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ABSTRACT: This paper presents a grid-based approach to model molecular association e
processes as an alternative to sampling-based Markov models. Our method discretizes the S &
six-dimensional space of relative translation and orientation into grid cells. By discretizing @

the Fokker—Planck operator governing the system dynamics via the square-root - A *
approximation, we derive analytical expressions for the transition rate constants between s e & |
grid cells. These expressions depend on geometric properties of the grid, such as the cell 7 &“ ol S
surface area and volume, which we provide. In addition, one needs only the molecular 7

energy at the grid cell center, circumventing the need for extensive MD simulations and
reducing the number of energy evaluations to the number of grid cells. The resulting rate matrix is closely related to the Markov state
model transition matrix, offering insights into metastable states and association kinetics. We validate the accuracy of the model in
identifying metastable states and binding mechanisms, though improvements are necessary to address limitations like ignoring bulk
transitions and anisotropic rotational diffusion. The flexibility of this grid-based method makes it applicable to a variety of molecular
systems and energy functions, including those derived from quantum mechanical calculations. The software package MolGri, which
implements this approach, offers a systematic and computationally efficient tool for studying molecular association processes.

1. INTRODUCTION multistate molecular dynamics. One of the fields in which
MSM have been particularly useful is in modeling molecular
association, such as protein—ligand and protein—protein
binding.”~® With recent advances in electronic structure
methods'”"" and the advent of neural network potentials,'>">
it is likely that MSMs will be applied to more diverse molecular
associations processes, such as adsorption on surfaces, the
formation of nanoparticles or encounter complexes of chemical
reactions.

However, MSMs, in particular MSMs of molecular
association processes, are very sensitive to statistical
uncertainties' ”"> and therefore often require extensive MD
simulations. Approaches to improve the statistical efficiency of
MSM estimations include improved feature selection for the
definition of the underlying grid,'®'” variational and core-set
Markov models,”'®'” adaptive sampling algorithms,”® and
enhanced sampling combined with dynamical reweighting.”'
Despite these advances, MSM studies remain subject to the
assumption that statistical noise does not distort the results.

An alternative is a generative grid-based approach, which we
are pursuing in this contribution. The idea is to systematically

The vastness of configuration space is a fundamental problem
in molecular dynamics (MD) simulations. Due to its immense
dimensionality and the fact that only narrow regions are
significantly populated, often separated by large barriers,
obtaining a comprehensive view of likely configurations and
their transition time scales is clearly challenging. MD
simulations explore this space by taking steps (determined
by Newtonian forces and the choice of a thermostat) in
configuration space that involve small changes in all degrees of
freedom (DoF) at once. If the simulation is ergodic, every
region of space will be visited proportionally to its Boltzmann
weight, given infinite simulation time. However, even if
ergodicity is formally fulfilled, there is no guarantee that all
regions of interest have been sufficiently sampled within the
finite time of a simulation. It is difficult to even determine
whether all low-energy states have been reached."”

Markov state models (MSMs)*™® are a powerful tool to
analyze complex molecular dynamics. They reduce the
complexity of the high-dimensional, continuous dynamics by
discretizing the configurational space into grid cells. The
system’s dynamics are then modeled as transitions between
these grid cells, where the transition probability is estimated
from MD simulations. The resulting transition probability
matrix allows for a quantitative analysis of the molecular
dynamics in terms of metastable states, mean-first passage
times and pathways between different regions of configura-
tional space. MSMs thus give insight into the mechanism of

Received: September 30, 2024 JCTC e
Revised:  November 27, 2024
Accepted: December 27, 2024
Published: January 13, 2025

© 2025 The Authors. Published b
American Chemical Societ¥ https://doi.org/10.1021/acs.jctc.4c01293

v ACS PUblicationS 614 J. Chem. Theory Comput. 2025, 21, 614—628


https://pubs.acs.org/curated-content?journal=jctcce%26ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hana+Zupan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bettina+G.+Keller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.4c01293&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jctcce/21/2?ref=pdf
https://pubs.acs.org/toc/jctcce/21/2?ref=pdf
https://pubs.acs.org/toc/jctcce/21/2?ref=pdf
https://pubs.acs.org/toc/jctcce/21/2?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

produce structures at selected grid points in configuration
space, calculate the point energies of generated structures and
use this information along with the geometrical properties of
the grid cells to obtain a probability flow across the cell
boundaries. From these probability flows, one can calculate the
transition rate matrix, a close analogue to the MSM transition
probability matrix. Thus, instead of extensive MD simulations,
only a single energy calculations per grid-point is needed. In
addition, this approach guarantees that all regions of space are
taken into account up to the boundaries and the resolution of
the grid.

The grid-based approach, including the formula for the
pairwise transition-rate constants, is derived””~>* by assuming
that the system evolves according to overdamped Langevin
dynamics in a collective variable space and by discretizing the
associated Fokker—Planck operator, leading to the square-root
approximation of the Fokker—Planck operator (SqQRA). The
method has shown excellent replication of sampling-based
MSMs for low-dimensional Cartesian spaces.””*>*>*® A proof
of principle for alanine-dipeptide has been reported in ref 23.
However, a crucial assumption in the SqRA is that the grid
cells are so small that the potential within each grid cell is
essentially constant. Thus, grids with high resolution are
required, effectively limiting the grid-based approach to low-
dimensional collective variable spaces.

Here, we consider the association of two molecules A and B
in solution. The formation of bimolecular complexes typically
consists of two stages: 1) diffusion-based association and 2)
interaction-based completion of binding.”” Comprehensive
sampling of the diffusion-based association is almost intract-
able with standard molecular simulation as the simulation time
needed to explore all possible relative translations and relative
orientations of the two molecules is immense. However, within
the rigid-body approximation, this process reduces to diffusion
in the six-dimensional space of translation and rotation of
molecule B relative to molecule A.

There are two major challenges in constructing translational
and rotational grids for a SqQRA-Markov model. First, the grid
must be uniform, meaning that all grid cells should have
approximately the same size. Second, it is necessary to calculate
both the six-dimensional volume of each grid cell and the five-
dimensional hypersurface area that represents the boundary
between neighboring cells. In ref** we benchmarked methods
for constructing uniform grids in translational space. Here, we
extend the discretization to the full six-dimensional translation
and rotation space. Drawing inspiration from the robotics
community,” " we employ regular Voronoi tessellation of the
rotational space using quaternions, and we provide equations
for the corresponding grid cell volumes and surfaces. We have
developed a Python package, Mo1Gri, which generates grids
for the six-dimensional translation and orientation space,
calculates the geometric parameters of the grid, and interfaces
with MD programs to obtain the grid energies and compute
the rate matrix. At the current stage, the package does not yet
account for transitions into the bulk and for anisotropic
rotational diffusion. We discuss the remaining steps needed to
achieve an accurate SqRA-Markov model for molecular
association processes.

2. THEORY

2.1. Square-Root Approximation. The square-root
approximation has been derived and tested in refs.”””>° In
this section, we summarize the most important equations. We
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additionally provide a more detailed derivation in the
Supporting Information.

