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Introduction

Mathematics is often most intriguing when we leave the boarders of classical disci-
plines and instead connect different areas. Such correspondences will help us to shed
new light on mathematical questions, as they allow the translation of problems and
techniques between different mathematical languages.

The topic of this thesis is, simply said, located in combinatorics, algebra and
discrete and real algebraic geometry. The thesis consists of two parts. In Part I, we
study polytopes associated to posets and double posets. These polytopes are very
combinatorial in nature and much of their geometry can be described in terms of
the combinatorics of the underlying (double) poset. Our main objects of study in
Part II are real varieties invariant under the action of a finite reflection group and,
in particular, relations to the discrete geometry of the associated reflection arrange-
ment. In the following, we will give a concise overview over both topics. Rigorous
definitions will be given later on.

A finite partially ordered set (or poset, for short) is a finite set P together with
a reflexive, transitive and anti-symmetric relation �. The notion of partial order
pervades all of mathematics and the enumerative and algebraic combinatorics of
posets is underlying in computations in virtually all areas. Stanley [73] studied two
convex polytopes for every poset P which, in quite different ways, geometrically
capture combinatorial properties of P . These "poset polytopes" are very natural
objects that appear in a variety of contexts in combinatorics and beyond (see for
instance [2, 26, 55, 71, 80]).

The order polytope O(P ) is the set of all order-preserving functions into the
interval [0, 1]. That is, all functions f : P → R such that

0 ≤ f(a) ≤ f(b) ≤ 1

for all a, b ∈ P with a � b. Many properties of P are encoded in the geometry
of O(P ). Facets of O(P ) correspond to cover relations and maximal and minimal
elements in P and the vertices of O(P ) are in bijection with order ideals in P . More
generally, faces of arbitrary dimension relate to quotients of P , that is, posets ob-
tained by consecutively contracting cover relations in P . In particular, faces of order
polytopes are again order polytopes. Stanley [73] moreover describes a canonical
unimodular triangulation of O(P ) whose simplices arise from chains of order ideals.
Maximal simplices correspond to linear extensions of P , which also yields a simple
combinatorial formula for the volume of O(P ). This bridge between geometry and
combinatorics can, for example, be used to show that computing volume is hard
(cf. [11]) and, conversely, geometric inequalities can be used on partially ordered
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sets (see [56, 73]). Generalizing the volume formula, even the Ehrhart polynomial
EhrO(P )(n) = |nO(P )∩ZP | can be described in terms of P : Up to a shift, it coincides
with the order polynomial ΩP (n) of P (see [74, Sec. 3.15.2]).

The chain polytope C(P ) is the collection of functions g : P → R such that

0 ≤ g(a1) + g(a2) + · · ·+ g(ak) ≤ 1

for all chains a1 ≺ a2 ≺ · · · ≺ ak in P . In contrast to the order polytope, C(P )
does not determine P . In fact, C(P ) only depends on the comparability graph of P
and bears strong relations to stable set polytopes of perfect graphs. Order and chain
polytopes are closely related. Stanley defined a piecewise linear homeomorphism
ΦP between O(P ) and C(P ) whose domains of linearity are exactly the simplices
of the canonical triangulation. This transfer map takes the canonical triangulation
of O(P ) to a triangulation of C(P ) and, since ΦP is lattice-preserving, it follows
that EhrO(P )(n) = EhrC(P )(n). In particular, vol(O(P )) = vol(C(P )), which, on the
combinatorial side, shows that the number of linear extensions of P only depends on
its comparability graph.

A double poset P is a triple consisting of a finite ground set P and two partial
order relations �+ and �− on P . We will write P+ = (P,�+) and P− = (P,�−)
to refer to the two underlying posets. Double posets were introduced by Malvenuto
and Reutenauer [60], generalizing Stanley’s labelled posets [72]. The combinatorial
study of general double posets gained momentum in recent years with a focus on
algebraic aspects (see for example [24, 25]). Our goal is to build a bridge to geometry
by introducing "two double poset polytopes" that, like the chain- and the order
polytope, geometrically reflect the combinatorial properties of double posets and, in
particular, the interaction between the two partial orders. To any double poset P,
we associate the double order polytope

TO(P) := conv
{

(2O(P+)× {1}) ∪ (−2O(P−)× {−1})
}
.

In other words, we embed 2O(P+) and −2O(P−) at heights 1 and −1 in RP × R,
respectively, and take their convex hull. Analogously, the double chain polytope is

TC(P) := conv
{

(2C(P+)× {1}) ∪ (−2C(P−)× {−1})
}
.

Both polytopes are full-dimensional and the vertices of TO(P) (resp. TC(P)) are in
bijection with filters (resp. antichains) in P+ and P−. Analogous to the case of ordi-
nary poset polytopes, we aim for a combinatorial description of faces, triangulations,
volume and Ehrhart polynomials of TO(P) and TC(P). Also, it is natural to ask
whether Stanley’s transfer map extends to the case of double posets (see Figure 1).

Our main results are the following. After treating basics regarding posets and
double posets in Section 1.1 and order polytopes in Section 1.2, Section 1.3 is devoted
to studying the facet structure of double order polytopes. We show that facets of
TO(P) relate to alternating chains and alternating cycles in the underlying double
poset P. For the important case of compatible double posets, that is, double posets
where P+ and P− have a common linear extension, this yields a complete description
of the facets of TO(P) in terms of the combinatorics ofP. Furthermore, we determine
which of these polytopes are 2-level, a geometric property which arises, for instance,
in the context of centrally symmetric polytopes, optimization and statistics [36, 37,



INTRODUCTION ix

2O(P+)
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?

Figure 1: Stanley’s transfer map relates the grey top and bottom facets. Does this
extend to the whole double poset polytopes?

41, 68, 69, 78]. Moreover, using polars we prove a surprising connection between
certain double order polytopes and valuation polytopes, another class of polytopes
associated to distributive lattices, that was introduced by Geissinger [32].

Chapter 2 is again devoted to the study of double order polytopes, but we take a
more algebraic perspective. Every integral polytope P has an associated toric ideal
IP , an algebraic object that captures much of the geometry of P. For example,
Sturmfels’ correspondence [77] relates initial ideals of IP to regular triangulations of
P. We recall some of these well-known basics in Section 2.1. In Section 2.2, we apply
this machinery to double order polytopes. The toric ideals corresponding to ordinary
order polytopes are closely related to Hibi rings, which have been introduced in the
context of algebras with straightening laws. Analogously, for the case of double order
polytopes, we introduce double Hibi rings. For compatible P, we describe a canonical
Gröbner basis of the toric ideals of TO(P), which can be determined directly from the
combinatorics of P. On the geometric side, this yields a regular, flag and unimodular
triangulation of TO(P) and, in particular, a simple formula for its volume. We also
obtain a description of the complete face lattice of TO(P) in terms of the underlying
Birkhoff lattices of P+ and P−.

In Chapter 3, we finally turn to the study of double chain polytopes. First note
that the ordinary chain polytope C(P ) ⊂ RP≥0 has the property that for any f, g ∈ RP

g ∈ C(P ) and 0 ≤ f(p) ≤ g(p) for all p ∈ P implies f ∈ C(P ).

Polytopes with this property are called anti-blocking polytopes and were introduced
by Fulkerson [30] in the context of combinatorial optimization. It turns out that
much of the theory for double chain polytopes can be developed in this more general
setting. Basics and relations between chain polytopes, stable set polytopes and anti-
blocking polytopes are treated in Section 3.1. In Section 3.2, we study Cayley sums
of the form

P1 � P2 := conv(P1 × {1} ∪ −P2 × {−1}) ⊂ Rn × R

for anti-blocking polytopes P1,P2 ⊂ Rn. This subsumes double chain polytopes as
well as Hansen polytopes [41]. We give an explicit description of the polar of P1 � P2
in terms of P1 and P2, which specializes to a combinatorial description of the facets
of TC(P) for arbitrary double posets P. For some cases, this yields a connection



x

between the number of facets of TO(P) and TC(P), which relates to work by Hibi
and Li [47] for ordinary poset polytopes. Moreover, we classify the 2-level polytopes
among the Cayley sums P1 � P2, which are precisely Hansen polytopes associated
to perfect graphs. Section 3.3 is devoted to subdivisions and triangulations. We
describe a canonical subdivision of P1 � P2 for anti-blocking polytopes P1,P2 ⊂ Rn,
which can in particular be used to lift two triangulations of P1 and P2, respectively,
to a triangulation of P1 � P2. Returning to the case of double chain polytopes, for an
arbitrary double poset P, we are able to extend Stanley’s triangulation of the bottom
and top facets C(P+) and C(P−) to a triangulation of TC(P). This triangulation is
regular, flag and unimodular. On the algebraic side, it yields a squarefree quadratic
Gröbner basis of the associated toric ideal. Moreover, we obtain a simple volume for-
mula for P1 � P2, which in the special case of double chain polytopes only depends
on the combinatorics of P. Whenever P is compatible, it follows that the triangu-
lations of TO(P) and TC(P) are combinatorially equivalent and hence TO(P) and
TC(P) have the same volume. A reason for this is given in Section 3.4: For compat-
ible P, we solve the problem from Figure 1 and define a lattice-preserving piecewise
linear homeomorphism between TC(P) and TO(P) which takes the triangulation of
TC(P) to the triangulation of TO(P) from Section 2.2. This, in particular, implies
that TC(P) and TO(P) even have the same Ehrhart polynomial. For this purpose
it seems easier to work with double chain polytopes and, more generally, we give
an explicit description of the Ehrhart quasi-polynomial of P1 � P2 for rational anti-
blocking polytopes P1,P2. Yet again, this specializes to a combinatorial formula for
the Ehrhart polynomial of TC(P), which also holds true for TO(P) whenever P is
compatible.

The main geometric objects in Part II are the following. A real variety X ⊆ Rn
is the set of real points simultaneously satisfying a system of polynomial equations
with real coefficients, that is,

X = VR(f1, . . . , fm) := {p ∈ Rn : f1(p) = f2(p) = · · · = fm(p) = 0},

for some f1, . . . , fm ∈ R[x] := R[x1, . . . , xn]. A fundamental problem of real algebraic
geometry is to certify when a real variety is nonempty (see for example [5]). Timo-
fte [79] studied the special case of real varieties invariant under the action of the sym-
metric group Sn, in other words, varieties that are invariant under permuting coordi-
nates. Every Sn-invariant variety can be defined in terms of symmetric polynomials,
that is, polynomials f ∈ R[x] such that f(x1, x2, . . . , xn) = f(xτ(1), xτ(2), . . . , xτ(n))
for every τ ∈ Sn. Important examples of symmetric polynomials are the elementary
symmetric polynomials

ek(x) :=
∑

1≤i1<···<ik≤n
xi1 · · ·xik

for k ∈ [n] := {1, . . . , n}. In fact, by the fundamental theorem of symmetric poly-
nomials, every symmetric f can uniquely be written as a polynomial in e1, . . . , en.
Phrased differently, we have f(x) = F (e1(x), . . . , en(x)) for some F ∈ R[y1, . . . , yn].
We call f k-sparse if F only depends on the variables y1, . . . , yk and an Sn-invariant
variety X is called k-sparse if X = VR(f1, . . . , fm) for k-sparse symmetric polyno-
mials f1, . . . , fm.
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Theorem 1 ([79]). Let X ⊆ Rn be a nonempty k-sparse Sn-invariant variety. Then
X contains a point p = (p1, . . . , pn) with at most k distinct coordinates, that is, we
have |{p1, . . . , pn}| ≤ k.

This result can be interpreted in a more geometric way. If we regard Sn as a
group of orthogonal transformations on Rn, it is generated by the reflections fixing
pointwise the hyperplanes Hij := {p : pi = pj} for 1 ≤ i < j ≤ n. Consider the
associated collection of hyperplanes H := {Hij : 1 ≤ i < j ≤ n}. For 0 ≤ k ≤ n, we
write Hk for the set of points which lie on n− k linearly independent hyperplanes in
H. Timofte’s theorem now states that for k ∈ [n], every nonempty k-sparse varietyX
intersects Hk. Of course, if X is defined using all elementary symmetric polynomials,
then X may or may not intersect the hyperplane arrangement (see Figure 2). Such
a viewpoint can be taken in a more general setting.

Figure 2: The symmetric zero set of f = (x21 + x22 + x23 − 2)2 + (x31 + x32 + x33)
2 − c

for four values of c and the reflection arrangement of S3 acting essentially on the
subspace {p : p1 + p2 + p3 = 0} ⊂ R3.

A (real) reflection group G is a group of orthogonal transformations of Rn that
is generated by reflections. Its associated reflection arrangement is

H = H(G) := {H = ker g : g ∈ G reflection}

and the flats of H are the linear subspaces of Rn which arise as intersections of
hyperplanes in H. Analogous to the case of Sn, for 0 ≤ k ≤ n, we denote by
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Hk(G) (or simply Hk) the union of all flats of dimension k and we set Hn := Rn.
We call G essential if G does not fix a nontrivial linear subspace or, equivalently,
if H0 = {0}. Reflection groups naturally occur in connection with Lie groups and
Lie algebras and are well-studied from the perspective of geometry, algebra, and
combinatorics [10, 31, 53]. A complete classification of reflection groups can be
given in terms of Dynkin diagrams (see [53]). There are four infinite families of
irreducible reflection groups, Sn

∼= An−1, Bn, Dn and I2(m), and six exceptional
groups, H3, H4, F4, E6, E7, and E8.

The linear action of G on Rn induces an action on R[x] = R[x1, . . . , xn] by
g · f(x) := f(g−1 · x). Chevalley’s Theorem [53, Ch. 3.5] states that the ring R[x]G

of polynomials invariant under G is generated by algebraically independent homo-
geneous polynomials π1, π2, . . . , πn ∈ R[x]. The collection π1, . . . , πn is called a set
of basic invariants for G. The basic invariants are not unique, but their degrees
di(G) := deg πi are. Throughout this thesis, we will assume that the basic invariants
are labelled such that d1 ≤ d2 ≤ · · · ≤ dn. In accord with Sn-invariant varieties, we
call a G-invariant variety X = VR(f1, . . . , fm) k-sparse if f1, . . . , fm can be chosen
in R[π1, . . . , πk] for some choice of basic invariants π1, . . . , πn.

In the light of the above, it is natural to ask whether Theorem 1 extends to other
reflection groups. Our main result is the following.

Theorem 2. Let G be a reflection group of type I2(m), An−1, Bn, Dn, H3, or F4 and
X a nonempty G-invariant real variety. If X is k-sparse, then X ∩Hk(G) 6= ∅.

We also provide computational evidence that Theorem 2 should hold true for the
group H4 (see Section 6.1.2) and thus we conjecture that it extends to all essential
and irreducible reflection groups. For arbitrary reflection groups, we can prove the
following result, which in particular proves the case k = n − 1 of Theorem 2 for all
essential reflection groups.

Theorem 3. Let G be an essential reflection group acting on Rn and assume that
X = VR(f1, . . . , fm) is G-invariant and nonempty. If there exists some j ∈ [n] such
that f1, . . . , fm ∈ R[πi : i 6= j], then X ∩Hn−1(G) 6= ∅.

Independent from our work, Acevedo and Velasco [1] addressed the related ques-
tion of certifying non-negativity of G-invariant polynomials. Let us note that all our
results also apply to semialgebraic sets instead of real varieties and, in particular,
the main result in [1] is a consequence of Theorem 3. For details, see Section 6.1.1.

Part II is structured as follows. Chapter 4 serves as an extended introduction.
In Section 4.1, we recall some concepts and theory on reflection groups, such as
root systems, Dynkin diagrams and the classification of irreducible reflection groups.
Section 4.2 treats their invariant theory and the geometry of invariant varieties.
We recall Timofte’s theorem for symmetric polynomials and give a more detailed
overview of our results.

In Chapter 5, we prove Theorem 2 for the infinite families An, Bn and Dn. The
proof for An and Bn presented in Section 5.1 uses a strengthened version of a result
by Steinberg [76], which does not hold true for all reflection groups. However, in
Section 5.2 we are still able to give a proof for Dn, which turns out to be considerably
more involved than the previous cases.
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Instead of studying reflection groups case by case, we take a general approach
in Chapter 6. In Section 6.1, we introduce orbit spaces. We study their geometry
and boundary structure and prove a result that directly implies Theorem 3. As a
consequence, Theorem 2 follows for all groups of rank at most 3. Additionally, we
provide a proof for the group F4 and we give computational evidence that Theorem 2
should also hold true for H4. In Section 6.2, we turn to studying k-sparse varieties
for k < n − 1. Under a mild extra assumption on the defining polynomials, we
prove a Timofte-type result for arbitrary reflection groups. However, the dimension
of the strata that are intersected is in general not best possible (as can be seen for
groups of type Dn) and difficult to compute. We provide upper bounds using the
combinatorics of parabolic subgroups. Finally, using perturbation techniques, we
obtain an alternative proof of Theorem 2 for the groups An and Bn.

Reflection groups are closely related to semi-simple Lie algebras and in Sec-
tion 6.3, we translate Theorem 2 into an analogous result for varieties invariant
under the action of the Lie groups SLn and SOn.

So far we have only worked over the real numbers R. However, precisely the same
questions can be asked for complex reflection groups. Note that neither real results
have implications for the complex case nor vice versa and even for the simplest case
of the symmetric group it is not known whether Timofte’s theorem holds. As a first
step into the complex world, we prove in Section 6.4 that for the large class of well-
generated complex reflection groups, every nonempty (n − 1)-sparse variety meets
the reflection arrangement.

Part I is based on joint work with Tom Chappell and Raman Sanyal and will
appear in [14]. Apart from Section 6.2.3 and Section 6.4, the results of Part II will
be published in [29], which is joint work with Cordian Riener and Raman Sanyal.
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Chapter 1

Double order polytopes

A prominent class of polytopes associated to posets are Stanley’s order polytopes [73].
In this chapter we will introduce and study double order polytopes arising from
double posets, a notion introduced by Malvenuto and Reutenauer [60]. Double order
polytopes are very combinatorial in flavor and much of their geometry, such as their
volume, faces and triangulations, can be described in terms of the underlying double
poset.

Section 1.1 deals with the basic combinatorial concepts that will be needed later
on: Posets and double posets. In Section 1.2, we move on to the geometry of order
polytopes and recall some of their properties discovered by Stanley [73]. Our main
objects of interest, double order polytopes, will be studied in Section 1.3.

1.1 Posets and double posets

In this section, we introduce posets and double posets, the combinatorial objects
which will be essential for all what comes later. As a reference for background and
additional information on posets we recommend the first volume of Stanley’s "Enu-
merative Combinatorics" [74]. Double posets were first studied by Malvenuto and
Reutenauer [60] in the context of combinatorial Hopf algebras, generalizing Stanley’s
labelled posets [72]. The combinatorial study of general double posets gained mo-
mentum in recent years with a focus on algebraic aspects; see, for example, [24, 25].

1.1.1 Partially ordered sets

A partially ordered set (or poset) is a pair (P,�), where P is a set and � is a
binary relation on P such that for all a, b, c ∈ P we have
(i) a � a (reflexivity),
(ii) a � b and b � c imply a � c (transitivity) and
(iii) a � b and b � a imply a = b (anti-symmetry).
We will sometimes abuse notation and write P instead of (P,�). Since we are
exclusively working with finite posets, we will tacitly assume |P | < ∞ throughout.
We denote the natural numbers {0, 1, 2, . . . } by N and we write N>0 for the set
of strictly positive natural numbers. Three very natural families of posets are the
following.

3
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Example 1.1. Let n ∈ N>0.
(1) The finite subset [n] := {1, 2, . . . , n} ⊂ N>0 together with the the usual order ≤

on N forms a poset, called the n-chain, which we will denote by Cn.
(2) The same ground set [n] with no relations between distinct elements is called

the n-antichain and will be denoted by An.
(3) The n-comb is the poset Combn on the ground set {a1, . . . , an, b1, . . . , bn} such

that ai � aj for all i, j ∈ [n] with i ≤ j and bi � ai for i ∈ [n].

Two elements a, b of a poset P are comparable if a � b or b � a. Otherwise,
a and b are incomparable. For instance, for n ∈ N>0, every two elements in
the chain Cn are comparable, whereas every two elements in the antichain An are
incomparable. If a � b and a 6= b we write a ≺ b. A relation of the form a ≺ b is
called cover relation if it is minimal in the sense that there is no c ∈ P such that
a ≺ c ≺ b. In this case we write a ≺· b. For a, b ∈ P with a � b the closed interval
between a and b is

[a, b] := {p ∈ P : a � p � b}.

An element a ∈ P is called minimal (resp. maximal) if there is no b ∈ P with
b ≺ a (resp. a ≺ b). Moreover, a is called least (resp. greatest) element if for
every b ∈ P we have a � b (resp. a � b). Of course, not every poset has a least and
greatest element. However, for every poset P we can adjoin a least element 0̂ and a
greatest element 1̂. The resulting poset with ground set P ∪ {0̂, 1̂} will be denoted
by P̂ .

For two posets (P,�P ) and (Q,�Q), a map f : P → Q is called order-
preserving if for all a, b ∈ P

a �P b implies f(a) �Q f(b).

If f is bijective and its inverse map is also order-preserving, then f is an isomor-
phism. The posets P and Q are called isomorphic if there exists an isomorphism
f : P → Q. A linear extension of a poset P with |P | = n is an order-preserving
bijection f : P → Cn. A linear extension can be thought of as a labelling of the
elements of P with 1, 2, . . . , n which respects the order relations in P .

The Hasse diagram of a poset P is the graph on the elements of P such that a
and b form an edge if and only if a ≺· b is a cover relation. Usually the direction of
the edges is indicated by drawing b above a. Figures 1.1, 1.2 and 1.3 show the Hasse
diagrams of the posets from Example 1.1.

Figure 1.1: The chain C4. Figure 1.2: The antichain
A4.

Figure 1.3: Comb8.
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In addition to the Hasse diagram, there is a second canonical way of associating
a graph to a poset. The comparability graph G(P ) of a poset (P,�) is the
undirected graph with vertex set P and edge set {xy : x ≺ y or y ≺ x}. The poset
P is called connected if the graph G(P ) is connected. Note that it is usually not
possible to recover P from its comparability graph G(P ). For example, for any poset
(P,�) consider its opposite poset P op = (P,�op), where a �op b in P op if and only
if b � a in P . Two elements are comparable in P if and only if they are comparable
in P op and hence G(P ) = G(P op).

A poset (Q,�Q) is called a subposet of (P,�P ) if Q ⊆ P and a �Q b implies
a �P b. If also the converse holds, that is, for a, b ∈ Q with a �P b we have a �Q b,
then the subposet (Q,�Q) is called induced. Every subset Q ⊆ P determines a
unique induced subposet, which we will denote by P |Q. A subset Q ⊆ P with
|Q| = k is a chain (resp. antichain) in P if the induced subposet P |Q is isomorphic
to Ck (resp. Ak). A chain C in P is called maximal if it is maximal with respect
to inclusion, that is, if there is no chain C ′ in P with C ⊂ C ′ and |C ′| > |C|.

A poset (P,�) is called a lattice if for every a, b ∈ P there exist unique greatest
lower and least upper bounds, that is there exist elements a ∧ b and a ∨ b in P such
that for any c ∈ P

a ∧ b � a, b and c � a, b implies c � a ∧ b and
a ∨ b � a, b and c � a, b implies c � a ∨ b.

For a, b ∈ P , the elements a ∧ b and a ∨ b are called meet and join of a and b,
respectively. Note that every finite lattice has a least element and a greatest element
which are obtained by taking the meet or the join of all elements in the lattice.

Every poset comes with the following associated lattice. A subset J ⊆ P is
an order filter or simply a filter if it is up-closed, that is if a ≺ b and a ∈ J
implies b ∈ J. Observe that there is a one-to-one correspondence between filters and
antichains in P . For every filter J ⊆ P the set min(J) of minimal elements in J is
an antichain. Conversely, every antichain A ⊆ P generates a filter 〈A〉 := {b ∈ P :
b � a for some a ∈ A}. The set J (P ) consisting of all filters in P together with
inclusion relations forms a lattice, called the Birkhoff lattice of P . In this case, for
two filters J,K, their meet and join are simply the filters J∩K and J∪K, respectively.
The Birkhoff lattice J (P ) is distributive, that is, for filters J,K, L ∈ J (P ) the
distributivity laws

J ∪ (K ∩ L) = (J ∩ K) ∪ (J ∩ L) and
J ∩ (K ∪ L) = (J ∪ K) ∩ (J ∪ L)

are satisfied. Note that it is easy to reconstruct the poset P from J (P ). A filter
J ∈ J (P ) is called meet-irreducible if J 6= P and one cannot write J = K ∩ L
for two filters K, L 6= J. It is straightforward to observe that P is isomorphic to
the induced subposet of J (P ) consisting of all meet-irreducible filters. In fact, this
holds more generally: Birkhoff’s theorem [74, Thm. 3.4.1] states that every finite
distributive lattice J is isomorphic to J (P ), where P denotes the induced subposet
of meet-irreducible elements in J .
Example 1.2. We denote by PX the 5-element poset with Hasse diagram the shape
of an "X" depicted in Figure 1.4. This poset has four distinct linear extensions and
its Birkhoff lattice J (PX) in Figure 1.5 consists of 8 filters.
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1 2

3

4 5

Figure 1.4: The poset PX . The labels
correspond to a linear extension.

Figure 1.5: The Birkhoff lattice J (PX).
Meet-irreducible elements are underlined.

Example 1.3 (Dimension-2 posets). For a poset (P,�) the smallest number d such
that there exist linear extensions f1, . . . , fd of P satisfying

a � b if and only if fi(a) ≤ fi(b) for all i ∈ [d]

for all a, b ∈ P is called the order dimension of P . This notion was introduced
by Dushnik and Miller [20], who also observed that posets of order dimension 2 can
be characterized as follows. They are precisely posets of the form ([n],≺π), where
n ∈ N>0 and π = (π1, π2, . . . , πn) is a sequence of distinct integers and i �π j if
and only if i ≤ j and πi ≤ πj . Note that we may of course assume πi ∈ [n] for
all i ∈ [n], but later on it will be more convenient to allow arbitrary integers. A
chain in Pπ = ([n],�π) is a sequence i1 < i2 < · · · < ik with πi1 < πi2 < · · · < πik .
That is, chains in Pπ are in bijection to increasing subsequences of π. Conversely,
one checks that antichains (and hence filters) in Pπ are in bijection to decreasing
subsequences of π.

There is yet another characterization of posets of order dimension 2 due to Baker,
Fishburn and Roberts [3]. For a poset P , consider the incomparability graph
G(P ) with vertex set P and edges between incomparable elements. Then P has
order dimension 2 if and only if G(P ) is again a comparability graph, that is if there
exists a poset P ′ such that G(P ) = G(P ′). In this case, such a P ′ can easily be
constructed explicitly. For a poset of the form Pπ with π = (π1, π2, . . . , πn) we have
G(Pπ) = G(P−π), where −π = (−π1,−π2, . . . ,−πn).

1.1.2 Double posets and alternating chains

The combinatorial objects we are primarily interested in are the following. A double
poset is a triple P = (P,�+,�−) consisting of a finite ground set P and two partial
order relations �+ and �− on P . For σ ∈ {±} we will write Pσ (or sometimes also
(P)σ) for the underlying ordinary posets (P,�σ). The following classes of double
posets will serve as running examples throughout the rest of this work.

Example 1.4. (1) Every poset (P,�) trivially gives rise to an induced double
posetP = (P,�,�). We will often denote induced double posets by bold versions
of the original poset: For example, Cn, An and Combn are the double posets
induced by Cn, An and Combn, respectively, for n ∈ N>0.
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(2) For n ∈ N>0 we consider the double poset Altn with ground set {a1, a2, . . . , an}
and relations

ai ≺+ ai+1 for i odd and
ai ≺− ai+1 for i even.

(3) For n ∈ N>0 we denote by ACn the double poset consisting of a chain and an
antichain, that is (ACn)+ = Cn and (ACn)− = An.

Inspired by the previous example, we define the following. An alternating chain
C of a double poset P = (P,�±) is a sequence of distinct elements in P̂ = P ∪{0̂, 1̂}
of the form

0̂ = p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺±σ pk = 1̂,

where σ ∈ {±} and, to get the most out of our notational convention, we set

−σ :=

{
− if σ = +

+ if σ = −.

. We always require alternating chains to start in 0̂ and end in 1̂, since this will be
convenient later on. Note that it is possible that a sequence of elements p1, p2, . . . , pk
gives rise to two alternating chains, one starting with ≺+ and one starting with ≺−.
For every double poset there exist two trivial alternating chains 0̂ ≺+ 1̂ and 0̂ ≺− 1̂.
An alternating cycle C of P is a sequence of the form

p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺−σ p2k = p0,

with k > 0, σ ∈ {±} and pi 6= pj for 0 ≤ i < j < 2k. In fact, every alternating cycle
of length 2k yields k alternating cycles starting with ≺+ and k alternating starting
with ≺−.

Figure 1.6: The ’XW’-double poset PXW . The red and blue lines are the Hasse
diagram of P+ and P−, respectively.

Example 1.5. Consider the double poset PXW from Figure 1.6. That is, PXW is
the double poset such that (PXW )+ = PX and (PXW )− is the poset with Hasse
diagram "W". There are no alternating cycles in PXW . The 28 alternating chains
are shown in Figure 1.7.

We call a double poset P = (P,�+,�−) compatible if (P,�+) and (P,�−)
have a common linear extension. All posets in Examples 1.4 and 1.5 are easily seen
to be compatible. However it is easy to construct non-compatible examples. For
instance, any double poset P = (P,�+,�−) which contains two elements a, b such
that a ≺+ b and b ≺− a is not compatible. However, if no such elements exist, this
does not guarantee compatibility, as the following example shows.
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Figure 1.7: The 28 alternating chains in P̂XW .

Example 1.6. For n ∈ N, we denote by Cyc2n the double poset on the ground set
{a1, . . . , an, b1, . . . , bn} with relations ai ≺+ bi and bi ≺− ai+1 for i ∈ [n], where we
set an+1 := a1. It is easily seen that Cyc2n cannot be compatible. Indeed, for any
linear extension f , the element p = f−1(1) must be minimal in both (Cyc2n)+ and
(Cyc2n)−. However, such an element does not exist.

In fact, compatible double posets can be characterized as follows.

Proposition 1.7. A double poset is compatible if and only if it does not contain any
alternating cycles.

Proof. Adapting the argument from Example 1.6 we see that compatible double
posets cannot contain alternating cycles. For the converse, we observe that when-
ever a double poset P = (P,�+�−) does not contain alternating cycles, then there
exists an element p ∈ P that is minimal in both P+ and P−. We start defining a
linear extension by f(p) := 1. The double poset (P \ {p},�+,�−) does not contain
alternating cycles and an inductive argument finishes the proof.

Following [60], we call a double poset P special if �− is a total order. At the
other extreme, we call P anti-special if (P,�−) is an anti-chain. A plane poset,
as defined in [24] is a double poset P = (P,�+,�−) such that distinct a, b ∈ P are
≺+-comparable if and only if they are not ≺−-comparable. For two posets (P1,�1)
and (P2,�2), one classically defines the disjoint union �] and the ordinal sum
�⊕ as the posets on P1 ] P2 as follows. For a, b ∈ P1 ] P2 set a �] b if a, b ∈ Pi
and a �i b for some i ∈ {1, 2}. For the ordinal sum, �⊕ restricts to �1 and �2
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on P1 and P2, respectively, and p1 ≺⊕ p2 for all p1 ∈ P1 and p2 ∈ P2. Malvenuto
and Reutenauer [60] define the composition of two double posets (P1,≺1

±) and
(P2,≺2

±) as the double poset (P,�±) such that (P,�+) = (P1,≺1
+) ] (P2,≺2

+) and
(P,�−) = (P1,≺1

−) ⊕ (P2,≺2
−). The following is easily seen; for plane posets with

the help of [24, Prop. 11].

