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Abstract: Monitoring animal behavior using sensor technologies requires prior testing under varying
conditions because behaviors can differ significantly, such as between grazing and confined cows.
This study aimed to validate several sensor systems for classifying rumination and lying behaviors
in cows on pasture under different environmental conditions, compare the sensors’ performance at
different time resolutions, and evaluate a correction algorithm for rumination data. Ten Simmental
dairy cows were monitored on pasture, each simultaneously equipped with an ear-tag accelerometer
(ET), two different leg-mounted accelerometers (LMs), and a noseband sensor (NB). Indirect visual
observations using drone-recorded video footage served as the gold standard for validation. The
concordance correlation coefficient (CCC) for rumination time was very high for both the ET and NB
(0.91–0.96) at a 10 min time resolution. Applying the correction algorithm to 1 min data improved
the CCC for the NB from 0.68 to 0.89. For lying time, the CCC was moderate for the ET (0.55) but
nearly perfect for both LMs (0.99). In conclusion, both sensors evaluated for classifying rumination
are suitable for cows on pasture. We recommend using a correction algorithm for 1 min NB data. For
the measurement of lying time, the LMs significantly outperformed the ET.

Keywords: evaluation; sensor technology; monitoring; behavior; cattle; grazing

1. Introduction

During the past few decades, modern dairy farming has undergone significant changes,
driven in part by rapid technological advancements. These changes have led to the emer-
gence of a field known as precision livestock farming (PLF). In general, the adoption of
digital automation technology in agriculture has been driven by two main factors: rising
food demand and decreasing natural resources [1]. Concurrently, especially in Europe,
public awareness has increased regarding issues such as food quality and safety, traceability,
and animal welfare. Dairy farms that incorporate grazing into their management practices
are not only perceived as more natural by consumers but can also offer benefits in terms of
animal health, such as improved hoof health [2], enhanced animal welfare, increased prod-
uct quality, and greater global sustainability, provided they are implemented correctly [3].
As a result, grazing-based dairy farming may gain greater significance in the future.

PLF technologies present a promising approach to addressing these challenges by
offering new opportunities to automatically classify animal behavior and monitor changes
at both the individual and herd levels. Rumination times and lying behavior are critical
parameters that can help monitor physiological and pathological changes in cows. For
example, decreased rumination and lying times can be useful predictors of estrus [4],
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while reduced lying times can be observed in cows with mastitis. Conversely, lame cows
tend to spend more time lying down than healthy controls [5]. Automated monitoring of
rumination time and activity during the early postpartum period can also be valuable in
detecting metabolic and digestive diseases in dairy cows [6].

There are several approaches to categorize automated monitoring systems in PLF,
for example, according to their position in relation to the animal (on-cow, in-cow, and
off-cow sensors), their invasiveness (invasive, minimally invasive, and non-invasive), or
the technology employed (e.g., accelerometers, temperature sensors, pressure sensors, and
camera sensors). In cows, wearable sensors can be mounted in various ways, such as on a
collar, halter, or ear-tag; inside the reticulorumen; or intravaginal. Using accelerometers for
behavioral monitoring is a widespread approach [7], with specific algorithms classifying
behavior based on acceleration patterns. However, these sensors need to be attached to
specific positions on the animal, which can be rated as invasive to a certain extent and
are therefore currently under discussion. Off-cow sensors include systems to measure
environmental parameters. Moreover, recent developments, such as computer vision
technologies, aim to classify the behavior of several animals simultaneously, without
interfering with them at all.

Given the availability of various sensor systems capable of classifying lying and
rumination behavior, advancements in research on these behaviors can be readily applied
on many farms utilizing automated monitoring systems. However, before these systems
are widely adopted, it is crucial to independently validate the technical devices and sensor
systems to ensure their reliability and accuracy. Extensive research has already been
conducted to validate various sensor systems under different conditions, as reviewed by
Chapa et al. [7] and Stygar et al. [8].

The SMARTBOW system (Smartbow GmbH/Zoetis LLC, Weibern, Austria) is an ear-
tag accelerometer (ET) and has demonstrated strong performance in classifying rumination
and as a tool for estrus detection in barn environments [9–11]. Additionally, this ET has been
validated for detecting grazing behavior in dairy cows [12]. However, to our knowledge,
no studies have evaluated its effectiveness in monitoring rumination and lying times in
dairy cows on pasture.

Several studies have evaluated HOBO-loggers (HOBO Pendant G logger; Onset Com-
puter Corporation, Bourne, MA, USA) as leg-mounted accelerometers (LMs) for classifying
the standing and lying positions of cows and calves under indoor conditions [13–15].
While this leg-mounted accelerometer (LM1) has been used in research involving grazing
cows [16], it has not been specifically validated for use on pasture. When working with
sensor systems, it is beneficial to evaluate them under different conditions.

The RumiWatch system (ITIN + HOCH GmbH, Liestal, Switzerland) is a widely
used research tool in PLF and consists of two independent components: a halter with
an integrated noseband sensor (NB) and a pedometer (LM2). This system is capable of
classifying various behavioral categories and has been scientifically validated for use under
both confined [17] and pasture conditions [18]. Because of its extensive testing by numerous
research groups, classification algorithms have been adapted, resulting in different versions
of the converter software (currently available: V.0.7.3.2, V.0.7.3.36, V.0.7.4.5, and V.0.7.4.13).
Despite these advancements, recent studies have continued to use older software versions.
For example, Pereira et al. [19] evaluated V.0.7.3.36 and recommended the NB and LM2
as a reference for other systems in detecting grazing, rumination, and lying behavior.
Other researchers have compared different converter versions of the NB, evaluating their
performance under confined versus grazing conditions (V.0.7.3.36 and V.0.7.4.13 [20]),
under thermoneutral versus heat stress conditions (V.0.7.3.2 and V.0.7.3.36 [21]), and at
different time resolutions of raw data classification (V.0.7.4.5 [22]). Li et al. [23] assessed
the latest version (V.0.7.4.13) against visual observations and found a high correlation for
the detection of rumination chews. Unlike previous versions, V.0.7.4.13 no longer offers
behavior classification at a 1 min time resolution. Despite the widespread use of the NB
and LM2, a direct comparison of the three most recent software versions has not been
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conducted. Therefore, we investigated the performance of these versions of the NB and
LM2 (V.0.7.3.36, V.0.7.4.5, and V.0.7.4.13) in classifying the rumination and lying times of
cows at different time resolutions using the same dataset. These versions are hereafter
referred to as RWC1, RWC2, and RWC3, respectively.

