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Summary

Mathematical modeling and simulation techniques have turned out to be valuable tools for the

understanding of complex systems in different areas of research and engineering. In recent

years this approach came to application frequently also in biology resulting in the establish-

ment of the research area systems biology. Systems biology tries to understand the behavior

of complex biological systems by means of mathematical approaches. This requires the in-

tegration of qualitative and quantitative experimental data into coherent models. Currently,

systems biology usually investigates biochemical reaction networks of cellular systems. A

challenging task is the construction of large models that requires computer-assisted data in-

tegration, simulation and evaluation.

In this work I have elaborated technical bases for the computer-assisted modeling of bio-

logical systems and experimental techniques. For this I have developed the program PyBioS

that provides a user-friendly Web application (http://pybios.molgen.mpg.de) and

brings in automation for several important tasks required for the development, implemen-

tation, and simulation of cellular models. For the description of cellular reaction systems

PyBioS makes use of object-oriented programming, well established methods for the mathe-

matical description of biochemical reaction systems basedon ordinary differential equation

systems, and novel interfaces to biochemical pathway databases (e.g., Reactome, KEGG). In

addition PyBioS provides several different functions for the analysis and visualization.

The benefit obtained by mathematical modeling of biologicalsystems using PyBioS is il-

lustrated for segmentation of the body (somitogenesis) as,e.g., taking place during embryo-

genesis. The parameterized somitogenesis model I have developed comprises three signaling

pathways, namely Notch, Wnt, and FGF that are known to be relevant for somitogenesis. The

model shows a regular oscillation controlled by extracellular Wnt3a. Below a critical thresh-

old concentration of Wnt3a the oscillation that is controlled by Wnt signaling arrests and

approaches a steady state. These findings are conform to experimental observations found

during determination of somite boundaries.

Besides the analysis of biological systems, modeling strategies can also be used for the

evaluation of biotechnological experimental techniques.To study this I have perfomed sim-

ulations of DNA array hybridization experiments for the evaluation of critical parameters

during subsequent image and data analysis. Therefore I havecarried out simulation stud-

ies on several error parameters arising in complex hybridization experiments, such as spot

shape, spot position and background noise. My results show how measurement errors can be

balanced by the analysis tools.

1
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Zusammenfassung (German Summary)

In verschiedenen Bereichen der Natur- und Ingenieurswissenschaften hat sich die mathema-

tische Modellierung als ein geeignetes Werkzeug erwiesen,um komplexe Systeme besser zu

verstehen. Dieser Ansatz findet auch immer häufiger Anwendung in der Biologie und führte

zur Etablierung der Systembiologie. Die Systembiologie versucht mit Hilfe mathematischer

Ansätze das komplexe Verhalten biologischer Systeme besser zu verstehen. Dies erfordert

die Integration qualitativer und quantitativer Daten in kohärente Modelle. Derzeit werden in

der Systembiologie häufig biochemische Reaktionsnetzwerke zellulärer Systeme betrachtet.

Eine besondere Herausforderung stellt dabei die Modellierung grosser Systeme dar, die eine

massive, computergestützte Datenintegration, Simulation und Auswertung erfordert.

In dieser Arbeit habe ich Grundlagen für die computergestützte Modellierung bi-

ologischer Systeme und experimenteller Verfahren erarbeitet. Das von mir hier-

für entwickelte Programm PyBioS bietet eine benutzerfreundliche Web-Schnittstelle

(http://pybios.molgen.mpg.de) und automatisiert viele Schritte, die für die Er-

stellung, Implementierung und Simulation zellulärer Modelle erforderlich sind. Für die

Beschreibung der Modelle wurden dabei objektorientierte Ansätze der Informatik, etablierte

Methoden der Modellierung biochemischemischer Reaktionssysteme basierend auf gewöhn-

lichen Differentialgleichungssystemen, sowie neuartigeSchnittstellen zu Datenbanken bio-

chemischer Reaktionswege (z.B. Reactome, KEGG) genutzt bzw. implementiert. Zudem

bietet PyBioS verschiedene Funktionalitäten für die Analyse und Visualisierung.

Unter Verwendung von PyBioS wird am Beispiel der embryonalen Segmentierung (Somi-

togenese) gezeigt, wie mathematische Modellierung zum Verständnis biologischer Systeme

beitragen kann. Das von mir entwickelte parametrisierte Modell umfasst die Signalwege

Notch, Wnt und FGF, von denen bekannt ist, dass sie an der Determinierung der Somiten-

bildung beteiligt sind. Das Modell zeigt eine von extrazellulärem Wnt3a kontrollierte Os-

zillation. Unterhalb einer kritischen Wnt3a Konzentration bricht die vom Wnt Signalweg

kontrollierte Oszillation ab und geht in einen stationärenZustand über, der den Beobachtun-

gen für die Determination einer Somitengrenze entspricht.

Neben der Analyse biologischer Systeme kann Modellierung auch für die Evaluation bio-

technologischer, experimenteller Methoden genutzt werden. Dies wurde für DNA-Array Hy-

bridisierungsexperimente genauer untersucht. Anhand simulierter Daten wurden kritische

Parameter der anschliessenden Bild- und Datenanlayse bewertet. Hierfür habe ich Simu-

lationsstudien verschiedener experimenteller Parameterkomplexer Hybridisierungsexperi-

mente, wie z.B. der Spot-Form und Spot-Position, oder dem Hintergrundrauschen, durchge-

führt. Meine Ergebnisse zeigen, wie Messfehler anhand geeingeter Analyseprogramme kom-

pensiert werden können.

2
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1 Introduction

For a long time research in molecular biology has been focussed on the analysis of specific

components of the cellular network (genes, proteins, metabolites) one by one. By this ap-

proach thousands of genes have successfully been characterised and functionally annotated.

But biological systems are complex and their characteristics are a result of a highly inter-

woven interaction network continuously developing through time and space. Fundamental

characteristics of living systems, like the assimilation of nutrients, growth and reproduction,

or the perception of (environmental) signals and their processing can be narrowed down ba-

sically to a single unit all living things are composed of: the cell (Schwann and Schleiden,

1839, 1847). Thus, the understanding of the characteristics of cellular systems is essential,

but it requires an approach that takes into account both interactions on the molecular level as

well as physiological functions that are characteristics of the whole organism. In particular

in the light of understanding developmental processes or multigenic and complex diseases

that cannot be pinned down to a single gene or component systems approaches become in-

creasingly important.

During the last decade this gave rise to a new research area inbiology called systems biol-

ogy. Systems biology explanations of physiology and disease should be multi-level (Noble,

2002b); from molecular pathways and regulatory networks, through cells and organs, ulti-

mately to the level of the whole organism or even to an ecosystem. With the use of computer

models for such processesin silico predictions can be generated on the state of the disease or

the effect of the individual therapy (Kitano, 2002; Herwig and Lehrach, 2006). Models are

partial representations and their aim is to explain which features of a system are necessary

and sufficient to understand it (Noble, 2002b). The performance of a model is mainly defined

by its predictive power.

Systems biology is going to revolutionise our knowledge of disease mechanisms and the

interpretation of data from high-throughput technologies. Systems biology is the coordinated

study of biological systems by (1) investigating the components of cellular networks and their

interactions, (2) applying experimental high-throughputand whole-genome techniques, and

(3) integrating computational methods with experimental efforts (Klipp et al., 2005). This

approach requires an integration of experimental and computational methods and, thus, an

iterative process of data mining and data gathering (e.g., from scientific literature, databases

3



1 Introduction

and experiments), data integration, computational modeling and analysis, and finally valida-

tion of specific observations that were not explainable beforehand (Kitano, 2002).

Using data mining steps, one agglomerates sufficient details for the generation of model

prototypes of the biological system under investigation. Eventually, using analysis methods,

the mathematical model is refined, cross-validated with regard to internal and external fea-

tures, for example using parameter estimation (Moles et al., 2003), and it is used to formulate

new hypotheses that in turn are subject to further experimental investigation.

Systems biology methodology and approaches evolved rapidly in the last years driven by

the new high-throughput technologies. A significant impulse was given by the large se-

quencing projects, such as the human genome project, which resulted in the nearly complete

sequence of the human and other genomes (Lander et al., 2001;Venter et al., 2001). This

knowledge builds the theoretical basis to compute gene regulatory motifs, to determine the

exon-intron structure of genes and to derive the coding sequence of potentially all genes of

many organisms. From the genome sequences probes for whole genome DNA arrays have

been constructed that allow to monitor the transcriptome level of most genes active in a given

cell- or tissue type. Proteomics technologies have been used to identify translation status on

a large scale (2D-gels [Klose, 1975; Klose et al., 2002], mass spectrometry, reverse phase

protein arrays [Paweletz et al., 2001]). Protein-protein interaction data involving thousands

of components were measured to determine information on theproteome level (von Mering

et al., 2002). Multiple databases of diverse aspects of biological systems exist1, a variety

of experimental techniques have produced gene and proteomeexpression data from various

tissues and samples and important disease-relevant pathways have been investigated. Infor-

mation on promoter regions and transcription factors is available for nearly all genes. This

information - although extremely helpful - cannot be utilised sufficiently, because of the lack

of integrative analysis tools. To validate such data in the system-wide hierarchical context

ranging from DNA to RNA to protein to interaction networks and further on to cells, tissues,

organs or even the whole individual, one needs to correlate and integrate such information.

Thus, an important part of systems biology is data integration that provides a foundation for

the development of computational models.

As mentioned above models should be generated on a multi-level basis, but need to be

grounded on the molecular- and cellular-level so that a continuous spectrum of knowledge

can be established. The question of the most suitable approach to system-level understanding

has been addressed by Noble (2002b, 2006). He discussed the ’bottom-up’ and ’top-down’

approach to understand biological systems. The bottom-up approach starts with all the in-

dividual genes, proteins, metabolites, etc. and their individual reactions and interactions to

1Pathguide: The Pathway Resource List:http://www.pathguide.org

4
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1 Introduction

come up with an integrated molecular model for the prediction of general system properties.

On the other hand, the top-down approach starts with the overall behaviour of systems (as in

classical physiology with the analysis of the circulatory system, the respiratory, the immuno-

logical, and so on) and then progressively identifies and explores the elements of each system

so as to deduce the underlying functions (Noble, 2006, p. 75). Both approaches have their

strengths and limitations that lead to the ’middle-out’ approach originally proposed by Syd-

ney Brenner and adopted by Denis Noble (2006, p. 79). It states the simple and pragmatic

concept of starting at any level as long as enough data is available to feed into a simula-

tion for the purpose of systems analysis. However, a crucialpoint is that models are always

partial representations and their aim is explanation: to show which features of a system are

necessary and sufficient to understand it (Noble, 2002b).

Modeling and simulation techniques are valuable tools for the understanding of complex

biological systems. A computational approach offers the possibility to use simulations for

the prediction of the dynamical behavior of biological systems according to the defined mod-

els, and to test the validity of the underlying assumptions (Kitano, 2002). To this end, it

is necessary to construct computer-executable models thatare consistent with experimental

observations. The development of such a model is an iterative process of (1) model design

based on existing knowledge, (2) simulation and model-analysis, which results in (3) the

generation of new hypotheses that can be proven by experiments in the wet lab and used

anew for model-refinement. This hypothesis-driven approach based onin silico experiments

will support the experimental design or help to investigatequestions that are not accessible

to experimental inquiry. Noble (2002a) states that "physiological analysis requires an under-

standing of functional interactions between the key components of cells, organs and systems,

as well as how these interactions change in disease states".He argues that there is no alter-

native to copying nature and computing these functional interactions to determine the logic

of healthy and disease states.

1.1 Outline

In this work I present different applications of modeling inbiology and biological research

(Fig. 1.1). In the following sections I will outline the modeling of biological systems and

discuss modeling tools currently used in systems biology (see Section 1.3). Later, in the

Results, I will introduce the modeling and simulation system PyBioS, which I have developed

in the course of this thesis (see Section 2.1) and deployed todifferent biological problems.

In particular, the PyBioS modeling system was used to build amodel on somitogenesis

(described in Section 2.2), which is a fundamental process during vertebrate development.

5



1 Introduction

Figure 1.1: Overview of the thesis.

The model captures central components known or assumed to beinvolved in somitogenesis

(that is introduced in Section 1.2.1). The model takes into account three signaling path-

ways triggered by signaling of Notch (Section 1.2.2.1), Wnt(Section 1.2.2.2) and Fgf (Sec-

tion 1.2.2.3), as well as subsequent genes known to be regulated by these pathways.

Furthermore, I have applied modeling strategies to the evaluation of an experimental tech-

nique used in modern molecular biology. As, for example, common in engineering, modeling

of technical processes can also help significantly by the evaluation of experimental platforms.

In Section 1.4.1 I will introduce DNA arrays that became a common standard for expression

profiling in molecular biology and in Section 2.3 I will evaluate error sources subject to

cDNA arrays by the use of a computational model.

1.2 Biological Systems

Coordinated interactions between the different cellular components give rise to the aston-

ishing complex but well coordinated processes of living organisms, such as the develop-

ment of a multicellular organism (cf. Gilbert, 2003). Fundamental for development is the

differentiation—the structural and functional specialisation of cells and tissues during onto-

genesis. A first step during the differentiation process of higher animals is the formation of

the germ layers ectoderm, endoderm, and mesoderm during gastrulation. Later on during

early embryogenesis many animal species undergo a segmentation of the body axis. In verte-

brates this segmentation is called somitogenesis and the segments that are formed during this

process are the somites. In the following I will give a brief introduction on somitogenesis
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and a more detailed description of the molecular pathways that control this developmental

process.

1.2.1 Somitogenesis

During gastrulation the embryo shapes into three germ layers: (1) the endoderm, the pre-

cursor of the gut and its associated glands, (2) the mesoderm, the precursor of the skeleton,

smooth muscle, connective tissue, and vascular system, and(3) the ectoderm, the precursor

of the epidermis and the nervous system. Following gastrulation, the dorsoventral axis is

specified by signals from the node (which is the homolog in mouse and chicken of the frog

Organizer, a region of the dorsal lip of the blastopore that is known for its crucial role in

organizing the formation of the main body axis). During thisprocess the ectoderm thick-

ens, rolls up, and pinches off to form the neural tube and neural crest. Below the neural

tube a rod of specialized cells derived from the mesoderm called the notochord elongates

and forms the central axis of the embryo. On both sides of the notochord the unsegmented

paraxial mesoderm or presomitic mesoderm (PSM) is formed that gets segmented later on in

an anterior-to-posterior sequence while the embryo elongates at the tail bud (Alberts et al.,

2008). During this segmentation process that is called somitogenesis small epithelial spheres,

the somites, form along the length of the embryo (Fig. 1.2A).The somites eventually give

rise to the vertebrae and ribs, the dermis of the dorsal skin,the muscles of the back, and the

skeletal muscles of the body wall and limbs (Gilbert, 2003, p. 466). The number of somites

and time period of their formation is highly constrained within a given species, but varies

widely between different species (cf. Tab. 1.1). The final number of somites ranges from less

than 50 (in a frog or a bird) to more than 300 (in a snake) (Alberts et al., 2008).

Table 1.1: Specific values on somitogenesis for different organisms.1Stickney et al. (2000);2Gilbert

(2003);3Tam (1981)

Organism Number of somites Duration for a single somite formation

zebrafish about 301 ca. 30 minutes

chicken 502 ca. 90 minutes

mouse 652,3 ca. 120 minutes

Major components of somitogenesis are periodicity, epithelialization, specification, and

differentiation. In mouse embryos the first somites form in the posterior headfold region

around embryonic day 7.75 (E7.75). Subsequently, new somites arise at regular intervals in

a strict anterior-to-posterior sequence from the unsegmented PSM (Hofmann et al., 2004).

The molecular process underlying somitogenesis has been studied in detail. It has been
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shown that targeted inactivation ofNotchandDelta in mice leads to an impairment in somi-

togenesis (Conlon et al., 1995; de Angelis et al., 1997). This suggests that Notch signaling is

involved in somitogenesis.

The periodic formation of equally sized somites implicatesthat a molecular, gene-regulatory

oscillator is involved in somitogenesis. The first gene identified to oscillate during somitoge-

nesis in chicken embryos wasc-hairy1(Palmeirim et al., 1997). A second avianhairy-related

gene found to cycle in the PSM isc-hairy2, which is closely related to mammalian geneHes1

(Jouve et al., 2000).Hes1is described as a downstream target of Notch signaling (Kageyama

and Ohtsuka, 1999). It has a basic helix-loop-helix (bHLH) motif and acts as a transcriptional

repressor (Sasai et al., 1992). Subsequently, several other genes showing a cyclic behaviour

during somitogenesis were identified in fish, frog and mouse,implicating that the oscillator

is conserved in vertebrates (Dequéant and Pourquié, 2008).

In 2001 Bessho et al. cloned another downstream Notch effector termedHes7from mouse.

Hes7has also a bHLH motif and was revealed to be specifically expressed in the PSM in a

dynamic manner.Hes7was found to be controlled by Notch signaling and to encode also a

transcriptional repressor (Bessho et al., 2001).

Another gene that has been identified to be required for the processing ofNotch1andDll1

(Delta ligand) in the paraxial mesoderm isPresenilin1(Wong et al., 1997). Moreover, in

the chicken embryolunatic fringe(Lnfg), which encodes a glycosyltransferase that can mod-

ify the Notch receptor, has been shown to be activated periodically by Notch signaling in the

PSM (Dale et al., 2003). OverexpressingLnfg in the paraxial mesoderm abolishes the expres-

sion of cyclic genes including endogenousLnfg itself and leads to defects in segmentation

(Dale et al., 2003).

In zebrafish, all the cyclic genes identified so far belong to the Notch pathway. In amniotes

(reptiles, birds and mammals), also genes of Wnt signaling and FGF signaling have been

identified to oscillate in the PSM with periods correlating with the time for somite formation.

In mouse,Axin2, a key negative feedback inhibitor of the Wnt pathway (see Section 1.2.2.2),

has been found to show an analogous cyclic behavior. Moreover, observations for the hypo-

morphicWnt3amutation vestigial tail (vt) in mice implicate an involvement of Wnt signaling

in somitogenesis (Aulehla et al., 2003).

In a large scale microarray study conducted by Dequéant et al. (2006) multiple genes have

been identified that show an oscillatory behavior in the PSM during somitogenesis. When

ordered by their time of maximum expression in the segmentation clock cycle, the cyclic

genes could be assigned to two mutually exclusive main clusters with opposite phase. One

of the clusters contains known cyclic genes regulated by Notch and FGF signaling and the

other includes those controlled by Wnt signaling (Tab. 1.2).

A first theoretical model for the sequential positioning of somites was introduced by Cooke

8



1 Introduction

Figure 1.2: Somite formation in the vertebrate embryo. (A)Schematic illustration of a chicken

embryo. (B) While the embryo elongates at the tail bud, pairs of somites regularly pinch off syn-

chronously from the anterior tip of the presomitic mesoderm(PSM) in an anterior-to-posterior se-

quence. The morphogenic Wnt3a/Fgf gradient (blue) moves incaudal direction through the PSM. It

acts as a determination front (blue line) and defines in combination with the intracellular clock the

position of the border between prospective somites. Aulehla and Herrmann (2004) proposed that the

morphogenic gradient drives the clock ("clock on") and, if cells are below a certain threshold level of

the morphogen the clock cannot enter a new cycle ("clock off", dashed line) and a new somite bound-

ary is defined. Thus the size of a somite is given by the distance passed by the determination front

during one oscillation of the segmentation clock. Somites are denoted by SI, SII, SIII, etc. where the

most recently formed somite is SI. Prospective somites are denoted by S0, S-I, S-II etc. (adapted from

Pourquié and Tam, 2001; Aulehla and Herrmann, 2004; Dequéant and Pourquié, 2008)
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Table 1.2: Clusters of some of the cyclic genes identified by Dequéant etal. (2006) using microarrays.

Genes of the Notch-FGF cluster show a mutually exclusive activation compared to those of the Wnt

cluster.

Notch cluster Hes1 Lfng Nrarp Nkd1 Hes5 Hey1 Bcl9l

Fgf cluster Spry2 Efna1 Hspg2 Egr1 Dusp6 Bcl2l11 Shp2

Wnt cluster Axin2 Dact1 Myc Has2 Dkk1 Sp5 Tnfrsf19 Phlda1

and Zeeman (1976). They postulated the existence of a "clock" and a maturation wave called

the "wavefront". In that model the clock is assumed to be an intracellular oscillator that is

phase-linked throughout the embryo and the wavefront is a front of rapid cell change moving

slowly down the long axis of the embryo. When cells are in their permissive phase of the

oscillator while passing the wavefront, they undergo a rapid alteration in locomotory and/or

adhesive properties. According to their anterior-posterior body position the wavefront hits

the cells at successively later time points.

Molecular evidence supporting the clock-and-wavefront model has been found. Aulehla

and Herrmann (2004) proposed a model that takes into accounta morphogen gradient estab-

lished by the signaling molecules Wnt3a and Fgf8. This gradient is placed along the PSM.

