
Freie Universität Berlin

Department of Mathematics and Computer Science
Institute of Computer Science

Development of Machine Learning
strategies for programming in vitro

Biological Neural Networks

Master Thesis
submitted for the degree of Master of Science in Computational Sciences

by

Ishita Singh

Berlin, October 28, 2024
1st examiner Dr. Mohsen Sadeghi
2nd examiner Prof. Dr. Felix. Höfling

Declaration of Authorship

I hereby declare to Freie Universität Berlin that I have completed the following thesis on

Development of Machine Learning strategies for programming in vitro Biological Neural Net-

works independently and without the use of sources and aids other than those cited.

I declare that the present work is free of plagiarism. Any statements that have been taken

from other writings, whether directly or indirectly, have been clearly marked as such.

Further, I declare that this work has not been submitted to any other university as part

of an examination attempt, either in identical or similar form, nor has it been published

elsewhere.

October 28, 2024

Date Signature

Acknowledgement

To be able to successfully complete this work of research after a long gap of 10 years from

academics has been quite the journey, which therefore calls for special acknowledgments.

First and foremost, my heartfelt gratitude goes to my supervisor and first examiner

Dr. Mohsen Sadeghi for giving me a chance to be part of this project. I would like to thank

him for his enthusiasm for the project, for his encouragement and constant support. Under

his guidance, I was able to compass a huge learning curve and make my contribution to this

interesting field of study.

I would like to thank Prof. Dr. Felix Höfling for volunteering to be my second examiner and

sharing his useful insights on the analysis of output data.

To Jean-Marc Comby, FinalSpark, thank you for answering my queries related to Neuro-

platform and for replacing the organoids promptly when needed.

To my friends at Freie Universität, Berlin, thank you for all the laughter and long-lasting

memories. I am equally grateful my lifelong friends - for their unwavering support and a

constant push to go forward.

To Shrikant and Xiaofan, thank you for rigorously reading my thesis and finding all the

petty mistakes.

Finally, my deepest gratitude goes to my family, who are my foundation, for believing in

me. Your support and encouragement have kept me motivated even during the most chal-

lenging times.

Thank you very much!

ii

Abstract

Neuroplatform is a research platform created by FinalSpark which offers biological ‘mini-

brains’ or neurospheres built on top of multi-electrode-arrays to be used for Wetware Com-

puting. This thesis explores strategies for reinforcement learning on a mini-brain using which

it ‘learns’ to adapt itself towards a target.

This work uses data analytics methods to study neural activity captured from a neuro-

sphere and investigates how the spontaneous activity varies with and without external stimuli.

Experimental results reveal the displacements in Centre of Activity of neurospheres under the

influence of an external stimuli. A target for a neurosphere is calculated using computation

methods such as Principle Component Analysis, Correlations and Jensen-Shannon distance

from historical activity data of the neurosphere. A closed-loop algorithm for reinforcement

learning is executed on the neurosphere which provides positive or negative feedback to it

based on the comparisons with the target value.

Several iterations of the algorithm reveal the learning ability of a neurosphere which

adapted its output gradually towards the target. This research contributes to the field of

wetware computing by offering an algorithm using which an organoid is able to closely repro-

duce its historical activity, suggesting that it has potential to be trained as computational

system. The fact that the organoid responded well to the training algorithm corroborates the

nascent jump towards the implementation of silicon-computing alternatives.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Scope . 2

2 Fundamentals 3
2.1 Wetware computing . 3

2.1.1 Energy efficiency . 3
2.1.2 In vitro neural networks . 3
2.1.3 Learning . 4

2.2 The Neuroplatform . 5
2.2.1 Platform setup . 5
2.2.2 MEA . 6
2.2.3 Stimulation experiments . 6
2.2.4 Neural activity response . 7

2.3 Machine learning . 8
2.3.1 Supervised learning . 8
2.3.2 Unsupervised learning . 8
2.3.3 Reinforcement learning . 9
2.3.4 Closed-loop feedback protocol . 9

2.4 Data analysis and defining targets . 10
2.4.1 Correlation in time series data . 10
2.4.2 Principle component analysis . 11

3 Objective 13

4 Computational Methods and implementation of training algorithm 15
4.1 Initial Experiments . 15

4.1.1 Centre of activity . 16
4.2 Stimulation protocols . 16

4.2.1 Shuffled background stimulation SBS . 17
4.2.2 Controlled stimulation . 17
4.2.3 Controlled Experiment Results . 18

4.3 Output data analysis . 21
4.3.1 Capturing neural activity . 21
4.3.2 Correlation between channel activities 22
4.3.3 PCA . 25

4.4 PCA in learning algorithm . 31
4.4.1 Concepts of probabilities . 31
4.4.2 Comparisons between datasets . 31
4.4.3 Identification of a target . 34

4.5 Closed-loop feedback algorithm . 34

iv

4.5.1 Choose a reference distribution for comparison 34
4.5.2 Stimulation protocol and choosing electrodes 35
4.5.3 Stimulation and distance calculation . 35
4.5.4 Comparison with target and feedback 36
4.5.5 The learning algorithm combined . 37

5 Training results and discussion 39

6 Conclusion 45

A Appendix 47
A.1 Software Development and Integration . 47
A.2 Technology Stack . 47
A.3 Modules . 47

v

List of Figures

2.1 Stimulation and data recording setup at FinalSpark 6
2.2 MEA composition with electrodes/channels . 7
2.3 Classic feedback loop of Reinforcement Learning 10

3.1 Representation of reinforcement learning . 13

4.1 Spikes activity capture in neurosphere . 15
4.2 Stimulation response on channels . 17
4.3 Stimulation protocols on channels . 18
4.4 Controlled stimulations results . 20
4.5 Time-correlation of channels . 22
4.6 Correlation Coefficient matrix (CCM) . 24
4.7 PCA calculations . 27
4.8 Training of unique PCA object . 28
4.9 PCA transformed data . 30
4.10 Histogram plots for PC1 components . 33
4.11 Identification of target distance for neurosphere 34
4.12 Closed-loop feedback algorithm . 38

5.1 Result 1 . 40
5.2 Result 2 . 41
5.3 Result 3 . 42
5.4 Result 4 . 43

A.1 Stimulation example . 48
A.2 Get live data example . 49

vi

List of Tables

4.1 Sample saved activity data for a channel . 21
4.2 Sample restructured data for PCA . 25
4.3 Selection probabilities of electrodes . 35

5.1 Summary of the 4 results . 44

A.1 Jupyter notebooks list . 49
A.2 Numbered electrode in each sub/neurosphere of an MEA 49

vii

Introduction

In recent years, Artificial Intelligence(AI) has emerged as a key enabler of scientific discovery

by helping scientists accelerate their research1. With latest systems like chat-bots, relying

heavily on Artificial Neural Network (ANN) to understand and effectively generate natural

language, the need to explore the underlying behaviour of Biological Neural Network (BNN) is

unprecedented. Moreover, the advancement of technology with AI are facing serious challenges

of enormous power consumptions and are steering the world towards an unforeseen energy

crisis. The computational cost of smart chatbots such as ChatGPT21 is immensely high.

Therefore, there is a need to search for fast-computing silicon-alternatives.

The human brain offers high level computation and pattern recognition within fraction of

seconds by using the least amount of energy2. As such, one of the most important questions

posing in front of the research community is about our abilities to create artificial biological

systems that can harness the human-brain-like capabilities of high-speed computing with the

least amount of energy consumption. Can we create BNNs which can ‘learn’ and reproduce

outputs while potentially lowering the computation costs? The pertinent question is - are we

ready to replace the ‘silicon’ processors by ‘bio processors’ in future?

A BNN can be created using a network of brain organoids which are miniature, simplified

versions of brain, cultured artificially from biological cells and tissues. Wetware Computing

refers to the concept of using these BNN systems together with Organoid Intelligence25,

a concept to impart AI to these living systems, so that they can ‘learn’ to perform some

computational tasks. These fields are highly interdisciplinary, combining neuroscience, stem

cell biology, bio-engineering, and computer science and are currently under research with

numerous ongoing projects.

1.1 Motivation

BNN has been a dynamic field of research for understanding neural activity and cognition.

While brain organoids are being used for modelling neurological diseases7, together with

Machine Learning, datasets from neural activity can help in drug screening as well8, by

identifying patterns and classifying neural states. Synthetic cognition techniques, integration

with AI, modeling neural dynamics are few of many fresh research streams which have been

slowly gaining momentum.

For the past couple of years FinalSpark11, a biotechnology research company based in

Vevey, Switzerland, has paved way for the futuristic vision of closing gap between biological

and silicon digital computation. The company has set up a research platform to investi-

1

1. INTRODUCTION

gate and train systems of Biological Neural Network also known as neurosphere6. They have

developed a hardware and software system called ‘neuroplatform’5 that allows for electro-

physiological research on these neurospheres. Experiments can be performed to interact with

biological systems using electrical signals through Multi-Electrode Arrays (MEA), the re-

sponses of which are saved and accessed over time. Once charted, the path from Digital

processor to Bioprocessor can unleash unbound, energy effective and scalable computational

abilities. This work motivates from the exciting opportunity that the Neuroplatform offers to

apply concepts of Machine Learning for the training in vitro BNNs.

1.2 Objective

The objective of this work is to lay grounds for development of Machine learning (ML)

techniques for neurospheres. The project aims to investigate stimulation protocols which can

cause a desired change in the activity of a neurosphere. The data collected from neurosphere

is analyzed using various methods like correlation, to extract a ‘target’ information such as

a pattern. This ‘target’ can then used by a ‘controller’ created for reinforcement learning.

The controller tries to train a neurosphere in iterations by giving feedback in each iteration

in order to generate more reproducible results. This work also aims for creating a reusable

interface and computational package to facilitate future continuation of the research.

1.3 Scope

This research work has been carried out under the following scope :

• to understand the core FinalSpark system5, stimulation methods, input-parameters and

output activity data.

• to carry out stimulations using different protocols in order to observe the neural activity

changes and to identify metrics to explain the neural activity.

• to explore data analytics techniques like correlation in order to correctly quantify the

changes in neural activity.

• to implement a closed-loop feedback algorithm which prepares the system for reinforce-

ment learning.

• to develop a modular code package with the functions to support future work.

2

Fundamentals

This introductory chapter showcases the main concepts underlying this work including the

basics of wetware computing and machine learning. It exhibits references from the past

and ongoing work in the subject field and also covers the fundamentals of the FinalSpark’s

neuroplatform setup for research5.

2.1 Wetware computing

Wetware computing is a field of study intersecting biology, neuroscience and computer sci-

ence which makes use of biological systems to perform computational tasks. Instead of silicon

based processors(hardware) and traditional programming(software), wetware systems consist-

ing of living cells and tissues are leveraged to solve a computational task14. Wetware has the

hardware characteristics of electronic devices and computational characteristics of a software.

The cells and tissue are rich in neurons which act as the building block of network through

which the information flows in the wetware. Wetware computing is the field that attempts to

harness the computation capabilities of neurons in network in order to surpass the traditional

computational systems.

