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ABSTRACT
We consider the Koopman operator semigroup (𝐾𝑡)𝑡≥0 associatedwith stochastic differential equations of the form 𝑑𝑋𝑡 = 𝐴𝑋𝑡 𝑑𝑡 +
𝐵 𝑑𝑊𝑡 with constantmatrices𝐴 and𝐵 and Brownianmotion𝑊𝑡 . We prove that the reproducing kernel Hilbert spaceℍ𝐶 generated
by a Gaussian kernel with a positive definite covariance matrix 𝐶 is invariant under each Koopman operator 𝐾𝑡 if the matrices 𝐴,
𝐵, and 𝐶 satisfy the following Lyapunov-like matrix inequality: 𝐴𝐶2 + 𝐶2𝐴⊤ ≤ 2𝐵𝐵⊤. In this course, we prove a characterization
concerning the inclusionℍ𝐶1

⊂ ℍ𝐶2
of Gaussian RKHSs for two positive definite matrices 𝐶1 and 𝐶2. The question of whether the

sufficient Lyapunov-condition is also necessary is left as an open problem.

1 Introduction

The Koopman operator [1] of a (stochastic) dynamical system is
a linear operator, which is defined on a linear function space
of so-called observables. For deterministic systems, it is simply
defined as a composition operator with the flow 𝐹 of the system,
that is, (𝐾𝑡𝑓)(𝑥) = 𝑓(𝐹(𝑥, 𝑡)). For stochastic systems, (𝐾𝑡𝑓)(𝑥)

is defined as the conditional expectation of 𝑓(𝐹(⋅, 𝑡)), given
that the trajectory starts at 𝑥. Since the (generally unknown)
Koopman operator is linear and provides complete information
about the (expected) process behavior, it is very appealing to
approximate this operator using sample data in the fashion of
modern machine learning, see, for example, the monograph [2]
and the references therein.

One of themost popular methods for Koopman operator learning
is certainly Extended Dynamic Mode Decomposition (EDMD)

[3], a data-driven approach propagating a finite number of
predefined observable functions along the flow, which results
in a well-interpretable surrogate model for analysis, prediction,
and control. EDMD has been successfully applied in a number
of highly relevant applications such as molecular dynamics [4],
turbulent flows [5], neuroscience [6], or climate prediction [7],
just to name a few. Rigorous error analyses for EDMD have been
conducted in [8–11].

Since kernel methods play an important role in approximation
theory and machine learning, it is not surprising that there
exist kernel-based approaches for Koopman operator learning,
one of them being a variant of EDMD, called kernel EDMD
(kEDMD) [12, 13]. Kernel-based methods have been rigorously
analyzed in, for example, [14–17] and in [18] for deterministic
systems, where uniform error bounds have been provided. As it
turns out in the analysis, for providing error bounds on Koopman
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approximations in the kernel-based setting, it is highly beneficial
if the reproducing kernel Hilbert space (RKHS) generated by
the kernel at hand is invariant under the Koopman operator.
Therefore, an important task in kernel-based Koopman operator
learning is to figure out which kernels and which systems are a
good match in the sense that the generated RKHS is invariant
under the Koopman operator of the system.

In this article, we consider the invariance of Gaussian RKHSs
under the Koopman operator of dynamical systems driven by
a stochastic differential equation (SDE) of the form 𝑑𝑋𝑡 =
𝐴𝑋𝑡 𝑑𝑡 + 𝐵𝑑𝑊𝑡 with constant coefficientmatrices𝐴 and𝐵, where
(𝐴, 𝐵) is controllable and 𝐴 is Hurwitz. To be more precise,
we prove that the RKHS ℍ𝐶 generated by the Gaussian kernel
𝑘(𝑥, 𝑦) = exp(−‖𝐶−1(𝑥 − 𝑦)‖2) with a positive definite matrix 𝐶

is Koopman-invariant if the matrices 𝐴, 𝐵, and 𝐶 satisfy the
Lyapunov-like inequality 𝐴𝐶2 + 𝐶2𝐴⊤ ≤ 2𝐵𝐵⊤, see Theorem 2.1.
It is left openwhether this sufficient condition is also necessary. In
the course of proving Theorem 2.1, we also prove that ℍ𝐶1

⊂ ℍ𝐶2

holds for two positive definite matrices 𝐶1 and 𝐶2 if and only if
𝐶2

1 ≥ 𝐶2
2 , see Proposition 3.3. This fact is well known [19] for the

scalar case, where𝐶1, 𝐶2 ∈ (0,∞), but—to the best of the authors’
knowledge—seems to be unknown in the general matrix case.

The paper is arranged as follows. In the next section, we briefly
introduce the reader to the Koopman operator of SDEs and
present the main result, Theorem 2.1. In Section 3, we consider
Gaussian kernels and their corresponding RKHSs and make use
of the auxiliary results therein in Section 4, which is dedicated to
the proof of Theorem 2.1.

2 Setting andMain Result

Recall that a pair of matrices (𝐴, 𝐵)with𝐴 ∈ ℝ𝑑×𝑑 and 𝐵 ∈ ℝ𝑑×𝑚,
𝑚 ≤ 𝑑, is called controllable if (𝐵, 𝐴𝐵,… ,𝐴𝑑−1𝐵) has full rank
𝑑. The notion is due to the fact that a controlled system �̇�(𝑡) =
𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) can be steered from any state 𝑥(0) = 𝑥0 in any time
𝑡 > 0 to any state 𝑧 ∈ ℝ𝑑 by a control function 𝑢 if and only if
(𝐴, 𝐵) is controllable. Also recall that a square matrix 𝐴 is called
Hurwitz if the real parts of the eigenvalues of 𝐴 are all negative.
This implies that ‖𝑒𝐴𝑡‖ ≤ 𝑀𝑒−𝜔𝑡 for all 𝑡 ≥ 0with some constants
𝑀,𝜔 > 0.