Acknowledging the increasing importance of climate change, we also considered the
possibility of the varying performance of technical tools under changing environmental
conditions in grazing dairy cows. A recent review [24] reported that environmental condi-
tions, such as heat stress, can change animal behavior in terms of reduced lying, feeding,
and rumination time; increased water intake; and shade-seeking and insect avoidance
behavior, and may even provoke aggressive behaviors around waterers, for example.

The objectives of this study were threefold: first, to evaluate the performance of an ET
for detecting rumination and lying behavior and to validate two LMs for classifying lying
behavior on pasture using indirect visual observation (IVO) as the gold standard across
different time resolutions; second, to directly compare the three most recent converter
versions of the RumiWatch system; and, third, to gain insights about the impact of differing
ambient temperatures on the automated classification of behaviors in grazing cows. To the
best of our knowledge, this is the first study to evaluate the performance of several sensor
technologies for use in cows on pasture under changing environmental conditions. The key
conclusions are that both the ET and the NB are suitable for measuring rumination time
on pasture, and that both LMs are highly effective for detecting lying behavior in grazing
cows.

2. Materials and Methods
2.1. Study Farm

The study was conducted from June to October 2020 at the Teaching and Research
Farm (VetFarm) of the University of Veterinary Medicine Vienna, Austria. This study was
part of a larger project on the use of various sensor technologies in grazing dairy cows,
which spanned from 2020 to 2021. The farm housed approximately 80 Simmental dairy
cows. The lactating cows were kept in a free-stall barn with cubicles and straw bedding.
They were milked twice daily in a tandem milking parlor. In 2020, the herd’s energy-
corrected milk yield, based on 4.0% butterfat and 3.4% protein, was 9308 kg. Dry cows
were housed separately in another barn with deep-bedded straw. A total mixed ration
was provided in the barn. Additionally, lactating cows grazed on pasture for several hours
daily from May to October, with approximately 1.5 hectares of adjacent pasture available
for their use.

2.2. Sensor Systems
2.2.1. SMARTBOW System

This ET system comprises three main components: an accelerometer integrated into an
ear-tag, receivers, and a farm server. For research purposes, acceleration data are collected
at a frequency of 10 Hz, in contrast to the commercial system, which logs data at 1 Hz.
The ear-tag wirelessly transmits the raw data to the receivers, which then relay the data to
an on-farm server. Proprietary algorithms classify the raw data in real time into various
behavioral categories, such as ruminating, standing, and lying [9,10,25]. For use on pasture,
specially designed receiver stations with solar-powered batteries were available in this
study. At the VetFarm, nine receiver stations were installed around a total pasture area of
approximately 2.4 hectares. The average distance between the receivers along the pasture
was 70 m, with a range of 42 to 101 m. These receivers were wirelessly connected to enable
real-time communication with each other and to transmit raw data packages to the on-farm
server. Further details about this ET system can be found in the report by Schweinzer
et al. [11]. Pictures of the system and its implementation on the study farm are shown in
Figure S1 of the Supplementary Materials.
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2.2.2. HOBO-Loggers

HOBO-loggers are data loggers equipped with built-in triaxial accelerometers and a
gyroscope function to measure the tilt of the logger. The raw data, including acceleration
and tilt data in the x-, y-, and z-axes, are stored in internal memory and can be retrieved
using a proprietary optic USB interface (connector, Base U-44, and coupler). The logging
interval can be customized prior to the start of a measurement series depending on the
experiment’s specific requirements (maximum logging frequency: 100 Hz; maximum
logging interval: 18 h, 12 min, 15 s). In this study, the frequency was set to 1 Hz in
accordance with the standard operating procedure derived from Ito et al. [13]. The loggers
were managed, and data were downloaded using HOBOware software (HOBOware Pro
3.7.21; Onset Computer Corporation, Bourne, MA, USA). The data loggers were wrapped
in foam and secured with bandage material to the left hind legs of the study animals to
capture their standing and lying times (see Figure S2 of the Supplementary Materials).

2.2.3. RumiWatch System

This sensor system consists of two primary components: a NB integrated into a halter,
and a pedometer, referred to as LM2 in this manuscript. The NB is an oil-filled tube with a
pressure sensor embedded in the noseband, along with a triaxial accelerometer housed in a
plastic box attached to one side of the cheek. The halter must be properly fitted to the cow’s
head to ensure adequate pressure differences when the cow chews, which is essential for
accurately detecting rumination time, eating time, drinking, and other behaviors. The NB
is shown in Figure S3 of the Supplementary Materials.

The LM2, which contains an accelerometer secured inside a plastic box, can be attached
with a strap to any of the cow’s legs (lateral metacarpus or metatarsus). It measures activity-
related behaviors such as standing, lying, and walking. In this study, the pedometers
were mounted on the cows’ right lateral metatarsus (see Figure S3 of the Supplementary
Materials).

Although the halter and pedometer components of the system can be used indepen-
dently, both are managed using the same software, RumiWatch Manager 2 (Version 2.2.0.0;
ITIN + HOCH GmbH, Liestal, Switzerland). The system records raw data at a 10 Hz
frequency. These data are stored on an internal micro-SD card and can be downloaded at
the end of a measurement series via a cable connection. Two 3.6 V lithium-metal (Li-SOCL2)
batteries power the halter and pedometer. A more detailed description of this sensor system
is available in the report by Zehner et al. [17]. In this study, we focused on the behavioral
classifications for rumination and lying time.

2.3. Study Design

Ten lactating cows were selected on the basis of their reproductive status (inseminated or
already confirmed pregnancy) to minimize disruptions from farm management procedures,
such as breeding and pregnancy checks, during the study. At the start of the study, the enrolled
cows were at 202 ± 41 days in milk and had undergone 2.2 ± 1.2 lactations (mean ± standard
deviation). Each cow was simultaneously equipped with the three sensor systems to collect
behavioral data, and their behavior was also recorded using a camera-equipped drone (DJI
Phantom 4 Pro V 2.0; SZ DJI Technology Co., Shenzhen, China). IVO served as the gold standard
for behavioral classification.

The required observation hours for this study were calculated using G*Power software
(G*Power Version 3.1.9.2; Franz Faul, Kiel University, Kiel, Germany). To detect a small to
medium effect size of 0.2 with a Type I error probability (α) of 0.05 and a power (1 − β) of
0.80, 191 h of animal observation were necessary.

