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Gauge theories are powerful theoretical physics tools that allow complex phenomena
to be reduced to simple principles and are used in both high-energy and condensed
matter physics. In the latter context, gauge theories are becoming increasingly popular
for capturing the intricate spin correlations in spin liquids, exotic states of matter in
which the dynamics of quantum spins never ceases, even at absolute zero temperature.
We consider a spin system on a three-dimensional pyrochlore lattice where emergent
gauge fields not only describe the spin liquid behavior at zero temperature but crucially
determine the system’s temperature evolution, with distinct gauge fields giving rise to
different spin liquid phases in separate temperature regimes. Focusing first on classical
spins, in an intermediate temperature regime, the system shows an unusual coexistence
of emergent vector and tensor gauge fields where the former is known from classical spin
ice systems while the latter has been associated with fractonic quasiparticles, a peculiar
type of excitation with restricted mobility. Upon cooling, the system transitions into a
low-temperature phase where an entropic selection mechanism depopulates the degrees
of freedom associated with the tensor gauge field, rendering the system spin-ice-like. We
further provide numerical evidence that in the corresponding quantum model, a spin
liquid with coexisting vector and tensor gauge fields has a finite window of stability in
the parameter space of spin interactions down to zero temperature. Finally, we discuss
the relevance of our findings for non-Kramers magnetic pyrochlore materials.

spin liquids | entropic selection | liquid-to-liquid crossover | competing gauge fields |
frustrated magnetism

Gauge symmetries and their embodiment within pertinent mathematical frameworks
constitute a quintessential aspect of some of the most fundamental theories of physics,
ranging from Maxwell’s electromagnetism and Einstein’s general relativity to the standard
model of particle physics. In such fundamental theories, different types of gauge fields
usually coexist but are of physical relevance only within a characteristic energy scale. Over
the past 40 years or so, the application of gauge theories in condensed matter physics
to describe strongly correlated electron and magnetic (spin) systems has steadily grown
(1–3). In the contemporary field of highly frustrated magnetism (4, 5), gauge symmetries
can emerge from the energetic constraints on the allowed spin orientations that are
imposed by competing (i.e., frustrated) spin–spin interactions. The latter can significantly
enhance the magnitude of thermal and quantum fluctuations, thus undermining the
development of conventional long-range magnetic order, but still stabilizing strong
nontrivial spatiotemporal correlations between the spins, producing a liquid-like state of
sorts—a spin liquid (4–9).

Gauge theories have proven powerful schemes to describe a wide range of spin
liquids (10–13). In particular, the usage of such theories has allowed to uncover various
spin liquid states harbored by magnetic systems whose spins reside on the vertices of
the three-dimensional pyrochlore lattice of corner-sharing tetrahedra and to expose their
exotic properties (14–17). For example, the spin liquid state found at low temperatures
in spin ice materials (15) [e.g., R2M2O7 (R = Ho, Dy; M = Ti, Sn, Ge) (18)] is
characterized by constrained orientations of the magnetic moments that are akin to
an effective Gauss’ law describable by an emergent gauge field (14, 15). This elegant
description has direct experimental consequences, namely, the spin–spin correlations
show nonanalytical “pinch point” singularities in reciprocal (momentum) space that
are revealed in neutron scattering experiments (19, 20), thus bearing witness to the
underlying gauge symmetry describing the spin ice state (21, 22).

Classical spin liquids (CSLs) have extensive ground state degeneracy arising from
fine-tuned sets of spin–spin interactions (11, 23, 24) and are potential harbingers of
quantum spin liquids (QSLs) upon consideration of the spins’ quantum dynamics
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(25–27). However, in the classical limit, ground state degen-
eracies are generically lifted by arbitrary small (perturbative)
symmetry-allowed interactions thence typically inducing long-
range magnetic order. One can flip this perspective around to
anticipate that CSLs, and thus QSLs, ought to often manifest
themselves at the phase boundary between magnetically ordered
classical ground states, as noted in prominent examples (12, 28).
Within this line of thought, and inspired by the successes of
the gauge theory description of spin ice (14, 15), a number
of works on pyrochlore spin systems have shown that diverse
gauge symmetries can arise at the boundary of competing classical
long-range ordered phases, signaling new types of CSLs (16, 17)
and thus, potentially novel QSLs. Examples include reports of a
“pinch-line spin liquid” (17) and a rank-2 U(1) spin liquid (16),
both of which described by emergent tensorial gauge fields. The
latter spin liquid is of particular interest because it is described
by a symmetric rank-2 tensor gauge field akin to that present in
theories of fractons, spin excitations that can only propagate on
subdimensional spaces (29).

The aforementioned successes beg the question “what new
spin-liquid physics, at the classical or quantum level, may be
evinced when three classical phases meet at a triple point?” This
is the question we investigate in this paper by considering an
effective spin-1/2 model for pyrochlore magnets of interacting
non-Kramers rare-earth ions (i.e., that possess an even number of
electrons) (30–32) in a region of spin–spin couplings parameter
space where three phases meet: one magnetic dipolar (spin ice)
spin liquid phase and two electric quadrupolar long-range ordered
phases (30–32). We refer to this magnetic triple point as a
dipolar–quadrupolar–quadrupolar (DQQ) point. We find that
the gauge symmetries at that point are enlarged due to competing
and energetically degenerate rank-1 (R1) and rank-2 (R2) gauge
fields, resulting in a spin liquid that we refer to as a R1-R2
spin liquid. Most interestingly, we find that upon cooling, the
rank-2 gauge field freezes out while the rank-1 U(1) spin ice
liquid gets progressively entropically selected below a crossover
temperature T ∗. We thus observe a phenomenon of spin liquid
to spin liquid rapid thermal crossover in a magnetic system that
is solely driven by temperature for a fixed spin Hamiltonian
and not by tuning a parameter of the Hamiltonian as happens
in the models considered in refs. 33 and 34. Here, we refer
to “spin liquid” as a cooperative paramagnetic phase (35) that
does not spontaneously break any of the symmetries of the
Hamiltonian. Such thermodynamic behavior reminds one of
the liquid-to-liquid transition observed in some atomic and
molecular liquids (36, 37). We note that recent work (38)
found a temperature-driven transition separating two phases
lacking long-range magnetic (i.e., dipolar) order. However, in
contrast with ref. 38 wherein the two phases considered are
a spin liquid phase and a symmetry-broken nematic phase, in
the model under investigation in the present work, both phases
preserve all symmetries of the parent Hamiltonian down to zero
temperature.