2.1.1 Energy efficiency

A human brain consumes 20W power for its 86 billion neurons and their activity17. On the

contrary world’s current fastest supercomputer Frontier, built with around 40,000 GPUs, con-

sumes around 21 MW of power16. OpenAI ChatGPT ’s21 single query consumes an estimated

2.9 Wh which is 10 times that of a google search query. In a recent study, the energy re-

quirements of an Artificial Super-intelligence-computer (ASI) is estimated as 2.7 GW18. It is

estimated with the help of an “Energy Requirement of Artificial SuperIntelligence equation

(ERASI)” which makes use of brain’s energy use, ASI’s computational power, AI superiority

as few of many variables. Even though a working silicon-brain replicating the human-brain

capabilities is still far from physical reality, this comparison correctly shows the alarming en-

ergy demands in near future. The same work on energy requirements also concludes biological

computing to be about 9x108 times more energy efficient than silicon computing18.

2.1.2 In vitro neural networks

Wetware computing works on the idea of creating a organic brain on a chip, where tens of

thousands of neurons are put in a dish and micro-electrodes are added to act as an interface for

3

2. FUNDAMENTALS

sending and receiving signals to and from the neurons. These neurons grow over time and form

a dense neural network inside the chip. They can be trained using simple, repetitive signals

which gets reinforced by getting updates through a closed-loop feedback cycle. There are

many ongoing works in the field of Wetware computing currently, of which all are well-knit

in the interdisciplinary fields of biology, neurobiology, physics, computer science, cognitive

learning etc.

One of the recent works in creation of this organic brain is DishBrain19, a system to harness

the adaptive computation of neurons in a structured environment. In vitro neural networks

were ‘grown’ on MEA in silico computing chips using neural culture, and were subjected to a

stimulated game world of ‘Pong’. Closed-loop structured feedback was provided by tapping

into electrophysiogical contact between the BNN and the silicon system. In response to the

feedback, the cultures were able to self-organise their activity to display ‘intelligence’ over

time and learn according to the goal-oriented feedback. This paper also conveyed that a

feedback was essential for learning by the BNN, without which the responses produce was

much random.

Another ongoing work20 investigates the ability of neurons to learn to control a F22

Raptor aircraft simulation in real-time feedback system. Two out of 60 electrodes on a

planar MEA with rat neurons are selected to ‘pitch’ and ’roll’ the aircraft through a high

frequency stimulation. The acquired response data is then used to update neural ‘weights’

which control the ‘pitch’ and ‘roll’ for the aircraft. It is observed that after several minutes

of flight, the network begins to correct errors in the simulated flight path to a levelled flight

path, thus showing that the neurons were able to transmit electrical activity through their

network as well as adjust their response to be able to reach desired weights. This work is

ongoing with attempts to use more than two electrodes on broader scale and to solve the

problem of overfitting arising with longer flight duration.

2.1.3 Learning

Neuroplasticity is defined as the “ability of the nervous system to change it’s activity in

response to intrinsic or extrinsic stimuli by re-organising it’s structure, functions or connec-

tions”22. Inducing neuronal plasticity into a BNN to achieve Organoid Intelligence25 requires

elements such as a training pattern to induce memory, a feedback loop to accomplish training,

ML and statistical algorithms to quantify organoid function changes, and analysis of responses

to determine a desired feedback.

Electrical stimulus has been used extensively over the years to achieve neuroplasticity. In

their paper, Bakkum et al 20084 designed an adaptive training algorithm to train neuroplas-

4

2. FUNDAMENTALS

ticity and improve an animat’s23 performance; the animat being a motor output configured to

move in a 2-dimensional plane controlled by a cortical neural network MEA. The movement

of the motor output was mapped with the help of a population coding, termed as Centre of

Activity (CoA) and defined as vector summation of responses on each electrode weighted by

the location of the electrode.

A closed-loop-training consisted of capturing neural activity, movement of the motor out-

put, assessment of performance by computer, to adjusted electrical stimulation, and back to

capturing neural activity24. As mentioned, movement of the motor was mapped with CoA

of probe-electrodes. The next stimuli were adjusted according to the behavior of the motor

output; with a random shuffled electrical activity to keep the same output behavior, or with

a more controlled activity to change the output behavior. They were able to shift the neural

activity towards the target with training of the neural plasticity of the animat.

2.2 The Neuroplatform

This section is an introduction to the basics of neuroplatform5, a remote platform developed

by FinalSpark for research in Wetware computing. It enables remote electrophysiological

experiments on neural organoids and capturing of the neural responses. The system can be

accessed via an Application Programming Interface (API), and a published library provides

methods to evaluate data and interact with the system through experiments.

The biological network used are spheroids called ‘Neurospheres’ or ‘Forebrain Organoids’

(FOs). Experiments can be performed with configurable parameters such as amplitude,

and the output data is stored with metadata such as timestamp and spikes per minute.

Also, spontaneous activity from FOs can be visualized live on their website10. The platform

can be accessed programmatically through Datalore server9 on which Jupyter notebooks can

be used to trigger experiments and access data with the help of classes defined in their

neuroplatform.py interface.

2.2.1 Platform setup

A simple illustration of the neuroplatform setup is provided in Fig. 2.1.

• The neurospheres on a multi-electrode-array are held in an Incubator.

• The MEA is controlled by an Intan Controller for sending and receiving electrical signals.

• With the help of python notebooks, triggers are generated in a Raspberry Pi to send

input electrical signals to the neurosphere.

5

2. FUNDAMENTALS

• An Intan Software continuously collects out response read at electrodes and writes it to

an InfluxDB database.

Figure 2.1: Stimulation and data recording setup at FinalSpark, source11

2.2.2 MEA

An MEA is a device made up of multiple closely spaced electrodes, which can interact with

the organoids and measure electrical signals from tissues likes neurons or muscle cells. The

‘electrodes’ are also referred as ‘channels’ interchangeably. The neuroplatform consists of

four MEAs. Each MEA has four FOs(neurospheres) and each FO is connected with eight

electrodes as shown in fig. 2.2a. Each neurosphere is also referred as ‘sub’ in this work for

ease of identification. During this project, the FU research group is given access to one MEA

at a given time through a secure accesstoken, which is unique. This ensures concurrency of

experiments by avoiding conflicts among research groups. Electrodes of an MEA are arrange

in a numbered position as shown in fig. 2.2b. The numbered channels help to visualize the

electrical activity in a 2-dimensional pictorial way. Even for a changed organoid, the electrodes

numbering stay the same. The pre-numbered channels in each sub are also tabulated in A.2

for reference.

2.2.3 Stimulation experiments

Stimulation experiments can be done by sending electrical signal to electrodes on MEA with

the help of a Raspberry Pi. The neuroplatform interface exposes methods with some param-

eters to conduct experiments on the neurosphere.

6

2. FUNDAMENTALS

(a) (b)

Figure 2.2: (a)MEA-2 comprising of 32 electrodes/channels (b) One neurosphere/Forebrain
Organoid in MEA-2. Dots inside the inner sphere are electrodes/channels, pre-numbered and
arranged in same positions, source-10

• StimParam class sets the parameters for stimulations such as stimshape (biphasic or

triphasic), intensity (0.1uA to 20uA) and electrode number.

• Trigger class sets the number of triggers such as single-start for all electrodes, or a

pulse-train to stimulate electrodes one after the other. There can be a maximum of 16

triggers set at one time

• IntanSofware class sends the triggers to the electrodes with StimParam object with the

help of the Raspberry Pi. The neurons in neurosphere receive the electrical pulse through

electrodes and can react in the form of response electrical pulse which is captured by

the IntanSofware class.

2.2.4 Neural activity response

An Air-Liquid-Interface (ALI) system captures the activity on the channels by measuring the

action potential, which is a rapid sequence of changes in voltage across a membrane5. The

IntanSofware continuously records the electrical activity from all electrodes in an MEA at

a sampling rate of 30KHz and saves them in an InfluxDB Database. Only significant events

which cross a certain threshold T are recorded in the database. A ‘spike’ is a ‘threshold

crossing’ which gets captured when the voltage at an electrode crosses T. At every 3s, T is

also updated to keep the thresholds updated with the neural activity.

Database class is used to access the recorded activity data for a timestamp or for a specific

channel(electrode) and trigger information. The data stored in the system is recorded in the

following format:

7

2. FUNDAMENTALS

Spike: Time, Channel, Amplitude

Spike count: Time, Channel, Spike count per minute

In section 4, the stimulation protocols and analysis methods used on neural activity data used

in this work is covered in detail. Experiments on the Neuroplatform MEA can be performed

by booking a time slot to stimulate neurosphere. The response data is available to be 24× 7

from the platform.

2.3 Machine learning

ML26 is the branch of Artificial Intelligence which focuses on development of algorithms

and statistical models which enables digital systems to learn from available data without

being explicitly programmed. ML for BNN focuses on development of algorithms to achieve

Organoid Intelligence25. With recent breakthroughs in Deep learning27 and Reinforcement

learning , ML is being employed in numerous sectors such as technology, automobile, cyber-

security, business and finance, healthcare and medicine to achieve AI in their function. There

are several types of ML paradigms depending on the ‘learner’ machine, the training data

and goal of the learning problem; many of them often overlap with one-another in terms of

implementation and popularity.

2.3.1 Supervised learning

Supervised learning is the process of using prior experiences to gain knowledge. The learner

is trained with the help of labelled data, and set of correct actions (mapping from input to

output) acting as a ‘teacher’. The learner reads from this mapping and then predicts output

of new data. It is a most commonly used type of ‘task-driven’ ML in order to predict values

for new data.

2.3.2 Unsupervised learning

Under unsupervised learning , the learner has to create an objective function by identifying

patterns, structures or relationships from unlabelled training data. There is no mapping

provided as a ’teacher’. These methods are ’data-driven’ and are much essential for making

sense of large complex datasets without any prior knowledge of relationship in them.

8

2. FUNDAMENTALS

2.3.3 Reinforcement learning

Reinforcement learning(RL) is a ML technique in which a machine learns through a trial-

and-error learning process by directly interacting with it’s surroundings. The machine is not

taught on which response to send, instead it is given feedback and gets rewarded on every

response. The closer the response is to the target, the higher is the reward. The response is

used to ‘reinforce’ the behaviour of the machine and thus, it learns by maximizing the reward.

Reinforcement Learning is different from Supervised Learning as instead of returning the

correct actions from an available mapping, the learner uses rewards and punishments for

determining the correct response. Reinforcement Learning is different from unsupervised

learning in terms of goals. Goal in unsupervised learning is to find patterns in data, while in

Reinforcement Learning, the goal is to maximize the total reward.

In RL algorithms, the machine is referred to as an ‘agent’ which tries to learn and create

knowledge. An ‘environment’ is the surrounding of the agent, with which it interacts. All

agents should have concrete goals, therefore Reinforcement Learning has a much larger in-

tegration with statistics, optimizations, and mathematics which help in creating these goals

by dividing them into sub-problems and solving each of the sub-problems individually. There

are several techniques which have contributed to computation of these goals such as Dynamic

Programming, Monte Carlo methods, temporal-difference learning, etc.28.