Before the study began, the cows were gradually habituated to the sensor systems, the
grazing regimen, and the drone flights over several non-consecutive weeks starting in May
2020. During the experimental periods, the group of enrolled cows was brought to pasture
during four non-consecutive weeks throughout the grazing season. Each experimental
period consisted of 4 days, from Monday to Thursday, during which the study group
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was moved to pasture in the morning between 8:00 AM and 9:30 AM local time (Central
European Summer Time). Depending on the weather conditions (e.g., too hot or too windy
for drone flights), the cows were brought back to the barn after 2.0 to 5.5 h. During the
second week of the experiment, the cows were also moved to pasture after the evening
milking, between 6:20 PM and 7:00 PM Central European Summer Time, for 2.0 to 2.5 h.
For the rest of the day, the cows were housed indoors with the rest of the lactating herd.

The cows were fenced into smaller areas of approximately 0.3 hectares to facilitate
simultaneous observation of all animals by the drone. A new strip of pasture was allocated
to the animals depending on the availability of grass. Throughout the study, ambient
temperature and relative humidity in the barn were measured using data loggers with
built-in sensors (TinyTag Plus 2 TGP-4500; Gemini Data Loggers, Chichester, UK). For
pasture, local weather data from the nearby official weather station in Berndorf (station 7641,
officially calibrated according to the World Meteorological Organization) were available
and used for analyses regarding the environmental conditions.

No further manipulation or habituation was necessary for using the ET in this study
because the system was already in regular use at the VetFarm for general herd management
purposes, such as estrus detection. The NB and LMs were mounted on the cows on the
Sunday before the start of each experimental period and removed after the 4 consecutive
measurement days. During these periods, the cows were examined twice daily after milking
for potential bruises on their heads or legs caused by the sensors. The positions of the
sensors were checked and adjusted if necessary.

All sensor systems were time-synchronized using Coordinated Universal Time as
a reference. The simultaneous use of the different sensors on each cow was intended
to ensure consistent conditions (both behavioral and environmental) across all systems,
thereby reducing potential confounding factors.

Visual Observations

The drone equipped with an RGB camera provided sufficient flexibility to follow the
small group of study cows on their respective allocated pastures. The size of the pasture was
determined by the area that the camera could capture in a single frame, ensuring that a human
observer could consistently identify the cows and their behaviors. Video footage was recorded
in 4 K resolution using the H.265 video codec and stored as mp4 files during the flight on
128 GB UHS-I micro-SD cards (SanDisk Extreme R160/W90 micro SDXC; SanDisk, Western
Digital Technologies, Inc., Milpitas, CA, USA). The drone pilots were trained in advance to
capture all cows as closely as possible without disturbing their natural behavior. The drone’s
theoretical maximum continuous flight time was 30 min according to the manufacturer, limited
by the battery, with an additional 5 to 10 min required between flights to change the battery.
Time synchronicity was maintained using Coordinated Universal Time as a reference, with
the timestamp added to the subtitles of the video footage to facilitate later analysis of the
recordings. For behavioral classification, two observers were trained in advance to use the
ethogram shown in Table 1.

For the labeling process, the software Mangold® Interact (Version 17.1.11, Mangold
International GmbH, Arnsdorf, Germany) was used. In total, 94 video sequences were
available. The mean analyzable portion of the video sequences was 17.85 ± 2.60 min. After
excluding sequences that were not suitable for analysis because of video quality issues or
data losses (mainly from the SBS), 69 sequences were deemed eligible for analysis. Of these,
12 were randomly selected to assess inter-rater reliability. The remaining 57 videos were
divided, with each observer receiving a separate randomly allocated set of 27 videos. At
the end of this selection and allocation process, 66 video sequences, with a total duration
of 19 h, 54 min, and 3 s, were analyzable. To avoid biases, the observers were blinded
throughout the entire selection and allocation process, which was conducted using R
Statistical Software Version 4.0.4 [27] and the “caret 6.0-92” package [28]. Because the drone
observation strategy allowed for the simultaneous capture of all 10 cows, the available
video footage amounted to approximately 199 h in total.
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Table 1. Ethogram for visual classification of cow behavior, derived from Schmeling et al. [26].

Classification Description

Feeding-related behavior

Ruminating
The animal regurgitates a food bolus and then chews and swallows it.

The duration is calculated from regurgitating the first bolus to
swallowing the last bolus.

Not ruminating Every behavior other than ruminating.

Not analyzable
The animal is not visible in the video image, the animal is covered by

another animal, or a lack of detail in the image does not allow for
reliable classification of ruminating/not ruminating.

Activity-related behavior

Lying
The body of the animal is not supported by any limb. The sternum

and/or the belly are/is in contact with the ground.
The limbs are bent or stretched out.

Not lying
The body of the animal is supported by at least two limbs. “Not lying”

starts when the cow puts weight on the carpal joints and therefore
initiates the process of standing up.

Not analyzable The cow is not visible in the video footage.

2.4. Data Preparation

Sensor data from various sources, as well as data from IVOs, were uploaded to an
Influx database (InfluxDB OSS v2.0). For data pre-processing, Python software, along with
the pandas and NumPy packages (Python 3.7.9, pandas 1.3.5, and NumPy 1.21.5 [29]), was
used. The pre-processed data were then resampled and merged with the InfluxDB.

The IVO data were recorded with a 1 s time resolution, starting from the moment the
cows and their behaviors could first be identified in each video sequence. These data were
resampled to 1 min and 10 min intervals to align with the sensor systems’ data at different
time resolutions. A longer time interval was deemed unreasonable because of the limited
length of the video sequences.

ET data were provided by the company as continuous data with 1 min time res-
olutions. Each minute was classified according to the predominant behavior as either
“lying/standing” or “rumination/nothing”. These data were resampled to a 10 min res-
olution to enable a direct comparison across all sensor systems and IVO within a single
dataset.

For the LM1, raw data were available at a 1 min time resolution and were classified
into “standing” and “lying” using a threshold of 60◦ of vertical tilt, as described by Ito
et al. [13]. Corrections of erroneous values, such as standing or lying bouts lasting <3 min,
were made using a Python script (hereafter referred to as the correction algorithm (CA))
derived from the Excel macros published by Ledgerwood et al. [14]. This CA removes
single events lasting ≤2 min, thereby eliminating erroneous classifications such as brief
kicking movements that would otherwise be misclassified as 1 min of lying. The classified
data were then resampled to a 10 min time resolution for direct comparison with the other
systems.