Incorporating the effects of quantum spin fluctuations in our
model, we find a window of spin–spin couplings close to the triple
point where the system fails to display long-range magnetic order,
thus providing evidence for a putative QSL. These results are not
only interesting from a strictly theoretical point of view but may
be of relevance for understanding the highly paradoxical non-
Kramers Tb2M2O7 (M = Ti, Sn, Ge) pyrochlore magnets (7,
32). This may be particularly so for Tb2Ti2O7, which has defied
understanding since it was first studied (39) and for which recent
work (40) proposed that this material may actually reside in the
vicinity of such a DQQ triple point.

Results

Model, Irrep Analysis, and Monte Carlo Results. The nearest-
neighbor spin Hamiltonian, H, for a non-Kramers system
is described in terms of three spin–spin coupling constants
{Jzz , J±, J±±}, withH given by

H =
∑
〈ij〉

JzzSzi S
z
j − J±(S+

i S−j + S−i S
+
j )

+ J±±(
ijS+
i S+

j + 
∗ijS
−

i S
−

j ), [1]

where S�i is the �th component of the (pseudo) spin-1/2 on site
i in a local coordinate frame (SI Appendix), with Szi representing
magnetic dipolar degrees of freedom and S±i representing electric
quadrupolar degrees of freedom (31, 32). 〈ij〉 labels the nearest-
neighbor pyrochlore bonds between sites i and j and 
ij are phase
factors imposed by the lattice symmetry (31, 32). We take Jzz > 0
to stabilize a spin ice state when J± = J±± = 0. To identify the
classical ordered phases of H, we first decompose it in terms of
the irreducible representations (irreps) of a tetrahedron (41, 42,
and SI Appendix). We write

H =
∑
�

H� =
∑
�

∑
i,j∈�

STi M ijS j, [2]

whereH� is the single-tetrahedron Hamiltonian,

H� =
1
2

[
aT Ice

1

(
m�T Ice

1

)2
+ aE

(
m�E

)2
+ aT xy

1

(
m�T xy

1

)2

+ aA2

(
m�A2

)2
+ aT2

(
m�T2

)2 ]
. [3]

Here, {m�I } are the single-tetrahedron irrep spin modes which
diagonalize H�. The aI parameters are linear functions of the
couplings {Jzz , J±, J±±} and correspond to the energies associated
with irrep I (see SI Appendix). In this representation, the T xy

1 and
the T Ice

1 irreps correspond to two splayed ferromagnetic spin
configurations, whereas the remaining A2, E , and T2 irreps cor-
respond to different antiferromagnetic spin configurations (41).
We refer the reader to the SI Appendix for further details regarding
the determination of the aI parameters and the spin configuration
associated with each irrep I .

From Eq. 3, the classical ground state phase diagram follows
immediately and is shown in Fig. 1A (31, 40, 43). There are four
triple points in the phase diagram: Three of these correspond to
the corners of the gray T Ice

1 triangle and one to the intersection
of the T Ice

1 , the E( 2), and the E( 3) phases. At that point,
thermal fluctuations stabilize the E phase which partially invades
over the T Ice

1 , with a transition from paramagnetic to long-range
order in the E phase order upon decreasing temperature (43).
We also note that, for the quantum spin-1/2 case, this triple
point is near the phase boundary (on the J±± = 0 axis where
there is a Higgs transition between a quantum spin ice phase
and a U(1) magnetic long-range ordered phases (44). We do
not investigate this T Ice

1 -E( 2)-E( 3) triple point further in the
present work. The leftmost triple point (black circle) corresponds
to the local Heisenberg antiferromagnet (HAF) model (43), dual
to the highly studied global HAF model (32), the latter model
known to realize a Coulomb phase spin liquid (45–48).

The lower triple point (white circle) is located on the phase
boundary between the E , theT xy

1 , and theT Ice
1 phases. This is the
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Fig. 1. (A) Non-Kramers phase diagram with Jzz = 3, where the DQQ model corresponds to the white dot at the boundary between the classical Txy1 , E( 3), and
T Ice

1 phases. (B) Specific heat of the DQQ model obtained from Monte Carlo simulations for various system sizes where a bump at a temperature T∗ ∼ 0.03 in
the specific heat that signals a crossover between an intermediate-temperature and a low-temperature regime, further discussed in the main text, is observed.
This crossover is characterized by an entropically driven depopulation of the E and Txy1 irrep modes, as discussed and illustrated in model details in Fig. 1. Spin
structure factors in the [hh`] (C) and [hk0] (D) planes for a temperature just above the crossover temperature T∗. Spin structure factors in the [hh`] (E) and [hk0]
(F ) planes for a temperature below the crossover temperature T∗.

DQQ point alluded in the introduction, with the fined-tuned
parameters {Jzz = 3, J± = 1

2 , J±± = −1} defining what we refer
to as the DQQ model, and which constitutes the primary focus
of the present study. The exchange couplings at this specific point
can also be parameterized by a global ferromagnetic Heisenberg
coupling and the so-called indirect Dzyaloshinskii–Moriya (DM)
interaction (49), namely

H = −J
∑
〈ij〉

Si · S j + D
∑
〈ij〉

d ij · (Si × S j), [4]

where d ij are the DM vectors as defined in ref. 42 and the
interaction parameters satisfy D/J = −2. For more details on
the d ij vectors and the sign convention, we refer the reader to
the SI Appendix. Previous work (42) noted an apparent lack
of magnetic ordering at this triple point. The last triple point,
namely the upper white star in Fig. 1A, is at {Jzz = 3, J± = 1

2 ,
J±± = 1}—which we refer to as the DQQ∗ model, is dual to
the aforementioned DQQ model (31, 32), with both models
having identical thermodynamic properties, though their spin–
spin correlations differ.