Consider a molecular system with N atoms and 3N
translational degrees of freedom. A collective variable x; is a
function that maps the 3N translational degrees of freedom to

a real number: x: R — R. We assume that in a low
dimensional collective variable space x = (xy, %), .., x,,) € Q C
R™, where m < 3N, the dynamics of the system can be
modeled by overdamped Langevin dynamics:

dx(t) = p(x(t)) dt + o dB(¢) (1)

where B(t) = (B,(t) .. B,(t)) is an m-dimensional Wiener
process, p(x(t)) = —&'M"'VV,(x(t)) is the m-dimensional

2k TET'M ™" scales the Wiener process

and is linked to the diffusion of the system in the collective
variable space. We assume that the diffusion is isotropic in the
collective variable space, and hence o is simply a scalar. For
nonisotropic diffusion, ¢ has to be replaced by an (m X m)-
matrix. £ is a friction parameter with units s™', M is the
effective mass, V5:  — R is the effective potential in the

drift vector, and 6 =

collective variable space, kj is the Boltzmann constant, T is the
temperature, andVf(x) denotes the gradient of a function
f :R" - R.

p(x, t) is a probability density in the space of collective
variables, whose time-evolution is governed by the Fokker—
Planck equation associated with eq 1,

— V-[u(x(t))-p(x, t)] + DV-Vp(x, t)
Qp (Xr t)

d

—p(x, t
AR
= )
where @ is the Fokker—Planck operator. For a vector field
f: Q@ > R", V - f(x) denotes the divergence of the vector field.
D = 6%/2 = ks TE'M ™ is the diffusion constant. The stationary
density associated with eq 2 is the Boltzmann density

=z"e L X
n(x) =Z XP[ kBTVeff( )] 3)

where Z = dexexp(—kBLTVeff(x» is the configurational

partition function.

The collective variable space € is discretized into Ny
nonoverlapping grid cells €, ..Qy, where x, denotes the
center of cell ,. On this grid, eq 2 can be approximated by a
matrix-vector equation

CIT_T
+ () =p (HQ @

where the N,-dimensional vector p(t): p,(t) = fg dxp(x, t)

contains the time-dependent probabilities to find the system
within each grid cell, and

Qaﬂ,adjacent ar~ 'B
0 a#p

Ny
a=p

Q: Q—(x/} =

Qa/f,adjacent

p=1,pa (s)

is a rate matrix and the discretized version of the Fokker—
Planck operator Q. @ ~ f indicates that Q, and € are
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adjacent. The rate matrix Q is related to the MSM transition
matrix P(zyy) by”'

P(7ysp) = exp(Qrygspr) (6)

where 7y is the MSM lag time.

The square-root approximation of Q,*****° provides an
analytical expression for the transition rate constant between
adjacent cells
o’ 1 Sa/f ”(X/;)

2 haﬂ (V(x ”(Xa)

Q(lﬂ adjacent =

()

where hys = Ix; — x| is the Euclidean distance between two

cell centers. V, = / dx1 is the volume of €, and
Q(l

S 5= yg dx1 is the surface area of the intersecting
90,00,

Q

(hyper-)surface between adjacent cells Q, and Q. eq 7 relies
on the following assumptions:

1 The grid is a Voronoi grid.

2 The grid cells are small, so that Vg(x), 7(x), and p(x)
are approximately constant within a grid cell.

3 Diftusion is isotropic, so that ¢ = const.

The significance of eq 7 is that, given the geometric
parameters of the grid h,g, S,5 and V,,, along with the effective

(o2
potential energy at the grid cell centers V.(x,), one can
construct an MSM without the need for MD simula-
tions 222325

Note that, in eq 5, we ensured that the row-sum of the rate
matrix is zero. This convention is consistent with the MSM
convention, in which the transition matrix is usually row-
normalized to one. However, in communities that work with
rate matrices rather than transition matrices, by convention,
the columns of the rate matrices are normalized to zero.”' This
yields the transpose of Q.

2.2. Rigid Body Approximation and Coordinate
System. To model molecular association, we consider a
molecular system with two molecules A and B in the absence
of any external potential. Since the total energy is independent
of the overall translation and rotation of the system, we can
reconceptualize it as the molecule A completely fixed at origin
and the molecule B free to translate (3 DoF) and rotate (3
DoF) as a rigid body. We therefore choose the molecular frame
of molecule A as a our coordinate system, i.e., the Cartesian
coordinate frame whose origin is at the center of mass of
molecule A and whose three axes are aligned with the principal
axes of inertia of molecule A. The Cartesian coordinates of the
two molecules in this coordinate system are denoted as

= (rgk), r(zk), vy rg\];k)), k=A,B

(8)
where N, and Ny are the respective numbers of atoms, and
) — (x-(k), y(k)

i

) zi(k)) is the position of the ith atom in the

respective molecule. The vector t® can also be represented by
translational, rotational and internal coordinates

= (1B, 9, ), k=48

9)
The 3-dimensional center-of-mass coordinate is
N, (k) (k)
R = z":kl i k=A,B
COM M(k) ’ ) (10)
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N, k
N mi( )
is the total mass of the respective molecule. It describes the
translation of the respective molecule with respect to the origin

where m® is the mass of the ith atom, and M* = >

i

of the coordinate system. Hence, ril, = (0, 0,0). To
construct the translation grid, we describe the center-mass-

coordinate of B in spherical coordinates rcqy = (r, 6, @) € R?,
where r € R, is the radius, 6 € [0, 7] is the polar angle, and ¢
€ [0, 27] is the azimuth angle. The angles (6, ¢) € S* define a
point on the three-dimensional unit sphere (2-sphere). As a
product, the radius and two angles cover the 3-dimensional
space: R, X §* = R,

q® € SO (3) represents the three rotational degrees of
(k)
ref *
SO(3) is the rotational group and R(q®)) is the rotation matrix

()
ref
91 9 93), llall; = 1, to describe the rotation of the molecule.
See ref 32 for a review on different representations of the
rotational group SO(3) and ref 33 for more information on
quaternions. Unit quaternions cover a 3-sphere (unit hyper-
sphere) q € S°. Each quaternion q corresponds to a rotation
R(q) in three-dimensional space.”* However, each rotation in
three-dimensional space is represented by exactly two
quaternions, because the rotation induced by q equals that
of —q: R(q) = R(—q). The relationship of quaternion q to a 3
X 3-rotation matrix R(q) can be expressed as™

molecule k = A, B with respect to a reference rotation q

that transforms q" into q(k). We use unit quaternions q = (qq,

1-2q —2q; 2qq, —2q4, 244, + 24,4,
R(q) = | 24,4, + 24,9, 1 - 247 =24, 24,9, — 244,
2,49, — 29,4, 24,9, + 294, 1 - 29 — 29,
(11)
To avoid the double coverage R(q) = R(—q) we always select
one out of the quaternion pair by limiting ourselves to q € Si,

where Si denotes the “upper half” of the hypersphere to
describe a rotation. (Select quaternions with g, > 0. For g, = 0,
quaternions with q; > 0 are included. If g, = 0, the decision is
based on the third component.)

® = (0, O ,H

Finally, v VY v3Nk_6) are the 3N, — 6 internal

degrees of freedom. Within the rigid-body approximation, we
assume that the internal degrees of freedom are constant: v =
const with k = A,B. Because we aligned the coordinate system
with the molecular frame of molecule A, its translation and
rotation also remain constant. Thus, within this model, the

dynamics of the system is given by changes in rggM € R* and
q") € S;. The collective variable vector in eq 1 then is

(B)

X = (r(CBC))M) ‘l(B)) € SE(3) (12)
where R® X SO(3) = SE(3) is the special Euclidean group and
describes the complete configuration space of the rigid body
motion.

