseawobe by eliminating linear
dependent differential equations and replacing them byaiate algebraic equations.
The procedure looks as follows (Reder, 1988): Rows of thielstametric matrix/N and
of the concentration vectd have to be reordered in such a way that a set of independent
rows is on the top and the dependent rows are at the bottonm thkanatrix/V is split into
the independent paiv’ and the dependent paN’, and a link matrix is introduced in the

following way
N° I
N = < ) — LN° = ( rank(NV) )NO, (A.8)
N’ r

I...x(~) is the identity matrix of size rarfkV). The differential equation system may be

rewritten accordingly
a Sin e Iran
S= [ T ) = KN N0, (A.9)
S dep L

and the dependent concentrations fulfill
Saep = L' - Singep + const. (A.10)

This relation is fulfilled during the entire time course. Bhwe may replace the original
system by a reduced differential equation system

Sindep = No'v (All)

supplemented with the set of algebraic equations (Eq. (A.10
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A.2 Modeling of Somitogenesis

A.2.1 Kintics Used Within the Somitogenesis Model

Complex Dissociation Complex dissociation is described by a kinetic law of a re-
versible reaction.

AB A+B (A.12)

The corresponding rate law is
U= koH[AB] - k:off/ij [A] [B]v (A13)

wherekp = kog/kon iS the dissociation constant, aigl, and k¢ are the association and
dissociation rate constants, respectively.

Complex Association Complex association is described by a kinetic law of a relukrs
reaction.

A+B AB (A.14)

The corresponding rate law is
v = kouAJ[B] — kon - kn[AB], (A.15)

wherekp = kog/kon IS the dissociation constant, aikg, and k¢ are the association and
dissociation rate constants, respectively.

Degradation Reactions  Degradation of proteins, mRNAs or complexes are described
either by a first-order reaction or by a Michaelis-Menterctiea.

A (A.16)
The corresponding rate law of a first-order reaction is
v = k[A], (A.17)
wherek is the first order rate constant or
Vmax [S]
= _rnarl-. A.18
o (A.18)

whereV,,.. is the maximal rate of the reaction ard,, is the substrate concentration for
which the reaction rate is half maximal.
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Synthesis Reactions  Synthesis reactions of proteins are either described byoaareler
reaction, a first-order reaction
For a zero-order reaction the reaction rate is

v =k, (A.19)

wherek is the reaction rate coefficient.
Gene expression processes are described as follows.

Single activator:
[A]"

AR

+b (A.20)

One activator and one inhibitor:

| "
|| [T () +0 A21
- ( "“rK"J) “1 (Agk+f(£3§‘)+ (A2

Two activators and one inhibitor:

Al Al
A.22
=V H< "J+K"J>X1;[<Azk+f(2,f) (AZ’HFK;‘:) (A.22)

A.3 Modeling of DNA Arrays

A.3.1 cDNA Array Data Used for Modeling

In section 2.3 | present a study concerning the evaluatiocritital parameters occuring
in DNA array hybridization experiments. | simulated hylzet filter images according to
different sources of error and used them for subsequengsisaln DNA array experiments
errors might arose from variations of the spot positionsseduby different experimental
artifacts or by different sources of background noise. ®aigealistic distribution of signals
as input data for the simulations, intensity values andr trespective grid positions were
taken from experiments with macroarrays. The origin of tkgeeimental data is described
in the following.

A detailed description of the cDNA clone array design, mRIidBdling, hybridization and
data capture is given in Herwig et al. (2001). PCR producfigld?08 zebrafish cDNA clones
of a representative library from gastrula stage embryoariGt al., 2001) and 2 304 copies
of anArabidopsis thalian@DNA clone were spotted on nylon filter membranes. Clonegwer
spotted in a rectangular grid of blocks with 25 spéts(5) per block by the use of a gadget
with 16 x 24 pins corresponding to a 384-well microtiter plate. Figurg6B on page 68
illustrates the filter design. Due to the experimental pdoce a filter is divided into six
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fields of 384 blocks each. For thex 5 spotting pattern each block comprises 25 spots. The
zebrafish target derived from mRNA of gastrula stage emb¢gdsours post fertilization)
was hybridized to six filter replicates which were spottethwhe same set of clones. To
improve reproducibility, each clone was spotted in dupéqaer block. The spot intensities
of the hybridized filters were analyzed as described in Hgetial. (2001). For each spotted
cDNA clone mean signal intensities were calculated fronstRdilter replicates and used as
input data for the simulations in section 2.3.