Proposition 1.8. Anti-special and plane posets are compatible. Moreover, the com-
position of two compatible double posets is a compatible double poset.

Plane posets have a simple combinatorial description that relates to the posets
of order dimension 2 from Example 1.3.

Example 1.9 (Plane posets). Let P = (P,�+,�−) be a compatible double poset.
We may assume that P = {p1, . . . , pn} are labelled such that pi ≺σ pj for σ = + or
= − implies i < j. By [25, Prop. 15], P is a plane poset, if and only if there is a
sequence of distinct numbers π = (π1, π2, . . . , πn) such that for pi, pj ∈ P

pi ≺+ pj ⇐⇒ i < j and πi < πj and
pi ≺− pj ⇐⇒ i < j and πi > πj .

This is to say, P+ is canonically isomorphic to the order-dimension-2 poset ([n],�π)
and P− is canonically isomorphic to ([n],�−π). Note that this also follows from
the characterization of dimension-2 posets in terms of comparability graphs from
Example 1.3. The non-trivial alternating chains in P are in bijection to alternating
sequences. That is, sequences i1 < i2 < i3 < · · · < ik such that k ≥ 1 and
πi1 < πi2 > πi3 < πi4 > · · · .

1.2 Order polytopes

This section introduces order polytopes and at the same time serves as an introduc-
tion to basic concepts from the theory of polytopes. The discrete-geometric results
we provide here and further background information on polyhedra can be found in
Ziegler’s "Lectures on Polytopes" [81]. For additional information on triangulations,
we also refer the reader to [17]. Most of the results on the combinatorics and geome-
try of order polytopes we collect here can be found in [73]. Order polytopes are very
natural objects that appear in a variety of contexts in combinatorics and beyond;
see for instance [2, 26, 34, 55, 71, 80].

1.2.1 Polytopes and order polytopes

Before talking about order polytopes, we recall some basic definitions and results. A
set P ⊆ Rn is called convex if for all a,b ∈ P, any convex combination λa+(1−λ)b
with 0 ≤ λ ≤ 1 lies in P. Moreover, P is a (convex) cone if for a,b ∈ P and
λ1, λ2 ∈ R≥0, the point λ1a + λ2b lies in P. The convex hull conv(P) and the
conical hull cone(P) of a set P ⊆ Rn are the inclusionwise smallest convex set
containing P and the smallest cone containing P, respectively. Moreover, the affine
hull aff(P) of P is the smallest affine subspace of Rn that contains P. Explicitly,
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we have

conv(P) =
{ k∑
i=1

λiai : k ≥ 1,ai ∈ P, λi ∈ R≥0 for i ∈ [k],
k∑
i=1

λi = 1
}
,

cone(P) =
{ k∑
i=1

λiai : k ≥ 1,ai ∈ P, λi ∈ R≥0 for i ∈ [k]
}

and

aff(P) =
{ k∑
i=1

λiai : k ≥ 1,ai ∈ P, λi ∈ R for i ∈ [k],
k∑
i=1

λi = 1
}
.

A polyhedron in Rn is the intersection of finitely many closed halfspaces, that
is, sets of the form {x ∈ Rn : `(x) ≤ c} for some linear functional ` : Rn → R and
some c ∈ R. In other words, a polyhedron P ⊆ Rn is of the form

P = {x ∈ Rn : Ax ≤ b}

for some A ∈ Rm×n and b ∈ Rm. If b = 0, then P is a polyhedral cone. A
bounded polyhedron is called a polytope. The dimension of a polyhedron P is
the dimension of its affine hull aff(P). The following result is fundamental for the
study of polytopes and polyhedral cones.

Theorem 1.10 ([81, Thm.1.1 and Thm.1.3]). (1) For every finite set V ⊂ Rn, the
convex hull conv(V ) is a polytope. Conversely, every polytope is the convex hull
of finitely many points.

(2) For every finite set V ⊂ Rn, the conical hull cone(V ) is a polyhedral cone. Con-
versely, every polyhedral cone is the conical hull of finitely many points.

Two polyhedra P1 ⊂ Rn and P2 ⊂ Rm are called linearly isomorphic (resp.
affinely isomorphic) if there exists a linear (resp. affine) map F : Rn → Rm which
restricts to a bijection between P1 and P2.

We will illustrate the above for the very combinatorial class of order polytopes.
For a finite poset P we will write RP for real vector space of functions from P to R.

Definition 1.11. Let P be a finite poset. The order polytope O(P ) ⊂ RP of P
is set of all order preserving functions into the interval [0, 1].

Order polytopes are always full-dimensional, that is, dim(O(P )) = |P |. The
definition directly yields a representation of order polytopes as bounded intersections
of halfspaces: A function f ∈ RP is contained in O(P ) if and only if

f(a)− f(b) ≤ 0 for all cover relations a ≺· b in P,
f(a) ≥ 0 for all minimal elements a ∈ P and
f(a) ≤ 1 for all maximal elements a ∈ P.

Alternatively, they can be regarded as the convex hull a finite set as follows. For a
set J ⊆ P we define the characteristic function 1J ∈ RP by

1J(a) =

{
1 if a ∈ F and
0 otherwise.
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Proposition 1.12 ([73, Cor.1.3]). Let P be a finite poset. Then

O(P ) = conv(1J : J ⊆ P filter).

Moreover, these points are in convex position, that is, for every filter J ⊆ P we have

1J /∈ conv(1′J : J 6= J′ ⊆ P filter).

Example 1.13. Chains and antichains give rise to two very natural classes of poly-
topes. For n ∈ N>0, the order polytope O(Cn) is an n-dimensional simplex, that
is, the convex hull of the n + 1 affinely independent points corresponding to filters
in Cn. At the other extreme, O(An) is the n-cube with vertex set {0, 1}n.

1.2.2 Faces

In the following, we denote by (Rn)∗ the dual space consisting of all linear func-
tionals on Rn. Whenever convenient we identify (Rn)∗ with Rn: A linear functional
` ∈ (Rn)∗ yields a vector in Rn consisting of images of the elements of a given basis.
Conversely, any u ∈ Rn yields a functional `u(p) := 〈u,p〉, where 〈u,p〉 denotes the
standard inner product on Rn. For a polyhedron P ⊆ Rn and a linear functional
` ∈ (Rn)∗ we define

P` := {p ∈ P : `(p) ≥ `(q) for all q ∈ P}.

A subset F ⊆ P is called face of P if either P = ∅ or F = P` for some ` ∈ (Rn)∗.
A face F ⊆ P with F 6= P is called proper. The subset of P consisting of all
points that are not contained in any proper face is called the relative interior
of P and will be denoted by relint(P). Faces are again polyhedra and hence for
a face F its dimension dim(F ) is the dimension of the affine hull aff(F ). Facets
are faces of dimension dim(P) − 1. Zero-dimensional faces are called vertices and
one-dimensional vertices are called edges. For a polyhedron P, we denote its set of
vertices by V (P). The number of faces in each dimension is collected in the face
vector or f-vector

f(P) :=
(
f0(P), f1(P), . . . , fdim(P)−1(P)

)
,

where fi denotes the number of i-dimensional faces of P for 0 ≤ i ≤ dim(P)−1. The
set of all faces of a polytope P together with the inclusion relation forms a poset,
which is called the face lattice of P. Note that this poset is indeed a lattice and
the meet and join of two faces F, F ′ ⊆ P are F ∩ F ′ and the inclusionwise smallest
face containing F ∪ F ′, respectively. If two polytopes have isomorphic face lattices,
they are called combinatorially equivalent. The normal cone of a face F of P
is defined as

NP(F ) = {` ∈ (Rn)∗ : F ⊆ P`}.

We can regard NP(F ) as a polyhedral cone with relative interior

relint(NP(F )) = {` ∈ (Rn)∗ : F = P`}.
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In the rest of this chapter, we will describe the facial structure of order polytopes.
To this end, let (P,�) be a finite poset. For an order relation a ≺ b in P , we define
a linear form `a,b : RP → R by

`a,b(f) := f(a)− f(b)

for any f ∈ RP . Moreover, for a ∈ P , we define `a,1̂(f) := f(a) and `0̂,a(f) := −f(a).
With this notation, f ∈ RP is contained in O(P ) if and only if

`a,b(f) ≤ 0 for all cover relations a ≺· b in P,
`0̂,b(f) ≤ 0 for all minimal elements b ∈ P and

`a,1̂(f) ≤ 1 for all maximal elements a ∈ P.
(1.1)

None of the above equations is redundant and hence each inequality corresponds to
a facet of O(P ). In particular, the number of facets of O(P ) equals the number of
cover relations in P̂ . More generally, faces of arbitrary dimension can be interpreted
in a very combinatorial way: For a face F ⊆ O(P ), define an equivalence relation on
P̂ by

a ∼ b if and only if f(a) = f(b) for all f ∈ F,

where we set f(0̂) := 0 and f(1̂) := 1 for all f ∈ F . Denote by B(F ) = {B1, . . . , Bm}
the set of equivalence classes, which form a partition of P̂ . Such a partition is called
a face partition. Since any face F ⊆ O(P ) is the intersection of some facets, it
follows from (1.1) that distinct faces yield distinct face partitions.

Stanley gave the following combinatorial characterization of the partitions of
P̂ which occur as face partitions. A partition B = {B1, . . . , Bm} of P̂ is called
connected if for 1 ≤ i ≤ m the block Bi is connected as an induced subposet of P̂ .
Moreover, B is called compatible if the binary relation �B on B defined by setting
Bi �B Bj if a � b for some a ∈ Bi and b ∈ Bj is a partial order. Note that B is
compatible if and only if the poset (B,�B) can be obtained from P̂ by consecutively
contracting cover relations.

Proposition 1.14 ([73, Thm. 1.2]). Let P be a finite poset. A partition B of P̂ is a
face partition if and only if it is connected and compatible.

Remark 1.15. It is easy to see that faces of order polytopes are again order poly-
topes. More precisely, for a poset P any face F ⊆ O(P ) with associated face partition
B(F ) is affinely equivalent to the order polytope of the poset (B(F )\{B1̂, B0̂},�B(F )),
where we denote by B1̂ and B0̂ the blocks containing 1̂ and 0̂, respectively. In par-
ticular, the dimension of a face F equals |B(F )| − 2.

To determine a face partition B(F ) it is of course sufficient to remember the
non-singleton blocks and we define the reduced face partition of F as B◦(F ) =
{Bi ∈ B(F ) : |Bi| > 1}. The following result follows directly from (1.1).

Proposition 1.16. Let P be a finite poset and F ⊆ O(P ) a nonempty face with
reduced face partition B◦ = {B1, . . . , Bk}. Then

NO(P )(F ) = cone{`a,b : a, b ∈ P̂ , a ≺ b, [a, b] ⊆ Bi for some i ∈ [k]}.
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Figure 1.8: A face partition B of P̂X with blocks indicated by different colors and
the block poset (B,�B), which is obtained from P̂X by contracting the red and blue
cover relations, respectively. This partition corresponds to a three-dimensional face
of O(PX).

Later, we want to identify linear functionals with their vectors of coefficients and
thus for ` ∈ (RP )∗ we write

`(f) =
∑
a∈P

`af(a).

We note the following simple but very useful consequence of Proposition 1.16.

Corollary 1.17. Let P be a finite poset and let F ⊆ O(P ) be a nonempty face with
reduced face partition B◦(F ) = {B1, . . . , Bk}. Then for every ` ∈ relintNO(P )(F )
and p ∈ P the following hold.
(1) If p ∈ min(Bi) for some i ∈ [k], then `p > 0.
(2) If p ∈ max(Bi) for some i ∈ [k], then `p < 0.
(3) If p 6∈

⋃
i∈[k]Bi, then `p = 0.

Proof. Let p ∈ min(Bi). For every ` ∈ NO(P )(F ) we have `p ≥ 0 by Proposition1.16.
If `p = 0 holds, then ` is contained in the face NO(P )(F ) ∩ {` ∈ RP : `p = 0}.
Hence ` /∈ relintNO(P )(F ), which proves (1). The proof of (2) is similar and (3) is
immediate.

By Proposition 1.12 we have

V (O(P )) = {1J : J ∈ J (P )}

and hence we can identify the vertices of O(P ) with filters in P . For a filter J ⊆ P ,
we write Ĵ := J ∪ {1̂} for the filter induced in P̂ . For a given face F ⊆ O(P ) the
following proposition, which follows immediately from (1.1), describes the filters that
give rise to vertices of F .

Proposition 1.18. Let F ⊆ O(P ) be a face with reduced face partition B◦ =
{B1, . . . , Bk} and let J ⊆ P be a filter. Then 1J ∈ F if and only if for all i = 1, . . . , k

Ĵ ∩Bi = ∅ or Ĵ ∩Bi = Bi.

That is, 1J belongs to F if and only if for all i ∈ [k], the filter Ĵ does not separate
any two elements in Bi.
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Example 1.19. Consider the face F ⊂ O(PX) arising from the face partition in
Figure 1.8. If we use the labelling from Figure 1.4, the vertices of F correspond
to the five filters

{
{4}, {3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}

}
. The face F is

3-dimensional and affinely isomorphic to a pyramid over a square.

1.2.3 A canonical triangulation

Before triangulating order polytopes, we need some definitions. A polytopal com-
plex is a finite nonempty collection K of polytopes in Rn such that
(i) for P ∈ K and for every face F ⊆ P we have F ∈ K and
(ii) for P,Q ∈ K, their intersection P ∩Q is a face of each.

The elements of K are called cells. The dimension dim(K) of the polytopal complex
is the largest dimension of a face in K. As in the case of polytopes, zero-dimensional
faces are called vertices and one-dimensional cells are edges. A cell is called max-
imal if it is not contained in a larger cell. To recover K it is sufficient to keep track
of the maximal cells.

If all elements of K are simplices, then K is called a geometric simplicial
complex. If we only want to record the face lattice of a geometric simplicial complex,
we can use the following notion. An abstract simplicial complex on a finite ground
set V is a collection ∆ of subsets of V such that X ∈ ∆ and Y ⊂ X implies Y ∈ ∆.
Every geometric simplicial complex K with vertex set V has an underlying abstract
simplicial complex ∆ on the ground set V which for every M ⊆ V satisfies

conv(v : v ∈M) ∈ K if and only if M ∈ ∆.

Conversely, every abstract simplicial complex can be realized as a geometric simplicial
complex, for example by choosing any set of affinely independent vertices.

Finally, for a polytope P ⊂ Rn, a polytopal complex K in Rn is called a subdi-
vision of P if the union of all Q ∈ K equals P. If all elements of K are simplices, K
is a triangulation of P.

We are now ready to put the above concepts to good use and describe Stanley’s
triangulation of the order polytope. For a chain C of filters in J (P ) of the form
J0 ⊂ J1 ⊂ · · · ⊂ Jk we define

F (C) := conv({1J0 ,1J1 ,1J2 , . . . ,1Jk}).

Note that F (C) is a simplex of dimension k with V (F (C)) ⊆ V (O(P )). Using this
notation, it is easy to describe a canonical triangulation of order polytopes.

Theorem 1.20 ([73, Sec.5]). Let P be a poset. Then the set of simplices {F (C) :
C ⊆ J (P ) chain} forms a triangulation of O(P ).

The abstract simplicial complex underlying the triangulation in Theorem 1.20
consists of all chains in J (P ). This complex is called the order complex of J (P )
and is denoted by ∆(J (P )) := {C ⊆ J (P ) : C chain}. It is worth noting that the
maximal cells in ∆(J (P )) are in one-to-one correspondence with linear extensions of
P . Indeed for any maximal chain of the form ∅ = J0 ⊂ J1 ⊂ · · · ⊂ Jn = P we define
pi := Ji \ Ji−1 for i ∈ [n]. With this notation at hand, the function f : P → [n] with
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f(pi) := n − i is a linear extension of P . It is straightforward to check that every
linear extension arises this way. In the sequel, we will denote the number of linear
extensions of P by e(P ).

Example 1.21. Consider the antichain A3 with ground set {1, 2, 3}. The maximal
chains in the Birkhoff lattice J (A3) are

∅ ⊂ {1} ⊂ {1, 2} ⊂ {1, 2, 3},
∅ ⊂ {1} ⊂ {1, 3} ⊂ {1, 2, 3},
∅ ⊂ {2} ⊂ {1, 2} ⊂ {1, 2, 3},
∅ ⊂ {2} ⊂ {2, 3} ⊂ {1, 2, 3},
∅ ⊂ {3} ⊂ {1, 3} ⊂ {1, 2, 3} and
∅ ⊂ {3} ⊂ {2, 3} ⊂ {1, 2, 3}.

Therefore, the triangulation of O(A3) obtained from Theorem 1.20 consists of six
maximal simplices, which are shown in Figure 1.9.

Figure 1.9: The six maximal simplices in the canonical triangulation of O(A3).

Example 1.22. More generally, for n ∈ N>0, the Birkhoff lattice J (An) contains n!
maximal chains and hence the canonical triangulation of the n-cube O(An) consists
of n! maximal simplices. This triangulation is particularly interesting since it is
universal in the following sense: For every poset P with ground set [n], chains in
J (P ) are also chains in J (An) and hence every simplex in the canonical triangulation
of O(P ) is a simplex in the triangulation of O(An). These triangulations are also
known as Freudenthal triangulations, see for example [21, 27].

In the following, for a full-dimensional polytope P ⊂ Rn we will denote by vol(P)
its Euclidean volume in Rn. Using Cayley-Menger determinants (see, for instance,
[75]), it is easily seen that vol(F (C)) = 1

n! for any maximal chain C ∈ ∆(J (P )).
Hence, the above considerations yields a simple combinatorial formula for the volume
of order polytopes.

Corollary 1.23. Let P be a poset with |P | = n. Then

vol(O(P )) =
e(P )

n!
.
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This result is interesting from the perspective of computational complexity: By
the above, for a poset P , computing the volume of O(P ) is equivalent to computing
the number of linear extensions of P . For more information regarding the complexity
of counting linear extensions and related problems, see [11].

1.3 Double order polytopes

This section focusses on the study of double order polytopes from a purely geometric
viewpoint. The main results are the following. In Theorem 1.29, we give a description
of the facets of double order polytopes arising from compatible double posets in
terms of alternating chains. Theorem 1.37 determines which of these polytopes
are 2-level, a geometric property that plays an important role in, for example, the
study of centrally-symmetric polytopes [68, 41], polynomial optimization [36, 37],
statistics [78], and combinatorial optimization [69]. Using polars, in Theorem 1.38
we explore a surprising connection to Geissinger’s valuation polytopes, which were
introduced in [32].

1.3.1 Facets and alternating chains

For two polytopes P1,P2 ⊂ Rn, their Minkowski sum P1 + P2 and their Cayley
sum P1 � P2 are defined as

P1 + P2 := {p1 + p2 : p1 ∈ P1,p2 ∈ P2} ⊂ Rn and
P1 � P2 := conv(P1 × {1} ∪ P2 × {−1}) ⊂ Rn × R.

We abbreviate P1 − P2 := P1 + (−P2) and P1 � P2 := P1 �−P2. For a single
polytope P ⊂ Rn, we call prism(P) := P � P the prism over P and tprism(P) :=
P � P the twisted prism over P. Minkowski and Cayley sums are related via

(P1 � P2) ∩ (Rn × {0}) =
1

2
(P1 + P2)× {0}. (1.2)

We are now ready to define our main objects of study.

Definition 1.24. Let P = (P,�±) be a double poset. The double order polytope
of P is

TO(P) := 2O(P+) � 2O(P−) = conv
(
(2O(P+)× {1}) ∪ (−2O(P−)× {−1})

)
.

The double order polytope TO(P) is a (|P |+ 1)-dimensional polytope in RP ×R
with coordinates (f, t). Its vertices are exactly (21J+ , 1), (−21J− ,−1) for filters J+ ⊆
P+ and J− ⊆ P−, respectively. Associated to TO(P) is the reduced double order
polytope

DO(P) := O(P+)−O(P−),

which is obtained from TO(P) by intersecting with the hyperplane {(f, t) : t = 0}.

Remark 1.25. There are several ways of embedding TO(P) into Rn+1, each having
advantages and disadvantages. The definition we chose will be convenient for the
study of polars in Section 1.3.3. For some purposes, for instance the study of uni-
modular triangulations in Section 3.3 and Ehrhart theory in Section 3.4.2 it is more
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convenient to think of TO(P) as a 0/1-polytope, that is with all vertex coordinates
in {0, 1}. Explicitly, TO(P) is affinely equivalent to the 0/1-polytope

conv
({

(O(P+)× {1}) ∪ ((1−O(P−))× {0})
})
.

We will now investigate the facet structure of double order polytopes. By con-
struction, 2O(P+)×{1} and −2O(P−)×{−1} are the facets obtained by maximizing
the linear function ±L∅(f, t) := ±t over TO(P). We call the remaining facets ver-
tical, as they are of the form 2F+ � 2F−, where Fσ ⊂ O(Pσ) are certain nonempty
proper faces for σ ∈ {±}. The vertical facets of TO(P) are in bijection with the
facets of the reduced double order polytope DO(P) = O(P+)−O(P−).

Observe that any face F = DO(P)` with ` ∈ RP is of the form F = F+ − F−
where F+ = O(P+)` and F− = O(P−)−`. Moreover,

dim(F ) = |P | − dim
(

relintNO(P+)(F+) ∩ relint−NO(P−)(F−)
)
.

In particular, F is a facet if and only if the linear function ` is unique up to scaling,
that is

relintNO(P+)(F+) ∩ relint−NO(P−)(F−) = R>0 · ` . (1.3)

We will call a linear function ` rigid if it satisfies (1.3) for a pair of faces (F+, F−).
Our next goal is to give an explicit description of all rigid linear functions for DO(P)
which then yields a characterization of vertical facets of TO(P).

For an alternating chain C of the form 0̂ = p0 ≺σ · · · ≺±σ pk = 1̂ with σ ∈ {±}
we define an associated linear function `C by

`C(f) := σ
k−1∑
i=1

(−1)if(pi).

Here, we severely abuse notation and interpret σ as ±1. Note that `C ≡ 0 if k = 1
and we call C a proper alternating chain if k > 1. Analogously, for an alternating
cycle C of the form p0 ≺σ p1 ≺−σ p2 ≺σ · · · ≺−σ p2k = p0 we define

`C(f) := σ
2k−1∑
i=0

(−1)if(pi).

Proposition 1.26. Let P = (P,�±) be a double poset. If ` is a rigid linear function
for DO(P), then ` = µ`C for some alternating chain or alternating cycle C and
µ > 0.

Proof. Let F+ = O(P+)` and F− = O(P−)−` be the two faces for which (1.3) holds
and let B± = {B±1, B±2, . . . } be the corresponding reduced face partitions. We
define a directed bipartite graph G = (V+∪V−, E) with nodes V+ := {p ∈ P : `p > 0}
and V− := {p ∈ P : `p < 0}. If 1̂ is contained in some block in B+, then we add a
corresponding node 1̂+ to V−. Consistently, we add a node 1̂− to V+ if 1̂ it occurs in
a part of B−. Similarly we add 0̂+ to V+ and 0̂− to V− if they appear in B+ and B−,
respectively. Note that here we regard 0̂− and 0̂+, as well as 1̂− and 1̂+, as distinct
nodes. By Corollary 1.17, we have ensured that max(B+i) ⊆ V− and max(B−i) ⊆ V+
for all i.
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For u ∈ V+ and v ∈ V−, we add the directed edge uv ∈ E if u ≺+ v and
[u, v]P+ ⊆ B+i for some i. Similarly, we add the directed edge vu ∈ E if v ≺− u and
[v, u]P− ⊆ B−i for some i. We claim that every node u except for maybe the special
nodes 0̂±, 1̂± has an incoming and an outgoing edge. For example, if u ∈ V+, then
`u > 0. By Corollary 1.17(iii), there is an i such that u ∈ B+i and by (ii), u is not
a maximal element in B+i. Thus, there is some v ∈ max(B+i) with u ≺+ v and uv
is an edge. It follows that every longest path either yields an alternating cycle or a
proper alternating chain.

For an alternating cycle C = (p0 ≺+ · · · ≺− p2l), we observe that

`C = `p0,p1 + `p2,p3 + · · ·+ `p2l−2,p2l−1
and

−`C = `p1,p2 + `p3,p4 + · · ·+ `p2l−1,p2l .

Since for every j, [p2j , p2j+1]P+ is contained in some part of B+, we conclude that
`C ∈ NP+(F+) by Proposition 1.16. Similarly, for all j, [p2j−1, p2j ]P− is contained in
some part of B−, and hence −`C ∈ NP−(F−). Assuming that ` is rigid then shows
that ` = µ`C for some µ > 0.

If G does not contain a cycle, then let C = (p0, p1, . . . , pk) be a longest path in
G. In particular p0 = 0̂± and pk = 1̂±. The same reasoning applies and shows that
`C ∈ NP+(F+) ∩ −NP−(F−) and hence ` = µ`C for some µ > 0.

In general, not every alternating chain or cycle gives rise to a rigid linear function.
For example, let (P,�) be a poset that is not the antichain and define the non-
compatible double poset P = (P,�,�op). In this case, DO(P) is, up to translation,
the polytope 2O(P,�), whose facets correspond to cover relations in P by (1.1).
Hence, every rigid ` is of the form ` = µ`p,q for cycles p ≺+ q ≺− p where p ≺· q is
a cover relation in P .

In the following, we will focus on the case of compatible double posets. We first
observe that they can be characterized as follows.

Proposition 1.27. Let P be a double poset. Then TO(P) contains the origin in its
interior if and only if P is compatible.

Proof. If P = (P,�±) is compatible, let f be a common linear extension of P+ and
P− with associated maximal chain of filters C ⊆ J (P+) ∩ J (P−). Then TO(P)
contains the full-dimensional Cayley sum 2F (C) �−2F (C), whose interior clearly
contains the origin.

If P is not compatible, then by Proposition 1.7 it contains an alternating cycle
C of the form p0 ≺+ p1 ≺− p2 ≺+ · · · ≺− p2k = p0. For a filter J+ ⊆ P+

we have that p2i ∈ J+ implies p2i+1 ∈ J+ for 0 ≤ i < k. Hence `C(1J+) ≤ 0
for every filter J+ ⊆ P+ and therefore `C ≤ 0 on O(P+). Analogously, we obtain
that `C ≤ 0 on −O(P−). Hence TO(P) is contained in the negative halfspace of
H = {(f, t) : `C(f) ≤ 0}. This finishes the proof, since 0 ∈ H.

Compatibility assures that in an alternating chain pi ≺σ pj implies i < j for
σ ∈ {±}. This also shows the following.

Lemma 1.28. Let P = (P,�±) be a compatible double poset. If ai ≺σ ai+1 ≺−σ
· · · ≺−τ aj ≺τ aj+1 is part of an alternating chain with σ, τ ∈ {±} and i < j then
there is no b ∈ P such that ai ≺σ b ≺σ ai+1 and aj ≺τ b ≺τ aj+1.



1.3. DOUBLE ORDER POLYTOPES 19

For compatible double posets, the following result gives a complete characteriza-
tion of facets of double order polytopes.

Theorem 1.29. Let P a compatible double poset. A linear function ` is rigid for
DO(P) if and only if ` ∈ R>0`C for some proper alternating chain C. In particular,
the facets of TO(P) are in bijection with alternating chains.

Proof. The facets 2O(P+)× {1} and −2O(P−)× {−1} of TO(P) correspond to the
improper alternating chains 0̂ ≺σ 1̂ for σ ∈ {±}. By Proposition 1.26 it remains
to show that for any proper alternating chain C the function `C is rigid. We only
consider the case that C is an alternating chain of the form

0̂ = p0 ≺+ p1 ≺− p2 ≺+ · · · ≺+ p2k−1 ≺− p2k ≺+ p2k+1 = 1̂.

The other cases can be treated analogously. Let F+ = O(P+)`C and and F− =
O(P−)−`C be the corresponding faces with reduced face partitions B±. Define O =
{p1, p3, . . . , p2k−1} and E = {p2, p4, . . . , p2k}. Then for any set A ⊆ P , we observe
that `C(1A) = |E ∩A| − |O ∩A|. If J is a filter of P+, then p2i ∈ J implies p2i+1 ∈ J
and hence `C(1J) ≤ 1 and thus 1J ∈ F+ if and only if J does not separate p2j and
p2j+1 for 1 ≤ j ≤ k. Likewise, a filter J ⊆ P− is contained in F− if and only if J does
not separate p2j−1 and p2j for 1 ≤ j ≤ k. Lemma 1.28 implies that

B+ = {[p0, p1]P+ , [p2, p3]P+ , . . . , [p2k, p2k+1]P+} and
B− = {[p1, p2]P− , [p3, p4]P− , . . . , [p2k−1, p2k]P−}.

To show that `C is rigid, pick a linear function `(ϕ) =
∑

p∈P `pϕ(p) with F+ =

O(P+)` and F− = O(P−)−`. Since the elements in E and O are exactly the minima
and maxima of the blocks in B+, it follows from Corollary 1.17 that `p > 0 if p ∈ E,
`p < 0 for p ∈ O. By Lemma 1.28, it follows that if q ∈ (pi, pi+1)P+ , then q
is not contained in a block of the reduced face partition B− and vice versa. By
Corollary 1.17(iii), it follows that `p = 0 for p 6∈ E∪O. Finally, `pi + `pi+1 = 0 for all
1 ≤ i ≤ 2k by Proposition 1.16 and therefore ` = µ`C for some µ > 0, which finishes
the proof.

Example 1.30. Let n ∈ N>0.
(1) Alternating chains in Cn can be identified with {−,+}n+1 and hence, by Theo-

rem 1.29, TO(C) has 2n+1 facets, which are all simplices. More explicitly, TO(C)

is linearly isomorphic to the cross polytope C4n+1 := conv{±e1, . . . ,±en+1} of
dimension n + 1. Here, for i ∈ [n + 1] we denote by ei the ith standard basis
vector in Rn+1.

(2) All proper alternating chains in the double antichain An with ground set [n] are
of the form 0̂ ≺σ a ≺−σ 1̂ for a ∈ An and σ ∈ {±} and TO(An) = [−2,+2]n+1

is isomorphic to the cube.
(3) It is easily seen that Combn (see Figure 1.3) has 2n+1 − 1 filters and 3 · 2n − 2

chains. Hence, TO(Cn,�,�) has 2n+2 − 2 vertices and 3 · 2n+1 − 4 facets.
(4) Since the double posetAltn from Example 1.4 is compatible, the number of facets

of TO(Altn) equals the number of alternating chains which is easily computed
to be

(
n+3
2

)
+ 1.
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(5) Consider the double poset ACn from Example 1.4. Any proper alternating chain
is either of the form 0̂ ≺σ a ≺−σ 1̂ for σ = ± or of the form 0̂ ≺− a ≺+ b ≺− 1̂
with a, b ∈ [n]. Thus, TO(ACn) is a (n+1)-dimensional polytope with 2n+n+1
vertices and

(
n
2

)
+ 2n+ 2 facets.

Example 1.31. Consider the double posetPXW from Example 1.5, whose Hasse dia-
grams are given in Figure 1.6. The six-dimensional double order polytope TO(PXW )
has 28 facets, with corresponding alternating chains shown in Figure 1.7. More gen-
erally, using sage [18] we compute the f -vector

f(TO(PXW )) = (21, 112, 247, 263, 135, 28).