2.3. Translation and Rotation Grid. To systematically
generate configurations of B relative to A, we discretize SE(3)
by constructing grids for the translation and rotation subspaces
R® and SO(3). This involves constructing uniform grids on R,

as well as (hyper)spheres S> (translation space) and S*
(rotation space), both of which are closely related rotation

https://doi.org/10.1021/acs.jctc.4c01293
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group SO(3). This is a challenging task.”***™** In ref 28 we
compared several algorithms and concluded that a polyhe-
dron/polytope approach for grids on S fits our needs best.
For the translation grid, we discretize radius r € R, and
angles (0, @) € S* separately. A uniform grid on R, is
straightforward: radial grid points r, i = 1,2..N,, are
equidistantly spaced between selected r.;, and ry,. The
polyhedron approach to discretize S* is illustrated in Figure la.

A
28
N

a

>

\4/\//

Figure 1. Illustration of grid construction for S* (a) and S* (b). For
%, only one of hypercube cells is shown, as the projection onto the 3-
sphere cannot be depicted.

First, an icosahedron is inscribed into a 2-sphere. The 12
vertices of this icosahedron yield the grid points (¢, 8;) for the
coarsest grid on S* (black dots in Figure 1a). Each face of the
icosahedron is an equilateral triangle. Further grid points are
created at midpoints of the icosahedron edges and then scaled
to lie on the 2-sphere (red dots in Figure la). The resulting
grid has 42 grid points. The mid points of the icosahedron

edges discretize each icosahedron face into four smaller
equilateral triangles. The next finer grid is generated by
creating mid points on their edges and scaling them to lie on
the 2-sphere (blue dots in Figure la). The process can be
iteratively repeated to obtain finer and finer grids. Obviously,
this process directly generates only specific sets of grid points:
12, 42, 80, ... However, an arbitrary number of grid points can
be obtained by creating the next largest grid and removing an
appropriate number of points, a topic we also discussed in our
previous publication.”® N, denotes the number of grid points
on S By combining the S* grid with the radial grid we obtain
the translation grid with N, X N; grid points. Each grid point i
is associated with a translation vector t; = (r, ¢, 6,). The grid
points form N; rays, each with N, points, as depicted in Figure
2¢).

We construct the rotation grid by systematically generating
quaternions g; using the polytope approach (polytope is an
equivalent to polyhedron in higher-dimensional spaces). First,
a 4-cube (tesseract) is inscribed in S°. A 4-cube is an four-
dimensional analogue of a three-dimensional cube and is

defined by 16 vertices q,= %(il, +1, +1, +1). The prefactor

1/2 ensures that q; is normalized to 1 and thus lies on S*. One
can visualize a 4-cube as an object consisting of eight cubic
cells (Figure 1b). The 16 vertices of the 4-cube yield the grid
points g; for the coarsest grid on > (black dots in Figure 1b).
Further grid points are created by adding a point along each
edge, face and center of the 4-cube, thereby subdividing each
cubic cell into eight smaller cubes (red dots in Figure 1b). The
new points are scaled to unit length to ensure that they lie on
S®. As in Figure 1a, this process can be repeated iteratively to
achieve finer and finer grids (e.g,, blue dots in Figure 1b). In
the last step, the orientation grid is truncated to the “upper
half” of S$°. N, denotes the number of grid points on Si.

The full grid for the configuration space SE(3) is obtained as
all possible combinations of translation and rotation grid
points x; = (t; q;). The total number of grid points is N; = N, -

S
0 nlnin| |

cell ry,

cellr; cellr,

N; - N,. Then the configurations of molecule B, r,(]B),
P o ¢ §
’ v v
& B e

| 4
v | "

‘,
e Vf’
‘o' S ] oo
[* s
g A
& L&

Figure 2. Translation grid. a radial grid with blue lines showing the cell boundaries. b angular grid, with spherical Voronoi division of the unit
sphere (example of 42-point icosahedron grid), area shaded in red denotes the cell assigned to this grid point. ¢ Example of translation grid with N,
=42 and N, = 7. d Partition of translation space into cells (only two radial layers are shown for clarity). The volumes of two cells are shown in
color. e Close-up of the two colored cells of translation grid. f Schematic view of side borders between cells. g Grid with N, =3, N;=12 and N, = 8
points applied to the system of two water molecules. All molecular translations generated with this grid are shown and the eight orientations are

shown just for one example. The stationary molecule A is shown in green.
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corresponding to grid points (t;, q;) are constructed in a two-
step process. First, molecule B is placed in the reference

configuration rgff) = (r(CB(%M = (0, 0, 0), (Bf), V(B)). That is, B

is placed at the origin of the coordinate system and in a specific
reference rotation q( ). This reference rotation can have the

axes of inertia ahgned with the axes of the coordinate system,
but this is not necessary. In the second step, the molecule B is
first rotated by R(q;) and then translated by t, where the
transformation is applied to each atom ! individually

B B
I'g ll) = R(qj)l'grzf + ti = 1...NB (13)
The resulting configuration of molecule B can be represented
in Cartesian coordinates r(B) = (rﬁ), r(ZBJ, - rg\?)u) or in
translational, rotational and internal coordinates
(B) = (?) (B) (B
Tcomr 9; .

2.4. Energy of Grid Cells. The energy associated with a
grid cell (ij) is given by the effective potential
V(x;) = Veff(r(CBgM P ‘I(B)) Obtaining
energy calculation™ for the six translational and rotational DoF
and is computationally very costly. However, within the rigid-
body approximation, the energy of the internal degrees of
freedom is constant, and one can therefore replace the effective
potential by the full (N, + Np)-atom potential of the
bimolecular system

V.4(x) requires a free-

(A ()

Veff(xij) = (l'cch: q v

’ r(CBO)M i ‘l(B) (B))

(14)

Thus, in principle, a single energy evaluation per grid point
is sufficient. In practice, one might want to slightly improve
this energy approximation using two strategies. First, to
account for steric clashes, v, and vz can be relaxed while
keeping the translational and rotational degrees of freedom of
both molecules constrained. Second, to account for the fact
that the energy is not entirely constant throughout the grid
cell, Vg(x;) can be calculated as a an average over a short
simulation, where translational and rotational degrees of
freedom of both molecules are restrained to remain close but
not exactly equal to the set translation and orientation. Having
obtained a valid expression of V, E(xl}) for each grid cell, the
Boltzmann ratio in eq 7 can be evaluated according to eq 3.

2.5. Distances, Surfaces and Volumes of Grid Cells.
The grid points x; induce a Voronoi-like tessellation™ of the
six-dimensional translatlon and rotation space, where each
point in this space is assigned to its closest grid point forming
nonoverlapping grid cells. We defined these distances in terms
of spherical coordinates (r, 6, ¢) and in terms of angles
between quaternions. The deviation from a Voronoi
tessallation in Cartesian space are discussed in Section 4.4.

To calculate the distance between two adjacent grid points
hqp the area of the intersecting surface of their grid cells S

and the volume of a grid cell V, in eq 7, we need to define a
distance metric for the translation and orientation space. We
will first discuss distance, surface and volume for translation
and rotation space separately, before forming their product to
discretize the SE(3) space. Throughout the discussion, we
consider two adjacent grid points x, = x;; = (t, q)) and x4 = x
= (t, q).