RL in biological neural networks

Animals, including humans, learn from their environment through trial and error and by

adjusting their behaviour to maximize rewards and minimize punishments. The nervous

system of humans and many other species have influenced many aspects of reinforcement

learning algorithms. While Artificial Neural Network rely heavily on methods such as Deep

Learning to understand the intrinsic manifolds of the network’s activity27, it is quite logical

to apply Reinforcement Learning concepts to train BNNs to a goal-oriented tasks. These

concepts are being widely used to process large datasets of neural activity to help identify

patterns, create policies to provide rewards or punishments for training the agent.

2.3.4 Closed-loop feedback protocol

An important concept in RL is to iteratively provide feedback to the agent in terms of rewards

which make the agent learn to produce correct results. This is achieved by creating a closed-

loop in which feedback is sent back to the agent and the agent adjusts the actions accordingly.

A simple example of a closed-loop feedback system design is shown in figure.2.3. The Agent

performs an action At on the Environment which moves to a new state St. Depending on

9

2. FUNDAMENTALS

Figure 2.3: Classic feedback loop of Reinforcement Learning29

the correctness of the state St, the environment provides a feedback reward Rt to the agent.

Based on the positive/negative reward Rt, the agent is encouraged/discouraged to take actions

similar to At in upcoming steps. This feedback process is implemented for a number of

iterations, so that the agent learns to maximize it’s positive rewards iteratively.

A feedback cycle can also be open-loop , in which there is no impact of output on the

agent’s next action. These require manual intervention and are not automated, but are useful

in data analysis and providing insights on agents functionality. The iterative open-loop is

executed and large amounts of output data can be collected and recorded for subsequent uses,

without having any impact of outputs on inputs in next cycle.

2.4 Data analysis and defining targets

One of the prominent tasks in RL is to define target/goal using a training data (recorded

using open-loop setup). In most cases of learning algorithms based on unlabelled data, the

environment is model-free, i.e. not much information is known about it. The only information

available is in the form of large previously recorded dataset. In BNN, the data available is the

neural activity which has been recorded over a longer period of time. The exact computation

which happens inside the network, is not known. Therefore, it is imperative to use some data

analysis techniques to identify patterns in data and define targets for the learning algorithm.

2.4.1 Correlation in time series data

Correlation is the measure of strength of a linear relationship between two variables in a

dataset. The most common way of correlating multi-variate data is by calculating a cor-

relation coefficient between its variables. The absolute value of the correlation coefficient

gives the strength of the relationship between these variables; a larger coefficient represents a

stronger relationship. Out of several coefficients available in statistics, the most widely used

are Pearson’s correlation coefficient ‘r’ and Spearman’s rank coefficient. In this work, we use

10

2. FUNDAMENTALS

Pearson’s ‘r’ or corr(X,Y)33 defined in eq.2.1 with Cov(X,Y) is the covariance between X

and Y ; σ(X) and σ(Y) are the standard deviation of X,Y as two vectors to be correlated.

Corr(X,Y) =
Cov(X,Y)

σ(X)× σ(Y)
(2.1)

The value of the correlation coefficient r ranges between -1 and 1. If r > 0, X and Y are

positively correlated i.e. increase in X, increases Y and vice-versa, for r < 0, X and Y are

negatively correlated and r = 0, X and Y are not correlated, i.e. they do not have any

relationship with each-another.

Two time series data can also be compared using Pearson’s r correlation coefficient to

measure how similar they are with each other. In a cross-correlation of time series, they are

shifted onto each other with different lag times. In the graph of cross-correlation, a prominent

peak occurs at the lag-time at which there is maximum correlation (similarity) between the

compared series. The existence of this prominent peak suggests existence of a relationship

between two time series. This work uses time-correlation to compare neural activity from

different channels in order to find level of similarity between them.

2.4.2 Principle component analysis

Principle component analysis30 is a statistical method of dimension reduction in data, in

which information comprising of several variables are combined into fewer variables known as

Principle Components (PCs)32. In a multivariate dataset, the PCs are calculated using total

variance of original variables and represent the underlying interpretation of the dataset.

The PCs represent the directions of the data which explain a maximum amount of variance.

They are constructed as linear combinations functions of initial variables. There exists ‘n’

PCs for a ‘n’ dimensional dataset. However the first Principle Components is the one which

captures maximum variance of the dataset. The steps to calculate PCs for a given dataset

are:

• Standardization of dataset with variables, so that each of them contributes equally to

the analysis. Mathematically, this is achieved by removing the mean and dividing by

the standard deviation for each value of each variable.

Xstandard =
X − µX

σ(X)
(2.2)

where µX = mean of X, σ(X) = standard deviation.

• Covariance (Cov(X,Y)) of each pair of n variables is computed and saved in a n × n

11

2. FUNDAMENTALS

Covariance Matrix to observe interdependence of variables. Covariance is calculated

using mean and count of values.

Cov(X,Y) =

∑
(X − µX)(Y − µY)

k − 1
(2.3)

A sample covariance matrix for 3-dimensional dataset is shown below. The entries in

the matrix are symmetric with respect to the main diagonal.
Cov(X,X) Cov(X,Y) Cov(X,Z)

Cov(Y,X) Cov(Y, Y) Cov(Y, Z)

Cov(Z,X) Cov(Z, Y) Cov(Z,Z)


• The eigenvectors of the Covariance matrix gives direction of most variance and their

corresponding eigenvalues form the Principal Components. By ranking the eigenvalues,

from highest to lowest, the principle components are found in the order of significance.

• In general a principle component is a linear combination of variables. For example,

principle components of a 2 variable (x,y) dataset are pc1 = a1x ∗ x+ a1y ∗ y where a1x

and a1y are coefficients of contributions of x and y respectively; and pc2 = a2x∗x+a2y∗y
where a2x and a2y are coefficients of contributions of x and y respectively;

• The percentage contribution of PCs in information are calculated by dividing eigenvalue

of component by sum of all eigenvalues. The most contributing PCs are chosen to create

feature vector which has p dimension for p chosen components out of n.

Feature vector = [λ1, λ2..λp]
T (2.4)

• The standardized dataset can be re-casted along these p features and thus reducing the

dimensions of the initial data.

Transformed dataset = Dataset× Feature vector (2.5)

With the neural activity captured in BNNs on a MEA, PCA can be utilized to identify the

contribution of electrodes in the activity and help in creating target patterns for learning

algorithm. The electrodes/channels can be treated as variables for the dataset, and the 8-

dimensional dataset can be reduced to lower dimensions.

12

Objective

With the fundamental concepts in Chapter 2, the objective of this work is to lay grounds for a

reinforcement learning technique with a closed-loop-feedback algorithm for the neurosphere.

The aim is to investigate strategies with which a learning algorithm can be developed. The

algorithm begins with an input to a FO and trains it to furnish a desired output with the

help of a success/failure feedback. A target pattern is identified using historical activity of the

FO, and the FO should be trained to return the same pattern by adjusting the stimulation

parameters in every training loop. A basic diagram representing the objective of this work

with closed-loop feedback learning algorithm is provided in figure. 3.1.

Figure 3.1: Representation of the closed-loop feedback algorithm for a neurosphere.

The input protocol and parameters for stimulations should be identified by performing

different experiments and observing the subsequent output behaviour. The protocol needs

to be configurable so that it can be re-used across different neurospheres as biologically all

organoids are different and in the current platform, they can last up to 100 days5.

The output data (2.2.4) being captured in the system should be analyzed for underlying pat-

terns in neural activity. Each neurosphere has activity surrounded across the eight attached

channels in MEA and it is also capable of preserving information over time. Hence, techniques

of dimensionality reduction are required to study multivariate dataset and its behaviour over

time. This work specifically investigates the use of Principle Component Analysis in detail.

A quantifiable target should be calculated which can be compared with the results of

the stimulation in each learning loop. Either the average of neural activity over time, or value

of contributions of each channel, etc, can give a suitable target.

13

3. OBJECTIVE

A controller should validate the outcome in iteration and based on deviation from the target

value, should adjust the stimulation input for the next cycle as a feedback.

The iterations should be repeated till a convergence in target is obtained. The feedback

cycle should be designed in a way that it supports multiple neurosphere in MEAs of the

neuroplatform. The interfaces should be made modular and easily extensible.

14

Computational Methods and implementa-

tion of training algorithm

This chapter illustrates the different steps which were performed during the course of research

work. It begins with describing the initial experiments, followed by analysis of neural activity

data, identification of targets for the learning algorithm and finally, the set-up for the closed-

feedback-loop algorithm. Every section includes the implementation details and highlights

the important observations which aid in achieving the objective of this work. The results

from each section supported in deciding the investigation strategy for subsequent steps.

4.1 Initial Experiments

At the start of the research, initial experiments were performed on the neurosphere which

were allocated to the team by FinalSpark, in order to observe the behaviour of the platform

and get familiarity with the input parameters, simulation protocols, and the behaviour of

organoids towards electrical signals through response spikes. Fig. 4.1 shows the neural activ-

ity data on channels [0-7] during a 10-minute slot after sending electrical pulses of 1uA on

channel numbered (0,1). Fig. 4.1a shows the amplitudes of events in course of the experiment

(accessible via db.get spike event method), and Fig. 4.1b shows the number of spikes captured

per minute (accessible via db.get spike count method).

(a) (b)

Figure 4.1: (a)Spike event with amplitude (b)Spikes per minute for channels 0-7 in MEA-1

Over the course of research, the MEA provided to FU Berlin for experiments, have been changed and

updated with new Forebrain Organoid/neurospheres, along with the accesstoken for the platform. This is the

reason why examples and results captured in this report are not restricted to one MEA but have results from

15

4. COMPUTATIONAL METHODS

both MEA1 and MEA2. However, these updates do not impact the implementation and algorithms adversely

as the computation code is kept modular, extensible and MEA-independent.

4.1.1 Centre of activity

The electrodes in each MEA are arranged in prescribed order and are attached to a specific

region of a given Organoid. Hence, the concept of examining the activity behavior with the

weighted average of spikes according to electrode position, can naturally be an important

metric for quantifying the organoid behaviour. The metric is known as the Centre of Activity

(CoA) of the neurosphere. Also used in defining the motor-mapping in 2008 stimulation

of cortical networks for goal-oriented task4, CoA is calculated with electrode positions and

activity spikes to observe the movement of activity inside the neurosphere.

The electrodes are positioned on a 2D grid with fixed coordinates. CoA is calculated

based the weighted average of position coordinates and total number of spikes observed in

each channel for each trigger in the given duration of the experiment.

CoA =

∑j
n=i sn.vn∑j
n=i sn

(4.1)

In eq 4.1, sn is the spike count for nth channel, vn is the vector representing 2D position of

the channel, whereas i and j are the starting and ending index for the channels attached to

the neurosphere such as (0,7), (8,15), (16,23), (24,31) for the 4 neuropheres in MEA-1.