To begin, we first use Monte Carlo (MC) simulations to inves-
tigate in detail the thermodynamics and spin–spin correlations
of the classical DQQ model, with the spins in Eq. 4 taken as
classical vectors of fixed length |Si| = 1. The results are broadly
summarized in Fig. 1 B–F. In this figure, and throughout the
paper when considering H in Eq. 4, as opposed to the more
general case of H in Eq. 1, we fix D = −2J and measure all
energies in units of J and temperature in units of J/kB. Fig. 1B
shows the temperature dependence of the specific heat, C , of the
DQQ model, which exhibits a fairly sharp peak at temperature
T ∗ ∼ O(J × 10−2) (note the logarithmic temperature scale in
Fig. 1B), and asymptotically plateaus to a value of C/kB ≈ 7/8
at the lowest temperature considered. Fig. 1 C–F illustrates the
evolution of the spin structure factors transverse to wave vector q,
as probed by unpolarized neutron scattering (19, 20, 22, and SI

Appendix), in the [hh`] and [hk0] planes forT > T ∗ in subpanels
(C ) and (D), and for T < T ∗ in subpanels (E and F ). Here, we
consider an isotropic (diagonal and unitary) g-tensor to obtain
what we refer to as the “spin structure factor” (SI Appendix). This
is in line with the approach taken in ref. 50 to expose the various
features displayed by correlation functions which originate from
the intertwinned magnetic dipolar and electric quadrupolar
degrees of freedom represented by the pseudospin components
Sz and S±, respectively (31). We shall discuss the experimental
implications of considering the true g-tensor on the neutron
structure factor of non-Kramers ion systems below in Discussion.

The spin–spin correlations of the DQQ model display a
plethora of rich anisotropic features in q-space, which are
further discussed below. However, perhaps most interesting is
their very rapid change when the system passes from above
to below T ∗. As we show next, the anisotropic features for
T > T ∗ can be understood by considering a long-wavelength
theory composed of competing rank-1 and rank-2 tensor fields,
both of whose low-temperature behavior is constrained by an
emergent Gauss’ law. The change in correlation functions at T ∗
is associated with a spin liquid to spin liquid crossover driven
by entropic effects. Additionally, we will show later that this
intertwined rank-1 (R1) and rank-2 (R2),R1-R2, spin liquid phase
appears to be stable in the quantum spin-1/2 case, as suggested
by pseudofermion functional renormalization group (PFFRG)
calculations discussed below.

Self-Consistent Gaussian Approximation (SCGA) and Effective
Long-Wavelength Theory. The low energy configurations of the
DQQ model are built from three out of the five irrep modes (42);
see SI Appendix for more details. To further elaborate on the
degeneracy of the ground-state manifold, we Fourier transform
the interaction matrix in Eq. 3 to obtain M (q). The spectrum
of this matrix displays four degenerate low-energy flat bands (SI
Appendix) which suggests an extensively degenerate ground state
manifold—a telltale sign of a CSL (11, 51). To construct an
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Fig. 2. Spin structure factors in the [hh`] plane (Upper row) and [hk0] plane (Lower row), obtained using a self-consistent Gaussian approximation for the
temperatures illustrated above each column of figures. The red dashed line separates the gas-like (paramagnetic) regime at T & Tgl from the intermediate
liquid regime at T∗ < T . Tgl. The gray line at T∗ corresponds to the peak temperature of the heat capacity shown in Fig. 1A.

effective low-energy theory, we apply a SCGA, an approach
proven useful in previous studies of CSLs (22, 48, 52, 53).

The spin correlation functions obtained through an SCGA
analysis are shown in Fig. 2 for various temperatures and for both
the [hh`] and the [hk0] scattering planes. These SCGA structure
factors show a progressive evolution from high-temperatures
(T � Tgl, with Tgl the paramagnetic (“spin gas”) to spin liquid
crossover temperature), where the correlation function is nearly
featureless in the paramagnetic regime, to the lower temperature
spin liquid regime (e.g., T ∼ 0.774), where sharp features have
become visible. A comparison between Figs. 2 and 1 C and D
shows that the SCGA captures the anisotropic features observed
in our MC simulations below Tgl and above T ∗, but not below
T ∗. Twofold (53) and fourfold pinch points (11, 16) as well as
continuous lines of scattering, dubbed pinch-lines (17, 27), can
be seen in both the MC and SCGA results. More specifically,
in the [hh`] plane in Fig. 1C twofold pinch points (at [hh`] =
[220], [222], [002] and symmetry-related points) as well as lines of
strong scattering intensity along the [111] and [1̄1̄1] directions are
observed. Additionally, fourfold pinch points at [hk0] = [000]
are seen in the [hk0] plane in Fig. 1D. For more details, see SI
Appendix.

The observation of such anisotropic q-space features had pre-
viously been related to underlying emergent gauge symmetries.
Twofold pinch points are indicative of a divergence-free con-
straint for a vector field (14), while the fourfold pinch points and
lines are related to the emergence of a rank-2 tensor field with an
associated Gauss’ law constraint (16, 17). The agreement between
the SCGA and the MC structure factors above T ∗ motivates
the construction of an effective long-wavelength theory that we
present next. On the other hand, the clear discrepancy between
the SCGA and the MC structure factors for T < T ∗ implies that
the behavior in the lowest temperature regime requires a theory
that goes beyond SCGA, which we shall discuss later.