Both Wnt3aandFgf8 are expressed in the tail bud and, while the embryo grows at the tail

bud in caudal direction, the concentration of these molecules decays during further elonga-

tion of the embryo, since the expression of these signaling molecules is restricted to the tail

bud area. The molecular clock is supposed to be established by genes of the Wnt, Notch

and FGF signaling pathways and their target genes. The segmentation process is illustrated

in Fig. 1.2B. While the embryo elongates at the tail bud, pairs of somites regularly pinch

off synchronously from the anterior tip of the presomitic mesoderm (PSM) in an anterior-to-

posterior sequence. The morphogenic Wnt3a/Fgf gradient moves in caudal direction through

the PSM. It acts as a determination front and defines in combination with the intracellular

clock the position of the border between prospective somites. Aulehla and Herrmann (2004)

proposed that the morphogenic gradient drives the clock ("clock on") and, if cells are below

a certain threshold level of the morphogen, the clock stops ("clock off"). When the deter-

mination front passes cells that are in the permissive phaseof the segmentation clock a new

somite border is defined. Thus the size of a somite is given by the distance passed by the

determination front during one oscillation of the segmentation clock.
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1.2.2 Cell-cell Communication and Signal Transduction

For development and survival, cells must be able to react to changing environmental con-

ditions. Therefore, during evolution, different mechanisms for the perception, intracellular

transduction and interpretation of signals coming from outside the cell has evolved. Cells

react with an appropriate response to the signal, like e.g.,adaptation of the metabolism to

compensate external stress. In addition to intracellular adaptation, cell-cell comunication is

also essential for the development of multicellular organisms. Different mechanisms for the

transmission of signals from one cell to another are known (Gilbert, 2003). In juxtacrine

interactions cell membrane proteins on one cell surface interact with receptor proteins on an

adjacent cell surface. This can only happen, when cells are situated next to each other. An

example for a juxtacrine interaction is the interaction between the Notch receptor and the

Delta ligand (cf. Fig. 1.3). Another mechanism of short distance cell-cell communication

is the paracrine interaction, where signaling proteins (also called paracrine factors or growth

and differentiation factors, GDFs) synthesized by one celldiffuse over a small distance to

induce changes in nearby cells. This happens for instance when Wnt and FGF signaling is

activated by their respective extracellular signaling molecules. A third mechanism of cell-

cell communication is based on endocrine factors (hormones) that are secreted into the blood

and travel to places far away from their production site to exert their effects. Notch, Wnt and

FGF signaling are signal transduction pathways belonging to the first and second interaction

mechanism, respectively. These pathways and their function during somitogenesis will be

discussed in the following in more detail.

1.2.2.1 Notch Signaling

Notch signaling, triggered by a juxtacrine interaction, transmits signals between cells that

are in direct contact with each other. Core components of theNotch signaling apparatus

are (1) a Delta-type ligand, (2) a Notch-type receptor and (3) a transcription factor of the

CBF1/Su(H)/LAG1 (CSL) family. The canonical Notch signaling pathway is depicted in

Fig. 1.3. Proteins of the Delta- and Notch-type are single-pass transmembrane proteins car-

rying repeats of the epidermal growth factor (EGF) motif extracellularly (Rebay et al., 1991).

A characteristic of EGF repeats is that they mediate direct contact between a ligand and a

receptor (Rebay et al., 1991). When complexed to a Delta-type ligand (in mammals these

are the Delta-like ligands DLL1, DLL2, and DLL3, and the Jagged ligands JAG1 and JAG2),

Notch undergoes a conformational change. Once this has taken place, its cytoplasmatic do-

main can be cleaved by the protease Presenilin1, a member of the complexγ-secretase and

the Notch intracellular domain (NICD) is released. The peptide translocates into the nucleus

and binds to a dormant transcription factor of the CSL familythereby replacing a co-repressor
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Figure 1.3: The canonical Notch signaling

pathway. Key-players of the pathway are

a Delta-type ligand, the Notch receptor and a

transcription factor of the CSL family. When

complexed with a Delta-type ligand, a part of

the cytoplasmatic domain of the Notch protein

is cleaved off. This Notch intracellular domain

(NICD) translocates into the nucleus and acts as a

co-activator of the transcription factor CSL acti-

vating target-genes of the Notch signaling. This

activation happens by a replacement of the CSL

co-repressor complex by a co-activator complex

(adapted from Lai, 2004).

and activating the transcription factor (Lai, 2004; Gilbert, 2003). This implies that NICD is

usually necessary for the activation of Notch target genes,but it is by far not sufficient to ful-

fill this task. Indeed, each of the Notch targets is not alwaysactivated when Notch signaling

is active. The expression of a specific Notch target gene is co-regulated by other transcrip-

tion factors and/or signaling pathways (Bray and Furriols,2001). This complex mechanism

of gene regulation allows for the activation of specific genes that are appropriate for different

developmental settings. Thus a major biological role of Notch signaling is to control the

developmental fates of cells and the regulation of pattern formation. Whether a cell predom-

inantly expresses the ligand or the receptor is of high significance in this context.

1.2.2.2 Wnt Signaling

Wnt signaling is a paracrine interaction and it acts in numerous cellular processes including

cell proliferation, survival, and differentiation. It thus has a significant impact on devel-

opment and disease (Logan and Nusse, 2004; Moon et al., 2004). A simple outline of the

current model of the canonical Wnt signaling pathway is shown in Fig. 1.4. A central player

of this pathway is the proteinβ-catenin. It functions as a co-activator of genes regulated

by the DNA-binding proteins of the lymphoid enhancer-binding factor 1 (Lef) family or the

T cell-specific transcription factor (Tcf) family, with whichβ-catenin can form heterodimers.

Free cytoplasmaticβ-catenin has a high turnover-rate. When Wnt signaling is turned off,β-

catenin is continuously phosphorylated by the active glycogen synthase kinase 3β (GSK3β),
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Figure 1.4: The canonical Wnt/β-catenin signaling pathway. In cells that are not exposed

to the extracellular signaling molecule Wnt (left panel), the scaffold proteins Axin and APC can

recruit GSK3β for the continuous phosphorylation ofβ-catenin, that becomes subsequently poly-

ubiquitinated and degraded by the proteasome. Thereby the concentration ofβ-catenin remains low

and genes regulated byβ-catenin as a co-activator will not be transcribed. When cells are exposed to

Wnt, the Frizzled receptor supported by the Lrp5/6 receptorcan bind this glycoprotein. The percep-

tion of the extracellular signal activates Dsh and recruitsthe destruction complex (Axin/APC/GSK3β)

to the membrane, where Axin is subsequently dephosphorylated and committed to destruction. This

results in a decreased degradation ofβ-catenin by continuous Axin-dependent phosphorylation medi-

ated by the Axin/APC/GSK3β complex. Thereby, unphosphorylatedβ-catenin accumulates in the cy-

toplasm and nucleus, and finally interacts with Tcf/Lef to control transcription of target genes (adapted

from Logan and Nusse, 2004; Reya and Clevers, 2005; Cadigan and Liu, 2006).

which is part of a large destruction complex formed by the scaffold proteins Axin and adeno-

matous polyposis coli (APC). Phosphorylatedβ-catenin is a substrate for poly-ubiquitination

and eventually proteasome-mediated degradation. Free GSK3β has a very low phosphory-

lation activity forβ-catenin, but complexed with Axin and APC its phosphorylation activity

for β-catenin increases tremendously (Dajani et al., 2003). Wntsignaling is activated by se-

creted Wnt ligands, cystein-rich glycoproteins that can interact with members of the frizzled

(Fz) family, seven-transmembrane receptor proteins, and probably also with the single-pass

transmembrane protein low density lipoprotein (LDL) receptor-related proteins 5 and 6 (Lrp5

13



1 Introduction

andLrp6). Both, Fz andLrp5/6 act as receptors of the recipient cell and probably interact

with each other when binding the Wnt ligand. Binding of Wnt toFz, which is the primary

receptor for Wnts (Bhanot et al., 1996), leads to the activation (phosphorylation) of the in-

tracellular phosphoprotein Dishevelled (DSH or DVL) that probably recruits Axin and the

destruction complex to the plasma membrane. This probably results in a dephosphorylation

and degradation of Axin (Tolwinski and Wieschaus, 2004) that is presumably supported by

phosphorylation thereby inhibition of GSK3β by active protein kinase B (PKB, Akt) (Naito

et al., 2005). As a consequence the cytoplasmatic and nuclear level of β-catenin increases.

Finally, by interaction with Lef/Tcfβ-catenin activates the transcription of target genes, and

thus Wnt signaling is switched on (Logan and Nusse, 2004).

1.2.2.3 FGF Signaling

Signaling mediated by fibroblast growth factors (Fgf) has been demonstrated to play a major

role in embryonic, fetal and postnatal vertebrate development (Goldfarb, 1996; Martin, 1998;

Böttcher and Niehrs, 2005). Fgf molecules are secreted proteins belonging to the paracrine

signaling factors (Gilbert, 2003; Thisse and Thisse, 2005). Fgf molecules can bind to specific

Fgf receptors (Fgfr), which are located in the cell membraneand are members of a large

group of receptor tyrosine kinases. In human and mouse twenty-two differentFgf genes

are known (Ornitz and Itoh, 2001; Itoh and Ornitz, 2004, 2008) that signal by activating a

smaller family of cell surface receptors encoded by four distinct genes (Fgfr1–4), which can

produce numerous Fgfr isoforms through alternative splicing (Johnson and Williams, 1993;

Schlessinger, 2000). Fgfr receptors are single-pass transmembrane proteins with cytosolic

tyrosine kinase activity.

FGF signaling (Fig. 1.5) is induced by binding of an Fgf ligand to an Fgf receptor and

the subsequent assembly of receptor homo- or heterodimers (Ullrich and Schlessinger, 1990;

Bellot et al., 1991) resulting in autophosphorylation of multiple tyrosine residues of the Fgfr

receptor (Goldfarb, 1996; Mohammadi et al., 1996). Furthermore, it has been discovered that

for the Fgf/Fgfr interaction heparin or heparin sulfate proteoglycans (HSPG) are required,

which stabilize the formation of the receptor dimer (Yayon et al., 1991; Schlessinger et al.,

2000).

Signaling complexes are recruited by the active Fgf receptor complex resulting in multiple

phosphorylation events. One of these events is the activation of the Ras/mitogen activated

protein kinase (MAPK) cascade which activates, amongst others, Erk that in turn regulates

the activity of downstream kinases or transcription factors. The adaptor protein Frs2α has

been shown to link Fgfr activation to the Ras/MAPK cascade. The PTB (phosphotyrosine

binding) domain of Frs2α interacts with Fgfr (Ong et al., 2000), following the tyrosine phos-
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Figure 1.5: Overview of FGF signaling. Activated Fgfr can stimulate multiple pathways. It

can result in an activation of PI3K/Pdk/Akt, PLCβ/PKC, or the Ras/MAPK cascade. A detailed

description of Fgf activated pathways is given in the main text. (Alberts et al., 2008; Groth and

Lardelli, 2002; Böttcher and Niehrs, 2005; Dailey et al., 2005).

phorylation of Frs2α by active Fgfr. Via its SH2 (Src homology 2) domain the adaptor protein

Grb2 can bind to phosphorylated Frs2α and, in addition, recruit Sos to the plasma membrane

that is linked with its proline-rich sequence motif to the SH3 (Src homology 3) domain of

Grb2. Sos acts as a guanine nucleotide exchange factor (GEF)for the membrane associated

GTPase Ras. Sos mediated exchange of GDP by GTP turns Ras intoits active form Ras/GTP.

Ras/GTP in turn activates a cascade of MAP kinases, in which active Raf phosphorylates and

activates Mek that in turn activates Erk by phosphorylation. The deactivation of the MAP

kinases is facilitated by phosphatases. The deactivation of Ras is mediated by a GTPase ac-

tivating protein (GAP) that stimulates the GTPase activityof Ras whereby inactive Ras/GDP

is formed.

Another pathway that concomitantly can get activated by FGFsignaling is the PI3-ki-

nase/Akt pathway (Fig. 1.5). Three different routes are described by which the PI3-kinase/Akt

pathway can get activated (Böttcher and Niehrs, 2005). First, phosphatidylinositol 3-kinase
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(PI3-kinase) directly binds to the active Fgfr receptor. Second, via Frs2/Grb2 the Grb2-

associated binder-1 (Gab1) docking protein is bound and gets tyrosine-phosphorylated, re-

sulting in the recruitment and activation of PI3-kinase (Hadari et al., 2001; Ong et al., 2001).

Third, Ras/GTP can recruit the catalytic subunit p110 of PI3-kinase to the plasma mem-

brane and activate it (Rodriguez-Viciana et al., 1994; Pacold et al., 2000). When activated,

PI3-kinase phosphorylates phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the 3 posi-

tion of the inositol ring resulting in phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3).

PI(3,4,5)P3 is associated to the plasma membrane and can be bound by proteins having a

pleckstrin homology (PH) domain. By this a kind of interaction phosphoinosite-dependent

protein kinase 1 (PDK1) and Akt (also called protein kinase B, or PKB) are recruited to the

plasma membrane. PDK1 phosphorylates and by this activatesAkt. Active Akt acts as a

kinase and performs phosphorylation of multiple target proteins. One of these targets is the

glycogen synthase kinase-3β (GSK3β) that also has a pivotal role in Wnt signaling.

A third target that is activated by FGF signaling is the phospholipase Cγ (PLCγ). PLCγ

activates the inositol phospholipid signaling pathway by cleavage of PI(4,5)P2 into inosi-

tol 1,4,5-trisphosphate (IP3) and diacylglycerol. Both molecules act as second messengers

triggering an increase of the interacellular Ca2+ level and an activation of protein kinase C

(PKC).

Several components of the FGF signaling are supposed to be relevant for somitogenesis

and are included in the mathematical model that I have developed in the course of my thesis,

presented in Section 2.2.3.

1.3 Computational Modeling of Biological Systems

Mathematical modeling and computer simulations can help tounderstand the internal nature

and dynamics of complex systems such as biological systems and they can help to reveal

links and relations that are not directly obvious. The development of a computer model for

a given biological system involves several steps (Klipp et al., 2005, p. 9). At first one has

to outline the problem that should be addressed by the model and formulate questions that

should be answered by it. Later on, one has to collect all the data that is required for its

implementation. Next, one has to decide about the model structure. This includes (1) the

level of description, e.g., whether it deals with interacting molecules or cells, (2) the choice

of a deterministic or stochastic approach, (3) the use of discrete or continues variables, and

(4) the choice of a steady-state, temporal, or spatio-temporal description.

A very common way of modeling biological systems makes use ofordinary differential

equations (ODEs). This approach is described in more detailin Section 1.3.1 where I intro-
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duce frequently used kinetic laws, which are also applied inSection 2.2 for the development

of a mathematical model on somitogenesis.

Creating a fundamental knowledgebase on cellular reactions and their components is the

first essential step in the development of computer models for cellular processes. This is al-

ready done by several projects resulting in large pathway databases that are described in Sec-

tion 1.3.2 and that provide a valuable resource for modelingand modeling tools. Moreover,

there are also databases on kinetic parameters or even detailed kinetic models of particular

processes or pathways. Furthermore, I introduce most important standards for exchanging

biological models and pathway data.

In Section 1.3.3 I present state-of-the-art tools for dynamic computational modeling. Com-

puter tools allow the analysis of the dynamic behavior of thereaction networks given the

model parameters. Very important features of such systems are for instance the estimation of

model parameters from experimental data and the analysis ofthe behavior of the system with

respect to changes of these parameters. I give an overview onthe features of several tools.

Finally in this section I present published mathematical models describing different aspects

of somitogenesis.

1.3.1 Mathematical Modeling of Biological Systems Using

Ordinary Differential Equations

The compilation of mathematical models for biological systems requires knowledge about

many system components (e.g., genes, enzymes, regulators,metabolites) as well as their

different states (e.g., active, phosphorylated, methylated, etc.) and the interactions they par-

ticipate in. Latter involves the stoichiometry of the reactants (substrates and products, i.e.

the objects that are converted quantitatively) and the components which influence the reac-

tion directly, but are not consumed or produced, i.e. they leave the reaction unchanged. This

defines the structure (topology) of a model. Another information that is relevant to the devel-

opment of continous models are the reaction kinetics. For each reaction of a model one has

to know the kinetic law and its parameters, or make plausibleassumptions for it.

1.3.1.1 Modeling of Biochemical Reactions

Kinetics of biochemical reactions can be described by the mass action law, which says that

the reaction rate is proportional to the probability of the collision of the respective reactants

(Guldberg and Waage, 1879).
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For a reversible reaction of the form

n1S1 + n2S2 + · · · + niSi m1P1 + m2P2 + · · ·+ mjPj

v→

v←
(1.1)

with substrates Si and products Pj the general mass action law reads

v = v→ − v← = k→
∏

i

[Si]
ni − k←

∏

j

[Pj]
mj , (1.2)

wherev→ andv← are the respective reaction rates of the forward and backward reactions,k→
andk← are their respective kinetic or rate constants, and[Si] and[Pj] are the substrate and

product concentrations with their respective molecularitiesni andmj.

The concentration change of the substrates and products respectively is given by

d[Si]

dt
= ni v

d[Pj]

dt
= −mj v . (1.3)

An important assumption for the classical deterministic kinetic modeling as it is described

here, is that all reactants are homogeneously distributed.

Based on the mass action law, kinetics for several specific reaction mechanisms can be

derived. For instance, for the irreversible enzymatic one-substrate reaction catalyzed by E

that reads

E + S ES E + P
k1

k−1

k2

(1.4)

Michaelis and Menten (1913) derived a kinetic law that was later extended by Briggs and

Haldane (1925). It reads as follows:

vMM =
Vmax [S]

[S] + Km
. (1.5)

This kinetic law shows a saturation behavior (Fig. 1.6A), with a maximum (Vmax) that is

proportional to the enzyme concentration (Vmax ∝ E). Km is the substrate concentration for

which the reaction rate is half maximal.

If a protein or enzyme has several binding sites instead of a single one, e.g., a protein

complex that is composed of several subunits like a homotetramer, the binding of one ligand

may change the binding affinity to further ligands. This phenomenon is called cooperativity.

It has already been described in 1910 by Hill for the binding of oxygen to hemoglobin. A

kinetic law describing this behavior is given by the Hill equation. Let us assume we have an

enzymeE2 with two binding sites for the substrate S and the following reaction

E2 + 2S E2S2 (1.6)
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and the binding constant is defined by

KB =
[E2S2]

[E2] · [S]2
(1.7)

then the Hill equation reads

vHill = Vmax

KB[S]h

1 + KB[S]h
, (1.8)

where the quantityh is denoted the Hill coefficient. An example of the Hill kinetic is plotted

in Fig. 1.6B.

[S]

vMM([S], Vmax , Km)

Km

Vmax/2

0

Vmax

(A) Michaelis Menten function

[S]

vHill([S], Vmax, KB, h)

0

Vmax

(B) Hill function (with h > 1)

Figure 1.6: Examples of some standard kinetic laws for biochemical reactions. In (A) the effect

of differentKm values is illustrated.(B) Example of a Hill kinetic.

For a set of reactions the concentration change of a single component is given by the sum

of in- and out-fluxes as follows

d[Si]

dt
=

r∑

j=1

nijvj with i = 1, . . . , m (1.9)

(Glansdorff and Prigogine, 1971). In this ordinary differential equation (ODE) system[Si]

denotes the stoichiometric coefficient of theith component,vj is the reaction rate of the

jth reaction, andnij is the concentration of theith component in thejth reaction. The

mathematical model is described by systems equations or balance equations (Equation 1.9).

To do time course simulations this ODE system can be solved bythe use of a numerical

integrator or, if it is simple enough, also analytically.

Besides biochemical conversion reactions, association and dissociation processes are cru-

cial for modeling of cellular interaction networks. Association and dissociation usually de-

scribe a reversible process of two or several components that form a single complex. The

rate of dissociation can be described by the mass action law and its dissociation constant

KD, a specific equilibrium constant that measures propensity of a complex to dissociate. The

inverse value ofKD is known as the association or affinity constant. For example, for the
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following reaction

AnBm nA + mB (1.10)

KD is defined as

KD =
[A]n · [B]m

[AnBm]
. (1.11)

1.3.1.2 Modeling of Gene Expression

Similarly as for metabolic reactions, gene regulation can also be described by coupled dif-

ferential equations. The change in the level of each gene’s mRNA can be introduced by two

different terms, a positive term for transcription (mRNA synthesis) and a negative term for

mRNA degradation. The expression of a gene, i.e. its transcription, depends on one or several

other components known as transcription factors. For this the rate law for the mRNA synthe-

sis of a gene—or, if transcription is neglected, the corresponding protein synthesis—depends

on the concentration of the respective transcription factors.

A kinetic law that is often found in literature for the description of gene regulation by a

modifier (co-activator) is the Hill kinetic in a slightly modified form compared to Eq. 1.8:

h+(xj , θij , m) =
xm

j

xm
j + θm

ij

(1.12)

whereθij > 0 is the threshold value for the influence of transcription factor j on the ex-

pression of genei, andm > 0 a steepness parameter. The function ranges from 0 to 1,

and increases monotonically asxj → ∞ (Fig. 1.7A). In order to express a repression in

whichxj is an inhibitor one can useh−(xj , θij, m) = 1−h+(xj , θij, m) ((Fig. 1.7B); de Jong

(2002)). Form > 1, the Hill kinetic has a sigmoid shape that is in agreement with experi-

mental evidence (Yagil and Yagil, 1971). As an alternative to a Hill kinetic, gene expression

can, e.g., also be described by non-continuous functions such as a step function (Fig. 1.7C)

or a logoid function (Fig. 1.7D).

A general description for the kinetic modeling of gene regulation has been introduced by

Schilstra and Bolouri (2002) and Schilstra and Nehaniv (2008). They give a logic semantic

for the description that takes also into account inhibitionand activation as well as effects

like cooperativity and competition. A simplified rate law that can also be derived from the

general description given by Schilstra and Bolouri is introduced by Mendes et al. (2003) and

reads as follows

vi = Vi ·
∏

j

(
K

nj

ij

[Ij ]nj + K
nj

ij

)

×
∏

k

(
[Ak]

nk

[Ak]nk + Knk
ak

)
(1.13)
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0
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xj

h+(xj , θj, m)

θj

(A) Hill function

0

1

xj

h−(xj , θj , m)

θj

(B) modification of (A) for the descrip-

tion of inhibition

0
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xj

s+(xj , θj)
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(C) step function
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δ

xj

l+(xj , θj, δ)
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(D) logoid function

Figure 1.7: Examples of kinetic laws often used for gene regulatory processes. (A)Hill function

h+, (B) a modification of (A) that can be used for the descripton of inhibition h− = 1− h+, (C) step

functions+, (D) logoid functionl+, (de Jong, 2002).

or a modification of this

vi = Vi ·
∏

j

(
K

nj

ij

[Ij ]nj + K
nj

ij

)

×
∏

k

(
1 +

[Ak]
nk

[Ak]nk + Knk
ak

)
. (1.14)

In Eq. 1.14 the inhibitorsIj and activatorsAk act independently of each other.Vi is a basal

rate of transcription, i.e. when there is no action of inhibitors or activators. The constantsKij

andKak
indicate concentrations at which the effect of the respective inhibitor or activator is

half of its saturating value. The Hill coefficientsnj andnk regulate the sigmoidicity of the

curve. This kinetic description of gene regulation is used in the mathematical model on

somitogenesis described in Section 2.2.