Example 1.32 (Dimension-2 posets and plane posets). Let π = (π1, π2, . . . , πn) be
an ordered sequence of distinct numbers with n ∈ N>0.
(1) Consider the associated dimension-2 poset Pπ = ([n],�π). We have seen in

Example 1.3 that filters and chains in Pπ correspond to decreasing and increasing
sequences in π, respectively. Thus, if Pπ denotes the double poset induced by Pπ,
it follows that vertices and facets of TO(Pπ) are in two-to-one correspondence
with decreasing and increasing sequences, respectively.

(2) Let P be the plane poset associated to π, that is, the double poset with (P)+ =
Pπ and (P)− = P−π. By Example 1.9 and Theorem 1.29, the vertical facets of
TO(P) are in bijection to alternating sequences in π, whereas the vertices are in
bijection to increasing and decreasing sequences of π.

As a consequence of the proof of Theorem 1.29 we can determine a facet-defining
inequality description of double order polytopes. For an alternating chain C, let us
write sgn(C) = τ ∈ {±} if the last relation in C is ≺τ .

Corollary 1.33. Let P = (P,�±) be a compatible double poset. Then TO(P) is the
set of points (f, t) ∈ RP × R such that

LC(f, t) := `C(f)− sgn(C) t ≤ 1

for all alternating chains C of (P,�±).

Proof. Note that 0 is contained in the interior of TO(P+, P−) by Proposition 1.27.
Hence by Theorem 1.29 every facet-defining halfspace of TO(P+, P−) is of the form
{(ϕ, t) : L(ϕ, t) = µ`C + βt ≤ 1} for some alternating chain C and µ, β ∈ R with
µ > 0. If C is an alternating chain with sgn(C) = +, then the maximal value of `C
over 2O(P+) is 2 and 0 over −2O(P−). The values are exchanged for sgn(C) = −.
It then follows that α = 1 and β = − sgn(C).

Let us remark that the number of facets of a given double poset P = (P,�+,�−)
can be computed by the transfer-matrix method (see [74, Sec. 4.7]). Define matrices
η+, η− ∈ RP̂×P̂ by

ησa,b :=

{
1 if a ≺σ b
0 otherwise

for a, b ∈ P̂ and σ = ±.
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Corollary 1.34. Let P = (P,�+,�−) be a compatible double poset. Then the
number of facets of TO(P) is given by[

(Id− η+η−)−1(Id + η+) + (Id− η−η+)−1(Id + η−)
]
0̂,1̂
.

Proof. By [74, Thm. 4.7.1], the entry (η+η−)k
0̂,1̂

equals the number of alternat-
ing chains of P on k + 1 elements starting with ≺+ and ending with ≺−. Since
P is compatible, this implies that the matrix η+η− is nilpotent. It follows that[
(Id− η+η−)−1(Id + η+)

]
0̂,1̂

equals the number of alternating chains starting with
≺+. The analogous argument for η−η+ finishes the proof.

1.3.2 2-levelness

A polytope P ⊂ Rn is called 2-level if for any facet-defining hyperplane H there is
a t ∈ Rn such that the two parallel hyperplanes H and t+H contain all vertices of
P.

Proposition 1.35. For any poset P , the order polytope O(P ) is 2-level.

Proof. For every cover relation a ≺ b in P̂ the functional `a,b takes only two distinct
values on the vertex set V (O(P )) = {1J : J ∈ J (P )}. By (1.1), this finishes the
proof.

Note that it is in general not true that P1 � P2 is 2-level if P1 and P2 are. Coun-
terexamples are for instance the polytopes ∆6,2 � ∆6,4 or tprism(∆6,2) = ∆6,2 � ∆6,2,
where

∆n,k := {p ∈ [0, 1]n : p1 + p2 + · · ·+ pn = k}

is the (n, k)-hypersimplex (see [37]). In the light of the above, it is only natural
to ask for which double posets P the double order polytope TO(P) is 2-level and, in
fact, this was the starting point for our investigations. In the following, we will give
a complete answer for the case of compatible double posets.

In [38] a double poset (P,�+,�−) is called tertispecial if a and b are ≺−-
comparable whenever a ≺+ b is a cover relation for a, b ∈ P . The next result gives a
necessary condition for a double poset to yield a 2-level polytope.

Proposition 1.36. Let P = (P,�±) be a double poset. If TO(P) is 2-level, then P
as well as (P,�−,�+) are tertispecial.

Proof. Let σ ∈ {±} and let a ≺σ b be a cover relation. The linear function `a,b is facet
defining for O(Pσ) and hence yields a facet for TO(P). If a, b are not comparable in
P−σ, then the filters ∅, {c ∈ P : c �−σ a} and {c ∈ P : c �−σ b} take three distinct
values on `a,b.

In the compatible case, we are now ready to prove the following.

Theorem 1.37. Let P = (P,�±) be a compatible double poset. Then TO(P) is
2-level if and only if �+=�−=�. In this case, the number of facets of TO(P) is
twice the number of chains in (P,�).
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Proof. If �+=�−=�, then every chain C ⊆ P̂ gives rise to two alternating chains
C+ and C− with signs + and −, respectively and every alternating chain arises this
way. Note that every filter J ⊆ P separates precisely one relation in C. Therefore
`C+(1J) ∈ {0, 1} and `C+(−1J) ∈ {0,−1} for all J ∈ J (P ), which implies that LC+

attains only the two values 1 and −1 on the vertices of TO(P). Since LC− = −LC+ ,
Corollary 1.33 implies that TO(P) is 2-level.

The converse follows from Proposition 1.36 by noting that if both (P,�+,�−)
and (P,�−,�+) are compatible and tertispecial then �+=�−.

Note that since faces of 2-level polytopes are again 2-level, Theorem 1.37 yields
a second proof of Proposition 1.35.

1.3.3 Polars and valuation polytopes

We will now connect double order polytopes to another class of polytopes, whose
underlying combinatorial objects are the following. A real-valued valuation on a
finite distributive lattice (J ,∨,∧) is a function h : J → R such that for any a, b ∈ J ,

h(a ∨ b) = h(a) + h(b)− h(a ∧ b) (1.4)

and h(0̂) = 0, where 0̂ denotes the least element in J . Geissinger [32] studied the
valuation polytope

Val(J ) := {h : J → [0, 1] : h valuation} ⊂ RJ

and conjectured that its vertices are exactly the valuations with values in {0, 1}.
This was shown by Dobbertin [19]. Not much is known about the valuation polytope
and Stanley’s ‘5-’ -Exercise [74, Ex. 4.61(h)] challenges the reader to find interesting
combinatorial properties of Val(J ).

By Birkhoff’s theorem we may assume J = J (P ), that is, J is the lattice of
filters of some poset P . In particular, for every valuation h : J (P ) → R there is a
unique h0 : P → R such that

h(J) =
∑
a∈J

h0(a),

for every filter J ∈ J (P ). Hence, Val(J ) is linearly isomorphic to the |P |-dimensional
polytope

Val0(P ) := {h0 : P → R : 0 ≤ h(J) ≤ 1 for all filters J ⊆ P}.

To connect the above to double order polytopes, we denote by

S4 := {` ∈ (Rn)∗ : `(s) ≤ 1 for all s ∈ S} (1.5)

the polar of a convex set S ⊂ Rn. Note that S4 is bounded if and only if 0 is
contained in the interior of S. For additional information we refer to [81, Sec.2.3].
Polarity relates order polytopes and valuation polytopes in the following way.

Theorem 1.38. For any finite poset (P,�) with induced double poset P = (P,�,�)
we have

TO(P)4 ∼= tprism(−Val0(P )).
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Proof. A chain C = {a0 ≺ a1 ≺ · · · ≺ ak} in P yields two alternating chains C+ and
C− in P̂ of signs + and −, respectively. Define

`′C(f) := `C+ =

k∑
i=0

(−1)k−if(ai)

and L′C(f, t) := LC+(f, t) = `′C(f) − t. Note that −L′C = LC− and therefore Corol-
lary 1.33 yields

TO(P)4 = conv(±L′C(f, t) : C ⊆ P chain).

It is shown in Dobbertin [19, Theorem B] that

Val0(P ) = conv
(
`′C : C ⊆ P chain

)
,

from which the claim follows.

A polytope P ⊂ Rn is called centrally symmetric if P = −P, that is for every
point p ∈ P, its negative −p also lies in P. Clearly, every centrally symmetric
polytope contains the origin in its relative interior. Taking polars does in general
not preserve 2-levelness. However, it does if we restrict to the class of centrally
symmetric polytopes.

Proposition 1.39. Let P be a full-dimensional centrally symmetric 2-level polytope.
Then P4 is also centrally symmetric and 2-level.

Proof. It follows from (1.5) that the polar of any centrally symmetric polytope is
again centrally symmetric. To prove 2-levelness of P4, by duality it suffices to show
that for every vertex v ∈ P every facet F ⊂ P contains either v or −v. If we assume
the contrary, that is F ∩{v,−v} = ∅, then also −F ∩{v,−v} = ∅ since P is centrally
symmetric. This contradicts the 2-levelness of P.

As a direct consequence, we note the following.

Corollary 1.40. Let P be a finite poset, then tprism(Val0(P )) is 2-level.

Proof. Since TO(P) is centrally-symmetric and, by Theorem 1.37, 2-level, the claim
follows from Theorem 1.38 and Proposition 1.39.

We can make the connection to valuations more transparent by considering val-
uations with values in [−1, 1]. In this case, for a distributive lattice J = J (P ) the
associated polytope

Val(J ) := {h : J → [−1, 1] : h valuation}

is centrally symmetric and linearly isomorphic to

Val±0 (P ) := {h0 : P → R : −1 ≤ h(J) ≤ 1 for all filters J ⊆ P} = (O(P )∪−O(P ))4.

Now, the convex hull of O(P ) ∪ −O(P ) is exactly the image of 1
2TO(P) under the

projection π : RP × R → RP with π(f, t) = f . Denote by π∗ : (RP )∗ → (RP × R)∗

the dual map defined by π∗(`)(f, t) := `(f). We have

Val±0 (P ) ∼= π(12TO(P))4 ∼= (2TO(P)4)∩im(π∗) ∼= tprism(−2Val0(P ))∩(RP×{0}),

where the last step follows from Theorem 1.38. We can interpret the last expression
as a Minkowski sum by (1.2), which yields the following.
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Corollary 1.41. For any poset P

Val±0 (P ) = Val0(P )−Val0(P ).

Finally, we want to relate our results to work by Hibi, Matsuda, Ohsugi, Tsuchiya
and Shibata ([48], [49], [50], [51]). A polytope P ⊆ Rd is called integral if all its ver-
tices have integer coordinates. Moreover, an integral polytope P is called reflexive
if its polar P4 is also integral. Reflexive polytopes are of particular interest, since
they occur in connection with Calabi-Yau varieties and mirror symmetry (see [6]).
For two polytopes P,Q ⊂ Rn, write Γ(P,Q) := conv(P ∪ −Q). Thus, Γ(P,Q) is
the projection of P �Q onto the first n coordinates. Hibi and Matsuda [48] used
Gröbner basis techniques to show that the polytopes Γ(O(P+),O(P−)) are reflexive
whenever P+ and P− are posets on the same ground set that possess a common
linear extension, i.e. whenever the double poset P := (P+, P−) is compatible. Our
next observation in particular recovers a special case of their results.

Corollary 1.42. For any poset P ,

Γ(O(P ),O(P )) = (Val0(P )−Val0(P ))4.

In particular, Γ(O(P ),O(P )) is reflexive.



Chapter 2

Double Hibi rings

In this chapter, we study the toric ideals associated to double order polytopes. This
will allow for geometric insights that are not obvious from a purely geometric per-
spective. Section 2.1 develops some necessary theory. We introduce Gröbner bases
and toric ideals and explain a connection between triangulations and initial ideals
which was discovered by Sturmfels [77]. In Section 2.2, after briefly treating toric
ideals arising from ordinary order polytopes, which were first studied by Hibi [46], we
compute a Gröbner basis for the toric ideals of double order polytopes. Finally, we
use this Gröbner basis to describe triangulations and the complete facial structure
of double order polytopes.

2.1 Toric ideals and polytopes

Every integral polytope has an associated toric ideal, an algebraic object which
reflects the geometric properties of the polytope. Toric ideals connect concepts from
discrete geometry, algebra and algebraic geometry (see for instance [16, 62, 77]) and
can be used to study the geometry of lattice polytopes with the help of algebra and
vice versa. In fact, discrete geometric questions are sometimes more accessible by
taking the detour via algebra. In this section, we prepare for applying this strategy
to double order polytopes: We introduce Gröbner bases and toric ideals and state
a result that connects regular triangulations and initial ideals, which is nowadays
known as Sturmfels’ correspondence (see [77]).

2.1.1 Gröbner bases

We recall some basics from the theory of Gröbner bases. For additional information,
the reader is referred to [23]. Let x := (x1, . . . , xn) be a list of variables with n ∈ N>0.
A monomial is an expression of the form xa := xa11 x

a2
2 · · ·xann for some a ∈ Nn. The

support of a monomial xa is the set supp(xa) := {i ∈ [n] : ai 6= 0} and its degree
is deg(xa) := a1 + a2 + · · · + an. A monomial is called square-free if ai ≤ 1 for
all i ∈ [n]. For a fixed field K, a finite K-linear combination of monomials is called
polynomial with coefficients in K. For a polynomial f its degree deg(f) is the
highest degree of a monomial occurring in f . If all terms of f have the same degree,
f is called homogeneous. If deg(f) = 2, we call f quadratic. A polynomial of the
form f = cxa + dxb with a,b ∈ Nn and c, d ∈ K is called a binomial.

25
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The K-vector space of polynomials in the variables x1, . . . , xn is called polyno-
mial ring and will be denoted by K[x] = K[x1, . . . , xn]. An additive subgroup of
K[x] is called ideal if for any f ∈ I and g ∈ K[x] we have fg ∈ I. A set G ⊆ K[x]
generates I if I is the inclusionwise smallest ideal containing G. An ideal I is
called a monomial ideal (resp. binomial ideal) if it can be generated by monomi-
als (resp. binomials). Monomial ideals are called square-free if they are generated
by square-free monomials and ideals which have a set of generators consisting of
homogeneous polynomials are themselves called homogeneous. An ideal I is called
radical if fk ∈ I for some f ∈ K[x] and k ≥ 0 implies f ∈ I. Moreover, I is called
prime if whenever fg ∈ I for some f, g ∈ K[x] we have f ∈ I or g ∈ I.

In the following, we will mainly consider that case K = C and, unless stated
differently, all polynomials have complex coefficients. LetM denote the set of mono-
mials in the complex polynomial ring C[x] and let � be a total order on M , that is,
an ordering such that any two monomials are comparable. We call � a monomial
order or term order on C[x] if
(i) 1 � u for all u ∈M and
(ii) if u � v and w ∈M then uw � uv.

Some of the most common term orders are the following.

Example 2.1. (1) The lexicographic order �lex is defined by xa ≺lex xb if and
only if the left-most nonzero entry of a − b is negative. We obtain the degree
lexicographic order �dlex by setting xa ≺dlex xb if either deg(xa) < deg(xb)
or deg(xa) = deg(xb) and xa ≺lex xb.

(2) The reverse lexicographic order �rev satisfies xa ≺rev xb if and only if the
right-most nonzero entry of a− b is positive. Analogously, the degree reverse
lexicographic order �drev is the monomial order with xa ≺drev xb if either
deg(xa) < deg(xb) or deg(xa) = deg(xb) and xa ≺rev xb.

(3) Any weight vector ω ∈ Rn≥0 whose entries are linearly independent over Q defines
a monomial order �ω called weight order by setting xa ≺ω xb whenever
ω · a < ω · b.

Note that for the (reverse) lexicographic order we can think of x1 as the largest
variable, x2 as the second largest variable and so on. More generally, for a given
total ordering of the variables we can define an associated (reverse) lexicographic
order by replacing "left-most" (resp. "right-most") by "largest" (resp. "smallest")
with respect to the variable ordering.

For a polynomial f ∈ C[x], the term which contains the largest monomial with
respect to � among all monomials occurring in f is called the initial term or
leading term of f and is denoted by in�(f). All other terms are called trailing
terms. The non-zero constant coefficient of in�(f) is called the leading coefficient
of f . For an ideal I ⊆ C[x] the ideal in�(I) generated by {in�(f) : f ∈ I} is called
the initial ideal of I with respect to �. A subset G ⊆ I is called a Gröbner basis
of I with respect to � if {in�(g) : g ∈ G} generates in�(I). A Gröbner basis G is
called reduced if
(i) all g ∈ G have leading coefficient 1 and
(ii) for g, g′ ∈ G no term of g′ is divisible by in�(g).

Give a term order�, every ideal has a unique reduced Gröbner basis, which can be
computed using Buchberger’s algorithm (see [13]). Gröbner bases yield algorithms for
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many classical problems in commutative algebra and play a key role in computational
algebra (see for instance [23]).

For an ideal I, we say that a term order � is represented by a weight order
�ω with ω ∈ Rn if in�(I) = in�ω(I). The following result shows that is is often
sufficient to study weight orders.

Proposition 2.2 ([77, Prop.1.11]). Let I ⊆ C[x] be an ideal and � a term order.
Then there exists a weight ω ∈ Rn≥0 such that �ω represents � for I.

2.1.2 Toric ideals

We provide a short introduction to toric ideals. For a more detailed treatment, we
refer the reader to [62]. In the literature, the word lattice unfortunately has two
different meanings. In addition to the poset-theoretic context it is used as follows.
A set Λ ⊂ Rn is called a lattice if Λ is an abelian subgroup of Rn generated by k
linearly independent vectors for some k ≤ n. The number k is called the rank of
Λ and will be denoted by rk(Λ). For a finite set A ⊆ Λ, we denote by ZA the set
of all integral linear combinations of elements in A. Phrased differently, ZA is the
inclusionwise smallest lattice in Λ that contains A. If A ⊂ Λ with |A| = rk(Λ) and
ZA = Λ, then we call A basis of Λ. The Euclidean volume of the parallelotope
spanned by a basis A ⊂ Λ is called the determinant of Λ and will be denoted by
|Λ|. Note that the volume does not depend on the choice of basis.

A subset Λ ⊂ Rn is called an affine lattice if there exists v ∈ Rn such that
Λ + v is a lattice. For a lattice Λ ⊂ Rn and an affine subspace U ⊆ Rn of dimension
k such that Λ ∩ U 6= ∅, the affine lattice Λ ∩ U ⊂ U ∼= Rk is called the induced
lattice of Λ in U . Note that for every set A ⊆ Zn, there exists a unique smallest
affine lattice Λ ⊂ Zn containing A. We will call Λ the affine lattice generated by
A. Explicitly, Λ can be constructed as follows. Consider the homogenized point set
Ã = A× {1} ⊆ Zn+1. Then Λ is the induced lattice ZÃ ∩ aff(A) ⊆ Zn.

Of course, the most natural example of a lattice is Zn itself. For A ⊆ Zn we
denote by NA the affine semigroup generated by A, that is, the set of N-linear
combinations of elements of A. The affine semigroup NA is called normal if every
lattice point in the cone C := cone(A) lies in NA, that is, if C ∩ ZA = NA.

For a set of lattice points A = {a1, . . . ,am} ⊂ Zn, consider the semigroup homo-
morphism

ϕ : Nm → Zn,u 7→ u1a1 + u2a2 + · · ·+ umam

for u = (u1, . . . , um) ∈ Nm. Note that the image of ϕ is the affine semigroup NA.
On the algebraic level, ϕ induces a ring homomorphism between the polynomial
ring C[x] = C[x1, . . . , xm] and the Laurent ring C[y,y−1] = C[y1, y

−1
1 , . . . , yn, y

−1
n ]

defined on generators as

ϕ : C[x]→ C[y,y−1], xi 7→ yai .

The ideal IA = ker(ϕ) := {f ∈ C[x] : ϕ(f) = 0} is called the toric ideal of A.
The image im(ϕ) is the semigroup ring associated to NA. Toric ideals have the
following properties.

Proposition 2.3 ([77, Ch. 4]). Let A ⊂ Zn with |A| = m.
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(1) The ideal IA is a prime ideal generated by the binomials

xu − xv for u,v ∈ Nm satisfying ϕ(u) = ϕ(v).

(2) IA is homogeneous if and only if A lies in a hyperplane that does not contain the
origin.

In the following, we will also call a set A ⊂ Zn homogeneous if it gives rise to a
homogeneous toric ideal. A particularly interesting class of homogenous toric ideals
arises from polytopes: To an integral polytope P ⊂ Rn we associate the toric ideal
IP := IV (P)×{1}, where V (P) × {1} = {(v, 1) : v ∈ V (P)} ⊂ Rn+1 is the vertex set
of P embedded at height 1 into Rn+1.

Remark 2.4. Note that for an integral polytope P ⊆ Rn, there are several different
ways of associating toric ideals. The most common way is to consider the ideal IA
where A = P ∩ Zn (see, for instance, [16, Sec. 2.3]). However, for our purpose it is
more useful to only consider vertices instead of all integral points in P.
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Figure 2.1: The cube O(A3).
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Figure 2.2: The bipyramid over a trian-
gle, realized with vertices on the 3-cube.

Example 2.5. Consider the 3-cubeO(A3) with vertices labelled as in Figure 2.1. We
identify its vertices with the ordered variables x1 < · · · < x8 and consider the induced
monomial orders �rev and �lex (cf. Example 2.1). Then the reduced Gröbner bases
of IO(A3) with respect to �rev and �lex each consist of nine square-free quadratic
binomials, given respectively in the columns

x2x3 − x1x5 x1x5 − x2x3
x2x4 − x1x6 x1x6 − x2x4
x2x7 − x1x8 x1x7 − x3x4
x3x4 − x1x7 and x1x8 − x4x5
x3x6 − x1x8 x2x7 − x4x5
x4x5 − x1x8 x2x8 − x5x6
x5x6 − x2x8 x3x6 − x4x5
x5x7 − x3x8 x3x8 − x5x7
x6x7 − x4x8 x4x8 − x6x7.

Here, the underlined term of every binomial denotes its leading term. We will use
this notation throughout this work.
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Example 2.6. Let P = conv({(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}) be a bipyra-
mid over a triangle with vertex labels as in Figure 2.2. The reduced Gröbner basis
with respect to the corresponding reverse lexicographic order �rev is given by the
single cubic x2x3x4 − x21x5. The lexicographic order �lex yields the same binomial,
but with the other term as leading term, that is x21x5 − x2x3x4.

The following result relates the facial structure of integral polytopes to algebraic
properties of the associated toric ideals. We include a proof, since we could not find
this exact statement in the literature.

Lemma 2.7. Let A ⊂ Zn be homogeneous with associated integral polytope P =
conv(A). Let M ⊆ A. Then conv(M) is a face of P satisfying conv(M)∩A = M if
and only if

f(1M ) = 0 for all f ∈ IA,

where 1M ∈ CA denotes the characteristic vector of M .

Proof. Let M ⊆ A. Observe that since A is homogeneous we have f(1M ) =
0 for all f ∈ IA if and only for every k ∈ N>0 and a1, . . . ,ak,b1, . . . ,bk ∈ A with

a1 + · · ·+ ak = b1 + · · ·+ bk

it holds that
a1, . . . ,ak ∈M if and only if b1, . . . ,bk ∈M.

Again using the homogeneity of A, this is equivalent to the condition that for a,b ∈
NA we have that

a + b ∈ NM implies a,b ∈ NM.

Using the language of [62, Ch. 7.2], this condition means that the affine semigroup
NM is a face of NA, which is by [62, Lem.7.12] equivalent to conv(M) being a face
of P and conv(M) ∩ A = M .

2.1.3 Regular triangulations and initial complexes

For a finite set A ⊂ Zn, a polytopal complex K in Rn is called a subdivision
(resp. triangulation) of A if it is a subdivision (resp. triangulation) of conv(A)
(cf. Section 1.2.3) satisfying V (P) ⊆ A for every P ∈ K. An important class of
subdivisions and triangulations can be constructed as follows. For a set of points
A = {a1, . . . ,am} ⊂ Rn and a vector ω ∈ Rm, consider the lifted configuration Aω =
{(a1, ω1), . . . , (am, ωm)} ⊂ Rn+1. A lower face of the polytope Pω := conv(Aω) is
a face that is "visible from below." More precisely, a face is lower if it has an outer
normal vector with negative last coordinate. Let ∆ω be the polyhedral complex
consisting of the projection of all lower faces of Pω onto the first n coordinates. A
subdivision or triangulation of A (resp. of the polytope P := conv(A)) is called
regular if it is of the form ∆ω for some height function ω.

One can also construct subdivisions and triangulations taking a more algebraic
approach. Let � be a monomial order on C[x] := C[x1, . . . , xm] and let I ⊆ C[x]
be an ideal. The initial complex ∆�(I) of I with respect to � is the abstract
simplicial complex consisting of all X ⊆ [m] such that there is no f ∈ I whose
initial monomial in�(f) has support X. In the case when I is toric, the abstract
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simplicial complex ∆�(I) comes with the following canonical geometric realization.
For A = {a1, . . . ,am} ⊂ Zn, we can identify the ground set of ∆�(IA) with the set
A. Moreover, for every X ∈ ∆�(IA), the points in X ⊆ A are affinely independent.
Indeed, any affine dependence relation between the points in X yields a binomial in
IA of the form u− v for binomials u, v satisfying supp(u)∪ supp(v) ⊆ X. Hence, we
obtain a way of regarding ∆�(IA) as a geometric simplicial complex with vertex set
A. In the following we will abuse notation and also denote this geometric simplicial
complex by ∆�(IA).

The following result, due to Sturmfels, elegantly connects regular triangulations
and initial complexes.

Theorem 2.8 ([77, Thm.8.3]). Let A ⊂ Zn be homogeneous with |A| = m. Then the
initial complexes of IA are exactly the regular triangulations of A. More precisely,
let � be a monomial order with ω ∈ Rm such that in�ω(IA) = in�(IA). Then

∆�(IA) = ∆ω.

This theorem has some interesting implications, for which we need several more
definitions. For a fixed lattice Λ ⊂ Rn we call a polytope P ⊂ Rn a lattice polytope
if V (P) ⊆ Λ. If P is a full-dimensional lattice polytope, the normalized volume
of P with respect to Λ is defined as

Vol(P) =
n!

|Λ|
vol(P),

where |Λ| denotes the determinant of Λ. A triangulation ∆ of a finite set A ⊂ Λ (or
the polytope P := conv(A)) is called unimodular if every maximal simplex F ∈ ∆
has normalized volume 1 with respect to Λ (see, for instance, [17, Ch. 9.3] or [77,
Ch. 8]). In particular, if P has a unimodular triangulation with respect to Λ, then
its normalized volume equals the number of simplices in the triangulation. Unless
the lattice is specified explicitly, we will always assume that Λ is the affine lattice
generated by A.

A subdivision ∆ of a finite set A ⊂ Zn is called flag if every minimal nonface
has dimension 1. Phrased differently, this means that whenever M ⊆ A such that
conv(M) /∈ ∆ and conv(M ′) ∈ ∆ for all proper subsets M ′ ⊂ M we have |M | = 2.
The following results interpret the above geometric properties of triangulations as
algebraic properties of the corresponding initial ideals.

Corollary 2.9 ([77, Cor.8.9]). Let A ⊂ Zn with |A| = m be homogeneous and let �
be a monomial order on C[x1, . . . , xm].
(1) The initial ideal in�(IA) is square-free if and only if the corresponding trian-

gulation ∆�(IA) is unimodular (with respect to the affine lattice generated by
A).

(2) The radical of in�(IA) is generated by quadratic monomials if and only if the
corresponding triangulation ∆�(IA) is flag.

In the sequel, we will be mainly concerned with the case when A is the homog-
enized vertex set of an integral polytope. In this case, the regular triangulations
corresponding to the monomial orders �lex and �rev are called placing triangu-
lations and pulling triangulations, respectively (see [77, Ch. 8]). Both trian-
gulations have a recursive geometric description. Let P ⊂ Rn be a polytope with
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vertex set A = V (P) = {a1, . . . ,am}. Note that for any subset S ⊆ A, the ordering
a1 < a2 < · · · < am induces a total order on S and hence we may speak of placing
and pulling triangulations of conv(S).

To construct the placing triangulation, we recursively consider a placing trian-
gulation ∆′ of conv(A \ {a1}). We call a face F ∈ ∆′ visible from a1 if it has a
supporting hyperplane that separates a1 from all other vertices A \ (F ∪ {a1}). To
complete ∆′ to a triangulation of P, for every F ∈ ∆′ visible from a1, we add the
simplex {conv(F ∪ {a1})} to finally obtain the placing triangulation ∆≺lex(IP).

For the pulling triangulation ∆≺rev(IP), we start with the vertex a1 and subdivide
the polytope into pyramids of the form conv(F ∪ {a1}), where F is any facet of P
that does not contain a1. Recursively, we consider a pulling triangulation of F ,
which yields a triangulation of the pyramids conv(F ∪{a1}). Since the pulling order
for every facet comes from the same global variable ordering, these triangulations
are compatible on boundaries and together form the pulling triangulation of P. For
further details on placing and pulling triangulations, see for example [17, Sec. 4.3].

Example 2.10. Consider the 3-cube O(A3) from Example 2.5. It is straightforward
to observe that the Gröbner basis with respect to the reverse lexicographic order
�rev corresponds to the canonical triangulation with six maximal simplices from
Example 1.21. The placing triangulation arising from the lexicographic order �lex
also consists of six maximal simplices. In fact, up to an affine transformation, the
two triangulations are the same. Both triangulations are square-free and unimodular
by Example 2.6 and Corollary 2.9.

In general, pulling and placing triangulations do not have to be affinely isomor-
phic. The following example shows that even the number of simplices can differ.

Example 2.11. Consider the triangular bipyramid from Example 2.6. The pulling
triangulation corresponding to the reverse lexicographic order �rev consisting of the
three simplices given in Figure 2.4. By Corollary 2.9, this triangulation is unimodu-
lar, but not flag. On the other hand, the lexicographic order �lex yields the placing
triangulation with two simplices depicted in Figure 2.3, which is flag, but not uni-
modular.

2.2 Double Hibi rings

The main goal of this section is to study toric ideals arising from double order poly-
topes and use them to better understand the underlying geometry. To begin with,
we illustrate this interplay between geometry and algebra for the case of ordinary
order polytopes. We recall a Gröbner basis of the toric ideals of order polytopes
which was found by Hibi [46]. Using the machinery developed in Section 2.1, we
recover the triangulation in Theorem 1.20. Moreover, we obtain a simple proof of
a description of the complete face lattice of order polytopes, which was first stated
in [80].

In the considerably more involved case of double posets, we explicitly compute a
Gröbner basis in Theorem 2.17 whenever the underlying double poset is compatible.
On the geometric side, this yields a regular triangulation of double order polytopes
given in Corollary 2.20 and a simple formula for their volume in Corollary 2.21.
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Figure 2.3: A placing triangulation
with two simplices.

Figure 2.4: A pulling triangulation with
three simplices.

Moreover, analogously to the case of order polytopes, in Theorem 2.22 we obtain a
description of their whole face lattice in terms of the two underlying Birkhoff lattices.
This turns out to be particularly useful for studying low-dimensional faces and in
Corollary 2.24 we give a characterization of the edges of double order polytopes.

2.2.1 Hibi rings

Toric ideals of order polytopes were first studied by Hibi [46] in the context of al-
gebras with straightening laws. They are also interesting from the perspective of
classical algebraic geometry: For certain posets, they define projective toric vari-
eties which deform to Grassmannians and flag varieties (see for instance [34] or [62,
Sec. 14.3]). The projective varieties associated to order polytopes are, as the poly-
topes themselves, very combinatorial in nature and many geometric properties and
invariants, such as the singular locus, the divisor class group and the Picard group
can be read off directly from the poset (see [28],[43],[80]).