Data from the NB and LM2 were available as raw data at a 10 Hz time resolution,
stored in a proprietary file format (.rwu). These files were converted into classified .csv
files using the three latest versions of the RumiWatch Converter (RWC) (ITIN + HOCH
GmbH, Liestal, Switzerland): V0.7.3.36 (RWC1), V0.7.4.5 (RWC2), and V0.7.4.13 (RWC3).
With RWC1 and RWC2, the data were classified into 1 min and 10 min time resolutions.
However, RWC3 does not support a 1 min time resolution classification, so only 10 min
time resolution data were available. Because there was no validity check for conversion at
the 1 min time resolution [17], the same CA used for the LM1 was applied to the converted
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rumination data from RWC1 and RWC2 in a subsequent step. To enhance comparability
with the ET, this CA was also applied to the 1 min time resolution data of the ET system.

2.5. Statistical Analyses

Statistical analyses were conducted using R Statistical Software Version 4.0.4 [27]. The
packages “caret 6.0-92” [28], “chillR 0.72.4” [30], “DescTools 0.99.41” [31], “irr 0.84.1” [32],
“misty 0.4.11” [33], and “tidyr 1.1.3” [34] were utilized for various analyses, while “Cairo
1.5-15” [35], “ggplot2” [36], and “showtext 0.9-5” [37] were used for graphical representation
of the data. To assess the inter-rater reliability of the IVOs, Cohen’s kappa coefficient (κ) was
calculated between the two independent observers. Histograms and the Shapiro–Wilk test
were used to assess the normal distribution of sensor data across different time resolutions.

Lin’s concordance correlation coefficient (CCC) and Spearman’s rank correlation
coefficient (rS) were calculated to evaluate the agreement between IVOs and each sensor
system or converter version. These analyses were performed separately for lying and
rumination behavior.

For categorical data at the 1 min time resolution, a confusion matrix was computed
to determine the sensitivity (SE), specificity (SP), positive predictive value (PPV), and
balanced accuracy (AC) for each system or converter version compared with IVO. SE was
defined as the true positives (TPs) divided by the sum of TPs and false negatives (FNs). SP
was defined as the true negatives (TNs) divided by the sum of false positives (FPs) and
TNs. The AC was defined as the sum of sensitivity and specificity, afterwards divided by
two. The formula for the PPV was as follows

PPV = (SE × prevalence)/((SE × prevalence) + ((1-SP) × (1-prevalence))), (1)

with prevalence defined as the sum of TPs and FNs divided by the sum of TPs, FPs, FNs,
and TNs. For rumination behavior, these analyses were conducted both before and after
applying the CA.

For numerical data at the 10 min time resolution, the coefficient of determination
(R2) and root mean square error (RMSE) were calculated in addition to CCC and rS. For
graphical analysis and comparison, lying and rumination times (min/10 min) from the
sensor systems were plotted against IVO data, with the regression lines displayed. For
trying to determine if weather-related factors influenced system performance (by affecting
the animals’ behavior, for example), the temperature–humidity index (THI) was calculated
using data from the local weather station in Berndorf and the formula described by Kendall
and Webster [38]. The THI data were merged by timestamps with the sensor and IVO
data (at a 10 min time resolution). Because cows can show signs of heat stress at a THI
of ≥68 [39], this value was used as the threshold to subdivide the dataset into two parts.
The previously mentioned parameters were recalculated for data below and above this
threshold.

3. Results

Six days had to be excluded from further analysis because of data losses caused by
technical issues and rainy weather conditions in September. As a result, data from 11 days
of the study were available for analysis.

The inter-rater reliability between the two labelers was almost perfect, with κ = 0.99 for
lying behavior and κ = 0.96 for rumination behavior. The correlation coefficients were
interpreted according to Hinkle et al. [40].

3.1. One-Minute Time Resolution

For the analysis of data at a 1 min time resolution, five different datasets were available:
two for rumination and three for lying behavior. The data were arranged and merged to
ensure the largest possible sample size for each sensor system. Data losses occurred for
various reasons and at different time points for each system, leading to slightly different
sample sizes (Table 2).
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Table 2. Sensitivity (SE), specificity (SP), balanced accuracy (AC), positive predictive value (PPV), Lin’s
concordance correlation coefficient (CCC), and Spearman’s rank correlation coefficient (rS) for each
of the systems (the ear-tag accelerometer (ET) system; a noseband sensor (NB) with a leg-mounted
accelerometer (LM2) with RumiWatch Converter versions V0.7.3.36 (RWC1) and V0.7.4.5 (RWC2); and
a HOBO-logger (LM1)) in comparison to indirect visual observations (IVOs) for the classification of
rumination and lying behavior at a 1 min time resolution. The number of data points in each dataset (N)
is provided in the last column. The results after applying the correction algorithm (CA) to the datasets
are shown in italics beneath the original results for each system. The values most affected by the CA
are highlighted in bold font. No additional results are provided for the LM1 because the CA is already
integrated into the standard method for analyzing LM1 data.

Parameter and System SE (%) SP (%) AC (%) PPV (%) CCC rS N (min)

Rumination
ET 83.0 98.9 91.0 91.2 0.85 0.85

9682With CA 83.7 98.9 91.3 91.5 0.86 0.86
RWC1 (NB) 91.5 91.4 91.4 60.1 0.68 0.70

9667With CA 93.6 98.1 95.8 87.4 0.89 0.89
RWC2 (NB) 91.5 91.4 91.4 60.1 0.68 0.70

9667With CA 93.6 98.1 95.8 87.4 0.89 0.89

Lying
ET 39.2 99.3 69.2 94.7 0.48 0.55

10,001With CA 38.7 99.3 69.0 94.7 0.47 0.54
RWC1 (LM2) 93.2 97.9 95.6 93.8 0.91 0.91

9740With CA 93.3 98.0 95.7 94.2 0.92 0.92
RWC2 (LM2) 93.2 97.9 95.6 93.8 0.91 0.91

9740With CA 93.3 98.0 95.7 94.2 0.92 0.92
LM1 0.96 99.1 97.6 97.3 0.96 0.96 10,097

According to IVO, cows were ruminating 12% of the time and lying 25% of the time
across the datasets. The results of the confusion matrix and the correlation coefficients,
calculated both with the original dataset and after applying the CA, are presented in Table 2.

The results for RWC1 and RWC2 showed no differences in either rumination or lying
behavior. No results were available for RWC3 at a 1 min time resolution because this
converter version does not offer behavior classification by the minute.

When comparing the results of the RWC versions with the ET for rumination times,
the SE and SP of the RWC were both >90%, whereas the SE of the ET was considerably
lower (83%) and that of the SP was higher (99%). The AC was similar in both systems,
but the PPV was much lower for the RWC (60%) than for the ET (91%). Both correlation
coefficients were high for the ET but only moderate for the RWC versions.

