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Abstract Fluid injection can induce seismicity by altering stresses on pre‐existing faults. Here, we
investigate minimizing induced earthquake potential by optimizing injection operations in a physics‐based
forecasting framework. We built a 3D finite element model of the poroelastic crust for the Raton Basin, Central
US, and used it to estimate time dependent Coulomb stress changes due to ∼25 years of wastewater injection in
the region. Our finite element model is complemented by a statistical analysis of the seismogenic index (SI), a
proxy for critically stressed faults affected by variations in the pore pressure. Forecasts of seismicity rate from
our hybrid physics‐based statistical model suggest that induced seismicity in the Raton Basin, from 2001 to
2022, is still driven by wastewater injection despite declining injection rates since 2011. Our model suggests that
pore pressure diffusion is the dominant cause of Coulomb stress changes at seismogenic depth, with poroelastic
stress changes contributing about 5% to the driving force. Linear programming optimization for the Raton Basin
reveals that it is feasible to reduce earthquake potential for a given amount of injected fluid (safety objective) or
maximize fluid injection for a prescribed earthquake potential (economic objective). The optimization tends to
spread out high‐rate injectors and shift them to regions of lower SI. The framework has practical importance as a
tool to manage injection rate per unit field area to reduce induced earthquake potential. Our optimization
framework is both flexible and adaptable to mitigate induced earthquake potential in other regions and for other
types of subsurface fluid injection.

Plain Language Summary The Raton Basin, in the central United States, has had a remarkable
increase in seismicity coincident with large wastewater injection since 2001. This seismicity primarily occurs at
depths greater than several kilometers where preexisting faults in the crystalline basement are reactivated by
increasing pore pressure due to fluid diffusion. The spatial extent and rate of the induced earthquakes can inform
earthquake probability maps which display the probability of an earthquake occurrence within a specific time
period. We use the physics‐based and statistical models to develop an optimization framework that may help
inform well operations. The proposed method allows for the maximization of injected fluid (the economic
objective) and the reduction of earthquake potential (the safety objective).

1. Introduction
Induced seismicity is a growing problem world‐wide as it accompanies a variety of industrial activities, including
hydraulic fracturing (Bao & Eaton, 2016; Rutqvist et al., 2015) and wastewater disposal (Ellsworth, 2013;
Keranen et al., 2014; Shirzaei et al., 2016), extraction and storage of natural gas (Grasso &Wittlinger, 1990; van
Thienen‐Visser & Breunese, 2015; Zbinden et al., 2017), CO2 sequestration (Goertz‐Allmann et al., 2014; White
& Foxall, 2016), and renewable geothermal energy exploitation (Fialko & Simons, 2000; Giardini, 2009; Majer &
Peterson, 2007; Mignan et al., 2015). Within the last decade, a dramatic increase in seismic activity in the Central
and Eastern United States (CEUS) was caused by deep injection of water that was co‐produced with oil (Keranen
et al., 2014; Langenbruch et al., 2018; Langenbruch & Zoback, 2016; Walsh & Zoback, 2015). Several moderate
(M5+) events were induced in historically aseismic regions (Ellsworth, 2013; Foulger et al., 2018; Weingarten
et al., 2015). Like natural tectonic earthquakes, induced events occur on pre‐existing critically stressed faults,
primarily in the crystalline basement (Townend & Zoback, 2000).

The occurrence of induced seismicity is attributed to various physical mechanisms, including pore pressure
diffusion, poroelastic coupling, stress changes caused by seismic or aseismic fault slip, and stressing due to tensile
hydraulic fracture opening (Ge & Saar, 2022; Keranen & Weingarten, 2018; Kettlety et al., 2020; Moein
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et al., 2023; Segall & Lu, 2015). In general, all mechanisms may contribute to the triggering of seismicity, because
induced earthquakes can be triggered by stress changes just above stress perturbations caused by the Earth's tides
(1–10 kPa) (Bachmann et al., 2012; Cacace et al., 2021; W. Wang et al., 2022; Stokes et al., 2023). Modeling
studies at well‐characterized injection locations show that the relative significance of these mechanisms varies
from site to site depending on the physical rock properties, reservoir structure, fault geometry, seismotectonic
conditions, and distance from injection among others (Keranen & Weingarten, 2018; Segall & Lu, 2015;
Weingarten et al., 2015; Zhai et al., 2019). Pore pressure diffusion and poroelastic stress changes are considered
primary mechanisms for induced seismicity (Ge & Saar, 2022; Keranen &Weingarten, 2018; Segall & Lu, 2015;
Stokes et al., 2023; Zhai et al., 2019).

Understanding and mitigating the seismic response to fluid injection is still a major challenge, not just for
wastewater disposal, but for other types of subsurface fluid injection: CO2 sequestration, enhanced geothermal
systems and hydraulic fracturing. In each region where subsurface fluid injection occurs, it is paramount to future
operations to find an optimal balance of efficient yet safe injection practices. The field of hydrogeology has long
used coupled groundwater simulations and management models to optimize pressure changes in multiple wells
for a certain benefit (Gorelick, 1983; Gorelick & Zheng, 2015). For example, Gorelick and Remson (1982) sought
the optimal solution that maximized pollutant disposal while meeting spatial water quality standards at the wells
over time. A similar approach for wastewater injection and induced seismicity could involve maximizing in-
jection rates while adhering to spatial constraints to prevent fault reactivation.

Here, we present a framework that seeks to optimize the amount of wastewater injected at the basin‐scale with a
fully coupled poroelastic model combined with a statistical seismicity forecasting model. Optimization is per-
formed under a spatially varying Coulomb failure stressing rate constraint dependent on faulting orientation (King
et al., 1994; Cocco & Rice, 2002; Z. Jin et al., 2022). We first demonstrate the hybrid model's effectiveness at
forecasting the observed seismicity in the Raton Basin of Colorado and New Mexico—a long‐standing and well‐
documented case of induced seismicity. We then demonstrate the feasibility of future induced seismicity man-
agement using optimization of injection under various constraint scenarios.