1.3.2 Data Resources for Systems Biology

The development of mathematical models of cellular systemsrequires a lot of information on

different aspects of the system. Data typically arises fromseveral levels of cellular informa-

tion quantified by different functional genomics technologies such as DNA, RNA or protein
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sequence data, gene expression data from array experiments, abundance data of proteins and

metabolites from diverse experimental techniques (e.g., mass spectrometry, 2D-gels, blots),

information on protein-protein interactions or protein modifications, or kinetics of enzyme

activities or binding affinities, among others. The most important resource for such informa-

tion is the scientific literature and human expertise agglomerated in public databases. In par-

ticular for the development of mathematical models, standardized resources that provide their

data in a computational amenable and reusable manner are a preferable resource. Tab. 1.3

gives a brief list of some important databases. A large compilation of relevant database re-

sources is given in Galperin (2008). Moreover, the journal Nucleic Acids Research offers a

yearly database issue in January, providing a broad overview of diverse databases.

1.3.2.1 Pathway and interaction databases

Pathway databases2 are particularly interesting for modeling approaches since they offer a

straightforward way of building network topologies by the annotated reaction systems. These

databases provide integrated representations of functional knowledge of the different com-

ponents of a biological system and constitute a foundation for the topology of mathematical

models. The databases KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2008), Reac-

tome (Joshi-Tope et al., 2005; Vastrik et al., 2007), and BioCyc (Karp et al., 2005) contain

metabolic reactions and several signal transduction pathways. KEGG (Kyoto Encyclope-

dia of Genes and Genomes) is a reference knowledgebase offering information about genes

and proteins, biochemical compounds, reactions, and pathways. It provides 240 reference

pathways3 that are linked to genes and reactions of multiple eukaryotes and many microor-

ganisms. It can be accessed via the Web, FTP, and Web services. Reactome is managed as

a collaboration of the Cold Spring Harbor Laboratory, the European Bioinformatics Institute

(EBI), and the Gene Ontology Consortium. It uses a very precise specification (ontology)

of components and interactions that comprises details on stoichiometry, localisation, refer-

ences to external databases, etc. This covers also processes like complex formation events

or translocations of molecules. A further pathway databasewith a similar scope is BioCyc

that covers pathway data onEscherichia coli(EcoCyc), and predicted metabolic pathways

of other microorganisms (MetaCyc), and human (HumanCyc). Databases with a specific fo-

cus on signaling events are BioCarta, Spike (Elkon et al., 2008), TRANSPATH (Schacherer

et al., 2001), STKE, NetPath, and the Pathway Interaction Database (PID). An inherent as-

pect of the pathway concept is protein-protein interactionsubject of the databases IntAct

(Hermjakob et al., 2004; Kerrien et al., 2007) or DIP (Xenarios et al., 2000). Gene regula-

2Pathguide - the pathway resource list:http://www.pathguide.org/
3KEGG Release 48.0, Oct. 2008

22

http://www.pathguide.org/


1 Introduction

Table 1.3: Databases useful for modeling of cellular systems.

Database URL

Pathway databases

KEGG http://www.genome.jp/kegg/

Reactome http://www.reactome.org/

BioCyc http://biocyc.org/

EcoCyc http://ecocyc.org/

MetaCyc http://metacyc.org/

HumanCyc http://humancyc.org/

BioCarta http://www.biocarta.com/

Spike http://www.cs.tau.ac.il/ spike/

TRANSPATH http://www.biobase.de/

STKE http://stke.sciencemag.org/

NetPath http://www.netpath.org/

PID http://pid.nci.nih.gov/

Protein interaction databases

IntAct http://www.ebi.ac.uk/intact/

DIP http://dip.doe-mbi.ucla.edu/

Databases on gene regulation

RegulonDB http://regulondb.ccg.unam.mx/

TRED http://rulai.cshl.edu/TRED/

TRANSFAC http://www.biobase.de/

Databases on kinetic parameters

BRENDA http://www.brenda-enzymes.info/

SABIO-RK http://sabio.villa-bosch.de/

Model databases

JWS http://jjj.biochem.sun.ac.za/

BioModels http://biomodels.org/
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tion processes and gene regulatory networks are not yet covered in such detail like metabolic

processes or signaling. However, there are databases that store information on transcription

factor binding sites such as RegulonDB (Salgado et al., 2006), TRED (Zhao et al., 2005), and

TRANSFAC (Wingender et al., 2000; Matys et al., 2006). The lack of uniform data models

and data access methods of the existing almost 224 interactions and pathway databases make

data integration very difficult (Cary et al., 2005). Tab. 1.4illustrates the overlap of several of

these pathway resources in human.

Table 1.4: Numbers of overlapping reactions/interactions from different pathway databases that can

be mapped to each other in respect of identical substrates and products (ConsensusPathDB, Oct. 2008;

Kamburov et al., 2008).
Reactome Kegg Humancyc Pid Biocarta Netpath Intact Dip MintHprd Biogrid Spike

Reactome 4246 261 122 109 81 34 98 32 52 312 208 126

Kegg 261 1658 213 0 4 0 0 0 0 0 0 0

Humancyc 122 213 1322 0 2 0 1 2 2 7 3 2

Pid 109 0 0 3741 285 100 71 48 78 352 249 202

Biocarta 81 4 2 285 2221 69 52 36 44 145 115 173

Netpath 34 0 0 100 69 1915 58 34 124 819 508 235

Intact 98 0 1 71 52 58 6995 312 2816 3285 1621 4330

Dip 32 0 2 48 36 34 312 1216 393 823 638 443

Mint 52 0 2 78 44 124 2816 393 13176 7446 4545 5939

Hprd 312 0 7 352 145 819 3285 823 7446 37952 18721 11854

Biogrid 208 0 3 249 115 508 1621 638 4545 18721 28206 10738

Spike 126 0 2 202 173 235 4330 443 5939 11854 10738 22230

Besides topological information about cellular reaction networks, also kinetic data, like

kinetic laws and kinetic constants, are of particular interest for the generation of mathematical

models. Two databases that are concerned with such data are BRENDA (Schomburg et al.,

2004) and SABIO-RK (Wittig et al., 2006).

Mathematical models of a biochemical reaction system have been made available to the

scientific community in form of a publication often depicting a diagram of the reaction system

or a list of the reaction equations, along with a mathematical description (e.g., as a differen-

tial equation system), and lists of kinetic parameters and concentrations of specific states.

Recently, model databases have been setup, such as the BioModels database (Novère et al.,

2006) or JWS (Olivier and Snoep, 2004). Both are free, centralised databases of curated,

published, quantitative kinetic models of biochemical andcellular systems. For instance, the

BioModels database currently provides 87 curated and 40 non-curated models.

1.3.3 Software Applications for Modeling and Simulation

The computation of time courses of a biochemical reaction system based on a given pathway

structure and its kinetic scheme, that is required for simulations, has already been discussed
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1970 by Garfinkel et al. It arises from fundamental research on biochemical reaction kinet-

ics (e.g. Michaelis and Menten, 1913). The first simulation of a biochemical system (the

peroxidase reaction) was carried out by Chance (1943), who used a mechanical differential

analyzer to solve mathematical equations.

Table 1.5: Modeling tools frequently used in systems biology.

Application URL

Gepasi http://www.gepasi.org/

COPASI http://www.copasi.org/

E-Cell http://www.e-cell.org/

ProMoT/Diva http://www.mpi-magdeburg.mpg.de/projects/promot/

Virtual Cell http://www.nrcam.uchc.edu/

Systems Biology Workbenchhttp://sys-bio.org/

Cell Designer http://www.celldesigner.org/

PyBioS http://pybios.molgen.mpg.de/

During the past decades in the course of the computational revolution more and more

software applications were developed that can be used for the description of the dynamic

behavior of biological systems. In Tab. 1.5 several software applications are listed. A very

comprehensive list of such software applications can be found at the SBML homepage4.

Often general-purpose applications such as Mathematica (Wolfram Research) and Matlab

(MathWorks) are used that are designed for the computation and visualization of any type

of mathematical model. Although these software tools are very advanced, they have a steep

learning curve, require a lot of mathematical background knowledge, and are not designed

for the setup of biological models. This gave rise to the development of many other software

applications that better meet the desired requirements.

One of the first applications designed for simulation of biochemical reaction systems is

Gepasi that was developed in the beginning of the 1990ies. Itis a stand-alone-application

and comes up with a user-friendly interface for the simulation and analysis of biochemical

systems (Mendes, 1993, 1997; Mendes and Kell, 1998). It provides time course and steady

state simulation and the ability to explore the behavior of the model over a wide range of

parameter values using a parameter scan that runs one simulation for each parameter com-

bination. Gepasi can be used to characterize steady states using metabolic control analysis

(MCA, Kacser and Burns, 1973; Heinrich and Rapoport, 1974) and linear stability analy-

sis and is capable of doing parameter estimation with experimental data. The successor of

Gepasi is COPASI that has similar but improved functions andsome extensions (Hoops et al.,

4http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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2006).

E-Cell is based on the modeling theory of the object-oriented Substance-Reactor Model

(Tomita et al., 1999; Takahashi et al., 2003). Models are constructed with three object classes,

Substance, Reactor, and System. Substances represent state-variables, Reactors describe op-

erations on state-variables, and Systems represent logical or physical compartments. It pro-

vides different classes of standard Reactors (e.g., Michaelis-Menten formula). Time course

calculation is done by the use of a simulation engine. Numerical integration is supported by

first-order Euler or fourth-order Runge-Kutta method.

ProMoT/Diva consists of the modeling tool ProMoT and the simulation environment Diva

(Ginkel et al., 2003). The workbench deals with modular models and can handle differential

algebraic equation (DAE) systems. Modeling is supported bya graphical user interface and

a modeling language. The modeling tool provides the possibility to use existing modeling

entities out of knowledge-bases.

The Virtual Cell is a web-based client-server architecturewith a central database of user

models. It provides a formal framework for modeling biochemical, electro-physiological,

and transport phenomena while considering the sub-cellular localization of the molecules

that take part in them (Slepchenko et al., 2003).

The Systems Biology Workbench (SBW) provides a server that acts as a broker between

different modeling and simulation tools (clients) via a common interface (Hucka et al.,

2002). These clients (add-ons) cover graphical tools for model population, deterministic

and stochastic simulators and analysis tools like the integration of MetaTool (Pfeiffer et al.,

1999).

CellDesigner provides an advanced graphical model representation along with an easy to

use user-interface and an integrated simulation engine (Funahashi et al., 2003). For the devel-

opment of a model CellDesigner supports a rich set of graphical elements for the description

of biochemical and gene-regulatory networks. Networks canbe constructed from compart-

ments, species, and reactions. CellDesigner comes with a large number of predefined shapes

that can be used for different types of molecules, such as proteins, receptors, ion channels,

small metabolites, etc. In CellDesigner it is also possibleto indicate phosphorylations or

other modifications. The program also provides several icons for special reaction types like

catalysis, transport, inhibition, and activation.

All these software applications provide the ability to define a model step by step, e.g., by

entering the reaction details as plain text or by the use of some graphical interfaces. Entering

reaction details step by step is very important, but can become very cumbersome and error-

prone, in particular for large biochemical reaction networks. In this context, the visualization

of the reaction network of a model is also very important. Functions for the visualization

of reaction networks are only provided by some of the above mentioned software applica-
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tions. In particular none of them provide a flexible way for the automatic visualization of

parts of a reaction network that is very important, e.g., forlarge models that are ofter very

complex. Moreover, often one is interested in comparing simulation results directly with the

underlying network structure, to understand the dynamic system behavior in the context of

the reaction network. This is also a feature that is not provided by current software appli-

cations. To overcome these limitations it was necessary to develop a software application,

namely PyBioS, that provides those features and could be used for the setup of a quite large

model on somitogenesis that incorporates different signaling pathways and gene regulatory

feedback mechanisms.

Since the diverse software applications provide differentfeatures, a well defined format for

data exchange and documentation of the components and reactions of a model is pivotal. This

demand resulted in the development of several data formats for pathway data and mathemat-

ical models. The BioPAX5 format is a very general and expressive format and is designed for

handling information on pathways and topologies of biochemical reaction networks. Other

formats that are designed for the description of mathematical models of biochemical reaction

systems are the Systems Biology Markup Language (SBML, Hucka et al., 2003, 2004) and

CellML (Lloyd et al., 2004).

1.3.4 Mathematical Models of Somitogenesis

Mathematical modeling turns out to be significantly useful for the description and under-

standing of cellular processes and can be used for hypothesis testing and making experi-

mentally testable predictions. There are already multiplemathematical models describing

different cellular processes, such as metabolic pathways like glycolysis (e.g. Teusink et al.,

2000; Hynne et al., 2001), signal transduction pathways, like MAP kinase signaling (e.g.

Huang and Ferrell, 1996; Hatakeyama et al., 2003) or WNT signaling (Lee et al., 2003),

gene-regulatory processes (e.g. Elowitz and Leibler, 2000), or the cell cycle (e.g. Goldbeter,

1991; Tyson et al., 1996; Novák et al., 1999).

There are also several mathematical models describing cellular processes of somitogene-

sis. For instance, Lewis (2003) has worked out a mathematical model for oscillation during

somitogenesis in zebrafish. The model takes into account theher1gene and its corresponding

protein that acts as a repressor for its own expression (Fig.1.8A). The model is described by

two time-dependent delay differential equations

5BioPAX: http://www.biopax.org
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d[p(t)]

dt
= a[m(t − Tp)] − b[p(t)], (1.15)

d[m(t)]

dt
= f([p(t − Tm)]) − c[m(t)] (1.16)

where [p] and [m] denote the protein and mRNA concentrations, respectively,a is the

translation rate, andb andc are the decay rates of the protein and mRNA, respectively. The

mRNA synthesis is described by

f([p]) =
k

1 + [p]2/p2
0

, (1.17)

which describes the inhibitory effect of the protein that acts as a dimer on the mRNA

transcription.T = Tm + Tp is the time delay given due to transcriptionTm and translation

Tp. For sustained oscillation it is assumed that the lifetimesof the mRNA and protein are

very short compared with the total decay timeT . For sustained oscillation the peak of the

protein concentration is shifted slightly behind that of the mRNA concentration.

Based on the work of Lewis (2003), Hirata et al. (2004) have worked out a model for

the description of the oscillatory behavior ofHes7expression in mouse. They analysed the

model in respect to the protein half live that turned out as a crucial parameter. Based on

the simulation results of their model they could show that a half life of 20 min for the Hes7

protein provides a sustained oscillation, while an increase to 30 min results in a damped

oscillation which is in accordance to experimental findings.

Zeiser et al. (2008) have converted the model of Hirata et al.(2004), which is described

by two delay differential equations, into an ordinary differential equation system consisting

of five different components (see Fig. 1.8B). It takes into account separate variables for both

the mRNA and the protein. Furthermore, the cytosolic protein is first ubiquitinated before

degradation. All reactions are described by linear kinetics except for the inhibition of the

gene expression that is described by a Hill kinetic (cf. Section 1.3.1) and the ubiquitination

that is described by a Michaelis-Menten kinetic (cf. Section 1.3.1). Zeiser et al. (2008) could

mimic the qualitative results found by Hirata et al. (2004) according to the half life of the

ubiqutinated protein without explicit specification of a time delay.

Althoughher1andher7 in zebrafish can form a sustained oscillator, it is not sufficient to

form a robust molecular clock for somitogenesis. Surprisingly, zebrafish embryos lacking

bothher1andher7or embryos injected withher1andher7morpholinos still form abnormal

somites (Henry et al., 2002). This observation indicates that further components are involved

in the molecular clock controlling somitogenesis. Orthologues of the zebrafish hairy and

enhancer of split genes, whose expression oscillate duringsomitogenesis, have also been

detected in amniotes (where they are called Hes genes), likechicken (HES1, HAIRY2, and
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Figure 1.8: Models of molecular autoinhibitory circuits. (A) Model of her1 autoinhibition pro-

posed by Hirata et al. 2004. (B) Model of Hes7autoinhibition developed by Zeiser et al. (2008). The

model considers compartmentalization where Mn and Mc are the mRNAs in the nucleus and cytosol,

respectively, and Pn and Pc are the respective proteins each in the nucleus and cytosol.Pc
ubiq. is the

ubiquitinated protein targeted for degradation.

HEY2) and mouse (Hes1, Hes7, Hes5, andHey1; Dequéant and Pourquié 2008). Moreover,

cyclic expression of other Notch pathway genes were identified, as for example delta-like 1

(Dll1) and lunatic fringe (Lfng) in mouse. Today, it is well established that Notch signaling

plays an important role in the clock mechanism. However, when Notch signaling is impaired

or abolished, still somites can be formed, suggesting that additional factors must be involved,

such as components of Wnt signaling and FGF signaling as proposed by Aulehla and Her-

rmann (2004). One component of the Wnt signaling that has been found to oscillate during

somitogenesis is Axin2 (Aulehla et al., 2003). Based on different data that suggest an oscil-

lation of Wnt signaling activity in the presomitic mesoderm(PSM), Aulehla and Herrmann

(2004) proposed a negative feedback loop involvingAxin2as a target of Wnt signaling and

the subsequent destabilization of Axin2 protein that can form another molecular oscillator.

Moreover, they outline that there is a tight link between Wntand Notch signaling cascades in

the oscillating part of the PSM and they suggest that the oscillations of Notch signaling ac-

tivity are dependent on Wnt3a. Furthermore,Fgf8RNA was shown to form a gradient along

the PSM and, by increasing the local concentration of Fgf8 protein in the PSM, the somite

size was reduced, whereas the inhibition of FGF signaling results in larger somites (Dubrulle

et al., 2001). These observations indicate the importance of Fgf8 in determining the position

at which a segment boundary will form. In addition to the Fgf8gradient that is formed in the

PSM with a high concentration in the tail bud and a decrease inanterior direction, a second,

parallel gradient formed by Wnt3a was also identified (Aulehla et al., 2003).
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A first mathematical model of somitogenesis integrating Notch, Wnt and FGF signaling

was developed by Goldbeter and Pourquié (2008). The model isset up by three separate

models for FGF, Wnt and Notch signaling, respectively, eachwith independent oscillators.

Goldbeter and Pourquié (2008) showed that coupling of the three oscillators can lead to

synchronized oscillations in the three signaling pathwaysor to complex periodic behavior,

depending on the relative periods of oscillations in the three pathways.

In the course of my thesis I have developed a comprehensive mathematical model of somi-

togenesis that includes additional components of Notch, Wnt and FGF signaling and assumes

other cross-talks between the pathways. It is introduced inSection 2.2.

1.4 Experimental Techniques for Gene Expression

Analysis

Besides the analysis of biological systems, modeling strategies can also be applied to biotech-

nological experimental techniques. One particular technique of high interest in molecular ge-

netics is gene expression analysis. Today the genome sequence of several species is known.

Among the first genomes to be sequenced have been those of somemicroorganisms likeMy-

coplasma genitalium(Fraser et al., 1995) orEscherichia coli(Blattner et al., 1997) and later

also those of eukaryotes ranging fromSaccharomyces cerevisiae(Goffeau et al., 1996) to

mouse (Waterston et al., 2002), rat (Gibbs et al., 2004), andhuman (Lander et al., 2001; Ven-

ter et al., 2001). The availability of large scale sequence data gave rise to the development of

new high-throughput technologies for transcriptome analysis, such as DNA arrays.

DNA array technologies are of particular interest, since the transcriptional state gives a

snapshot of the gene expression state and thus an overview ofthe genes that might be active

at a particular time point. Of course this information is biased by degradation rates, post-

translational modifications, activations or inhibitions.

1.4.1 cDNA Array Technology

DNA array technology is nowadays frequently used in transcriptome analysis for the gener-

ation of genome-wide gene expression profiles6. DNA arrays benefit from the biochemical

feature of hybridization. Hybridization describes the binding of two complementary strands

of nucleic acids to each other via hydrogen bonds, where complementarity refers to the rule

6For a review seeThe chipping forecast, Nature Genetics, Vol. 21, Suppl. Issue 1, 1999;The chipping forecast

II , Nature Genetics, vol 32 Suppl., 2002; orThe chipping forcast III, Nature Genetics, Vol. 37, Suppl. (6s),

2005
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of Watson and Crick. This rule says that adenine (A) can bind thymine (T) via two hydro-

gen bonds and cytosine (C) can bind guanine (G) via three hydrogene-bonds. For decades

hybridization has been used in molecular biology for different techniques such as Southern

blotting and Northen blotting. By these techniques DNA or RNA that was separated by gel

electorphoresis is transfered to a filter membrane, and later exposed to a radioactively labeled

oligonucleotide probe. DNA or RNA fragments which are complementary to the probe can

such be identified.

DNA arrays are a massively parallel version of these techniques. Thousands of DNA

samples are immobilized as spots within micrometers to eachother on a surface (e.g. a

nylon filter or a glass slide) and hybridized with a labeled sample. The immobilized samples

usually have known sequences and are denoted asprobes. The labeled sample that has to

be identified is called thetarget. The target sample is usually derived from total mRNA of

the cells which are under investigation. After digitalization of the hybridized array image,

a numerical value, the signal intensity is assigned to each probe. It is assumed that this

signal intensity is proportional to the number of moleculesof the respective gene in the

target sample, and hence changes in signal intensities can be interpreted as concentration

changes. It should be pointed out that this is only valid as long as the intensity-concentration

correlation is approximately linear. Nonlinearities might occur, for instance, by saturation

effects or if the concentration falls below the detection limit of the DNA array.

By this extensive parallel expression analysis it is possible to study not one or a few genes

at a time, as it is the case for Southern blots or Northern blots, but thousands of genes in

parallel with a single experiment. Hence, DNA arrays are an ideal experimental platform for

systems biology.

The first DNA array platform was the macroarray developed in the late 1980s (Poustka

et al., 1986; Lehrach et al., 1990; Lennon and Lehrach, 1991). This technique employs PCR

products of cDNA clones that are immobilized on nylon filter membranes and hybridized

with radioactively labeled target material. The hybridization pattern is detected using a phos-

phor imager. cDNA macroarrays typically have a size of 8× 12 cm2 to 22× 22 cm2 and

cover up to 80 000 different cDNA clones. Multiple studies employed this technique (Gress

et al., 1992, 1996; Granjeaud et al., 1996; Nguyen et al., 1995; Dickmeis et al., 2001; Herwig

et al., 2001; Kahlem et al., 2004).

cDNA microarrays are another DNA array platform. Here, cDNAis spotted on glass slides

by a robot. The immobilized probes are hybridized by flourescently labeled target material.