Let us consider a 𝑑-dimensional SDE with constant matrix
coefficients

𝑑𝑋𝑡 = 𝐴𝑋𝑡 𝑑𝑡 + 𝐵 𝑑𝑊𝑡, (1)

where 𝑊𝑡 is 𝑚-dimensional Brownian motion, 𝑚 ≤ 𝑑, and 𝐴 ∈

ℝ𝑑×𝑑, 𝐵 ∈ ℝ𝑑×𝑚. Here, we assume that (𝐴, 𝐵) is controllable and
that𝐴 isHurwitz. The solution process𝑋𝑡 emerging from the SDE
(1) is also called a 𝑑-dimensional Ornstein–Uhlenbeck process. It
has the unique stationary distribution

𝑑𝜇(𝑥) = (2𝜋)−𝑑∕2(det Σ)−1∕2 exp(− 1

2
𝑥⊤Σ−1𝑥) 𝑑𝑥,

where Σ ∈ ℝ𝑑×𝑑 is the positive definite matrix

Σ = ∫
∞

0

𝑒𝐴𝑠𝐵𝐵⊤𝑒𝐴⊤𝑠 𝑑𝑠.

Note that the limit Σ exists since 𝐴 is Hurwitz and that Σ is
positive definite thanks to controllability of (𝐴, 𝐵). In linear
control theory, the matrix Σ is called the controllability Gramian
and is a solution of the matrix equation 𝐴𝑋 + 𝑋𝐴⊤ = −𝐵𝐵⊤.

The solution process 𝑋𝑡 is a time-homogeneous Markov process.
Recall that every such process has a so-called Markov transition
kernel 𝜌𝑡(𝑥, 𝐹) = ℙ(𝑋𝑡 ∈ 𝐹 |𝑋0 = 𝑥), where 𝑥 ∈ ℝ𝑑 and 𝐹 is a
Borel set. Here, the transition kernel is absolutely continuous
w.r.t. Lebesgue measure, and its density is given by the following
(see [20]):

𝜌𝑡(𝑥, 𝑑𝑦) = (2𝜋)−𝑑∕2(det Σ(𝑡))−1∕2

× exp
(
− 1

2
(𝑦 − 𝑒𝐴𝑡𝑥)⊤Σ(𝑡)−1(𝑦 − 𝑒𝐴𝑡𝑥)

)
𝑑𝑦,

where

Σ(𝑡) = ∫
𝑡

0

𝑒𝐴𝑠𝐵𝐵⊤𝑒𝐴⊤𝑠 𝑑𝑠.

Again, Σ(𝑡) is positive definite as (𝐴, 𝐵) is controllable.

The Koopman operator 𝐾𝑡 ∶ 𝐿2(𝜇) → 𝐿2(𝜇) at time 𝑡 ≥ 0 corre-
sponding to the SDE (1) is defined by the following:

(𝐾𝑡𝑓)(𝑥) ∶= 𝔼[𝑓(𝑋𝑡) |𝑋0 = 𝑥] = ∫
ℝ𝑑

𝑓(𝑦) 𝜌𝑡(𝑥, 𝑑𝑦), 𝑓 ∈ 𝐿2(𝜇).

(2)

It is well known (see, e.g., [14, Proposition 2.8]) that (𝐾𝑡)𝑡≥0 forms
a strongly continuous semigroup of contractions on 𝐿2(𝜇).

Here, we consider Gaussian kernels onℝ𝑑 with a positive definite
covariance matrix 𝐶 ∈ ℝ𝑑×𝑑, that is,

𝑘𝐶(𝑥, 𝑦) = exp
[
−(𝑥 − 𝑦)⊤𝐶−2(𝑥 − 𝑦)

]
= exp

[
−‖𝐶−1(𝑥 − 𝑦)‖2

]
.

Note that for 𝐶 = 𝜎 ⋅ 𝐼𝑑, 𝜎 > 0, we obtain the usual RBF kernel
𝑘𝜎(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖2∕𝜎2). By ℍ𝐶 , we denote the RKHS gen-
erated by the kernel 𝑘𝐶 . The Hilbert space norm on ℍ𝐶 will be
denoted by ‖ ⋅ ‖𝐶 . For 𝜎 > 0, we simplywriteℍ𝜎 and ‖ ⋅ ‖𝜎 instead
of ℍ𝜎𝐼 and ‖ ⋅ ‖𝜎𝐼 , respectively.

The main result of this note reads as follows.

Theorem 2.1. Let 𝐶 ∈ ℝ𝑑×𝑑 be a symmetric positive definite
matrix such that

1

2

(
𝐴𝐶2 + 𝐶2𝐴⊤

) ≤ 𝐵𝐵⊤. (3)

Then the RKHS ℍ𝐶 is invariant under each Koopman operator 𝐾𝑡 ,
𝑡 ≥ 0, associated with the SDE (1), and we have the following:

‖𝐾𝑡𝑓‖𝐶 ≤ 𝑒𝑡⋅Tr(−𝐴)∕2 ⋅ ‖𝑓‖𝐶, 𝑓 ∈ ℍ𝐶.