For our simulation and management models, we take advantage of the linearity in the fully coupled poroelastic
equations as well as the linearity in the Coulomb stress equation. Coupled poroelastic calculations are performed
using a 3D finite element hydromechanical model (Dassault Systemes, 2020). Our statistical seismicity model
follows the methodology of prior work performed in Oklahoma and Kansas, where spatiotemporal variations of
induced earthquake potential are calculated from pore pressure changes and spatial variations of the subsurface's
susceptibility to induced earthquakes (Langenbruch et al., 2018). The susceptibility is described by the spatially
varying seismogenic index (SI), a proxy for the number and stress state of pre‐existing basement faults affected by
stress changes (Langenbruch & Zoback, 2016; Shapiro et al., 2010). Note that the SI model applied in Oklahoma
and Kansas only considered pore pressure changes, while we consider the fully coupled problem by including
poroelastic stress changes in the Coulomb stress analysis. We then form a management model using a response
matrix for rate dependent model constraints provided by the SI.

The management models considered are three 5‐year prospective scenarios that use the remnant pore pressure and
stress conditions from prior injection in the Raton Basin. In each scenario, the optimization chooses which in-
jection wells to operate and at which monthly rate of injection. The first scenario optimizes induced earthquake
potential for an injection strategy that tapers the overall injection by 70% from the 2022 levels (reduction
objective). The second scenario minimizes the earthquake potential for the current Raton Basin injection rate, thus
optimizing earthquake potential for a given injected volume (safety objective). The third scenario maximizes the
total injected volume while holding constant Raton Basin's currently forecasted earthquake potential (economic
objective). The total framework serves as a flexible platform by which the optimization of injection activities are
drafted to reduce the earthquake potential and maximize an economic objective.

1.1. Raton Basin

The Raton Basin, a ∼150 km long by ∼75 km wide sedimentary basin situated along the border between Colorado
and New Mexico, has shown a remarkable seismic rate increase coincident with the beginning of industrial‐scale
wastewater injection in 2001 (Rubinstein et al., 2014) (Figure 1). The source of the wastewater is from coal‐bed
methane production from the Raton and Vermejo formations (Nakai, Weingarten, et al., 2017). The rate increase
was punctuated by the 23 August 2011 M5.3 Trinidad, Colorado earthquake, which caused structural damage in
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the nearby town of Trinidad, as well as 17 M4+ events, the most recent of which occurred on 10 March 2023
[ANSS Comprehensive Catalog] (Figure 1). Previous studies have linked seismicity and wastewater injection
wells operating in the basin using observational evidence and physical modeling (Barnhart et al., 2014; Nakai,
Weingarten, et al., 2017; Rubinstein et al., 2014). The time‐dependent earthquake potential associated with these
induced events can change based on the pumping rates associated with the injection wells. Understanding both the
spatial and temporal change of past earthquake potential is critical to mitigating future hazard.

Injection induced seismicity began in 2001 and peaked in late 2011 with the 23 August 2011 M5.3 Trinidad,
Colorado earthquake (Figure 2). Since 2011, regional injection rates have declined more than∼33%, but the basin
continues to exhibit an elevated seismicty rate with several recent M4+ events (Glasgow et al., 2021b). The
regional stress field is heterogeneous, with a substantial rotation of the maximum horizontal stress from pre-
dominantly north‐south to east‐west directions (Snee & Zoback, 2022). The earthquake focal mechanisms
indicate a mixture of normal and strike‐slip earthquakes (R. Wang et al., 2020; Glasgow et al., 2021b).

Geologic and hydrogeologic data show that the Dakota‐Purgatoire Formation, a fractured sandstone reservoir,
and the underlying Glorieta sedimentary units are permeable and hydraulically connected across a large area of

Figure 1. Regional Context. Light gray outline is the Raton Basin. Blue triangles are the 29 injection wells sized as per
cumulative volume injected from Nov‐1994 to May‐2022. Gray dots are earthquakes with M≥2.5 and red dots are
earthquakes with M≥4 from Nov‐2001 to July‐2020. Boxed regions represent zones of seismicity: Tercio, Vermejo Park, and
Trinidad.
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the basin (Geldon, 1989; Nelson et al., 2013). Pennsylvanian and Early Permian Sangre de Cristo sediments lie
beneath the Glorieta, separating the wastewater disposal interval from the Precambrian basement by ∼1.2 km
(Belitz & Bredehoeft, 1988). The injection reservoir is also well‐confined from the shallower stratigraphy within
the basin by more than 700 m of poorly permeable Pierre Shale. Additionally, the western boundary is charac-
terized by the Sangre de Cristo Mountain thrust fault system, a complex of west‐dipping, Laramide‐age thrust
faults that show dip‐slip offsets of 0.6–3 km (Clark et al., 1966). The observed seismicity in the Raton Basin is
primarily found within the crystalline basement at average depths of 5–7 km below surface (Glasgow
et al., 2021b; Nakai, Weingarten, et al., 2017). There is also strong evidence to suggest three prominent zones of
seismicity: Tercio, Vermejo Park, and Trinidad (Figure 1) (Barnhart et al., 2014; Higley, 2007; Macartney &
O’Farrell, 2010).