Let (P,�) be a finite poset with Birkhoff lattice J (P ). Consider two polynomials
rings S = C[t, sa : a ∈ P ] and R = C[xJ : J ∈ J (P )]. Recall from Section 2.1.2 that
the toric ideal IO(P ) arises as the kernel of the homomorphism ϕ : R→ S defined on
generators by

ϕ(xJ) = t sJ where sJ :=
∏
a∈J

sa.

The graded semigroup ring C[O(P )] := im(ϕ) = C[tsJ : J ∈ J (P )] ∼= S/IO(P ) is
called the Hibi ring associated to P . Hibi showed in [46] that C[O(P )] is a normal
Cohen-Macaulay domain of dimension |P |+ 1 and that C[O(P )] is Gorenstein if and
only if P is a graded poset, that is, all maximal chains have the same length. For
algebraic background and in particular a detailed treatment of toric Gorenstein rings
from both algebraic and discrete-geometric viewpoints, see [12].

We briefly note the following: The algebraic definition of Gorenstein rings re-
lates to the definition of reflexive polytopes from Section 1.3.3 as follows. An in-
tegral polytope P ⊂ Rn is called normal if the affine semigroup S generated by
the homogenized vertex set V (P) × {1} ⊂ Zn+1 is normal. An important class
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of normal polytopes is formed by polytopes that have a unimodular triangulation.
If P is normal, the quotient algebra R/IP is Gorenstein if and only if there exist
k ∈ Z>0 and x ∈ Zn such that the polytope kP − x is reflexive. For our purpose,
we might as well take this as the definition of Gorenstein rings. On the level of
normal semigroups, the Gorenstein property becomes the following. We denote by
int(S) := S ∩ relint(cone(S)) the interior of S. The ring R/IP is Gorenstein if and
only if int(S) = x + S for some point x ∈ S. Such a normal semigroup is also called
Gorenstein.

Remark 2.12. Hibi’s proof that the toric ring associated to order polytopes is
Gorenstein if and only if the underlying poset is graded is phrased in algebraic terms.
Translated to the language of cones and affine semigroups, the outline of the proof
is as follows: An element x ∈ int(S) which cannot be written as x = y + s with
y ∈ int(S) and 0 6= s ∈ S corresponds to a minimal strictly order preserving map
σ : P̂ → N, in the sense that there is no strictly order-preserving map σ′ : P̂ → N
such that 0 6= σ − σ′ is order-preserving. There is only one such map if and only
if the poset is graded. In this case, the unique generator corresponds to the rank
function in P̂ . For details, see [46].

Hibi elegantly described a reduced Gröbner basis of IO(P ) in terms of J (P ). As
before, the underlined term of a polynomial always denotes its leading term.

Theorem 2.13 ([45, Thm. 10.1.3]). Let (P,�) be a finite poset. Fix a total order ≤
on the variables {xJ : J ∈ J (P )} such that xJ ≤ xJ′ whenever J ⊆ J′ and denote by
�rev the induced reverse lexicographic order. Then the collection

xJ xJ′ − xJ∩J′ xJ∪J′ with J, J′ ∈ J (P ) incomparable (2.1)

is a reduced Gröbner basis of IO(P ) with respect to �rev.

The binomials in (2.1) are sometimes called Hibi relations. The Gröbner basis
of IO(P ) in Theorem 2.13 is the algebraic counterpart to the triangulation of O(P )
described in Theorem 1.20. Indeed, via Sturmfels’ correspondence (Theorem 2.8),
the Gröbner basis yields a regular triangulation of O(P ) whose minimal non-faces
are of the form conv(1J,1J′) for incomparable filters J, J′ ∈ J (P ). Thus, the faces
correspond to chains in J (P ) and we recover precisely the canonical triangulation
from Theorem 1.20. Moreover, we can use Theorem 2.8 to transfer algebraic proper-
ties of the Gröbner basis to geometric properties of the triangulation. The following
result follows directly from Theorem 2.13 and Corollary 2.9.

Corollary 2.14. The triangulation in Theorem 1.20 is a regular, flag and unimod-
ular pulling triangulation.

In Section 1.2.2, we have studied the complete facial structure of O(P ) by think-
ing of faces as intersections of facets. In the following, we will give a different
perspective by asking for which subsets M ⊆ V (O(P )) the convex hull conv(M) is
a face. For L ⊆ J (P ) of filters we shall write F (L) := conv(1J : J ∈ L) in the
following. An induced subposet L ⊆ J (P ) is an embedded sublattice if for any
two filters J, J′ ∈ J (P )

J ∪ J′, J ∩ J′ ∈ L if and only if J, J′ ∈ L. (2.2)
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For an embedded sublattice L we define l(L) := |C|, where C ⊆ L is a longest chain
in L. Note that l(L)−1 equals the number of join-irreducible elements in the lattice
L. Embedded sublattices give an alternative way to characterize faces of O(P ).

Proposition 2.15 ([80, Thm 1.1(f)]). Let P be a poset and L ⊆ J (P ) a collection
of filters. Then F (L) is a face of O(P ) if and only if L is an embedded sublattice.
In this case, dimF (L) = l(L)− 1.

Proof. By Lemma 2.7, F (L) is a face of O(P ) if and only if for every f ∈ IO(P ) we
have f(1L) = 0. By Theorem 2.13, this means that 1L has to satisfy the Hibi relations
in (2.1). But this is clearly equivalent to L being an embedded sublattice. By
Theorem 1.20, we have dimF (L) = dimF (C), where C ⊆ L is a longest chain.

This description is particularly useful for faces of low-dimension. For example it
is now easy to describe the edges of O(P ). The following result follows easily from
Proposition 2.15 and the relations in (2.2).

Corollary 2.16. Let P be a poset and J, J′ ∈ J (P ) distinct. Then conv({1J,1J′})
is an edge of O(P ) if and only if J and J′ are comparable (say J ⊂ J′) and their
difference J′ \ J is a connected poset.

Finally, note that for a face F = F (L) it is easy to describe the associated face
partition B(F ) (cf. Section 1.2.2): Two poset elements a, b ∈ P̂ belong to the same
block if and only if for every J ∈ L we have a ∈ J ∪ {1̂} if and only if b ∈ J ∪ {1̂}.

2.2.2 A Gröbner basis for double Hibi rings

For a double posetP = (P,�+,�−), consider the Laurent ring Ŝ := C[t−, t+, sa, s
−1
a :

a ∈ P ] and the polynomial ring R̂ := C[xJ+ , xJ− : J+ ∈ J (P+), J− ∈ J (P−)]. On
generators we define the map ϕ̂ : R̂→ Ŝ by

ϕ̂(xJ+) := t+ sJ+ = t+
∏
a∈J+

sa and ϕ̂(xJ−) := t− (sJ−)−1 = t−
∏
a∈J−

s−1a .

The toric ideal associated with TO(P) is ITO(P) = ker ϕ̂. Analogously to Sec-
tion 2.2.1 we call the subalgebra C[TO(P)] = im(ϕ̂) ⊆ Ŝ the double Hibi ring
of P. We can regard double Hibi rings as quotients by identifying C[TO(P)] ∼=
R̂/ITO(P). The double Hibi ring C[TO(P)] is a graded semigroup ring of dimension
|P | + 1. Moreover, whenever P is compatible, the double order polytope TO(P) is
reflexive by Corollary 1.33 and it follows that C[TO(P)] is Gorenstein. Note that
the rings C[TO(P)] as well as the affine semigroup rings associated to the double
chain polytopes TC(P) as treated in Section 3.3.2 were also considered by Hibi and
Tsuchiya [52].

Theorem 2.17. Let P = (P,�+,�−) be a compatible double poset. Fix a total order
≤ on the variables

{
xJσ : σ ∈ {±}, Jσ ∈ J (Pσ)

}
such that

(i) xJσ < xJ′σ for any filters Jσ, J
′
σ ∈ J (Pσ) with σ ∈ {±} and Jσ ⊂ J′σ, and

(ii) xJ+ < xJ− for any filters J+ ∈ J (P+) and J− ∈ J (P−).
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Denote by �rev the induced reverse lexicographic monomial order. Then a Gröbner
basis for ITO(P) is given by the binomials

xJσ xJ′σ − xJσ∪J′σ xJσ∩J′σ (2.3)

for incomparable filters Jσ, J
′
σ ∈ J (Pσ) and σ ∈ {±}, and

xJ+ xJ− − xJ+\A xJ−\A (2.4)

for filters J+ ∈ J (P+), J− ∈ J (P−) such that A := min(J+) ∩min(J−) 6= ∅.

It is clear that the binomials of the form (2.3) and (2.4) are contained in ITO(P)

and hence it suffices to show that their leading terms generate in�rev(ITO(P)). For
this, let us take a closer look at the combinatorics of ϕ̂. Let G be the collection of
binomials given in (2.3) and (2.4) and let f = m1 −m2 be a binomial of the form

xJ+1xJ+2 · · ·xJ+k+ · xJ−1xJ−2 · · ·xJ−k−−xJ′+1
xJ′+2

· · ·xJ′+k+ ·xJ′−1
xJ′−2

· · ·xJ′−k− , (2.5)

for filters J+1, . . . , J+k+ , J
′
+1, . . . , J

′
+k+
∈ J (P+) and J−1, . . . , J−k− , J

′
−1, . . . , J

′
−k− ∈

J (P−). It suffices to show that the initial term m1 lies in the the ideal generated by
the initial terms of the binomials in G. By reducing f by the binomials in (2.3), we
can view f as a quadruple

J+1 ⊂ J+2 ⊂ · · · ⊂ J+k+ J−1 ⊂ J+2 ⊂ · · · ⊂ J−k−
J′+1 ⊂ J′+2 ⊂ · · · ⊂ J′+k+ J′−1 ⊂ J′+2 ⊂ · · · ⊂ J′−k− .

(2.6)

Looking individually at the degree of the variables sa for a ∈ P , it follows from the
definition of ϕ̂ that such a quadruple defines a binomial in ITO(P) if and only if for
every q ∈ P we have

max{r : q /∈ J+r}−max{s : q /∈ J−s} = max{r : q /∈ J′+r}−max{s : q /∈ J′−s} (2.7)

and we note the following implication.

Lemma 2.18. Let the collection of filters in (2.6) correspond to a binomial f ∈
ITO(P) and let q ∈ P . Then there is some 1 ≤ i ≤ k+ such that q ∈ J+i \ J′+i if and
only if there is some 1 ≤ j ≤ k− such that q ∈ J−j \ J′−j.

Proof. If q ∈ J+i\J′+i, then max{r : q /∈ J+r} < i and max{r : q /∈ J′+r} ≥ i and (2.7)
implies that q ∈ J−j \ J′−j for some j. The other direction is identical.

We call q ∈ P moving if it satisfies one of the two equivalent conditions of
Lemma 2.18.

Proof of Theorem 2.17. Let f = m1 −m2 ∈ ITO(P) be a binomial represented by a
collection of filters given in (2.6). If k− = 0 or k+ = 0, then the Hibi relations (2.3)
for P− or P+ together with Theorem 2.13 yields the result. Thus, we assume that
k−, k+ > 0 and we need to show that there are filters J+i and J−j such that min(J+i)∩
min(J−j) 6= ∅.

We claim that there is at least one moving element. First observe that J+1 * J′+1

and hence J+1\J′+1 6= ∅. Indeed, otherwise, xJ+1 < xJ′+1
and the reverse lexicographic
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term order �rev would not select m1 as the leading term of f . Among all moving
elements, choose q to be minimal with respect to �+ and �−. Since P is a compatible
double poset, such a q exists. But then, if q ∈ J+i \ J′+i, then q ∈ min(J+i). The
same holds true for J−j and this shows that m1 is divisible by the leading term of a
binomial of type (2.4).

Remark 2.19. Reformulated in the language of double posets, Hibi, Matsuda, and
Tsuchiya [48, 50, 51] computed related Gröbner bases of the toric ideals associated
with the polytopes Γ(O(P+),O(P−)) (in the compatible case), Γ(C(P+), C(P−)), and
Γ(O(P+), C(P−)) for a double poset P. See the paragraph before Corollary 1.42 for
notation.

2.2.3 Triangulations of double order polytopes

Theorem 2.17 together with Theorem 2.8 yields a canonical triangulation of com-
patible double order polytopes. Let P = (P,�+,�−) be a double poset. In the
following we write TJ (P) := J (P+) ] J (P−). The elements of TJ (P) correspond
to vertices of TO(P) and hence TJ (P) may be regarded as a double Birkhoff lat-
tice, a generalization of Birkhoff lattices to the case of double posets. However, we
will not employ this terminology, since the poset TJ (P) does not carry a lattice
structure. Let Cσ ⊆ J (Pσ) be a chain of filters in Pσ for σ ∈ {±}. The pair of
chains C = C+]C− ⊆ TJ (P) is non-interfering if min(J+)∩min(J−) = ∅ for any
J+ ∈ C+ and J− ∈ C−. Consider the simplicial complex

∆(TJ (P)) = {C+ ] C− : C+ ∈ ∆(J (P+)), C− ∈ ∆(J (P−))}.

The subcomplex

∆ni(P) := {C : C = C+ ] C− ∈ ∆(TJ (P)), C non-interfering}

is called the non-interfering complex of P. For a non-interfering pair of chains
C = C+ ] C− ∈ ∆ni(P) we define F (C) := 2F (C+) � 2F (C−).

Corollary 2.20. Let P be a compatible double poset. The collection of simplices

{F (C) : C ∈ ∆ni(P)}

forms a regular, unimodular, flag triangulation of TO(P) with underlying simplicial
complex ∆ni(P).

Proof. A monomial does not occur as a leading term of the Gröbner basis in Theo-
rem 2.17 if and only it is of the form∏

J+∈C+

xJ+
∏

J−∈C−

xJ−

for some non-interfering pair C = C+]C− ∈ ∆ni(P). Theorem 2.8 and Corollary 2.9
complete the proof.
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J+0
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J+2

J+1

J-2
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Figure 2.5: A maximal non-interfering set of filters in PXW . A red or blue curve
denotes the filter consisting of all elements above the curve.

Note that associating the order complex ∆(J (P )) to a poset P is very natural
and can be motivated, for example, from an algebraic-combinatorial approach to the
order polynomial (cf. [8]). It would be very interesting to know if the association of
∆ni(P) to P is equally natural from a purely combinatorial perspective.

For a compatible double poset P = (P,�+,�−) counting the number of simplices
in the above triangulation yields a simple combinatorial formula for the normalized
volume of TO(P). In the following we denote by Vol(TO(P)) the normalized volume
with respect to Λ = 2ZP × (2Z + 1), the affine lattice generated by the vertices of
TO(P). In particular, if |P | = n, every full-dimensional unimodular simplex has
ordinary Euclidean volume 2n+1

(n+1)! . Recall from Section 1.1 that for a poset (P,�)

we write e(P ) for the number of linear extensions of P and for J ⊆ P, we denote by
P|J the subposet induced by J .

Corollary 2.21. Let P = (P,�+,�−) be a compatible double poset. Then

Vol(TO(P)) =
∑
J⊆P

e(P+|J) · e(P−|Jc)

Proof. We will count maximal simplices in the triangulation from Corollary 2.20. Let
C = C+ ] C− be the non-interfering pair corresponding to a maximal simplex. We
have |C| = |P | + 2 and hence every element of P must occur as a minimal element
of some filter in C. More precisely, we have P = M+ ]M−, where for σ ∈ {±} we
define

Mσ := {p ∈ P : p ∈ min(Jσ) for some Jσ ∈ J (Pσ)}.

For σ ∈ {±}, the chain C+ induces a maximal chain of filters in the induced subposet
Pσ|Mσ and hence corresponds to a linear extension of Pσ|Mσ . Conversely, every
partition P = M+ ] M− together with a pair of linear extensions of Pσ|Mσ for
σ ∈ {±} uniquely determines a maximal pair of non-interfering chains.

2.2.4 Faces of double order polytopes

In Proposition 2.15, we have used toric ideals and Gröbner bases to describe faces of
order polytopes. Now we will generalize this description to the case of double order
polytopes. Let P = (P,�+,�−) be a double poset. For any subset L ⊆ TJ (P) we
will denote by L+ and L− the sets L∩J (P+) and L∩J (P−), respectively. Moreover,
we shall write F (L) := 2F (L+) � 2F (L−) ⊆ TO(P). More explicitly,
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F (L) = conv
(
{(21J+ ,+1) : J+ ∈ L+} ∪ {(−21J− ,−1) : J− ∈ L−}

)
. (2.8)

Clearly, every face F ⊆ TO(P ) is of the form F = F (L) for some L ⊆ TJ (P)
and the filters in L correspond to vertices of TO(P) that lie in F . The following is
a complete characterization of faces of TO(P) in terms of their vertex sets in the
case when P is compatible. For L ⊆ TJ (P), we denote by cl(L) the largest number
|C| = |C+|+ |C−| such that C ⊆ L is a pair of non-interfering chains.

Theorem 2.22. Let P = (P,�+,�−) be a compatible double poset and L ⊆ TJ (P).
Then F (L) is a face of TO(P) if and only if
(i) L+ ⊆ J (P+) and L− ⊆ J (P−) are embedded sublattices and
(ii) for all filters J+ ⊆ J′+ ∈ J (P+) and J− ⊆ J′− ∈ J (P−) with

J′+ \ J+ = J′− \ J−

it holds that {J+, J−} ⊆ L if and only if {J′+, J′−} ⊆ L.
Moreover, in this case dimF (L) = cl(L)− 1.

We call a pair L = L+ ] L− ⊆ TJ (P) of embedded sublattices cooperating if
it satisfies condition (ii) of Theorem 2.22 above. We may also rephrase condition (ii)
as follows.

Lemma 2.23. Let L ⊆ TJ (P) such that L+ and L− are embedded sublattices. Then
L is cooperating if and only if only if for any two filters J− ∈ L−, J+ ∈ L+ we have
(i) for A ⊆ min(J+) ∩min(J−) we have J− \A ∈ L− and J+ \A ∈ L+, and
(ii) for B ⊆ max(P+ \ J+)∩max(P− \ J−) we have J− ∪B ∈ L− and J+ ∪B ∈ L+.

Proof. First assume that L is cooperating. Let B ⊆ max(P+ \ J+) ∩max(P− \ J−)
and define filters J′σ = Jσ ∪ B for σ ∈ {±}. Clearly, J′+ \ J+ = J′− \ J− = B
and hence J′+, J

′
− ∈ L since L is cooperating. The same argument applies to A ⊆

min(J+) ∩min(J−).
For the converse direction, let Jσ ⊆ J′σ for σ ∈ {±} such that J′+ \J+ = J′− \J− =:

D. If we assume J′+, J
′
− ∈ L then A := min(D) ⊆ min(J′+) ∩ min(J′−) and by (i),

J′σ \ A ∈ Lσ for σ ∈ {±}. Now induction on |D| yields J+, J− ∈ L. The other
direction is similar.

Proof of Theorem 2.22. Let L ⊆ TJ (P). It follows from Lemma 2.7 and Theo-
rem 2.17 that F (L) ⊆ TO(P) is a face if and only if f(1L) = 0 for every f in the
Gröbner basis given in (2.3) and (2.4). The Hibi relations in (2.3) ensure that L+
and L− are embedded sublattices (cf. Proposition 2.15) and the conditions imposed
by (2.4) are equivalent to those of Lemma 2.23. The last assertion follows directly
from Corollary 2.20.

For a poset P , we have seen in Corollary 2.16 that edges of O(P ) are of the
form conv({1J,1J′}) where J ⊆ J′ are filters of P such that J′ \ J is a connected
poset. Of course, this description captures all the horizontal edges of TO(P). The
upcoming characterization of vertical edges follows directly from Theorem 2.22 and
Lemma 2.23, but we also supply a direct proof.
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Corollary 2.24. Let P = (P,�+,�−) be a compatible double poset and let J+ ⊆ P+

and J− ⊆ P− be filters. Then (21J+ ,+1) and (−21J− ,−1) are the endpoints of a
vertical edge of TO(P) if and only if 1J+ − 1J− is a vertex of DO(P). This is the
case if and only if

min(J+) ∩min(J−) = ∅ and
max(P+ \ J+) ∩max(P− \ J−) = ∅.

Proof. The first equivalence follows from the fact that

TO(P) ∩ {(ϕ, t) : t = 0} = (O(P+)−O(P−))× {0}

and 1J+ − 1J− is the midpoint between (21J+ ,+1) and (−21J− ,−1).
Before we come to the second claim, let us note that the face partition of a vertex

1J for a poset (P,�) is given by {J, P \ J}. Thus, if 1J+ − 1J− is a vertex of DO(P),
then there is a linear function `(f) =

∑
a∈P `af(a) such that O(P+)` = {1J+} and

O(P−)−` = {1J−}. Corollary 1.17 then yields that `a > 0 for each a ∈ min(J+)
and `a < 0 for a ∈ min(J−). The same reasoning applies to max(P+ \ J+) and
max(P− \ J−) and shows necessity.

Let b ∈ min(J+). If b 6∈ J−, then the linear function `(f) := f(b) is maximized
over O(P+) at every filter that contains b and over −O(P−) at every filter that
does not contain b. If b ∈ J−, then, by assumption, b 6∈ min(J−) and there is
some p2 ∈ min(J−) with p2 ≺− b. Now, if p2 ∈ J+, then there is p3 ∈ min(J+)
with p3 ≺+ p2 and so on. Compatibility now assures us that we get a descending
alternating chain of the form

1̂ �+ b =: p1 �− p2 �+ p3 �− · · · �σ pk �−σ a �σ 0̂

where p2, p4, p6, . . . ∈ min(J−) ∩ J+ and p1, p3, p5, . . . ∈ min(J+) ∩ J− and a ∈
min(J−σ) \ Jσ. Consider the associated linear function

`(f) = f(p0)− f(p1) + f(p2)− · · ·+ (−1)kf(pk) + (−1)k+1f(a)

for f ∈ RP . We claim that `(1J′+) ≤ 1 for each filter J′+ ⊆ P+ and with equality if
b ∈ J′+. Indeed, if p2i+1 ∈ J′+, then p2i ∈ J′+ for all i ≥ 1. Conversely, `(−1J′−) ≤ 0 =

`(−1J−) for each filter J′− ⊆ P−. This follows from the fact that p2i ∈ J′− implies
p2i−1 ∈ J′− for each i ≥ 1.

For a ∈ max(P+ \J+) the situation is similar and we search for b ∈ max(P− \J−)
with a ≺− b in the case that a 6∈ J−. This yields a linear function ` ∈ −NP−(1J−)
that is maximized over O(P+) at filters 1J′+ with a 6∈ J′+. Summing these linear
functions for b ∈ min(J+) and a ∈ max(P+ \ J+) yields a linear function `+ with
O(P+)`

+
= {1J+} and 1J− ∈ O(P−)−`

+ .
Of course, the same reasoning applies to J− instead of J+ and it follows that

`+ − `− is uniquely maximized at 1J+ − 1J− over DO(P) = O(P+)−O(P−).

We close this section by noting that in the case of ordinary order polytopes, most
problems are rather straightforward to approach from both the geometric and the
algebraic side. However, we have seen that for double order polytopes things get more
involved and for many purposes (for example the triangulation in Corollary 2.20) it
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seems easier to take the algebraic perspective. However, this approach leaves some
questions open; for example, it would be interesting to find a combinatorial algorithm
which for a given point p ∈ TO(P) finds a simplex of the triangulation that contains
p.



Chapter 3

Double chain polytopes and
anti-blocking polytopes

In this chapter, we study double chain polytopes, a second class of polytopes asso-
ciated to double posets. As the double order polytopes in Chapter 1, they are very
combinatorial in flavor and, again, our goal is to study their geometry in terms of
the combinatorics of the underlying poset. It turns out that most of the theory can
be developed in the more general setting of Fulkerson’s anti-blocking polytopes [30]
and their Cayley sums.

Section 3.1 introduces chain polytopes and anti-blocking polytopes, as well as sta-
ble set polytopes, a class of anti-blocking 0/1-polytopes associated to graphs which
generalizes chain polytopes. In Section 3.2, we define double chain polytopes and
more generally, we consider Cayley sums of anti-blocking polytopes, which also sub-
sume Hansen polytopes [41]. We give an explicit description of the facets of these
Cayley sums and in particular of double chain polytopes. Cayley sums of anti-
blocking polytopes have a very natural subdivision, which we describe in Section 3.3.
In the case of double chain polytopes, we refine this subdivision to a canonical trian-
gulation, which, in particular, yields explicit combinatorial formulas for their volume.
Finally, in Section 3.4, we establish a connection between double order polytopes and
double chain polytopes by defining a piecewise-linear homeomorphism between the
two polytopes whenever the underlying double poset is compatible. Eventually, we
put this connection to good use: We compute the Ehrhart polynomial of double
chain polytopes and use the transfer map to also obtain the Ehrhart polynomial of
compatible double order polytopes.

3.1 Anti-blocking polytopes

The second class of poset polytopes introduced by Stanley [73] are chain polytopes.
Before we turn to the study of their Cayley sums, we collect some basics on chain
polytopes, as well as two larger families: Independent set polytopes associated to
graphs (see for example [41, 58]) and, even more generally, anti-blocking polytopes,
which were introduced by Fulkerson [30] in connection with min-max-relations in
combinatorial optimization.

41
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3.1.1 Chain polytopes and stable set polytopes

Definition 3.1. Let P be a poset. The chain polytope C(P ) is the collection of
functions g : P → R≥0 such that

g(a1) + g(a2) + · · ·+ g(ak) ≤ 1 (3.1)

for all chains a1 ≺ a2 ≺ · · · ≺ ak in P .

Stanley [73] showed that such an inequality is facet-defining if and only if the
corresponding chain is maximal and that the vertices of C(P ) are the characteristic
vectors of antichains, that is

V (C(P )) = {1A : A ⊆ P antichain}. (3.2)

Since filters and antichains in P are in one-to-one correspondence, so are the
vertices of O(P ) and C(P ). More generally, in Section 3.4.1, we will see that O(P )
and C(P ) are related by a piecewise linear homeomorphism. In contrast to the order
polytope, C(P ) does not uniquely determine P . In fact, C(P ) is determined by the
comparability graph G(P ) defined in Section 1.1, and any two posets with the same
comparability graph have the same chain polytope.

For a graph G = (V,E), a stable set (resp. clique) is a subset S ⊆ V satisfying(
S
2

)
∩ E = ∅ (resp.

(
C
2

)
⊆ E). We write 1S ∈ {0, 1}V for the characteristic vector of

any S ⊆ V .

Definition 3.2. The stable set polytope of a graph G = (V,E) is

PG := conv(1S : S ⊆ V stable set) ⊂ RV .

For the following well-studied graphs, the stable set polytope has a particularly
simple inequality description. A graph G is called perfect if for every induced
subgraph of G the chromatic number equals the size of a largest clique. The strong
perfect graph theorem [15] states that G is perfect if and only if neither G nor
its complement graph contain induced odd cycles of length 5 or more. The class
of perfect graphs has been well-studied and is also particularly interesting in the
context of stable set polytopes: Lovász [58] gave yet another characterization of
perfect graphs in terms of their stable set polytopes. For a vector x ∈ RV and a
subset J ⊆ V , we write x(J) =

∑
j∈J xj .

Theorem 3.3 ([58]). A graph G = (V,E) is perfect if and only if

PG = {x ∈ RV : x ≥ 0,x(C) ≤ 1 for all cliques C ⊆ V }.

Note that antichains (resp. chains) in a poset P are precisely stable sets (resp.
cliques) in the comparability graph G(P ). Hence, every chain polytope is a stable
set polytope. Explicitly,

PG(P ) = C(P ) = {x ∈ RP : x ≥ 0,x(C) ≤ 1 for all chains C ⊆ P}
= {x ∈ RP : x ≥ 0,x(C) ≤ 1 for all cliques C in G(P )}.

In particular, Theorem 3.3 implies that comparability graphs are perfect.
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3.1.2 Anti-blocking polytopes

Definition 3.4. A nonempty polytope P ⊂ Rn≥0 is called anti-blocking if

q ∈ P and 0 ≤ p ≤ q implies p ∈ P, (3.3)

where 0 ≤ p ≤ q refers to componentwise order in Rn.

It is obvious from (3.1) that chain polytopes are anti-blocking polytopes. More
generally, also stable set polytopes of arbitrary graphs are anti-blocking. The follow-
ing fundamental results on anti-blocking polytopes can be found in [69, Sect. 9.3].
For any c1, . . . , cr ∈ Rn≥0 the polytope

{c1, . . . , cr}↓ := Rn≥0 ∩ (conv(c1, . . . , cr)− Rn≥0)

has the anti-blocking property. Conversely, if P ⊂ Rn is an anti-blocking polytope,
then there always exist c1, . . . , cr ∈ Rn≥0 such that P = {c1, . . . , cr}↓. The unique
minimal such set, denoted by V ↓(P), is given by the maxima of the vertex set of
P with respect to the partial order ≤. Moreover, there is a dual minimal collection
d1, . . . ,ds ∈ Rn≥0 such that

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for all i = 1, . . . , s}. (3.4)

For an arbitrary polytope Q ⊆ Rn≥0, we consider an associated anti-blocking
polytope

A(Q) := {d ∈ Rn≥0 : 〈d,x〉 ≤ 1 for all x ∈ Q}.

Anti-blocking polytopes contain the origin on their boundary, hence the ordinary
polar is not bounded. This problem can be resolved by replacing polars by associated
anti-blocking polytopes. Note that they relate to the ordinary polar since A(Q) =
Q4 ∩ Rn≥0. The following is the structure theorem for anti-blocking polytopes akin
to the bipolar theorem for convex bodies.

Theorem 3.5 ([69, Thm. 9.4]). Let P ⊂ Rn be a full-dimensional anti-blocking
polytope with

P = {c1, . . . , cr}↓ = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for all i = 1, . . . , s}

for some c1, . . . , cr,d1, . . . ,ds ∈ Rn≥0. Then

A(P) = {d1, . . . ,ds}↓ = {x ∈ Rn : x ≥ 0, 〈ci,x〉 ≤ 1 for all i = 1, . . . , r}.

In particular, A(A(P)) = P.

For independent set polytopes or perfect graphs, the associated anti-blocking
polytopes have an easy combinatorial description. For a graph G = (V,E) its com-
plement graph is G := (V,

(
V
2

)
\E). Note that the complement graph of a perfect

graph is again perfect, which was first proven by Lovász [57]. Alternatively, this fact
also follows from the strong perfect graph theorem [15].

Corollary 3.6. Let G be a perfect graph. Then

A(PG) = PG.
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Proof. The cliques of G are precisely the stable sets in G. Since G is perfect, Theo-
rem 3.3 and Theorem 3.5 finish the proof.

For the special case of chain polytopes, this implies the following.

Corollary 3.7. Let P be a poset. Then

A(C(P )) = conv(1C : C ⊆ P chain).

Proof. We have
A(C(P )) = A(PG(P)) = P

G(P).

The claim follows since independent sets in G(P) are precisely chains in P .

Remark 3.8. Recall that an inequality in (3.1) is facet-defining for C(P ) if and
only if it corresponds to a maximal chain in P and hence, by Theorem 3.5, we have
A(C(P )) = {1C : C ⊆ P maximal chain}↓. However the vertices of the latter are of
the form 1C for arbitrary chains in P .

3.2 Cayley sums of anti-blocking polytopes

In this section, we finally begin to study the double chain polytope TC(P) associated
to a double poset P, analogously to the double order polytope TO(P). Moreover,
we will take a look at a closely related polytope, the Hansen polytope H(G) arising
from a graph G (see [41]). Again, for our purpose we can work in the more general
framework of anti-blocking polytopes, that is we will look at the polytopes P1 � P2
as well as their sections P1 − P2 for anti-blocking polytopes P1,P2 ⊂ Rn≥0.