To begin, we note that Monte Carlo simulations reveal that
the two high-energy A2 and T2 irreps begin to depopulate at
T ∼ O(J) (Fig. 3 D and E), leaving only the degenerate low-
energy T Ice

1 , T xy
1 and E irreps (Fig. 3 A–C ) thermally populated

and relevant for T . O(J). Therefore, and similarly to the
approach taken in refs. 16 and 17, we proceed to construct an
effective theory for T > T ∗ that solely focuses on the T Ice

1 , T xy
1

and E irreps in the temperature range T ∗ . T . Tgl. Therefore,
starting from the Hamiltonian in Eq. 1, we define a rank-1 field,

(BIce)� ≡ m�T Ice
1
, [5]

and a rank-2 (tensor) field

Mxy
≡

√
2
3


√

3
2 m 2 −

1
2m 3 −

√
3

2 mz
T xy

1

√
3

2 my
T xy

1√
3

2 mz
T xy

1
−

√
3

2 m 2 −
1
2m 3 −

√
3

2 mx
T xy

1

−

√
3

2 my
T xy

1

√
3

2 mx
T xy

1
m 3

 .

[6]

Here,BIce corresponds to the fluxes in the Coulomb phase (15)
(components of T Ice

1 ), while m�
T xy

1
are components of T xy

1 , while
m 2 and m 3 are components of the E irrep (SI Appendix).
In passing, we note that the rank-1 field BIce and rank-2 Mxy

field are uniquely composed by the local-z and local-xy degrees
of freedom of the spins, respectively. With these, the long-
wavelength approximation to the SCGA Hamiltonian reads (see
SI Appendix)

�H = �E0 +
3

16
�J
∫

d3q
(
|q · BIce

|
2 + |qTMxy

|
2
)

+ �
∫

d3q
(
|BIce
|
2 + Tr

[
(Mxy)TMxy

])
+ O(q4).

[7]

This Hamiltonian consists of three terms: The first term, E0,
denotes the ground state energy of the three degenerate irrep
modes. The second term is composed of two emergent Gauss’
laws: one for the vector field BIce and another for the rank-2 field
Mxy, which in the limit T → 0 correspond to q · BIce = 0 and
qTMxy = 0 and, in direct space, ∇ · BIce

≡ ∂�(BIce)� = 0 and
∂�(Mxy)�,� = 0, with an implicit sum over repeated indices.
The third term proportional to � corresponds to the spin-
length constraint in the SCGA approximation (SI Appendix).
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Fig. 3. (A–J) Distribution of the irrep mode magnitude of all the up tetrahedra {|m�̂I |} of 250 Monte Carlo sampled configurations for a system size
L = 10 at the temperatures indicated in the rightmost panel. Each column of panels (A–J) corresponds to the distribution of a given irrep, namely,
from Left to Right, the T Ice

1 , the Txy1 , the E, the T2, and the A2 irreps. (K–M) Evolution of the average irrep mode magnitude, 1
L3 〈

∑
�̂ |m

�̂
I |〉, on a lattice

as a function of temperature averaged over 2,500 configurations sampled through Monte Carlo. The vertical shaded lines indicate the temperatures
where the configurations used to produce the histograms in the first and second rows were sampled from. In subpanel (K ), we identify the gray
dashed-dotted line with the liquid-to-liquid crossover temperature T∗, and the red vertical line at the temperature T = 1.0, with the approximate
liquid-to-gas crossover temperature Tgl. We note that at low temperatures the average irrep mode magnitude corresponding to the T Ice

1 irrep
approaches unity elucidating a selection of configurations with this irrep mode over configurations composed of the other two low-energy degenerate
xy (Txy1 and E) irreps.

The terms corresponding to the local-z spin components, i.e.,
those with the vector field BIce, describe an effective Coulomb
phase where a divergence-free condition results in the twofold
pinch points (46, 54). The terms describing the divergence-free
condition of the local-xy components, i.e., on the Mxy tensor
field, lead to fourfold pinch points in the [hk0] plane (55).
Thus, the full set of anisotropic features observed in the spin
structure factors along with the effective theory in Eq. 7 imply
the existence of two sets of emergent gauge fields constrained
by their respective Gauss’ law. We thus identify the spin liquid
state in the intermediate temperature regime T ∗ . T . Tgl as a
rank-1—rank-2 (henceforth R1-R2) spin liquid.

For T < T ∗, some of the anisotropic features in the spin
structure factor disappear entirely, implying that a different
long-wavelength theory is needed in that regime. We note that
spin structure factors for T < T ∗ are spin-ice-like where only
twofold (22, 53) pinch points are seen. Hence, we expect the
T < T ∗ theory to resemble the Coulomb phase theory with a
single Gauss’ law on a (rank-1) vector field (15, 22). Indeed, such
a theory will result if theMxy tensor field, and consequently the
T xy and E irreps, were to thermally depopulate (freeze-out) faster
than the T ice irrep due to missing higher-order gradient terms
which should be incorporated in Eq. 7. As way of confirming
this expectation, the depopulation of the T xy

1 and E irreps for
T < T ∗ can be seen in the MC data of Fig. 3 G and H,
with the distribution of all irrep projections below T ∗ shown
in Fig. 3 F–J. The depopulation of T xy

1 and E irreps implies
that low-temperature spin configurations for T < T ∗ are solely
made up of T Ice

1 , as observed in Fig. 3F. As an overview, we
present in Fig. 3 K –M the average value of each irrep projection

as a function of temperature. To summarize, two regimes
below Tgl, separated by the crossover temperature T ∗, can be
identified: one where T Ice

1 , T xy
1 , and E irreps have similar average

values (T ∗ . T . Tgl), and another (T . T ∗) where all irreps
but T Ice

1 are thermally depopulated.
We now discuss the mechanism for the depopulation of T xy

1 ,
and E irreps, and the thermal crossover between the two spin
liquid phases. The value of the specific heat plateau at low
temperatures in Fig. 1B, namely, C/kB ∼ 7/8 = 0.875, and
not 1 as expected from the equipartition theorem, already hints
at what is the mechanism at play (46, 56). Specifically, it suggests
that low-energy excitations above the ground state are not all
quadratic, but that higher-order fluctuation modes are being
thermally excited. To confirm this, we investigate the low energy
spin fluctuations about individual ground state configurations
through a classical low-temperature expansion (CLTE).