2. Physics‐Based Forecasting Model
2.1. Methods

2.1.1. Linear Poroelasticity

To understand how injection across the Raton Basin is changing stress on pre‐existing basement faults, we
develop a fully coupled poroelastic model and compute the Coulomb stress changes at depth. Linear poroelas-
ticity is essential to understanding the time‐dependent coupling between the deformation of, and fluid flow in,
hydrogeologic units within the Earth. The governing equations for a fully coupled linear poroelastic three‐
dimensional medium are defined as (Biot, 1941; Rice & Cleary, 1976; H. Wang, 2000):

G∇2ui +
G

1 − 2ν
∂2uk
∂xi∂xk

= α
∂P
∂xi

− Fi, (1)

α
∂ϵkk
∂t
+ Sϵ

∂P
∂t
=
k
μ

∇2P + Q, (2)

Figure 2. Injection, induced earthquakes, and Coulomb stress rate. Total monthly injection volume (gray), observed
earthquakes M≥2.5 (1 year moving mean), and the average modeled Coulomb stress rate in the study area. The Coulomb
stress rate lags the injection rate due to the diffusion of pore pressure into the crystalline basement. A correlation between
increased stress at depth and seismicity is observed.
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where G is the shear modulus, u the displacement, ν the Poisson's ratio, α the Biot‐Willis coefficient, F the body
force, k the permeability, μ the fluid viscosity, Sϵ the constrained specific storage, ϵkk the volumetric strain, P the
pore pressure, and Q the fluid source (H. Wang, 2000). Equation 1 are nearly identical to the classic equations for
linear elasticity except for the coupling of pore pressure in the conservation of linear momentum Equation 1 and
the fluid flow coupled to strain by the requirement of fluid continuity (2). However, system (1)–(2) is more
difficult to solve, with analytic solutions restricted to a few highly idealized cases. We solve the respective
equations numerically using the three‐dimensional finite element software Abaqus FEA (Dassault Sys-
temes, 2020; Hill et al., 2023; LaBonte et al., 2009; Pearse & Fialko, 2010). We validate the robustness of the
numerical solution provided by Abaqus by summarizing its equivalency to that of a linear poroelastic framework
(Jin, 2023; Jin et al., 2023). Additionally, we resolve the numerical pore pressure and stress outputs of a fluid mass
point source compared with an analytical solution as further validation that Abaqus is a robust linear poroelastic
framework (Rudnicki, 1986) (see SM Section 1).

The pore pressure diffusion is governed by an inhomogeneous diffusion equation Equation 2. Because the fluid
flow is coupled with the strain field, pore pressure changes have direct effects on the stress and changes in the
strain have direct effect on the fluid pressure. Under different assumptions, the stress field will uncouple from the
pore pressure field and the diffusion equation resembles its hydrogeologic counterpart; the ground water flow

equation S ∂P
∂t =

k
μ∇

2P + Q (where S = Sϵ
K(u)v
Kv
) (Detournay & Cheng, 1993; H. Wang, 2000).

Following Gorelick and Remson (1982) and Gorelick et al. (1993), we use a physics‐based numerical model to
generate a unit source response matrix (see Section 3.1.2). The key difference is that our simulation model in-
corporates the fully coupled poroelastic response (1–2), calculated using a finite element model, and generates a
unit source response matrix of Coulomb stress (3) which is only possible due to the linearity in all the equations.
The Coulomb stress is also dependent on fault geometries (SM Figure 1 in Supporting Information S1).

2.1.2. Stressing Rate and Earthquake Probability

Triggering of seismic events due to fluid injection can be adequately described by Equations 1 and 2 and changes
in Coulomb stress (H. Wang, 2000; Cocco & Rice, 2002). Coulomb stress τ is defined as:

τ = τs + μ(σn + P), (3)

where τs is the shear stress on a fault plane, σn is the normal stress (compression is deemed negative), P is the pore
pressure, and μ is the coefficient of friction. An increase in pore pressure reduces the absolute value of the
effective stress (σe = σn + P) such that the Coulomb stress increases, corresponding to promotion of failure. In
the presence of a regional stress field even modest perturbations in pore pressure may encourage slip on pre-
existing critically stressed faults. The diffusion of pore pressure is highly dependent on hydraulic properties.
Furthermore, depending on fault geometries, the poroelastic coupling of the fluid may play a significant role in
promotion or inhibition of fault failure, especially in the far field where the effects of fluid percolation are
negligible (Segall & Lu, 2015).

Similar to previous work (Langenbruch et al., 2018), which was carried out in the region of north‐central
Oklahoma and southernmost Kansas, seismicity data in the Raton Basin also shows the expected increase of
earthquake probability with the rate of stress increase (Supplementary Methods). These observations can be used
to describe the monthly earthquake rates R≥M(r,t) according to a modified Gutenberg‐Richter law for induced
earthquakes (Langenbruch et al., 2018):

R≥M(r, t) = 10a(r,t)− bM = [
∂
∂t
ττ(r, t)]

2

10Στ(r)− bM, (4)

Here, we replaced the pore pressure rate, used by (Langenbruch et al., 2018) by the monthly Coulomb stressing
rate ∂

∂tττ(r, t) in space and time to add the effect of poroelastic coupling. Στ(r) is the spatially varying Seismogenic
Index (SI). The SI and b values are evaluated through a specific calibration period (see Section 2.3). The cali-
brated parameters are then used to forecast expected earthquake rates and to initialize the management model (see
Section 3) for optimization. An important distinction from previous studies (Langenbruch et al., 2018) is the use
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of Coulomb stressing rate ∂
∂tττ(r, t) as opposed to pressure rates. While pore

pressure rates are still the dominant signal (SM Figure 2 in Supporting In-
formation S1), the fully coupled numerical model takes into account the full
stress field.