An example of shifts in CoA with in response to stimulation is shown in Fig. 4.2. Since

the spike count were very high for channel 5,6 & 7, the centre of activity tends to concentrate

near these channels, with minor shifts when other electrodes were stimulated. In Fig. 4.2b,

there were greater shifts when channels 5,6,7 were stimulated.

4.2 Stimulation protocols

After the initial experiments and establishment of CoA as a metric, the approach to analyze

the behaviour of electrodes under electrical pulses is motivated by the work of Bakkum et al.

[4] on how to stimulate a neural network towards a goal oriented task. The goal of this section

is to move CoA more towards the stimulated channels, so that a complementary relationship

between the ‘stimulated’ channels and the most active ‘channels’ in response data can be

established. Due to plasticity of neurons, it is quite possible that the neural activity lingers

in the neural network for a longer period of time after a stimulation is completed. In order to

flush out the effect of a previous stimulation, a shuffled stimulation is run on the neurosphere,

16

4. COMPUTATIONAL METHODS

(a) (b)

Figure 4.2: Stimulations on channels [0-7] in MEA-1 (a) 10-second shifts in CoA during
stimulation of channels (0,1) (a) 10-second shifts in CoA when channel(5,6,7) are stimulated.

before each controlled (defined electrode) stimulation.

4.2.1 Shuffled background stimulation SBS

A random set of ‘n’ electrodes in the selected MEA is stimulated for predefined duration. The

triggers are randomly set on the selected electrodes with a fixed number of pulses. This is an

attempt to clear out any residual memory from the neural network by shuffling the activity,

hence the name shuffled background stimulation (SBS). An example of SBS can be :

1. randomly select 2 channels from MEA-2 (channels 32-39) as [33, 37]

2. send triggers in combinations of [33, 37], [33, 33], [37, 33] etc. for 10 minutes.

An example of such a simulation with change in Centre of Activity during the experiment

duration is shown in Fig. 4.3a. Through continuous shuffling the calculated CoA are scattered

across the entire network area.

4.2.2 Controlled stimulation

After having flushed out the memory through an SBS stimulation, a controlled stimulation is

carried out by using specific set of electrodes. The trigger sequence is kept constant, unlike

the shuffled sequences in SBS. The StimParam object controls the electrodes to be triggered

and signal properties such as number of pulses and amplitude. An example of a Controlled

Stimulation is shown in Fig. 4.3b. Electrode 34 is triggered continuously with amplitude

10uA for a span of 10 minutes. A quick observation result is the concentration of CoA near

electrode 34 as a result of continuous stimulations on it.

17

4. COMPUTATIONAL METHODS

While the controlled stimulation is expected to move the centre of activity towards the con-

trolled channel, it is not always a prominent case. In some cases, a few channels in MEA are

found to be so active that even after a SBS stimulation, they continue to show the highest

level of activity. In these cases, a controlled stimulation is unable to move the CoA by a

substantial amount.

(a) (b)

Figure 4.3: (a) CoA shifts observed in SBS for 10 min on MEA 2. (b)CoA shifts observed in
Controlled stimulation on channel 34 for 10 min on MEA 2.(The numbered dots are channels;
Channels numbered in ‘red’ are the stimulated ones; The scatter plot is for CoA for different
timestamps.)

4.2.3 Controlled Experiment Results

Controlled stimulations were run for different combinations of channels in an MEA; each

experiment was performed with the same StimParam values for the electrical pulse. Fig. 4.4

shows shift in CoA for some combinations of channels after being stimulated. Before each

of these experiments, a SBS was also run to flush out any existing memory from previous

stimulations.

• The most important observation of the controlled experiments are shifts in the Centre

of Activity. The channels being stimulated is near the centre of highest activity in most

cases.

• Channel 37 in this experiment set took over most of the activity. However, the shifts in

CoA can be observed with few other stimulations.

– In Fig.4.4a and 4.4b, it is seen that some activity moves towards to channel 33

when stimulated.

18

4. COMPUTATIONAL METHODS

– In Fig.4.4c, channel 34 pulls CoA towards it when stimulated.

– In Fig.4.4e, channel 35 pulls some activity towards it when stimulated in combina-

tion with channel 36. While in Fig.4.4f, channel 33 being stimulated alone, pulls

the CoA towards itself in a more linear transition.

• SBS is helpful to ease out the activity and spread it across the channels.

Observation

The results of the control stimulations show that the centre of activity can be moved with

time. Thus, a controlled experiment with ‘selected’ set of electrodes can be used as an efficient

input protocol in our closed feedback loop to train a neurosphere towards a target goal. The

selection of electrodes in each cycle will depend on the feedback provided by the controller

which compares the output with the target. Since the electrodes are numbered in the platform,

this input protocol can easily be created and updated, along with other stimulation parameters

such as amplitude of a pulse and number of pulses in a trigger.

19

4. COMPUTATIONAL METHODS

(a) Stimulated electrodes 33 & 38 (b) Stimulated electrodes 33 & 37

(c) Stimulated electrodes 37 & 38 (d) Stimulated electrodes 34 & 38

(e) Stimulated electrodes 35 & 36 (f) Stimulated electrodes 33

Figure 4.4: CoA shifts in Controlled stimulation on channels [32,39] in MEA 2; (The numbered
dots are channels; Channels numbered in ‘red’ are the stimulated ones; The scatter plot is for
CoA for different timestamps.)

20

4. COMPUTATIONAL METHODS

4.3 Output data analysis

It is though challenging to observe concrete pattern shifts in CoA as some of the channels (37

in Fig. 4.4) are very dominant in terms of number of spikes. Similar conditions are observed

with thesame stimulation setup in other neurospheres of MEA; where highly active channels

dampen the stimulation effects on other channels. An organoid replacement in the system

affects the activity on the electrodes as well; which is expected as each organoid behaves

differently than the other. Thus, in order to design a numeric and quantifiable target for the

learning algorithm, further analysis of neural activity data is needed to identify metrics other

than the CoA. This section highlights different methods used to analyse the neural activity

data.

4.3.1 Capturing neural activity

Getting the large neural activity data (2.2.4) from neuroplatform for a long duration of time

synchronously while attempting to study the nature of correlation between them resulted in a

very high computation time. Hence, the activity data from FOs for a time period are recorded

and saved in Datalore environment, so that they are available for instant computation. Stim-

ulation ‘spike events’ are collected through a open-loop stimulation process, where different

electrodes are triggered in SBS or controlled stimulation, and the response activity is saved for

analysis. Spontaneous or unstimulated ‘spike events’ are captured when there are no triggers

to the FO. Total ‘spike events’ for each channel in a 60 seconds window is calculated using

the neuroplatform endpoints. This activity data can be captured for 1-10 hours and is saved

separately for each day, to be read easily in data processing. Table 4.1 shows a sample of

activity saved in Datalore.

Time spikes channel

2024-09-17 13:10:00 472 86

2024-09-17 13:11:00 632 86

2024-09-17 13:12:00 676 86

..

Table 4.1: Sample saved activity data for a channel(86)

21

4. COMPUTATIONAL METHODS

4.3.2 Correlation between channel activities

One of the statistical methods used to measure relationship between variables in a multi-

variate dataset is correlation analysis. Since our output data consists of activity from multiple

channels, the foremost step was to investigate the relationship between different channels with

respect to their neural activity. We use the Pearson’s correlation coefficient mentioned in 2.1

to correlate different channel time-series data.

Temporal correlation between time series

When each of X and Y are variables realized in a time-series, then the correlations of X with

Y are called time-correlations or temporal correlations. This concept is frequently used in

statistics and signal as a measure of similarity between two time series or signals. A time

series can be called as ‘signal’. When a ‘signal’ is cross-correlated or slid onto the other with

a certain lag time, the shifts in the behaviour of the signal with each other can be observed.

A signal with itself will always have the maximum auto-correlation at zero lag time, with

further peaks hinting at propagation of information in time or repetition of a pattern.

Figure 4.5: Time-correlation of Channel 40 with other channels in MEA2 over 1 hour of neural
activity

Since a time series data for channel activity is available, using Pearson correlation the

time-correlation of activity between two channels can be checked to see similarity between

them. Fig. 4.5 shows the time-correlation of 1-hour activity in MEA-2 between channel 40

and others. As expected, a single peak at can be observed at Corr = 1.0 at lag-time=0

when activity in channel 40 is correlated with itself. In a time-correlation graph, a prominent

peak occurs at the lag-time at which there is maximum correlation (similarity) between the

compared components. However, in all these comparisons of channel activities, there is no

22

4. COMPUTATIONAL METHODS

prominent peak obtained, and the values of the correlation coefficients are also low. This was

the case observed across the 4 neurospheres in the MEA-2 suggesting that activity in one of

the channels may not have a substantial impact on the other.

Correlation coefficient matrix(CCM)

Correlation matrices are n×n matrices used to numerically display the correlation coefficients

calculated pairwise between n variables. The absolute value of coefficients denote the strength

of the relationship and the +/− sign denote the direction of the correlation. The value in the

diagonal is always 1.0 , representing the relationship of variable with itself. The correlation

coefficient matrix is used to compare the relationship between channels. Also, the plots of

correlation matrix during an unstimulated period and a controlled stimulation (4.2.2) was

useful to analyze the impact of a controlled stimulation.

Fig. 4.6 shows the CCM calculated in a neurosphere in MEA-2 which undergoes a controlled

stimulation. Fig 4.6a shows CCM containing values from channel 40 and 41 which are the

only 2 electrodes having activity in the neurosphere. At the start of a controlled stimulation,

the first activity is observed in channel 42 (Fig. 4.6b), which is the closest to channels 40 and

41 as shown in Fig. 4.6e. During the stimulation period, the activity gets propagated to other

remaining channels, which show low correlation with [40,41] but a high correlation of 1.0 with

each other (Fig. 4.6c). Occurrence of concurrent activity on these electrodes can be the cause

for high correlation values. Five minutes after the experiment, the activities subside in other

channels, while [40,41,42] continue to be active but with low correlation values.

Observations

• The channels activities are not highly correlated due to the absence of a clear spike

in the time correlations plots. The values of correlation coefficients calculated are very

low.

• However, in multiple cases of stimulations, electrode 42 was the first one to record activ-

ity when the nearest electrodes 40 and 41 are stimulated, followed by other electrodes.

The farther the electrodes the later they respond, which shows a flow of activity in the

neurosphere that loses coherency as it moves forward.

These results prove an existence of neural activity flow across channels, however the relation-

ship between the channels is still not quantifiable. As one of the objectives of this work is

23

4. COMPUTATIONAL METHODS

to create a quantifiable target for the learning algorithm, which the neurosphere can aim to

achieve, the neural activity output data is further investigated through PCA.