2.5.1. Translation Grid. The translation grid is constructed
from the radial and spherical subgrids. This leads to two types

618

of adjacency relations: (i) radial neighbors (orange and blue
cells in Figure 2d,e, and (ii) angular neighbors. Radial
neighbors are stacked along one of the N radial rays in the
translation grid. Their grid points have the same angular
coordinates, but differ by one in the radial index: t; = (r;, ¢, 6,)
and t; = (7j—iy1, Py Oi;). Angular neighbors have the same
radius but are neighbors on the spherical grid: t= (r, ¢, 9,
and t, = (1 ¢y 0)), where (¢, 6) ~ (s, 6,).

The cells of the radial grid are separated by radii
Ry, R,..Ry _ at midpoints between grid points r; as shown

in Figure 2a. The distance metric on the radial grid is
Wit radial = I — 1l (15)

The intersecting surface is calculated as the area of the n-sided
. . . . 41 .
spherical polygon with interior angles a; ... ay* (Figure 2b).

S radial = Ri2 [Z am] - (n-2)x
m=1 (16)

To define the Voronoi tesselation of the spherical grid,">**
we use the angular distance

h B bk
ik, angul = t::p, = r;-arccos
ik,angular i Fik i Itl-”tkl (17)

where It} = r; is the Euclidean length of the translation vector t,
and f; is the angle between t; and t;. Within this distance
metric, the points on a sphere that are closest to the coordinate
pair (¢, 0;) have the geometrical form of a spherical polygon
(Figure 2b). The intersecting area is a part of the
corresponding circular sector (Figure 2f) and can be calculated
by subtracting the area of the circular sector with the smaller
radius from the one with the larger radius

S _ AR} _ AR,
ik ,angular 2 3 ( 18)
where f; is given by eq 17.
In summary
hig radiatr Sikratia 7 ~ 1 and(6, ¢)
= (9 ) @ )
higy Sic = . bk
hik,angular’ Sik,angular lth =1 and(gi! ¢,)
~ ((gk; ¢k) (19)

The volume of translation grid cells r; is calculated from the
corresponding sector of the sphere with radius R, where sector
volume is proportional to the surface of the grid cell:

v ‘S;l/i,radial . iﬂR3

i,sector — 2 i

4rnR;

1

1| <
= — o | —(n—2)r|R,
(a0 oe

The cell volume is obtained by subtracting the area of the next

smaller sector V,_ from ’V, sector

- % [Z al.,mJ — (n-2)7|(R, -~ R_))

(20)

1,sector

21)
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where Ry = 0 and angles ¢, , .. @, ,

~are schematically shown in
Figure 1b.

2.5.2. Rotation Grid. The distance metric in rotation
space’” is based on the angle between the unit quaternions q;

and q; of two adjacent rotation grid cells

h,-z(qjy q) = min{dang(qj, q), 7 — dang(qj, q)} (22)
with
q]q[
dangular(q-) ql) = arccos
! lq/iq)
! (23)

Due to double coverage of the S>-hypersphere, the distance is
defined as the minimum of the two values in eq 22.

The geometrical properties of 3-sphere Voronoi cells are
difficult to picture directly, but an intuition can be built on
analogy with the 2-sphere tessellation displayed in Figure 2b.
In the S* example, cells are spherical polygons and borders are
spherical arcs between them, ie., sections of S'. Intuition
suggests that borders between cells in S* could have the form
of a section of S? i.e., spherical polygons. We confirm this
intuition by the following consideration.

Let v,..v, be Cartesian coordinates of Voronoi vertices
shared between neighboring hypersphere cells q; and q; (as a
condition of neighborhood, cells must share at least three
vertices). As they all share the property of equal distance to
and qj, they must lie on a hyperplane. However, as they are
Voronoi vertices of hypersphere tessellation, they must also lie
on a hypersphere. Thus, they lie on an intersection of a
hyperplane and hypersphere, which can be an empty set, a
point or a 2-sphere. The first two option imply that there is no
intersecting hyper-surface between q; and q; and will not occur
if g; and q; are adjacent. The third option tells us that the
intersecting hyper-surface between q; and q; has the form of a
sphere in three-dimensional space and we take advantage of
this property to visualize and calculate its areas.

We devised the following algorithm to determine the area of
the intersecting surface. If we stack the vertices v,..v; that
defined the intersecting hyper-surface, we obtain a 4 X s matrix
V,. However, because we know they belong to a three-
dimensional subspace (a sphere), there must exist a rotation
rendering the fourth coordinate of all points equal zero. We
find this rotation with singular value decomposition (SVD).
Now, the rotated matrix can be interpreted as a 3X s matrix V;
and the vertices as points on a unit sphere that divide the
spherical surface into two spherical polygons, the smaller of
which is the border area we are looking for. This means that we
can again use the formula given by eq 16 for R, = 1 for
analytical calculation of spherical polygon areas S;.

Finally, the volumes’ of hyperspherical Voronoi cells must
be determined. To the best of our knowledge, there is no
general analytic solution for this problem. To perform a
numerical approximation, (higher-dimensional) triangulation
can be performed by analogy of surface triangulation that is
shown in Figure 2e. Additional 5000 points are selected at
random on the hypersurface of a hypersphere and assigned to
their corresponding Voronoi cells. On 2-spheres, Delaunay
triangles™ are constructed from a dense set of points and their
combined area approximates the area of a spherical section.
Similarly, on 3-spheres, Delaunay triangulation leads to small
tetrahedra filling a cell and their combined volumes are an
approximation of a cell volume.
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To confirm that the volumes of hypersphere Voronoi cells
are reasonable, we compare them to the analytical value of unit
hypersphere hyper-surface (what we call volume) 7> equally
divided into 2N, sections:

Ah ersphere 2
Vigeal o] = % = % foro, € (1, 2...N,) 24)
o o 24

2.5.3. Configurational Grid. To construct the configuration
grid on SE(3), we combine translation and rotation grid. For
two centers on the configuration grid, x, = x; = (t; q;) and x; =
xy = (t,, q), to be adjacent they must share a point in one of
the subgrids and must be adjacent in the other subgrid. That is

(i)

(i) x, ~x; ift, =t and q,~q

x, ~ x4 ift; ~ t and q, = q

(iii) x, # x4 otherwise (25)
The first case represents a transition in translation space,
whereas the second case represents a transition in rotation
space. The distance and surface between adjacent cells then are

hik’ S'k

1

ift; ~ t, and q,=q
S

Q

h B = 2 .
apr “ap ahy, a”S; ift; =t and q,~q

(26)
where hy and Sy are given by eq 19, and hy and S are given
by egs 22 and 18. The grid cell volume is

V, =V xa,

a

(27)
where V] is given by eq 21, and V} is determined numerically.

In the combined space SE(3) = R® x SO(3), the factor
represents the weight of the rotation space SO(3) relative to

the translation space R’, and has been introduced in
discussions of SE(3) robot manipulator spaces.% We currently
set @ = 1.

hap Syp and V,, can then be inserted into eq 7 to calculate
Qaﬂ,adjacent'

2.6. Relation to Markov Models. The rate matrix Q and
MSM transition matrix T(z) are related by eq 6, and therefore
share the same left and right eigenvectors’

Qy=xy < P(TMSM)‘I{ = exp(KiTMSM)y/i
qﬁiTQ: KgﬁiT & (ﬁiTP(TMsM) = eXp(KiTMSM)(piT (28)

where y; are the right eigenvectors, and ¢; are the left
eigenvectors, and A,(Tygy) =exp(kizysy) are the associated
MSM eigenvalues. The definition of the rate matrix within the
square-root approximation (eqs S and 7) enforces detailed
balance

n-(xQ-a/} = ”/fQ-/ia (29)

Consequently, right and left eigenvectors are linked by
diag(m)y; = ¢, where 7 is the stationary distribution and is
equal to the first left eigenvector.