2.2. Numerical Domain

The numerical domain was developed and discretized in Abaqus CAE
(Complete Abaqus Environment, Dassault Systemes, 2020). The domain has
horizontal dimensions of 120 km × 200 km and a depth dimension of 14 km,
with the y axis corresponding to north in the Universal Transverse Mercator
coordinates (Figure 3). The finite‐element mesh consists of nearly 1.5 million
first‐order hexahedral elements. Characteristic element sizes vary from
5,000 m in the far field to less than 500 m near the injection wells and in the
vicinity of the central basin. The depth domain is partitioned into the five
distinct hydrogeologic layers of the basin. The heterogeneous hydrogeologic
properties of the model are summarized in Table 1. Permeability and storage
parameters of the primary injection formations, the Dakota‐Purgatoire and
Morrison‐Glorieta, were calibrated from analysis of injection step‐rate tests
(see Supplementary Materials in Supporting Information S1). The perme-
ability k of the Dakota‐Purgatoire formation and the Morrison‐Glorietta
formation is taken to be 6.4–6.8 ×10− 14 and 5.8–8.9 ×10− 14 m2, respec-
tively. While no wells penetrate the crystalline basement for diagnostic
analysis of basement permeability, we chose a crystalline basement perme-
ability (k = 1 × 10− 15 (m2)) that results in the best correlation between the
observed seismicity rates and modeled pressure rates (Figure 2). While this
permeability is slightly higher than that measured in small‐scale laboratory
experiments and inferred for basement rocks in some regions (Brace, 1980; H.
Wang, 2000; Shmonov et al., 2003; Ross et al., 2020), it is similar to large‐
scale basin estimates made in regions of induced seismicity (Langenbruch
et al., 2018; Nakai, Weingarten, et al., 2017). In addition, it is also consistent
with constraints on in situ hydraulic diffusivity of the upper crust from ob-
servations of post‐seismic deformation (e.g., Fialko, 2004). The increased
permeability is chosen to capture the basin‐scale permeable faults that
transmit fluid pressure to seismogenic depths (Caine et al., 1996; Hill
et al., 2023).

We assume initial conditions of equilibrium stress and pore pressure
(Segall, 2010, chapter 9). Therefore, the model only considers the perturbing
effects of the wastewater injection and does not include any tectonic loading.

Figure 3. Numerical Domain. Three‐dimensional finite‐element model
domain. The model mesh contains about 1.5 million hexahedron elements.
The Red dots represent the well injection locations. The blue dotted line
represents pore pressure and stress output location at the mean seismogenic
depth (∼7 km depth or 4,240 m below the top of the crystalline basement).

Table 1
Material Properties

Unit Pierre‐benton‐niobrara Dakota‐purgatoire Morrison‐entrada‐gloreita Sangre de cristo Crystalline basement

Depth (km) 1–1.4 1.4–1.6 1.6–2 2–2.8 2.8–15

Thickness (m) 400 200 400 800 1,220

Permeability (m2) 1⋅10− 20 6.7⋅10− 14 8.9⋅10− 14 8⋅10− 15 1⋅10− 15

E (GPa) 0.22 38 32 40.74 60

v 0.3 0.287 0.13 0.15 0.25

Ks (GPa) 0.34 33.8 26.6 36.6 42

ϕ 0.38 0.25 0.07 0.06 0.01

Note. Hydrogeologic material values for different units and their corresponding depths in the numerical model. Note that the model begins at 1 km depth below the
surface.
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The bottom and sides of the model are fixed only in the surface normal direction (the roller boundary condition).
The top surface of the model is stress‐free. We model the Sangre de Cristo Mountain complex of thrust faults as
barriers to cross‐fault fluid flow and use an insulating condition at the western boundary of the model. We use the
same injection depth of 1,500 m for all wells as the former is the middle depth of the modeled Dakota‐Purgatoire
injection reservoir. We record pore pressure and stress perturbations at the mean seismogenic depth of ∼7,040 m
which is equivalent to∼38,000 observation points for each time step. Generation of the SI map requires the full 29
well injection profile data ranging from November 1994 to May 2022, giving rise to 331 monthly time steps,
while the 5 years response matrix models require only 61 time steps.

2.3. Seismogenic Index (SI)

The SI map is a map of the seismo‐tectonic state controlled by the number and stress state of pre‐existing faults in
the crystalline basement affected by Coulomb stress changes (Figure 4) (Langenbruch et al., 2018). The SI (Στ(r))
is determined in local regions of 7 km radius at ∼25,000 seed points. The seed points represent the interpolated
Coulomb stress changes produced by the model at the mean seismogenic depth within the crystalline basement.
The higher the SI (Στ(r)) at each seed point, the higher the earthquake rate caused by a given Coulomb stress
increase, because a higher number of (or more critically stressed) preexisting faults are affected by the Coulomb
stress increase (see Equation 4).

Calibration of the SI is set based on a calibration time period. In this way, future modeled Coulomb stressing rates
are used to forecast expected spatiotemporal earthquake rate. We set the calibration time (Nov 1994 to July 2016)
of our SI map prior to the Glasgow et al., 2021b study and find that forecasted earthquakes (July 2016 to July
2020) are well explained by basin Coulomb stressing rate, despite lowered injection rates at this time (Figure 6).

Calibration of SI follows closely to previous methods (Langenbruch et al., 2018). The following steps are per-
formed to calibrate the SI maps.

Figure 4. Seismogenic Index Στ Maps. Mapped spatial variability of the SI in the Raton Basin. The SI is computed in local
regions of 7‐km radius around the 25,000 seed points (gray dots in panel A). The calibration time is between Nov‐1994 and
July‐2016. See Methods for additional details. Red dots represent earthquakes M≥2.5 used in calibration. Panel
(b) represents the inverse distance weighted interpolation of the SI to the model points used in the forward model management
solutions.
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1. Monthly Coulomb stressing rates ∂
∂tττ (rn, t) at all n seed points with a radius of 7‐km around a selected seed

point up to a given calibration time tc (we use Nov‐1994 to July‐2016) are extracted, squared, and sum-
med ∑

n
[ ∂∂tττ (rn, t≤ tc)]

2

2. The total number NM≥Mc(t≤ tc) (Mc = 2.5, see SM Figure 3 in Supporting Information S1) of earthquakes
within a 7‐km radius around the current seed point observed up to the given calibration time is summed.