The main results of this section are the following. We completely determine the
facets of P1 � P2 in terms of P1,P2 in Theorem 3.11. This result specializes to
a combinatorial description of the facets of TC(P) for arbitrary double posets P,
which is given in Theorem 3.14. These results have several interesting implications.
Corollary 3.15 exhibits a new class of reflexive polytopes arising from double graphs.
In Corollary 3.16, we observe the curious fact that for induced double posets, the
number of facets of the associated double order and double chain polytopes agrees
and we conjecture a relation between their f -vectors, analogously to a conjecture by
Hibi and Li [47] for the case of ordinary poset polytopes. Hansen [41] showed that the
polytope H(G) is 2-level whenever G is perfect. In Corollary 3.20, we give a simple
alternative proof of this result. Finally, in Theorem 3.24, we prove that Hansen
polytopes of perfect graphs are the only 2-level polytopes of the form P1 � P2 with
anti-blocking polytopes P1,P2.

3.2.1 Cayley sums and polars

Minkowski sums and Cayley sums of anti-blocking polytopes are of particular inter-
est to us since they generalize the following families of polytopes.

(I) Our main objects of study in this chapter are the following.
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Definition 3.9. Let P = (P,�±) be a double poset. The double chain
polytope of P is

TC(P) := 2C(P+) � 2C(P−) = conv
(
(2C(P+)×{1})∪ (−2C(P−)×{−1})

)
.

Sometimes it will be more convenient to look at the reduced double chain
polytope DC(P) := C(P+)−C(P−). Similar to double order polytopes, we will
see that many geometric properties of double chain polytopes, such as their
face structure, triangulations and volume, can be described in terms of the
underlying double poset.

(II) More generally, we can look at Cayley sums of independent set polytopes: A
double graph is a triple G = (V,E+, E−) consisting of a node set V with two
sets of edges E+, E− ⊆

(
V
2

)
. Again, we write G+ = (V,E+) and G− = (V,E−)

to denote the two underlying ordinary graphs. The results of the preceding
sections prompt the definition of the double stable set polytope

PG := 2PG+ � 2PG−

associated to a double graph G. Note that a double poset P = (P,�±) gives
rise to a double graph G(P) = (G(P+), G(P−)) and the double chain polytope
of P is simply TC(P) = PG(P).

(III) The case when G+ = G− has been well-studied. For a graph G, Hansen [41]
studied the Cayley sum H(G) := 2PG � 2PG, which are nowadays called
Hansen polytopes. If G is perfect, then Hansen showed that the polar
H(G)4 is linearly isomorphic to H(G) where G is the complement graph of
G. He moreover showed that H(G) is 2-level if and only if G is perfect. We
will generalize these results in Corollary 3.13 and Theorem 3.24, respectively.

In the sequel, we will consider Cayley sums of the form

P1 � P2 = conv(P1 × {1} ∪ (−P2)× {−1}),

where P1 and P2 are anti-blocking polytopes in Rn. Before we come to our first
result regarding Cayley- and Minkowski-sums of anti-blocking polytopes, we note
the following fact.

Proposition 3.10. Let P1,P2 ⊂ Rn be two full-dimensional anti-blocking polytopes.
Then the vertices of conv(P1 ∪ −P2) are exactly (V (P1) ∪ V (−P2)) \ {0}.

Proof. It suffices to show that every v ∈ V (P1) \ {0} is a vertex of conv(P1 ∪−P2).
Let c ∈ Rn ∼= (Rn)∗ such that Pc

1 = {v}. Since v 6= 0, by (3.4) there is some
d ∈ Rn≥0 \ {0} such that 〈d,u1〉 ≤ 1 for all u1 ∈ P1 and 〈d,v〉 = 1. Hence, for any
µ ≥ 0, Pc+µd

1 = {v}. Now, 〈d,−u2〉 ≤ 0 for all u2 ∈ P2. In particular, for µ > 0
sufficiently large,

〈c + µd,−u2〉 ≤ 〈c,−u2〉 < 〈c,v〉+ µ = 〈c + µd,v〉,

which shows that v uniquely maximizes 〈c + µd,u〉 over conv(P1 ∪ −P2).
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For d ∈ Rn≥0 and I ⊆ [n], we write d[I] for the vector with

(d[I])j =

{
dj for j ∈ I
0 otherwise.

Theorem 3.11. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then

(P1 − P2)4 = conv(A(P1) ∪ −A(P2)).

Moreover,
(2P1 � 2P2)4 = −A(P2) �−A(P1).

Proof. Let us denote the right-hand side of the first equation by Q. Note that
〈u1,−v2〉 ≤ 0 for u1 ∈ A(P1) and v2 ∈ P2. This shows that 〈u1,v〉 ≤ 1 for all
v ∈ P1 − P2. By symmetry, this yields Q ⊆ (P1 − P2)4.

For the converse, we observe that every vertex of Q is of the form d[I] with
d ∈ V ↓(A(P1)) ∪ −V ↓(A(P2)) and I ⊆ [n]. It follows that z ∈ Q4 if and only if
〈z,d[I]〉 ≤ 1 for all d ∈ V ↓(A(P1)) ∪ −V ↓(A(P2)) and all I ⊆ [n]. For z ∈ Q4,
write z = z1 − z2 with z1, z2 ≥ 0 and supp(z1) ∩ supp(z2) = ∅, where for any
z = (z1, . . . , zn) ∈ Rn we set supp(z) := {i : zi 6= 0}. We claim that zi ∈ Pi for
i = 1, 2. Indeed, let I = supp(z1). Then for any d ∈ V ↓(P1) we have

〈d, z1〉 = 〈d[I], z〉 ≤ 1

and hence z1 ∈ P1. Applying the same argument to z2 shows that z ∈ P1 − P2 and
hence (P1 − P2)4 ⊆ Q.

For the second claim, note that any linear function on Rn×R that maximizes on
a vertical facet of 2P1 � 2P2 is of the form αd〈d,x〉+δdt for d a vertex of (P1−P2)4
and some αd, δd ∈ R with αd > 0. By the first claim and Proposition 3.10, it follows
that d ∈ (V (A(P1)) ∪ V (−A(P2))) \ {0}.

If d ∈ V (A(P1))\{0}, then 〈d,u1〉 ≤ 1 is tight for u1 ∈ P1 whereas 〈d,−u2〉 ≤ 0
is tight for −u2 ∈ −P2. Hence,

〈d,x〉 − t ≤ 1

is the corresponding facet-defining halfspace. Similarly, if −d ∈ −V (A(P1)) \ {0},
then

〈−d, x〉+ t ≤ 1

is facet-defining. Together with the two horizontal facets 〈0,x〉± t ≤ 1 this yields an
inequality description of (−A(P2) �−A(P1))4, which proves the second claim.

Theorem 3.11 together with Theorem 3.5 has a nice implication that was used
in [68] in connection with Hansen polytopes.

Corollary 3.12. For any full-dimensional anti-blocking polytope P ⊂ Rn, the poly-
tope P �A(P) is linearly isomorphic to its polar (P �A(P))4. In particular, we
have that P �A(P) is self-dual, that is, combinatorially isomorphic to its polar.
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3.2.2 Facets of Double chain and Hansen polytopes

Theorem 3.11 yields a simple combinatorial description for the polars of double
stable set polytopes. For a double graph G, define the complement graph as G =
(V,Ec+, E

c
−), that is, the double graph consisting of the two ordinary complement

graphs.

Corollary 3.13. Let G be a perfect double graph. Then P4G is linearly isomorphic
to PG.

Proof. By Theorem 3.11 and Corollary 3.6 we have

P4G = (2PG+ � 2PG−)4 = −A(PG−) �−A(PG+) = −PG− �−PG+

∼= PG.

Theorem 3.11 directly gives an explicit facet description of the double chain
polytope. Note that compatibility is not required.

Theorem 3.14. Let P be a double poset and TC(P) it double chain polytope. Then
(g, t) ∈ RP × R is contained in TC(P) if and only if∑

a∈C+

g(a)− t ≤ 1 and
∑
a∈C−

−g(a) + t ≤ 1,

where C+ ⊆ P+ and C− ⊆ P− ranges over all chains.

Proof. By Theorem 3.11, we have

TC(P)4 = (2C(P+) � 2C(P−))4 = −A(C(P−)) �−A(C(P+)).

Hence, facets of TC(P) correspond to vertices of −A(C(P−)) �−A(C(P+)) and The-
orem 3.5 together with (3.1) finishes the proof.

Recall that an integral polytope is called reflexive (cf. Corollary 1.42) if its polar
is also integral. Our above results immediately imply the following.

Corollary 3.15. Let G = (G,E+, E−) be a perfect double graph. Then the polytopes
PG = 2PG+ � 2PG− and PG+ −PG− are reflexive. In particular all (reduced) double
chain polytopes are reflexive.

For the usual order- and chain polytope, Hibi and Li [47] showed that O(P ) has
at most as many facets as C(P ) and equality holds if and only if P does not contain
the 5-element poset PX from Example 1.2. This is different in the case of double
poset polytopes.

Corollary 3.16. Let P be a poset with induced double poset P. Then TO(P) and
TC(P) have the same number of facets.

Proof. Every chain C ⊆ P yields two distinct alternating chains in P. Conversely,
every alternating chain arises this way.

However, it is in general not true that TO(P) is combinatorially isomorphic to
TC(P), as the following example shows.
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Example 3.17. LetPX be the double poset induced by PX (cf. Example 1.2). Then,
using sage [18] it can be checked that the face vectors of TO(PX) and TC(PX) are

f(TO(PX)) = (16, 88, 204, 240, 144, 36) and
f(TC(PX)) = (16, 88, 222, 276, 162, 36).

Hibi and Li [47] conjectured that f(O(P )) ≤ f(C(P )) componentwise. Compu-
tations suggest that the same relation should hold for the double poset polytopes of
induced double posets.

Conjecture 3.18. Let P = (P,�,�) be a double poset induced by a poset (P,�).
Then

fi(TO(P)) ≤ fi(TC(P))

for 0 ≤ i ≤ |P |.

An extension of the conjecture to general compatible double posets fails, as the
following examples show.

Example 3.19. (1) Let Altn be the alternating chain from Example 1.4. It follows
from Theorem 3.14 that the number of facets of TC(Altn) is 3n+1. Since Altn is
compatible, then by Theorem 1.29 the number of facets of TO(Altn) equals the
number of alternating chains, which is easily computed to be

(
n+2
2

)
+ 1. Thus,

for n ≥ 4, the alternating chains Altn fail Conjecture 3.18 for the number of
facets. For n = 4, we used sage [18] to explicitly compute

f(TO(Alt4)) = (21, 70, 95, 60, 16) and
f(TC(Alt4)) = (21, 67, 86, 51, 13).

(2) Recall from Example 1.30 that the double order polytope TO(ACn) has
(
n
2

)
+

2n + 2 facets. On the other hand it follows easily from Theorem 3.14 that
TC(ACn) has 2n + n+ 1 facets. For n = 3, we explicitly have

f(TO(AC3)) = (12, 30, 29, 11) and
f(TC(AC3)) = (12, 31, 31, 12).

(3) For the double poset PXW from Example 1.5, the polytopes TO(PXW ) and
TC(PXW ) have the same number of facets, but they are not combinatorially
equivalent:

f(TO(PXW )) = (21, 112, 247, 263, 135, 28) and
f(TC(PXW )) = (21, 114, 254, 271, 138, 28).

Theorem 3.11 also recovers one of the main results of Hansen [41].

Corollary 3.20 ([41, Thm. 4 and Thm. 6]). Let G be a perfect graph. Then H(G)
is 2-level and H(G)4 is linearly isomorphic to H(G).

Proof. A vertex of H(G)4 is of the form d = ±(−1C , 1) for some clique C of G.
Thus, for any vertex v = ±(21S , 1) ∈ H(G), where S is a stable set of G, we compute
〈d,v〉 = ±(1− 2|S ∩ C|) = ±1. The second claim follows from Corollary 3.13.
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Example 3.21 (Double chain polytopes of dimension-two posets). Following Ex-
ample 1.3, let π+, π− ∈ Zn be two integer sequences with associated posets Pπ+
and Pπ− of order dimension two. Consider the double posets P = (Pπ+ , Pπ−) and
−P = (P−π− , P−π+). We have

G(P) = (G(Pπ−), G(Pπ+)) = (G(P−π−), G(P−π+)) = G(−P)

and hence
TC(P)4 ∼= TC(−P)

by Corollary 3.13. Note that a similar statement does not hold true for double order
polytopes. That is, it is not necessarily true that TO(P)4 ∼= TO(−P), as can be
checked for the dimension-two double poset PX (cf. Example 3.17).

Example 3.22 (Double chain polytopes of plane posets). Let P be a plane double
poset. By the last example and Example 1.9, the double chain polytope TC(P) is
linearly isomorphic to its polar TC(P)4.

Among the 2-level polytopes, independence polytopes of perfect graphs play a
distinguished role. The following observation, due to Samuel Fiorini (personal com-
munication), characterizes 2-level anti-blocking polytopes.

Proposition 3.23. Let P ⊂ Rn be a full-dimensional anti-blocking polytope. Then
P is 2-level if and only if P is linearly isomorphic to PG for some perfect graph G.

Proof. The origin is a vertex of P and, since P is full-dimensional and anti-blocking,
its neighbors are α1e1, . . . , α1en for some αi > 0. After a linear transformation,
we can assume that α1 = · · · = αn = 1. Since P is 2-level, it follows that P =
{x ∈ Rn≥0 : 〈di,x〉 ≤ 1 for i = 1, . . . , s} with di ∈ {0, 1}n for all i = 1, . . . , s. Let
G = ([n], E) be the minimal graph with cliques supp(di) for all i = 1, . . . , s. That
is, E =

⋃
i

(
supp(di)

2

)
. We have PG ⊆ P. Conversely, again by 2-levelness, any vertex

of P is of the form 1S for some S ⊆ [n] and 〈di,1S〉 = | supp(di) ∩ S| ≤ 1 shows
that P ⊆ PG. Finally, it follows from Theorem 3.3 that G is perfect.

Proposition 3.23 can be used to characterize 2-level polytopes among Cayley sums
of anti-blocking polytopes.

Theorem 3.24. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then
P = P1 � P2 is 2-level if and only if P is affinely isomorphic to H(G) for some
perfect graph G.

Proof. Sufficiency is Hansen’s result (Corollary 3.20). For necessity, observe that P1
and P2 are faces and hence have to be 2-level. By the proof of Proposition 3.23, we
may assume that P1 = PG1 for some perfect graph G1 and P2 = APG2 for some
perfect G2 and a diagonal matrix A ∈ Rn×n with diagonal entries ai > 0 for i ∈ [n].
We will proceed in two steps: We first prove that A must be the identity matrix and
then show that G1 = G2.

For every i ∈ [n], the inequality xi ≥ 0 is facet-defining for P1. Hence, it induces
a facet-defining inequality for the Cayley sum P, which must be of the form

`i(x) := −bixi + t ≤ 1
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for some bi > 0, where t denotes the last coordinate in Rn+1. Observe that `i takes
the values 1 and 1 − bi on the vertices {0, ei} × {1} of the face P1 × {1}. On the
other hand, on {0,−aiei} × {−1} ⊂ −P2 × {−1}, the values are −1 and −1 + aibi.
Now 2-levelness implies ai = 1 and bi = 2.

It now follows from Theorem 3.11 and Corollary 3.6 that the facet-defining in-
equalities for P are

21C1(x)− t ≤ 1 and
−21C2(x) + t ≤ 1,

where C1 and C2 are cliques in G1 and G2, respectively. By 2-levelness each of these
linear functions takes the values −1 and 1 on the vertices of P . This implies that
every clique in G1 must be a clique in G2 and conversely. Hence G1 = G2.

3.3 Subdivisions and triangulations

In this section, we are concerned with subdivisions and triangulations of the poly-
topes from the previous section. For anti-blocking polytopes P1,P2, there is a canon-
ical subdivision of P1 � P2 and P1−P2, which we describe in Lemma 3.25. Moreover,
in Theorem 3.26, we prove that if P1 and P2 have regular, unimodular, or flag tri-
angulations, then so has the Cayley sum P1 � P2. In Corollary 3.29, we apply this
to the case of double chain polytopes: Stanley’s canonical triangulation of chain
polytopes [73] lifts to a regular flag and unimodular triangulation of double chain
polytopes. In Theorem 3.31 we use Sturmfels’ correspondence to translate this tri-
angulation into the language of algebra and we obtain a Gröbner basis of the toric
ideals associated to double chain polytopes.

The subdivision from Lemma 3.25 implies a formula for the volume of P1 � P2
and P1−P2, given in Theorem 3.32, which in the case of double chain polytopes only
depends on the combinatorics of the underlying double poset P (Corollary 3.33).
Curiously, in the case when P is compatible, the volumes of TO(P) and TC(P)
agree and, in fact, the two canonical triangulations even have the same underlying
simplicial complex. This is not a coincidence, as we will see in Section 3.4.

3.3.1 Subdividing Cayley sums

We now turn to the canonical subdivisions of P1−P2 and P1 � P2 for anti-blocking
polytopes P1,P2. A subdivision of P = P1−P2 with maximal cells Q1, . . . ,Qm ⊆ P
is called mixed if each Qi is of the form Qi1 − Qi2 where Qij is a vertex-induced
subpolytope of Pj , that is V (Qij) ⊆ V (Pj) for j = 1, 2. Finally, a mixed subdivi-
sion is exact if dimQi = dimQi1 + dimQi2. That is, Qi is linearly isomorphic to the
Cartesian product Qi1×Qi2. The Cayley trick [17, Thm 9.2.18] states that mixed sub-
divisions of the Minkowski sum P1−P2 are in bijection with subdivisions of P1 � P2
without new vertices, where a cell Qi1 − Qi2 corresponds to Qi1 �Qi2. Moreover, an
exact mixed subdivision of P1 − P2 yields a subdivision of P1 � P2 into joins: The
cells Qi1 �Qi2 are obtained by embedding Qi1 and Qi2 in skew affine subspaces and
taking their convex hull. In this case we will also write Qi1 ∗ Qi2 for Qi1 �Qi2.



3.3. SUBDIVISIONS AND TRIANGULATIONS 51

For a full-dimensional anti-blocking polytope P ⊂ Rn, every index set J ⊆ [n]
defines a distinct face P|J := {x ∈ P : xj = 0 for j 6∈ J}. This is an anti-blocking
polytope of dimension |J |.

Lemma 3.25. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then
P1 − P2 has a regular exact mixed subdivision with maximal cells P1|J − P2|Jc for
all J ⊆ [n]. In particular, P1 � P2 has a regular subdivision whose maximal cells are
the joins P1|J ∗ P2|Jc for all J ⊆ [n].

We call the subdivisions of Lemma 3.25 the canonical subdivisions of P1−P2
and P1 � P2, respectively.

Proof. By the Cayley trick [17, Thm 9.2.18], it is suffices to prove only the first
claim. The subdivision of P1 − P2 is very easy to describe: Let us first note that
the polytopes P1|J − P2|Jc for J ⊆ [n] only meet in faces. Hence, we only need to
verify that they cover P1 − P2. It suffices to show that for any point x ∈ P1 − P2
with xi 6= 0 for all i, there is a J ⊆ [n] with x ∈ P1|J − P2|Jc . Let x1,x2 ∈ Rn≥0
with x = x1 − x2 and supp(x1) ∩ supp(x2) = ∅. We claim that xi ∈ Pi for i = 1, 2.
Indeed, if x = y1 − y2 for some yi ∈ Pi, then 0 ≤ xi ≤ yi and xi ∈ Pi by (3.3). In
particular, x1 ∈ P1|J and x2 ∈ P2|Jc and therefore x ∈ P1|J − P2|Jc .

To show regularity, we pick the following height function ω : V (P) → R. Any
vertex of P is of the form v = v1 − v2 with v1 ∈ P1 and v2 ∈ P2 and we set

ω(v) := 〈1,v1〉+ 〈1,v2〉,

that is we take the sum of all coordinates of v1 and v2. We denote by P =
conv{(v, ω(v)) : v ∈ V (P)} the lifted polytope in Rn+1 and for J1, J2 ⊆ [n] with
J1 ∩ J2 = ∅ we define

`J1,J2 = (1J1 − 1J2 ,−1) ∈ Rn+1.

For any vertex v = (v1 − v2, ω(v1,v2)) of P with v1,v2 ∈ Rn≥0 we have

〈`J1,J2 ,v〉 = 〈1J1 − 1J2 ,v1 − v2〉 − ω(v1 − v2) ≤ 0,

where equality holds if and only if supp(v1) ⊆ J1 and supp(v2) ⊆ J2. Thus, the
subdivision is regular, which finishes the proof.

For the following result, recall the definition of regular, flag and unimodular
triangulations from Section 2.1.3.

Theorem 3.26. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes with
subdivisions S1 and S2, respectively. For J ⊆ [n], let Si|J := {S ∩ Pi|J : S ∈ Si}
be the restriction of Si to Pi|J for i = 1, 2. Moreover, for J1, J2 ⊆ [n] disjoint let
S1|J1 ∗ S2|J2 := {σ1 ∗ σ2 : σi ∈ Si|Ji}. Then

S :=
⋃

J1∩J2=∅

S1|J1 ∗ S2|J2

is a subdivision of P1 � P2 and the following hold:
(i) If S1 and S2 are regular, then S is regular.
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Figure 3.1: The canonical subdivision of P1 − P2 for two (random) anti-blocking
polytopes P1,P2 ⊂ R3

≥0.

(ii) If S1 and S2 are flag, then S is flag.
(iii) If S1 and S2 are triangulations, then S is a triangulation.
(iv) If S1 and S2 are unimodular triangulations with respect to a lattice Λ ⊂ Rn, then

S is a unimodular triangulation with respect to the affine lattice Λ× (2Z + 1).

Proof. For the first claim, observe that Si|J is a subdivision of the face Pi|J . By [17,
Thm 4.2.7], S1|J ∗ S2|Jc is a subdivision of P1|J ∗ P2|Jc . Hence, S is a refinement of
the canonical subdivision of Lemma 3.25.

If Si is a regular subdivision of Pi, then there are weights ωi : V (Pi) → R for
i ∈ {1, 2}. By adding a constant weight to every vertex if necessary, we can assume
that ω1(v1) > 0 and ω2(v2) < 0 for all v1 ∈ V (P1) and v2 ∈ V (P2). Again using
the Cayley trick, it is straightforward to verify that ω : V (P1 � P2) → R given by
ω(v1,+1) := ω1(v1) and ω(v2,−1) := ω2(v2) induces S.

For claim (ii), first note that for J1, J2 ⊆ [n] disjoint, the subdivision S1|J1 ∗S2|J2
is flag if S1 and S2 are. To show that S is flag, let σ = σ1 � σ2 be a minimal non-face.
Since S1 and S2 are flag, it suffices to consider the case when σi 6= ∅ for i ∈ {1, 2}.
By minimality we have σ1 ∈ S1 and σ2 ∈ S2. We may also assume that σ is not
contained in any of the flag joins S1|J1 ∗S2|J2 for J1, J2 ∈ [n] with J1∩J2 = ∅. Thus,
there are vertices vi ∈ σi for i ∈ {1, 2} such that supp(v1) ∩ supp(v2) 6= ∅. But then
{v1, v2} is already a non-face and the claim follows.

Finally, the claims (iii) and (iv) simply follows from the fact that the join of two
(unimodular) simplices is a (unimodular) simplex.

The theorem has some immediate consequences.

Corollary 3.27. Let P1,P2 ⊂ Rn be two full-dimensional anti-blocking polytopes
each having a unimodular triangulation. Then P1 − P2 and conv(P1 ∪ −P2) both
have unimodular triangulations.
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Proof. By Theorem 3.26 and the Cayley trick, P1−P2 has a mixed subdivision into
Cartesian products of unimodular simplices. Products of unimodular simplices are
2-level and, for example by [78, Thm. 2.4], have unimodular triangulations. The
polytope conv(P1 ∪ −P2) inherits a triangulation from the upper or lower hull of
P1 � P2, which has a unimodular triangulation by Theorem 3.26.

We close this section with some immediate implications about double stable set
polytopes.

Corollary 3.28. Let G be a perfect double graph. Then PG, PG+ − PG− , and
conv(PG+ ∪ −PG−) have regular unimodular triangulations.

Proof. By Theorem 3.3, both polytopes PG+ and PG− are 2-level and by [78, Thm. 2.4]
have unimodular triangulations. The results now follows from Theorem 3.26 and the
previous corollary.

3.3.2 Triangulations of double chain polytopes

Before turning to the case of double chain polytopes, we review some results on ordi-
nary chain polytopes. Stanley [73] elegantly transferred the canonical triangulation
of O(P ) to C(P ) in the following sense. Define the transfer map ΦP : O(P )→ C(P )
by

(ΦP f)(b) := min{f(b)− f(a) : a ≺ b}, (3.5)

for f ∈ O(P ) and b ∈ P . This is a piecewise linear map which is linear on
the full-dimensional simplices of the triangulation in Theorem 1.20. In particular,
ΦP (1J) = 1min(J) for any filter J ⊆ P , which shows that ΦP maps O(P ) into C(P ).
To show that ΦP is a PL homeomorphism of the two polytopes, Stanley explicitly
defines an inverse ΨP : C(P )→ O(P ) by

(ΨP g)(b) := max{g(a0) + · · ·+ g(ak−1) + g(ak) : a0 ≺ · · · ≺ ak−1 ≺ ak � b}, (3.6)

for any g ∈ C(P ). Note that our definition of ΨP differs from that in [73] in that we
do not require that the chain has to end in b. This will be important later. It can
be checked that ΨP is an inverse to ΦP . Hence, the simplices

H(C) := conv(1min(J0), . . . ,1min(Jk)) for C = {J0 ⊂ · · · ⊂ Jk} ∈ ∆(J (P ))

constitute a flag triangulation of C(P ), which also turns out to be unimodular. The
underlying simplicial complex is ∆(J (P )) and hence, the canonical triangulations of
O(P ) and C(P ) are combinatorially equivalent. In particular, O(P ) and C(P ) have
the same volume and the number of maximal simplices in the triangulation of C(P )
equals e(P ). This also shows that the number of linear extensions of a poset only
depends on its comparability graph.

In the case of ordinary poset polytopes the triangulation ofO(P ) seems somewhat
more natural than the one of C(P ). Curiously, for a double poset P, from a geometric
perspective it is more straightforward to triangulate TC(P) instead of TO(P), since a
triangulation can be obtained by refining the canonical subdivision from Lemma 3.25.
Recall from Section 2.2.3 that a pair of chains C = C+ ] C− with Cσ ⊆ J (Pσ) is
non-interfering if min(J+) ∩min(J−) = ∅ for any Jσ ∈ Cσ for σ ∈ {±}.
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Corollary 3.29. Let P = (P,�+,�−) be a double poset. Then a triangulation of
TC(P1, P2) is given as follows: The (k − 1)-dimensional simplices are in bijection to
non-interfering pairs of chains C = C+ ] C− ⊆ TJ (P) with |C| = |C+|+ |C−| = k.
Explicitly, C corresponds to the simplex H(C) := 2H(C+) � 2H(C−). Moreover, the
triangulation is regular, unimodular, and flag.

Proof. The canonical triangulation of C(Pσ) is regular, unimodular, and flag for
σ ∈ {±}. As described above, its (lσ − 1)-simplices are in bijection to chains Cσ ⊆
J (Pσ) of length |Cσ| = lσ. By Theorem 3.26 applied to TC(P) = 2C(P+) � 2C(P−)
it follows that a regular, unimodular and flag triangulation is given by the joins
2H(C+) � 2H(C−) for all chains Cσ ⊆ J (Pσ) such that H(C+) and H(C−) lie
in complementary coordinate subspaces. This, however, is exactly the case when
min(J+) ∩min(J−) = ∅ for all Jσ ∈ Cσ for σ ∈ {±}.

As a simplicial complex, the triangulation in Corollary 3.29 is the non-interfering
complex introduced in Section 2.2.3, which implies the following.

Corollary 3.30. Let P be a compatible double poset. Then the triangulations of
TO(P) and TC(P) given in Corollary 2.20 and Corollary 3.29, respectively, are com-
binatorially equivalent.

In Section 2.2.3, we have used Gröbner bases to obtain triangulations of double
order polytopes. Now we will use Sturmfels’ correspondence in the other direc-
tion to find Gröbner bases in the case of double chain polytopes. For a double
poset P = (P,�+,�−), the toric ideal ITC(P) is contained in the polynomial ring
C[xA+ , xA− ], where Aσ ranges over all anti-chains in Pσ for σ ∈ {±}. To describe a
Gröbner basis for ITC(P), we introduce the following notation. For σ ∈ {±} and two
antichains A,A′ ⊆ Pσ define

A tA′ := min(A ∪A′) and
A uA′ := (A ∩A′) ∪

(
(A ∪A′) \min(A ∪A′)

)
.

Theorem 3.31. Let P be a double poset. Fix a total order ≤ on the variables{
xAσ : σ ∈ {±}, Aσ ⊆ Pσ antichain

}
such that

(i) xAσ < xA′σ for σ ∈ {±} whenever 〈Aσ〉 ⊂ 〈A′σ〉 and
(ii) xA+ < xA− for any A+ ⊆ P+ and A− ⊆ P−.

Denote by �rev the induced reverse lexicographic monomial order. A Gröbner basis
for ITC(P) with respect to �rev is given by the binomials

xA xA′ − xAtA′ xAuA′ 〈A〉σ, 〈A′〉σ ∈ J (Pσ) incomparable

for antichains A,A′ ⊂ Pσ for σ ∈ {±} and

xA+ xA− − xA+\A−xA−\A+
for antichains Aσ ⊆ Pσ.

Proof. Firstly, it is easy to check that the above binomials lie in ITC(P) and that
the underlined terms are indeed the leading terms. For the latter we use that for
σ ∈ {±} and antichains A,A′ ⊆ Pσ we have AuA′ ⊆ 〈A〉∩〈A′〉. The triangulation in
Corollary 3.29 is unimodular and hence, by Corollary 2.9, corresponds to a Gröbner
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basis G of ITC(P) with respect to some monomial order � such that the monomials
{in�(g) : g ∈ G} are precisely the leading terms of the above binomials. Hence,
since G is a Gröbner basis, we have in�(ITC(P)) ⊆ in�rev(ITC(P)). But this implies
in�(ITC(P)) = in�rev(ITC(P)), which finishes the proof.

Note that Theorem 3.31 in particular implies that the triangulation in Corol-
lary 3.29 is the pulling triangulation arising from any ordering of the vertices of
TC(P) which satisfies (i) and (ii).

3.3.3 Volume formulas

The canonical subdivision from Lemma 3.25 directly implies formulas for the (nor-
malized) volume of P1−P2 and P1 � P2 in terms of the volumes of the anti-blocking
polytopes P1,P2.

Theorem 3.32. Let P1,P2 ⊂ Rn be full-dimensional anti-blocking polytopes. Then

vol(P1 − P2) =
∑
J⊆[n]

vol(P1|J) vol(P2|Jc) and

vol(P1 � P2) =
2

n+ 1

∑
J⊆[n]

1(
n
|J |
) vol(P1|J) vol(P2|Jc).

If P1 and P2 have vertices on a lattice Λ ⊂ Rn, then then the normalized volume of
P1 − P2 with respect to Λ is

Vol(P1 − P2) =
∑
J⊆[n]

(
n

|J |

)
Vol(P1|J) Vol(P2|Jc)

and the normalized volume of P1 � P2 with respect to the affine lattice Λ× (2Z + 1)
is

Vol(P1 � P2) =
∑
J⊆[n]

Vol(P1|J) Vol(P2|Jc).