Microarray chips are small (1.8× 1.8 cm2) and allow the spotting of tens of thousands of

different probes. cDNA microarrays are widely used in genome research (Schena et al.,

1995, 1996; DeRisi et al., 1996, 1997; Spellman et al., 1998;Iyer et al., 1999; Bittner et al.,

2000; Whitfield et al., 2002; Adjaye et al., 2005). A specific advantage of this technology
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is that the sample target and the control target can be labeled with different fluorochromes

(Cy3 and Cy5 dyes; e.g. Amersham Pharmacia Biotech, Santa Clara, CA) and used for the

same hybridization. Afterwards, two scanning procedures are performed for the different

fluorochromes, respectively. This yields two images, one ofthe sample target and another of

the control target.

A third platform is commercial oligonucleotide chips: Oligonucleotides are either spotted

or in situsynthesized on slides. Latter method is applyed by the photolithographic procedure

used for the production of Affymetix chips. These chips characterize a single gene by the use

of a set of approximately 20 oligonucleotide probes of length 20–25 nucleotides (Lockhart

et al., 1996; Wodicka et al., 1997; Lipshutz et al., 1999). These probes are denoted as per-

fect matches (PM), because they are perfectly complementary to parts of the mRNA of the

respective gene. For the detection of nonspecific and background hybridization, mismatch

(MM) oligonucleotides are synthesized that differ only in the central position 13 from the

PM oligonucleotides. Chips are typically small (1.8× 1.8 cm2). The target sample is labeled

with a single fluorochrome, so two chips are required to compare a sample and a control. An-

other commercial platform is that of Agilent. These chips are produced by an inkjet printing

technology, known from printers, that has been adapted for the manufacturing. Agilent chips

utilize 60mers as probes (Hughes et al., 2000, 2001).

1.4.2 Image Analysis

The mentioned DNA array platforms provide the experimentalmodule of this gene expres-

sion analysis technique. The second part is data analysis that is done by the bioinformatics

module. Output of the experimental platform is a digitized hybridization image. First step of

the analysis pipeline is image analysis. In this step each probe spot of the scanned DNA array

image is assigned a numerical value that represents the signal intensity. Essential for this is

the correct identification of each spot center, and a correctquantification of the pixel neigh-

borhood around the identified center of each spot. Since the signal intensities determined

during image analysis are the input data to any further pre-processing steps and fold-change

analysis or clustering analysis, the quality of image analysis is essential for any results that

can be gaind by subsequent procedures.

Commonly, image analysis is a two-step procedure: In the first step, the grid finding, a grid

is determined whose nodes describe the center postitions ofthe probe spots. In the second

step, the quantification of signal intensities, a certain pixel area around the respective spot

center is used to compute the signal intensity. For image analysis several commercial prod-

ucts are available, e.g., ImaGene (BioDiscovery), Genespotter (MicroDiscovery), GenePix

(Axon), AIDA (Raytest), and Visual Grid (GPC Biotech). Moreover, academic groups have
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developed their own software, e.g., ScanAlyze (Stanford University), FA (Max Planck Insti-

tute for Molecular Genetics, Steinfath et al., 2001), and UCSF Spot (University of California,

San Francisco, Jain et al., 2002). All these products differin several points, e.g., the array

platforms they are designed for, the degree of automation, and the usability. Very importanat

points are of course the correct spot identification and quantification, that depends on the im-

plemented algorithms, and manual settings required by the user, like clicking the corners of

the spotted area. Hence, image analysis programs can be classified manual, semiautomated,

and automated according to the degree of user interaction.

Grid Finding

Spots of the array are usually arranged in a rectangular grid. Due to experimental problems of

the spotting procedure, the center of a spot is usually not exactly at its ideal grid position, e.g.,

sub-grids can be shifted against each other, spots can be distorted irregularly in each direction,

and irregular spot shapes can make the spot identification more difficult. The purpose of grid

finding is to assigne all spots to their corresponding grid position and to identify the correct

center of each spot. The procedures comprise mostly geometric operations, like rotations

and projections of the digitized image. In the first step of the grid finding the global borders

of the originally reactangular grid are identified. During further steps smaller sub-grids are

found, and finally the individual spot positions are identified. Common basic steps of the

grid finding procedure are (1) a pre-processing of the pixel values, (2) the detection of the

spotted area, and (3) the spot finding (Steinfath et al., 2001). The purpose of the first step

is to amplify signal pixels, while reducing noise, e.g. by shifting a theoretical spot mask

across the image and assign those pixels to grid nodes that show the highest correlation to

the theoretical spot shape. Therefore, the theoretical spot shape should be similar to most

of the spots, e.g., a two-dimensional gaussian distributedshape might be appropriated. The

second step identifies the quadrilateral of the spotted area. For this step several of the above

mentioned programs require user interaction by manual definition of the spotted area, e.g., by

clicking the edges. They are semiautomated (e.g., Visual Grid). Fully automated programs

provide an automatic corner detection (e.g., FA). In the third step of this procedure each node

of the grid is detected and local maxima are identified that are the centers of the spots.

Quantification of Signal Intensities

Once the centers of the spots have been identified, a certain pixel area around each spot

center is used to compute the signal intensity. Potential errors the quantification has to cope

with are background noise due to unspecific binding, overshinig effects of spots that are next

to each other, or irregular spot shapes. The quantification might be done in two different
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ways: Segmentation tries to separate the foreground pixelsthat belong to the spot, from its

surrounding background pixels (Jain et al., 2002). Then, a spot intensity and potentially

also a background value can be calculated from the respective areas. Another quantification

method is the spot shape fitting that tries to fit a particular probability distribution, e.g., a two-

dimensional Gaussian spot shape around the spot center. Thesignal intensity is computed as

a weighted sum of the pixel intensities and the fitted density(Steinfath et al., 2001).

Databases of Expression Data

Microarray data provide a valuable resource in the interpretation of the transcriptome levels

of genes. Large repositories store these data from multiplestudies such as the Gene Expres-

sion Omnibus (GEO) (Edgar et al., 2002; Barrett et al., 2007)at NCBI and the ArrayExpress

(Brazma et al., 2003; Parkinson et al., 2007) at EMBL-EBI. These databases provide free

distribution and shared access to comprehensive gene expression datasets. Data include sin-

gle and multiple channel microarray-based experiments measuring the abundance of mRNA,

genomic DNA and protein molecules. Data from non-array-based high-throughput func-

tional genomics and proteomics technologies are also archived, including SAGE, and mass

spectrometry peptide profiling.

Reliability of Array-based Expression Data

The reliability of data produced by these experiments and their reproducibility are crucial

for this research. To ensure both reliability and reproducibility a sophisticated experimental

design is necessary. This includes for example the identification of error parameters that af-

fect the hybridization data during the data generation process. Influences of systematic and

statistical errors due to biotechnological methods (for example mRNA preparation, PCR,

hybridization), as well as due to devices and array-media (for example robots, filters, glass-

slides) and their effects on evaluation software and algorithms (image analysis, statistical

tests, clustering algorithms) must be estimated. These sources of error are frequently dis-

cussed in the context of calibration and normalization of microarray data (e.g. Dudoit et al.,

2002; Huber et al., 2002; Kepler et al., 2002; Schuchhardt etal., 2000).

In the course of my thesis I have developed a computer model for the simulation of cDNA

macroarrays that takes into account several sources of error. It enables scientists to judge

which parameters are critical and how the experimental design or data evaluation might be

improved. The computer model is introduced in Section 2.3. Moreover, using this model, I

performed simulations of DNA array hybridization experiments for the evaluation of critical

parameters during subsequent image and data analysis.
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1.5 Objectives

The objectives of my thesis are (1) the development of a modeling and simulation platform for

biological systems, (2) the use of the modeling platform forthe development of a molecular

model of the mouse segmentation clock that plays a central role in somitogenesis, and (3) the

application of modeling strategies on cDNA arrays.

Modeling and simulation platform. Computational models of biological systems are

essential parts of systems biology. While the mathematicaldescription of molecular reaction

networks, e.g., by systems of ordinary differential equations (ODEs), is well established, the

availability of advanced computational tools for the management and simulation of those

systems that tend to be large and complex, is still subject tocurrent research. Therefore, I

envisage the development of a modeling and simulation platform for biological, in particular

cellular and biochemical reaction systems. The computational tool shall be able to represent

essential information of a molecular reaction system that is necessary for the construction of a

mathematical model. The tool shall apply modern concepts ofobject-oriented programming

that serves as a flexible structure for data representation and expandability. The system shall

come with a user interface for the development of models and it shall serve as a model

repository. Moreover, it shall be able to integrate data from public pathway databases in

order to use those data for model development.

Development of a molecular model of somitogenesis. Somitogenesis is a funda-

mental developmental process taking place during vertebrate embryogenesis. There is ev-

idence supporting a model of a morphogen gradient and a molecular clock responsible for

the serial determination of somite formation. Aulehla and Herrmann (2004) have proposed a

model of the molecular clockwork comprising Wnt, Notch and FGF signaling. It is assumed

that the clock is driven by Wnt signaling downstream of Wnt3a. The morphogen gradient is

established in mouse by Wnt3a and Fgf8, both are produced in the tail bud, but with a decay

in the anterior PSM. The objective is to develop a mathematical model of the molecular clock

and its connection to the morphogen gradient. The model shall be able to describe properties

of somitogenesis, the arrest of the molecular clock below a certain Wnt3a concentration and

provide evidence of experimentally observed oscillation of clock components.

Modeling of cDNA arrays. In engineering sciences modeling and simulation techniques

have proven to be significantly helpful for the evaluation oftechnical processes. In a similar

manner also modeling can be applied to laboratory methods ofmodern molecular biology.

Gene expression analysis based on complex hybridization analysis have increased rapidly in
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about the last ten years. Although complex hybridization experiments are based on a data

production pipeline that incorporates a significant amountof error parameters, the evaluation

of these parameters has not been studied yet in sufficient detail. An objective of my thesis is to

model cDNA hybridization experiments and to use the model for simulation and subsequent

statistical evaluation of error parameters of the experimental data production pipeline.

36



2 Results

In the first part of this chapter I introduce the modeling and simulation system PyBioS that

I have developed in the course of my thesis (Section 2.1). I describe the general concept

and design of the PyBioS system, its user interface, its unique features and demonstrate its

usability even for large biochemical reaction systems. In the second part of this chapter

I show the application of modeling and simulation to an experimental laboratory method

(DNA array experiment) and to cellular processes.

Furthermore, I have created a model for the developmental process somitogenesis. The

model describes general features of the molecular segmentation clock known to take place in

segmental pattern formation during embryonic development.

The presented work on experimental and biological systems illustrates the usability of

modeling and simulation techniques for biology and shows its impact on current research in

molecular biology.

2.1 PyBioS - Modeling and Simulation Platform

A modeling system for cellular reaction networks has to accomplish several requirements. It

must have a well-defined internal structure for the representation of model components and

reactions, and optionally functionalities for the storageof a model in a well defined structure,

standardized format or database. Further desired aspects are a user-friendly interface for

model development, a graphical representation of reactionnetworks, a detailed description of

the mathematical model, integrated engines for deterministic or stochastic simulation along

with graphical representations of their results, and functionalities for model analysis and

model refinement. This is a very broad spectrum of functionalities.

Current modeling systems for biochemical research are usually designed for small- and

medium-sized models. Most of them do not have functionalities for the visualization of the

model’s reaction network or are able to display only the entire topology, what makes the

work with large models quite difficult. Furthermore, current modeling systems provide none

or very rudimentary interfaces to major pathway databases,such as KEGG or Reactome.

Latter point is extremely relevant, since the alternative to code computer models by hand is
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time-consuming and often error-prone.

To overcome these limitations I have invented the modeling and simulation system PyBioS

that is described in the following in more detail.

2.1.1 Overview of PyBioS

PyBioS is an object-oriented environment for the development and simulation of mathemat-

ical models of biological systems, which I have designed anddeveloped at the Max Planck

Intitute for Molecular Genetics (Wierling, 2006; Klipp et al., 2005; Wierling et al., 2007). It is

designed as a software application for the World Wide Web1. Its user interface is depicted in

Fig. 2.1. PyBioS serves as a hierarchical object oriented database to store models of cellular

systems. Each model represents the model objects in a hierarchical object-oriented manner

corresponding to cellular and molecular hierarchy. For instance, a model can hold a cell

object that consists of a cytosol object and a nucleus object, where the cytosol compartment

in turn can hold other objects, such as those representing proteins or other compounds like

metabolites. Model objects are entities of the abstractBioObject-class that represents biolog-

ical objects. Derived from this class are concrete classes for biological entities that are subdi-

vided into container-like objects (Environments). The latter can contain other BioObjects and

non container-like objects. This hierarchical structure is illustrated in Fig. 2.1A. Container-

like object classes are Cell, Compartment, Complex and Chromosome. Non container-like

object classes are Gene, pre-mRNA, mRNA, Polypeptide, Protein and Enzyme (of which

also Polymerase, Spliceosome, RNase, Ribosome and Protease are derived from). Addi-

tional information such as annotation, sequence-data, parameters and initial concentrations

are stored as object’s properties. Actions, which describereactions between different objects,

are attached to BioObjects, e.g., a metabolic reaction is bound to its catalyzing enzyme.

Certainly, small subsystems can be modeled and analyzed to some extent in isolation by

assuming steady and simplified boundary conditions. But as soon as these boundary con-

ditions become variable—as given for a system as complex as the cell—it is clear that also

this subsystem might behave differently in the context of a more comprehensive model. For

instance ATP, one of the most important energy sources in thecell, is involved in diverse

cellular processes and for example a massive consumption ofATP by a single process might

have an important impact on other processes; this impact will not be discovered as long as

the ATP concentration is handled as a constant parameter or as a variable of the isolated

subsystem. Such constraints are, for example, also relevant for cellular signal transduction,

where different signaling pathways can have an effect on each other through cross-talks.

Thus, PyBioS is particularly developed for the analysis of large models. Here, automated

1http://pybios.molgen.mpg.de
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Figure 2.1: PyBioS Web interface.The user can choose a particular model from the model repository

(A) and inspect its hierarchical structure via theModel-tab (B) that also provides functionalities to

edit the model. TheNetwork-tab provides an automatically generated wiring diagram ofthe reaction

network(C), in which rectangular nodes represent the BioObjects (e.g., genes, compounds, proteins,

etc.), and circular nodes the reactions (actions). The arrows in the diagram differ between mass-flow

(black arrows) and information-flow (green and red arrows).TheReactions-tab lists all reactions of

the model(D). Via theSimulations-tab the user can run individual simulations. Time courses of the

concentrations or fluxes are visualized graphically(E).
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import/export functions to populate models and an automatic generation of the mathematical

model (ordinary differential equation system; ODE system)are essential.

PyBioS provides a broad spectrum of different functions formodel design and develop-

ment, simulation and analysis. It has different features that are outlined below and are intro-

duced in the following sections.

• Object-oriented model design

• User interface for the development of individual models including interfaces to path-

way databases such as KEGG, Reactome, and ConsensusPathDB

• Visualization of the model’s network structure (model topology)

• Automatic generation of the deterministic mathematical model (ODE system)

• Numerical simulation using standard numerical integrators

• Methods for model analysis, like computation of conservation relations, detections of

steady-states, stability analysis and parameter scan

• Repository of models and kinetics

2.1.2 Model structure

PyBioS employs an object-oriented strategy that was initially introduced by Stoffers et al.

(1992). The authors used classes for metabolic entities andbiochemical reactions for the

modeling and simulation of metabolic systems.

Models in PyBioS have hierarchical object-oriented structures. Each model is stored in a

separateModel object that contains the objects representing the biological entities. Biologi-

cal entities, like genes, mRNAs, proteins, compounds, enzymes, complexes or compartments,

are derived from the same classBioObject. BioObjects might have different properties. For

instance, if a Michaelis-Menten kinetic is used, parameters likeKM or Vmax are properties of

the accordingEnzymeinstance. Properties have a value, e.g., a floating point number. Prop-

erties might also be annotations, sequence-data, etc. Furthermore, one or severalActionscan

be bound to a BioObject. An action describes a biochemical reaction, physical process or a

group of similar reactions or processes. Actions are described in more detail below. Fig. 2.2

gives an overview of the defined classes of biological objects and the information that is ex-

pected to be stored by these objects. Some of these BioObjects, like Compartment, Complex

or Chromosome, are container-like objects (derived from the abstract classEnvironment)
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BioObjectBioObject

Enzyme

Spliceosome Polymerase

Ribosome RNase

Protease

Gene

pre_mRNA

mRNA

Polypeptide

Protein

SequenceObject

Chromosome

Compartment

Complex

Cell

EnvironmentBioObject

SequenceObject

BioObject

id
actions
concentration

Environment

SimulationEnvironment

SequenceObject

simulate()

sequence

getId()
getActions()
getConcentration()

...

getSequence()
getSequenceLength()

...

...
...

...

Figure 2.2: UML-diagram of the PyBioS ontology. According to UML notation, arrows point on

classes from which other classes are derived. Central classes in the current version of PyBioS are the

abstract classesBioObject andEnvironment. All classes which represent biological objects are de-

rived from BioObject. BioObject has properties (in object-oriented programming denoted attributes)

and methods (the diagram shows only some attribute and method examples). Properties are for in-

stance the name of a BioObject (id ) or its initial concentration (concentration). Methods are functions

which belong to a certain class and operate on its attributesor other objects, that are passed along by

the method call; e.g.,getId() or getActions() return the object name or a list of the object’s actions,

respectively. Concrete classes, likeGene, Enzymeor Cell inherit fromBioObject (and possibly other

classes as well), which means that they have all the same attributes (but likely other values) and offer

the methods of their parent class(es).
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which can hold other BioObjects. All these classes define an ontology that is used for the

internal representation of a model.

One or multiple actions can be assigned to a BioObject. Each action holds a directed

reaction and a kinetic law (Fig. 2.3A). The directed reaction describes the mass flow from

the substrate(s) to the product(s), as well as the molecularity (stoichiometry) with which they

take part in the reaction.

Substrates and Products (denotedS andP, respectively) as well as the catalyzing enzyme

(denotedE) are stored as lists associated to the action. The elements of these lists are ref-

erences to BioObjects together with their respective stoichiometric coefficients. Further lists

for modifiers (e.g., activators, inhibitors, etc.) can be added, if required. Reversible reactions

are either constructed by defining the backward reaction as aseparate action or by using a

rate law that already considers this behavior and thus mightbecome negative. In the latter

case reversibility is indicated by a flag, which is an attribute of the used rate law. Kinetic

laws are formulated in an abstract fashion by a list that consists of parameter and variable

references and fundamental mathematical operations (+,-,*,/,log,exp, ...) and parentheses.

The final kinetic law term is constructed from the lists of substrates, products, the enzyme,

and other modifiers. The respective lists are used by predefined kinetic laws. A database of

predefined kinetic laws is provided by PyBioS. Although no rule for assignment of actions

to BioObjects is established, it makes sense for, e.g., an enzymatic reaction to attach it to the

enzyme that catalyzes the given reaction. Autocatalytic reactions can be assigned to the sub-

strate itself. Chemical reactions that take place in the absence of any catalyst can be assigned

to the compartment-object they belong to or to a pseudo-object whose only task is to repre-

sent this action. An action that describes a transport process can be bound to a membrane- or

transporter complex-instance.

From the individual rate laws of each action the ODE system isgenerated. This is de-

scribed in Section 2.1.4.

2.1.3 Model Construction

As outlined in section 1.3, the development of a model of a biological system requires a

lot of information, like information on the components of the system, the reactions they

are involved in (topology and stoichiometry of the reactionnetwork) and the kinetics of the

individual reactions, which includes the kinetic laws and their respective kinetic parameters.

Comprehensive information about topology and stoichiomety of biological reaction sys-

tems is already available from suitable pathway databases.Unfortunately, information about

reaction kinetics is limited, especially for large systems.

The first step of modeling is the collection of objects and reactions as well as appropriate
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(A)

Action attributes Representation of. . . Example

Name (id): Reaction identifier e.g. Phosphorylation

Enzyme (E): E1 . . . Ek e.g. Hexokinase

Substrates (S): i1 S1 . . . il Sl ATP, Glucose

Products (P): j1 P1 . . . jm Pm ADP, Glucose 6-phosphate

Modifiers (M): M1 . . .Mn

Reaction: i1 S1 + · · ·+ il Sl ATP + Glucose

−→ j1 P1 + · · ·+ jm Pm −→ ADP + Glucose 6-phosphate

Kinetics: v = f(S) v = Vm[ATP][Glc]
KDGlcKATP+KGlc[ATP]+KATP[Glc]+[Glc][ATP]

(B)

Enzyme

Products

Substrates

Hexokinase

R01786

ADP

ATP

alpha−D−Glucose 6−phosphate

alpha−D−Glucose

Figure 2.3: Description of an action. (A)Action data structure.E, S, P , andM are list of size

k, l,m, n, respectively. These lists reference BioObjects that are involved in the reaction and their

stoichiometric coefficients.(B) Graphical representation of the hexokinase action (dottedboxes show

the elements of the substrate, product, and enzyme list, respectively).
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kinetics that are relevant to the model. Using these data, a prototype can be developed.

PyBioS provides three methods for model creation: (1.) via the Systems Biology Markup

Language (SBML), (2.) via scripts using the application programmer interface (API) of

PyBioS, or (3.) via the Web interface.

Import and export of models using SBML provides the ability to exchange models from

PyBioS with other systems biology software applications. Moreover, this makes it possible

to reuse existing SBML models as for example provided by the BioModels model repository

(cf. Section 1.3.2).

The API that is implemented as a Web Service makes PyBioS veryuseful for other soft-

ware applications, which do not include a simulation engineby themselves. For instance,

PyBioS is used by the Gene Network Generator2 (GeNGe) as an engine for the simulation of

gene regulatory networks (Hendrik Hache, pers. comm.).