3. Estimate of the b‐value is computed using all M≥Mc earthquakes recorded through the calibration time tc in
the complete study area.

4. The SI at location r is evaluated:

Στ(r) = log10NM≥Mc(t≤ tc) − log10{∑
n
[
∂
∂t
ττ (rn,t≤ tc)]

2

} + b(tc)M (5)

Due to the occurrence of singular earthquakes outside of the local areas of elevated seismicity one can get outlier
SI values. These events are often attributed to Coulomb stressing rates that are quite low which results in
significantly larger than average SI at those locations. Prior work found that as soon as two earthquakes occurred
within the chosen radius of any given seed point a good estimate of the SI can be obtained (Langenbruch
et al., 2018). Our region uses a smaller radius and calibration magnitude. Therefore, we precondition the SI to only
be evaluated when there are more than three earthquakes. We evaluate the sensitivity of the SI for different
calibration periods (SM Figure 4 in Supporting Information S1) which produce minor differences. We also
evaluate sensitivity due to a smaller 5‐km radius and removal of the “more than three earthquakes” precondition.
These changes produce an SI map that appears different, as outliers are now included, but the overall seismicity
rate remains very similar (SM Figures 5 and 6 in Supporting Information S1).

Within the central basin region, we find that the SI varies by about 1.5 units (Figure 4). A one unit increase in SI is
the equivalent of expecting 10 times more earthquakes for the same CFS rate change at that location. A higher SI
in the central basin corresponds spatially with the well known zones of seismicity: Tercio, Vermejo Park, and
Trinidad.

The SI is dependent on the spatial density of the observed seismicity and the radius of inclusion. This implies that
seed points without observed seismicity in a 7‐km radius will not produce SI. For the purpose of forecasting
seismicity and optimizing injection rates for the entire basin we use an inverse distance weighting interpolation

Figure 5. Pore Pressure Increase. (a) Pore pressure increase at mean seismogenic depth across the basin including seismicity
from Aug 2001 to Jan 2016. Black dots represent earthquakes with M≥2.5+ and magenta stars are earthquakes with M≥4+.
(b) Pore pressure increase at mean seismogenic depth across the basin including seismicity from Jan 2016 to Aug 2022.
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(power = 2, radius = ∞) (Figure 4) in areas that have no observed seismicity during the calibration period. The
smoothing maintains local heterogeneity while populating areas with otherwise no SI. The central basin has the
lowest SI because it has high stress changeswithout causing seismicity, while areas farther away have higher SI due
to lower stress changes that still induce seismicity. The interpolated map helps inform the Coulomb stressing
constraints in the SI dependent response matrix models. The basin‐scale interpolation allows short calibration
periods (2005) to forecast the seismicity rate in themodelwell (Figure 6).While the overall basin‐scale seismicity is
not very sensitive to calibration, the spatial optimization (Section 3) is muchmore dependent on the spatial aspects
of the SI.

The SI is also dependent on the stressing rate, which is primarily a function of the pore pressure (SM Figure 2 in
Supporting Information S1), that is sensitive to uncertainty in the model permeability. Treating the numerical
model with a laterally homogeneous permeability allows the SI to capture areas of preexisting critically stressed
faults without any bias to permeability uncertainty. Since an increase/decrease in the permeability will increase/
decrease stressing rate during seismicity the SI is affected. Generally, the SI would still accommodate these
changes in a relative sense. For example, if across the basin the stressing rates were all lower during seismicity due
to a reduction in permeability, the overall SI would be higher since a low pressure rate was still producing the
same amount of seismicity. There is evidence of permeable faults potentially acting as hydraulically connected
pathways in the Raton Basin (Nakai, Weingarten, et al., 2017; Rubinstein et al., 2014). Lateral heterogeneity in
permeability uncertainty is beyond the scope of this work. However, the approach to include uncertainty in the
permeability, or any material parameter, is possible (see Section 7.4).

2.4. Results and Discussion: Forecast Performance (2016–2020)

The results of the time dependent pore pressure evolution and associated seismicity during our calibration time are
shown in Figure 5. The pore pressure continues to increase at depth within the basin due to the diffusion of fluid
pressure despite lowered injection rates during 2016–2022. The total pore pressure increases, but the rate of
increase declines (Figure 2). Returning to Equation 4, we can now forecast seismicity rate beyond our calibration
time using both the SI map and Coulomb stress perturbations from the numerical model. Figure 6 depicts the
seismicity rate forecasts from a variety of calibration time periods and the resulting projected seismicity rate

Figure 6. Seismicity Rate Forecast. (a) Seismicity rate forecasts, above our completeness magnitude M≥2.5, compared to
observed seismicity rate (1 year moving mean). Calibration period is from Nov 1994 through 2005, 2012, 2013, 2014, 2015,
and 2016 prior to the Glasgow et al., 2021a study (Glasgow et al., 2021b). The earthquakes and longest calibration time
period used to calibrate the SI model is represented by the red line. The varying dashed lines and gray boundaries are the 95%
confidence bounds forecasted by the seismicity rate produced from the SI model that includes the inverse distance weighted
interpolation (right panel of Figure 4). Magenta line represents the observed seismicity from Glasgow et al., 2021a which is
well explained by the seismicity rate forecasted by our model. (b) Spatial seismicity rate forecast for 2016–2020 associated
with the magenta line in panel a using a 7 km radius summation. Observed earthquakes are plotted as gray circles and M≥4+
are plotted as magenta stars. Visual inspection shows good agreement between spatially forecasted seismicity rate and observed
earthquakes.
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between 2016 and 2020. There is little sensitivity of the modeled earthquake rates to the calibration time. We find
that the observed seismicity rate from 2016 to 2020 fits well by our calibrated SI model and the computed
Coulomb stress changes (Figure 6 and SM Figure 9 in Supporting Information S1). We further validate the
seismicity forecast by comparing the joint log‐likelihood scores of our forecast to both a spatially uniform and
more heterogeneous uniform random seismicity model. Each forecast is rate normalized so that total seismicity is
not considered in the performance. The results of the joint log‐likelihood scores indicate our model outperforms
both the spatially uniform and uniform random seismicity rate models (SM Figures 7–8 in Supporting
Information S1).