(a) (b) (c)

(d) (e)

Figure 4.6: Temporal Correlation Coefficient Matrix of channels 40-47 in MEA-2. (a) CCM
right before stimulation start, activity is present only on channels 40 and 41 with low negative
correlation. (b) CCM at the beginning of controlled stimulation on electrodes [40,41] (c)
CCM right after the end of 5-min stimulation (d) CCM during course of 15 mins including
stimulation period. (e) Representation of physical positions for electrodes 40-47

24

4. COMPUTATIONAL METHODS

4.3.3 PCA

As detailed in 2.4.2, Principle Component Analysis is a dimensionality reduction technique

which helps in identifying underlying relationships between variables in a dataset. In order to

study the relationship of channels inside neurosphere in details, PCA is employed on neural

activity output data. The objective here is to be able to use PCA to find components which

can help quantify a desired target for the Reinforcement Learning algorithm.

Restructuring of input data

The analysis is done by taking pre-recorded neural activity data for a substantial duration

from the neuroplatform. This data includes stimulated time periods as well as un-stimulated

activity from electrodes. The data is standardized with variables by reconstructing it as shown

in table 4.2. Since overall activity in neurosphere is a combination of individual electrodes, the

8 electrodes attached to the neurosphere form the continuous variable set or ‘features’ for the

data. Principle components are new variables which are calculated as a linear combination of

these 8 initial variables, in such a way that most of the information contained in these initial

variables are compressed into the first components of PCA.

channel 1 channel 2 channel 3 channel 4 channel 5 channel 6 channel 7 channel 8

5 823 6 0 897 90 361 0

1 810 0 11 171 24 870 2

..

Table 4.2: Sample restructured data for principle component analysis

Calculation of principle components

The scikit34 library provides a PCA36 module which can be used to calculate the components

easily. pca.fit() method calculates the covariance matrix of the features and then finds

the principle components by calculating the eigenvalues and eigenvectors of the covariance

matrix. The 8 features (one for each channel) in the dataset create 8 principle components as

linear combination of these features and the first components contain the maximum informa-

tion explaining the dataset. This can be verified by plotting the eigenvalues of the covariance

matrix in descending order.

As an example, Fig. 4.7a shows covariance matrix obtained by applying PCA on a dataset

of channels 40-47 on MEA-2. The eigenvalues plot in Fig.4.7b shows that the first principle

25

4. COMPUTATIONAL METHODS

component, henceforth named as PC1, has the maximum contribution in explaining the data.

PC2, the second principle component shows relatively less contribution as compared to PC1.

Since the first two eigenvalues are much larger than the rest, they contain enough informa-

tion about the 8-dimensional signal. Hence, keeping just 2 PCA components is justified for

dimensionality reduction.

Also, the amount of variance explained by each of the selected components is shown by

explained variance; which is available as a part of the PCA object created using pca.fit().

Fig. 4.7 show calculation of PC1 and PC2 from activity data. In this example, the calculated

values for PC1 and PC2 are :

explained variance = (123.46101434, 20.58236248)

explained-variance-ratio = (0.83034538, 0.13842807)

Since the sum of explained-variance-ratio for both components is 0.968 close to unity, it

is justified again to use the two highest principle components.

Transform original data using principle components

After choosing the most important Principle Component, PC1 and PC2 in this case, dimen-

sionality reduction is applied to the dataset with pca.transform() method, i.e. the data

is projected on the PC1 and PC2. This is similar to creating one condensed series for each

Principle Component. The ‘n-dimensional’ data is reduced to ‘2-dimensions’. Fig. 4.7d shows

a condensed signal created after applying dimensionality reduction on 8-channel data.

Observations

When compared with the spikes count data in Fig. 4.7c, the compressed series with PC1 in

Fig. 4.7d has the closest resemblance to spikes count in Channel 42, which is reasonable as

Channel 42 shows the highest spikes count. This is synonymous to the behaviour observed

in the case of CoA, that the neural activity average was centred around the most active

electrode. Hence, using principle components to continue investigation for a quantifiable

target for learning algorithm is justified. Also, since CoA is calculated in a 2-dimensional

space, using 2 principle components can also give grounds for comparison between the changes

in CoA and the Principle Components.

26

4. COMPUTATIONAL METHODS

(a) (b)

(c) (d)

Figure 4.7: PCA on 1-hour neural spikes data for Channels 40-48 (MEA2) on 08.08.2024 (a)
Covariance matrix of structured data. (b) Eigenvalues of covariance matrix, the largest eigen-
value corresponds to PC1 and has maximum explained variance. (c) 8-channel spikes count
time-series for observed duration (d) Transformed time-series after dimensionality reduction
using PC1 and PC2.

27

4. COMPUTATIONAL METHODS

Uniquely trained PCA object

For any data analysis method, the analytics object is first trained on subset of data known

as ’training’ dataset, with which it defines the parameters and components. This object then

makes use of information it contains to predict results in several other ‘test’ dataset. Similarly

for a neurosphere, we need a PCA object which is initially trained on historical activity data

using combined results from stimulated and unstimulated periods. It has to be ensured that

the principle components stay the same for one organoid, and it captures the essence of the

neural activity in that organoid. This process is pictorially shown in Fig. 4.8, and has been

implemented with help of a Datalore notebook.

• Neural activity data from different days, including stimulated and unstimulated activity

is recorded in Datalore.

• PCA is performed on this data, the resulting components are verified for explained

variance ratio. In the case when explained variance is small or the eigenvalues of

first 2 components are not far apart, more data needs to be collected and the object

should be trained again.

• The verified object is now saved globally in Datalore workspace files. Every neurosphere

inside a MEA gets it’s own PCA trained object.

• For any future PCA analysis, this object is read from Datalore workspace files. Since

each neurosphere is unique, this trained object becomes invalid when the organoid is

refreshed. In this case, the PCA trained object should to be created again with data

from new organoid.

Figure 4.8: Training of unique PCA object for each neurosphere.

28

4. COMPUTATIONAL METHODS

PCA on stimulated vs unstimulated data

After establishing that 2 principle components can be helpful in explaining the neural activity

data, different datasets of unstimulated and stimulated activities for one neurosphere are

collected and transformed using PCA object. In the transformed 2-dimensional data, the

PC1 and PC2 components are visualized using a 2D histogram for spatial distribution. A 2D

histogram takes 2-dimensional values X and Y and divides the plot area into hexagonal bins.

Each bin is coloured differently based on the number of (X,Y) items that fall into the bin

area of the plot. It is similar to a 1D histogram showing a distribution by count of bins along

x-axis, but instead of using one axis, it divides the plot area into bins.

On comparing PC1 and PC2 components of data for large time intervals, it was observed

that the histogram plots were sparser when data is collected during stimulation as compared

to a unstimulated activity. The PC1 and PC2 components tend to loose relationship as PC1

is explains the neural activity more closely and gets more affected by the stimulation of elec-

trodes than PC2. An example is shown in Fig. 4.9. Counts of both components are relatively

concentrated before stimulation. The stimulations on channel 50 disrupts the counts and the

plot becomes sparse before going back to a concentrated blob. These changes are observed in

an hourly time-duration. Similar instances are observed in other neurospheres, with 2D his-

togram turning sparse whenever there are stimulations of electrodes, with maximum changes

observed in PC1.

29

4. COMPUTATIONAL METHODS

Figure 4.9: Transformed PC1 and PC2 for channels 48-55 on MEA-2. Each row shows
transformed components for one hour, on the left is the transformed signal PC1 and PC2
against time, on right is the 2D histogram plot for PC1 vs PC2. Shifts in histogram are
observed when trigger is sent on channel 50.

30

4. COMPUTATIONAL METHODS

4.4 PCA in learning algorithm

4.4.1 Concepts of probabilities

A histogram plot is a statistical graph to represent continuous dataset37. It converts the

dataset into categories known as ‘bins’ and plot the number of data points that occur in a

category with a bar on the chart, where height of a bar represents the frequency of data point

within that category. Histogram plots are used to get probability density function of the

underlying variable in dataset. For each bin in a histogram, the probability of that category

is the number of data points in the bin divided by the total number of data points in the

histogram. In order to get through probability distributions for each compared dataset, a

1-dimensional histogram is plotted for PC1. Here PC1 is chosen as standard for calculating

probability distributions since it has the maximum explained variance ratio 4.3.3. The

PC1 are plotted together on a histogram for each duration in dataset and the probability

distributions from histogram plots are calculated.

Since each neurosphere is unique, the components in PCA are expected to vary a lot when

an organoid is changed. The input stimulation data can be controlled, but it’s response in

neural activity is quite unpredictable and varies as much. Therefore in cases like these where

output model and environment are quite varying, statistical distances are extremely useful

measures to quantify the gap between two distributions. There are several statistical distances

which are commonly used as part of ML algorithms. The Jensen-Shannon distance from

SciPy38 is used to calculate a measure of the distance between the probability distributions

provided by histograms.

4.4.2 Comparisons between datasets

The Jensen-Shannon divergence is a method of measuring similarity between two probability

distributions39. It is the symmetrized and smoothed version of Kullback-Leibler divergence.

The square root of Jensen-Shannon divergence is a metric called Jensen-Shannon distance.

The similarity between the distributions is higher when the distance is closer to zero. The

Jensen-Shannon distance (JSD) between two probability distribution p and q is given by (4.2)

where m is the pointwise mean of p and q, and D is the Kullback-Leibler divergence between

the two distributions DKL(p||q) =
∑

pi. log
pi
qi
.

JSD(p||q) =

√
D(p||m) +D(q||m)

2
(4.2)

31

4. COMPUTATIONAL METHODS

By using histograms, the transformed PC1 components on a dataset of unstimulated activity is

taken as a reference distribution. It is then compared with other probability distributions using

the Jensen-Shannon distance. It is observed that the JSD between 2 unstimulated periods

are comparable, however JSD between an unstimulated period and a stimulated period can

vary. Fig. 4.10 shows the probability distributions obtained from histograms and a general

comparison of Jensen-Shannon distance calculated between them, observed across different

neurospheres in MEA-2. The yellow encircled point is the slot which is used as reference

dataset, hence value of distance is zero from itself. For example, in Fig. 4.10b the distance

from selected unstimulated slot index 3 to stimulated slots 0 and 1 are comparable, and the

distance to other unstimulated slots 2 and 4 are comparable.

32

4. COMPUTATIONAL METHODS

(a) (b)

(c) (d)

Figure 4.10: Identification of target distances in different neurospheres. Histogram plots
transformed PC1 components and are used for acquiring the probability distributions. The
distance between probabilities distributions of unstimulated and stimulated neural activity
is plotted in lower graphs. Additionally, the distance between an unstimulated set and a
stimulated set is higher as compared to two unstimulated sets.

33

4. COMPUTATIONAL METHODS

4.4.3 Identification of a target

In Fig. 4.10, the selected distribution for comparison known as ‘reference distribution’ is taken

from an unstimulated set and a distance to a stimulated set probability distribution is calcu-

lated. For any given neurosphere, this distance between unstimulated set and stimulated set

can be selected as the target distance, dtarget , for the learning algorithm, thus fulfilling

an important objective 3 of the data analysis section in this work. The deviation of a stim-

ulation cycle from this target value, can imply whether a stimulation cycle is favourable or

not. If deviation is high, it is unfavourable and if the deviation is low, then the stimulation is

favourable and is preferred in upcoming cycles. Fig. 4.11 summarizes the steps in obtaining

target distances for each neurosphere.