Let us briefly discuss the Lyapunov-like condition (3) on 𝐶.
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Remark 2.2.

a. Since 𝐴 is assumed to be Hurwitz, for every positive definite
matrix 𝑄 ∈ ℝ𝑑×𝑑, there exists a positive definite matrix 𝑃 ∈

ℝ𝑑×𝑑 such that 𝐴𝑃 + 𝑃𝐴⊤ = −𝑄. Hence, the set of positive
definite matrices 𝐶 satisfying the matrix inequality (3) is not
empty. For example, 𝐶 = 𝛼Σ1∕2 is a solution for every 𝛼 > 0.

b. If 𝑚 = 𝑑 and 𝐵 is invertible, then for any given positive defi-
nite matrix 𝐶, there exists 𝜏 > 0 such that 𝜏𝐶 satisfies Equa-
tion (3). Indeed, if this was not the case, there would exist
a sequence (𝑥𝑛) ⊂ ℝ𝑑 such that 1

𝑛
⟨(𝐴𝐶2 + 𝐶2𝐴⊤)𝑥𝑛, 𝑥𝑛⟩ >‖𝐵⊤𝑥𝑛‖2. It is no restriction to assume ‖𝑥𝑛‖ = 1 and 𝑥𝑛 → 𝑥

as 𝑛 → ∞ for some 𝑥 ∈ ℝ𝑑, ‖𝑥‖ = 1. But then, the above
implies 𝐵⊤𝑥 = 0 and hence 𝑥 = 0, a contradiction.

c. It is not clear whether the condition (3) is also necessary for
Koopman invariance of ℍ𝐶 . We discuss this at the end of
Section 4.

Corollary 2.3. Let 𝜎 > 0 and assume that 1

2
(𝐴 + 𝐴⊤) ≤ 1

𝜎2
𝐵𝐵⊤

(e.g., if𝐴 is dissipative1). Then the RKHSℍ𝜎 is invariant under each
Koopman operator 𝐾𝑡 , 𝑡 ≥ 0, associated with the SDE (1), and we
have the following:

‖𝐾𝑡𝑓‖𝜎 ≤ 𝑒𝑡⋅Tr(−𝐴)∕2‖𝑓‖𝜎, 𝑓 ∈ ℍ𝜎.

We conclude this section by tying up some notations. First of
all, we agree on the convention that a positive definite kernel
is always symmetric, that is, 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥), and real-valued.
Also, the term “positive definite” only refers to real, symmetric
matrices. Let𝑋 be a set. For 𝑥 ∈ 𝑋 and a positive definite kernel 𝑘
on𝑋, set 𝑘𝑥(𝑦) ∶= 𝑘(𝑥, 𝑦), 𝑦 ∈ 𝑋. That is, 𝑥 ↦ 𝑘𝑥 is the canonical
feature map of the kernel 𝑘. For two positive definite kernels 𝑘1

and 𝑘2 on 𝑋, we write 𝑘1 ⪯ 𝑘2 if

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘1(𝑥𝑖, 𝑥𝑗) ≤
𝑛∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘2(𝑥𝑖, 𝑥𝑗)

for any choice of 𝑛 ∈ ℕ, 𝛼𝑗 ∈ ℝ, and 𝑥𝑗 ∈ 𝑋, 𝑗 = 1, … , 𝑛. We also

write 𝑉
𝑐

==→ 𝑊 (continuous embedding) for two normed vector
spaces 𝑉 and 𝑊 to indicate that 𝑉 ⊂ 𝑊 and the identity map
from 𝑉 to𝑊 is continuous, that is, if there exists 𝐾 > 0 such that‖𝑣‖𝑊 ≤ 𝐾‖𝑣‖𝑉 for all 𝑣 ∈ 𝑉.

3 Some Properties of Gaussian Kernels

In this section, we collect the statements onGaussian kernels that
are utilized in the proof of Theorem 2.1. The next lemma shows
thatℍ𝐶 can be regarded as a dense subspace of 𝐿2(𝜇) and that the
ℍ𝐶-norm is stronger than the 𝐿2(𝜇)-norm on ℍ𝐶 .

Lemma 3.1. Let 𝐶 ∈ ℝ𝑑×𝑑 be positive definite. Then the RKHS
ℍ𝐶 is densely and continuously embedded in 𝐿2(𝜇).

Proof. The fact thatℍ𝐶

𝑐

==→ 𝐿2(𝜇) is the first part of [21, Theorem
4.26]. Moreover, if 𝑓 ∈ ℍ𝐶 and 𝑓 = 0 𝜇-a.e., then 𝑓(𝑥) = 0 for

1 Recall that a matrix 𝐴 ∈ ℝ𝑑×𝑑 is called dissipative if 𝐴 + 𝐴⊤ ≤ 0.

all 𝑥 ∈ ℝ𝑑 as 𝑓 is continuous and the density 𝑑𝜇∕𝑑𝑥 is positive.
Therefore, we may regard ℍ𝐶 as a subspace of 𝐿2(𝜇). Concerning
the density of ℍ𝐶 in 𝐿2(𝜇), we have to show that the integral
operator 𝐾 ∶ 𝐿2(𝜇) → ℍ𝐶 , defined by the following:

𝐾𝑓(𝑥) = ∫
ℝ𝑑

𝑘𝐶(𝑥, 𝑦)𝑓(𝑦) 𝑑𝜇(𝑦), 𝑓 ∈ 𝐿2(𝜇),

has trivial kernel in𝐿2(𝜇), see [21, Theorem4.26]. So, let𝑓 ∈ 𝐿2(𝜇)

such that 𝐾𝑓 = 0, that is,

(𝜙 ∗ 𝜓)(𝑥) = ∫
ℝ𝑑

exp(−‖𝐶−1(𝑥 − 𝑦)‖2)
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=𝜙(𝑥−𝑦)

⋅ 𝑓(𝑦) exp(−‖𝑃𝑦‖2)
⏟ ⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

=𝜓(𝑦)

𝑑𝑦 = 0, 𝑥 ∈ ℝ𝑑,

where 𝑃 = (2Σ)−1∕2. Applying the Fourier transform to 𝜙 ∗ 𝜓, we
obtain 𝜙(𝜔) ⋅ 𝜓(𝜔) = 0 for a.e. 𝜔 ∈ ℝ𝑑. But 𝜙(𝜔) > 0 for all 𝜔 ∈

ℝ𝑑, hence 𝜓 = 0 and thus 𝜓 = 0. □

The following lemma is well-known. We will apply it in the proof
of Proposition 3.3 below, which can be seen as a generalization of
Lemma 3.2 to the multidimensional case.