Furthermore, assuming the occurrence of induced earthquakes follows a Poisson process (Langenbruch
et al., 2011; Langenbruch & Zoback, 2016; Shapiro et al., 2010), the probability of exceeding a magnitudeM, that
is the probability to observe one or more events of magnitudeM or larger, is given by (Langenbruch et al., 2018):

Pr(M) = 1 − Pr(0, M, N≥M) = 1 − exp(− N≥M) (6)

Where, (N≥M) is the expected number of events of magnitude M or larger in a considered time interval (see
Equation 4).

Based on our calibrated model, we compute the annual expected number of events in the range from M 2.5–6.5
and determine magnitude exceedance probabilities using Equation 6 (Figure 7). Our results suggest that between
2016 and 2020 there was a∼85% probability to observe one or moreM≥4+ earthquakes and a∼18% probability to
observe one M≥5+. We find good agreement with earthquake count for the forecasted seismicity and the
observed seismicity (SM Figure 9 in Supporting Information S1). We find that Coulomb stress rates at seis-
mogenic depth continued to trigger seismicity between 2016 and 2020 although injection rates declined.
Therefore, induced seismicity was still driven by wastewater injection during this time period. Declining injection
rates alone are not necessarily an indicator of decreased earthquake potential as one must also consider diffusion‐
driven time delays in the induced seismicity process.

Figure 7. Forecasted Magnitude Exceedance Probabilities. Exceedance probabilities for magnitudes M≥2.5–6.5 from our
physic‐based forecasting model. Each line represents the probability forecasted by our model based on the calibrated SI map
and computed Coulomb stress model outputs. The forecasted probability from 2016 to 2020 is significantly higher than the
tectonic background (gray line) and is highest in 2016. Background probabilities are derived from prior work (Rubinstein
et al., 2014). Each year from 2016 to 2019 the magnitude exceedance probabilities or decreasing, but still above the tectonic
background level. From 2016 to 2020 the potential to trigger a M≥5+ increases to ∼18%.
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2.5. Results and Discussion: Business as Usual Forecast (2022–2027)

In this section we explore the seismicity forecasted by our calibrated model from 2022 through 2027 under a
hypothetical ’business as usual’ (BAU) injection scenario. The BAU scenario uses the last observed monthly
injection rate for each well from May 2022 and holds them constant until May 2027 (Figure 8). It should be
understood that this is not an ideal forecast of the observed seismicity during this time since the forecasted in-
jection rates are not the real injection rates which are unknown. Instead, this scenario represents a hypothetical
informed estimate and serves as a baseline for comparison with the optimization models discussed in Section 3.
We list the following important results of the BAU forecast.

• The BAU forecast from 2022 to 2027 shows that the probability to exceed a M≥5+ event is ∼15% and a
M≥4+ event is ∼75% (Figure 9).

• Spatially, higher rate injection wells are clustered in the central portion of the basin near the Vermejo Park
cluster. Injection wells in this area, just south of the CO‐NM border, on average inject at rates higher than
20,000 m3 per month (Figure 10(B)).

• Earthquake potential is also mostly elevated in this same region for the BAU forecast (Figure 10(A)). Within
this region of clustered injection, the spatial probability to exceed a M≥4+ is ∼20% over the 5‐year BAU
forecast.

• Earthquake potential in the North of the basin is proportionally smaller. We interpret this as a result of lower
injection rates, largely below ∼10,000 m3 per day, and lower SI in this region.

• The two observed M4+ events that have occurred fromMay 2022 to September 2023 occur within the zone of
elevated earthquake potential forecasted by our model (Figure 10)

• In comparison to a complete shut‐in of injection in May 2022, BAU injection increases the likelihood of a
M≥4+ event by 150% (from 30% to 75%) and a M≥5+ by more than 200% (from 5% to 15%) (Figure 9).

SM Figures 10–11 in Supporting Information S1 show the seismicity rate forecasts resulting from the BAU
projected injection rates. The forecasted seismicity rates are used to produce magnitude exceedance probabilities
from our calibrated SI model (Figure 9). Figure 9 also includes the lower bound on any optimization we can
achieve, the shut‐in scenario, which represents the post‐diffusion pore pressure and stress effects from the full

Figure 8. Different Optimization Scenarios. Plot shows the monthly injection rate (total of all 29 wells) for the observed data
(blue). At June‐01‐2022, the next 5 years window (gray box) represent the forecasted injection rates. The business‐as‐usual
rate takes the last known injection rates and holds them constant for the 5 years (blue‐dash). The prospective case ‘Reduction’
is the optimized injection rates subject to reducing the overall injection by 70% in 5 years as well as a taper in individual well
rates (yellow). The prospective case ‘Safety’ is the optimized injection rates subject to the constraint that the total fluid
injected must be the same as the BAU, but reduces the overall earthquake potential (Figure 9) (red). The prospective case
‘Economic’ is the optimized injection rates subject to the constraint that the overall 5 years earthquake potential must be the
same as the BAU, but increases the overall injection (green).
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injection history (i.e., blue line in Figure 8). The 5 years earthquake potential for the shut‐in scenario is also
characterized spatially for a probability of exceeding a M≥4+ (Figure 11). Given enough prior seismicity to
produce a SI map and a physical model to produce Coulomb stress rate any future injection scenarios can be
considered in our model. We elaborate on three management models in the following sections.