Figure 4.11: Identification of a target distance for each neurosphere.

4.5 Closed-loop feedback algorithm

In order to train the FOs towards a targetted goal, a closed-feedback loop is implemented

with the help of a controller. A controller is designed to execute the entire learning process

in cycles. Each cycle stimulates a neurosphere and processes the neural activity during the

timestep ∆t. The controller takes care of setting up the ‘reference distribution’ for comparison,

choosing electrodes for stimulation, comparing current cycle transformed data and reference

distribution, and providing feedback to the FO for the next cycle. This section explains

different functions of a controller and different steps in the learning algorithm. Fig.4.12

pictorially depicts the closed-loop-feedback algorithm utilizing all the methods discussed in

the implementation section.

4.5.1 Choose a reference distribution for comparison

As the first step in the learning process, the controller creates a ‘reference distribution’ for

statistical distance comparison by processing an unstimulated set of neural activity using

principle components as described in 4.4.1. The data for a time-period ∆t can be fetched

from historical data of the FO, or from the current unstimulated activity at the start (t=0) of

a learning programme. An unstimulated activity data is read because a comparison between

unstimulated and stimulated activity was made while creating target for the FO. Thus, in

34

4. COMPUTATIONAL METHODS

subsequent learning cycles, the distance between this ’reference’ unstimulated probability

distribution and the current stimulated response probability distribution is compared with

target distance for sending feedback.

4.5.2 Stimulation protocol and choosing electrodes

At the start of a learning cycle, the controller selects electrode(s) from the neurosphere for

stimulation. Inclusion of any kind of bias in the training procedure should be avoided, so

that each electrode gets a fair chance to be selected for stimulation. Therefore, it fits well

to start by assigning a probability(p) to select electrodes for stimulation. The controller uses

cumulative probabilities(cp) to select one electrode ek from a set of eight electrodes(e1 - e8)

with assigned probabilities (p1 - p8).

The cumulative probability (cpi) of an electrode (ei) is the probability of selecting the

electrode plus the probability of selecting all the electrodes before it, i.e. cpi =
∑i

j=0 pj

The controller rolls a dice to pick a random number r ∈ [0, 1]. The random number r is

compared with each electrode’s cumulative probability and the first electrode cpi is selected

where cpi−1 ≤ r ≤ cpi. An example of cumulative probabilities at t=0 is shown in table 4.3.

At t = 0 all eight electrodes are assigned equal probabilities pi = 1/8 = 0.125, the cpi are

calculated by adding probabilities of all previous electrodes to ei. For example, if the random

number is picked up as r = 0.58, then electrode e5 is chosen as 0.50 ≤ 0.58 ≤ 0.625.

Assigning probabilities to electrodes, makes the provision of feedback in the learning cycle

easier. At the completion of each cycle, with positive and negative feedback, the selection

probabilities can be adjusted for the next cycle as explained in upcoming section 4.5.4.

Electrode ei e1 e2 e3 e4 e5 e6 e7 e8

pi(t=0) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

cpi(t=0) 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.0

Table 4.3: Probability pi and cumulative probability cpi of selection of each electrode ei, at
time t=0. If a random number r ∈ [0, 1] is picked as 0.58, then electrode e5 is chosen as
0.50 ≤ 0.58 ≤ 0.625.

4.5.3 Stimulation and distance calculation

The learning algorithm is executed in iterations with each iteration executing for time period

∆t. To avoid bias, all eight electrodes are set with same probability initially for being chosen.

After choosing a reference distribution, the controller randomly chooses an electrode ek for

stimulation. The trigger for stimulation is sent to the neurosphere for a controlled stimulation

35

4. COMPUTATIONAL METHODS

on electrode ek. The controller waits for a span of ∆t before reading the neural activity from

the corresponding stimulation period. This then becomes the current activity and probability

distribution of PC1 is calculated using PCA transformations explained in 4.4.1. Then dcurrent

is calculated via Jensen-Shannon distance 4.4.2 between stimulated current and reference

probability distributions by using eq.4.2.

4.5.4 Comparison with target and feedback

As defined in 4.4.3, dtarget is the target distance between stimulated and unstimulated set.

The aim of a stimulation cycle is for dcurrent to be as close as possible to dtarget. The closer

these distances are, the more likely is the neurosphere to give an expected stimulated outcome.

The deviation ∆d from target is calculated as ∆d = |dtarget − dcurrent|. The smaller is the

deviation ∆d, the more favourable the stimulation is in achieving the target. If ∆d is less∗,
the stimulation is favourable and controller sends a positive feedback. If ∆d is more∗, the
stimulation is unfavourable and controller sends a negative feedback. The quantification of

less∗ and more∗ is a permissible range ∆dperm for ∆d calculated based on an average value

of deviations from multiple learning cycles.

The feedback to the neurosphere is provided by adjusting the probability of stimulated

electrode ek for the next cycle. In case of positive feedback, the probability of selecting ek

increases while probabilities of selecting other electrodes for the next cycle is decreases. For

negative feedback, the probability of selecting ek decreases while the probabilities of selecting

other electrodes is increases. The increment and decrement in probabilities is handled by

using equations 4.3 and 4.4.

Positive feedback on ek =


pk(t+ 1) =

1.5pk(t)

1 + 0.5pk(t)
, k = selected electrode

pi(t+ 1) =
0.5pi(t)

1 + 0.5pi(t)
, i ̸= k

(4.3)

Negative feedback on ek =


pk(t+ 1) =

0.5pk(t)

1− 0.5pk(t)
, k = selected electrode

pi(t+ 1) =
1.5pi(t)

1− 0.5pi(t)
, i ̸= k

(4.4)

36

4. COMPUTATIONAL METHODS

4.5.5 The learning algorithm combined

As shown in Fig.4.12, the closed-loop learning algorithm can be summarized as below:

1. Read unstimulated data for time period ∆t, transforms it using PCA, and saves the

probability distribution of PC1 as reference distribution.

2. Select ek electrode when each has been assigned equal probabilities initially, and per-

forms a controlled stimulation on ek.

3. Read the stimulated neural activity response, transforms the dataset using PCA and

converts to PC1 probability distribution after ∆t time.

4. Calculate Jensen-Shannon distance between unstimulated reference distribution and

stimulated distribution as dcurrent.

5. Calculate ∆d = |dtarget−dcurrent|. If ∆d lies within permissible values ∆dperm, positive

feedback is sent, otherwise negative feedback.

6. Sends positive/negative feedback on ek is sent by increasing/decreasing it’s probability

for next cycle while subsequently decreasing/increasing probabilities of other electrodes

using Eq. 4.3.

7. Repeat the cycle from step 2 with a new ek till convergence of dcurrent in dtarget.

37

4. COMPUTATIONAL METHODS

Figure 4.12: Implementation of a closed-loop feedback algorithm for reinforcement learning.
(1)Retrieval of unstimulated dataset and conversion using PCA into a probability distribution
of PC1 as ‘reference distribution’. (2)The closed-loop algorithm starts with the controller
selecting 1 of 8 electrodes with equal probabilities. The algorithm reads the stimulated data
for ∆t after trigger of electrode and converts it to probability distribution of PC1. The
Jensen-Shannon distance between stimulated and unstimulated probability distributions is
compared with dtarget to provide positive or negative feedback. The feedback is given by
updating the probability of selection of each electrode for the next cycle. This feedback-loop
runs till convergence in distance is obtained.

38

Training results and discussion

The results of each computational step used in creation of reinforcement learning closed-loop

algorithm has been shown in Chapter 4; each successive step was based on the observation

of the previous one. The proposed algorithm was then run multiple times on different neuro-

spheres of an MEA on neuroplatform. The goal was to achieve convergence between dtarget

and dcurrent with a permissible margin ∆dperm for deviation ∆d.

This chapter showcases results from a few iterations to highlight the main outcomes of

the training algorithm shown in 4.5.5. Fig.5.1-5.4 in next pages show selected electrode ek,

probabilities of channels over different iterations pi(t), and Jensen-Shannon distances between

activity data after each stimulation and initial unstimulated activity data across different runs

of the learning algorithm.

39

5. TRAINING RESULTS

Result 1 (Fig.5.1)

As one of initial runs, 10 iterations of closed-loop algorithm are performed on channels 80-87

of MEA-3 with dtarget = 0.645 and ∆dperm = ±0.005. In each iteration, selected electrode ek

was stimulated with a current of 2uA and the time for fetching data after stimulation ∆t was

kept as two minutes. The deviation in Jensen-Shannon distance between PC1 transformed

component dcurrent and dtarget was smaller than ∆dperm, which resulted in positive feedback

and increase in the probability pk of selected electrode, while other pi decreased. At the end of

10 runs, the channel 84 became the most probable. However, since dcurrent remained constant,

10 iterations might not be enough to determine whether this behaviour was consistent and is

capable of converging to dtarget.

(a) ek (b) pi(t)

(c) dcurrent

Figure 5.1: Result 1, 80-87 in MEA-3

40

5. TRAINING RESULTS

Result 2 (Fig.5.2)

The number of iterations here was increased to 80, and the time duration ∆t was increased

to three minutes. In this case, electrode 81 was the most selected electrode ek after about

25 iterations. However, dcurrent, the calculated distance from the stimulated data to the

unstimulated ‘reference distribution’ still remained constant in each iteration suggesting that,

the stimulations had minimal impact on altering the behaviour of the neurosphere.

(a) ek (b) pi(t)

(c) dcurrent

Figure 5.2: Result 2, 80-87 in MEA-3

41

5. TRAINING RESULTS

Result 3 (Fig.5.3)

The ∆t was set as 15 minutes to increase the lag time between stimulations. A total of

30 iterations were performed on channels 64-71 in MEA-3 with dtarget as 0.7006 based on

historical data of these channels. After 20 iterations, the probability of electrode 66 increased

steadily accompanied with a steady reduction in the deviation from dtarget.

(a) ek (b) pi(t)

(c) dcurrent

Figure 5.3: Result 3, 64-71 in MEA-3

42

5. TRAINING RESULTS

Result 4 (Fig.5.4)

The same approach was repeated on channels 80-87 in MEA-3 with 30 iterations. The dtarget

was set to 0.7446 based on historical channel data. Similar to the previous neurosphere, after

about 20 iterations, the probability of electrode 81 increased, and the deviation from dtarget

steadily decreased in the subsequent cycles.

(a) ek (b) pi(t)

(c) dcurrent

Figure 5.4: Result 4, 80-87 in MEA-3

Different combinations of two electrodes rather than one single electrode for were also

used for controlled stimulations in the learning algorithm.
(
8
2

)
combinations of electrodes

were configured with the same initial probability and stimulated with equal current. The

observed behaviour was similar to that of a single electrode, as the likelihood of choosing a

pair increased steadily after a certain number of iterations. However, convergence in dtarget

was not achieved when ∆t was set to two or three minutes.

43

5. TRAINING RESULTS

General observations

The general behaviour observed in the above four results have been summarized in table 5.1

and explained in detail below.