Lemma 3.2. For 𝜎 > 0, consider the Gaussian kernel 𝑘𝜎 onℝ. If
𝜎1 ≥ 𝜎2 > 0, then ℍ𝜎1

𝑐

==→ ℍ𝜎2
with ‖𝑓‖𝜎2

≤ (
𝜎1

𝜎2

)1∕2‖𝑓‖𝜎1
for 𝑓 ∈

ℍ𝜎1
, and 𝑘𝜎1 ⪯

𝜎1

𝜎2

𝑘𝜎2 .

Proof. The first part is [19, Corollary 6], and the second follows
from Aronszajn’s inclusion theorem, Theorem A1. □

Proposition 3.3. Let 𝐶1, 𝐶2 ∈ ℝ𝑑×𝑑 be positive definite. Then
ℍ𝐶1

𝑐

==→ ℍ𝐶2
if and only if 𝐶2

1 ≥ 𝐶2
2 . In this case, we have the

following:

‖𝑓‖𝐶2
≤ (

det 𝐶1

det 𝐶2

)1∕2‖𝑓‖𝐶1
, 𝑓 ∈ ℍ𝐶1

,

and 𝑘𝐶1 ⪯
det 𝐶1

det 𝐶2

⋅ 𝑘𝐶2 .

Proof. The proof of Proposition 3.3 is divided into three parts.

1. Denote by 𝐼 = 𝐼𝑑 the 𝑑 × 𝑑-identitymatrix.We first prove that
for a positive diagonal matrix 𝐷 ∈ ℝ𝑑×𝑑, we have ℍ𝐷

𝑐

==→ ℍ𝐼

if and only if𝐷 ≥ 𝐼. For this, let𝐷 = diag(𝜎1, … , 𝜎𝑑)with 𝜎𝑖 >

0 for all 𝑖 = 1, … , 𝑑. Observe that for 𝑥, 𝑦 ∈ ℝ𝑑, we have the
following (for the tensor product of kernels see (A1)):

𝑘𝐷(𝑥, 𝑦) = exp
(
−(𝑥 − 𝑦)⊤𝐷−2(𝑥 − 𝑦)

)
= exp

(
−

𝑑∑
𝑘=1

𝜎−2
𝑘

(𝑥𝑘 − 𝑦𝑘)
2

)

=
𝑑∏

𝑘=1

exp

[
−

(𝑥𝑘 − 𝑦𝑘)
2

𝜎2
𝑘

]

=
𝑑∏

𝑘=1

𝑘𝜎𝑘 (𝑥𝑘, 𝑦𝑘) = (𝑘𝜎1 ⊗ ⋯ ⊗ 𝑘𝜎𝑑 )(𝑥, 𝑦),
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where the 𝑥𝑘 and 𝑦𝑘 are the Cartesian coordinates of 𝑥 and
𝑦, respectively.
Hence, if 𝐷 ≥ 𝐼 (i.e., 𝜎𝑖 ≥ 1 for all 𝑖 = 1, … , 𝑑), Lemmas A2
and 3.2 imply

𝑘𝐷 = 𝑘𝜎1 ⊗ ⋯ ⊗ 𝑘𝜎𝑑 ⪯ 𝜎1𝑘
1 ⊗ ⋯ ⊗ 𝜎𝑑𝑘

1

= 𝜎1 …𝜎𝑑 ⋅ 𝑘𝐼 = det 𝐷 ⋅ 𝑘𝐼,

and Aronszajn’s inclusion theorem, Theorem A1, implies
ℍ𝐷

𝑐

==→ ℍ𝐼 .
Conversely, let ℍ𝐷

𝑐

==→ ℍ𝐼 and suppose that 𝜎1 < 1. By Theo-
rem A1, we have 𝑘𝐷 ⪯ 𝛼𝑘𝐼 with some 𝛼 > 0. By setting 𝑥𝑘 =
𝑦𝑘 = 0 for 𝑘 = 2, … , 𝑑, we see that 𝑘𝐷(𝑥, 𝑦) = 𝑘𝜎1 (𝑥1, 𝑦1) and
𝑘𝐼(𝑥, 𝑦) = 𝑘1(𝑥1, 𝑦1). Hence, we have 𝑘𝜎1 ⪯ 𝛼𝑘1. On the other
hand, 1 > 𝜎1 and Lemma 3.2 imply 𝑘1 ⪯ 𝜎−1

1 𝑘𝜎1 . This implies
ℍ𝜎1𝐼

= ℍ𝐼 , which contradicts [19, Corollary 7ii)].

2. Next, we prove that for a positive definite matrix 𝐶 ∈ ℝ𝑑×𝑑,
we haveℍ𝐶

𝑐

==→ ℍ𝐼 if and only if 𝐶 ≥ 𝐼. For this, let𝑈 ∈ ℝ𝑑×𝑑

be an orthogonalmatrix such that𝐶 = 𝑈⊤𝐷𝑈with a diagonal
matrix 𝐷 ∈ ℝ𝑑×𝑑. Then 𝑘𝐶 = 𝑘𝐷◦𝑈 and 𝑘𝐼 = 𝑘𝐼◦𝑈. If 𝐶 ≥ 𝐼,
then

𝑘𝐶 = 𝑘𝐷◦𝑈 ⪯ det𝐷 ⋅ 𝑘𝐼◦𝑈 = det 𝐶 ⋅ 𝑘𝐼.

Conversely, if ℍ𝐶

𝑐

==→ ℍ𝐼 , then 𝑘𝐶 ⪯ 𝛼𝑘𝐼 with some 𝛼 > 0,
which implies 𝑘𝐷 ⪯ 𝛼𝑘𝐼 and hence𝐷 ≥ 𝐼, which is equivalent
to 𝐶 ≥ 𝐼.