Figure 9. Seismicity Rate Forecasts and Forecasted Magnitude Exceedance Probabilities (Optimizations). (a) Seismicity rate
for M≥2.5 from beginning of injection until beginning of optimization management period. Each of the 5 years optimizations
have an associated exceedance probability in the next panel. (b) Exceedance probabilities for scenarios projected into the future
(see main text). The Business as Usual (BAU) forecast is determined by extrapolating the last observed injection well data into
the next 5 years. The shut‐in forecast is determined in a similar way, but for immediate shut‐in of all wells in June‐2022.
Prospective Case ‘Reduction’ considers reducing overall injection volume by 80% while not allowing the probability of
exceeding a M≥4+ to be over 45%. Prospective case ‘Safety’ considers the same amount of fluid as the BAU case, but a more
spatially optimized strategy based on the SI map. Prospective case ‘Economic’ optimizes to a solution for much more fluid for
the same earthquake potential as the BAU case.
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3. Physics‐Based Forecasting With Optimization
3.1. Methods

The previous sections describe the methods to construct the simulation model built from two data sets: (a) the
physics‐based poroelastic model and (b) the statistical seismicity model or SI map (Figure 12). In this section we
describe the additional methods required to frame our problem as a management model that allows for varied
optimizations. In our optimization model, the objective function allows for the maximization of a desired
objective, that is, total injection rate, using decision variables (monthly injection rates) subject to constraints, such
as CFS rate at a particular location. In order to solve this optimization problem, we must build a response matrix of
the system and use mixed‐integer and linear programming to resolve our objective. An overview of the
simulation‐optimization procedure, including the construction of the simulation model, is provided in Figure 12.

3.1.1. Objective Function

In our study of the Raton Basin, the objective function is framed to maximize a desired objective over the 5‐year
management period. This objective function is maximized subjected to specific constraints, that is, Coulomb
stress or Coulomb stress rate τ̇, below a threshold at chosen locations. Linear programming employs the unit‐
source solutions of the response matrix by linear superposition to acquire the optimal injection rates at each of
the 29 wells in our model. The general framework of the linear program is represented as:

minq f Tq (7)

subject to.

Rq ≤ x (8)

0 ≤ q ≤ ub (9)

where q is the injection rate at each of the wells for each time step (i.e., monthly), f T is a row vector of negative
ones [‐1, ⋯ , ‐1] so that the objective function seeks to maximize the cumulative injection, R is the response

Figure 10. BAU Earthquake Potential and Mean Injection Rate. (a) Magnitude exceedance hazard map for M≥4+ for the
5 years management window. Each location is taken as the sum in a 7 km radius. Magenta stars (3) represent the locations of
actually observedM≥4+ earthquakes between June‐2022 and Sept‐2023. (b) TheMean well injection rate (m3/month) for all
29 wells (triangles) in the BAU extrapolation. Gray dots represent model nodes.
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matrix (see Section 3.1.2), x is the constraint vector (τ̇) at each of the model output locations, and ub is the upper

bound on the monthly injection rate for each well. For all optimization scenarios presented, the upper bound for a
single well injection rate is 1,500 m3/day, which represents the threshold of high‐rate well injection nationwide
(Weingarten et al., 2015). We solve the linear program using the linprog () function in MATLABwhich generates
optimal values of q, that is, the injection rates, for each well that do not exceed the constraints at the model output
points. This objective function, subject to various constraints, is flexible and adaptable to a wide variety of ad-
justments within linear programming optimization. In Section 3.1.4, we elaborate on different ways to alter the
management model constraints and provide a selection of controls that may be of interest to real‐world injection
practices.

3.1.2. Response Matrix

Given any linear system used to describe a given simulation model, a management model can be built with a
response matrix. Construction of the response matrix requires individual unit‐source solutions for each well
operating within the management model. A unit‐source solution is generated by producing an impulse from an
individual well (i.e., unit flow rate) and measuring its response at all model output locations for the duration of the
management period. The impulse has a fixed value for a specified period and a value of zero thereafter. The
response of the system are changes in pore pressure and stress. Due to the linearity of the Coulomb stress equation
(Equation 3), Coulomb stress and Coulomb stress rate are derived from this response (see Appendix for rate
response matrix construction).

In our model, the Raton Basin contains 29 wells. Therefore, we must generate 29 independent, unit‐source im-
pulses (one for each well) and record the unit response at all model output locations. We must record each
response for the entire 5‐year management period (i.e., June‐2022 to June‐2027). Each time step in the model is
30 days. Hence, the unit‐source response is a single flow rate equivalent to 100 m3/day for the first time step and
then zero for the 60 months after. The result of this procedure is the unit‐source response matrix of CFS rate

Figure 11. Shutin Earthquake Potential. The 5 years hazard for the shut‐in scenario (all wells cease injection in May 2022
and stay off for 5 years) is also characterized spatially for a probability of exceeding a M≥4+. Shut‐in represents the post‐
diffusion pore pressure and stress effects from the full injection history that continue to linger through the model and contribute
to perturbations. Note that the colorbar axis is lower (5%) compared to all other maps which use 20% to clearly show the spatial
distribution of the earthquake potential.
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produced by each well at every model output location (SM Figure 12 in Supporting Information S1). An example
of this procedure is provided in the supplement (SMMethods 7.3 in Supporting Information S1; SM Figure 13 in
Supporting Information S1).

3.1.3. Considering Injection Prior to Management Time Period

Our optimization management model optimizes injection rates under a set of given constraints for a prescribed
management time period. It does not, inherently, consider injection prior to the management time period. We
solve this issue by taking the difference of Coulomb stress between two simulations: (a) an ABAQUS simulation
which considers all injection from Nov 1994 ‐ 2027 (BAU rates) and (b) a response matrix simulation which
considers only injection from 2022 to 2027 (BAU rates). The resulting Coulomb stressing rates represent the
contribution of all prior injection during the management time period. This could be considered a ‘complete shut‐
in’ scenario from 2022 to 2027.