Proof. The first claim follows directly from Lemma 3.25. For the second claim ob-
serve that for J ⊆ [n] we have

vol(P1|J ∗ P2|Jc) = 2

1∫
0

vol
(
(1− t)P1|J + tP2|Jc

)
dt

= 2
( 1∫
0

(1− t)|J |t|Jc|dt
)

vol(P1|J) vol(P2|Jc)

=
2

(n+ 1)
(
n
|J |
) vol(P1|J) vol(P2|Jc),

which proves the claim.
The remaining assertions follow from the first part using the definition of normal-

ized volume from Section 2.1.3. Alternatively, one can count simplices in unimodular
triangulations, for P1 − P2 with the help of [17, Sec.6.2.2].
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We will now turn to the case of double chain polytopes. Note that for a poset
(P,�) and J ⊆ P , the face C(P )|J is just the chain polytope associated to the
induced poset P|J = (J,�). Recall that for a double poset P we regard DC(P)
and TC(P) as lattice polytopes with respect to the affine lattices generated by the
vertices. Explicitly, these are ZP and the affine lattice 2ZP × (2Z + 1), respectively,
and the normalized volumes in the following result are taken with respect to these
lattices.

Corollary 3.33. Let P = (P,�+,�−) be a double poset. Then

Vol(DC(P)) =
∑
J⊆P

(
|P |
|J |

)
e(P+|J) · e(P−|Jc) and

Vol(TC(P)) =
∑
J⊆P

e(P+|J) · e(P−|Jc)

Proof. The results follow directly from Corollary 3.32, using that for σ ∈ {±} we
have Vol(C(Pσ|J)) = e(Pσ|J).

Combining Corollary 3.33 and Corollary 2.21 we immediately obtain the follow-
ing, which alternatively also follows from Corollary 3.30.

Corollary 3.34. Let P be a compatible double poset. Then TO(P) and TC(P) have
the same (normalized) volume.

The formulas of Corollary 3.33 are particularly simple when P is special or anti-
special. We illustrate these cases at some simple examples.

Example 3.35. For the compatible ’XW’-double poset PXW from Example 1.5 we
have

Vol(TO(PXW )) = Vol(TC(PXW )) = 128 and
Vol(DO(PXW )) = Vol(DC(PXW )) = 880.

Example 3.36. Let n ∈ N>0.
(1) Consider the double poset Cn induced by the n-chain (cf. Example 1.4). Then

Vol(TC(Cn)) = 2n and it follows from Vandermonde’s identity that

Vol(DC(P)) =

n∑
i=0

(
n

i

)2

=

(
2n

n

)
.

(2) For the double antichain An we have that TC(An) is isomorphic to the cube
[0, 1]n+1 and its normalized volume is

Vol(TC(An)) =
n∑
i=0

(
n

i

)
i!(n− i)! = (n+ 1)!.

Likewise, DC(An) is isomorphic to [−1, 1]n, which can be decomposed into 2n

unit cubes. Consequently, its normalized volume is

Vol(DC(An)) =
n∑
i=0

(
n

i

)2

i!(n− i)! = 2nn!.
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(3) For the double poset ACn from Example 1.4, we compute

Vol(TC(ACn)) =

n∑
i=0

n!

i!
,

which is the number of choices of ordered subsets of an n-set. Moreover,

Vol(DC(ACn)) =
n∑
i=0

(
n

i

)2

i!

is the number of partial permutation matrices, i.e. 0/1-matrices of size n with at
most one nonzero entry per row and column. Indeed, such a matrix is uniquely
identified by an i-by-i permutation matrix and a choice of i rows and i columns
in which it is embedded.

(4) For Combn (cf. Example 1.1), the number of linear extensions is

e(Combn) = (2n− 1)!! := (2n− 1)(2n− 3)(2n− 5) · · · .

For the induced double poset Combn, an induction argument shows that

Vol(TC(Combn)) = 4n n!.

It would be nice to have a bijective proof of this equality.

Remark 3.37. Let (P,�) be a poset and P = (P,�,�) the induced double poset.
By Corollary 3.34, the polytopes TO(P) and TC(P) have the same normalized vol-
ume. Since both polytopes are 2-level, it follows from [78, Thm. 2.4] that the number
of maximal simplices in any pulling triangulation of TO(P) and TC(P) coincides.
From Theorem 1.38, we know that TO(P)4 is linearly isomorphic the twisted prism
over the valuation polytope associated to P . On the other hand, we know from
Corollary 3.20 that TC(P)4 is linearly isomorphic to the Hansen polytope H(G(P )).
Moreover, TO(P)4 and TC(P)4 are both 2-level by Proposition 1.39 and it is en-
ticing to conjecture that their normalized volumes also agree. Unfortunately, this
is not the case. For the double poset PX , we used sage [18] to compute that any
pulling triangulation of TC(PX)4 has 324 simplices, whereas for TO(PX)4 pulling
triangulations have 320 simplices.

3.4 Transferring triangulations and Ehrhart polynomials

For a given poset P , Stanley’s transfer map from Section 3.3.2 is a close connection
between O(P ) and C(P ). In the following, we will extend this map to the case of
double poset polytopes of a compatible double poset P. This will in particular give
a satisfying reason for the so far rather surprising fact that, for compatible P, the
canonical triangulations of TO(P) and TC(P) have the same underlying simplicial
complex.

The main results are the following. In Theorem 3.39, we describe the lattice-
preserving transfer map between TO(P) and TC(P) for compatible P. Corollary 3.40
relates their two canonical triangulations. As another application, we compute



58 CHAPTER 3. DOUBLE CHAIN POLYTOPES

Ehrhart polynomials: After recalling some basics, Proposition 3.44 uses the transfer
map to show that order and chain polytopes have the same Ehrhart polynomial. In
this case, it turns out to be easier to work with double chain polytopes. More gener-
ally, Theorem 3.47 gives an explicit description of the Ehrhart polynomial of P1 � P2
and P1−P2 for anti-blocking polytopes P1,P2 under a mild extra assumption. This
in particular implies a formula for Ehrhart polynomials of double chain polytopes,
given in Corollary 3.48 and this formula also holds true for compatible double order
polytopes.

3.4.1 A transfer map for double poset polytopes

Recall from Section 3.3.2 that for a given poset P , the inverse transfer map is given
by ΨP : RP → RP with

(ΨP g)(b) = max{0, g(a0)+· · ·+g(ak−1)+g(ak) : a0 ≺ · · · ≺ ak−1 ≺ ak � b}, (3.7)

for any g ∈ RP . Note that we have slightly altered the definition since will now
regard ΨP as a map on the whole of RP rather than C(P ). Given a double poset
P = (P,�+,�−), we define a piecewise linear map DΨP : RP → RP by

DΨP(g) := ΨP+(g) − ΨP−(−g), (3.8)

for g ∈ RP . Observe that whenever g(p) < 0 for some p ∈ P , then p is never
contained in any chain that attains the maximum in (3.7). Hence, if we write g =
g+ − g−, where g+, g− ∈ RP≥0 with disjoint supports, then ΨP+(g) = ΨP+(g+) and
ΨP−(−g) = ΨP−(g−). Thus, for any g ∈ RP we have

DΨP(g) = ΨP+(g+)−ΨP−(g−). (3.9)

Lemma 3.38. Let P = (P,�+,�−) be compatible. Then DΨP : RP → RP is a
piecewise linear homeomorphism satisfying
(1) DΨP(ZP ) = ZP and
(2) DΨP(λg) = λ · DΨP(g) for g ∈ RP , λ ≥ 0.

Proof. It follows directly from (3.8) and (3.7) that DΨP is piecewise linear. To show
that DΨP is an isomorphism, we explicitly construct for f ∈ RP a g ∈ RP such that
DΨP(g) = f . Since P is compatible, we can assume that P = {a1, . . . , an} such that
ai ≺+ aj or ai ≺− aj implies i < j.

It follows from (3.8) that DΨP(g′)(a1) = g′(a1) for any g′ ∈ RP and hence, we
can set g(a1) := f(a1). Now assume that g is already defined on Dk := {a1, . . . , ak}
for some k. For g′ ∈ RP observe that

ΨP+(g′)(ak+1) = max(g′(ak+1), 0) + r

where r = 0 or r = ΨP+(g′)(ai) for some i ≤ k. Analogously,

ΨP−(−g′)(ak+1) = max(−g′(ak+1), 0) + s

where s = 0 or s = ΨP−(−g′)(aj) for some j ≤ k. Thus, we set

g(ak+1) := f(ak+1)− r + s
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This uniquely determines g by induction on k. To prove that DΨP is lattice-
preserving, observe that by (3.8) we have DΨP(ZP ) ⊆ ZP . Moreover, if f = DΨP(g)
with f ∈ ZP then the above construction shows that g ∈ ZP . Hence, we have
ZP ⊆ DΨP(ZP ). Finally, the last assertion is an immediate consequence of (3.7)
and (3.8).

Theorem 3.39. Let P = (P,�+,�−) be a compatible double poset. Then the map
TΨP : RP × R→ RP × R defined by

TΨP(g, t) = (DΨP(g), t)

induces a lattice-preserving and piecewise linear homeomorphism between TC(P) and
TO(P) whose domains of linearity are the simplices H(C) for non-interfering pairs
C = C+ ] C− ⊆ TJ (P).

Proof. It follows directly from Lemma 3.38 that TΨP : RP × R → RP × R is a
piecewise linear and lattice-preserving homeomorphism. Moreover, it follows from
(3.8) that for an antichain A ⊆ Pσ with σ ∈ {±} we have

TΨP

(
σ(21A, 1)

)
= σ(21J, 1),

where J := 〈A〉 ⊆ Pσ is the filter generated by A. Here, as in Section 1.3, we abuse
notation and interpret σ as +1 or −1. Hence TΨP induces a bijection between the
vertices of TC(P) and TO(P). By Corollary 2.20 and Corollary 3.29, to finish the
proof it suffices to show that TΨP is linear on the simplices H(C) for non-interfering
C = C+ ] C− ⊆ TJ (P).

Observe that DΨP is linear on cone(H(C+)−H(C−)): Indeed, since C+ and C−
are non-interfering, we have cone(H(C+)−H(C−)) ∼= cone(H(C+))×− cone(H(C−))
and DΨP is the product of the two linear maps ΨP+ |cone(H(C+)) and−ΨP− |cone(H(C−)).
This finishes the proof, since π(H(C)) ⊂ cone(H(C+) − H(C−)), where the map
π : RP × R→ RP is the projection onto the coordinates in P .

This immediately implies the following.

Corollary 3.40. Let P be a compatible double poset. Then the homeomorphism
TΨP maps the triangulation of TC(P) from Corollary 3.29 to the triangulation of
TO(P) from Corollary 2.20.

It is easy to check that Theorem 3.39 does not extend to the case of non-
compatible double posets by considering the following example.

Example 3.41. Consider the double poset P = ([2],≤,≥), that is, P+ is the 2-chain
{1, 2} and P− is the opposite poset. Then

C(P+) = C(P−) = {x ∈ R2 : x ≥ 0, x1 + x2 ≤ 1}

and TC(P) is a three-dimensional octahedron with volume 16
3 . Any triangulation of

the octahedron has at least four simplices. In contrast, O(P−) = 1 − O(P+) and
hence TO(P) is linearly isomorphic to a prism over a triangle and has volume 4.
Any triangulation of the prism has exactly 3 tetrahedra.
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We have seen that for any double poset P, the polytope TC(P) depends only
on the double graph G(P). In particular, there can be different compatible double
posets, such that their associated double order polytopes have the same image under
the transfer map. Conversely, it is natural to ask whether for any arbitrary double
poset P, the double chain polytope TC(P) can always be realized as the double
chain polytope associated to a compatible double poset, phrased differently, whether
there is always a compatible double poset P′ on the same ground set such that
G(P) = G(P′). Although, this seems to be true for small posets, it fails in general,
as the following example shows.

Example 3.42. Let n ≥ 7 and consider the set P = {(i, j) ∈ Z2 : 1 ≤ i, j ≤ n}.
Let P+ := (P,�+) be the poset with the natural product order on Z2, that is
(i, j) �+ (i′, j′) if and only if i ≤ i′ and j ≤ j′. As can be seen by drawing Hasse
diagrams, for every poset P ′+ = (P,�′+) with G(P+) = G(P ′+) the interior elements
{(i, j) ∈ P : 2 ≤ i, j ≤ n− 1} cannot be minimal elements in P ′+. Since n ≥ 7, more
than half of the elements of P are interior. Hence, there is a permutation π : P → P
such that for every p ∈ P either p or π(p) is an interior element. Now we define
P− := (P,�−) where p �− q if and only if π(p) �+ π(q) for all p, q ∈ P . Define
P := (P,�+,�−). By the above, for any double poset P′ = (P,�+,�−) satisfying
G(P) = G(P′) there cannot exist an element p ∈ P that is minimal in both P ′+ and
P ′−. Hence P′ cannot be compatible.

3.4.2 Ehrhart polynomials

We briefly recall the basics of Ehrhart theory. For more, see, for example, [7, 8]. For
a polytope P ⊂ Rn we define the Ehrhart function EhrP : Z≥0 → Z≥0 by

EhrP(k) := |kP ∩ Zn|.

Ehrhart [22] showed that if P is integral and of dimension d ≤ n, then EhrP agrees
with a polynomial of degree d. We will identify EhrP(k) with this polynomial, called
the Ehrhart polynomial of P. The constant coefficient of EhrP is always 1 and if
P is full-dimensional, then the leading coefficient is its volume vol(P).

More generally, if P ⊂ Rn is a d-dimensional rational polytope, that is V (P) ⊂
Qn, then the function EhrP(k) := |kP∩Zn| agrees with a quasi-polynomial of degree
d. In other words, we have

EhrP(k) = cd(k)kd + cd−1(k)kd−1 + · · ·+ c0(k),

where ci is a periodic function with integral period for 1 ≤ i ≤ d. We will need the
following fundamental result of Ehrhart theory.

Theorem 3.43 (Ehrhart–Macdonald reciprocity, [59]). Let P ⊂ Rn be a rational
polytope of dimension d, then

(−1)dEhrP(−k) = | relint(kP) ∩ Zn|

for all k ≥ 0.

In the following we will compute the Ehrhart polynomial of double poset poly-
topes. If P is compatible, we can use Section 3.4.1 to obtain the following.
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Proposition 3.44. Let P be a compatible double poset. Then TO(P) and TC(P)
have the same Ehrhart polynomial.

Proof. It follows directly for Theorem 3.39 together with Lemma 3.38 that for k ≥ 0 a
lattice point z ∈ ZP×Z lies in kTC(P) if and only if TΨP(z) is contained in kTO(P).
This finishes the proof since TΨP(ZP × Z) = ZP × Z again by Lemma 3.38.

Let us briefly return to the case of ordinary poset polytopes. Let P be a finite
poset. For the Ehrhart polynomial EhrO(P )(n) of O(P ) it suffices to interpret the
lattice points in nO(P ) for n > 0. Every point in nO(P )∩ZP is an order preserving
map from P into the interval [0, n] with values in Z. Thus, we may interpret lattice
points in nO(P )∩ZP as order preserving maps between P and the (n+1)-chain Cn+1.
Moreover, points in relint(nO(P )) ∩ ZP correspond to strictly order preserving
maps f : P → Cn−1, that is, f(a) < f(b) whenever a ≺ b. Counting order preserving
maps is classical [74, Sect. 3.15]: the order polynomial ΩP (n) of P counts the
number of order preserving maps into n-chains. The strict order polynomial
Ω◦P (n) counts the number of strictly order preserving maps f : P → Cn. Now
Proposition 3.44, together with Theorem 3.43, yield the following.

Corollary 3.45 ([73, Thm. 4.1]). Let P be a finite poset. Then for every k > 0

ΩP (k + 1) = EhrO(P )(k) = EhrC(P )(k) and

(−1)|P |Ω◦P (k − 1) = EhrO(P )(−k) = EhrC(P )(−k).

Note that in the above, we computed the Ehrhart polynomial of O(P ) and trans-
ferred it to C(P ). Curiously, for double poset polytopes, it is more natural to go
the other way: We will give an explicit description of EhrTC(P) for any double poset
P and use the transfer map to obtain EhrTO(P) for compatible P. In fact, instead
of computing Ehrhart polynomials for double chain polytopes, we will work in the
more general setting of rational anti-blocking polytopes. Note that if P1,P2 ⊂ Rn
are rational polytopes, then so are 2P1 � 2P2 and P1−P2. We call an anti-blocking
polytope P ⊂ Rn dual integral if A(P) is an integral polytope. By Theorem 3.5,
this means that there are d1, . . . ,ds ∈ Zn≥0 such that

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for i = 1, . . . , s}.

Examples of dual integral anti-blocking polytopes are for example stable set poly-
topes of perfect graphs by Theorem 3.3. In particular, chain polytopes are dual
integral. For a bounded set S ⊂ Rn, let us write E(S) := |S ∩ Zn|.

Theorem 3.46. Let P1,P2 ⊂ Rn be two full-dimensional rational anti-blocking poly-
topes and assume that P1 is dual integral. Then for any a, b ∈ Z>0

E(aP1 − bP2) =
∑
J⊆[n]

E(relint((a+ 1)P1)) · E(bP2).

Proof. It follows from Lemma 3.25 that for any a, b ∈ Z>0,

aP1 − bP2 =
⋃
J⊆[n]

(aP1|J − bP2|Jc).
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For J ⊆ [n], the cell aP1|J − bP2|Jc is contained in the orthant RJ≥0×RJc≤0. It is easy
to see that

Zn =
⊎
J⊆[n]

ZJ>0 × ZJ
c

≤0

is a partition and for each J ⊆ [n]

(aP1 − bP2) ∩ (ZJ>0 × ZJ
c

≤0) = (aP1|J − bP2|Jc) ∩ (ZJ>0 × ZJ
c

≤0)

= (aP1|J ∩ ZJ>0)− (bP2|Jc ∩ ZJ
c
).

If P1 is dual integral, then P1|J is dual integral. Thus, for a fixed J , there are
d1, . . . ,ds ∈ ZJ≥0 such that

aP1|J ∩ ZJ>0 = {x ∈ ZJ : x > 0, 〈di,x〉 ≤ a}
= {x ∈ ZJ : x > 0, 〈di,x〉 < a+ 1}
= relint((a+ 1)P1|J) ∩ ZJ .

This proves the result.

By Theorem 3.43, we can interpret the above in terms of Ehrhart polynomials.

Theorem 3.47. Let P1,P2 ⊂ Rn be two full-dimensional rational anti-blocking poly-
topes such that P1 is dual integral. Then

EhrP1−P2(k) =
∑
J⊆[n]

(−1)|J |EhrP1|J (−k − 1) · EhrP2|Jc (k).

Moreover, for P := 2P1 � 2P2 we have

EhrP(k) =
∑
J⊆[n]

(−1)|J |
k∑

t=−k
EhrP1|J (t− k − 1) · EhrP2|cJ (k + t).

Proof. The first part follows directly from Theorem 3.46. For the second assertion,
observe that for k > 0,

kP = conv(2kP1 × {k} ∪ −2kP2 × {−k}).

In particular, if (p, t) is a lattice point in kP, then −k ≤ t ≤ k. For fixed t,

{p ∈ Zn : (p, t) ∈ kP} = ((k − t)P1 − (k + t)P2) ∩ Zn.

Theorems 3.46 and 3.43 then complete the proof.

For the case of double poset polytopes, Theorem 3.47 together with Corollary 3.45
immediately yields the following, which generalizes Corollary 3.33.

Corollary 3.48. Let P = (P,�+,�−) be a double poset. Then

EhrDC(P)(k) =
∑
J⊆P

Ω◦P+|J (k) · ΩP−|Jc (k + 1) and

EhrTC(P)(k) =
∑
J⊆P

( k∑
t=−k

Ω◦P+|J (k − t) · ΩP−|Jc (k + t+ 1)
)
.
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Remark 3.49. Note that in the above, the underlying lattice is ZP . This is slightly
unnatural, since the triangulations of TC(P) described in Section 3.3.2 are unimod-
ular with respect to the affine lattice Λ = ZP × (2Z + 1). However, the Ehrhart
polynomial of TC(P) with respect to Λ can be obtained by substituting 1

2k for k
in the above formula. This works analogously for DC(P) and the underlying lattice
Λ = 2ZP .

We close with some thoughts on the class of dual integral anti-blocking polytopes.
We have seen that independent set polytopes of perfect graphs are dual integral. In
fact, these are the only dual integral anti-blocking polytopes that are also integral.

Proposition 3.50. Let P ⊂ Rn be a full-dimensional dual integral anti-blocking
polytope. If the vertices of P lie in Zn, then P = PG for some perfect graph G.

Proof. Let P be given by

P = {x ∈ Rn : x ≥ 0, 〈di,x〉 ≤ 1 for i = 1, . . . , s}

for some d1, . . . ,ds ∈ Zn≥0. Since P is full-dimensional and integral, it follows that
e1, . . . , en ∈ P and for any 1 ≤ j ≤ s we compute

0 ≤ 〈dj , ei〉 ≤ 1

for all i and since the dj are integer vectors, it follows that dj = 1Cj for some
Cj ⊆ [n]. Consequently, the vertices of P are in {0, 1}n and P is 2-level. By
Proposition 3.23, P = PG for some perfect graph G.

Of course this severely limits the applicability of Theorem 3.47 to integral poly-
topes. On the other hand, the class of stable set polytopes is already interesting
by itself. For example, there is no known combinatorial description of their Ehrhart
polynomial or even their volume.
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Reflection groups, arrangements
and real varieties
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Chapter 4

Reflection groups and invariant
varieties

This chapter recalls basics regarding real reflection groups, their combinatorics and
their invariant theory, and introduces the problem we will be concerned with in
the sequel. In Section 4.1, we treat reflection groups, their associated reflection
arrangements and root systems and we specifically look at certain infinite families of
reflection groups that will play an important role later on. For the case of symmetric
groups, Timofte [79] proved an interesting structural result, which connects invariant
varieties, reflection arrangements and the associated invariant rings. In Section 4.2
we recall some well-known invariant theory of real finite reflection groups. This yields
a more systematic viewpoint on Timofte’s result and it is only natural to ask for a
more general version for arbitrary reflection groups, which will be our main objective
throughout. Our main results are given in Theorem 4.7 and Theorem 4.8.

4.1 Reflection groups

Reflection groups appear in many different areas of mathematics. They connect to
Lie groups and Lie algebras and are well-studied from the perspective of geometry,
algebra, and combinatorics [10, 31, 40, 53]. In the following, we collect some essential
basics, which can, for instance, be found in [53].

Let V be a finite-dimensional real vector space endowed with an inner product
〈·, ·〉. The orthogonal group O(V ) consists of all invertible linear transformations
on V that preserve the inner product. In other words,

O(V ) = {s : V → V linear : 〈s(p), s(q)〉 = 〈p,q〉 for all p,q ∈ V }.

A transformation s ∈ O(V ) is called a reflection if it sends some nonzero α ∈ V to
its negative and fixes pointwise the hyperplane Hα := α⊥ = {p ∈ V : 〈α,p〉 = 0}.
Explicitly, a reflection is of the form

sα(p) := p− 2
〈p,α〉
〈α,α〉

α

for some nonzero α ∈ V and every p ∈ V . A finite subgroup G of O(V ) which is
generated by reflections is called a (real) finite reflection group acting on V . The

67
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reflection group G is irreducible if it is not the product of two nontrivial reflection
groups. Associated to G is its reflection arrangement

H = H(G) := {Hα : sα ∈ G reflection}.

The flats of H are the linear subspaces arising as intersections of hyperplanes in H.
The arrangement of linear hyperplanes stratifies V with strata given by

Hi = Hi(G) := {p ∈ V : p is contained in a flat of dimension i}

for 0 ≤ i ≤ n − 1 and we set Hn := V . We call G essential if G does not fix a
nontrivial linear subspace or, equivalently, if H0 = {0}. For every reflection group
G acting on V , there exists a unique subspace W ⊆ V such that G restricts to an
essential reflection group acting on W and the dimension of W is called the rank of
G, denoted by rk(G).

Example 4.1. For m ≥ 3, consider the regular m-gon Pm ⊂ R2 with vertices(
sin
(
2kπ
m

)
, cos

(
2kπ
m

))
for k ∈ [m] = {1, . . . ,m}.

The dihedral group of order 2m is the symmetry group I2(m) := {s ∈ O(R2) :
s(Pm) = Pm}. It contains m rotations and m reflections. In fact, the latter generate
I2(m), which makes it an essential irreducible reflection group of rank 2. Figure 4.1
illustrates the cases m = 3 and m = 4.

Figure 4.1: The dihedral groups I2(3) and I2(4).

Example 4.2. We record three more infinite families of irreducible reflection groups.
Let n ∈ N>0.
An−1: We denote by Sn the symmetric group consisting of all n! permutations

of the set [n]. The symmetric group Sn acts on Rn by permuting coordinates,
that is, for τ ∈ Sn and p = (p1, . . . , pn) ∈ Rn we have

τ · p = (pτ−1(1), pτ−1(2), . . . , pτ−1(n)).

The symmetric group is generated by transpositions, which in geometric terms
correspond to reflections in the hyperplanes

Hij := {p = (p1, . . . , pn) ∈ Rn : pi = pj} for 1 ≤ i < j ≤ n,
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and hence we can think ofSn as a reflection group on Rn. The stratumHk(Sn)
consists of points p with at most k distinct coordinates, that is

Hk(Sn) = {p = (p1, . . . , pn) ∈ Rn : |{p1, . . . , pn}| ≤ k}.

This action is not essential, as the line R1 is fixed and hence we have rk(Sn) =
n− 1. If we restrict Sn to the subspace 1⊥ = {p ∈ Rn : p1 + · · ·+ pn = 0}, we
obtain the essential reflection group of type An−1. Note that A2 = I2(3) and
the associated reflection arrangement is given in Figure 4.1.

Bn: The group Bn acting on Rn consists of all signed permutations, that is, in
addition to permuting entries of a point p, the sign of every individual entry
can be changed. Hence, Bn is of order 2nn! and the associated reflection
arrangement consists of the hyperplanes {pi = ±pj} for 1 ≤ i < j ≤ n together
with the coordinate hyperplanes {pi = 0} for i ∈ [n]. A point p lies in Hk
if and only if (|p1|, . . . , |pn|) has at most k distinct nonzero coordinates. Note
that B2 = I2(4), see Figure 4.1.

Dn: The reflection group Dn is a subgroup of index 2 in Bn. It is the semidirect
product of Sn with the subgroup of Bn which consists of sign changes involving
an even number of signs. The reflection arrangement of Dn consists of the
hyperplanes {pi = ±pj} for 1 ≤ i < j ≤ n. The k-stratum of Dn is a bit more
involved to describe: Denote by M the set of all p ∈ Rn with exactly one zero
coordinate. Then

Hk(Dn) = (Hk(Bn) \M) ∪ (Hk−1(Bn) ∩M). (4.1)

It is often convenient to look at reflection groups from a different perspective. A
root system is a finite set Φ ⊂ V such that
(i) Φ ∩ Rα = {α,−α} for every α ∈ Φ and
(ii) sα(Φ) = Φ for all α ∈ Φ.

The elements of Φ are called roots. Every root system gives rise to a finite reflection
group with generators {sα : α ∈ Φ}. Conversely, every finite reflection group arises
this way: For a reflection group G the associated hyperplane arrangement is of the
form H(G) = {Hα : α ∈ R} for some R ⊂ V and we may assume that all α ∈ R are
of unit length. Now a suitable root system is given by Φ := R ∪ −R. Note that the
length of the roots is not uniquely determined and it is only necessary that any two
roots in the same G-orbit have the same length.

Given a root system Φ ⊂ V , a simple system is a set of roots ∆ ⊂ Φ such that
(i) The roots in ∆ form a basis of the R-span of Φ in V and
(ii) every root in Φ can be written as a linear combination of elements of ∆ such

that all coefficients have the same sign.
Every root system contains a simple system. For every root system Φ ⊂ V with
associated reflection group G and simple system ∆ ⊆ Φ, we have rk(G) = |∆|
and the reflections {sα : α ∈ ∆} generate G. Moreover, any two simple systems
∆,∆′ ⊆ Φ are conjugate under G, that is, there exists g ∈ G such that g∆ = ∆′.
For details, see [53, Ch. 1].

Consider a fixed reflection group G with associated root system Φ and a simple
system ∆ ⊆ Φ. For two roots α,β ∈ ∆, we write m(α,β) for the order of the group
element sαsβ in G. It is convenient to record this data in a labelled graph D, called
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a Dynkin diagram, whose vertex set is ∆ and two vertices α,β are connected by
an edge if and only if m(α,β) ≥ 3. In this case, we label the edge by m(α,β).

Dynkin diagrams do not depend on the choice of the underlying simple system,
that is, two different simple systems yield isomorphic labelled graphs. Moreover, any
two non-isomorphic essential reflection groups give rise to different Dynkin diagrams.
If a Dynkin diagramD is not connected, sayD = D1]D2, this yields a representation
of the associated reflection group G as a product G = G1 × G2, such that D1 and
D2 are the Dynkin diagrams of G1 and G2, respectively. In particular, connected
Dynkin diagrams correspond to irreducible reflection groups.

A complete classification of reflection groups can be given in terms of their Dynkin
diagrams (see [53, Ch. 2]). There are four infinite families of irreducible reflection
groups Sn

∼= An−1, Bn, Dn, I2(m) (cf. Examples 4.1 and 4.2) and six exceptional
reflection groups H3, H4, F4, E6, E7, and E8, where the index always denotes the
rank. The corresponding Dynkin diagrams are given in Figure 4.2. Note that for
any question regarding reflection groups, this leaves us with two strategies: Either,
we approach the problem using general properties of reflection groups or we use the
classification and tackle the problem case by case.

An (n ≥ 1)

Bn (n ≥ 2)
4

Dn (n ≥ 4)

bla
I2(m) (m ≥ 4)

m

H3

5

H4

5

F4

4

E6

E7

E8

Figure 4.2: The Dynkin diagrams of irreducible real reflection groups. For simplicity,
the edge label 3 is omitted.

4.2 Invariant polynomials and real varieties

Timofte [79] related the degree of a symmetric polynomial with real coefficients to the
existence of real roots with only few distinct coordinates. In this section, we look at
this result from a more geometric viewpoint and regard it as a connection between
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symmetric polynomials, invariant varieties and the Sn-arrangement. Chevalley’s
theorem [53, Thm. 3.5] allows us to take this viewpoint for arbitrary reflection groups,
and in the rest of this thesis we prove a more general version for irreducible real
reflection groups, stated in Theorem 4.7.

A real variety X ⊆ Rn is the set of real points simultaneously satisfying a
system of polynomial equations with real coefficients, that is,

X = VR(f1, . . . , fm) := {p ∈ Rn : f1(p) = f2(p) = · · · = fm(p) = 0},

for some f1, . . . , fm ∈ R[x] := R[x1, . . . , xn]. In contrast to working over an alge-
braically closed field, the question if X 6= ∅ is considerably more difficult to answer,
both theoretically and in practice; see [5]. Timofte [79] studied real varieties invariant
under the action of the symmetric group Sn, and proved an interesting structural
result, with a simplified proof given by Riener [66]. An Sn-invariant variety can be
defined in terms of symmetric polynomials, that is, polynomials f ∈ R[x] such that
f(xτ−1(1), . . . , xτ−1(n)) = f(x1, . . . , xn) for all permutations τ ∈ Sn. Recall that the
fundamental theorem of symmetric polynomials states that a polynomial f is sym-
metric if and only if f is a polynomial in the elementary symmetric polynomials
e1, . . . , en, where

ek(x) :=
∑

1≤i1<···<ik≤n
xi1 · · ·xik

for k ∈ [n]. We say that a symmetric polynomial f is k-sparse if f ∈ R[e1, . . . , ek],
that is, if f is a polynomial in e1, . . . , ek. On the geometric side, we call a Sn-
invariant variety X k-sparse if X = VR(f1, . . . , fm) for k-sparse symmetric polyno-
mials f1, . . . , fm.