The dominant MSM eigenvectors contain a wealth of
information on the metastable states and slow molecular
processes. In a sampling-based MSM approach, they are
obtained by estimating the elements of the MSM transition
matrix P,4(7ysy) from an MD simulation. In the grid-based
SqRA approach, they are obtained by evaluating the energy
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and geometric properties of each grid cell. Figure 3 compares
the two approaches.

MD MSM SqRA MSM

generate grid &
pseudo-trajectory

MD trajectory

v

evaluate energy

rate matrix

Q
¥

eigenvectors & eigenvalues

transition matrix
T(r)

W one evaluation of the energy or force function

Figure 3. Comparison of the workflows for sampling-based and SqQRA
MSMs.

3. COMPUTATIONAL METHODS

3.1. Grid-Based Models. For the molecular association of
two water molecules A and B, we constructed a grid based on
N, = 10 radial grid points, which were equally spaced between
0.2 and 0.4 nm, N; = 80 angular grid points, and N, = 80
rotational grid points. This yielded a grid with N; = N, X N; X
N, = 64,000 grid cells. For the association of two CgF,
molecules, we used a radial grid with N, = 10 points equally
spaced between 0.8 and 1.3 nm, and the same angular and
rotational grid as for the water dimer. For the association of
bovine pancreatic trypsin inhibitor (BPTI) with trypsin, we
used a radial grid with N, = 10 points equally spaced between
3.5 and 4.5 nm, and the same angular and rotational grid as for
the water dimer. Other settings for the radial grid are reported
in the Supporting Information.

We calculated the volume V, of each grid cell We
constructed the adjacency matrix of the grid and calculated
the distances between adjacent cells h,; and the areas of the

intersecting surfaces S,45. Then, molecule A was placed at the

origin of the coordinate system, and molecule B was translated
and rotated to each of the grid cells as described in Section 2.
The resulting 64,000 configurations were sequentially written
to a .trr file (GROMACS trajectory format). The potential
energy of each of these configurations was evaluated using
GROMACS’s rerun command.The water molecules were
modeled using the TIP3P water model.*” The CgF, molecules
were created in Avodagro*® by modifying the template for the
Cgo fullerene. The togology was created with the GROMOS-
Topology-Builder.*”* For the BPTI and Trypsine molecules
the starting structure was PDB structure 4Y0Y"' with the two
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components separated and prepared as described in a previous
publication of our group.””> From this information, we

calculated the factor /z(x,)/7(xs) = exp[(Vee(xy) —

V,i(x,))/(2kgT)] for all pairs of adjacent cells. To avoid
integer overflow, the energy difference V,g(x5) — Ver(x,) was
capped at 500 kJ/mol. Energy differences of >500 kJ/mol
correspond to transition rates that are numerically zero and can
thus be safely set to zero. The (Ny X Ny)-rate matrix Q was
calculated using eq 7. The left and right eigenvectors and
associated eigenvalues of the rate matrix were calculated with
scipy’s eigenvalue solver.

The code we wrote to construct and evaluate grid-based
models is formatted as a python 3.12.4>° package called
molgri (for molecular grids) and the computational
experiments formatted as snakemake 8.14.0°* pipelines for
better reproducibility. Major Phython dependencies used in
this project are numpy 1.26.4,% scipy 1.13.1,°° networkx 3.3"
and mdanalysis 2.7.0.”%%

3.2. Spectral Clustering of Q. Spectral clustering was
performed on the first six right eigenvectors of the rate matrix
Q. The clustering algorithm used was KMeans® as
implemented in scikit-learn 1.5°" and the choice of 12 clusters
was made.

3.3. Molecular Dynamics Simulations. Molecular
dynamics simulations were conducted with GROMACS
2022°7% and performed only for the system of two water
molecules.

For the vacuum simulations, two water molecules were
placed in a cubic box with 3 nm edge length. The interactions
were modeled using the TIP3P water model.”” O—H bond
lengths were constrained using LINCS algorithm.®® The
dynamics were propagated usin§ the built-in stochastic
integrator for Langevin dynamics 7,68 (setting sd) with a
time step of At = 2 fs. The reference temperature was set to
300 K, and we varied the coupling time in across different
simulations runs: 7, = 0.001 ps, 0.010 ps, 0.100 ps, 1.000 ps.
Each simulation run was conducted for 4 X 107 timesteps,
corresponding to 80 ns simulation time. Long range
interactions were cutoff at 1.4 nm. To prevent that the two
molecules diffuse far beyond the maximum radius of the SQRA
grid Ry = 04nm, we applied a flat-bottomed distance

restraint (Figure 6) along the oxygen—oxygen distance #: no
restraining potential for 0 < r < 0.5 nm, harmonic potential
with force constant k = 500 kJ/(mol nm?) for 0.5 nm < r < 0.7
nm, and a linear restraining potential with force constant k =
500 kJ/(mol nm?) for r > 0.7 nm. No pressure coupling was
applied. Coordinates of the water molecules were written to a
file every S timesteps.

For the simulations in explicit solvent, two water molecules
were solvated with 2033 Lennard-Jones particles in cubic box
with 3.6 nm edge length. The water molecules were modeled
using the TIP3P water model."” The Lennard-Jones particles
had a mass of 4 atomic units, no charge and the following
Lennard-Jones parameters: € = 0.8202 kJ/mol and ¢ = 0.253
nm, approximately modeling a helium atom. The simulation
parameters were the same as for the vacuum simulations with
the exception of the long-range interactions, where we used
Ewald summation with a long-range cutoft of 1.4 nm.

3.4. Markov State Models. From the MD simulation
trajectories, we constructed Markov state models using the
same grid as for the SqQRA models. The trajectories were
aligned to the reference translation and orientation of the first

https://doi.org/10.1021/acs.jctc.4c01293
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Figure 4. (a) Most probable configurations of the bimolecular system according to the stationary distribution calculated with the SQRA-Markov
model. Molecule A is labeled, the rest of the structures represent molecule B. (b) K-Means clustering performed on the space of the first six
eigenvectors of the rate matrix. Configurations that are part one cluster are shown in the same color. (The largest cluster with population 63834 and
five tiny clusters with population <10 are not shown.) (c) A dot for each grid point is shown in the space of 1st, 2nd and 3rd eigenvector and

colored according to the clustering in part b.

water molecule, and the translation and orientation of the
second molecule was assigned to a grid cell using the following
procedure: (1) the center-of-mass distance between the two
molecules is calculated and the nearest cell center in the
distance grid is selected, (2) the center-of-mass distance vector
is scaled to unit length and the nearest cell center in the
direction grid is selected, and (3) the rotation matrix between
orientation of the reference structure and the orientation of
molecule B is calculated and the nearest quaternion is selected
from the rotation grid. The combination of the three
assignments yields a grid cell index for each trajectory frame,
and thus a microstate trajectory. The assignment is also
implemented in our Python package molgri. To construct a
Markov model from the microstate trajectory, we followed
standard procedures.” We constructed a MSM count matrix
C(7) by counting state-to-state transitions within lag time
Tysye The resulting (N, X N,)-matrix was stored in a sparse
data format. We varied 7y, between 0.01 and 1.0 ps but
always show Ty = 0.1 ps in the results section. Detailed
balance was enforced. The count matrix was row-normalized to
obtain the MSM transition matrix T(z). The left and right
eigenvectors and associated eigenvalues were again calculated
with scipy. Implied time scales were calculated as t; =
—tysm/In(A;(tpsm)), where A(tysy) is the ith MSM
eigenvalue.