Classical Low-Temperature Expansion: Entropic Selection
of the Rank-1 Spin Liquid. By borrowing the method from
ref. 57, we numerically construct a CLTE which yields a
quadratic theory of spin fluctuations in real-space about a
ground-state configuration. The spin-fluctuation modes and
their corresponding energies are identified as the eigenmodes
and eigenvalues of the (quadratic spin-fluctuation) Hessian
matrix (SI Appendix). In this approach, quartic and higher-order
modes show up as zero modes as the quadratic CLTE theory does
not contain higher-order spin fluctuations terms (SI Appendix).
This observation therefore allows us to quantify the fraction of
higher-order spin-fluctuating modes by tracking the number of
quadratic zero modes identified in this theory.
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Fig. 4. Energy eigenvalues of the spin fluctuation modes obtained from a
real space CLTE where the ground-state configurations are a minimum energy
configuration obtained through IM (A), and a spin-ice configuration obtained
via classical Monte Carlo on an Ising AFM model (B), both states were obtained
for a system size of L = 10. In these plots, the x axis labels the numbered
eigenvalue index, ranging from 1 to 8,000, and the y axis labels the energy
of the eigenvalues. (C) Evolution of the fraction of zero-mode eigenvalues
about a spin-ice configuration for system size L ∈ {2,3,4,6,8,10,12} averaged
over 100 spin-ice configurations. Here, the black line is a third order in 1/L
polynomial fit to the data where a0 ∼ 0.25.

As discussed above, the depopulation of the E and the T xy
1 ir-

reps and the increasing population of theT Ice
1 irrep belowT ∗ im-

plies the selection of spin-ice configurations at low temperatures;
see Fig. 3. To expose the driving mechanism behind this selection,
we apply the real-space CLTE to two types of spin configurations:
i) to various pure spin-ice configurations (where all spins are
constrained to point along their local z axis) and ii) to numerically
obtained non-spin-ice ground state configurations (where the
spins are not constrained to point along the local-z axis). These
two sets of configurations are respectively obtained by employing
classical Monte Carlo simulations on an Ising antiferromagnetic
model for the spin-ice configurations, and a numerical iterative
energy minimization (IM) directly at T = 0 (obtained with the
maximal numerical accuracy that we could afford) for non-spin-
ice configurations (SI Appendix). Both the IM and the pure spin-
ice configurations are obtained for a system of linear size L = 10.

Fig. 4 A and B depict the energy eigenvalues obtained from
a CLTE where the starting ground-state is (A) a configuration
obtained via IM and (B) perfect spin-ice configuration. For the
configuration obtained via IM, the energy spectrum in Fig. 4A
shows a continuous progression of energy eigenvalues with the
smallest eigenvalues of order O(J × 10−5). In contrast, for the
spin-ice configuration, the energy spectrum illustrated in Fig. 4B
shows a sudden drop and a significant fraction of eigenvalues
with energy below O(J × 10−11). We identify these as zero
modes within the quadratic theory. The comparison of the two
spectra along with the monotonous thermal depopulation of
the E and T xy

1 irreps indicate that spin fluctuations about a
spin-ice configuration are softer than those about a non-spin-
ice configuration implying that spin-ice configurations possess
a higher entropy (lower free-energy) than the non-spin-ice

states obtained through IM, resulting in their selection at low
temperatures. While the spectra presented in Fig. 4 A and B
are only shown for two unique configurations, we have carried
out the analysis for about 100 different IM and pure spin-
ice configurations and obtained quantitatively equivalent energy
spectra distributions.

To find the fraction of quartic modes about a spin-ice configu-
ration, we count the number of vanishing energy eigenvalues (we
identify an eigenvalue with a zero-mode if its numerical value is
below J × 10−9) and study how the fraction of these evolves as a
function of system size L. We fit the number of zero eigenvalues
as a function of L using the following form

N0(L) = 8L3(a0 + a1/L + a2/L2 + a3/L3), [8]

where a0, a1, a2, and a3 correspond to the fraction of
zero eigenvalues originating from local, one-dimensional, two-
dimensional, and global zero modes, respectively. We consider
system sizes L = {2, 3, 4, 6, 8, 10, 12}, calculate the fraction of
zero eigenvalues, i.e.,N0(L)/8L3, and plot it as a function ofL. As
seen in Fig. 4C, this fraction of zero eigenvalues approaches very
precisely 1/4 as the system size approaches the thermodynamic
limit, 1/L→ 0.

This fraction of zero quadratic modes is independently
confirmed by the aforementioned observed value of the specific
heat C/kB ≈ 7/8 at low temperatures. This result suggests that
3/4 of the modes are quadratic whereas the remaining 1/4 are
quartic, with C = (n2kB/2 + n4kB/4)/Ns, where Ns = 4 is the
number of spins per tetrahedron, and n2 = 6 and n4 = 2 are
numbers of quadratic respectively (46, 56), giving C/kB = 7/8.

To summarize, our MC analysis shows no evidence for a
symmetry-breaking transition down to zero temperature. Rather,
it identifies a R1-R2 spin liquid state that develops upon cooling
from the paramagnetic phase and which is followed upon further
cooling by a crossover to a spin-ice-like spin liquid at a temper-
ature T ∗. The CLTE analysis implies that the thermal crossover
at the temperature T ∗ and, therefore, the selection of the low-
temperature spin-ice-like spin liquid in the DQQ model proceeds
via an entropic mechanism. While this mechanism is similar to
an order-by-disorder selection of a magnetically ordered state in a
degenerate manifold (42, 58), for the DQQ model, the selection
does not result in a magnetically ordered state. To the best of
our knowledge, this finding constitutes the first observation of a
classical temperature-driven “disorder-by-disorder” mechanism
where an extensively degenerate submanifold is selected by
thermal fluctuations.