For the lying data at a 1 min time resolution, the LM1 demonstrated the best perfor-
mance in classifying lying behavior according to the parameters presented. The results
of the RWC versions of LM2 were slightly lower, but the parameters presented in Table 2
were still above 90% or 0.90, respectively. The ET had a very high SP and PPV, but the AC
and rS were both moderate, while the SE and CCC were low.

When applying the CA to the data from the ET and RWC, only minor changes were
observed in the parameters for the ET (both rumination and lying behavior) and in the
results for lying behavior of LM2 in both RWC versions (slight improvement). However, the
CA had a considerable effect on the results for rumination of the NB in both RWC versions:
the PPV increased from 60% to 87%, and both correlation coefficients rose from moderate
to high correlation and agreement, respectively. The SE, SP, and AC for rumination also
improved for the NB when using the CA.

3.2. Ten-Minute Time Resolution

The dataset at a 10 min time resolution included data from IVOs, the ET, RWC1 (NB
and LM2), RWC2 (NB and LM2), RWC3 (NB and LM2), and LM1 (for lying behavior
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only). In total, 429 10 min intervals were available in the dataset for rumination, of which
509.6 min (12%) were classified as rumination according to the IVOs. The dataset for lying
behavior contained 436 10 min intervals, with 1123.4 min (26%) classified as lying according
to the IVOs. Neither rumination time nor lying time per 10 min interval was normally
distributed. The R2, RMSE, and rS for rumination and lying time per 10 min, with IVO as
the gold standard, are presented in Table 3.

Table 3. Coefficient of determination (R2), root mean square error (RMSE), Lin’s concordance
correlation coefficient (CCC), and Spearman’s rank correlation coefficient (rS) of each system (an
ear-tag accelerometer (ET) system; a noseband sensor (NB) with a leg-mounted accelerometer (LM2)
with RumiWatch Converter versions V0.7.3.36 (RWC1), V0.7.4.5 (RWC2), and V0.7.4.13 (RWC3); and
a HOBO-logger (LM1)) for rumination and lying time per 10 min compared with indirect visual
observations (IVOs).

Parameter and System R2 RMSE CCC rS

Rumination
ET 0.83 1.24 0.91 0.90

RWC1 (NB) 0.88 1.01 0.94 0.90
RWC2 (NB) 0.88 1.01 0.94 0.90
RWC3 (NB) 0.92 0.82 0.96 0.92

Lying
ET 0.44 3.33 0.55 0.66

RWC1 (LM2) >0.99 0.16 >0.99 0.99
RWC2 (LM2) >0.99 0.16 >0.99 0.99
RWC3 (LM2) >0.99 0.16 >0.99 0.99

LM1 0.99 0.42 0.99 0.97

The correlation coefficients for rumination in the 10 min time resolution were very
high across all sensor systems, with CCC > 0.9 and rS ≥ 0.9. However, the most notable
differences between the sensor systems were reflected in their R2 and RMSE results. Only
the RWC3 had an R2 of >0.9 and an RMSE of <1 min, making it the best performer in classi-
fying rumination time according to all parameters in Table 3, followed by RWC1/RWC2
and the ET. For lying time, no differences were observed among RWC1, RWC2, and RWC3.
The three RWC versions demonstrated the best performance in classifying lying time, with
very high correlation coefficients, closely followed by LM1. By contrast, the correlation
coefficients for the ET were only moderate.

Figure 1 shows the rumination time classified by the different sensor systems plotted
against IVOs (i.e., the gold standard), along with the respective regression lines for each
sensor system. The dashed line represents the bisector. Because the purple line is closest to
the bisector, RWC3 can be interpreted as the system with the best performance, followed by
both RWC1 and RWC2. Because the classification of rumination time by RWC1 and RWC2
is identical, their regression lines overlap. The ET (green rhombuses and line) showed
lower agreement with the IVOs than the other systems.

The dataset included 235 10 min intervals with a THI below the threshold of 68 and
194 intervals with a THI of ≥68. All data collected in the evening hours were part of the
194 intervals with a THI of ≥68 (N = 97). According to the IVOs, rumination time was
significantly higher (p < 0.001) when the THI was below the threshold. Table 4 presents the
R2, RMSE, CCC, and rS for rumination, listed separately for THIs of <68 and ≥68, enabling
direct comparison of the sensors’ performance under different climatic conditions.
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Figure 1. Comparison between the rumination time per 10 min classified by the different sensor systems
(a noseband sensor (NB) with RumiWatch Converter versions V0.7.3.36 [RWC1 (∆)], V0.7.4.5 [RWC2
(+)], and V0.7.4.13 [RWC3 (×)]; and an ear-tag accelerometer (ET) system [ET (♢)]) and indirect visual
observations (IVOs) based on 429 10 min intervals. The regression lines for RWC1 and RWC2 are
identical. The dashed line represents the bisector.

Table 4. Coefficient of determination (R2), root mean square error (RMSE), Lin’s concordance
correlation coefficient (CCC), and Spearman’s rank correlation coefficient (rS) of each system (an
ear-tag accelerometer (ET) system) and a noseband sensor (NB) with RumiWatch Converter versions
V0.7.3.36 (RWC1), V0.7.4.5 (RWC2), and V0.7.4.13 (RWC3)) for rumination. The parameters are shown
separately for a temperature–humidity index (THI) of <68 and ≥68 for a direct comparison.

Parameter and System THI R2 RMSE CCC rS

ET
<68 0.90 1.06 0.95 0.95
≥68 0.59 1.42 0.71 0.71

RWC1 (NB)
<68 0.94 0.89 0.97 0.95
≥68 0.73 1.14 0.83 0.75

RWC2 (NB)
<68 0.94 0.89 0.97 0.95
≥68 0.73 1.14 0.83 0.75

RWC3 (NB)
<68 0.93 0.90 0.97 0.94
≥68 0.90 0.70 0.94 0.83

The correlation coefficients presented in Table 4 were higher when the THI was below
the threshold of 68 for all systems. The RMSE values for the ET, RWC1, and RWC2 were
lower when the THI was <68, but for RWC3, the RMSE was higher. According to the
parameters presented, the performance of the ET was most affected by environmental
conditions (high THI), while RWC3 was the least affected. There was no difference between
RWC1 and RWC2, and both showed better results when the THI was <68. However, these
results must be interpreted with caution, as half of the data at a THI ≥68 were collected in
the evening hours, which could also influence cow behavior and eventually the sensors’
performance.
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4. Discussion
4.1. Comparison of Different Sensor Systems

The results of this study reveal some differences in performance among the investi-
gated systems across different time resolutions. Notably, there was no difference between
RWC1 and RWC2 for rumination and lying behavior at both the 1 min and 10 min time
resolutions. This indicates that the software changes between the two versions did not
affect the classification of the behavioral categories “rumination” and “lying”, despite the
implementation of some altered algorithms in RWC2 intended to optimize the detection of
grazing behavior on pasture [22].