The third method to create a model in PyBioS is via its Web interface3. Model components

and reactions can be added manually. (Fig. 2.4).

Alternatively to the development of an individual model by adding each reaction one by

one, PyBioS has an interface to several major public pathwaydatabases to retrieve path-

way data automatically. The generic database interface of PyBioS accomplishes three major

tasks: (1.) it provides a Web interface that enables the userto retrieve reaction-relevant data

from the provided databases according to the users needs, (2.) it gathers the information of

different databases in such a way that it can be used for the population of a single model,

and (3.) it carries out the population of the PyBioS model by retrieving the relevant data

from the according databases. The general database interface has references to the different

database-specific low-level interfaces. Latter provide methods that are used by the general

database interface for data retrieval, e.g., SQL-queries to the Reactome MySQL-database.

Since BioObjects within PyBioS that were created using the database interface refer to their

corresponding source database entry, additional information of the objects, such as diverse

accession numbers, is still available. Low-level interfaces for the pathway databases Reac-

tome, KEGG, and ConsensusPathDB are implemented (cf. Section 1.3.2).

The population of a model via the Web interface of the genericdatabase adapter is simple.

One can search for reactions of a specific gene or metabolite,or, alternatively, reaction of a

specific pathway (Fig. 2.5A). From the list of results, the user can select several or all reac-

tions to be created within the new model (Fig. 2.5B). The listof reactions that are selected for

subsequent creation can be extended step by step with reactions of further database searches.

Finally, the user can inspect the list of selected reactionsagain, choose appropriate kinetic

laws from a predefined list (Fig. 2.6A), and instruct PyBioS to add those reactions to the cur-

2http://genge.molgen.mpg.de
3http://pybios.molgen.mpg.de

44

http://genge.molgen.mpg.de
http://pybios.molgen.mpg.de


2 Results

Figure 2.4: Manual model generation in PyBioS.The hierarchical model structure(A) is estab-

lished by adding individual BioObjects, e.g., a protein(B), one by one. Reactions are added by

assigning the participating objects to the respective lists, e.g., substrate or product list, and selection

of an appropriate rate law from the kinetics repository(C). Parameter values of the rate law and initial

values of the participating objects can be assigned separately.
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rent model (Fig. 2.6B). All objects and reactions populatedby the generic database interface

still provide references to their originating database entries. This feature enables an auto-

mated annotation of all model components in order to, e.g., associate the model components

with their respective external association numbers. Additionally, the database references

make it easier to merge models with other models and thus it supports the integration and

re-usability of models.

In the following, the different features of the Web interface are outlined. Fig. 2.1 shows

several features of the Web interface. A specific model can beinspected via different views

that are accessible by several tabs. These views provide a representation of the hierarchical

model structure, a listing of the model reactions, a graphical representation of the model net-

work (a wiring diagram of the model), user interfaces for simulation and analysis and other

functionalities. The "Construction tab" provides the access to the generic database interface

and supports an easy model design. The user can search for reactions of a specific gene,

metabolite or pathway (Fig. 2.5A). From the list of results the user can select several or all

reactions for model population (Fig. 2.5B). The list of reactions that are selected for creation

can be extended step by step with reactions of further database searches. All objects and reac-

tions populated by the generic database interface still provide references to their originating

database entries. This feature enables an automated annotation of all model components and

makes it easy to extend the model by further database requests.

2.1.4 Quantitative Simulation

Reaction equations and rate laws that are defined by the actions, are used for the automatic

generation of the ordinary differential equation (ODE) systems. The time change in the

concentration of all speciesSi is given by the following balance equation

d[Si]

dt
=

r∑

j=1

nijvj(S) i = 1, . . . , m, (2.1)

wherer is the number of reactions,m the number of species, andnij the stoichiometric

coefficient ofSi in the reactionj, which is positive for the production ofSi, negative for its

degradation and otherwise defaults to zero.vj denotes the velocity of reactionj, that is given

by its rate law.S is a vector of concentrations of all speciesSi.

PyBioS supports deterministic simulation by numerical integration of first order ODE-

systems. It offers the use of the solvers LIMEX and LSODA (denoted SciPy in the modeling

interface) to get the numerical solution of the initial value problem. LSODA (Hindmarsh,

1983; Petzold, 1983) is a solver for ordinary differential equations written in the program-

ming language Fortran and a variant of the LSODE package. Thealgorithm used in this
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Figure 2.5: Generic database interface (figure 1). (A)Search for citric acid cycle pathways (TCA).

(B) Listing of the TCA related reactions available in Reactome.
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Figure 2.6: Generic database interface (figure 2). (A)Listing of reactions selected for population.

(B) PyBioS model automatically generated via the generic database interface.
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solver switches between stiff and non-stiff methods automatically. PyBioS uses the interface

to LSODA which is available from SciPy4. The solver LIMEX (Deuflhard et al., 1987; Deu-

flhard and Nowak, 1987) is an extrapolation integrator for the solution of linearly-implicit

differential-algebraic systems (DAEs) written in Fortran5. It combines an implicit one step

method with step size extrapolation to permit an adaptive control of step size and order.

PyBioS has an integrated interface for simulation ("Simulation tab"). One selects several or

all components (reactions) and starts a simulation for a given time range. The time courses

of the selected component concentrations (reaction fluxes)are subsequently plotted into a

graph. Simulation results can also be plotted into a reaction network graph as described in

the following paragraph.

2.1.5 Visualization

PyBioS model networks are defined by the BioObjects and theiractions. Since a model

of as few as 10 or 20 BioObjects becomes already very complex due to diverse substrates,

products and modifiers, a visualization of the underlying model structure is of substantial

benefit. Therefore, the biological network can be made more easily accessible by a graphical

representation. An example of the visualization integrated in PyBioS is shown in Fig. 2.1C.

In PyBioS, two kinds of nodes are used representing BioObjects (visualized by rectangles)

or actions (visualized by circular nodes), respectively (Fig. 2.7). Relations between BioOb-

jects and actions are visualized by directed arrows. The arrow color or style indicates either

mass flow (black) or information flow (any other color or line style). The direction of the

mass flow arrow indicates the mass flow, i.e. a BioObject is a substrate, if the arrow points

from the BioObject node to the reaction node; otherwise, it is a product. Information flow

arrows always pointing from BioObject nodes to action nodes, since they represent BioOb-

jects, which catalyze or modify the particular action, but are consumed or produced by the

respective reaction.

The PyBioS visualization interface can generate graphicalrepresentations of parts of the

reaction network. Therefore, the user defines a subset of reactions to be displayed. This

generates a network graph that can manually extended by clicking on one of the BioObject

nodes and selecting further reactions of the selected BioObject that are not displayed in the

current graph. In a similar way, reactions can also be removed from the current network

graph. This feature provides a very flexible functionality for the inspection of the reaction

network. In particular, this is very helpful for the inspection of large models. Furthermore,

concentration values of the BioObjects or kinetic parameters of the reactions can also be

4http://www.scipy.org
5ftp://elib.zib.de/pub/elib/codelib/LIMEX4_2A1
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Figure 2.7: Elements for graphical representation in PyBioS. Node and arrow symbols used for

the graphical representation of reaction networks within PyBioS.

modified within the graphical reaction network.

Moreover, simulation results can be displayed within the graph. For instance, reaction and

BioObject nodes can be colored according to the simulation results of a specific time point.

This highlights those BioObject that have very high or low concentration, or reaction that

have a very fast or slow flux. Furthermore, the user can click on a specific node to display

the time course simulation results of the component or flux.

2.1.6 Analysis Modules

The object-oriented model of the biological system as well as its derived mathematical model

can be used for further analyses and consistency checks. Forinstance, it is possible to identify

steady states, compute conservation relations and performparameter scans.

Steady State Search

By definition, when the system has reached a steady state, theconcentration of the metabo-

lites does not change in time. The steady state of a system of reactions is characterized

mathematically bydS/dt = 0, whereS is the vector of concentrations of the components

and0 is the null vector. In a nonlinear system this equation can have several solutions.

Two different methods for steady state search are availablein PyBioS. First, an approach
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that depends on a root finding method to get the steady state using a numerical algorithm and

second, a progressive simulation, that is called thedirect search. Starting with simulation

results of a user-defined time interval, the root finding approach computes the roots of the

ODE system by using the MINPACK subroutine HYBRID16, which is a modification of the

method described by Powell (1970).

Thedirect searchperforms a progressive time course calculation. Starting with the time

interval[t0, tn] specified by the user, a seriesStn , · · · , Stn+k
is calculated, where

Sti =





Sti,1

...

Sti,m



 i = n, · · · , n + k (2.2)

is a vector with the concentrations of all species at timeti. The direct searchalgorithm

checks whether a steady state is reached by regarding

‖Stn+j+1
− Stn+j

‖2 < ǫ j = 0, · · · , k − 1 (2.3)

for a user defined thresholdǫ. Here,‖ · ‖2 denotes the Euclidean norm. If this equation is

satisfied for twenty consecutive time points in the interval[tn, tn+k], it is assumed that the

steady state is reached. Otherwise, another evaluation step starts for the interval[tn+k, t2n+k].

This is repeated up tol times (in the current versionl = 10) until the steady state is found.

In case of an unsuccessful search, the algorithm aborts and reports this.

Stoichiometric Matrix and Conservation Relations

Frequently, the amount of material of several molecular species involved in a cellular reaction

network is conserved, e.g.,

n(ATP) + n(ADP) + n(AMP) = const. (2.4)

wheren() denotes the amount of substance.

Such conservation relations can be computed by the network topology, which is given by

the reactions and their stoichiometry. This topology of thereaction network describes the

mass flow and is embodied in the stoichiometric matrix

N =





n11 · · · n1r

...
. . .

...

nm1 · · · nmr.



 (2.5)

6http://www.netlib.org/minpack
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A column of the matrix corresponds to a distinct reaction of the model and a row corresponds

to a single molecular species (BioObject).r is the number of reactions andm is the number

of species. An elementnij 6= 0 indicates that a certain BioObject takes part in a particular

reaction. The conservation matrixΓ can be obtained by computing the nullspace (kernel) of

the stoichiometric matrixN using the relationΓN = 0.

Since it is conventional to compute the right nullspace,Γ
T (whereT denotes the transposed

matrix) is calculated from

N
T
Γ

T = 0 (2.6)

using the block diagonalization algorithm described by Schuster and Schuster (1991).

Parameter Scan

A parameter scan can be performed to analyze the behavior of the model. The possibility

to consider the effect of one parameter on the concentrations of the metabolites and on the

fluxes of the reactions is given by regarding the system in steady state. In steady state, the

system is independent of time and an implicit dependence of the concentrations and fluxes

on a parameter can be viewed. One parameter is varied in a given interval and the according

steady states are computed by the direct search or root finding method. The results of the

parameter scan (steady state concentrations or fluxes vs. the given parameter) are available as

graphics or tab-delimited files. The parameter scan is illustrated by an artificial model shown

in Fig. 2.8.

2.1.7 System’s Performance

Since molecular interaction data becomes massively available through the Internet and by

rapidly evolving high-throughput techniques, strategiesand methods for the integration of

these data into biological models are required. Small systems of 20 or less objects can di-

rectly be translated into mathematical models by hand. However, the creation of models with

several dozens, hundreds or even thousands of objects are not feasible anymore without an

automation of this process. Therefore, the huge amount of experimental data as well as text-

book data—which become increasingly available in a computationally amenable manner—

are excellent sources for this purpose. PyBioS supports functionalities for the integration

of external data sources. An interface to the metabolic dataof the KEGG database enables

the automated generation of models with a single or several pathways. Since the model cre-

ation is one central step in the process of model design, its scaling behavior is of interest.

Therefore, metabolic models of different sizes in the number of reactions and objects were
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Figure 2.8: Parameter scan. (A)Reaction network of the artificial model.(B) A scan for parameter

ki in the interval [0,10] indicates that the concentration ofS1 is independent andS0 and S2 are

dependent of this parameter. This is confirmed by its analytical solution. Similarly, flux changes can

be analyzed(C).
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created using the interface to the KEGG database. This ranges from models with 20 objects

and 11 reactions up to 1668 objects and 2365 reactions. For simplification, all reactions are

considered to take place in the same compartment and are modeled by mass action rate laws.

Kinetic parameters and initial concentrations are initialized with a value of 1. The CPU-time

required for this model creation process was measured. Fig.2.9A shows that the duration of

the creation process scales linearly with the model size in this example with metabolic sys-

tems derived from the KEGG database. In parallel, the duration required for the simulation

of the time-interval [0,10] and [0,1000] (arbitrary units)using the SciPy-solver was measured

for each model. Here, a quadratic relation of time versus model size (given by the number of

reactions) was found (Fig. 2.9B). It should be noted that thesimulation time depends strongly

on the complexity of the kinetic laws. The scaling behavior of some published models is also

illustrated in Fig. 2.9B.

2.1.8 Summary of the Inventions

A modeling and simulation system for biochemical and cellular reaction networks called Py-

BioS was developed. PyBioS has a Web-based user interface for the creation of models and

their subsequent simulation and analysis. Compared to other systems biology software appli-

cations, PyBioS has some unique features that make model development and simulation more

efficient. It is, for instance, an interface to external pathway databases that makes it possible

to import individual reactions, e.g., of a particular pathway into a PyBioS model. Moreover,

PyBioS has a unique functionality to visualize results of a time course simulation along with

the reaction network graph of the whole model or parts of it. Moreover, PyBioS provides

several standard functions for the analysis of a model, suchas computation of conservation

relations, steady state search, or performing a parameter scan to evaluate the influence of a

particular parameter on the steady state of the system. PyBioS was successfully used for the

establishment of a molecular model of somitogenesis that ispresented in the next section.

PyBioS has been selected as one of the top three contributions of the Heinz-Billing Award

for Scientific Computation of the Max Planck Society in 2005.

54



2 Results

A

0 1000 2000 3000
number of reactions

0

200

400

600

tim
e 

[s
ec

on
ds

]

B

0 1000 2000 3000
number of reactions

0

200

400

600

800

1000

tim
e 

[s
ec

on
ds

]

0 10 20 30 40
0

2

4

6

8

10

A B CD

E

F
G

H

I

Figure 2.9: Scaling behavior of PyBioS for systems of different sizes.(A) Time required for the

model creation; the straight line shows a linear regression. (B) Simulation for the time-interval [0,10]

(+) and [0,1000] (*) using the numerical integrator of SciPy; the straight lines show quadratic regres-

sions, respectively. The inserted graphic inB shows the scaling behavior of some models from the Py-

BioS models repository: (A) CellCycle-1991Tys-2, (B) CellCycle-1991Gol, (C) CellCycle-1991Tys,

(D) MAPKcasc-2000Kho, (E) CircClock-2002Vil, (F) Metabolism-2000Teu, (G) CircClock-1999Lel,

(H) CellCycle-1997Nov, (I) Hynne; (A)-(H) are imported viaSBML from an SBML-model reposi-

tory; (I) is described in Hynne et al. (2001).
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2.2 Modeling of Biological Systems - Somitogenesis

As described in Section 1.2.1 somitogenesis is a general segmentation process taking place

during vertebral embryogenesis. During somitogenesis epithelial blocks (the somites) reg-

ularly pinch off from the presomitic mesoderm (PSM) and eventually give rise to the axial

skeleton, the skeletal muscles and the dermis of the back. Itis assumed that the general reg-

ulatory mechanisms underlying somitogenesis are more or less similar across all vertebrates.

There is evidence that somitogenesis is based on a molecularclock and a determination front

established by a morphogenic gradient (cf. Section 1.2.1).For mouse, as well as several other

mammals, it is proposed that the determination front is established by Wnt3a and Fgf8, two

secreted signaling molecules that are produced in the tail bud and whose concentrations de-

cay while the embryo elongates posteriorly (cf. Fig. 1.2; Aulehla and Herrmann 2004). The

clock is assumed to be established by the signaling pathwaysWnt, Notch, and FGF that are

cross-linked with each other.

A general characteristic of somitogenesis is the regular formation of equally sized somites

that sequentially pinch off from the PSM. The duration that it takes to form a single somite

varies between different species, but is species-specific (cf. Tab. 1.1). Also species-specific is

the number of vertebrae (vertebrae are derived from successive somites). It ranges from a few

vertebrae in platyfish or frog to several hundreds in some cartilaginous fishes or long-bodied

teleosts such as eels (Richardson et al., 1998).

On the molecular level several genes have been identified to oscillate during somitogenesis

(cf. 1.2.1). This is, for example, in mouse and many other species,Axin2 andDkk1, com-

ponents of the Wnt signaling pathway,Lfng andHes7, which play a role in Notch signaling,

andDusp6andSpry2, which are known to be regulated by FGF signaling, but also byNotch

signaling.

Different mathematical models describing the molecular processes underlying somitoge-

nesis have already been proposed in the past (cf. Section 1.3.4). Several of them study the

negative feedback regulation of theHes gene by itself. But as outlined in Section 1.3.4

this autoregulatory mechanism is not sufficient for the description of molecular clock that

controls somitogenesis. Goldbeter and Pourquié (2008) hasdeveloped a first model that in-

tegrates Notch, Wnt, and FGF signaling.

The mathematical model of somitogenesis that I have developed here is based on the con-

ceptual model proposed by Aulehla and Herrmann (2004) and isadapted to current knowl-

edge about the segmentation clock in mouse. It comprises several components known or

assumed to be related with somitogenesis and being members of the Notch, Wnt and FGF

signaling pathways. In the following I introduce two separate oscillatory models for the

Notch and Wnt signaling pathways, respectively, and describe their individual features. Af-
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Figure 2.10: Notch model. Diagram of the Notch signaling pathway model.

terwards, cross-links between the individual signaling pathways and their connections to the

FGF signaling are introduced and correlated with phenomenological aspects of somitogen-

esis. Kinetic parameters used within the models are extracted from Lee et al. (2003) and

Goldbeter and Pourquié (2008) or, where no values were foundin the literature, appropriate

assumptions were used to reproduce the expected qualitative behavior.

2.2.1 Modeling Oscillatory Notch Signaling

The canonical Notch signaling pathway is described in Section 1.2.2.1. A general overview

of the pathway is shown in Fig. 1.3. Key-players of the pathway are a Delta-type ligand and

the Notch receptor. Once the Notch receptor is activated by the ligand, the Notch intracellular

domain is cleaved off and can translocate into the nucleus and trigger the activation of target

genes.

Using PyBioS a mathematical model of the Notch signaling pathway was implemented;

its reaction network is depicted in Fig. 2.10. The model comprises the synthesis and post-

translational modification of Notch, the release of the Notch intracellular domain (NICD)
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due to the activation via the Delta ligand and its phosphorylation by Axin:GSK3β:Dvl, its

import into the nucleus, and the transcriptional activation of the target genesLfng, Spry2,

Dusp6, Nkd1/2andHes7by nuclear NICD. The Hes7 protein is a transcriptional inhibitor of

itself as well as the other genes that are also under the control of NICD (Lfng, Spry2, Dusp6,

Nkd1/2).

Necessary for oscillation of a molecular interaction network is a negative feedback loop

(Tiana et al., 2007), whereas "negative feedback loop" simply defines a loop with an odd

number of repressors. Besides this, a sufficient large time delay is also necessary to generate

oscillations. This can be achieved, for example, by the introduction of a finite time delay,

by a sharp response by some of the variables (e.g., describedby a Hill kinetic as shown in

Fig. 1.7A), or by a saturated degradation (e.g., described by a Michaelis Menten kinetic as

shown in Fig. 1.6).

As described in Section 1.3.4 a molecular oscillator withinthe Notch signaling pathway

can be established byHes7whose protein is known to be a repressor of its own expression.

It is described by the following ODE system.

d

dt
[Hes7]Pre_mRNA

nucleoplasm= −v0 + v3 (2.7)

d

dt
[Hes7]mRNA

cytosol = +v0 − v6 (2.8)

d

dt
[Hes7]Protein

nucleoplasm= −v1 + v2 (2.9)

d

dt
[Hes7]Protein

cytosol = +v1 − v2 − v4 + v5 (2.10)

The rate laws of the different reactions are:

Hes7 mRNA export from nucleoplasm into cytosol

v0 = k0 · [Hes7Pre_mRNA
nucleoplasm] with k0 = 0.1min−1 (2.11)

Hes7 protein export form nucleoplasm into cytosol

v1 = k1 · [Hes7Protein
nucleoplasm] with k1 = 0.1min−1 (2.12)

Hes7 import into the nucleoplasm

v2 = k2 · [Hes7Protein
cytosol] with k2 = 0.1min−1 (2.13)

Transcription of Hes7

v3 = V3 · ( Ki3
ni3

[Hes7Protein
nucleoplasm]ni3 + Ki3

ni3
) + a3 (2.14)

58



2 Results

with a3 = 0.0nM · min−1; V3 = 0.2min−1; Ki3 = 0.05min−1; ni3 = 2.0 (2.15)

Degradation of Hes7 protein

v4 = Vm4 · [Hes7Protein
cytosol]

Km4 + [Hes7Protein
cytosol]

(2.16)

Km4 = 0.001;Vm4 = 1.5 (2.17)

Translation of Hes7 mRNA into protein

v5 = k5 · [Hes7mRNA
cytosol] (2.18)

k5 = 0.1min−1 (2.19)

Degradation of Hes7 mRNA

v6 = Vm6 · [Hes7mRNA
cytosol]

Km6 + [Hes7mRNA
cytosol]

(2.20)

Vm6 = 0.1; Km6 = 0.01min−1 (2.21)

The initial concentrations for an oscillatory state are:

[Hes7Protein
nucleoplasm] = 0.473350 nM

[Hes7mRNA
cytosol] = 14.691751 nM

[Hes7Protein
cytosol] = 0.489142 nM

[Hes7Pre_mRNA
nucleoplasm] = 0.215924 nM

The implemented model is shown in Fig. 2.11. The model has an oscillatory behavior with

a period of 110 min and shows, as expected, a time delay between the consecutive model

components.

Another oscillatory circuit that can produce oscillationsis the activation of the Notch re-

ceptor via Lfng, the subsequent expression ofHes7via NICD, and finally the negative feed-

back onLfng expression by Hes7.