3. Finally, let 𝐶1, 𝐶2 ∈ ℝ𝑑×𝑑 be arbitrary symmetric positive
definite matrices. Note that 𝐶2

1 ≥ 𝐶2
2 is equivalent to 𝐶 ∶=

(𝐶−1
2 𝐶2

1𝐶
−1
2 )1∕2 ≥ 𝐼. Furthermore, note that

𝑘𝐶(𝑥, 𝑦) = 𝑘𝐶1 (𝐶2𝑥, 𝐶2𝑦) and

𝑘𝐼(𝑥, 𝑦) = 𝑘𝐶2 (𝐶2𝑥, 𝐶2𝑦), 𝑥, 𝑦 ∈ ℝ𝑑. (4)

Therefore, if 𝐶2
1 ≥ 𝐶2

2 , by the second part of the proof,

𝑘𝐶1 = 𝑘𝐶◦𝐶−1
2 ⪯ det 𝐶 ⋅ (𝑘1◦𝐶−1

2 ) = det 𝐶1

det 𝐶2

⋅ 𝑘𝐶2 ,

which yields ℍ𝐶1

𝑐

==→ ℍ𝐶2
. Conversely, if ℍ𝐶1

𝑐

==→ ℍ𝐶2
, then

there exists 𝛼 > 0 such that 𝑘𝐶1 ⪯ 𝛼𝑘𝐶2 . In view of Equation
(4), this gives 𝑘𝐶◦𝐶−1

2 = 𝑘𝐶1 ⪯ 𝛼𝑘𝐶2 = 𝛼𝑘𝐼◦𝐶−1
2 and hence

𝑘𝐶 ⪯ 𝛼𝑘𝐼 . By Part 2, this implies 𝐶 ≥ 𝐼. □

Remark 3.4. Note that𝐶1 ≥ 𝐶2 does in general not imply𝐶2
1 ≥ 𝐶2

2

for symmetric positive definite matrices 𝐶1 and 𝐶2. On the other
hand 𝐶1 ≥ 𝐶2 implies 𝐶

1∕2

1 ≥ 𝐶
1∕2

2 and 𝐶−1
1 ≤ 𝐶−1

2 .

We conclude this section with the following lemma.

Lemma 3.5. Let 𝐶1, 𝐶2 ∈ ℝ𝑑×𝑑 be positive definite and 𝑧, 𝑤 ∈

ℝ𝑑 . Then,

∫
ℝ𝑑

𝑘
𝐶1
𝑧 (𝑦) ⋅ 𝑘

𝐶2
𝑤 (𝑦) 𝑑𝑦 = 𝜋𝑑∕2

det(𝐶−2
1 + 𝐶−2

2 )1∕2
⋅ 𝑘𝐶(𝑧, 𝑤),

where 𝐶 = (𝐶2
1 + 𝐶2

2)
1∕2.

Proof. Let 𝑀 ∶= (𝐶−2
1 + 𝐶−2

2 )1∕2. We have 𝑘
𝐶1
𝑧 (𝑦)𝑘

𝐶2
𝑤 (𝑦) = 𝑒−𝐿(𝑦),

where

𝐿(𝑦) = (𝑦 − 𝑧)⊤𝐶−2
1 (𝑦 − 𝑧) + (𝑦 − 𝑤)⊤𝐶−2

2 (𝑦 − 𝑤)

= 𝑦⊤(𝐶−2
1 + 𝐶−2

2 )𝑦 − 2
(
𝐶−2

1 𝑧 + 𝐶−2
2 𝑤

)⊤
𝑦 + 𝑧⊤𝐶−2

1 𝑧 + 𝑤⊤𝐶−2
2 𝑤

= ‖𝑀𝑦‖2 − 2
⟨
𝑀−1

(
𝐶−2

1 𝑧 + 𝐶−2
2 𝑤

)
,𝑀𝑦

⟩
+ ‖𝐶−1

1 𝑧‖2 + ‖𝐶−1
2 𝑤‖2

= ‖‖‖𝑀𝑦 − 𝑀−1(𝐶−2
1 𝑧 + 𝐶−2

2 𝑤)
‖‖‖2

− 𝐾(𝑧, 𝑤),

where

𝐾(𝑧, 𝑤) = ‖‖‖𝑀−1(𝐶−2
1 𝑧 + 𝐶−2

2 𝑤)
‖‖‖2

− ‖𝐶−1
1 𝑧‖2 − ‖𝐶−1

2 𝑤‖2

=
⟨
(𝐶−2

1 + 𝐶−2
2 )−1(𝐶−2

1 𝑧 + 𝐶−2
2 𝑤), (𝐶−2

1 𝑧 + 𝐶−2
2 𝑤)

⟩
− ‖𝐶−1

1 𝑧‖2 − ‖𝐶−1
2 𝑤‖2

=
⟨
𝑧 + 𝑀−2(𝐶−2

2 𝑤 − 𝐶−2
2 𝑧), 𝐶−2

1 𝑧 + 𝐶−2
2 𝑤

⟩
− ‖𝐶−1

1 𝑧‖2 − ‖𝐶−1
2 𝑤‖2

= ⟨𝑧, 𝐶−2
2 𝑤⟩ + ⟨

𝐶−2
2 (𝑤 − 𝑧), (𝐶−2

1 + 𝐶−2
2 )−1(𝐶−2

1 𝑧 + 𝐶−2
2 𝑤)

⟩
− ‖𝐶−1

2 𝑤‖2

= ⟨𝑧, 𝐶−2
2 𝑤⟩ + ⟨

𝐶−2
2 (𝑤 − 𝑧), 𝑤 + 𝑀−2(𝐶−2

1 𝑧 − 𝐶−2
1 𝑤)

⟩
− ‖𝐶−1

2 𝑤‖2

=
⟨
𝐶−2

2 (𝑤 − 𝑧),𝑀−2𝐶−2
1 (𝑧 − 𝑤)

⟩
=
⟨
(𝐶2

2𝑀
2𝐶2

1)
−1(𝑤 − 𝑧), (𝑧 − 𝑤)

⟩
= −⟨(𝐶2

1 + 𝐶2
2)

−1(𝑧 − 𝑤), (𝑧 − 𝑤)
⟩

= −(𝑧 − 𝑤)⊤𝐶−2(𝑧 − 𝑤).