4. RESULTS AND DISCUSSION
4.1. SqRA Model of the Water Dimer. To illustrate the

grid-based approach to molecular association, we consider two
water molecules in vacuum and construct the SqQRA-Markov
model of the water dimer association on a configuration grid
with 6.4 X 10* molgri grid cells. Figure 4a shows the
highest-probability configurations of water molecule B relative
to water molecule A, which were extracted from the stationary
probability vector (first left eigenvector) of the SqRA rate
matrix Q. The model correctly identifies configurations in
which water A acts as a hydrogen-bond donor and
configurations in which it acts as hydrogen-bond acceptor.
Remarkably, in the hydrogen-bond-donor configurations, the
rotation of water B is very restricted, whereas is its free to
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rotate in the hydrogen-bond-acceptor configuration. This free
rotation, although at variance with the water-dimers of actual
water molecules, is likely correct for the TIP3P water model,
which does not account for the oxygen electron lone pairs.
Further note that there is a difference in the number of left and
right side hydrogen-bond donor configurations, which might
be due to slight asymmetry in the discretization of the
translation grid relative to the mirror plane of A.

To further analyze the dominant eigenspace of Q, we
projected each grid center into the space of six dominant right
eigenvectors and clustered in this six-dimensional space using
the KMeans algorithm. Figure 4c shows that the eigenvectors
of the rate matrix clearly separate the subspaces expected by
chemical intuition: four clusters are found that correspond to
the four possible hydrogen bonds with molecule A (shown in
yellow, cyan, green and orange), where KMeans separates the
large set of hydrogen-bond-acceptor configurations in two
separate clusters (orange and green). The violet cluster
represents the transition region between the two types of
hydrogen bonding. There is an additional cluster (dark blue)
that shows a broader region around one of the potential
minima and five small clusters of 2—7 structures that seem to
be artifacts of the choice of the number of clusters (not
shown).

Also not shown is the most populated cluster containing
over 99.7% of all generated poses which can be regarded as the
set of all structures that have no particular importance to the
slow processes of the system. This is a big contrast to the usual
statistics of sampling-based methods, where a almost all
sampled structures are found in the vicinity of the (few)
deepest potential minima. The fact that a large majority of
generated structures is not relevant to the binding of the two
molecules might first seem like disappointing performance, but
it is expected behavior for a grid that uniformly fills the
configuration space. It is even desirable for two reasons: first, it
allows us to identify transition states between low-energy
configurations, such as the violet cluster; second, for a grid-
based approach it is sufficient to reveal a single pose that lies
inside a particular potential minimum, because the ensemble of
structures within that minimum can be easily obtained in a

https://doi.org/10.1021/acs.jctc.4c01293
J. Chem. Theory Comput. 2025, 21, 614—628


https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.4c01293?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

< & _® $ =
X o L d Bd
A | ) ok

(9]

- 7.13 ps

— ,
E g .:- "‘f?“v”q , “v"‘

o p
A3 W XL
2 > I'-JU

e 0.85 ps
¥ g & 'f-"!
237 & L
=Jg 1.62 ps

& T

<

iy

1.97 ps 1.06 ps 0.86 ps
P g

u'o \,'o oy
L& f w

0.68 ps 0.47 ps 0.31 ps

Pl e

r.

*

0.677 ps 0.48 ps 0.29 ps

Figure S. First five eigenvectors of water dimer system at three different simulation conditions. Top: SqQRA model with 7 = 0.1 ps, middle: 40 ns
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the corresponding eigenvector.

subsequent step, either by applying a denser grid in the region
of interest or by performing a short simulation starting from
the identified structure.

The implied time scales of the SqQRA-Markov model depend
linearly on 7. = &', & is the friction coefficient of the
overdamped Langevin dynamics (eq 1). This friction
coeflicient is usually implemented as a thermostat coupling
time 7. By varying 7, between 0.001 and 1.0 ps, the implied
time scale of the slowest process decreases from 712 to 0.71 ps
(see SI Figure S1). Since 7, is an arbitrary parameter at this
point, these values should not be assigned any chemical
significance. Importantly, the eigenvectors remain largely
unaffected by changes in the magnitude of the friction
coeflicient.

4.2. Comparison to MD. Figure 5 compares the SqQRA-
Markov model to MSMs built from MD simulations of two
water molecules in vacuum. To prevent that differences in the
discretization distort the results, we built the sampling-based
MSMs on the grid with 6.4 X 10* grid cells as the SqRA-
Markov model. We sampled extensively (80 ns) to minimize
the statistical error. Since the SqRA derivation assumes
overdamped Langevin dynamics but typical molecular
dynamics simulations are performed under underdamped
conditions, we must enforce that the translation and rotation
of the molecular system are in the overdamped regime. We try
two simulation set-ups to fulfill this requirement: (i) simulating
the bimolecular system in vacuum but with large friction
constant or (ii) augmenting the thermostat noise with explicit
solvent particles smaller than the solvate, in our case helium-
like Lennard-Jones particles while setting 7. to values
conventionally used in MD. We expect the SQRA-MSM to
align more closely with the vacuum simulation than with the
Lennard-Jones solvent simulation. But relying on the thermo-
stat as the main source of noise is a somewhat artificial setup,
as friction and random forces in molecular systems naturally
arise from the surrounding solvent. Thus, we include the
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second setup for comparison. However, the helium-like
Lennard-Jones particles are comparatively large for the water
dimer, so deviations from the ideal overdamped Langevin
dynamics are expected.

The sampling-based MSM in vacuum identifies the same
metastable states as the SqQRA (first column in Figure $),
corresponding to two distinct states in which molecule A acts
as a hydrogen-bond donor and one broad state in which
molecule A acts as a hydrogen bond acceptor. In accordance
with the SQRA-MSM, the sampling-based MSMs identify the
exchange between hydrogen-bond acceptor state and hydro-
gen-bond donor states as a slow process (second column in
Figure S) and the exchange between the two hydrogen-bond
donor states as a slightly faster process (fourth column in
Figure 5).

As in the SqQRA-Markov models, the eigenvectors are largely
unaffected by the magnitude of 7, (Figures S2—S5). In the
vacuum simulations (Figures S2 and S3), the implied time
scales decrease slightly with decreasing friction, but not orders
of magnitude as in the SQRA-Markov model. In the simulations
with explicit solvent (Figures S2 and S3), the implied time
scales change minimally when 7, is varied, because the friction
predominantly arises from interactions with Lennard-Jones
particles.

The sampling-based MSMs yield additional processes that
are not part of the dominant eigenspace of the SqQRA-Markov
model. Specifically, we find processes that represent the
exchange between inner and outer regions of the configuration
grid (e.g, third eigenvector in row 2 in Figure 5). This
prompted us investigate boundary conditions further, see the
following section.