2.2.2 Modeling Oscillatory Wnt Signaling

The canonical Wnt signaling pathway is described in Section1.2.2.2 (cf. also Fig. 1.4). A

graphical illustration of the somitogenesis’ Wnt signaling module is depicted in Fig. 2.12.

A central component of the model is the destruction complex consisting of APC, Axin, and

GSK3β that continuously phosphorylatesβ-catenin and thus targets it for degradation by the

proteasome. The destruction complex is stabilized by the phosphorylated scaffold protein
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Figure 2.11: Model of Hes7 autoinhibition. (Left) Network of the reaction system;(Right) Simu-

lation results of the oscillatoryHes7model.
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Figure 2.12: Wnt signaling module.Simplified illustration of the Wnt signaling model used within

the somitogenesis model.

Axin whose expression is under the control ofβ-catenin. When Wnt signaling is activated

by Wnt3a the destruction complex gets recruited to the plasma membrane by interaction with

the activated Wnt/Frizzled receptor and Dvl. Subsequently, Axin is dephosphorylated and

undergoes decay. This effect can be intensified by inhibition (phosphorylation) of the kinase

GSK3β through activated Akt.β-catenin that acts as a co-activator forAxin expression is

continuously synthesized. Without a Wnt3a signal its concentration is low, since it is contin-

uously phosphorylated by the destruction complex and thus targeted for degradation. When

the destruction complex is destabilized through a Wnt3a signal, theβ-catenin concentration

can increase and subsequently induce a delayedAxin expression that in turn results in the

reformation of the destruction complex. Eventually, this leads to a decrease of theβ-catenin

concentration and of theAxin expression until the Axin concentration reaches a criticallevel

and the cycle is restarted from the beginning. Unlikeβ-catenin and Axin, Dvl and GSK3β

have a low turnover-rate so thatβ-catenin and Axin are the key players of this process.

To prove the described concept of a self-oscillating molecular clock established by the
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components of the Wnt signaling pathway, I have developed a corresponding mathematical

model of this pathway with PyBioS. Fig. 2.13 shows a detailedgraphical representation of the

implemented model. Lee et al. (2003) developed a mathematical model of Wnt signaling in

great detail, but without focusing on a potential oscillatory behavior of the pathway induced

by a negative feedback as described above. For implementation that is presented here, I used

several of the kinetic parameters from the model developed by Lee et al. Missing parameter

values of the model were adapted to reproduce expected phenomenological findings.

Based on the developed model predictions for the description of Wnt signaling during

somitogenesis were generated. It is known that in the posterior part of the PSM the Wnt3a

concentration is high so that Wnt signaling can take place. Since Wnt3a is only produced

in the tail bud of the embryo and undergoes a permanent decay,the Wnt3a concentration

at a certain position within the PSM decreases continuously, while the embryo elongates at

the tail. Once the Wnt3a concentration goes below a certain threshold value Wnt signaling

arrests. Using the mathematical model, I have performed simulations for both system states,

the "on" state and the "off" state of Wnt signaling. This was done by setting the external

Wnt3a concentration to 1.0 nM and 0.0 nM, respectively. The obtained simulation results are

shown in Fig. 2.14.

When Wnt signaling is activated by an external Wnt3a stimulus ("on" state of the Wnt

signaling), a cyclic behavior of many components of the signaling pathway can be observed.

This oscillatory behavior is a result of the delayed negative feedback loop that is established

by theβ-catenin controlled gene expression of Axin. The parameterset that was used for

the simulation presented here generates an oscillation with a period of about 110 min. As

the Wnt3a concentration declines (as it is observed in the PSM) the oscillation arrests (see

Fig. 2.14 "Wnt signaling off"). For the "off" state, the concentration of the destruction com-

plex (APC-P/Axin-P/GSK3β) is, compared to the "on" state, relatively high and, as a conse-

quence of this, theβ-catenin concentration is close to zero.

2.2.3 Coupling Wnt, Notch, and FGF signaling

A system of coupled oscillators underlying the segmentation clock has been proposed by

Aulehla and Herrmann (2004); Dequéant et al. (2006) and Dequéant and Pourquié (2008).

In contrast to a single autonomous oscillator, a system of coupled oscillatory networks might

account for the robustness of the segmentation process.

Based on the models of Notch signaling and Wnt signaling an integrated model of both

pathways was established. Furthermore, the integrated model was extended by components

of FGF mediated signaling. Major components of the integrated FGF module are depicted in

Fig. 2.15. It includes two pathways, one is the activation ofAkt via the active FGF receptor
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Figure 2.13: Wnt signaling model as implemented within PyBioS.
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Figure 2.14: Simulation results of Wnt signaling. When Wnt signaling is on (Wnt3a is present)

oscillations can take place. Without an extrinsic Wnt3a signal theβ-catenin concentration is low and

the oscillation stops.
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Figure 2.15: FGF model.Diagram of the FGF signaling pathway elements.

and PI3-kinase. The other is the MAPK pathway via the FGF receptor (SOS, Grb2, and Frs2

are also include, but not shown in Fig. 2.15), Ras, Raf, Mek, and finally Erk.

Different cross talks between the Notch, Wnt, and FGF signaling are also implemented

in the integrated model. One cross talk is establish betweenactive Akt and GSK3β. In this

interaction GSK3β can become phosphorylated and by this inhibited. A second link is the

positive regulation ofDusp6expression by active Erk. However, Dusp6 is a phosphatase that

can dephosphorylate Erk. This negative feedback of Dusp6 onErk can also account for an

oscillator.

The integrate model consists of 118 components and 161 reactions.
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2.3 Modeling of Laboratory Methods - DNA Array

Experiments

Besides the analysis of biological systems, modeling and simulation strategies can also be

applied to biotechnological experimental techniques. Oneparticular technique of high in-

terest in molecular genetics is gene expression analysis using DNA array technology. An

introduction to DNA array technology is given in Section 1.4.1.

Summarizing, DNA array technology is based on the hybridization of labeled ssDNA to

its complementary strand called probe. Different probes are fixed as spots on planar surfaces,

like glass slides or nylon filters. The experimental data that was used for the presented model

originates from cDNA array experiments spotted on nylon filters, but the presented approach

can also be applied to arrays based on glass slides, since theproblems for the quantification

and statistical evaluation are very similar. Crucial for DNA experiments is the reliability of

the produced data and their reproducibility. To ensure bothreliability and reproducibility

a sophisticated experimental design is necessary. This includes the identification of error

parameters that affect the hybridization data during the data generation process. Influences

of systematic and statistical errors due to biotechnological methods (for example mRNA

preparation, PCR, hybridization) as well as due to devices and array media (for example

robots, filters, glass slides) and their effects on evaluation software and algorithms (image

analysis, statistical tests) must be estimated. I have developed a computer simulation that

takes into account several sources of error, such as variations of spot shapes, spot positions,

and local and global background noise. The simulation environment was used to judge the

influence of these parameters on subsequent data analysis, for instance image analysis and

the detection of differentially expressed genes. The presented model and simulation study

was published in BMC Bioinformatics (Wierling et al., 2002).

The hybridization signal intensities that were used as input data for the simulation study

is taken from experimental data. The data was derived as meanvalues from six cDNA nylon

filters each of which was spotted with the same set of 14208 zebrafish cDNA clones and

each was hybridized independently with the same complex target of an mRNA pool obtained

from zebrafish gastrula stage embryos. The output are seriesof filter images containing well-

defined error parameters. In each series only a single parameter was varied at once in order

to measure its effects on data analysis. The range of parameter variation was adapted to real

experiments that were used as experimental reference for the simulations.

After creating the simulated data, the effect of the error parameters on the subsequent

data analysis pipeline was measured. Two modules of this pipeline are highlighted: Image

analysis and statistical analysis of differentially expressed genes, although the simulation tool
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is not restricted to these applications. I chose image analysis because it is the first module

of the data analysis and builds the basis for all further research and statistical analysis of

differentially expressed genes because it is one of the mostutilized applications of gene

arrays.

The images were analyzed with three different image processing programs. Parameters

that are judged in this study are variations of the spot positions caused by different exper-

imental artifacts and different sources of background noise. For gene expression profiling

twelve filters with varying local background and experimentally determined signal varia-

tions were simulated, six of them correspond to hybridizations with atreatmentand six of

them correspond to hybridizations with a complexcontrol target. I analyzed how many ex-

perimental repetitions are necessary to detect a given level of differential expression. The

significance of the differential expression was judged by P values computed by the Welch

t-test (cf. Herwig et al., 2001).

2.3.1 Implementation of the Simulation Tool

The simulation tool is written in the object-oriented scripting language Python. Some com-

putation intensive functions are implemented in the programming language C and can be

used as modules in Python. Objects like filters, spots or hybridization-data are stored as

persistent objects by the use of Zope7. Fig. 2.16A illustrates the implemented simulation

pipeline. It takes a set of expression data as input (I used anexperimental signal distribution

of hybridization data, see section A.3.1) and their position on the array. During the simula-

tion pipeline several perturbations can be performed. Signal intensities can change due to the

up- or down-regulation of gene expression, independent perturbations that effect signal dif-

ferences of identically spotted duplicates can arise, or a systematic error happens during the

spotting process due to pin-dependent differences in the amount of transfered PCR-product.

Perturbations of systematic or non-systematic spot position errors and varying spot shapes are

also considered. These perturbations result in the input data (filter object, which references

its spot objects) used for the array image simulation. Depending on the type of array (filter or

glass slide) different levels of global or local backgroundnoise can be considered here. The

simulation parameters that are under investigation in thisstudy are listed in Tab. 2.1. The

output of one array simulation is a parameter file (that contains the values of the variation

parameters), a file with the input data for the array image simulation (that contains signal and

background intensities and the spot positions) and the image itself as a 16 bit Tiff-file.

7http://www.zope.org/

67

http://www.zope.org/


2 Results

A

signals/positions

up/down regulation of expression signals
(caused by the biological system)

signal perturbation (reason
for signal variations of identical
spotted duplicates)

pin dependent transfer factor
(effects signal intensities)

filter object
(input data to the
array image simulation)

input: spot−

local

spot objects

filter image

spot position variation

systematic error
(pin variation)

non systematic error

spot shape

background noise
global

B

11

1

10

4

5

12

2

6

12

2

3

9

9

9

9

3

24 1
A

P

field with 384 blocks

block with 25 spots

filter membrane with six fields

6

−1

7

10

1

5

4

8

7

8

11

Figure 2.16: Simulation pipeline and array layout. (A) Diagram of the filter simulation pipeline.

The parameters highlighted in blue are the parameters that were varied (cf. Tab. 2.1). (B) Layout of

a filter membrane with 57 600 spot positions. A5 × 5 spotting pattern is shown; spots with identical

position numbers (e.g. No. 9) indicate duplicates. -1 denotes a constant anchor spot which is identical

for each block.

2.3.2 Data Sets

The quality of an expression analysis strongly depends on the distribution of the signal in-

tensities and the spot positions on the filter (e.g., outshining effects). To deal with a realistic

situation, results of real experiments were used as input data for the construction of the arti-

ficial data and the statistical expression analysis.

2.3.2.1 Design of Artificial Sample Sets

In order to detect differentially expressed genes with an experimental setup, the cDNA clone

array is hybridized with two mRNA targets of different origin: one target commonly orig-

inates from a reference tissue (’control’), the second target originates from treated tissue,

where ’treated’ refers to a certain chemical treatment, a mutant or a disease (’treatment’).

In this simulation setup the signals for the control target hybridization were taken from

a signal-distribution derived from corresponding experimental data of 14 208 clones (see
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Table 2.1: Definition, modeling, and critical effects of simulation parameters.

Parameter Model Variation Critical effect(1)

Spot variation spot shift SD from ideal position SD> 0.15–0.2 mm̂= 16.7–22.2 %(2)

(Gaussian distribution)

Pin variation block shift SD from ideal position SD> 0.12–0.167 mm̂= 13.3–18.6 %(2,3)

(Gaussian distribution)

Spot shape a) two-dimensional a) no variation (fixed

Gaussian distribution SD= 0.1482 mm)

b) Crater spot distribution b) radius of crater b) radius> 0.1995 mm=̂ 22.2 %(2,4,5)

c) Plateau spot distribution c) no variation (fixed radius

of cylindric plateau

spot= 0.342 mm)

Global background additive signal from a fixed mean/SD derived from not critical(6)

Gaussian distribution experimental data

Local background additive signal from signal/background ratio mean signal/background ratio< 25

fractal clouds
(1) Pearson correlation< 0.95.
(2) Percent of spot radius relative to the mean spot distance.
(3) For VisualGrid and FA; AIDA did not become critical for the parameter range used for the simulations in

this study.
(4) Only analysed with FA.
(5) For radius≥ 0.228 mm the automatic gridfind failed.
(6) Not critical for global background noise that is comparableto our experimental reference data.

section A.3.1 for the experimental setup); the experimental images were analyzed with the

in-house developed image analysis FA (see section A.3.1) and medians and the coefficients of

variation (CV = standard deviation/mean) were calculated from the replicates of each clone.

These data were used as the experimental reference. Fig. 2.17 shows the distributions of

these medians and CVs. If reproducibility is perfect, the CVis 0, if it is poor the CV tends to

higher values. The CVs of the raw data are most frequently in the interval between 0.4 and

0.5 (Fig. 2.17B). These values are fairly high since a CV of 0.5 for example means that nearly

50 % of the measurement is caused by error. However, it shall rather be an upper bound for

initial data reproducibility. Only then error parameters can be identified more clearly. In

published studies, the CV is in the range of 10 %–25 % (e.g. Herwig et al., 2001; Salin et al.,

2002) since raw data undergoes intensive data normalization and calibration. The signals for

the treatment target hybridization were derived from the medians of the experimental refer-

ence signals by upregulating 5 000 clones (35.2 % of all clones) randomly. The coefficients

of these upregulations—the expression ratios—are uniformly distributed between 1 and 10.
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The signals of the other 9 208 clones remained unchanged. Both signal sets consist of values

for the 14 208 clones that were screened for differentially expressed genes. The input signal

intensity for the spots corresponding to the constantArabidopsis thalianacDNA clones of

the experimental reference was always the same. For the expression analysis, six images

of filter hybridization experiments were simulated for bothsignal sets, respectively. Signal

intensity variations as described in the following paragraph and local background noise vari-

ations (see below) were carried out for each filter. The spotting order was identical with the

experimental reference.

2.3.3 Simulation Model

2.3.3.1 Generation of Signal Intensities

Schuchhardt et al. (2000) have shown that a strong correlation exists for spot intensities

spotted by the same pin. Spots in the same block are spotted bythe same pin. Clones that

are spotted in different blocks are spotted by different pins. Thus the amount of material that

is transfered to the array varies from pin to pin, and this relative pin specific variation can be

described for the 384 pins of a gadget by the following pin distributionP (Y )

P (Y ) = N(1, σ2
1); σ1 = 0.43. (2.22)

HereN(1, σ2
1) denotes a Gaussian normal distribution with mean 1 and varianceσ2

1. The

standard deviation,σ1, was derived from experimental data: Clones with identical384-

well microtiter plate positions were spotted by the same pin. In the experimental reference,

A. thalianacDNA of identical amplicons was spotted in each block as a control. Based on

this information the mean CV over all pins was calculated andused asσ1.

On one filter the signal distributionP (Xij) of replicates is defined as follows

P (Xij) = N(yi · zj , (yi · zj · σ2)
2); σ2 = 0.2 (2.23)

with i ∈ N; i ∈ [1, w]

j ∈ N; j ∈ [1, m]
zj is the mean signal for clonej taken from the median signal

distribution of experimental data (cf. Fig. 2.17),yi denotes the pin dependent factor for pini

derived from the distribution,P (Y ). For the simulations presented here the number of pins

is w = 384 and the number of clones ism = 14 208. Using the duplicate correlation (0.8)

of the constant experimentalA. thalianaclone signals andσ1 one can calculateσ2 = 0.2,

because they are associated with each other (M. Steinfath, pers. comm., proof is not shown).

Thusσ2 is the CV for identical PCR-products that were spotted by thesame pin.
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Figure 2.17: Experimental reference for simulation data.Distribution of the hybridization signals

used as experimental reference. (A) Histogram of medians of 14 208 clones from 12 replicates each;

(B) Histogram of coefficients of variation.

71



2 Results

2.3.3.2 Filter Model

The simulated images are generated by an intensity function, which yields an intensity value

for each pixelk. The presented model is based on empirical assumptions. It is given by a

continuous function of the positionr on the filter,I(r), as follows:

I(r) =
∑

j

Ajf(|r − rj|) + g(r) + ǫ (2.24)

whereAj is the given spot intensity,g is a function that describes the local and global back-

ground,ǫ denotes a stochastic perturbation, and|r−rj | is the Euclidean distance to the center

of spotj. The nine spot centers closest tor are considered, due to the fact, that the pixelized

spot shape is given by a square19 × 19 pixel matrix and the usual distance between two

spot centers is 7.89 pixel for the image resolution used in this paper (0.114 mm/pixel). Here

f(|r− rj|) is a spot shape distribution which describes the spot shape (see below). The pixel

intensityĨ(k) is given by

Ĩ(k) =

[
I(rk) ∗ 2N

max
r
I(r)

]
(2.25)

with N = 16 for a 16 bit image.rk is the center of the pixelk. The square brackets denotes

the integer function, that returns the largest integer lessthan or equal to the value in brackets.

The spot intensitiesAj are taken from a real experiment (see above, intensity distribution

see Fig. 2.17). To determine the locationrj of the spots I assume that the probes are spotted

approximately in an orthogonal grid.

2.3.3.3 Local Distortions

Local distortions of the spots are considered. Due to the experimental procedure two different

spot distortions are introduced: spot shifting and pin shifting. Both of them are modeled by

randomly Gaussian distributed shifting of the spot-centers relative to their theoretical spot-

centers. For spot shifting the distortions are independentfor each spot; for pin shifting they

are equal for all spots of one block of5×5 spots, because they were spotted by the same pin.

2.3.3.4 Spot Shape

Due to the experimental procedure of the array preparation,the array surface type, and the

nature of the fixed DNA material, the spot shapes are different. Here I introduced three dis-

tribution models of spot shapes that are based on experimental evidence:
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(a) a normalized two-dimensional Gaussian distribution with a given SD (σ)

f(|r− rj |) =
1

2πσ2
e−

(r−rj )2

2σ2 , (2.26)

(b) a normalized two-dimensional Gaussian distribution with a given SD (σ1) of which

another concentric Gaussian-distribution (SD =σ2) with a scaling-factorS ∈ (0, 1) is sub-

tracted. The resulting spot resembles a crater like spot shape. The derivation of the equation

is shown in Appendix A.3.3.

f(|r− rj|) =

(
1

2πσ2
1

e
−

(r−rj )2

2σ2
1 − S

1

2πσ2
2

e
−

(r−rj )2

2σ2
2

)
× (1 − S)−1, (2.27)

(c) a normalized cylindric distributed shape with a given radiusd that forms a plateau-like

spot:

f(|r− rj|) =

{
1

πd2 , if |r − rj | ≤ d

0, if |r − rj | > d.
(2.28)

These spot models were used because they are commonly observable with spotted array

data on nylon and glass supports respectively and are frequently assumed as quantification

models by image analysis programs. More irregular spot shapes that do not have a common

spot distribution can also be observed (e.g., Jain et al., 2002), but are not considered here.

2.3.3.5 Background Noise

Two different sources of background noise can be distinguished: a global background due to

the scanner noise or filter surface, and a local background due to inhomogeneous hybridiza-

tion to the filter that looks like smear.

Global background noise. The global background is described by a randomly Gaussian

distributed noise that is equal for the whole filter. It can bevaried by its mean and SD.

Local background noise. As a model for the local background, fractal clouds as de-

scribed in Saupe (1988) are used. They are generated with themidpoint displacement method

with a fractal dimension of 0.4 and then scaled to a given minimum/maximum-range, which

defines the intensity level of this background. The model waschosen for local background,

because the intensity level of a given pixel depends on its neighbors. This results in images

that look quite the same as the background of experimental images. By the use of a pseudo

random number generator, reproducible fractals were created.
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2.3.4 Data Evaluation and Quality Measurement

2.3.4.1 Image Analysis

To illustrate the power of using simulated data for the judgment of image analysis software,

the following programs were used: (1.) FA, which is a fully automated image analysis

software—no manual effort for the positioning of the grid isnecessary, (2.) AIDA, which

needs some manual interaction for the positioning of the grid, and (3.) Visual Grid, for

which the whole grid has to be adapted manually (see also section A.3.2). These programs

have been chosen, because they are frequently used at our institute and have already been

utilized intensively for image analysis (FA: Steinfath et al., 2001; Visual Grid: Herwig et al.,

2001). Furthermore, they are representative for the different levels of automation of image

analyses.

2.3.4.2 Evaluation of Gridfind and Quantification Quality

The following two steps are essential for the analysis of hybridization images:gridfind and

quantification. First the gridfind has to locate the exact positions of the spots and then the

signal intensities are assigned to each spot by the quantification. For instance, the image

analysis FA does a Gaussian spot shape fit for quantification (Steinfath et al., 2001). The

performance of the different image analysis programs are tested by the following quality

parameters:

1. The mean distance between simulated and calculated spot centers. Here, the simulated

spot center refers to the exact position of the spot center that was used for the simu-

lation. The calculated spot center refers to the spot centerthat was determined by the

image analysis software.

2. The Pearson correlation between simulated and calculated intensities. The simulated

intensity refers to the intensity value used for the simulation and the calculated intensity

is the intensity value determined by the image analysis software.

The first parameter measures the quality of the gridfind. The second is a measure for the

quality of the whole image processing.

2.3.4.3 Statistical Evaluation of Differential Expressio n

For testing statistical significance of differential expression we calculated P values according

to the Welch test (Welch, 1947). This test is an unpaired t-test. It assumes that the two

samples ("treatment" and "control") are distributed according to Gaussian distributions with
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means,µtreatmentandµcontrol respectively, and judges the hypothesis whetherµtreatment= µcontrol.

Here, in contrast to Student’s t-test, it is not assumed thatboth sample distributions have the

same variance. The test statistic,T , has the form

T =
x − y√
S2

x

n
+

S2
y

m

. (2.29)

Here,x andy denote the sample means,S2
x andS2

y denote the sample variances andn and

m are the respective sizes of the treatment and the control sample. High and low values of

the test statistic then indicate significantly different sample means. This test has been applied

to differential expression analysis of array data in several studies, for example Herwig et al.