Thus, we obtain the following:

∫
ℝ𝑑

𝑘
𝐶1
𝑧 (𝑦) ⋅ 𝑘

𝐶2
𝑤 (𝑦) 𝑑𝑦

= 𝑒𝐾(𝑧,𝑤) ∫
ℝ𝑑

exp(−‖𝑀𝑦 − 𝑀−1(𝐶−2
1 𝑧 + 𝐶−2

2 𝑤)‖2) 𝑑𝑦

= 𝑘𝐶(𝑧, 𝑤) ⋅
𝜋𝑑∕2

det𝑀
,

and the lemma is proved. □

4 Proof of Theorem 1.1

We first prove the following proposition on the action of the
Koopman operator of Equation (1) on ℍ𝐶 .

Proposition 4.1. Let 𝑡 ≥ 0, let 𝐶 ∈ ℝ𝑑×𝑑 be symmetric positive
definite, and define the following:

𝐶𝑡 =
[
𝑒−𝐴𝑡(𝐶2 + 2Σ(𝑡))𝑒−𝐴⊤𝑡

]1∕2

and 𝜏𝑡 =
det 𝐶

(det(𝐶2 + 2Σ(𝑡)))1∕2
.

(5)
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Then the Koopman operator 𝐾𝑡 , associated with the SDE (1) and
defined in Equation (2), maps ℍ𝐶 boundedly into ℍ𝐶𝑡

with norm
not exceeding 𝜏

1∕2
𝑡 .

Proof. Let 𝑧 ∈ ℝ𝑑. By Lemma 3.5, we have the following:

(𝐾𝑡𝑘𝐶
𝑧 )(𝑥) = (2𝜋)−𝑑∕2(det Σ(𝑡))−1∕2

× ∫
ℝ𝑑

𝑘𝐶
𝑧 (𝑦) exp

(
− 1

2
(𝑦 − 𝑒𝐴𝑡𝑥)Σ(𝑡)−1(𝑦 − 𝑒𝐴𝑡𝑥)

)
𝑑𝑦

= (2𝜋)−𝑑∕2(det Σ(𝑡))−1∕2 ∫
ℝ𝑑

𝑘𝐶
𝑧 (𝑦)𝑘

(2Σ(𝑡))1∕2

𝑒𝐴𝑡𝑥
(𝑦) 𝑑𝑦

= (2𝜋)−𝑑∕2(det Σ(𝑡))−1∕2

× 𝜋𝑑∕2

det(𝐶−2 + (2Σ(𝑡))−1)1∕2
𝑘(𝐶2+2Σ(𝑡))1∕2 (𝑧, 𝑒𝐴𝑡𝑥)

= (det Σ(𝑡))−1∕2

det(2𝐶−2 + Σ(𝑡)−1)1∕2
⋅ 𝑘

𝐶𝑡

𝑒−𝐴𝑡𝑧
(𝑥) = 𝜏𝑡 ⋅ 𝑘

𝐶𝑡

𝑒−𝐴𝑡𝑧
(𝑥),

hence, 𝐾𝑡𝑘𝐶
𝑧 = 𝜏𝑡 ⋅ 𝑘

𝐶𝑡

𝑒−𝐴𝑡𝑧
∈ ℍ𝐶𝑡

. Therefore, if 𝑓 =
∑𝑛

𝑗=1
𝛼𝑗𝑘

𝐶
𝑥𝑗
with

𝛼𝑗 ∈ ℝ and 𝑥𝑗 ∈ ℝ𝑑 (𝑗 = 1, … , 𝑛), we obtain the following:

‖𝐾𝑡𝑓‖2
𝐶𝑡

=
‖‖‖‖‖

𝑛∑
𝑗=1

𝛼𝑗𝐾
𝑡𝑘𝐶

𝑥𝑗

‖‖‖‖‖
2

𝐶𝑡

= 𝜏2
𝑡

‖‖‖‖‖
𝑛∑

𝑗=1

𝛼𝑗𝑘
𝐶𝑡

𝑒−𝐴𝑡𝑥𝑗

‖‖‖‖‖
2

𝐶𝑡

= 𝜏2
𝑡

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
𝐶𝑡 (𝑒−𝐴𝑡𝑥𝑖, 𝑒

−𝐴𝑡𝑥𝑗)

= 𝜏2
𝑡

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
(𝐶2+2Σ(𝑡))1∕2 (𝑥𝑖, 𝑥𝑗) ≤ 𝜏2

𝑡

⋅
det(𝐶2 + 2Σ(𝑡))1∕2

det 𝐶

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
𝐶(𝑥𝑖, 𝑥𝑗) = 𝜏𝑡‖𝑓‖2

𝐶,

where the inequality is due to Proposition 3.3.