Quantum Spin-1/2 Model. We now turn to the corresponding
quantum spin-1/2 version of the DQQ model to investigate how
quantum fluctuations modify our findings for the classical system.
We perform this study in an extended parameter regime of the
exchange constants Jzz , J±, J±±, varying them in the vicinity
of the DQQ point (Jzz = 3, J± = 1

2 , J±± = −1). This non-
Kramers Hamiltonian with positive Jzz has been studied before by
both quantum and classical methods (30, 31, 40, 43, 44). The
classical model at T = 0 shows the four phases of Fig. 1A (three
quadrupolar phases associated with the irreps E , T2, T xy

1 and one
dipolar phase with the irrep T Ice

1 ). The most striking observation
in studies of the quantum spin-1/2 model is the replacement of
the classical spin-ice phase by a U(1) quantum spin liquid in the
vicinity of the Ising point J± = J±± = 0 (7, 44).

We first apply the PFFRG method (59, 60) to compute
the T = 0, spin-1/2 phase diagram of the non-Kramers
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Fig. 5. (A) PFFRG ground state phase diagram of the spin-1/2 non-Kramers pyrochlore model at T = 0 with fixed Jzz = 3, where the gray region denotes an
absence of magnetic long-range order, the yellow and blue regions correspond to the q = 0 quadrupolar orders Txy1 and E, respectively, and the white regions
are of uncertain magnetic behavior. As a guide to the eye, the approximate quantum phase boundaries from PFFRG are indicated by dashed lines. Solid black
lines mark the classical phase boundaries which meet at the DQQ point (Jzz = 3, J± = 1

2 and J±± = −1). The HTSE results are shown as circles whose colors
correspond to the order parameter susceptibility dominating in a calculation up to order 1/T8. The phase boundary between quantum spin ice and magnetic E
phases, as previously determined by quantum Monte Carlo on the unfrustrated J±± = 0-line (the so-called XXZ model) is marked by a red square (44). (B) Order
parameter susceptibilities �̄ from PFFRG at T = 0 as a function of the renormalization group parameter Λ for the quantum spin-1/2 model with interactions
{Jzz , J± , J±±} = {3.0,0.3,−1.0}, marked by a red cross in the phase diagram in (A). (C and D) Static (zero frequency) spin structure factors from PFFRG at T = 0 for
the same model as in (B) within the [hh`] and [hk0] planes in the low-cutoff limit Λ→ 0.

model, shown in Fig. 5A, focusing on the parameter region
around the DQQ point. This method determines magnetic
ordering via the presence of an RG flow breakdown of the
cutoff-dependent susceptibility (SI Appendix). The nature of the
magnetic order is further determined by the dominant order
parameter susceptibility �̄ defined by

�̄ =
1
N

∑
ij

∑
��

n�i �̄
��
ij n�j , [9]

where the vectors ni describe fixed spin orientations on all
sites i corresponding to the classical magnetic order  being
probed (42). We take the orders  from our irrep analysis, i.e.,
they are of E , T xy

1 , T Ice
1 , A2, or T2 type. Note that the order

parameter susceptibilities corresponding to different q = 0 spin
configurations within the same irrep are identical (42). Note that
in Eq. 9, �̄��ij ≡

∫
∞

0 d�〈S�i (�)S�j (0)〉 is the static spin correlation
function computed in imaginary time domain �.

The quantum ground state phase diagram in Fig. 5A
determined using PFFRG shows distinct differences from the
classical one in Fig. 1A: i) The paramagnetic (gray) domain
extends its regime of stability, expanding into the region of
classical T xy

1 order. ii) The extent of the E long-range ordered
phase is enhanced by quantum fluctuations and partially
penetrates the paramagnetic (spin ice) region of the classical
model, in agreement with a previous quantum Monte Carlo
study considering J±± = 0 (44). iii) These phase boundary shifts
caused by quantum fluctuations create a characteristic narrow
corridor of quantum paramagnetic behavior approximately
parallel to the classical E-T xy

1 phase boundary.
The distinction between magnetic order and quantum para-

magnetic behavior via a flow breakdown of susceptibilities is
subject to uncertainties in PFFRG especially along the phase
boundaries. As shown in Fig. 5A, the quantum DQQ model
lies in such a region of uncertainty. Although the unambiguous
identification of magnetic order with PFFRG is not possible in
this region, we observe a comparatively large �̄E order parameter
susceptibility (SI Appendix) indicating strong E-type spin corre-
lations in the quantum DQQ model at T = 0. This is in stark

contrast to the classical DQQ model which shows dominant
spin-ice correlations in the low temperature limit. However,
we find that for coupling parameters deeper in the quantum
paramagnetic corridor, but still close to the DQQ point, some of
our observations from the classical DQQ model are recovered.
Specifically, by visual inspection, we observe matching spin
structure factor patterns of the quantum non-Kramers model
around {Jzz , J±, J±±} = {3.0, 0.3,−1.0} for T = 0 and that
of the classical DQQ model at T & T ∗, compare Fig. 5C with
Figs. 1C and 5D with Fig. 1D. The fact that this agreement holds
only when the classical model is considered in the intermediate
(T ∗ . T . Tgl) temperature regime where the R1-R2 phase
is realized suggests that no corresponding entropic selection
mechanism occurs in the quantum model at {Jzz , J±, J±±} =
{3.0, 0.3,−1.0} as is observed in the classical model as T → 0
at the DQQ point (see Fig. 3). This is further confirmed by the
renormalization group flows of order parameter susceptibilities
�̄ , shown in Fig. 5B, where �̄E , �̄T xy

1
, and �T Ice

1
are all of

similar size for {Jzz , J±, J±±} = {3.0, 0.3,−1.0} at T = 0. Note,
however, that �T Ice

1
only takes into account q = 0 spin ice con-

figurations and thus does not represent the full spin ice manifold.
All these observations lend support to the conclusion that in this
corridor with paramagnetic behavior, an exotic quantum spin
liquid described by coexisting emergent rank-1 and rank-2 gauge
fields may exist. On the other hand, it is strongly believed that the
XXZ model in the 0 < J± . 0.156 window on the J±± = 0 axis
hosts a U(1) spin liquid (44). It is likely that this phase somewhat
extends over a finite |J±±| 6= 0 range. Thus, our results beg the
question whether there is a quantum spin liquid to quantum spin
liquid transition as the DQQ point is approached from above
(i.e., from the J±± = 0 axis and J± becoming negative in Fig. 5A).