A.3.2 Data acquisition in DNA array experiments

Image analysis is the first bioinformatics module in the datalysis pipeline of DNA array
experiments. In this step each probe spot of the scanned DN¥ anage is assigned a
numerical value that represents the signal intensity. fgddor this is the correct identi-
fication of each spot center and a correct quantitation opikel neighborhood around the
identified center of each spot. Since the signal intensitegsrmined during image analysis
are the input data to any further pre-processing steps ddetfange analysis or clustering
analysis, the quality of image analysis is essential for r@sylts that can be gaind by sub-
sequent procedures. In section 2.3 simulated images thegsent different experimental
errors are used to study how the degree of automation of tagaranalysis affects the qual-
ity of image analysis. Image analysis methods can be groupedhree classes: manual,
semiautomated, and automated methods. Manual methodg)lstrely on supervision of
the user by requiring an inital guess on the spot positiags, the user has to adjust an ideal
grid manually on the screen. Semiautomated methods relggsenteraction, but still need
some prior information, e.g., the definition of the spottegba Automated methods try to
find the spot grid without any user interaction. For the namd study, three programs were
chosen to represent each of the three classes:

Visual Grid  This program is a commercial product of the company GPC Blo&G .
The program provides the functionality to individually daefithe grid, sub-grid, and each
spot position by the user. Since the whole grid has to be adapgnually, its degree of
automation can be classified as 'manual’.

Aida This program is a commercial product of the company Ratdsrequires only a
limited interaction by the user for the grid positioning; aefituning of the spot positions is
performed automatically. Thus, it can be classified as 'aatomated’.

Shtt p: / / www. gpc- ag. com
Shttp:// ww. rayt est . de
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Filter-Analysis tool FA The third program is the filter analysis tool FA, developed by
Steinfath et al. (2001) at the Max Planck Institute for Maollat Genetics. It uses an algorithm
for the grid detection that requires no interaction by therus'he program automatically
identifies the global borders of the rectangular grid. Inegpstown procedure it detects sub-
grids, and finally performs also a fine-tuning for each speitpm. Thus, it can be classified
as 'automated'.

A.3.3 Mathematical Description of a Crater Spot

A crater spot can be described by the following function:

1 _l(u)Q 1 _l(zf,u,)Q
— 2\ o — 2\ ¢ A.2
/() 2mo? c 1 2102 ‘ i (A23)
g(r) = a- (@) (A.24)
() = a-e@ . 2p(z)- K (z) (A.25)
1 1
al = 5 bl = —— (A.26)
2moy 207
o— 1. oo L (A27)
“= 2103’ 202 '
W (x) = (x —p)’h =2 — W' () =1 (A.28)

The derivation off is given by

fll@) = gi(x) — g(x) (A.29)
1 w2 1
= 3o e . <—U—%) (x —p) — (A.30)
r—p -’ r—p -
- 27r<71l e 27r<7§l e (A-32)
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The crater does not become negative, if

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
(A.38)
(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)
(A.45)

(A.46)

(A.47)
(A.48)
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2102 omo? forz =
1 - S
of o3
o9 > o2S
A crater is defined, if
\/§O'1 < 09 < \4/50'1

If 0, andS are giveng, can be calclated for a given radius r as follows:

r = 2 In ST NG
= 0102 U%_U% Sil 09 = 01
r = o2/S 2 InS
! 028 —o?
2 2
r = 85_011 InS
2502
2 1
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7’2(5 — 1) . 09
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(A.49)
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(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)
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