This shows that 𝐾𝑡 maps ℍ0,𝐶 = span{𝑘𝐶
𝑥 ∶ 𝑥 ∈ ℝ} ⊂ ℍ𝐶 bound-

edly into ℍ𝐶𝑡
. Since ℍ0,𝐶 is dense in ℍ𝐶 , it follows that 𝐾𝑡|ℍ0,𝐶

extends to a bounded operator 𝑇 ∶ ℍ𝐶 → ℍ𝐶𝑡
. In order to see

that 𝑇𝑓 = 𝐾𝑡𝑓 for 𝑓 ∈ ℍ𝐶 , let (𝑓𝑛) ⊂ ℍ0,𝐶 such that 𝑓𝑛 → 𝑓 in

ℍ𝐶 . Then 𝐾𝑡𝑓𝑛 = 𝑇𝑓𝑛 → 𝑇𝑓 in ℍ𝐶𝑡
. Since ℍ𝐶

𝑐

==→ 𝐿2(𝜇), we have
𝑓𝑛 → 𝑓 in 𝐿2(𝜇) and thus𝐾𝑡𝑓𝑛 → 𝐾𝑡𝑓 in 𝐿2(𝜇). Also,𝐾𝑡𝑓𝑛 → 𝑇𝑓

in 𝐿2(𝜇). Hence, 𝐾𝑡𝑓 = 𝑇𝑓 𝜇-a.e. on ℝ𝑑. But as both 𝐾𝑡𝑓 and
𝑇𝑓 are continuous and 𝜇 is absolutely continuous w.r.t. Lebesgue
measure with a positive density, we conclude that 𝐾𝑡𝑓 = 𝑇𝑓 ∈

ℍ𝐶 . □

We are now in the position to prove the main result of this note—
that the RKHSℍ𝐶 is invariant under the Koopman operator of the
SDE (1) if the Lyapunov-like condition (3) on the interplay of the
matrices 𝐴, 𝐵, and 𝐶 is satisfied.

Proof of Theorem 2.1. Let 𝐶𝑡 and 𝜏𝑡 be defined as in Proposi-
tion 4.1. We prove that 𝐶2

𝑡 ≥ 𝐶2 for all 𝑡 ≥ 0 if any only if Equation
(3) is satisfied. For 𝑥 ∈ ℝ𝑑 and 𝑡 ≥ 0, we have the following:

𝑓𝑥(𝑡) ∶= ⟨𝐶2
𝑡 𝑥, 𝑥⟩ = ⟨𝑒−𝐴𝑡(𝐶2 + 2Σ(𝑡))𝑒−𝐴⊤𝑡𝑥, 𝑥⟩

= ‖𝐶𝑒−𝐴⊤𝑡𝑥‖2 + 2⟨𝑒−𝐴𝑡Σ(𝑡)𝑒−𝐴⊤𝑡𝑥, 𝑥⟩
= ‖𝐶𝑒−𝐴⊤𝑡𝑥‖2 + 2

⟨(
∫

𝑡

0

𝑒−𝐴𝑠𝐵𝐵⊤𝑒−𝐴⊤𝑠 𝑑𝑠

)
𝑥, 𝑥

⟩

= ‖𝐶𝑒−𝐴⊤𝑡𝑥‖2 + 2∫
𝑡

0

‖‖‖𝐵⊤𝑒−𝐴⊤𝑠𝑥
‖‖‖2

𝑑𝑠.

Moreover,

�̇�𝑥(𝑡) =
⟨
𝐶𝑒−𝐴⊤𝑡𝑥,

𝑑

𝑑𝑡
𝐶𝑒−𝐴⊤𝑡𝑥

⟩
+
⟨ 𝑑

𝑑𝑡
𝐶𝑒−𝐴⊤𝑡𝑥, 𝐶𝑒−𝐴⊤𝑡𝑥

⟩
+ 2

‖‖‖𝐵⊤𝑒−𝐴⊤𝑡𝑥
‖‖‖2

= −
⟨
𝐴𝐶2𝑒−𝐴⊤𝑡𝑥, 𝑒−𝐴⊤𝑡𝑥

⟩
−
⟨
𝐶2𝐴⊤𝑒−𝐴⊤𝑡𝑥, 𝑒−𝐴⊤𝑡𝑥

⟩
+ 2

‖‖‖𝐵⊤𝑒−𝐴⊤𝑡𝑥
‖‖‖2

=
⟨[

2𝐵𝐵⊤ − (𝐴𝐶2 + 𝐶2𝐴⊤)
]
𝑒−𝐴⊤𝑡𝑥, 𝑒−𝐴⊤𝑡𝑥

⟩
.

Note that 𝑓𝑥(0) = ‖𝐶𝑥‖2. Hence, if Equation (3) holds, we have
�̇�𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 0 and all 𝑥 ∈ ℝ𝑑, which yields 𝐶2

𝑡 ≥ 𝐶2 for all
𝑡 ≥ 0. Conversely, if 𝐶2

𝑡 ≥ 𝐶2 for all 𝑡 ≥ 0, that is, 𝑓𝑥(𝑡) ≥ 𝑓𝑥(0) for
all 𝑥 ∈ ℝ𝑑 and all 𝑡 ≥ 0, then �̇�𝑥(0) ≥ 0 for all 𝑥 ∈ ℝ𝑑, which is
Equation (3).

We may thus apply Proposition 3.3 to conclude that ℍ𝐶𝑡

𝑐

==→ ℍ𝐶

with ‖𝑓‖2
𝐶 ≤ (

det 𝐶𝑡

det 𝐶
)‖𝑓‖2

𝐶𝑡
for 𝑓 ∈ ℍ𝐶𝑡

and all 𝑡 ≥ 0. Thus,

‖𝐾𝑡𝑓‖2
𝐶 ≤ det 𝐶𝑡

det 𝐶
‖𝐾𝑡𝑓‖2

𝐶𝑡
≤ 𝜏𝑡

det 𝐶𝑡

det 𝐶
‖𝑓‖2

𝐶

= det 𝑒−𝐴𝑡‖𝑓‖2
𝐶 = 𝑒𝑡⋅Tr(−𝐴)‖𝑓‖2

𝐶,

which concludes the proof of the theorem. □

Remark 4.2. It is not clear whether the statement of Theorem 2.1
is actually an equivalence. For the other direction, one would
have to show that 𝐾𝑡ℍ𝐶 ⊂ ℍ𝐶 implies ℍ𝐶𝑡