Theorem 4.3 ([79]). Let X ⊆ Rn be a nonempty Sn-invariant real variety. If X
is k-sparse, then there is a point p ∈ X with at most k distinct coordinates, that is,
X ∩Hk(Sn) 6= ∅.

Clearly, the dimension of the stratum Hk does not depend on the number of
variables and hence the result is particularly powerful when the number of variables
is large. Also note that the sparsity of a symmetric polynomial f ∈ R[x] relates to its
degree as follows. If deg(f) ≤ k, then f is k-sparse, since the elementary symmetric
polynomials are algebraically independent. On the other hand, there exist k-sparse
polynomials of arbitrarily high degree, the simplest examples being powers of e1. In
fact, Timofte’s original result is phrased in terms of degrees instead of sparsity and
is therefore known as degree principle for symmetric polynomials.

In the following, we aim for a generalization of Theorem 4.3 to other reflection
groups. To begin with, we recall some facts from invariant theory of finite reflection
groups. For more details, see [53, Ch. 3]. For any finite group G acting on V ∼=
Rn, there is an induced action of G on the coordinate ring R[V ] ∼= R[x] given by
g · f(x) := f(g−1 ·x). We write R[V ]G := {f ∈ R[V ] : g · f = f for all g ∈ G} for the
subring consisting of G-invariant polynomials. Chevalley’s theorem states that in
the case of reflection groups, the associated invariant ring has a particularly simple
description.

Theorem 4.4 ([53, Thm. 3.5]). Let G be a finite real reflection group acting on
V ∼= Rn.
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(1) The invariant ring R[V ]G is generated by n algebraically independent homoge-
neous polynomials.

(2) Let π1, . . . , πn and π′1, . . . , π
′
n be two choices of algebraically independent homoge-

neous generators of R[V ]G. Then, after renumbering the generators if necessary,
we have deg(πi) = deg(π′i) for all i ∈ [n].

Any collection π1, . . . , πn of homogeneous algebraically independent generators
of R[V ]G is called a set of basic invariants for G. Their degrees di := deg(πi)
for i ∈ [n] are called the degrees of G. The degrees of all irreducible reflection
groups are listed in Table 4.1 below. From now on, we will always assume that basic
invariants π1, . . . , πn are labelled such that their degrees are non-decreasing, that is,
d1 ≤ d2 ≤ · · · ≤ dn.

Group Degrees
An−1 2, 3, . . . , n− 1

Bn 2, 4, 6, . . . , 2n

Dn 2, 4, . . . , 2n− 2, n

I2(m) 2,m

H3 2, 6, 10

H4 2, 12, 20, 30

F4 2, 6, 8, 12

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

Table 4.1: The degrees of irreducible reflection groups.

Example 4.5. Let n ∈ N>0.
(1) For the symmetric group Sn, we have seen that basic invariants are given by

the elementary symmetric polynomials e1, . . . , en. An alternative set of basic
invariants are the power sums

sk(x) := xk1 + xk2 + · · ·+ xkn,

for k ∈ [n]. The linear form e1(x) = s1(x) = x1 + · · · + xn corresponds to the
invariant linear subspace R1 and omitting this invariant yields basic invariants
for An−1.

(2) Given basic invariants π1, . . . , πn for Sn, we immediately obtain basic invariants
for Bn defined by π′k(x) := πk(x

2
1, . . . , x

2
n) for k ∈ [n]. In particular, the even

power sums s2, s4, . . . , s2n are basic invariants for Bn.
(3) The invariant that distinguishes Dn from Bn is given by en(x) = x1x2 · · ·xn. A

set of basic invariants for Dn are π1(x), . . . , πn(x) with

πk(x) :=


s2k(x) for 1 ≤ k ≤ bn2 c,
en(x) for k = bn2 c+ 1, and
s2k−2(x) for bn2 c+ 1 < k ≤ n.

(4.2)
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Note that the action of G on V is essential if and only if d1 = 2 and the number of
linear basic invariants equals the dimension of the fixed point space of G. Whenever
G is in addition irreducible, there is only one invariant of degree 2, which must be a
scalar multiple of p2(x) = ‖x‖2 := 〈x,x〉.

For 0 ≤ k ≤ n, we call a G-invariant variety X = VR(f1, . . . , fm) k-sparse if
there exist basic invariants π1, . . . , πn such that f1, . . . , fm lie in R[π1, . . . , πk]. Keep
in mind that, analogously to the case of symmetric polynomials, any invariant poly-
nomial f ∈ R[V ]G with deg(f) < dk+1 is contained in R[π1, . . . , πk] and, hence, all
our results imply degree principles, where instead of working with sparse polynomials
we restrict their degree.

Remark 4.6. Comparing with the previous definition of k-sparsity for symmetric
polynomials, it may seem that we have slightly altered the definition, since now we
allow arbitrary basic invariants instead of only considering elementary symmetric
polynomials. However, we will see in Lemma 5.1 that for the symmetric group it
does not matter which basic invariants we choose.

Our main result is the following.

Theorem 4.7. Let G be a reflection group of type I2(m), An−1, Bn, Dn, H3, or F4

and X a nonempty G-invariant real variety. If X is k-sparse, then X ∩Hk(G) 6= ∅.

The reason why we only consider essential groups is simply that if there exists
an l-dimensional subspace W ⊆ V which is fixed pointwise by G, then we have
H0 = · · · = Hl−1 = ∅. If the action of G is not essential, the theorem remains true
for all k such that Hk 6= ∅.

Using that the first basic invariant is always a scalar multiple of s2(x) = ‖x‖2,
Theorem 4.7 is trivially true for reflection groups of rank at most 2. The infinite
families An−1, Bn, and Dn are treated in Chapter 5. Timofte’s original proof and its
simplification given in [66] use properties of the symmetric group that are not shared
by all reflection groups (such as Dn) and we highlight this difference in Example 5.3
and Remark 5.4. In Section 6.1, we prove the following general result for invariant
real varieties that implies the case k = n− 1 of Theorem 4.7.

Theorem 4.8. Let G be an essential reflection group of rank n and consider a
nonempty G-invariant variety X = VR(f1, . . . , fm). If there is j ∈ [n] such that
f1, . . . , fm ∈ R[πi : i 6= j], then X ∩Hn−1(G) 6= ∅.

In particular, this result yields Theorem 4.7 for all reflection groups of rank ≤ 3.
The group F4 is treated in Section 6.1 and we provide computational evidence that
Theorem 4.7 also holds for H4. This supports the following conjecture.

Conjecture 4.9. Let G be an irreducible essential reflection group. Then any
nonempty and k-sparse G-invariant real variety X intersects Hk(G).

In Section 6.2, we prove a weaker form of Conjecture 4.9 under an extra assump-
tion on the defining polynomials of X and we obtain upper bounds on the dimension
of the stratum that meets X in terms of the combinatorics of G.

Independently from our work, Acevedo and Velasco [1] considered the related
problem of certifying nonnegativity of G-invariant homogeneous polynomials. They
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show that low-degree forms (where the exact degree depends on the group) are non-
negative if and only if they are nonnegative on Hn−1(G). Questions of nonnegativity
of polynomials f ∈ R[V ]G are subsumed by our results. A basic semialgebraic set
is of the form

S = S(f1, . . . , fm) = {p ∈ V : f1(p), . . . , fm(p) ≥ 0}.

for f1, . . . , fm ∈ R[V ]. A general semialgebraic set is a Boolean combination of basic
semialgebraic sets. Generalizing the case of real varieties, let us call a G-invariant
semialgebraic set S ⊆ V k-sparse if S can be defined in terms of inequalities with
polynomials in R[π1, . . . , πk].

Proposition 4.10. Let G be a reflection group for which Conjecture 4.9 holds. Let
S ⊆ V be a k-sparse semialgebraic set and let f ∈ R[π1, . . . , πk]. Then f is nonneg-
ative/positive on S if and only if f is nonnegative/positive on Hk(G) ∩ S.

Proof. We only treat non-negativity, since the case of positivity is similar. If S is
k-sparse, then the G-invariant variety

Xk(q) := {p ∈ V : πi(p) = πi(q) for all i ∈ [k]} (4.3)

is contained in S for any q ∈ S. Assume that there is a point q ∈ S with f(q) < 0.
By assumption f = F (π1, . . . , πk) for some F ∈ R[y1, . . . , yk]. Hence, f is negative
(and constant) on Xk(q) ⊆ S. By construction Xk(q) is k-sparse and, since G
satisfies Conjecture 4.9, Xk(q) ∩Hk(G) 6= ∅.

The proof of Proposition 4.10 makes use of a key observation: It suffices to
consider invariant varieties of the form (4.3) as any k-sparse varietyX containsXk(q)
for all q ∈ X. We call Xk(q) a principal k-sparse variety. Lastly, let us emphasize
again that for now we will work with real varieties exclusively. In particular, set-
theoretically, every real variety X = VR(f1, . . . , fm) is the set of solutions to the
equation f(x) = 0 for f = f21 + f22 + · · ·+ f2m.



Chapter 5

Groups of type An, Bn and Dn

In this chapter, we prove Theorem 4.7 for the three infinite classes An, Bn, and Dn.
The proof for An and Bn presented in Section 5.1 uses a strengthening of a result by
Steinberg [76] given in Corollary 5.2, which does not hold true for type Dn. Thus,
the case of Dn, treated in Section 5.2, turns out to be considerably more involved.

5.1 Symmetric polynomials and Vandermonde determi-
nants

We start with some observations regarding k-sparsity. For a reflection group G acting
on Rn with basic invariants π1, . . . , πn, the Jacobian of π1, . . . , πk at a point p ∈ V
is the (k × n)-matrix of partial derivatives

Jacp(π1, . . . , πk) :=


∂x1π1(p) ∂x2π1(p) · · · ∂xnπ1(p)
∂x1π2(p) ∂x2π2(p) · · · ∂xnπ2(p)

...
...

...
∂x1πk(p) ∂x2πk(p) · · · ∂xnπk(p)


and the rows of Jacp(π1, . . . , πk) are the gradients ∇π1(p), . . . ,∇πk(p). The next
result, which in particular shows that k-sparsity is independent of the choice of basic
invariants in most cases, will be useful later on.

Lemma 5.1. Fix a reflection group G acting on V . Let π1, . . . , πn and π′1, . . . , π
′
n be

two sets of basic invariants and let k ∈ [n] such that the degrees satisfy dk+1 > dk.
Then R[π1, . . . , πk] = R[π′1, . . . , π

′
k] and rk Jacp(π1, . . . , πk) = rk Jacp(π′1, . . . , π

′
k)

for all p ∈ V .

Proof. For every 1 ≤ i ≤ k, πi = Fi(π
′
1, . . . , π

′
n) for some polynomial Fi(y1, . . . , yn).

Homogeneity and algebraic independence imply that Fi ∈ R[y1, . . . , yk]. This shows
the inclusion R[π1, . . . , πk] ⊆ R[π′1, . . . , π

′
k]. Note that

Jacp(π1, . . . , πk) = Jacπ′(p)(F1, . . . , Fk) · Jacp(π′1, . . . , π
′
k)

for every p ∈ V . The same argument applied to π′i now proves the first claim and
shows that Jacπ′(p)(F1, . . . , Fk) has full rank and this proves the second claim.
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We start with the verification of Theorem 4.7 for Sn, which is exactly Theo-
rem 4.3. The proofs for Bn and Dn will rely on the arguments for An−1.

Proof of Theorem 4.7 for An−1 ∼= Sn. In the case of Sn, the degrees d1, . . . , dn are
pairwise distinct and, hence, Lemma 5.1 implies that k-sparsity does not depend on
the choice of basic invariants. In the following, we choose to work with the power
sums s1, . . . , sn. It suffices to prove that for any p0 ∈ Rn and 2 ≤ k ≤ n − 1, the
principal k-sparse variety

Xk(p0) = {p ∈ Rn : si(p) = si(p0) for i ∈ [k]}

meets the stratum Hk. Since s2(p) = ‖p‖2, we conclude that Xk(p0) is compact.
Hence, the continuous function sk+1 attains its maximum over Xk(p0) in a point
q. By the inverse function theorem [39, Ch. 1.3], at this point, the Jacobian J =
Jacq(s1, . . . , sk+1) has rank < k + 1. We claim that this condition is equivalent to
q ∈ Hk. Indeed, up to scaling columns, J is given by

1 1 · · · 1
q1 q2 · · · qn
...

...
qk1 qk2 · · · qkn

 ,

where q = (q1, . . . , qn). We have rk(J) < k + 1 if and only if all its (k + 1)-minors
vanish. But the latter are Vandermonde determinants, which yield that for any
I ⊂ [n] with |I| = k + 1 we have∏

i,j∈I,i<j
(qi − qj) = 0.

Now, using the description of k-strata forSn from Example 4.2 finishes the proof.

We proceed to the reflection groups of type Bn.

Proof of Theorem 4.7 for Bn. By Lemma 5.1 and the fact that the degrees di(Bn)
are all distinct, we may assume that πi(x) = s2i(x) for all i ∈ [n]. Moreover, we can
assume that X is a principal k-sparse variety, that is,

X = Xk(p) = {q ∈ Rn : s2i(q) = s2i(p) for all i ∈ [k]}.

SinceXk(p) = Xk(q) for all q ∈ Xk(p), we can assume that p = (p1, . . . , pr, 0, . . . , 0) ∈
X with the property that p1 · · · pr 6= 0 and r is minimal.

If r = n, then X does not meet any of the coordinate hyperplanes {xi = 0}.
Let q ∈ X be an extreme point of πk+1 over X. At this point, the Jacobian J =
Jacq(π1, . . . , πk+1) does not have full rank and hence every maximal minor of

J =

 q1 q2 · · · qn
...

...
q2k−11 q2k−12 · · · q2k−1n


vanishes. Since qi 6= 0 for all i ∈ [n], the Vandermonde formula implies that
(q21, q

2
2, . . . , q

2
n) has at most k distinct coordinates, which yields the claim.
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If r < n, we can restrict X to the linear subspace U = {x ∈ Rn : xr+1 = · · · =
xn = 0} ∼= Rr. The set X ′ := X ∩U ⊆ Rr is nonempty and, in particular, a k-sparse
Br-invariant variety that stays away from the coordinate hyperplanes in Rr. By
the previous case, there is a point q′ ∈ X ′ such that (|q′1|, . . . , |q′r|) has at most k
distinct coordinates. By construction, q = (q′,0) ∈ X ∩Hk(Bn), which finishes the
proof.

The key to the proof of Theorem 4.7 for An−1 and Bn is the strong connection
between the strata Hk and the ranks of the Jacobians Jac(π1, . . . , πk+1).

Corollary 5.2. Let G ∈ {Sn, Bn} and π1, . . . , πn a set of basic invariants for G.
Then a point p ∈ V lies in Hk(G) for 0 ≤ k ≤ n−1 if and only if Jacp(π1, . . . , πk+1)
has rank at most k.

It is tempting to believe that such a statement holds true for all reflection groups
and, indeed, necessity follows from a well-known result of Steinberg [76]. However,
the following example shows that Corollary 5.2 does not hold true in general.

Example 5.3. Consider the group G = D5 acting on R5 and the point p =
(1, 1, 1, 1, 0), which is contained in the three linearly independent D5-hyperplanes
{x1 = x2}, {x2 = x3} and {x3 = x4}. By (4.1) it follows that p ∈ H2(D5) \
H1(D5). On the other hand, for any choice of basic invariants π1, . . . , π5 the gra-
dients ∇pπ1,∇pπ2 are linearly dependent. Indeed, for π1 = ‖x‖2 = x21 + · · · + x25
and π2 = x41 + · · ·+ x45, this is easy to check and this extends to all choices of basic
invariants using Lemma 5.1. Hence, the Jacobian Jacp(π1, π2) has rank 1, but p is
not contained in H1(D5).

Remark 5.4. Example 5.3 also serves as a counterexample to generalizations of
Corollary 5.2 to all finite reflection groups claimed in [4, Statement 3.3] and [33,
Lemma 1’] (without a proof). Moreover, in the language of Acevedo and Velasco [1,
Definition 7], it is the first example of a reflection group not satisfying the minor
factorization condition.

5.2 Groups of type Dn

In the following, we turn to reflection groups of type Dn. We have seen that Corol-
lary 5.2 does not extend to this case. However, the claim of Theorem 4.7 remains
true.

Proof of Theorem 4.7 for Dn. Let π1, . . . , πn be a choice of basic invariants for Dn

and let X = Xk(q) ⊆ Rn for some q ∈ Rn and 1 ≤ k < n. If n is odd or if k 6= bn2 c,
then dk+1 > dk and, by Lemma 5.1, we can assume that the basic invariants are
given by (4.2). If n is even and k = n

2 , then πk(x) = αsn(x) + βen(x), for some
β 6= 0. We can also assume that q = (q1, . . . , ql, 0, . . . , 0) with q1 · · · ql 6= 0 and l is
maximal among all points in Xk(q). We distinguish two cases.

Case l < n: In this case, en(x) is identically zero onXk(q) andX ′ := Xk(q)∩{x :
xn = 0} is nonempty. If k ≥ bn2 c+ 1, then we can identify

X ′ = {x′ ∈ Rn−1 : s2i(x
′, 0) = s2i(q) for i = 1, . . . , k − 1}.
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HenceX ′ is a real variety in Rn−1 invariant under the action of Bn−1 andX ′ is (k−1)-
sparse with respect to Bn−1. By Theorem 4.7 for Bn−1, X ′ ∩Hk−1(Bn−1) 6= ∅. The
claim now follows the description of Hk(Dn) given in (4.1).

If k < n
2 , consider the Jacobian of π1 = s2, . . . , πk = s2k and the (l + 1)-th

elementary symmetric polynomial el+1(x) at q. This is given by

J =


q1 q2 · · · ql 0 0 · · · 0
q31 q32 · · · q3l 0 0 · · · 0
...

...
...

...
...

...
...

q2k−11 q2k−12 · · · q2k−1l 0 0 · · · 0
0 0 0 0 q1 · · · ql 0 · · · 0

 . (5.1)

We observe that the (l + 1)-th elementary symmetric function el+1(x) is identically
zero on Xk(q) and hence the gradients of π1, . . . , πk and el+1 are linearly dependent
on Xk(q). In particular, the Jacobian J has rank ≤ k. Since q1 · · · ql 6= 0, the
Vandermonde minors imply ∏

i,j∈I,i<j
(q2i − q2j ) = 0

for any I ⊆ {1, . . . , l} with |I| = k. This shows that q ∈ Hk−1(Bn) ⊆ Hk(Dn).
If k = n

2 , then n is even and X is defined in terms of the power sums s2, . . . , sn−2
and the special invariant πk = αsn + βen. However, since en(x) is identically zero
on Xk(q), the variety X is in fact cut out by the power sums s2, . . . , sn and the
above argument remains valid.

Case l = n: If k < n
2 , set f := en. If k ≥ bn2 c + 1, the function en takes

a constant nonzero value on X and instead we set f := s2k. For the special case
that n is even and k = n

2 , we set f = en if α 6= 0 and f = sn otherwise. Let
r = (r1, . . . , rn) ∈ Xk(q) be a maximizer of |f(x)|, which exists since X is compact.
It is easy to observe that we always have r1 · · · rn 6= 0. Moreover, in all cases, up to
row and column operations, the Jacobian J = Jacq(s2, s4, . . . , s2k, f) is of the form

J =


r1 r2 · · · rn
r31 r32 · · · r3n
...

...
...

r2k−11 r2k−12 · · · r2k−1n

r̂1r2 · · · rn r1r̂2 · · · rn · · · r1r2 · · · r̂n

 , (5.2)

where r̂i is to be omitted from the product. Multiplying the i-th column by ri and
dividing the last row by r1 · · · rn, we get a Vandermonde matrix of rank ≤ k. Thus,
all the (k+1)-minors vanish which implies that (|r1|, . . . , |rn|) has at most k distinct
entries. Since all entries are nonzero, it follows from (4.1) that r ∈ Hk(Dn).

The proof actually gives stronger implications for the Bn-case.

Corollary 5.5. Let 1 ≤ k ≤ n − 2. Then every nonempty Bn-invariant, k-sparse
variety X meets Hk(Dn).
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Proof. For X = Xk(q), we can assume that q = (q1, . . . , ql, 0, . . . , 0) with qi 6= 0 for
1 ≤ i ≤ l and l maximal. If l ≤ k, then q ∈ Hk(Dn) and we are done. So assume
k < l ≤ n. We distinguish two cases: If l ≤ n − 1, let f = el+1 and r ∈ Xk(q)
arbitrary. If l = n, let f = en and r ∈ Xk(q) a maximizer of |f |. The corresponding
Jacobians (5.1) and (5.2) for s2, . . . , s2k, f at r yield the claim.
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Chapter 6

General reflection groups

In Chapter 5, we have studied reflection groups case by case. In this chapter, we take
a different approach and try to develop strategies that do not use the classification
and work with arbitrary reflection groups. Section 6.1 introduces orbit spaces, which
allow us to prove a stronger version of Theorem 4.8. The case of higher codimension,
that is k < n− 1, is treated in Section 6.2, where we prove a weaker version of Con-
jecture 4.9 under a mild extra assumption on the underlying invariant polynomials.
Our results also relate to varieties invariant under the action of certain Lie groups,
which is illustrated in Section 6.3. Finally, in Section 6.4, we prove a first result for
the related case of varieties invariant under the action of complex reflection groups.

6.1 Orbit spaces

In this section, we introduce orbit spaces, an important tool which in Proposition 6.1
gives yet another viewpoint on Conjecture 4.9. Taking this perspective, in Theo-
rem 6.5 we prove a result which in particular implies Conjecture 4.9 for k = n − 1.
This also settles the case of groups of rank at most 3. The group F4 is treated sepa-
rately and we moreover give computational evidence that the conjecture should also
hold for H4.

6.1.1 Orbit spaces and reflection arrangements

As before, let G be a reflection group acting on V . The reflection arrangement
H = H(G) decomposes V into relatively open polyhedral cones. The closure σ of any
full-dimensional cone in this decomposition serves as a fundamental domain: For
every p ∈ V , the orbit Gp meets σ in a unique point. On the other hand, the basic
invariants define an orbit map π : V → Rn given by π(x) = (π1(x), . . . , πn(x)).
The basic invariants separate orbits, that is, π(p) = π(q) if and only if q ∈ Gp
for all p,q ∈ V . The image S := π(V ) is homeomorphic to V/G and, by abuse
of terminology, we call S the real orbit space. Since π is an algebraic map, S is
semialgebraic, with an explicit inequality description given in [65]. Restricted to σ
the map π|σ : σ → S is a homeomorphism. Moreover,

π−1(∂S) = Hn−1(G), (6.1)

81
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where ∂S denotes the boundary of S. Observe that the orbit space S is not uniquely
determined by G, but depends on the basic invariants we choose.

In terms of the orbit map, Conjecture 4.9 can be put in a more general context.
For J ⊆ [n], let us write πJ(x) = (πi(x) : i ∈ J). For given J , we can ask for the
smallest 0 ≤ t ≤ n such that πJ(V ) = πJ(Ht).

Proposition 6.1. Let G be an irreducible and essential reflection group. Then Con-
jecture 4.9 is true for G if and only if for J = [k] we have

πJ(V ) = πJ(Hk).

Proof. For q ∈ V , we have Xk(q) = π−1J (πJ(q)). Hence, Xk(q) ∩ Hk 6= ∅ for q ∈ V
if and only if there is some p ∈ Hk such that πJ(q) = πJ(p).

A generalization of Theorem 4.3 to J-sparse symmetric polynomials f ∈ R[πi :
i ∈ J ] was considered in [67]. The correspondence given in Proposition 6.1 also shows
that the dimensions of strata in Conjecture 4.9 are best possible.

Proposition 6.2. Let J ⊆ [n] and 0 ≤ t ≤ n such that πJ(V ) = πJ(Ht). Then
t ≥ |J |.

Proof. The set πJ(V ) is the projection of the real orbit space S onto the coordinates
indexed by J and hence is of full dimension |J |. By invariance of dimension, this
implies that t = dimHt ≥ |J |.

For the next result, recall that, by definition, G ⊂ O(V ) and hence ‖x‖2 = 〈x,x〉
is an invariant of G. In the following, we call a set S ⊆ V line-free if every nonempty
affine subspace L ⊆ V satisfying L ⊆ S is a point.

Lemma 6.3. Let G be a finite reflection group acting on V and let π1, . . . , πn be a
choice of basic invariants such that πi(x) = ‖x‖2 for some i. Then the orbit space
S = π(V ) is line-free.

Proof. Since πi(x) = ‖x‖2 ≥ 0 for all x ∈ V , the linear function `(y) = yi is
nonnegative on S ⊂ Rn. Hence, if L ⊆ S is an affine subspace, then ` is constant on
L. Let σ ⊆ V be a fundamental domain for G. Then L = S ∩ L is homeomorphic
to L̂ := {p ∈ σ : ‖p‖2 = c} for some c ≥ 0. This implies that L is compact, which
finishes the proof.

Example 6.4. For the essential reflection group B3 and the power sums as basic
invariants, Figure 6.1 shows the semialgebraic compact slice K := S ∩ {y1 = 1} and
its defining algebraic curves of degree up to 9, obtained using the description in [65].
Any fundamental domain for B3 is a full-dimensional cone with three generating
rays. Hence, K is homeomorphic to a triangle. Moreover, since the basic invariants
are homogeneous and of even degree, every other slice of the form S ∩ {y1 = c} with
c > 0 can be obtained from K by simply rescaling the two coordinate axes.

Theorem 6.5. Let G be an essential reflection group with a choice of basic invariants
π1, . . . , πn. Let f ∈ R[V ]G be an invariant polynomial such that f is at most linear
in πk for some k. Then VR(f) 6= ∅ if and only if VR(f) ∩Hn−1 6= ∅.
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Figure 6.1: A compact slice of the B3-orbit space at y1 = 1, given in the blue region.

Proof. Without loss of generality, we can assume that f(0) < 0. Since the arrange-
ment Hn−1 is path connected, it suffices to show that there is a point p+ ∈ Hn−1(G)
with f(p+) ≥ 0.

We can assume that π1(x) = ‖x‖2. Indeed, sinceG is essential, all basic invariants
have degree at least 2 and ‖x‖2 is a linear combination of the degree 2 basic invariants.
Let p ∈ VR(f) and define K = {q ∈ V : π1(q) = π1(p)}, the sphere centered at the
origin that contains p. The function f attains its maximum over K in a nonempty
closed set M ⊆ K. We claim that M ∩Hn−1 6= ∅. Let p0 be a point in M .

We may pass to the real orbit space S = π(V ) associated to G and π1, . . . , πn
and consider the compact set K := π(K) = {y ∈ S : y1 = π1(p)}. We can write
f = F (π1, . . . , πn) for some F ∈ R[y1, . . . , yn]. In this setting, our assumption states
that F is at most linear in yk. If p0 ∈ V \Hn−1, then, by (6.1), p0 := π(p0) is in the
interior of S and hence in the relative interior of K. Let L = {p0+tek : t ∈ R} be the
affine line through p0 in direction of the kth standard basis vector ek. Restricted to L,
the polynomial F has degree at most 1. By Lemma 6.3 and our choice of K, the line
L meets ∂K in two points p−,p+ and F (p−) ≤ F (p0) ≤ F (p+). This implies that
π−1(p+) ⊆M and, since ∂K ⊆ ∂S, equation (6.1) shows that π−1(p+) ⊆ Hn−1.

The assumption in Theorem 6.5 that G is essential is indeed necessary, as the
following example shows.

Example 6.6. Let G = Bn act on V = Rn × R by fixing the last coordinate. A
set of basic invariants is given by π1(x, xn+1) = xn+1 and πi(x, xn+1) = s2i−2(x) for
i = 2, . . . , n+ 1. Pick p ∈ Rn with all coordinates positive and distinct. The variety

X = {(x, xn+1) ∈ V : s2i(x) = s2i(p) for i = 1, . . . , n} (6.2)

is defined over R[π2, . . . , πn+1], but is a collection of affine lines that does not meet
the reflection arrangement.

As a consequence of Theorem 6.5, we immediately obtain Theorem 4.8 from
Section 4.2.
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Proof of Theorem 4.8. Let f1, . . . , fm ∈ R[πi : i 6= j] for some j ∈ [n]. Then

X := VR(f1, . . . , fm) = VR(f),

where f := f21 + · · · , f2m. Hence, Theorem 6.5 applies.

We give two further applications.

Corollary 6.7. Let G be an essential reflection group and let J ⊂ [n] with |J | = n−1.
For polynomials f, f1, . . . , fm ∈ R[πi : i ∈ J ], the following hold:

(i) The semialgebraic set S := {p : f1(p) ≥ 0, . . . , fm(p) ≥ 0} is nonempty if and
only if S ∩Hn−1(G) 6= ∅.

(ii) We have f(q) ≥ 0 for all q ∈ S if and only if f(q) ≥ 0 for all q ∈ S∩Hn−1(G).

Proof. For q ∈ S, it suffices to prove the claim for

X := {p ∈ V : πj(p) = πj(q) for j ∈ J} ⊆ S.

Claim (i) now follows from Theorem 6.5. As for (ii), assume that q ∈ S \ Hn−1 and
f(q) < 0. Then the same argument applied to X ∩ {p : f(p) = f(q)} finishes the
proof.

If f ∈ R[V ]G has degree deg(f) < 2 deg(πn), then the algebraic independence of
the basic invariants implies that Theorem 6.5 can be applied to prove the following
corollary. Under the assumption that f is homogeneous, the second part of the
corollary recovers the main result of Acevedo and Velasco [1].

Corollary 6.8. Let f ∈ R[V ]G with deg(f) < 2dn(G) = 2 deg(πn). Then VR(f) 6= ∅
if and only if VR(f) ∩ Hn−1 6= ∅. In particular, f ≥ 0 on V if and only if f ≥ 0 on
Hn−1.

The bound on the degree is tight: For a point p ∈ V \ Hn−1(G), the set of
solutions to

f(x) :=
n∑
i=1

(πi(x)− πi(p))2 = 0

is exactly Gp, which does not meet Hn−1(G). The defining polynomial f(x) is of
degree exactly 2 deg(πn).

6.1.2 Some exceptional types

Theorem 6.5 also allows us to prove Theorem 4.7 for groups of small rank.

Proof of Theorem 4.7 for rk(G) ≤ 3. For k = rk(G), there is nothing to prove. For
k = 1, we observe that X1(p) is the sphere through p, which meets the arrangement
H1(G) of lines through the origin. Thus, the only nontrivial case is rk(G) = 3 and
k = rk(G)− 1 = 2. This is covered by Theorem 4.8.
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Let G be an essential reflection group of rank ≥ 4. Since G acts on V by
orthogonal transformations, we have that π1(x) = ‖x‖2 and Xk(p) is a subvariety
of a sphere centered at the origin. Since the basic invariants are homogeneous, we
may assume that π1(p) = 1 and hence Xk(p) ⊆ Sn−1 = {x ∈ V : ‖x‖ = 1}.
To prove Theorem 4.7 for k = 2 we can proceed as follows. Let δmin and δmax

be the minimum and maximum of π2 over Sn−1. Then it suffices to find points
pmin,pmax ∈ H2(G) ∩ Sn−1 with π2(pmin) = δmin and π2(pmax) = δmax. Indeed,
since H2(G) is connected (for rk(G) ≥ 3), this shows that πJ(V ) = πJ(H2(G)) for
J = {1, 2}, which, by Proposition 6.1, then proves the claim. For the group F4, we
can implement this strategy.