In our study, RWC3 performed best at a 10 min time resolution, followed by RWC1/RWC2
and the ET. In contrast, most of the performance parameters at the 1 min time resolution (Table 2)
were highest for the ET, followed by the NB (RWC1/RWC2). However, applying the CA to
1 min data switched this ranking, which will be discussed in the next section. For classifying
lying behavior, both LMs demonstrated very high agreement and correlations with the gold
standard across all time resolutions, whereas the results for lying behavior from the ET were
only moderate.

If sensors are attached to body parts that are directly involved in certain behaviors
(such as legs for “lying” and “standing”), they might classify these behaviors more accu-
rately than other systems, which are placed in a more neutral position (such as the neck or
ear) and therefore need to infer indirectly to the behavior in question. Our data regarding
the classification of “lying”, using two different LMs and one ET, support this assumption.
Furthermore, these findings align with the report by Chapa et al. [7], who noted that the
position of sensors on animals and the type of behavior being classified influence sensor
systems’ performance. It might be worth to note when comparing these systems that both
LMs are tightly attached to the legs, while the ET can turn around to a certain extent,
which might challenge the algorithms that classify activity- and posture-related behavior
even more. Moreover, not only the position on the animal but also the type of sensors can
influence their performance for measuring or predicting certain parameters. The NB used
in our project consists of a pressure sensor and an accelerometer to classify feeding-related
parameters. In contrast, the ET relies on only acceleration data to classify rumination.
However, this system also offers the feature of real-time localization, which is accomplished
by the principle of triangulation. Analyzing localization data together with acceleration
data could be beneficial for classifying “lying”, especially in an indoor setting. This was
beyond the scope of the current study; however, other researchers have already suggested
combining accelerometers with different other technologies to improve the classification
of behaviors for which the detection performance is otherwise low [7]. In general, when
combining several features in one sensor system, factors such as the additional energy
consumption and potentially higher weight of the sensor need to be considered.

4.2. Correction Algorithm

Before applying the CA, the results for the NB (both RWC1 and RWC2) were sur-
prisingly low at the 1 min resolution (CCC = 0.68) relative to the very high agreement
with IVOs at the 10 min resolution (CCC = 0.94). Moreover, Werner et al. [18] reported an
agreement of 91.1% for data at a 1 min time resolution using RWC V.0.7.3.36 (RWC1) for
feeding behavior on pasture (which included grazing, ruminating, and other activities).
When raw data are converted and consolidated into time resolutions of ≥10 min intervals,
the RWC software performs validity checks to classify behavior as rumination only if there
are >30 jaw movements per minute, sustained for ≥3 min with a steady frequency [17]. On
this basis, we decided to apply the CA, which we typically used for 1 min time resolution
data from LM1 [13,14], to the NB data as well. Ledgerwood et al. [14] demonstrated that
using this type of CA yields more accurate results for classifying lying behavior with LM1.
Because rumination also occurs in continuous bouts, and considering the validity checks
performed by the RWC software, we hypothesized that applying the same CA used for
LM1 data could improve the NB results at the 1 min time resolution.
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While we acknowledge that rumination can occur for only ≤1 min—such as when
a cow is interrupted for any reason—we consider these instances less likely than the
misclassification of eating as rumination by the system. The findings of this study support
this assumption because the results for RWC1 and RWC2 improved significantly after
applying the CA to the 1 min time resolution data. Unexpectedly, the CA did not improve
the results of the ET at the 1 min time resolution. This may suggest that the ET was missing
entire bouts of rumination rather than misclassifying single minutes of rumination, as the
CA would have corrected for the latter.

Applying the CA did not result in substantial changes for the classification of lying
behavior, neither for the LM2 nor for the ET. Regarding the two different LMs, the CA has
already been proven as beneficial in prior studies using LM1 for detecting “standing” and
“lying” but did not improve the results of the LM2. One possible explanation for this could
be found in the different logging intervals, as the LM1 was set to log once a minute and the
LM2 had a logging frequency of 10 Hz. Leg movements, such as kicking within a minute,
can be detected and taken into account with a high logging frequency, but lead to erroneous
classification at a lower logging frequency when occurring at the moment the recording
takes place. One possible explanation why the CA did not improve the results of the ET
could be that this system was missing entire lying bouts rather than misclassifying single
minutes, as described for the classification of rumination.

Further exploration of the usefulness of CAs at different time intervals could be
beneficial if the NB is to be used for classifying rumination behavior at a 1 min time
resolution. In general, this kind of CA might be applicable to any behavioral categories
that usually occur in longer bouts, so it could be useful for researchers working with other
sensor systems and animal species. We cannot draw conclusions on whether this CA might
improve the classification performance of other ET systems at a 1 min time resolution, as
their proprietary algorithms most probably differ from the ones used in our study.

4.3. Comparisons with Other Validation Studies

Compared with previous validation studies conducted under confined conditions [9,10],
the ET showed lower agreement with visual observations in the current study. However,
it is important to consider the time resolution of the data: the previous validations used a
1 h time resolution, whereas the current experiment utilized both 1 min and 10 min time
resolutions. Additionally, we used the original algorithms developed for detecting rumination
in cows in a barn environment without adapting them for use on pasture. This approach
was chosen to facilitate comparison with other studies and to evaluate the system as it was
designed. However, if more research were carried out with this ET system on pasture, it might
be valuable to develop improved algorithms for that purpose. These findings can also be
relevant for other ear-tag-based systems that were developed under housed conditions and
could be used on pasture as well.

Compared with the results reported by Steinmetz et al. [22], who validated the NB
using RWC V.0.7.4.5 (RWC2) at a 1 min time resolution under confined conditions and
achieved an SE, SP, and AC of 95.3%, 92.3%, and 93.3%, respectively, our study yielded
slightly lower performance (91.5%, 91.4%, and 91.4%, respectively). However, after ap-
plying the CA, the results improved to 93.6%, 98.1%, and 95.8%, respectively. To our
knowledge, no other study has evaluated this converter version under grazing conditions
for rumination or lying behavior.