(2001) and Dudoit et al. (2002).

The quality of an expression profile analysis based on array data is highly dependent on

the number of repeated sample measurements, and of the arraypreparation, hybridization

and signal quantification procedure. The latter can be optimized either experimentally by

improving array preparation and hybridization, or computationally by employing better al-

gorithms for the image analysis software, such that can dealwith preparation errors. The

improvement of each method is limited. Major critical parameters are local distortions of the

spots, variations of the spot shape and outshining effects due to neighbor spots or massive

background noise. These parameters have been analyzed in this thesis (see Tab. 2.1).

In the following series of images are presented for which only one parameter was changed,

respectively.

2.3.5 Simulation of Local Distortions

For the following simulation it was assumed the spots to haveconstant Gaussian shape with-

out background noise. Thus only the effects of local distortions are tested. Fig. 2.18 and 2.19

show the influence of spot-shifts on the gridfind and quantification.

2.3.5.1 Spot Shifting

Spot shifting was simulated with SDs between 0 and0.342 mm from its ideal positions

(Fig. 2.18). The mean distance between adjacent spot centers was0.9 mm. This param-

eter became critical (correlation< 0.95) for SDs in the range of 0.15–0.2 mm concering

the quantification done with any of the three programs (Fig. 2.18B). The quantification is of

course influenced by the quality of the gridfind. This means that the critical range in terms

of spot shifting is about a fifth of the distance of adjacent spot centers.

In Fig. 2.18C only the quality of the gridfind is judged. The error given by the mean

distance between the calculated spot center determined by the image analysis software and
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Figure 2.18: Spot shifting. Every spot was shifted randomly relative to the ideal grid position

by a Gaussian distributed distance with a given standard deviation σ. (A) A simulated image,σ =

0.1824 mm. In (B) the pearson correlation between simulated and calculatedintensities is plotted

versus the standard deviation of the spot centers from theirideal grid nodes. In (C) the mean distance

between the calculated and the simulated spot centers is plotted versus the standard deviation of the

spot centers from their ideal grid nodes. The vertical linesin (B) and (C) correspond to the image

in (A). In (B) and (C) each point in the plot is determined by a single analysis of a simulated image,

respectively.
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its simulated center is relatively linear to its perturbation for any of the tested programs. The

low quality for AIDA for small perturbations is due to a missing sub-pixel precision. This

means, that if e.g., the simulated spot center is not identical with the center of a pixel. The

output-result from AIDA lacks this sub-pixel precision.

2.3.5.2 Pin Shifting

The error due to pin variations is a systematic error for all spots in the same block, be-

cause they were spotted by the same pin (Fig. 2.19A). Perturbations with SDs between 0 and

0.2 mm were simulated. This error became critical (correlation< 0.95) for SDs of the pin

shifting greater than 0.12 mm for Visual Grid and greater than 0.167 mm for FA. The error of

the gridfind was linear to its perturbation (Fig. 2.19C). Here again the low quality for AIDA

for small perturbations is due to the missing sub-pixel precision.

Fig. 2.20 shows the distribution of block center shifts measured for experimental data (the

block centers were manually determined with Visual Grid). For the results mentioned above

this means that the error due to pin shifting is never in the critical area for the majority of

blocks. Nonetheless, strongly depending on the used devices (e.g., spotting robots), this can

become a critical parameter.

2.3.6 Simulation of Different Spot Shapes

The spot shape that depends on several properties specific tospotting procedure like the

spotting method, the carrier surface or the probe viscosity, was modeled as a two-dimensional

Gaussian distributed shape, a crater-like shape (Fig. 2.21A–J) and a plateau shape (Fig. 2.21K).

A mean SD of0.1482 mm for a two-dimensional Gaussian distributed spot shape was han-

dled by all three image analyses (correlation always> 0.99). Crater-like spot shapes were

simulated with crater-radii ranging from0.0285 mm to 0.285 mm (in 0.0285 mm steps;

σ1 = 0.1482 mm). To judge the influence of this parameter, the images wereanalyzed

by FA: Up to a crater-radius of0.1995 mm FA analyzed them without any problems (cor-

relation always> 0.99). For crater-radii of0.228 mm and above (Fig. 2.21H–J) FA failed

due to problems during the gridfind. A third very idealized spot shape—a plateau-like spot

shape—was also simulated, to see if this can be handeled by FA. Therefore, a filter with

plateau spots with a radius of0.342 mm (not overlapping with neighbor-spots; half distance

between two neighbor-spots is0.44973 mm) was simulated and has been analyzed by FA

without any problems (correlation> 0.99).
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Figure 2.19: Pin shifting. Every block was shifted randomly relative to its ideal position by a

Gaussian distributed distance with a given standard deviation σ. (A) simulated image,σ = 0.114 mm,

(B) Pearson correlation of simulated and calculated intensities dependent on the standard deviation of

the block centers from their ideal positions (for AIDA and Visual Grid each data point is determined

by a single analysis of a simulated image and for FA three different images have been analyzed for

eachσ, the asterisk depicts the mean and the error bars show the minimum and maximum value of the

three repetitions), (C) mean distance between the calculated and simulated spot centers dependent on

the standard deviation of the block centers from their idealpositions (each data point is determined by

a single analysis of a simulated image). The vertical lines in (B) and (C) correspond to the simulated

image in (A).
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Figure 2.20: Experimental block center deviation.Histogram of the distance of experimental block

centers from their ideal block centers (computed from 12 experimental filter-images each containing

48 × 48 blocks with5 × 5 spots respectively). Block positions were manually taggedby the use of

Visual Grid and distances to the ideal grid—given by field corners—were calculated.
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Figure 2.21: Spot shape examples.(A–J) are examples of simulated crater spot shapes with rim

radii between 0.0285 mm and 0.285 mm in 0.0285 mm steps. (K ) is an example of a plateau spot

shape (radius = 0.342 mm).
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2.3.7 Simulation of Background Noise

In the following all images were assumed to have constant Gaussian spot-shapes and all

spot centers are located at the ideal grid nodes. Thus the gridfind has only to cope with the

background noise.

2.3.7.1 Global Background Noise

From the (non-spotted) border area of an experimental filterimage with a 16 bit depth, the

noise level was found to be about 16000 with a standard deviation of about 4000; the distri-

bution is similar to Gaussian (data not shown).

The simulated image shown in Fig. 2.22A has Gaussian background noise withµ = 16000

andσ = 4000. The detection of the grid was nearly perfect for all image analysis programs

for this image. The correlations between input and output intensities were always higher than

0.99. Hence a realistic global background noise as given by the experimental reference does

not influence the quantification of the programs.

2.3.7.2 Local background noise

As a model for the local background, fractal clouds as described in Saupe (1988) were used

(Fig. 2.22B).

Fig. 2.23 shows the effect of local background-noise on the image analysis. For mean

signal/background ratios above 25 this error did not becomecritical, as far as any of the

three programs are concerned. Below a ratio of 20, correlation decreases rapidly, espe-

cially for AIDA. Correlations for Visual Grid and FA decrease significantly for mean sig-

nal/background ratios below 13. At this point the signal/background ratio becomes critical

for all programs. Thus it was chosen for a further statistical test series (see below).

2.3.8 Simulation of the Influence of Background Noise on the

Expression Analysis

I investigated into the influence of local background noise on the quality of the expression

analysis with varying numbers of repetitions. The significance of differentially expressed

genes was judged by the use of the Welch test as described in Herwig et al. (2001).

A series of six images with variations in signal intensitiesdue to replicated spotting of

duplicates, and with a varying transfer quality for different pins as described in section 2.3.3.1

was simulated. Furthermore, different local backgrounds with intensities scaled in the same

way as given for the mean signal/background ratio of 13 as described in section 2.3.7.2 were
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A

B

Figure 2.22: Background noise examples.Examples for filter images with simulated global (A)

and local (B) background noise.
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Figure 2.23: Correlation for local background noise between simulated and calculated intensi-

ties. Pearson correlation between simulated and calculated intensities depending on the intensity-level

of the fractal background given by the mean of all signal/background ratios over all spots. Each data

point (asterisk) corresponds to the results of one image analysis. The used fractal background image

was always identical except for the signal/background ratio of 13. For this ratio, 7 different fractal

background images were simulated; correlation meanµ (diamond) and standard deviations (error bars

representing the intervalµ ± σ) were calculated.
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added. This was carried out for a control set with 14 208 different test clones and for a test

set. For the latter signal intensities of 5 000 clones were up-regulated with factors varying

between 1 and 10. Images were analyzed by three image processing programs, namely FA,

AIDA, and Visual Grid. The source signal sets used for the individual image simulations as

well as the analyzed data were used for the statistical significance test. The test was carried

out for two, four, and six images of the control and test series, respectively. This corresponds

to samples with four, eight, and twelve signals per clone andseries. Results are depicted

in Fig. 2.24. The rate of false positive clones is always low (false positive rate< 0.02).

For input data (Fig. 2.24A) with expression ratios below 1.45, merely 42 % of the regulated

clones (sample size 12) could be identified (P value< 0.01). For expression ratios above

1.45 and sample size 12, almost all regulated clones could beidentified. For ratios above 1.9,

a sample size of 8 was sufficient for significant identification of nearly all regulated clones.

For a sample size of 4 even with ratios between 9.55 and 10.0 only 93 % of the regulated

clones could be identified, while for sample size 8 and 12, 98.5 % were found. After image

analysis the number of identified regulated clones decreased significantly. With the image

analysis FA and sample size of 12, more than 90 % significant clones could be found for

expression ratios above 1.9 (Fig. 2.24B). AIDA (Fig. 2.24C)and Visual Grid (Fig. 2.24D)

needed a sample size of 12 and ratios above 3.7 to detect as many. Especially for expression

ratios between 1.45 and 1.9, with FA (sample size 12) 89 % of the regulated clones could

be identified, while AIDA identified only 67 % and Visual Grid 61 %. However, expression

ratios of smaller than 2 seem to be critical for this kind of expression analysis. For expression

ratios above 2 the differences between sample size 8 and 12 are relatively small as compared

to sample size 4.

Fig. 2.24E shows a comparison of the CVs for sample size 12 of the input data signals and

of the signals quantified by the three different image processing programs. The medians of

the CVs increase in the following order: input data (0.19), FA (0.21), AIDA (0.29), Visual

Grid (0.34). This result shows that data reproducibility increases with the level of automation

of the image analysis programs.

2.3.8.1 Summary of the Findings

Complex hybridization experiments are based on a data production pipeline that incorporates

a significant amount of error parameters. Here I presented a simulation environment to judge

the influence of different parameters, like spot shapes, spot positions, and local and global

background noise on the subsequent data analysis, such as image analysis and the detection

of differentially expressed genes. Image analysis can be classified by manual, semiauto-

mated, and automated procedures. While manual methods relyon a strong supervision by
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Figure 2.24: (on the previous page)Results of statistical tests for simulated fold-changes.True

positive rates of detected simulated fold-changes (P value< 0.01) as given by the Welch test. For

all test results, the false positive rate is below 0.02. (Histogram intervals have a width of0.45. The

absolute number of regulated clones per interval ranges between 217 and 289.) (A) Simulated signals

without image analysis (input for the image simulation); and after image analysis of the simulated

images with FA (B), AIDA (C), Visual Grid (D). For all expression ratio intervals results for 12 (red),

8 (green) and 4 (blue) repetitions are given. (E) Histogram of the distribution of the CVs for sample

size 12; The medians of the CVs are the following: input data:0.19, FA: 0.21, AIDA: 0.29, Visual

Grid: 0.34.

the user and requires some initial guess, e.g., on the spot positions, semiautomated methods

require much less interaction, but still need prior information (e.g., definition of the spotted

area). Automated methods try to find the spot grid without user interaction. The simulation

studies have shown that the data reproducibility increaseswith the grade of automation of

the software. However for noisy hybridization images that show very irregular structures,

manual methods might be the best choice. My results show thatthe simulation tool is a

valuable resource for the identification and the rating of error sources arising from hybridiza-

tion experiments. The simulated sets can be used as benchmark tests for new data analysis

modules such as image analyses coming up in the course of geneexpression data analysis or

comparable array based methods.
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Modeling and simulation techniques are valuable tools for the understanding of complex

systems. In the course of my thesis I have applied modeling strategies to biotechnological

laboratory methods and biological systems. During the lastyears, high throughput technolo-

gies are more and more frequently used in biological research. In particular, array-based

gene expression analysis became an important key technology for genome and transcriptome

analysis. Such array-based analysis make use of complex production pipelines that incorpo-

rate a significant amount of error parameters. In the previous chapter (Section 2.3) I describe

an implemented model for the simulation of DNA-array experiments that was used to judge

the influence of critical parameters on subsequent image analysis and differential expression

analysis. Parts of the model have already been used for additional research by other scientists.

This is discussed in Section 3.3.

Application of modeling approaches to biological systems became very popular in recent

years in the course of systems biology. Since this is a very young research area, there is

still a demand for appropriate computational tools. As biological systems are composed

of complex interaction networks consisting of thousands ofindividual molecules each with

different functions, the demand for integrative systems biology platforms that can cope with

such large and complex interaction networks is high. One goal of my thesis was to identify

and implement appropriate methods for the development and simulation of cellular reaction

networks. Therefore, I have developed the modeling and simulation software application

PyBioS that is available through the Web. In Section 3.1 I discuss the functionalities of

PyBioS further improvements.

Moreover, PyBioS was used for the modeling of signal transduction pathways and subse-

quent gene-regulatory target genes related to somitogenesis. Since biological reaction net-

works are highly interwoven and established mechanism often are reused the developed mod-

els of Notch, Wnt, and FGF signaling including their regulation of gene targets is also of high

interest to areas of research. For instance Notch, Wnt, and receptor tyrosine kinase signaling

pathways are also very important for many aspects of cellular processes and not at least their

relevance for the onset of diseases, such as cancer (e.g. Hanahan and Weinberg, 2000).
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3.1 PyBioS - a Modeling and Simulation Platform for

Cellular Reaction Networks

Compared to other systems biology software applications, PyBioS has some unique features

that are particularly useful for the automated or semi-automated model development or the

visualization of reaction networks along with simulated time course data. These features

makes PyBioS also applicable the work with large reaction networks.

Another feature that distinguishes PyBioS also from many other system biology applica-

tion is its Web-based user interface. Lee et al. (2008) compared five different Web-based

simulation tools including PyBioS. Advantages of Web-based simulation platforms are, for

example, that they operate through a Web browser and are, therefore, easily accessible on

different platforms. Moreover, it is not necessary to install a local copy of the software as

well as subsequent upgrades or bug fixes. However, Web-basedapplications do suffer from

a significant disadvantage in speed.

Another major demand from a modeling tool for the development and representation of

models of biological systems is the support for the visualization of the reaction network.

Graphical representations of reaction networks prove as very helpful tools for the work in

systems biology. The graphical representation of a reaction system is not only helpful during

the design of a new model and as a representation of the model topology, it is also helpful for

the analysis and interpretation for instance of simulationresults. Traditionally, diagrams of

interacting enzymes and compounds have been written in an informal manner of simple un-

constrained shapes and arrows. Several diagrammatic notations have been proposed for the

graphical representation (e.g., Kohn, 1999; Pirson et al.,2000; Kitano, 2003; Kitano et al.,

2005; Moodie et al., 2006) As a consequence of the different proposals the Systems Biology

Graphical Notation (SBGN) has been set up recently. It provides a common graphical no-

tation for the representation of biochemical and cellular reaction networks. SBGN defines a

comprehensive set of symbols, with precise semantics, together with detailed syntactic rules

defining their usage. Furthermore, SBGN defines how such graphical information is repre-

sented in a machine-readable form, to ensure its proper storage, exchange, and reproduction

of the graphical representation.

SBGN defines three different diagram types: (1) State Transition diagrams that are depict-

ing all molecular interactions taking place, (2) Activity Flow diagrams that are representing

only the flux of information going from one entity to another,and (3) Entity Relationship

diagrams that are representing the relationships between different molecular species. In a

State Transition diagram, each node represents a given state of a species, and therefore a

given species may appear multiple times. State Transition diagrams are suitable for follow-
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ing the temporal process of interactions. A drawback of State Transition diagrams, however,

is that the representation of each individual state of a species results quickly in very large

diagram and due to this it becomes difficult to understand what interactions actually exist for

the species in question. In such a case an Entity Relation diagram is more suitable. In an

Entity Relation diagram a biological entity appears only once.

SBGN defines several kinds of symbols, whereas two types of symbols are distinguished:

nodes and arcs. There are different kinds of nodes defined. Reacting state or entity nodes rep-

resent, e.g., macromolecules, such as protein, RNA, DNA, polysaccharide, or simple chem-

icals, such as a radical, an ion or a small molecule. Container nodes are defined for the

representation of a complex, compartment or module. Different transition nodes are defined

for the representation of transitions like biochemical reactions, associations, like protein-

complex formation, or dissociations, like the dissociation of a protein complex. The influence

of a node onto another is visualized by different types of arcs representing, e.g., consumption,

production, modulation, stimulation, catalysis, inhibition or trigger effect. Not all node and

arc symbols are defined for each of the three diagram types. A detailed description of the dif-

ferent nodes, arcs and the syntax of their usage by the different diagram types is given in the

specification of SBGN (see http://sbgn.org/). The SBGN notation defines a more complex

representation than it is provided by PyBioS at the moment.

Besides graphical aspects, also modeling approach is of relevance. Different theoretical

attempts have been made to describe biological systems. Deterministic approaches are based

on the exact computation of changes during time. One approach that is often used, e.g.,

for the description of gene regulatory networks, are Boolean networks (Kauffman, 1993;

Akutsu et al., 1999; de Jong, 2002). Boolean networks take into account only two states

for a variable, true and false or 1 and 0. A Boolean nework is defined by a given number

of binary variables and a set of Boolean rules—logical expressions that define the state of

a given output variable based on a set of given input variables. An example of a Boolean

network is shown in Fig. 3.1.

An extension of Boolean models are discrete models. In contrast to the two different states

that are possible for Boolean models, variables of a discrete model can take a limited number

of predefined discrete values.

Deterministic modeling using ordinary differential equations (ODEs) as used by PyBioS

has been applied very successfully to different problem in biology. Nevertheless, modeling

by differential equations ignores the stochastic nature ofbiology. In biochemical networks

an integer number of molecules react when they collide afterrandom times, driven by Brow-

nian motion. One assumption for the application of ODEs is that the number of interacting

molecules is very large and stochastic effects average out.For instance, this assumption ap-

plies in most cases to metabolic networks, but for the description of gene expression events
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Figure 3.1: Illustration of a Boolean network (A) and its wiring diagram (B). Applying the Boolean

rules (C) to a given input state determines a certain output state (adapted from Akutsu et al., 1999).

this might be inappropriate (Elowitz et al., 2002; Raser andO’Shea, 2004; Tang, 2008).

Stochastic kinetics of well-mixed chemical systems can be simulated using the exact meth-

ods of Gillespie (Gillespie, 1977). However, using stochastic simulations applied to large

models do not scale very well. A workaround are hybrid solutions, algorithms making use

of both deterministic and stochastic simulation where appropriate. The development of such

approaches is still subject of current research (Kiehl et al., 2004; Griffith et al., 2006; Wilkin-

son, 2006).

3.1.1 Prediction in the Face of Uncertainty

Predicting effects of perturbations of complex biologicalsystems is key to being able to

solve many important problems, in particular in the case of human diseases. It is highly

likely, that such predictions will have to be based on computer models that represent all

relevant components of the networks involved as well as their interactions in sufficient detail

and accuracy. Establishment of such models is however complicated by the fact, that relevant

parameters are either completely unknown, or can at best be measured under highly artificial

conditions.

Structure and behavior of any cell and any organism are determined by converting infor-

mation in the genome and the environment into the phenotype through a series of molecular

processes. Dysfunctions in the molecular interaction networks carrying out this process can

cause severe diseases such as cancer. Curing the disease, orat least ameliorating the symp-

toms, often involves by itself complex disturbances in these networks, with success depend-

ing, among other factors, on the genotype of the patient. It is therefore not too surprising,

that in many cases only a sometimes small fraction of patients responds to specific treatments,

while many might suffer often quite severe side effects. Progress in the treatment of diseases
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in individual patients will therefore depend critically onbeing able to predict the effects of

such treatments, regarding the genomic predisposition of the patient.

The capability to predict has been a main goal of science fromthe beginning. In contrast

to the situation in many areas in physics, where it has been possible to make highly accu-

rate predictions based on a small number of assumptions, accurate predictions of biological

processes depend on the behavior of complex networks of molecular, cellular, and even or-

ganismal interactions, which have been shaped by events hundreds of millions of years ago.

It is therefore quite likely that predictions in biology will have to be based to a large extent, on

the detailed knowledge of the components of the networks involved, as well as their interac-

tions. While inherently difficult to achieve, any progress in our ability to predict the behavior

of these biological networks can have enormous practical consequences. Improved predic-

tions on the response of individual patients could, for example, decide between life and death

of the individuals involved, while improved predictions onthe effect of drugs could very well

help to revolutionize drug development, and therefore haveenormous economic value.

To allow such predictions, two basic strategies have been considered: the identification of

statistical correlations in the therapy response of specific biomarkers(e.g. transcripts, pro-

teins, metabolites, patterns of genomic methylation, etc.), and the modeling of the disease

and therapy, to represent accurately the biological processes in the individual patient. While

statistical procedures have been quite successful in, e.g., predicting treatment responses, they

are, however, inherently a relatively blunt instrument, only able to detect very strong corre-

lations, which hold up across large groups, irrespective ofthe multiple differences between

the individuals, which make up these groups. Predictive models, in contrast, can take into

account the individual situation in every patient, and could therefore, in many cases, provide

more reliable predictions.

The establishment of such predictive models is however complicated by the lack of in-

formation on many of the reaction kinetics needed. Information on the kinetics and kinetic

parameters is either not available at all, or, at best, is based on experiments often carried

out under conditions quite different from those in the living cell. Concentrations of many

reactants are usually unknown, or it is simply not feasible to determine them for every indi-

vidual patient. Thus, computational modeling approaches must primarily face the challenge

of coping with this lack of information.