Proof of Theorem 4.7 for F4. Since F4 is of rank 4, we only need to consider the case
k = 2 and can use the strategy outlined above. Let δmin and δmax be the minimum
and maximum of π2 over S3. An explicit description of π2 for F4 is

π2(x) =
∑

1≤i<j≤4
(xi + xj)

6 + (xi − xj)6;

see, for example, Mehta [61] or [54, Table 5]. The points p = (1, 0, 0, 0) and p′ =
( 1√

2
, 1√

2
, 0, 0) are contained in H1(F4) ⊆ H2(F4) and takes values π2(p) = 1 and

π2(p
′) = 3

2 . We claim, that these values are exactly δmin and δmax, respectively.
Note that π2(x) = g(x21, x

2
2, x

2
3, x

2
4) for

g(y) = 5s1(y) · s2(y)− 4s3(y).

Let ∆3 = {x ∈ R4 : x1, . . . , x4 ≥ 0, x1 + · · · + x4 = 1} be the standard 3-simplex.
We have that ρ(S3) = ∆3 where ρ(x1, . . . , x4) := (x21, . . . , x

2
4). Hence,

δmax = max{g(p) : p ∈ ∆3} and δmin = min{g(p) : p ∈ ∆3}.

Now, D4 is a subgroup of F4 and π2 ∈ R[s2, s4, s6] and does not depend on e4(x).
By Theorem 4.7 for D4, the varieties S3 ∩ {π2(x) = δmin} and S3 ∩ {π2(x) = δmax}
both meet H3(D4). Hence, it suffices to minimize or maximize g(x) over

∆3 ∩ {x ∈ R4 : x1 = x2}.

This leaves us with the (standard) task to maximize and minimize a bivariate poly-
nomial g′(s, t) of degree 3 over a triangle. In the plane, the polynomial has 3 critical
points with values 1, 119 ,

11
9 . On the boundary, the extreme values are attained at the

points given above.

For the rank-4 reflection group H4, the invariant π2(x) is a polynomial of degree
12 in four variables; see, for example, [54, Table 6]. Since (B1)

4 is a reflection
subgroup of F4, π2 is a polynomial in the squares x21, . . . , x24 and, following the
argument in the proof above, we are left with minimizing and maximizing a degree-6
polynomial g(x) over the simplex ∆3. However, finding the critical points is not
easy and an extra computational challenge is the fact that g(x) is a polynomial
with coefficients in Q(

√
5). GloptiPoly [44] numerically computes δmin = − 5

16 and
δmax = 1. These values are attained at pmin = 1√

2
(1, 1, 0, 0) and pmax = (1, 0, 0, 0),

respectively, and both points lie in H2((B1)
4) ⊆ H2(H4). This is strong evidence for

the validity of Conjecture 4.9 for H4 but, of course, not a rigorous proof.
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6.2 A general approach

We turn to the case when k < n− 1 for arbitrary reflection groups. In Section 6.2.1,
we first use a naive inductive approach, which in most cases gives bounds that are far
from optimal, but nevertheless, yield interesting results for the exceptional types in
Proposition 6.9. In Theorem 6.11 we prove a weaker version of Conjecture 4.9 under
a mild extra assumption on the underlying invariant polynomials. The bounds on
dimension of the strata in Theorem 6.11 are not easy to compute explicitly and we
give upper bounds using the combinatorics of parabolic subgroups in Section 6.2.2.
Finally, in Section 6.2.3, we apply perturbation techniques, which in particular yield
a second proof of Conjecture 4.9 for types An and Bn.

6.2.1 Strata of higher codimension

We have seen in the previous section that every nonempty (n − 1)-sparse variety
meets the hyperplane arrangement Hn−1. In this section, we want to extend this
result to k-sparse varieties for k < n−1. This case is considerably more difficult but
we can make good use of the techniques and ideas developed in Section 6.1.

Let G be an essential finite reflection group acting on V ∼= Rn. Consider a G-
invariant k-sparse variety X with k < n. If X is nonempty, then Theorem 6.5 yields
that for some reflection hyperplane H ∈ H the variety X ′ := X∩H is nonempty. An
inductive argument could now replace G by some other reflection subgroup G′ ⊆ G
that fixes H. If X ′ remains sparse with respect to G′ we can again apply Theorem 6.5
to obtain a point p ∈ Hn−2(G′) ⊆ Hn−2(G). However, the results obtained using
this strategy are far from optimal. We will briefly illustrate this for G = Sn: Let X
be a nonempty k-sparse Sn-invariant variety for k < n. The largest subgroup of Sn

that fixes a given reflection hyperplane H is of the form G′ ∼= Sn−2 × S2. Hence,
Theorem 6.5 only applies for X ′ = X ∩H and G′ if k = dk(G) < dn(G′) = n− 2, in
other words if the original variety X is (k − 3)-sparse. Inductively, this yields that
every nonempty k-sparse Sn-invariant variety meets Hl where l = bn+k2 c. However,
applying the above method to the exceptional types gives nontrivial bounds.

Proposition 6.9. Let 6 ≤ n ≤ 8. Then every nonempty 2-sparse En-invariant
variety intersects Hn−2(En).

Proof. We exemplify the argument for the case n = 8. Let X be a nonempty 2-
sparse E8-invariant variety. By Theorem 6.5 we find a point p ∈ X ∩ H7(E8). The
orbit of p meets every hyperplane in H(E8) (see [53, Sect. 2.10]) and hence we may
assume that p lies on the hyperplane H = {x ∈ R8 : x1 = x2}. Consider the
subgroup G′ ∼= D6 ⊂ E8 acting essentially on the coordinates x3, . . . , x8. Since
d6(D6) = 10 > 8 = d2(E8), we can apply Theorem 6.5 to finish the proof.

By restricting the class of invariant polynomials, we obtain better bounds than
those in Proposition 6.9. In the following, a point p is called G-general if it does
not lie on any reflection hyperplane of G, and hence |Gp| = |G|.

Definition 6.10. For a positive integer d, let δG(d) be the largest number ` such
that for every p ∈ H`+1 there is a reflection subgroup G′ ⊆ G such that p is G′-
general and 2dn(G′) > d. Moreover, we define σG(k) := δG(2dk(G)). That is, σG(k)
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is the largest 0 ≤ ` ≤ d such that for every p ∈ H`+1, there is a reflection subgroup
G′ ⊆ G such that p is G′-general and dn(G′) > dk(G).

We call an invariant polynomial f ∈ R[V ]G G-finite if either VR(f) = ∅ or if
there is a point p ∈ VR(f) such that f has finitely many extreme points restricted
to the sphere K = {q ∈ V : ‖q‖ = ‖p‖}. We want to think of G-finiteness as some
sort of genericity assumption. Indeed in the non-invariant setting, it is shown in [63]
that a generic polynomial f ∈ R[x] has only finitely many extreme points on K.

Theorem 6.11. Let f ∈ R[V ]G be a G-finite polynomial and X = VR(f). If f ∈
R[π1, . . . , πk], then

X 6= ∅ if and only if X ∩HσG(k) 6= ∅.

If d = deg(f), then

X 6= ∅ if and only if X ∩HδG(d) 6= ∅.

Proof. We only give a proof for the second result. The proof of the first is analogous.
Suppose VR(f) 6= ∅. We may assume that f(0) ≤ 0 and, since HδG(d) is connected,
it suffices to show that there is some point p+ ∈ HδG(d) with f(p+) ≥ 0.

By assumption, there is a zero p0 ∈ VR(f) such that f has only finitely many
extreme points restricted to K = {q : ‖q‖ = ‖p0‖}. Let p+ ∈ K be a point
maximizing f over K and hence f(p+) ≥ f(p0) ≥ 0. We claim that p+ ∈ HδG(d).
Otherwise, there is a reflection subgroup G′ ⊂ G such that p+ is G′-general and
2dn(G′) > d. Let π′1, . . . , π′n be a choice of basic invariants of G′ and, without loss
of generality, π′1(x) = ‖x‖2. Thus, p+ = π′(p+) is in the interior of S = π′(V ). We
can write f = F (π′1, . . . , πn) for some F ∈ R[y1, . . . , yn]. On the level of orbit spaces,
our assumption states that restricted to K = π(L) = {y ∈ S : y1 = π1(p+)}, the
polynomial F has only finitely many extreme points. However, F is linear in yn and
thus p+ is a maximum only if p+ ∈ ∂K ⊆ ∂S. This is a contradiction.

6.2.2 Bounds from parabolic subgroups

Given a reflection group G, a subgroup W ⊆ G is called parabolic, if there exists
a simple system ∆ for G and a subset ∆′ ⊆ ∆ such that W is generated by the
reflections {sα : α ∈ ∆′} (cf. [53, Sec. 1.10]). The numbers δG(d) and σG(k) defined
in Section 6.2.1 are difficult to compute in general, but in this section we compute
upper bounds coming from the combinatorics of parabolic subgroups.

Lemma 6.12. Fix a finite irreducible reflection group G with Dynkin diagram D.
Let D′ ⊂ D be a subdiagram obtained by removing a node from D and let H ∈ H(G)
be a reflection hyperplane. Then there is a parabolic subgroup W ⊂ G with Dynkin
diagram D′ and H is not a reflection hyperplane of W .

Proof. LetW be a parabolic subgroup with Dynkin diagramD′. Since every parabolic
subgroup with Dynkin diagram D′ is conjugate to W , it suffices to show that there
is a g ∈ G such that gH 6∈ H(W ). In terms of the roots Φ(G) of G, this is equiv-
alent to showing that for every α ∈ Φ(G), there is a g ∈ G such that gα 6∈ Φ(W ).
Since G acts transitively on the roots in every orbit (see [53]) and Φ(W ) ( Φ(G)
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for any proper parabolic subgroup, this yields the claim for all types except F4, Bn
and I2(2m) for m > 1. For F4, the possible proper parabolic subgroups are B3 and
A1 ×A2 and the result follows by inspection. For I2(2m), there are two orbits with
each 2m ≥ 4 roots whereas the only nontrivial proper parabolic subgroup is A1. For
Bn, this follows from counting the number of elements in each of the two orbits.

The lemma yields the following result about finite reflection groups that might
be interesting in its own right.

Proposition 6.13. Let G be a finite irreducible reflection group with Dynkin diagram
D acting on a real vector space V . For k ≥ 1, let p ∈ Hk \ Hk−1 and D′ ⊂ D be a
connected subdiagram on k nodes. Then there is a parabolic subgroup W ⊂ G with
Dynkin diagram D′ such that p is W -general.

Proof. We argue by induction on s = dimV − k. For s = 0, p ∈ V \ HdimV−1
and p is by definition G-general. Otherwise, let D1 ⊂ D be a subdiagram obtained
by removing a leaf such that D′ ⊆ D1 and let H1 be a reflection hyperplane of G
containing p. We may use Lemma 6.12 to obtain a parabolic subgroup W1 with
Dynkin diagram D1 and not containing H1 as a reflection hyperplane. In particular,
p is contained in precisely s − 1 linearly independent reflection hyperplanes of W1.
By induction, there is a parabolic subgroup W ⊆ W1 with Dynkin diagram D′ for
which p isW -general. In particular,W is a parabolic subgroup of G which concludes
the proof.

For a choice of a simple system ∆ ⊆ Φ(G), let us write WI for the standard
parabolic subgroup generated by I ⊆ ∆. We define

δ̃G(d) := min{|I| − 1 : I ⊆ ∆, 2dn(WI) > d},

and, analogously, we define σ̃G(k) := δ̃G(2dk(G)). Proposition 6.13 implies the
following bound on δG.

Corollary 6.14. δG(d) ≤ δ̃G(d), for all d ≥ 0.

The clear advantage is a simple way to compute upper bounds on δG(d) from
the knowledge of (standard) parabolic subgroups of reflection groups; cf. [53]. The
explicit values are given in Table 6.1. However, not every reflection subgroup is
parabolic (e.g. I2(m) ⊂ I2(2m)). Nevertheless, we conjecture that δG(d) is attained
at a parabolic subgroup.

Conjecture 6.15. For any finite reflection group G

δG(d) = δ̃G(d)

for all d.
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G d δ̃G(d) W dn(W ) k σ̃G(k)

An−1/Sn 0 — 2n− 1 bd/2c Abd/2c bd/2c+ 1 1 — n k

Bn 0 — 4n− 1 bd/4c Bbd/4c+1 2(bd/4c+ 1) 0 — n k

Dn 0 — 4n− 5 bd/4c+ 1 Dbd/4c+2 2(bd/4c+ 1) 0 — bn2 c k + 1

bn2 c+ 1 — n k

I2(m) 1 — 2m− 1 1 I2(m) m 1 1

E6 1 — 5 1 A2 3 1 1

6 — 7 2 A3 4 2 3

8 — 11 3 D4 6 3 4

12 — 15 4 D5 8 4 5

16 — 23 5 E6 12 5 5

E7 1 — 5 1 A2 3 1 1

6 — 7 2 A3 4 2 4

8 — 11 3 D4 6 3 5

12 — 15 4 D5 8 4 5

16 — 23 5 E6 12 5 6

24 — 35 6 E7 18 6 6

E8 1 — 5 1 A2 3 1 1

6 — 7 2 A3 4 2 5

8 — 11 3 D4 6 3 6

12 — 15 4 D5 8 4 6

16 — 23 5 E6 12 5 7

24 — 35 6 E7 18 6 7

36 — 59 7 E8 30 7 7

F4 1 — 7 1 B2 4 1 1

8 — 11 2 B3 6 2 3

12 — 23 3 F4 12 3 3

H3 1 — 9 1 I2(5) 5 1 1

10 — 19 2 H3 10 2 2

H4 1 — 9 1 I2(m) 5 1 1

10 — 19 2 H3 10 2 3

20 — 59 3 H4 30 3 3

Table 6.1: Computation for δ̃G(d) and σ̃G(k). a — b refers to the range a, a+1, ..., b.
The column W gives the parabolic subgroup that attains δ̃G.
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6.2.3 Perturbation techniques

We will now extend Theorem 6.11 to polynomials that are limits of G-finite polyno-
mials. For d ≥ 0, we write R[V ]≤d for the vector space of polynomials of degree at
most d. For convenience, we will call an invariant polynomial f ∈ R[V ]G G-sparse
if f ∈ R[π1, . . . , πk] for some choice basic invariants π1, . . . , πn.

Proposition 6.16. Let G be a finite reflection group acting on V and f ∈ R[V ]G

such that X = VR(f) 6= ∅. Let (fn)n≥0 ∈ R[V ]G≤d be a sequence of polynomials such
that fn

n→∞−→ f and assume that for some p ∈ X, every fn has only finitely many
extreme points on the sphere of radius ‖p‖. Then X ∩ HδG(d) 6= ∅. If all fn are
k-sparse, then X ∩HσG(k) 6= ∅.

Proof. We can assume f(0) < 0 and let m be the maximum of f over K := {q :
‖q‖ = ‖p‖}. By assumption, m ≥ 0 = f(p) and every maximizer qn ∈ K of fn over
K is contained in HδG(d) for all n ≥ 0 by the proof of Theorem 6.11. Choosing a
convergent subsequence of (qn)n≥0, there is a point q ∈ HδG(d) such that f(q) ≥ 0.
Using that HδG(d) is path connected completes the proof. The argument if fn is
k-sparse is analogous.

In the following, we want to establish some criteria on when we are in the above
situation. To do this, we will work over complex projective space. The basic results
and notation from complex algebraic geometry we use here are taken from [42].
We identify the complexification of V with Cn that is embedded in the complex
projective space CPn as the affine chart {p = [p0 : · · · : pn] ∈ CPn : p0 6= 0}, where
by [p0 : · · · : pn] we denote homogeneous coordinate in CPn. We write K ⊂ Cn for
the unit sphere and K̃ = {p ∈ CPn : p20 = p21 + · · ·+ p2n} for its projectivization. For
a polynomial f ∈ C[x1, . . . , xn] let

Crit(f) := {p ∈ K : rk(∇f(p)),p) ≤ 1}

be the complex critical locus of f over K. Whenever f ∈ R[V ] and Crit(f) is finite,
then f has only finitely many extreme points on the unit sphere in V and we can
apply the machinery of G-finite polynomials.

As a next step we will homogenize all polynomials to apply results on complex
projective varieties. For a polynomial f ∈ C[x1, . . . , xn] and d ≥ deg(f), we write

f (d) := xd0f(x1x0 ,
x2
x0
, . . . , xnx0 ).

Thus f (d) is homogeneous of degree d. For d = deg(f) we simply write f̃ . This
operation, in particular, takes C[x1, . . . , xn]≤d bijectively to C[x0, . . . , xn]d, the vector
space of d-forms. For f ∈ C[x1, . . . , xn]≤d, we define

C̃ritd(f) :=
{

[p0 : p1 : · · · : pn] ∈ K̃ : rk

p1 ∂x1f
(d)(p0, . . . , pn)

...
...

pn ∂xnf
(d)(p0, . . . , pn)

 ≤ 1
}
. (6.3)

This is indeed a projective variety since the rank condition is equivalent to the
vanishing of the 2-minors. For d = deg f , this is exactly the projectivization of
Crit(f).
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By Bézout’s theorem ([42, Thm. 18.3]), if C̃ritd(f) is of positive dimension, then
C̃ritd(f) ∩ H 6= ∅ for any hyperplane H ⊂ CPn. For fixed H, define the variety
Y (d) ⊂ C[x1, . . . , xn]≤d as the projection of the incidence variety{

(f, p) ∈ C[x1, . . . , xn]≤d ×H : p ∈ C̃ritd(f)
}

onto the first factor. Since H ∼= CPn−1, this projection is Zariski-closed in the affine
space C[x1, . . . , xn]≤d by [42, Thm. 3.12]. For our purpose, the above implies the
following.

Proposition 6.17. Let G be a finite reflection group acting on V and d > 0.

(i) Assume that there is f0 ∈ R[V ]G≤d such that C̃ritd(f0) is 0-dimensional. Then
for any f ∈ R[V ]G≤d

VR(f) 6= ∅ ⇐⇒ VR(f) ∩HδG(d) 6= ∅.

(ii) Assume that there is a k-sparse f0 ∈ R[V ]G≤d such that C̃ritd(f0) is 0-dimensional.
Then for any k-sparse f ∈ R[V ]G≤d

VR(f) 6= ∅ ⇐⇒ VR(f) ∩HσG(k) 6= ∅.

Proof. By assumption, there is a hyperplane H ⊂ CPn for which f0 6∈ Y (d). There-
fore, Z := Y (d)∩R[V ]G≤d is nowhere dense in R[V ]G≤d and every polynomial outside Z
has only finitely many critical points onK. Let f ∈ R[V ]G≤d such that VR(f) 6= ∅. We
may assume that VR(f) ∩K 6= ∅ by replacing f(x) by f(‖p‖x) for any p ∈ VR(f).
Since Z is nowhere dense f is a limit of polynomials with only finitely many extreme
points on K and (i) follows from Proposition 6.16. The proof of (ii) is analogous.

In particular, this yields a second proof of Theorem 4.7 for types An and Bn.

Alternative proof of Theorem 4.7 for An and Bn. For An and Bn, a set of basic in-
variants can be chosen from among the power sums and, by Lemma 5.1, it suffices to
consider these particular basic invariants. Using (6.3), it is straightforward to verify
that for any d ≥ 1, the projective variety C̃ritd(sd) consists of only finitely many
points, which, with the help of Table 6.1, finishes the proof.

A similar strategy can be applied for the case ofD2n. However, for the exceptional
groups we were so far unable to find invariants of arbitrarily high degree such that
the associated projective critical locus is 0-dimensional.

6.3 Lie groups

In this section, we extend some of our results to polynomials invariant under the
action of a Lie group. More precisely, we consider the case of a real simple Lie group
G with the adjoint action on its Lie algebra g. For basic information on Lie groups
and Lie algebras, we refer the reader to [31].

We illustrate our results for the case G = SLn. Its Lie algebra sln is the vector
space of real n-by-n matrices of trace 0. The adjoint action of SLn on sln is by
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conjugation: g ∈ SLn acts on A ∈ sln by g · A := gAg−1. The following description
of its ring of invariants is well-known. We briefly recall the standard proof which
immediately suggests a connection to our treatment of reflection groups. For k ≥ 1
and A ∈ sln we define sk(A) := tr(Ak).

Theorem 6.18 ([35, Ch. 12.5.3]). For G = SLn we have

R[sln]G = R[s2, . . . , sn].

Moreover, the generators s2, . . . , sn are algebraically independent.

Proof. We write D ⊂ sln for the set of diagonalizable matrices and we denote by
λ(A) = (λ1, . . . , λn) the eigenvalues of A ∈ D. Then for any A ∈ D

sk(A) = sk(λ(A)) = λ1(A)k + λ2(A)k + · · ·+ λn(A)k

and s2, . . . , sn are simply the power sums restricted to the linear subspace ∆ ⊂ D
of diagonal matrices. This shows that s2, . . . , sn are algebraically independent.
Now for a polynomial f(X) ∈ R[sln] invariant under the action of SLn, the re-
striction to ∆ ∼= Rn−1 is a polynomial f(x) that is invariant under An−1. Hence
f(x) = F (s2(x), . . . , sn(x)) for some F ∈ R[y2, . . . , yn]. The polynomial f̃(X) =
F (s2(X), . . . , sn(X)) is invariant under SLn and agrees with f on D. Since D con-
tains a nonempty open set, f = f̃ as required.

For the special orthogonal group SOn, its Lie algebra son ⊂ sln is the vector space
of skew-symmetric n-by-n matrices on which SOn acts by conjugation. If n = 2k+1,
then the corresponding Weyl group is Bk and Dk if n = 2k. Hence R[so2k+1]

SO2k+1

is generated by s2(X), s4(X), . . . , s2k(X). For n = 2k, a minimal generating set is
given by s2(X), s4(X), ..., s2n−2(X) and the Pfaffian pf(X) :=

√
detX.

Analogous to the case of reflection groups, we call a G-invariant variety X ⊆ g k-
sparse ifX = VR(f1, . . . , fm) for some f1, . . . , fm ∈ R[π1, . . . , πk] The discriminant
locus D ⊂ g of the Lie group G are the points with nontrivial stabilizer. This is
exactly the orbit of the corresponding reflection arrangement Hn−1 ⊂ g under G.
Together with Theorem 6.18 and the result by Steinberg [76], this is a realG-invariant
hypersurface. This yields a stratification of g by defining Di to be the orbit of Hi,
which corresponds to the points for which the discriminant vanishes up to order n−i.
Hence, the results from the previous sections generalize to Lie groups. Theorem 4.7
yields the following.

Theorem 6.19. Let G ∈ {SLn, SOn : n ∈ N>0} and let X ⊆ g be G-invariant and
k-sparse. If X is nonempty, it intersects Dk.

For suitable Lie groups G, Theorem 6.19 gives a first relation between real vari-
eties invariant under the action of G and the discriminant locus and Conjecture 4.9
is reasonable for this setting. It would be very interesting to explore this connection
further.

6.4 Outlook: The complex case

In this final section, we will change the underlying field and work over the complex
numbers C. Let V be a finite-dimensional complex vector space and denote by U(V )
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the group of unitary transformations. A complex reflection on V is a nontrivial
unitary transformation which fixes a complex hyperplane pointwise. Analogously to
the real case, a finite subgroup of U(V ) is called complex reflection group if it is
generated by complex reflections. As before, we denote by H = H(G) the reflection
arrangement, that is the set of all complex hyperplanes which are fixed by some
reflection in G. Again, this arrangement induces a stratification of V with strata
Hi(G) being the union of all flats of dimension i in H.

Note that many features of complex reflection groups differ from the real case.
For any hyperplane H ∈ H, the orthogonal space H⊥ is isomorphic to C. Hence, a
complex reflection is not necessary of order two, but can for instance also rotate the
complex plane H⊥. Also, since complex hyperplanes can be thought of subspaces of
real codimension two, Hn−1 does not divide V into distinct connected regions.

Every linear transformation of Rn gives rise to a corresponding transformation
on the complex space Cn. In particular, every real reflection group G acting on Rn
trivially yields a corresponding complexified real reflection group. Of course,
not every complex reflection group is of this form. A complete classification of
irreducible complex reflection groups was given by Shephard and Todd [70]: There
exists a three-parameter infinite family G(m, p, n) and, additionally, 34 exceptional
groups. They moreover prove that Chevalley’s theorem (Theorem 4.4) also holds in
the complex case. That is, for every complex reflection group G acting on Cn, there
exist n algebraically independent basic invariants π1, . . . , πn such that C[x]G =
C[π1(x), . . . , πn(x)] an their degrees are uniquely determined up to permutation.
We can therefore also define k-sparse varieties as in the real case and the following
question is only natural.

Question 6.20. Let G be an essential irreducible complex reflection group acting on
V and let X ⊆ V be a nonempty k-sparse variety. Is it always true that X∩Hk 6= ∅?

Note that in the real case, we could, for convenience always assume that the
varieties were defined by only a single polynomial. Over the complex numbers this
is not the case. For any polynomial f ∈ C[x], its zero set V (f) ⊆ V is a variety of
complex codimension 1. In particular, it follows easily that if G is a reflection group
whose arrangement H(G) consists of N hyperplanes, then for any, not necessarily
invariant non-constant polynomial f ∈ C[x] of degree at most N−1, we have V (f)∩
Hn−1 6= ∅.

For a choice of basic invariants π1, . . . , πn, we consider again the orbit map
π : V → Rn defined by π(x) := (π1(x), . . . , π1(x)) (cf. Section 6.1.1). In contrast
to the real case, the fundamental theorem of algebra yields that π is surjective. The
image of Hn−1 under π is a complex hypersurface, which is easy to describe: For
every reflection hyperplane H ∈ H, consider a linear functional `H with kernel H
and denote by eH the order of the cyclic subgroup fixing H. For example, in the case
of complexified real reflection groups, we have eH = 2 for all H. The polynomial

∆̃(x) :=
∏
H∈H

`H(x)eH

is G-invariant and hence of the form

∆̃(x) = ∆(π1(x), . . . , πn(x))
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for a unique polynomial ∆, called the discriminant of G with respect to π1, . . . , πn.
The discriminant locus V (∆) = π(Hn−1) inherits a stratification from H, with
algebraic strata Si := π(Hi), whose defining equations are explicitly given in [64].
The following shows that, in the complex case, Question 6.20 can be translated
into a simple question regarding the geometry of the discriminant locus and its
stratification.

Figure 6.2: The real part of the discriminant locus for the non-essential group S3

with respect to elementary symmetric polynomials and power sums, respectively.

Lemma 6.21. Every non-empty k-sparse variety meets Hk if and only if for every
p ∈ Cn, the affine space Lk(q) := {q ∈ Cn : qi = pi for i ∈ [k]} intersects Sk.

Proof. It suffices to consider principal invariant varieties of the form

Xk(p) = {q ∈ V : πi(q) = πi(p) for i ∈ [k]}

for p ∈ V . But we have π(Xk(p)) = Lk(π(p)), which finishes the proof.

Using a deep result on discriminants given in [9], we can give a partial answer
to Question 6.20 for the case k = n − 1. A complex reflection group G is well-
generated if it can be generated by rk(G) reflections. By the considerations in
Section 4.1, complexified real groups are well-generated.

Theorem 6.22. Let G be a well-generated, essential and irreducible complex reflec-
tion group of rank n ≥ 1. Then every non-empty (n− 1)-sparse G-invariant variety
intersects Hn−1.

Proof. By [9, Thm 2.4], for any choice π1, . . . , πn, the discriminant ∆ ∈ C[y1, . . . , yn]
of G is monic in the last variable, that is, up to multiplication by a nonzero constant
we have

∆ = ynn + gn−1y
n−1
n + · · ·+ g1yn + g0,

where gi ∈ C[y1, . . . , yn−1] for 0 ≤ i ≤ n − 1. Hence, for every q ∈ Cn, the restric-
tion ∆|Ln−1(q) is a univariate non-constant polynomial, which, by the fundamental
theorem of algebra, yields a root p ∈ V (∆) ∩ Ln−1(q). Lemma 6.21 finishes the
proof.
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Theorem 6.22 is only a first step and for most cases, Question 6.20 remains open.
Surprisingly, even for the symmetric group, the answer is not known and all existing
proofs for the real case employ techniques which do not work over the complex
numbers.
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Zusammenfassung

Richard Stanley [73] assoziierte 1986 zu einer gegebenen endlichen partiell geordne-
ten Menge zwei geometrische Objekte, das Ordnungs- und das Kettenpolytop, de-
ren Geometrie die Kombinatorik der zugrunde liegenden partiellen Ordnung wider-
spiegelt. Im ersten Teil dieser Dissertation wird eine ähnliche Theorie für Doppel-
Posets, für endliche Mengen mit zwei Ordnungsstrukturen (nach Malvenuto und
Reutenauer [60]), entwickelt. Wir assoziieren zu jedem Doppel-Poset P ein Doppel-
Ordnungspolytop TO(P) und ein Doppel-Kettenpolytop TC(P).

Kapitel 1 behandelt Doppel-Ordnungspolytope. Wir zeigen, dass im Fall von
kompatiblen Doppel-Posets die Facetten von TO(P) genau alternierenden Ketten
in P entsprechen. Des Weiteren charakterisieren wir die 2-level-Polytope der Form
TO(P) und wir etablieren eine Verbindung zu Geissingers Bewertungs-Polytopen. In
Kapitel 2 betrachten wir die torischen Ideale von TO(P). Für kompatible Doppel-
Posets finden wir eine quadratische Gröbnerbasis und eine entsprechende unimodu-
lare reguläre Triangulierung von TO(P), sowie eine Beschreibung der kompletten
Seitenflächen-Struktur. Kapitel 3 behandelt TC(P). Wir arbeiten erst in der grö-
ßeren Klasse von Cayley-Summen von Anti-blocking-Polytopen und beschreiben die
Facetten und eine kanonische Unterteilung. Für den Spezialfall von TC(P) erhalten
wir eine unimodulare Triangulierung, eine kombinatorische Interpretation des Volu-
mens und, allgemeiner, des Ehrhart-Polynoms. Für kompatibles P definieren wir eine
Transfer-Abbildung, die die Triangulierungen und Ehrhart-Polynome von TO(P) und
TC(P) verbindet.

Die zentralen Objekte im zweiten Teil sind reelle Varietäten, die invariant un-
ter der Operation einer endlichen reellen Spiegelungsgruppe sind. Für den Spezial-
fall der symmetrischen Gruppe besagt Timoftes Grad-Prinzip [79], dass jede nicht-
leere Varietät, die mithilfe der ersten k elementarsymmetrischen Polynome definiert
werden kann, einen k-dimensionalen Unterraum des dazugehörigen Hyperebenen-
Arrangements schneidet. Unser Ziel ist, dieses Ergebnis auf beliebige Spiegelungs-
gruppen zu verallgemeinern.

In Kapitel 5 behandeln wir die unendlichen Familien An, Bn und Dn. Wir zeigen
in jedem der Fälle, dass jede nicht-leere Varietät, die von den ersten k nach Grad
geordneten basic invariants definiert wird, einen k-dimensionalen Unterraum des
assoziierten Arrangements schneidet und stellen die Vermutung auf, dass dies für
alle irreduziblen Spiegelungsgruppen gilt. In Kapitel 6 beweisen wir die Vermutung
im Fall k = n−1 für alle irreduziblen Spiegelungsgruppen und für beliebige k für H3

und F4. Zudem zeigen wir eine abgeschwächte Version der Vermutung. Wir stellen
auch eine Verbindung zu Lie-Gruppen und deren invarianten Varietäten her und
beweisen ein erstes Ergebnis für komplexe Spiegelungsgruppen.
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