Norbu et al. [20] conducted an experiment to assess the performance of RWC versions
V.0.7.3.36 and V.0.7.4.13 under both confined and outdoor conditions using a 10 min time
resolution. Although rumination behavior was not considered in their study because of
insufficient observation periods, their findings on feeding-related parameters (prehension
bites, mastication chews, and total jaw movements) indicated that RWC1 performed better
than RWC3. Interestingly, in housed cows, RWC3 performed better than RWC1. On
the basis of these results, it could be hypothesized that divergent classification of jaw
movements may lead to varying performance between different converter versions and
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housing conditions in measuring rumination times. In our study, RWC3 performed better
than RWC1 at a 10 min time resolution, whereas at the 1 min time resolution, we could not
find a difference between RWC1 and RWC2. RWC3 does not offer the option to classify
data at a 1 min time resolution.

In the current study, only minor differences were observed between RWC1 and RWC3 in
most calculated parameters (CCC, rS, and RMSE), with the coefficient of determination for
RWC1 showing high agreement (R2 = 0.88) and that for RWC3 showing very high agreement
(R2 = 0.92) with the IVOs at a 10 min time resolution. The difference between these two
converter versions was even more pronounced under heat stress conditions (R2 = 0.73 vs.
R2 = 0.90). Li et al. [23] found very high correlation and agreement (r = 0.97, CCC = 0.96)
between visual observations and the NB using RWC3 for identifying rumination chews per
10 min interval; however, they did not calculate rumination times to compare the performance
at different time resolutions.

This study closes the gap in the direct comparison of the performance of the three
latest converter versions in measuring rumination time in dairy cows on pasture. On
the basis of the results, the appropriate converter version can be selected according to
the required time resolution. For 10 min time resolutions, RWC3 is the best choice for
measuring rumination. However, for a 1 min resolution, RWC1 or RWC2 may be preferable,
especially when applying a simple CA, as used in this study. The choice of RWC version
should also consider which other parameters (e.g., grazing) are of interest for a specific
project. Regarding lying behavior, the three converter versions can be used interchangeably,
according to our results.

4.4. Effects of Environmental Conditions on Sensors’ Performance

By dividing the 10 min dataset according to the environmental parameters of ambient
temperature and relative humidity (converted into the THI), we tried to investigate the
influence of weather conditions on the performance of the systems. Pinto et al. [39] reported
that higher respiration rates in cows with a THI of ≥68, both in standing and lying positions.
Although we did not measure the respiration rate in the current study, it seems reasonable
that more frequent or pronounced respiration, or even panting, could affect the head and
ear movements of cows, thereby influencing the classification accuracy of sensor systems.
Additionally, Dougherty et al. [41] noted that head and ear movements in grazing cows
increased with higher fly numbers. While we did not objectively measure fly load in this
study, we observed more defensive movements involving the ears, head, and tail on hot
summer days, leading us to hypothesize that these increased movements could account for
the inferior performance of both systems during time intervals when the THI was ≥68.

The fact that the ET system’s performance was more strongly influenced by these
environmental conditions than the NB slightly supports the assumption above. The classifi-
cation of rumination based on patterns of regular ear movements could be more affected
by defensive ear and head movements than classification based on pressure differences
caused by chewing, measured directly at the nose ridge (as carried out by the NB). Notably,
however, if a cow stops ruminating to chase away flies with its nose or to lick its body
because of itching, the NB’s classification of rumination could also be impaired.

Weinert-Nelson et al. [21] investigated the performance of the NB using two different
converter versions, V.0.7.3.2 and V.0.7.3.36 (RWC1), under thermoneutral and heat stress
conditions in housed cows. Although they observed some differences in classification
performance based on the type of behavior (eating, ruminating), converter version, and
THI, they concluded that the NB could accurately quantify eating and rumination times in
confined cattle, even under heat stress conditions. By contrast, our current data suggest
an influence of heat stress on sensors’ performance, varying by sensor type (ear-tag vs.
noseband) and converter version. The NB using RWC3 seemed most robust against heat
stress conditions, with only a 3 percentage point reduction in CCC, whereas the ET was
most impaired, showing a 24 percentage point reduction in CCC. Contrary to Weinert-
Nelson et al. [21], our study observed a 14 percentage point reduction in CCC for RWC1.
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This difference may be attributed to the different housing conditions (pasture vs. confined),
as heat stress may more significantly influence cows’ behavior on pasture due to factors
like direct sunlight or flies, as previously mentioned. Additionally, minor differences in
THI calculations and definitions of heat stress between studies could contribute to these
variations. Furthermore, in our study, half of the data that were classified as THI ≥68 were
recorded in the evening hours, after the evening milking. This was not carried out with
the aim of comparing morning and evening hours but to collect more data in total. We
have to acknowledge that a possible effect of the time of the day on cow behavior could
also affect the sensors’ performance, but we consider our dataset to be not suitable for
investigating the effect of the time of the day. Therefore, our findings regarding the sensors’
performance under heat stress conditions need to be interpreted with caution, as they might
be influenced by the inclusion of evening hours.

In conclusion, it appears that the performance differences among the systems can be
attributed to behavioral changes in the animals under heat stress, fly load, and probably
also diurnal patterns of behavior. We did not investigate the performance of the sensor
systems under housed conditions with and without heat stress and at different times of the
day. Therefore, the findings of this study provide only initial insights into the performance
of sensor systems under heat stress conditions on pasture. These results underscore the
importance of validating sensors under different environmental conditions. This is a crucial
consideration when conducting studies on heat stress in cows, especially when animal
behavior is classified using PLF technologies.

4.5. Observation Strategy

The observation strategy using a drone to record video footage proved advanta-
geous because it eliminated the need for installing stationary cameras on the pasture and
minimized the influence of human presence on cow behavior. However, as previously
mentioned, habituation to the drone was necessary to ensure that the cows’ behavior re-
mained undisturbed, and this was conducted prior to the start of the experiment. Using
a drone also allowed for quick and effective adjustments to the camera angle, which was
particularly useful when the animals were moving or overlapping.

For analyzing the video footage, this observation strategy facilitated an efficient
workflow because there was only one video to watch at a time, with all cows mostly visible
in the same footage. The only exceptions occurred when it was not possible to adjust the
camera angle quickly enough.

One shortcoming of this technique is that it did not allow continuous monitoring of
the entire period the cows spent on pasture; this is because the drone’s batteries needed to
be changed after approximately 20 min of flight under practical conditions (e.g., wind, the
time for returning to landing place included some buffer). Continuously recording video
footage would require at least two drones and two pilots, which was not feasible for this
project.