One approach to overcome this limitation could be a rigorousanalysis of the model’s

parameter space, e.g., by sampling unknown kinetic parameters from appropriate random

distributions and a subsequent statistical significance testing. Of course, such a kind of Monte

Carlo-based approach requires to run thousands of simulations. This can only be performed

in parallel using distributed computing like grid computing. PyBioS is already designed for

such applications. Models can be developed within PyBioS and exported as model-specific
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software applications that no longer depend on the PyBioS system itself. This makes it

possible to distribute the simulation tasks on a computer cluster. Using such a kind ofin

silico approach, one can perform experiments that might allow predictions about the effects

of specific perturbations that introduced into the model.

3.1.2 Applications

The PyBioS modeling and simulation system comes already to application in several national

and international research projects. A major part of the tool has been developed during

the EMI-CD project supported by the European Union in its framework program 6 (FP6).

Table 3.1 gives an overview of different projects PyBioS is involved in.

Table 3.1: PyBioS is developed and used in several projects supported by the European Union (EU)

and the German Federal Ministry of Education and Research.

Project Description

Projects supported by the European Union

EMI-CD European modelling initiative combating complex diseases

ESBIC-D European Systems Biology Initiative combating

complex diseases

EMBRACE A European Model for Bioinformatics Research and

Community Education

CARCINOGENOMICS Development ofin vitro test methods

for identification of carciongenic substances

APO-SYS Apoptosis Systems Biology Applied to Cancer and AIDS

Projects supported by the BMBF

METASTEM NMR Metabolic Profiling of the Stem Cell Niche

Mutanom Functional characterization of mutations causingcancer

MoGLI Systems scale analysis and modeling of Hedgehog/GLI
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3.2 Modeling Biological Systems

In the past, investigations into cellular and molecular processes were done by the analysis of

particular pathways, e.g., metabolic or signal transduction pathways, and the isolation and

characterization of components involved in these processes. The results of these functional

characterizations and analyses of many single genes are well documented in the literature,

and sometimes also systematically summarized in databases.

Besides this, biological systems have features that arise from their complex interaction

structure. In such systems, changes of a single component might influence several others and

due to this they show a significantly different dynamic behavior. For instance, the variation

of a single transcription factor might influence the expression of several of its target genes,

and this results in alterations of processes these targets are involved in. Another example is

given by cross-talks between different signal transduction pathways. As a consequence, in-

terwoven networks occur that make the system much more complicated and less predictable.

Thus, functions in biological systems rely on a combinationof the network and the specific

elements involved, and, in this way, biological systems might be better characterized as sym-

biotic systems (Kitano, 2002). To investigate their properties, it is necessary to consider and

analyze the components in a broad context using a systems approach. For this purpose new

experimental methods were developed offering tools for theanalysis of different categories

of the biological system. Frequently the names of the new approaches carry the suffixomics

as is the case with genomics, proteomics, metabolomics, transcriptomics, or interactomics.

In the following some of the methods utilized by the disciplines mentioned above are listed.

Often they display the same methodical approach by making use of high-throughput tech-

nologies.

The prototype model of coupled Wnt, Notch, and FGF signaling, which I have imple-

mented in the course of my thesis is not only useful for the description of somitogenesis

and other developmental processes, but it can also be used for the study of disease or aging

processes.

3.3 Modeling of Laboratory Methods - DNA Array

Experiments

In Section 2.3 I have presented a simulation for complex hybridization experiments. This

was used to judge critical experimental parameters in the light of the following data analysis.

I studied critical parameter of the image analysis by the useof three different image analysis

programs representing different levels of automation of the gridfinding and signal quantifi-
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cation. I showed that local distortions of the spot centers like non systematic spot shifting as

well as systematic errors resulting in block shifting due topin errors did not become critical

for the reference experiments with the image analysis programs. Also global background

noise did not become critical for the experiments studied here. Local background noise

might become critical for filter experiments in some cases. Here I showed by the use of frac-

tal clouds as background—which looks very similar to the smear in real experiments—that

a mean signal/background ratio below 13 might become critical for some image analysis.

However, for the automation of complex hybridizations it might be very helpful to check

these parameters during the following data analysis pipeline. This can help to identifiy bad

experiments more efficiently. Furthermore it might help to detect sources of error during

the experimental procedure or improvements that were made.Although it is possible to get

a higher quality of the results by an improvement of the experimental procedure and data

analysis algorithms, it is always limited (not at least by the available resources). Furthermore

variations of biological material can be expected. To cope with this limitations repetitions of

the experiments are indispensable. Not at least due to the fact that array experiments are still

very expensive one wants to know how many repetitions are necessary to ensure a certain

quality for your expression analysis. For this purpose I didstatistical analysis with 4, 8 and

12 repetitions using a Gaussian distributed noise of the input data withσ2 = 0.2. Here the

image analyses had to cope with changing local backgrounds with the same intensity level.

The results of the statistical analysis indicate that for the different image analyses expression

ratios below 2 become critical. The relatively poor performance for Visual Grid indicated by

the distribution of the CVs is probably due to the fact that this program does no local align-

ment of the spot position. Since here ideal spot positions were simulated this can explain the

relatively good correlation found in Fig. 2.23 for this program. But due to the manual posi-

tioning of the global grid this might become a significant source of error. AIDA and FA do

local alignments for the spot positions whereby this sourceof noise due to manual interaction

does not occur.

Automated expression analysis by chip technology will become more and more important

in the future, e.g., in biology for comprehensive studies ofany kind of developmental pro-

cesses or in medicine for the study of genetically reasoned diseases. Therefore it is essential

to have a well characterized chip technology and subsequentdata analysis. This can be sup-

ported significantly by well defined models and a whole process simulation. By using well

characterized radioactively labeled filter cDNA-arrays, Ishowed that the simulation of this

biotechnological method reveals for several parameters the level when they become critical

for the follow up data analysis and how this can be improved. Furthermore, the simulation

environment can also be easily used for the study of cDNA arrays based on glass slides,

where, e.g., background noise seems to be less critical, butdistortions of spot positions and
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less well characterized spot shapes are more critical.

Since the simulation approach of DNA array hybridization experiments that is presented

in my thesis was already published 2002 in BMC Bioinformatics (Wierling et al., 2002), its

results had already impact on further research of other scientist. The models of macroarray

spot shapes developed and described in this thesis (published in 2002, Wierling et al.) have

been adopted by Ekstrøm et al. (2004) to fit the characteristics of microarray spot shapes

more precisely.
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APC adenomatous polyposis coli; a scaffold protein

bHLH basic helix-loop-helix; specific DNA-binding motif

CSL CBF1/Su(H)/LAG1 (CSL) family of transcription factors

CV coefficient of variation; CV = standard deviation / mean

DAE differential algebraic equation

DAG diacylglycerol

DSH dishevelled protein in mouse

DVL dishevelled protein in human

EGF epidermal growth factor

FZ frizzled; seven transmembrane receptor

GAP GTPase activating protein; GAPs stimulate the GTPase activity of activated G

proteins

GEF guanine nucleotide exchange factor; GEFs activate G proteins by promoting the

exchange of GDP by GTP

GSK3β glycogen synthase kinase-3β

HTTP hypertext transfer protocol

IP3 inositol-1,4,5-trisphosphate

Lef1 lymphoid enhanced-binding factor 1

LPR5/6 low density lipoprotein (LDL) receptor-related proteins 5and 6; single-pass

transmembrane protein

NICD Notch intracellular domain
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ODE ordinary differential equation

PCR polymerase chain reaction

pers. comm. personal communication

PH pleckstrin homology domain; some PH domains of intracellular signaling molecules

can bind to PI(3,4,5)P3 produced by PI3-kinase

PI3-kinase phosphatidylinositol 3-kinase

PI(4,5)P2 phosphatidylinositol 4,5-bisphosphate

PI(3,4,5)P3 phosphatidylinositol 3,4,5-trisphosphate

PP2A protein phosphatase 2A

PSM Presomitic mesoderm

PTB phosphotyrosine binding domain

SD standard deviation

SH2 Src homology 2 domain; protein domain that can bind to phosphorylated tyro-

sine residues

SH3 Src homology 3 domain; protein domain that can bind to proline-rich motifs in

intracellular proteins

Sos son of sevenless

Tcf transcription factor 1
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A Appendix

A.1 Concepts, Tools, and Methods used for the setup

of the computational simulation platforms

This section gives some background information on the concepts, tools, and methods that

used for the implementation of the computational modeling and simulation platforms.

A.1.1 Object-oriented programming

The paradigm of object-oriented programming (OOP) is the representation of complex fea-

tures by computationalobjectsthat provide the significant data and functionalities of their

counterpart in real world, where objectattributesrefer to data and objectmethodsrefer to

functionalities of the real object. Objects with identicalattributes and methods, but differing

in attribute values are subsumed intoclasses. Thus, classes describe attributes and meth-

ods of a group of objects. An object that belongs to a certain class and refers to a specific

entity of the real world is also called aninstance. Thus, the terms object and instance are

synonymes. Objects can also refer other objects via their attributes; such relations are called

linksor associations. Object classes that summarize attributes and methods thatare common

among other classes, but which do not directly refer to instances of the real world, are called

abstract classes. A class can also inherit attributes and methods from another class, and the

derived class can define further attributes and methods. This is calledinheritance.

For instance, let us assume we have a classcell that has the methods ’grow’ and ’divide’,

and the attribute ’volume’. Each time, when external nutrients are available, ’grow’ is called

and changes the value of ’volume’ of the respective cell instance, until a critical volume

is reached. When this happens, ’divide’ is called and the cell instance is replaced by two

daughter-cell instances, with reduced cell-volumes.

Classes, their attributes, methods, and links, as well as their inheritance structure can be

represented by diagrams using the notation defined by the unified modeling language (UML).
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A.1.2 Python

Python1 is an interpreted programming language running on different operating systems.

Python permits for several coding styles, like structured or procedural programming, func-

tional programming, or object-oriented programming. An important feature of Python is that

it is easily extensible by other compiled programming languages like C, C++ or Fortran.

Latter became more and more unpopular because of its syntax,but several Fortran libraries

especially for mathematical routines are still in use.

A.1.3 Zope Web Application Server

Zope2 stands for "Z Object Publishing Environment", and it is a webapplication server pri-

marily written in the Python programming language. It comprises a Web server, that enables

the interaction with the user, and an object-oriented database, that is used by PyBioS to store

the models and make their objects persistent. Therefore, noexplicite file-format (or table

structure for a relational database) is required, since theclass definitions and object relations

already define the required structure. Zope also maps objectmethods to incoming HTTP

requests and thus it provides dynamic HTML representationsof the individual objects.

A.1.4 Numerical Solvers for ODEs and DAEs

The PyBioS modeling and simulation platform that is developed in this thesis and is intro-

duced in section 2.1 can automatically generate a mathematical model, described by an ODE

system, from a given topology of a biological model and a set of according kinetic laws.

Since these ODE systems often possess non-linear kinetics,in nearly all cases they cannot

be solved analytically, but often numerically. PyBioS supports deterministic simulations by

numerical integration of first order ODE-systems. It offersthe use of the solvers LIMEX

and LSODA to get the numerical solution of the initial value problem. LSODA (Hindmarsh,

1983; Petzold, 1983) is a solver for ordinary differential equations written in Fortran and

it is a variant of the LSODE package. The algorithm used in this solver switches between

stiff and non-stiff methods automatically. PyBioS uses theinterface to LSODA which is

available from SciPy3. The solver LIMEX4 (Deuflhard et al., 1987; Deuflhard and Nowak,

1987) is an extrapolation integrator for the solution of linearly-implicit differential-algebraic

systems (DAEs) written in Fortran. It combines an implicit one step method with stepsize

extrapolation to permit an adaptive control of stepsize andorder.

1http://www.python.org/
2http://www.zope.org/
3http://www.scipy.org
4ftp://elib.zib.de/pub/elib/codelib/LIMEX4.2A1
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A.1.5 Computation of Conservation Relations

For a biochemical reaction the reaction equation describeswhich molecules are consumed or

produced in the reaction and with which molecularities theyparticipate. For a system of re-

actions this can be described by the stoichiometric matrix.It is a matrix of the stoichiometric

coefficients in which each line corresponds to a component and each row corresponds to a

reaction, e.g., for the following system of reactions

ATP ADP

S1 S2

S3S4

R1

R2 (A.1)

the stoichiometric matrixN reads

N =





R1 R2

S1 −1 0

S2 1 0

S3 0 −1

S4 0 1

ATP −1 1

ADP 1 −1





. (A.2)

Using this notation the system equations (cf. equation 1.9 on page 19) can also be written as

dS

dt
= Nv(S, p), (A.3)

whereS = (S1, S2, . . . , Sn)T is a vector of the concentrations of the substances,v =

(v1, v2, . . . , vr)
T a vector of reaction rates, andp = (p1, p2, . . . , pm)T a vector of the pa-

rameters.

The model in reaction A.1 shows an interesting property of reaction networks that fre-

quently occurs. ATP and ADP are always converted into each other without changing its

total amount. Such cycles, called moiety-conserved cycles, arise when groups of atoms,

termed moieties, migrate through the network without beingsynthesized or degraded (Klipp

et al., 2005).

The conservation relations described by the moiety-conserved cycles reveal as linear de-

pendencies of the rows of the stoichiometric matrix.

The mathematical derivation of conservation relations—asit is implemented in PyBioS—

is done as described by Klipp et al. (2005, pp. 165): A matrixG is considered that fulfills

GN = 0. (A.4)
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Due to Equation (A.3) it follows that

GṠ = GNv = 0. (A.5)

Integrating this equation leads to the conservation realations

GS = const. (A.6)

The conservation matrixG can be calculated from

NTGT = 0 (A.7)

using the block diagonalization algorithm described by (Schuster and Schuster, 1991).

Conservation relations can be used to simplify the system ofdifferential equationsṠ =

Nv that describe the dynamics of the reaction system. This can be done by eliminating linear

dependent differential equations and replacing them by appropriate algebraic equations.

The procedure looks as follows (Reder, 1988): Rows of the stoichiometric matrixN and

of the concentration vectorS have to be reordered in such a way that a set of independent

rows is on the top and the dependent rows are at the bottom. Then the matrixN is split into

the independent partN 0 and the dependent partN ′, and a link matrix is introduced in the

following way

N =

(
N 0

N ′

)
= LN 0 =

(
Irank(N)

L′

)
N 0. (A.8)

Irank(N) is the identity matrix of size rank(N). The differential equation system may be

rewritten accordingly

Ṡ =

(
Ṡ indep

Ṡdep

)
=

(
Irank(N)

L′

)
N 0v, (A.9)

and the dependent concentrations fulfill

Ṡdep = L′ · Ṡindep + const. (A.10)

This relation is fulfilled during the entire time course. Thus we may replace the original

system by a reduced differential equation system

Ṡindep = N 0v (A.11)

supplemented with the set of algebraic equations (Eq. (A.10)).
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A.2 Modeling of Somitogenesis

A.2.1 Kintics Used Within the Somitogenesis Model

Complex Dissociation Complex dissociation is described by a kinetic law of a re-

versible reaction.

AB A + B (A.12)

The corresponding rate law is

v = koff [AB] − koff/kD[A][B], (A.13)

wherekD = koff/kon is the dissociation constant, andkon andkoff are the association and

dissociation rate constants, respectively.

Complex Association Complex association is described by a kinetic law of a reversible

reaction.

A + B AB (A.14)

The corresponding rate law is

v = kon[A][B] − kon · kD[AB], (A.15)

wherekD = koff/kon is the dissociation constant, andkon andkoff are the association and

dissociation rate constants, respectively.

Degradation Reactions Degradation of proteins, mRNAs or complexes are described

either by a first-order reaction or by a Michaelis-Menten reaction.

A (A.16)

The corresponding rate law of a first-order reaction is

v = k[A], (A.17)

wherek is the first order rate constant or

v =
Vmax [S]

[S] + Km

, (A.18)

whereVmax is the maximal rate of the reaction andKm is the substrate concentration for

which the reaction rate is half maximal.
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Synthesis Reactions Synthesis reactions of proteins are either described by a zero-order

reaction, a first-order reaction

For a zero-order reaction the reaction rate is

v = k, (A.19)

wherek is the reaction rate coefficient.

Gene expression processes are described as follows.

Single activator:

vi = V · [A]n

[A]n + Kn
a

+ b (A.20)

One activator and one inhibitor:

vi = Vi ·
∏

j

(
K

nj

ij

I
nj

j + K
nj

ij

)
×
∏

k

(
Ank

k

Ank

k + Knk
ak

)
+ b (A.21)

Two activators and one inhibitor:

vi = V ·
∏

j

(
K

nj

ij

I
nj

j + K
nj

ij

)
×
∏

k

(
Ank

k

Ank

k + Knk
ak

)(
Ank

k

Ank

k + Knk
ak

)
(A.22)

A.3 Modeling of DNA Arrays

A.3.1 cDNA Array Data Used for Modeling

In section 2.3 I present a study concerning the evaluation ofcritical parameters occuring

in DNA array hybridization experiments. I simulated hybridized filter images according to

different sources of error and used them for subsequent analysis. In DNA array experiments

errors might arose from variations of the spot positions caused by different experimental

artifacts or by different sources of background noise. To use a realistic distribution of signals

as input data for the simulations, intensity values and their respective grid positions were

taken from experiments with macroarrays. The origin of the experimental data is described

in the following.

A detailed description of the cDNA clone array design, mRNA labeling, hybridization and

data capture is given in Herwig et al. (2001). PCR products of14 208 zebrafish cDNA clones

of a representative library from gastrula stage embryos (Clark et al., 2001) and 2 304 copies

of anArabidopsis thalianacDNA clone were spotted on nylon filter membranes. Clones were

spotted in a rectangular grid of blocks with 25 spots (5 × 5) per block by the use of a gadget

with 16 × 24 pins corresponding to a 384-well microtiter plate. Figure 2.16B on page 68

illustrates the filter design. Due to the experimental procedure a filter is divided into six
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fields of 384 blocks each. For the5 × 5 spotting pattern each block comprises 25 spots. The

zebrafish target derived from mRNA of gastrula stage embryos(6 hours post fertilization)

was hybridized to six filter replicates which were spotted with the same set of clones. To

improve reproducibility, each clone was spotted in duplicate per block. The spot intensities

of the hybridized filters were analyzed as described in Herwig et al. (2001). For each spotted

cDNA clone mean signal intensities were calculated from thesix filter replicates and used as

input data for the simulations in section 2.3.

A.3.2 Data acquisition in DNA array experiments

Image analysis is the first bioinformatics module in the dataanalysis pipeline of DNA array

experiments. In this step each probe spot of the scanned DNA array image is assigned a

numerical value that represents the signal intensity. Essential for this is the correct identi-

fication of each spot center and a correct quantitation of thepixel neighborhood around the

identified center of each spot. Since the signal intensitiesdetermined during image analysis

are the input data to any further pre-processing steps and fold-change analysis or clustering

analysis, the quality of image analysis is essential for anyresults that can be gaind by sub-

sequent procedures. In section 2.3 simulated images that represent different experimental

errors are used to study how the degree of automation of the image analysis affects the qual-

ity of image analysis. Image analysis methods can be groupedinto three classes: manual,

semiautomated, and automated methods. Manual methods strongly rely on supervision of

the user by requiring an inital guess on the spot positions, e.g., the user has to adjust an ideal

grid manually on the screen. Semiautomated methods requireless interaction, but still need

some prior information, e.g., the definition of the spotted area. Automated methods try to

find the spot grid without any user interaction. For the mentioned study, three programs were

chosen to represent each of the three classes:

Visual Grid This program is a commercial product of the company GPC Biotech AG5.

The program provides the functionality to individually define the grid, sub-grid, and each

spot position by the user. Since the whole grid has to be adapted manually, its degree of

automation can be classified as ’manual’.

Aida This program is a commercial product of the company Raytest6. It requires only a

limited interaction by the user for the grid positioning; a fine-tuning of the spot positions is

performed automatically. Thus, it can be classified as ’semiautomated’.

5http://www.gpc-ag.com
6http://www.raytest.de
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Filter-Analysis tool FA The third program is the filter analysis tool FA, developed by

Steinfath et al. (2001) at the Max Planck Institute for Molecular Genetics. It uses an algorithm

for the grid detection that requires no interaction by the user. The program automatically

identifies the global borders of the rectangular grid. In a step-down procedure it detects sub-

grids, and finally performs also a fine-tuning for each spot position. Thus, it can be classified

as ’automated’.

A.3.3 Mathematical Description of a Crater Spot

A crater spot can be described by the following function:

f(x) =
1

2πσ2
1

e
−

1
2

“

x−µ

σ1

”2

− 1

2πσ2
2

e
−

1
2

“

x−µ

σ2

”2

(A.23)

g(x) = a · ebh2(x) (A.24)

g′(x) = a · ebh2(x) · 2bh(x) · h′(x) (A.25)

a1 =
1

2πσ2
1

; b1 = − 1

2σ2
1

(A.26)

a2 =
1

2πσ2
2

; b1 = − 1

2σ2
2

(A.27)

h2(x) = (x − µ)2; h = x − µ; h′(x) = 1 (A.28)

The derivation off is given by

f ′(x) = g′1(x) − g′2(x) (A.29)

=
1

2πσ2
1

· e
(x−µ)2

2σ2
1 ·

(
− 1

σ2
1

)
(x − µ) − (A.30)

(
S

2πσ2
2

· e−
(x−µ)2

2σ2
2 ·

(
− 1

σ2
2

)
(x − µ)

)
(A.31)

= −x − µ

2πσ4
1

· e−
(x−µ)2

2σ2
1 + S

x − µ

2πσ4
2

· e−
(x−µ)2

2σ2
2 (A.32)
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f ′(x) = 0 (A.33)

x − µ

2πσ4
1

· e−
(x−µ)2

2σ2
1 = S

x − µ

2πσ4
2

· e−
(x−µ)2

2σ2
2 ; x 6= µ (A.34)

1

σ4
1

· e−
(x−µ)2

2σ2
1 =

S

σ4
2

ė
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For which values is a crater defined: (σ1 > σ2; because for these a crater-rim—local

max.—is defined)
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The crater does not become negative, if
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If σ1 andS are given,σ2 can be calclated for a given radius r as follows:
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