To corroborate these observations with a complementary
method, we next discuss the results of a high-temperature series
expansion (HTSE) study, whose details can be found in the
SI Appendix. We calculate the susceptibilities for both the T xy

1
and E order parameters, focusing on the coupling regime where
PFFRG identified a paramagnetic corridor. The first-order HTSE
for the inverse susceptibility gives the Curie–Weiss law (taking
the zeroth order term as the single-spin Curie term). We find that
the Curie–Weiss temperature for the T xy

1 and E order parameters
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exchange their dominance upon crossing the classical T xy
1 − E

phase boundary. This shows the equivalence of classical and
quantum models at the Curie–Weiss (mean-field) level.

Higher orders of the expansion are analyzed by Padé
approximants (61) and show the following: The E susceptibility
dominates along the classical E-T xy

1 phase boundary and, to some
degree, in the classical T xy

1 phase. The blue circles in Fig. 5A
mark regions where the E susceptibility grows rapidly upon
decreasing temperature, while the orange circles show regions
where the T xy

1 susceptibility grows faster. The parameter regions
where the T xy

1 and E susceptibilities dominate, respectively,
agree well with the PFFRG results. In between these T xy

1 and E
regions, HTSE finds a corridor running parallel to the classical
E-T xy

1 phase boundary, but shifted inside the classical T xy
1 phase

where neither susceptibility is found to grow substantially, again
very similar to the paramagnetic strip found in PFFRG (see SI
Appendix for more details). Altogether, these results imply the
exciting possibility of an extended quantum spin liquid region
near the DQQ point, and potentially exhibiting an R1-R2 gauge
structure as suggested on the basis of the classical theory.

Discussion

The prevalence of different gauge theories on different energy
scales is a well-known feature of the standard model of high-
energy physics, which comprises U(1), SU(2), and SU(3) gauge
structures that produce distinct physical properties, e.g., on
typical atomic and nuclear energy scales. In this paper, we
have used the concept of coexisting gauge theories associated
with different energy scales in a condensed matter system.
More precisely, the system we investigated is a Heisenberg
plus Dzyaloshinskii–Moriya interaction model on the pyrochlore
lattice in the vicinity of the classical multiphase triple point
D/J = −2. At the classical level, the multiphase point has
been studied by a comprehensive set of numerical and analytical
methods and found to exhibit several unique features. There
are two distinct spin liquid phases as a function of temperature
with no signal of a symmetry-breaking transition down to the
lowest temperatures. The two spin liquid phases uncovered are
described by different effective low-energy gauge theories with
a sharp crossover between the two that is signaled by a peak in
the specific heat. The higher temperature spin liquid phase is a
R1-R2 spin liquid that exhibits both two-fold and four-fold pinch
points in the spin structure factors and is described by fluctuating
rank-1 vector and rank-2 tensor fields.

The lower temperature spin liquid, which persists down to
T = 0, is a spin-ice-like Coulomb phase whose emergence
from the higher temperature phase is an illustration of entropic
“disorder-by-disorder” selection. For the manifold of states
selected at low temperatures, a fraction of the eigenmodes
have zero energy at the quadratic level. This gives them an
entropic advantage and is also responsible for reducing the
low-temperature heat capacity below the standard equipartition
C/kB = 1 value assuming solely quadratic-level spin fluctuations.

Our study of the quantum model using PFFRG shows that
phase boundaries are renormalized by quantum fluctuations,
with the best match between the classical and quantum spin–
spin correlations realized slightly away from the D/J = −2
value. Perhaps more interestingly, we find an extended corridor
in parameter space that runs parallel to the classical phase
boundary between the T xy

1 and E phases, where the ground
state remains nonmagnetic. These results are further supported

by high-temperature series expansion calculations for different
order-parameter susceptibilities.

The full anisotropic features of the spin–spin correlations are
needed to distinguish between the two spin-liquid phases. The use
of isotropic g-factors was essential to expose this difference
in a compact manner. In non-Kramers spin systems, coupling
to time-reversal odd fields such as external magnetic fields or
neutron spin requires gzz 6= 0, gxx = gyy ≡ g⊥ = 0 (31, 32).
Structure factors obtained with these anisotropic g-factors fail to
distinguish between the two phases (SI Appendix). This means
that experimental elucidation of the two spin-liquids and the tran-
sition between them would pose new challenges, but which could
possibly be tackled by studying response to strain fields (62).

From a materials perspective, a previous work (40) sug-
gested that the perplexing Tb2Ti2O7 pyrochlore antiferromagnet
(32, 39), or its Tb2+xTi2−xO7 off-stoichiometry variant, may be
located in the vicinity of the DQQ∗ point we identified in this
work. Our results provide an enlarged and intriguing perspective
as to the exotic physics at play in these compounds, namely that
they may reside in a region of spin–spin coupling parameters
near the DQQ∗ point, dual to the DQQ point where quantum
spin-liquidity is observed in Fig. 5A.

Our investigation raises several questions that should be
addressed in the future: i) Is the low-temperature spin-ice phase
near the DQQ point continuously connected to the U(1)
quantum spin ice (7) spin liquid around the Ising model? If
not, is it possible to observe a transition by continuously tuning
the interaction couplings as was predicted for other similar
systems (33, 34). ii) Are there emergent U(1) photons in this
phase and what signatures do they have? iii) How could one
experimentally investigate the dynamical pseudospin structure
factors associated with nondipolar degrees of freedom?

Finally, the results presented in this paper are a further
reminder of the richness of collective phenomena that frustrated
spin systems harbor, creating “their own” nanoscale structure of
effective degrees of freedom and driving distinct thermal and
quantum regimes of spin liquidity. Intriguingly, this is akin to
the local tetrahedral bonding arrangement that some compounds,
such as phosphorous, sulfur, and silicon possess in their liquid
state and which is thought to play an essential role in the liquid-
to-liquid transition they display (36, 37).