• The closed-loop feedback learning algorithm responds well to stimulations, and is able to

update probabilities of electrodes according to deviation of distances dcurrent between

stimulated and unstimulated responses. In cases where dcurrent stays the same, the

neurosphere tries to keep its current behaviour intact.

• An iteration for shorter duration is unable to influence the dcurrent. Deviations in

distances are more prominent with larger ∆t values like 15 minutes. The proper ∆t for

iteration needs to be set so that the learning algorithm can be computationally faster.

However, since the neural channel activities are not highly-correlated when compared

in smaller units of time (as observed in 4.3.2), it is advised to use a larger ∆t such as

15 minutes for learning of the neurosphere.

• Moreover, at least 30 iterations of algorithm are required to develop reasonable learning,

as ek and dcurrent are observed to move towards convergence only after 20 or more

iterations.

• When performed for more than one electrode, the controlled stimulation for a random

pair of electrodes showed similar behaviour to that observed when single electrode was

selected.

Sn. channels iterations dtarget ∆dperm ∆t Convergence

(minutes) dcurrent electrode

1 80-87 10 0.645 ±0.005 2 No Yes

2 80-87 80 0.645 ±0.005 3 No Yes

3 64-71 30 0.7006 ±0.005 15 Yes Yes

4 80-87 30 0.7446 ±0.005 15 Yes Yes

Table 5.1: Summary of the 4 results

44

Conclusion

The primary goal of this work is to lay grounds for a reinforcement learning algorithm using

which a neurosphere can be trained to furnish a desired target output. The results of several

iterations converging towards target indicated the organoid’s strong responsiveness to the

feedback provided, and that it had learned to mimic a target response pattern.

Initial stimulation experiments resulted in displacements of Centre of Activity. While

the CoA helped to observe changes in neurosphere over short periods of time, Pearson’s

time correlation ruled out any immediate substantial correlation with channels. For neural

activity data taken over longer periods of time, Principle Component Analysis was more

successful to identify pattern shifts between the two identified principle components. Indeed,

PCA transformations done with Jensen-Shannon distance fulfilled the objective of setting a

quantified target for the algorithm.

When put to training, the neurosphere showed signs of learning and adapting according

to the feedback received on it’s activity. The selection probabilities of favourable channels

incremented during the learning. At the end of all iterations, the neurosphere showed repro-

ducible behaviour since the similarity achieved between the target and the output value was

substantial. These findings support the potential of an organoid to be a learnable computa-

tional element, thus getting a step closer to the idea of training a bio-computing on in vitro

networks.

Challenges

The biggest challenge so far is the life span of a neurosphere. Even though the forebrain

organoids are expected to last around 100 days5, a constant rework and training of neuro-

spheres was inevitable during the course of the project with some organoids being replaced

as often as a fortnight. Each new “bio-processor” needs new training starting from data

recording and PCA to calculation of dtarget and estimation of ∆t.

Moreover, since the learning algorithm required a large ∆t which results in longer ex-

periments, one must plan activities in advance to prevent potential delays due to limited

experiment slot availability on the neuroplatform for stimulations.

Lastly, for organoids with intense ‘channels’, where the maximum activity is concentrated

around one electrode, it is very difficult to dampen the neural response even with SBS stimu-

lations. This leads to an ineffective controlled stimulation in learning iterations, disabling the

algorithm to bring a substantial change in the neurosphere’s behaviour. Similarly, organoids

with very less activity have an adverse impact on the data analysis step, due to higher in-

stances of zeroes in the data. In some cases, it has been observed that the stimulations on

45

6. CONCLUSION

electrodes decrease the response activity of neurosphere instead of increasing them.

Future work

Some ideas which can assist to take the research forward are:

• Computing the relationship between two highest principle components with the two-

dimensional Centre of Activity to identify the flow of activity in neural network.

• In neurospheres there are regions pertaining to “intense” electrodes which are highly

active. Currently, the learning algorithm starts by assigning equal selection probability

to each channel in first iteration. Adjusting these initial probabilities to promote or

demote highly active electrodes based on the activity in each channel, could lead to a

different trend for selected electrodes ek(s) and convergence of dtarget.

• Defining a learning rate from existing variables to quantify the effect algorithm has

on the neurosphere, since many runs of the learning cycle are needed to fine-tune the

algorithm.

• It will be beneficial to compare the effect of reinforcement learning on a freshly prepared

FO with one approaching end of life, since the spontaneous activity of the organoid can

vary overtime42.

• Including Time Independent Component Analysis (TICA)40 might help checking lag

times at which the transformed components (PC1 in this case) have the maximum auto-

correlation, This is because neural responses change instantly after a stimulation, but

effects of stimulation lingers much longer through the BNN. The results of iterations

show the learning cycles with larger ∆t being more convergent than those with smaller

values. TICA as a dynamical version of PCA, can help to find the ∆t, that is the most

suited for learning cycles.

46

Appendix

A.1 Software Development and Integration

The interaction with neuroplatform is made available through a Datalore server, on which a

project is setup for accessing neurospheres with the help of Jupyter notebooks9. A python

library computation.py is provided which exposes APIs for running experiments and fetching

the neural activity data. This is covered in details in section 2.2.

One of the goals of this work is to produce a computational package which can form a

basis for a learning algorithm. A computational package has been created to consume the

APIs of neuroplatform and provide methods for easy experimental runs, setting experimental

parameters, recording activity data from neurospheres, and perform analysis of data. This

chapter gives an overview of the computation class created for FU Berlin research group.

A.2 Technology Stack

computation.py is a python script which contains the code for different implementation steps

in this work. computation.py is uploaded on Datalore environment under neuroplatform

Workspace files. All edits and versions to the file are maintained under FU Berlin GitLab

repository41 and users can request access to it. There is however no continuous integration

(CI) available presently between GitLab and Datalore. The code in computation.py is mod-

ular and easily extensible to support additional functionalities. The package is divided into 3

main modules(classes) to support the implementation of the work.

A.3 Modules

FUBase

FUBase is the base class which defines primary properties of the neuroplatform. The accessto-

ken shared by the FinalSpark team is unique for each MEA, and provides readwrite access to

all 32 electrodes in the MEA. Accesstoken is maintained as property of FUBase class. Once

FUBase class is initialized, the constructor sets up electrodes positions on a 2D lattice for each

organoid, these positions are used in the calculation of Centre of Activity and for visualisa-

tion of activity. FUBase also provides methods for reading files that are saved in Datalore

environment.

47

A.3. MODULES

FUExperiment

This class inherits from FUBase class and provides methods to setup and run experiments.

Both the protocols SBS and Control stimulations 4.2 can be set and experiments can be run

using this class. The class takes care of setting up type(SBS/Control), triggers, electrodes,

amplitude(uA) and number of pulses per signal for an experiment. FUExperiment performs

stimulations by calling the Intan software api of neuroplatform.py interface. The experiment

details are also saved on Datalore in the path /data/workspace files/experiments as csv

files for future references. The configuration details for stimulations performed by learning

algorithm in each iteration is read from /data/workspace files/ exp setup.

Figure A.1: Stimulation example

FUComputation

Inherited from FUBase, this class is responsible for all computation methods being performed

throughout this work. Important functionalities include getting experiment summary for a

given day, getting channel(s) activity for given time period, calculating centre of activity

of a neurosphere for a given time period, saving large response dataset for training. This

class implements the PCA Analysis and calculation of target distances. The Intan Software

continuously records the electrical activity from all electrodes and FUComputation provides a

method to visualize current activity in an MEA as shown in Fig. A.2. This performs a sanity

check on neural response in organoids in MEA, and helps to visualize outcomes of an ongoing

experiment in real time.

FUComputation class contains methods for saving neural activity data for large periods of

time. The recorded data is saved date-wise as csv files under the path

/data/workspace files/data, and is used to initialize and fit a Principle Component Analy-

sis sklearn.decomposition object. A separate object for each sub in an MEA is saved globally

under the path /data/workspace files/pca-trained labelled with channel numbers. The

same trained PCA object is then used to apply transformation during the learning iteration

and during identification of targets.

48

A.3. MODULES

Figure A.2: Get live data example

FUController

FUController class is primarily associated with implementation of closed-loop feedback al-

gorithm. It selects electrode(s) for stimulation, sends trigger to neurosphere, and transforms

response activity using PCA. It compares result with target and sends feedback to neurosphere

by adjusting the probabilities of electrode selection for the next iteration.

Notebook Description

SBS & Control Experiment Runs stimulations on neurospheres by setting SBS and control con-
figurations

View live data Gets live activity from neurospheres by plotting centre of activities

Activity Data Recording Records neural activity for hours and saves to Datalore

Time-shift correlations Correlates channel activity data using Pearson’s correlation coeffi-
cient

Trained PCA object Trains PCA objects and save to Datalore location

Channel Observations - create
Target

Calculates dtarget for each neurosphere by using PCA

Closed Feedback Loop Executes learning algorithm on neurospheres and process the re-
sults.

Table A.1: List of Jupyter notebooks on Datalore

MEA Sub with electrode numbers
1 2 3 4

1 0-7 8-15 16-23 24-31

2 32-39 40-47 48-55 56-63

3 64-71 72-79 80-87 88-95

4 96-103 104-111 112-119 120-127

Table A.2: Numbered electrode in each sub/neurosphere of an MEA

49

Abbreviations

AI Artificial Intelligence. 1, 8,
ANN Artificial Neural Network. 1, 9,
API Application Programming Interface. 47,
ASI Artificial Super-intelligence. 3,

BNN Biological Neural Network. 1, 2, 4, 8–10, 12, 46,

CCM Correlation Coefficent Matrix.
CoA Centre of Activity. 5, 16, 21, 26, 45–47,

ERASI Energy Requirement of Artificial SuperIntelligence
equation. 3,

FO Forebrain Organoid. 5–7, 13, 15, 21, 34, 46,

GPU Graphics Processing Unit. 3,

JSD Jensen-Shannon distance. iii, 31, 32, 39,

MEA Multi-Electrode Arrays. 2, 4–6, 12, 28,
ML Machine Learning. 1, 2, 8, 9,

OI Organoid Intelligence. 8,

PC Principle Component. 11, 12, 26,
PC1 First Principle Component. 26, 36,
PC2 Second Principle Component. 26,
PCA Principle Component Analysis. iii, 13, 24, 25, 28, 36,

45,

RL Reinforcement Learning. vi, 9, 10,

TICA Time Independent Component Analysis. 46,

50

Glossary

channel electrodes attached to the Neurospheres..

exaflop 1018 floating point operations(flop).

forebrain organoid minibrain/neurosphere. 45

graphics processing unit a specialized electronic circuit initially designed for
digital image processing and to accelerate computer
graphics.

multi-variate dataset Dataset which is dependent on more than one variable.

neuroplatform computation platform offered to interact with Neuro-
spheres. 2, 3, 5, 6, 14, 21, 25, 39, 45, 47

neurosphere in vitro organoid mini-brain created using biological
cells/ forebrain organoids. 2, 21, 24, 32–35, 39, 41,
45–47

reinforcement learning Learning through trial and error with feedback. 2

spike A ‘threshold crossing’ event recorded when voltage at
an electrode crossed a threshold..