4.3. Boundary Conditions. In our current SQRA model,
transitions out of the grid into the bulk are not accounted for.
A molecule in a boundary cell (one of the grid cells with the
largest radial distance between molecules A and B) can diffuse
to neighboring grid cells but its probability of diffusing through
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the outer surface between the current cell and the bulk is zero.
Implementing these reflecting boundary conditions in an MD
simulation is difficult, as a hard reflecting boundary or a strong
restraining potential at the grid boundary will distort the
dynamics in, at least, the outer grid cells. We therefore
permitted unbinding and transitions across the grid boundary
into the bulk. However, to prevent water molecule B from
diffusing away from molecule A, we added a restraining
potential to our system that starts increasing when oxygen—
oxygen distance reaches 0.5 nm. This distance must be large
enough to not disturb the bound structures of the system,
which we confirmed in Figure 6 where the restraining potential
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Figure 6. Radial distribution function (full line) and restraint
potential (dashed line) for a MD run of two water molecules in a
box of Lennard-Jones particles.

is plotted alongside oxygen—oxygen radial distribution
function from one of the MD simulations in explicit solvent.
The radial distribution function of water in that figure might
seem unusual, but the absence of second maximum and bulk
limit is simply the consequence of simulating only two water
molecules, where only the first solvation shell is present.
Because of the restraining potential, we observe some would-
be transitions into the bulk as bounces off the restraining
potential. There is a small peak at around 0.5 nm in the
distribution in Figure 6 that can be attributed to this bounce.
To enforce the reflecting boundary conditions in our sampling-
based MSMs, we considered two approaches to treat
transitions out of the grid. In the first approach we include
all distant out-of-grid configurations in the MSM estimation
and assign them to the closest grid cell (closest orientation,
closest direction and largest radius). This effectively extends
the boundary cells of the translation grid indefinitely to R = oo.
In the second approach, distant out-of-grid configurations are
assigned to none of the cells. When building the MS count
matrix, transitions that either start or end with an unassigned
structure are then omitted.

Figure 7 illustrates the impact of the boundary treatment on
sampling-based MSMs. The eigenvectors and eigenvalues of
the two MSMs are nearly identical, except for the second
eigenvector which represents the exchange between close and
distant structures. As expected, including out-of-grid config-
urations in the MSM estimation causes this process to
represent the exchange across the grid boundary into the
bulk. When these configurations are omitted, this process still
reflects a radial transition but is now confined within the grid.
In the MD-MSM in which distant structures are omitted, the
radial transitions appear to mix with transitions between
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Figure 7. First five eigenvectors of the water dimer system at three
different treatments of distant structures. Top: SQRA model, distant
structures do not exist by construction, transition into this region is
assumed impossible; middle: MD trajectory in vacuum, distant
structures are assigned to the best available cell; bottom: MD
trajectory in vacuum, distant structures are not assigned to any cell.
Coupling time to a thermostat is 7 = 0.1 ps in all three cases. For
more information on distant structures, assigned and omitted
approaches see text. For explanation of red/blue regions see
description of Figure 5. The MD MSM in which distant structures
were omitted featured a transition into a state with low population as
a slow process. This is a known numerical artifact of MSMs and the
eigenvector is therefore not shown.

metastable states in eigenvectors 4. It is important to note that
the reflective boundary is highly artificial. We plan to extend
the SQRA-Markov model to more accurately model transitions
into the bulk, potentially by employing approaches such as
those in ref 69.

4.4, Nonlinear Coordinates and Anisotropic Diffu-
sion. We model translational diffusion in Cartesian coor-
dinates in eq 2, but construct the translational grid in spherical
coordinates. Specifically, we create the translational grid as a
Voronoi tessellation in spherical coordinates and calculate the
corresponding grid cell volumes, surfaces and distances
accordingly. This approach induces a slight error in the
1 Su//

prefactor in eq 7. The derivation of this prefactor that

ap Va

the grid is a Voronoi tessellation in the same coordinate system
as the Fokker—Planck operator, which, in this case, is the 3-
dimensional Cartesian space. However, this deviation is likely
minor because for a dense, regular spherical grid, the Voronoi
tessellation in spherical coordinates closely resembles the
equivalent in Cartesian coordinates, resulting in nearly
identical grid cells. Figure 8 illustrates this effect in the 2-
dimensional space for polar coordinates: red dots define a
regular polar grid, and the Voronoi tessellation in polar
coordinates (gray lines) almost perfectly overlaps with the
Voronoi tessellation in the Cartesian coordinates (blue lines).
For the translation grid in our model, it is however possible to
replace the Voronoi tessellation in spherical coordinates by a
Voronoi tessellation in Cartesian coordinates. We report the
corresponding equations in the Supporting Information.

The situation is more complicated for the rotation grid,
because rotational diffusion occurs in inherently nonlinear
coordinates. This nonlinearity introduces an anisotropic
diffusion tensor in the Fokker—Planck operator, meaning
that D in eq 2 is no longer a constant but becomes a matrix

D € R**®, This matrix depends on the moments of inertia of
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Figure 8. Comparison between Voronoi tessellation in polar
coordinates (dashed gray lines) and Voronoi tessellation in Cartesian
coordinates (blue grid) for a regular grid in polar coordinates (r, 0)

(red dots).

the rotating molecule. The further the molecule’s shape
deviates from spherical symmetry, the more D will deviated
from DId, where Id is the identity matrix. These deviations
lead to inaccuracies in the current version of the SqQRA-Markov
model, which essentially assumes a spherical particle. A
method for estimating the rotational diffusion tensor from
MD simulations has been proposed in ref 70. To incorporate
anisotropic diffusion into the SQRA-Markov model, we need an
analytical expression for the rotational diffusion tensor and
must rederive the prefactor in eq 7 for for anisotropic diffusion.

4.5. Computational Cost. Our grid-based approach scales
to molecular systems that are considerably larger than a water
dimer. Specifically, we tested a dimer of two fluorinated
fullerenes C4F,—CyoF,, and the protein—protein complex of
bovine pancreatic trypsin inhibitor (BPTI) with trypsin.”>”"
SqRA-MSM eigenvectors for these systems are reported in the
Supporting Information in Figures SI 6 and SI 7, but should be
interpreted with caution.

The computational cost of the grid-based models of our
three test systems are shown in Figure 9, broken down by the
workflow steps that were introduced in Figure 3. While all
steps are orchestrated through the molgri software, only the
first step is truly dependent on our algorithms, the energy
calculation is handled by GROMACS®~ and the decom-
position is performed by the python package scipy.”® The total
wall-clock time to calculate each of the three models on an
Intel Xeon processor is about an hour, but the individual
workflow steps scale differently with system size and merit a
more detailed discussion.