Methods

Irreducible Representation Analysis. As was noted in ref. 41, the most
general nearest-neighbor bilinear pyrochlore Hamiltonian can be written as
the sum of single up and down tetrahedra Hamiltonians

H =
∑
�

H�, [10]

whereH� can be decomposed into its irreducible representations (irreps) (SI
Appendix); see Eq. 3 above, where the weights aI are smooth linear functions
of the nearest-neighbor interaction couplings {Jzz , J±, J±±, Jz±} (41, 63) and
m�I are the corresponding irrep fields onto which the spin configuration for
tetrahedron � can be decomposed. The irrep analysis can be used as a first
approximation in the prediction of a long-range ordered phase (41, 42) as well
as the building blocks in the construction of an effective long-wavelength theory
for systems that avoid long-range order (SI Appendix).

MC Simulations. MC simulations were performed on systems of size
L ∈ {6, 8, 10, 12}, corresponding to 4L3 classical spins with |Si| = 1, where we
used 5×104 thermalization sweeps and 8×104 measurement sweeps. For each
sweep, the system was updated using a Gaussian update (64), overrelaxation
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(65, 66), and a loop algorithm for Heisenberg spins which was inspired
by refs. 67 and 68, where a single loop is attempted to be both identified
and flipped per sweep. Additionally, we performed an average over 500
independent MC simulations.

We also implemented a classical Ising MC with single spin-flip updates sup-
plemented with a loop algorithm to sample the perfect spin-ice configurations
of system size L ∈ {2, 3, 4, 6, 8, 10, 12} used in the analysis of the classical
low-temperature expansion.

SCGA. The SCGA (22, 48, 52) is a classical approximation where the spin-length
constraint is replaced by a soft-spin constraint where the spin length is preserved
on average over the whole system. In other words, for an n-component spin,
the spin-length constraint,

∑n
�=1 (S�)2 = |S|2 = S2, is replaced by the

thermodynamic average condition 〈|S|2〉 = S2. To compare our results with the
MC simulations, we take S = 1. This condition is enforced by the introduction
of a Lagrange multiplier � imposing the average constraint at all temperatures.
The introduction of this approximation in the spin-length constraint results
in a quadratic (Gaussian) theory which can be solved numerically exactly,
and from which quantities such as the spin–spin correlation functions can be
computed (SI Appendix).

Classical Low-Temperature Expansion. A classical low-temperature expan-
sion is a framework where a low-energy Hamiltonian describing the fluctuations
about a low-temperature state is derived. Such Hamiltonian can be obtained for
the general bilinear spin Hamiltonian (SI Appendix) by assuming that the spin
components are described in a local orthonormal frame where the (local) z̃i axis
is along the zero-temperature orientation of the spin Si at a given pyrochlore
lattice site i. This allows us to write the spin at FCC site i and sublattice a as,

Sia '

�nx̃
ia, �nỹ

ia, S

1−
(�nx̃

ia)
2

2S2
−

(�nỹ
ia)

2

2S2

 , [11]

where it is assumed that the system displays small fluctuations �n�ia about the
low-temperature spin orientation, where � labels the perpendicular directions
to the low-temperature spin orientation with |�n� | � S, where we take S = 1.

PFFRG. In PFFRG, the spins are first mapped onto pseudofermions which allows
one to study quantum spin models at T = 0 within the functional renormal-
ization group formalism (59, 60). After introducing an infrared frequency cutoff
parameterΛ in the fermionic propagator, coupled differential equations for the
fermionic vertex functions are solved from the known high-energy limitΛ→∞
toward the cutoff-free modelΛ→ 0. The computedΛ-dependent susceptibility
reveals whether a model is magnetically ordered or quantum paramagnetic.
Because of the approximations involved, a magnetic order transition usually does
not result in a divergence of the susceptibility, but rather in a flow breakdown
manifested by a kink. In contrast, a quantum paramagnetic susceptibility flow
remains smooth down to the cutoff-free limit Λ→ 0.

We apply the one-loop plus Katanin PFFRG method (59, 60) with an
exponential frequency mesh, containing 323 (1,000) positive frequencies for the
fermionic two-particle vertex (self-energy). Spin correlations, spanning beyond
a distance of four nearest-neighbor distances, are approximated to be zero (no
periodic boundary conditions are applied). The flow equations are solved using
an explicit embedded Runge–Kutta {2, 3} method with adaptive step size (69).

High-Temperature Series Expansion. The high-temperature series expan-
sion method is based on expanding the Boltzmann weight exp (−�H) in
powers of the inverse temperature � ≡ 1/T ,

exp (−�H) =
∑

n

(−�H)n

n!
. [12]

High-temperature series expansion for an extensive property P can be
calculated by a linked-cluster method (61),

P
Ns

=
∑

c
L(c)× W(c), [13]

where Ns is the number of spins, and the sum is over all linked or connected
clusters that can be embedded in the lattice. The quantity L(c), called the lattice
constant, is the number of ways the cluster c can be embedded in the lattice per
lattice site. The quantity W(c), called the weight of the cluster, can be obtained
from a high-temperature series expansion for some physical property P for the
cluster c, P(c), from the relation

P(c) =
∑
s⊆c

W(s), [14]

where the sum is over all subclusters of the cluster c including the cluster c. Thus,
starting with the smallest cluster, one can calculate the weight of all clusters up
to some order. One can show that if all clusters of up to n bonds are included in
the sum in Eq.13, it gives the high-temperature series expansion for the infinite
system to order �n.

We have used the high-temperature series expansion method to calculate
order-parameter susceptibilities for Txy

1 and E order parameters (SI Appendix).

Data, Materials, and Software Availability. Data in addition to those
presented in the main text and in the SI Appendix, along with computer
codes developed for the present study, are available in the following database:
https://github.com/daniel-lozano/R1R2_spin_liquid_data (70).
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