51

References

1. Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60
(2023).

2. Balasubramanian, V. Brain power. Proceedings of the National Academy of Sciences of
the United States of America 118. issn: 1091-6490 (32 Aug. 2021).

3. Wang, H., Li, X., You, X. & Zhao, G. Harnessing the power of artificial intelligence
for human living organoid research. Bioactive Materials 42, 140–164. issn: 2452-199X.
https://www.sciencedirect.com/science/article/pii/S2452199X24003657 (2024).

4. Bakkum, D. J., Chao, Z. C. & Potter, S. M. Spatio-temporal electrical stimuli shape
behavior of an embodied cortical network in a goal-directed learning task. Journal of
Neural Engineering 5, 310. https://dx.doi.org/10.1088/1741-2560/5/3/004 (Aug. 2008).

5. Jordan, F. D., Kutter, M., Comby, J.-M., Brozzi, F. & Kurtys, E. Open and remotely
accessible Neuroplatform for research in wetware computing. Frontiers in Artificial In-
telligence. https://doi.org/10.3389/frai.2024.1376042 (2024).

6. Ciarpella, F. et al. Generation of mouse hippocampal brain organoids from primary
embryonic neural stem cells. STAR Protocols 4, 102413. issn: 2666-1667. https://www.
sciencedirect.com/science/article/pii/S2666166723003805 (2023).

7. Wang, H. Modeling Neurological Diseases With Human Brain Organoids. Frontiers in
Synaptic Neuroscience 10. issn: 1663-3563. https : / /www. frontiersin . org/ journals /
synaptic-neuroscience/articles/10.3389/fnsyn.2018.00015 (2018).

8. Hartley, B. J. & Brennand, K. J. Neural organoids for disease phenotyping, drug screen-
ing and developmental biology studies. Neurochemistry international 106, 85–93 (2017).

9. Datalore. Datalore Documentation https://www.jetbrains.com/help/datalore/datalore-
quickstart.html.

10. Jordan, F. D., Kutter, M., Comby, J.-M., Brozzi, F. & Kurtys, E. Finalspark live https:
//finalspark.com/live.

11. Jordan, F. D., Kutter, M., Comby, J.-M., Brozzi, F. & Kurtys, E. FinalSpark %5Curl%
7Bhttps://finalspark.com/%7D.

12. Feng, E. Brain on a Chip: Exploring the Potential of Wetware Computing. research-
gate.net (2009).

13. Habibollahi, F., Khajehnejad, M., Gaurav, A. & Kagan, B. J. Biological Neurons vs Deep
Reinforcement Learning: Sample efficiency in a simulated game-world in NeurIPS 2022
Workshop on Learning Meaningful Representations of Life (2022).

14. contributors, W. Wetware computer Online; accessed 24-October-2024. https : / / en .
wikipedia.org/wiki/Wetware computer.

15. Bray, D. Wetware: a computer in every living cell (Yale University Press, 2009).

16. contributors, W. Frontier (supercomputer) Online; accessed 3-September-2024. https :
//en.wikipedia.org/w/index.php?title=Frontier (supercomputer)&oldid=1242375879.

52

https://www.sciencedirect.com/science/article/pii/S2452199X24003657
https://dx.doi.org/10.1088/1741-2560/5/3/004
https://doi.org/10.3389/frai.2024.1376042
https://www.sciencedirect.com/science/article/pii/S2666166723003805
https://www.sciencedirect.com/science/article/pii/S2666166723003805
https://www.frontiersin.org/journals/synaptic-neuroscience/articles/10.3389/fnsyn.2018.00015
https://www.frontiersin.org/journals/synaptic-neuroscience/articles/10.3389/fnsyn.2018.00015
https://www.jetbrains.com/help/datalore/datalore-quickstart.html
https://www.jetbrains.com/help/datalore/datalore-quickstart.html
https://finalspark.com/live
https://finalspark.com/live
%5Curl%7Bhttps://finalspark.com/%7D
%5Curl%7Bhttps://finalspark.com/%7D
https://en.wikipedia.org/wiki/Wetware_computer
https://en.wikipedia.org/wiki/Wetware_computer
https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1242375879
https://en.wikipedia.org/w/index.php?title=Frontier_(supercomputer)&oldid=1242375879

REFERENCES

17. Clarke PhD, D. D. & Sokoloff, L. Circulation and energy metabolism in the brain/Donald
D. Clarke and Louis Sokoloff. Chemistry Faculty Publications. 81 (1999).

18. Stiefel, K. M. & Coggan, J. S. The energy challenges of artificial superintelligence. Fron-
tiers in Artificial Intelligence 6, 1240653 (2023).

19. Kagan, B. J. et al. In vitro neurons learn and exhibit sentience when embodied in a
simulated game-world. Neuron 110, 3952–3969.e8. issn: 10974199 (23 Dec. 2022).

20. Demarse, T. B. & Dockendorf, K. P. Adaptive Flight Control With Living Neuronal
Networks on Microelectrode Arrays. IEEE (2005).

21. OpenAI. ChatGPT and OpenAI https://openai.com/index/chatgpt/.

22. Mateos-Aparicio, P. & Rodŕıguez-Moreno, A. The Impact of Studying Brain Plasticity.
Frontiers in Cellular Neuroscience 13. issn: 1662-5102. https://www.frontiersin.org/
journals/cellular-neuroscience/articles/10.3389/fncel.2019.00066 (2019).

23. Meyer, J. & Wilson, S. W. Animat. Scholarpedia 4. revision #90966, 1533 (2009).

24. Chao, Z. C., Bakkum, D. J. & Potter, S. M. Shaping Embodied Neural Networks for
Adaptive Goal-directed Behavior. PLOS Computational Biology 4, 1–17. https://doi.
org/10.1371/journal.pcbi.1000042 (Mar. 2008).

25. Smirnova, L. et al. Organoid intelligence (OI): the new frontier in biocomputing and
intelligence-in-a-dish. Frontiers in Science 1 (Feb. 2023).

26. Shalev-Shwartz, S. & Ben-David, S. Understanding machine learning: From theory to
algorithms (Cambridge university press, 2014).

27. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. issn: 14764687
(7553 May 2015).

28. Sutton, R. S. & Barto, A. Reinforcement learning : an introduction isbn: 978-0-262-
03924-6 (The MIT Press, 2020).

29. Hildebrand, M., Andersen, R. & Bøgh, S. Deep Reinforcement Learning for Robot Batch-
ing Optimization and Flow Control. Procedia Manufacturing 51, 1462–1468 (Nov. 2020).

30. Greenacre, M. et al. Principal component analysis. Nature Reviews Methods Primers 2.
issn: 26628449 (1 Dec. 2022).

31. Jaadi, Z. Principal Component Analysis (PCA): A Step-by-Step Explanation https://
builtin.com/data-science/step-step-explanation-principal-component-analysis.

32. Ringnér, M. What is principal component analysis? Nature biotechnology 26, 303–304
(2008).

33. Kader, G. D. & Franklin, C. A. The Evolution of Pearson’s Correlation Coefficient. The
Mathematics Teacher 102, 292–299. issn: 00255769. http ://www. jstor .org/stable/
20876349 (2024) (2008).

34. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine
Learning research 12, 2825–2830 (2011).

53

https://openai.com/index/chatgpt/
https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2019.00066
https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2019.00066
https://doi.org/10.1371/journal.pcbi.1000042
https://doi.org/10.1371/journal.pcbi.1000042
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
http://www.jstor.org/stable/20876349
http://www.jstor.org/stable/20876349

REFERENCES

35. Garreta, R. & Moncecchi, G. Learning scikit-learn: machine learning in python (Packt
Publishing Birmingham, 2013).

36. Scikit-learn developers. sklearn.decomposition - PCA https : / / scikit - learn . org/dev/
modules/generated/sklearn.decomposition.PCA.html.

37. Jaspersoft. What is a Histogram Chart online, last accessed : 18 October 2024. https:
//www.jaspersoft.com/articles/what-is-a-histogram-chart.

38. Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods 17, 261–272 (2020).

39. contributors, W. Jensen–Shannon divergence Online; accessed 10-September-2024. https:
//en.wikipedia.org/wiki/Jensen%E2%80%93Shannon divergence.

40. Schultze, S. & Grubmüller, H. Time-Lagged Independent Component Analysis of Ran-
dom Walks and Protein Dynamics. Journal of Chemical Theory and Computation 17.
PMID: 34449229, 5766–5776. eprint: https://doi.org/10.1021/acs.jctc.1c00273. https:
//doi.org/10.1021/acs.jctc.1c00273 (2021).

41. Berlin, F. FU Berlin Gitlab Online; accessed 18-October-2024. https : / /git . imp . fu -
berlin.de/ishitaS/finalspark/neurospheres.

42. Wagenaar, D., Pine, J. & Potter, S. An extremely rich repertoire of bursting patterns
during the development of cortical cultures. BMC Neurosci, 7, 11. https://doi.org/10.
1186/1471-2202-7-11 (2006).

54

https://scikit-learn.org/dev/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/dev/modules/generated/sklearn.decomposition.PCA.html
https://www.jaspersoft.com/articles/what-is-a-histogram-chart
https://www.jaspersoft.com/articles/what-is-a-histogram-chart
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://doi.org/10.1021/acs.jctc.1c00273
https://doi.org/10.1021/acs.jctc.1c00273
https://doi.org/10.1021/acs.jctc.1c00273
https://git.imp.fu-berlin.de/ishitaS/finalspark/neurospheres
https://git.imp.fu-berlin.de/ishitaS/finalspark/neurospheres
https://doi.org/10.1186/1471-2202-7-11
https://doi.org/10.1186/1471-2202-7-11

	Introduction
	Motivation
	Objective
	Scope

	Fundamentals
	Wetware computing
	Energy efficiency
	In vitro neural networks
	Learning

	The Neuroplatform
	Platform setup
	MEA
	Stimulation experiments
	Neural activity response

	Machine learning
	Supervised learning
	Unsupervised learning
	Reinforcement learning
	Closed-loop feedback protocol

	Data analysis and defining targets
	Correlation in time series data
	Principle component analysis

	Objective
	Computational Methods and implementation of training algorithm
	Initial Experiments
	Centre of activity

	Stimulation protocols
	Shuffled background stimulation SBS
	Controlled stimulation
	Controlled Experiment Results

	Output data analysis
	Capturing neural activity
	Correlation between channel activities
	PCA

	PCA in learning algorithm
	Concepts of probabilities
	Comparisons between datasets
	Identification of a target

	Closed-loop feedback algorithm
	Choose a reference distribution for comparison
	Stimulation protocol and choosing electrodes
	Stimulation and distance calculation
	Comparison with target and feedback
	The learning algorithm combined

	Training results and discussion
	Conclusion
	Appendix
	Software Development and Integration
	Technology Stack
	Modules