𝑐

==→ ℍ𝐶 as the latter
was shown to be equivalent to Equation (3) in the proof of
Theorem 2.1. Note that 𝐾𝑡ℍ𝐶 ⊂ ℍ𝐶 at least implies ℍ0,𝐶𝑡

=
span{𝑘

𝐶𝑡
𝑥 ∶ 𝑥 ∈ ℝ𝑑} ⊂ ℍ𝐶 , see Proposition 4.1.
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Appendix A: Some Background on RKHS Theory

Theorem A1 (Aronszajn’s inclusion theorem, [22, Theorem 5.1]). Let 𝑘1

and 𝑘2 be two symmetric positive definite kernels on a set 𝑋. Denote their
corresponding RKHS’s byℍ1 andℍ2, respectively. Thenℍ1 ⊂ ℍ2 if and only

if ℍ1

𝑐
==→ ℍ2. Moreover, for 𝑐 > 0 we have ℍ1

𝑐
==→ ℍ2 with ‖𝑓‖2 ≤ 𝑐‖𝑓‖1

for 𝑓 ∈ ℍ1 if and only if 𝑘1 ⪯ 𝑐2𝑘2.

Given two symmetric positive definite kernels 𝑘𝑋 on 𝑋 and 𝑘𝑌 on 𝑌, we
define the tensor product (cf. [22, Definition 5.12]) 𝑘𝑋 ⊗ 𝑘𝑌 ∶ (𝑋 × 𝑌)2 →

ℝ of 𝑘𝑋 and 𝑘𝑌 by the following:

(𝑘𝑋 ⊗ 𝑘𝑌)
(
(𝑥, 𝑦), (𝑥′, 𝑦′)

)
= 𝑘𝑋(𝑥, 𝑥′) ⋅ 𝑘𝑌(𝑦, 𝑦′). (A1)

It follows from the positive semi-definiteness of the Schur product of two
positive semi-definite matrices (see, e.g., [22, Theorem 4.8]) that 𝑘𝑋 ⊗ 𝑘𝑌

is a symmetric positive definite kernel on 𝑋 × 𝑌.

Lemma A2. Let 𝑘𝑋, 𝑘′
𝑋 be kernels on 𝑋 and 𝑘𝑌, 𝑘′

𝑌 kernels on 𝑌 and
assume that 𝑘𝑋 ⪯ 𝑘′

𝑋 and 𝑘𝑌 ⪯ 𝑘′
𝑌 . Then also 𝑘𝑋 ⊗ 𝑘𝑌 ⪯ 𝑘′

𝑋 ⊗ 𝑘′
𝑌 .

Proof. Denote the RKHS corresponding to 𝑘𝑋 , 𝑘′
𝑋 , 𝑘𝑌 , and 𝑘′

𝑌 byℍ𝑋 ,ℍ′
𝑋 ,

ℍ𝑌 , and ℍ′
𝑌 , respectively. Let (𝑒𝑠)𝑠∈𝑆 and (𝑓𝑡)𝑡∈𝑇 be orthonormal bases of

ℍ𝑌 and ℍ′
𝑋 , respectively. Then we have (𝑥1, 𝑥2 ∈ 𝑋, 𝑦1, 𝑦2 ∈ 𝑌)

𝑘𝑌(𝑦1, 𝑦2) =
∑
𝑠∈𝑆

𝑒𝑠(𝑦1)𝑒𝑠(𝑦2) and 𝑘′
𝑋(𝑥1, 𝑥2) =

∑
𝑡∈𝑇

𝑓𝑡(𝑥1)𝑓𝑡(𝑥2)

with pointwise convergence, see [22, Theorem 2.4]. Let 𝑛 ∈ ℕ and𝛼𝑗 ∈ ℝ,
(𝑥𝑗, 𝑦𝑗) ∈ 𝑋 × 𝑌, 𝑗 = 1, … , 𝑛. Then,

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗(𝑘𝑋 ⊗ 𝑘𝑌)
(
(𝑥𝑖 , 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)

)

=
𝑛∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘𝑋(𝑥𝑖, 𝑥𝑗)𝑘𝑌(𝑦𝑖 , 𝑦𝑗) =
∑
𝑠∈𝑆

𝑛∑
𝑖,𝑗=1

[𝛼𝑖𝑒𝑠(𝑦𝑖)][𝛼𝑗𝑒𝑠(𝑦𝑗)]𝑘𝑋(𝑥𝑖, 𝑥𝑗)

≤ ∑
𝑠∈𝑆

𝑛∑
𝑖,𝑗=1

[𝛼𝑖𝑒𝑠(𝑦𝑖)][𝛼𝑗𝑒𝑠(𝑦𝑗)]𝑘
′
𝑋(𝑥𝑖 , 𝑥𝑗) =

𝑛∑
𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
′
𝑋(𝑥𝑖 , 𝑥𝑗)𝑘𝑌(𝑦𝑖 , 𝑦𝑗)

=
∑
𝑡∈𝑇

𝑛∑
𝑖,𝑗=1

[𝛼𝑖 𝑓𝑡(𝑥𝑖)][𝛼𝑗 𝑓𝑡(𝑥𝑗)]𝑘𝑌(𝑦𝑖 , 𝑦𝑗) ≤
𝑛∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑘
′
𝑋(𝑥𝑖 , 𝑥𝑗)𝑘

′
𝑌(𝑥𝑖 , 𝑦𝑗)

=
𝑛∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗(𝑘
′
𝑋 ⊗ 𝑘′

𝑌)
(
(𝑥𝑖 , 𝑦𝑖), (𝑥𝑗, 𝑦𝑗)

)
,

which was to be proven. □
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