In this project, indirect visual observation was used as the gold standard to classify
animal behavior for evaluating different sensor systems attached to the animals. Another
promising and non-invasive approach to classify animals’ behavior is the use of computer
vision techniques, which have been developed and improved recently. However, at the start
of this project, computer vision technology was not as widespread and advanced as today
and it was not included as an objective of this study. Nevertheless, the data from different
sources collected in this study might be useful for further projects dealing with computer
vision approaches. Current challenges regarding the application of computer vision models
in a dairy farm setting are, for example, individual animal identification, heterogeneous
light conditions, and varying camera perspectives, often requiring finetuning of models
if the viewing angle changes considerably. In the current study, the possibility of flexibly
moving around with the drone while recording facilitated changing the camera’s perspec-
tive as needed for the subsequent labeling process by human observers, according to the
movements of the cows on pasture. Recording the entire group of study cows together
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with one camera was the purpose of our observation strategy for the previously mentioned
reasons. Consequently, a major part of the video footage of this study contains unfavorable
conditions for training computer vision models in the first place, as the light conditions
and camera perspectives change frequently.

One important topic that is currently addressed by many researchers in the field of
computer vision is individual animal identification. In this project, identifying animals and
subsequently assigning behaviors to each cow individually was crucial for the evaluation
of the different sensor technologies. For the reliable identification of cows by the human
observers, numbers were painted on their gluteal regions with hair dye; therefore, whether
and to what extent this material is useful for projects on computer vision might mainly
depend on the specific research question.

To summarize, using video recordings to label animal behavior manually served as
the gold standard for the evaluation of three different on-cow sensors. Although having
collected video footage and a corresponding labeled dataset in this project, we have not yet
used it for research questions regarding computer vision. Nevertheless, especially because
the conditions of our recordings may be challenging for a computer vision model, they
might be helpful for other projects to test and further improve existing models.

4.6. Shortcomings

As previously mentioned, only 12% of the total analyzed data represented rumination
time and 25% represented lying time. All systems showed very high specificity for both
parameters, indicating that they performed well in detecting the absence of the behavior in
question. However, when interpreting the correlation coefficients, it should be noted that
the majority of the data consisted of “not ruminating” and “not lying”, which could bias
these results.

Data loss was an issue that occurred to varying extents and for different reasons across
the sensor systems. One significant weakness of this ET is its susceptibility to data loss
due to the data transmission protocol and a lack of internal memory capacity. Raw data
are sent in small packages wirelessly to the receivers using the 2.4 GHz frequency band.
If any interference occurs, such as with the drone used in this study, the data package
cannot be delivered or cached inside the ear-tag. Although the drone in this project also
communicated using the 5.8 GHz frequency band, minimizing interference, this could still
pose a data integrity issue on farms, where many devices operate on the 2.4 GHz band.
Kulkarni et al. [42] discussed strategies for avoiding interference issues in wireless sensor
networks, which could be relevant in this context.

Additionally, data loss from the ET occasionally occurred during the trial for several
minutes whenever the connection between the ear-tags and receivers was impaired.

Regarding the NB and LM2, data loss is generally not a problem due to data trans-
mission, as the raw data are stored on an internal micro-SD card. However, data loss can
occur when the battery life is shorter than expected. Although the manufacturer states that
the two combined 3.6-V lithium-metal (Li-SOCl2) batteries should last for approximately
100 days of raw data logging, in this study, battery life was approximately 40 days. This
unexpected battery failure led to data loss on one of the experimental days for most of the
sensors of the NB and LM2 system, resulting in the exclusion of that entire day’s data from
analysis to keep the dataset balanced across all systems.

Several tasks can be carried out with the RumiWatch Manager software during raw
data collection, such as checking the time synchronicity, verifying that the device is still
logging, fetching summaries, and monitoring the live view of pressure differences measured
by the pressure sensor and the tilt of the animal’s head measured by the accelerometer (the
“animal live” view). These tasks vary in energy consumption, which can cause differing
battery runtimes, depending on the intensity of monitoring during a measurement series.
In this study, all RWS units were checked twice daily during the measurement periods,
which might partly explain the shorter battery runtime. In general, the state-of-charge
value of Li-SOCl2 batteries is hard to estimate, as, due to their flat discharge curve, Li-
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SOCl2 batteries will keep a constant voltage well after 90% of discharge [43]. Therefore,
it is recommended to keep records of the number of days each battery has been used for
logging to better estimate the remaining battery life. This is an important consideration
when working with this system. Further technical studies on the energy consumption of
the system under various conditions and management routines might help provide more
accurate recommendations on battery lifetimes.

No data loss occurred for the LM1; data were successfully retrieved for all study
periods. Nevertheless, data from specific days with extensive data loss from the other
systems were also excluded from the LM1 datasets to avoid biased results due to major
differences in sample size. Although the data loss in this study is a shortcoming, it also
provides valuable experience in combining and handling sensor systems.

Because the study design focused on using different sensor technologies on pasture,
there were no corresponding experimental periods under housing conditions. Therefore,
we cannot provide a direct comparison between the performance of the different systems
in the barn and on pasture. Additionally, the possibilities for interpreting the influence of
heat stress on sensor-based classification of animal behavior are limited.

Understanding the capabilities and limitations of sensor systems is crucial for their
application in research and practice. The new insights gained from this project on using
sensor systems in dairy cows on pasture contribute valuable knowledge to the scientific
field of evaluating PLF technologies.

5. Conclusions

This study evaluated three sensor systems for classifying rumination and lying behav-
ior in dairy cows on pasture. We found that the position of the sensors on the animal, the
behavior being monitored, and the time resolution of the classified data are crucial factors
affecting the performance of a system. The results for lying behavior suggest that both LMs
can be reliably used on pasture and should be preferred over the ET for measuring lying
times in grazing dairy cows. For detecting rumination behavior, both the ET and the NB
are generally suitable for use on pasture. However, our findings suggest that there might
be an influence of heat stress on the sensors’ performance, which can differ among systems.
Further studies on pasture should take heat stress and diurnal patterns of behavior into
account.

According to our findings related to the 1 min time resolution data, we recommend
applying a simple CA as described in this manuscript when working with rumination data
from the NB, which may be relevant for future research projects. This study underscores the
importance of validating sensors under different conditions and provides valuable insights
into the factors influencing the performance of PLF tools. Further development of sensor
systems should consider the broadest possible range of environmental conditions and
aim for simplicity and reliability in their use. Additionally, further studies applying these
technologies to investigate research questions on animal health, welfare, and sustainability
in dairy farming are essential. This trend is already emerging in the field of PLF.
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