The combined task of generating the grid and the
pseudotrajectory increases in cost with the number of atoms
N, but the scaling remains highly sublinear. The increase is
caused by the generation of the pseudotrajectory. The
sublinear scaling is expected, as transformations affect the
center of mass and principal axes, and consequently the
transformation does not need to be recomputed for each atom
individually. Additionally, part of the system size effect arises
from the increased cost of writing larger files as the number of
atoms grows. The computational cost of generating the
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Figure 9. Comparison of time needed for the total mo1gri+SQRA
workflow for systems spanning three different orders of magnitude in
size: water dimer (6 atoms), fluorinated fullerene dimer (124 atoms)
and Trypsine-BPTI system (4115 atoms). A 64,000-cell grid is used in
all of the examples, only the radial distances are modified to account
for different sizes of the molecules. The breakdown of the time
needed for major steps of the process is shown on the right side. In
addition to the separate steps, total time of the process includes some
additional steps like file management and plot generation shown in
gray on the total time plot. Runtime was measured five times for
calculations running on up to ten cores of an Intel(R) Xeon(R)
processor (2.20 GHz, 22 cores, 56 MB cache).

underlying grid is entirely independent of the number of
atoms N and only depends on the number of grid points Nj. In
general, the cost of generating the grid scales superlinearly with
the number of grid points. However, we implemented an
efficient network-based representation of polygons, ensuring
that grid generation remains a matter of seconds. The
combined cost for grid and pseudotrajectory generation for
N, = 64,000 is thus less than 10 min.

The computational cost of the energy evaluation rapidly
increases with system size, where the exact scaling depends on
the type of molecular energy function and how this function is
implemented. Empirical force fields, as used in this study,
typically scale as N In N and can be calculated so efficiently
that the 64’000 energy evaluations for each system are
completed within seconds for the water and the fullerene
system, and within slightly more than 5 min for the protein-
dimer. Thus, despite the steep scaling, energy evaluation
constitutes the smallest contribution to the overall computa-
tional cost in our test systems. However, the grid-based
approach is not restricted to empirical force fields. More
expensive energy functions, such as energies based on quantum
chemical calculations, can be used in lieu of a force field.

In our current setup, the largest contribution to the
computational cost is the eigendecomposition of the rate
matrix. The time needed and the success of eigendecompo-
sition of a large sparse matrix Q depends strongly on how well-
conditioned the matrix is. Therefore, we observe changes in
speed that are not directly related to the system size N or the
grid-size N, The decreasing trend in Figure 9 is probably
coincidental. Another critical resource in matrix decomposi-
tions is the computer memory, which currently limits our

approach to O(10°) grid points.”
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4.6. Comparison with Other Grid-Based Methods.
Although our method is not primarily designed for protein—
ligand binding, it is informative to compare it to molecular
docking approaches’>”’* and sampling-based methods for
protein—ligand binding, such as MSMs’~” and SEEKR2.”>7°

The objective of molecular docking is to generate potential
configurations of a protein—ligand system, often using grids in
translational and rotational space, and to identify low-energy
configurations through a single energy calculation per grid
point. In these two aspects, our method resembles molecular
docking. Specifically, because SQRA-MSMs also require only a
single energy calculation per grid point, our grid-based
approach is almost as computationally efficient as docking,
potentially enabling high-throughput screening of binding
partners.

Molecular docking cannot provide kinetic information
because, to accurately calculate the probability flux between
neighboring grid cells, the grid must meet specific require-
ments. First, it needs to be a Voronoi grid. Second, the grid
cells should be small and should be ideally of equal size. Third,
the geometric parameters of the grid cell must be known. Our
work has therefore focused on generating uniform Voronoi
grids”® and on deriving analytical expressions for their
geometric parameters (Section 2). With these two require-
ments in place, one can construct SQRA-MSMs for molecular
association, which give access to metastable states and
competing binding pathways, along with the associated time
scales. Since SQRA-MSMs require small grid cells, we generate
around O(10%) configurations for a molecular association
process, approximately 10 to 100 times more than a typical
docking run.

Sampling-based approaches for modeling molecular associ-
ation also frequently use grids to describe the kinetics,
estimating the probability flux between neighboring cells by
monitoring the cell-to-cell transitions in simulations. This
approach has two major drawbacks compared to the SqRA-
MSMs. First, accurately estimating the probability flux requires
multiple crossings of cell boundaries, demanding thousands of
simulation time steps and force evaluations—far more
computationally intensive than the single force evaluation per
grid cell in SQRA-MSMs. Second, it is challenging to ensure
convergence, as these simulations must thoroughly sample
both translational and rotational space. Additionally, the rates
and metastable states in sampling-based MSMs are sensitive to
statistical noise in flux estimates, making accuracy difficult to
achieve and control. By contrast, the accuracy of a SQRA-MSM
can be fully controlled by adjusting the space covered by the
grid and the grid resolution.

A major advantage of sampling-based approaches compared
to SQRA-MSMs is that simulations do not (usually) rely on the
rigid body assumption. Therefore, sampling-based approaches
naturally account for conformational flexibility of the two
molecules and for solvent effects, which we know to be major
contributors to molecular association. We anticipate that these
effects could be incorporated into our method by including
explicit solvent molecules to the energy calculation and by
performing a short energy minimization while restraining the
system to the grid cell. An alternative approach would be to
average the results over a brief MD simulation. Achieving fully
accurate energy values for each grid cell would ideally require
constructing a free-energy surface,”” although this is computa-
tionally expensive in six dimensions. In SEEKR2,”>’® each
individual grid cell can use a distinct simulation technique.
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This approach allows data from multiple sources, each with
different computational demands, to be seamlessly integrated
into a unified multiscale kinetic model. A similar strategy could
potentially be applied to link SQRA-MSM with sampling-based
approaches.

Overall, our grid-based approach to molecular association, in
its current version, is best suited for molecular systems which
require a computationally demanding energy function and are
well approximated by assuming rigid-body behavior.

5. CONCLUSION AND OUTLOOK

The grid-based approach to molecular association offers
significant computational advantages, as it requires only a
single energy evaluation per grid cell, making it highly efficient.
Notably, the number of grid points does not increase with
system size, allowing the method to be applied to large

molecular systems. With O(10*) to O(10°) grid points, this
approach is compatible with computationally expensive energy
functions, including energies based on electronic structure
calculations.

We implemented the grid-based approach to molecular
association in the python package MolGri. In its current
version, the MolGri package offers a systematic approach to
generating configurations for molecular association processes
and analyzing their energies. This functionality makes it
immediately valuable for studies of molecular association and
for producing input structures for electronic structure
calculations. MolGri can also be used to generate cluster or
solvation shell configurations by first constructing a dimer grid,
extracting the low-energy configurations, and then iteratively
adding more molecules, using the extracted configurations as
molecule A in subsequent steps.

MolGri can also be employed to construct SQRA-Markov
models, which we have demonstrated to accurately identify the
metastable states of molecular association processes. These
models provide insight into the long-range interactions that
steer molecular association and the underlying binding
mechanism. However, the current implementation does not
yet yield dynamically accurate results. The primary limitations
are the neglect of transitions into the bulk and the omission of
anisotropic rotational diffusion, which we aim to address in the
next version of the model.

In summary, this grid-based method significantly reduces the
number of energy evaluations required compared to MD
simulations of molecular associations processes, while still
offering a comprehensive view of the configuration space and
estimates of key transition kinetics. Its potential applications
span a range of fields, including dimer formation, nanoparticle
growth, molecular self-assembly, protein—ligand binding,
host—guest systems, and chemical reactions.
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The python package MolGri can be installed from PyPi
(pip install molgri) or from the development
repository on GitHub: (https://github.com/bkellerlab/
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Bl ADDITIONAL NOTE

"The difference between the mathematical objects sphere and
ball is important here. We are interested in the three-
dimensional object (embedded in 4D) of a 3-sphere, which
is the surface of the 3-ball. The volumes of our hypersphere
cells are sections of the 3-sphere. We are at no point interested
in the 4D volume of a 3-ball.
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