We calculated seismicity rates and a probability of exceedance curve expected from this shut‐in scenario
(Figure 9). Figure 11 depicts the spatial distribution of earthquake potential for yearly time steps. If wells were to
have suddenly shut‐in all wells in May 2022 our model predicts that there would still be a ∼35% probability of
exceeding a M>4+ earthquake in the next 5 years. The shut‐in Coulomb stress rate perturbations are added to the
Coulomb stress rate constraints of the optimization results prior to the seismicity rate and earthquake potential
calculations, thus serving as the initial conditions or starting point in the optimizations. This step is essential,
otherwise the earthquake potential is underestimated by the optimizations alone.

Figure 12. Simulation Optimization Schematic. Beginning at the top, operations consider quantitative decisions in well
placing and operation prior to injection. By developing a numerical model and SI map from current injection a simulation
model is built. The simulation model is used to build a response matrix which through linear programming solves a desired
objective function (maximize the fluid injected). Additional constraints further inform the optimization which arrives at
informed injection rates and spatial earthquake probability maps to then advise future operation practices.
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3.1.4. Mixed Integer Programming

Mixed‐integer programming (MIP) allows the optimization manager to impose constraints that simulate real‐
world injection practices (Gorelick & Remson, 1982; Hsu & Yeh, 1989). Without MIP, the optimization solu-
tion is free to produce large swings in injection rate at individual wells. In reality, large injection wells have
tolerances for injection rate changes over time. MIP allows the optimization manager to place controls what wells
are operating and how the wells operate (independent or dependent on one another) through time. Injection rates
can be constrained within a running average of past injection at a particular well, or monotonically increase or
decrease injection through time, or exclude certain wells during certain periods.

The process of applying different types of MIP constraints is similar for most scenarios. First, a mixed‐integer
matrix is constructed R∗ such that R∗q ≤ x∗, where q is the corresponding injection well location for each
management period and x∗ is a vector of additional constraints. Both R∗ and x∗ are concatenated with original
response matrix equation, Equation 8, and the objective function is maximized subject to these combined con-
straints (R and R∗). A simplified example is provided in SM Section 3, and further description of applying each
type of MIP constraint in the management model is provided in SM Section 4.

3.1.5. Setting a Desired Earthquake Potential

The optimization problem described above is setup to constrain only CFS rate at specified locations through time.
However, the optimization manager may still use our methodology to achieve a desired earthquake potential. This
is performed by combining the calculated CFS rates with the SI model to produce seismicity rate forecasts.
Optimization is still possible without coupling to a SI map if desired (See SM Section 3; SM Figure 16–17 in
Supporting Information S1).

For a desired magnitude exceedance probability Pr(M) (Equation 6), a user can solve for the total number of
earthquakes expected during the management period (N≥M) . This N≥M, in combination with spatially varying SI
map Στ(r), can be used to calculate desired Coulomb stress rate constraints xτ̇ for the management model:

xτ̇ =
∂
∂t
ττ(r, t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N≥M

P ⋅T
10− Στ(r)+bM

√

(10)

where P now refers to the total number of constraint points in the SI model and T refers to the to total time chosen
for the management period. This initialization assumes that each point in the model will carry a scaled portion of
the total earthquake probability‐that is, N≥M

P ⋅T10
bM which is scaled by the SI (i.e., 10− Στ(r)). In our case, the total

number of model points exceeds the computational limitation of the linear program and a subset of the total model
points must be chosen. For example, the output of our model contains >30,000 points across the basin, but we
reduce this total to 500 constraint locations for the management model. The chosen points are based on a uniform
random distribution of points within a circle that contains all of the seismicity (SM Figure 18 in Supporting
Information S1).

In practice, we have found that the CFS rate constraints provided by Equation 10 always produce a basin‐wide
Pr(M) lower than the desired threshold Pr(M). The desired threshold Pr(M) would only be met if the CFS rate
constraint threshold is met at all points P for all time T. To resolve this issue, we iteratively solve the optimization
model while increasing the CFS rate constraints at locations within the model that reached that threshold at any
time during the management period. In this way, the constraints slowly increase based on which locations require
a higher CFS rate in order to produce the desired Pr(M) in the basin. For our study, we set a goal of achieving the
desired Pr(M) in the basin to within ±0.2% (see SM Section 5).

The following steps describe the methodology, generalized for application to other studies.

1. Choose a desired exceedance probability for an arbitrary magnitude threshold and solve for N≥M (Equation 6).
2. Calculate CFS rate constraints for the management model (Equation 10).
3. Find optimal injection rates for calculated CFS rate constraints.
4. Calculate exceedance probabilities Pr(M) across the basin for the optimized solution.
5. Check if exceedance probabilities Pr(M) are within ±0.2% of desired Pr(M).
6. If yes, skip steps 7 and 8.
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7. If no, adjust CFS rate constraints dependent on too high or too low of threshold.
8. Return to step 3.

3.2. Prospective Case ‘Reduction’ ‐ Reduce the Earthquake Potential

The first prospective case we consider is called ‘Reduction’ (Figure 8 ‐ Prospective Case Reduction). Prospective
case ‘Reduction’ is the management solution for a hypothetical well operation that seeks to reduce the overall
injection and maintain the earthquake potential within a chosen threshold. We include a constraint that the overall
injection must be reduced by at least 80% from May 2022 levels by the end of the 5 years management window.
Additionally, we constrained earthquake potential such that the probability of exceeding a M≥4+ event is 40%
lower than the BAU forecast (Figure 9). The optimization and iterative method arrive at a solution to these
constraints while maximizing the amount of fluid injected.

In order to achieve a smooth tapering of injection from the BAU initial injection rate of ∼10,000 m3 per day we
incorporate aMIP constraint to the management model. The constraint is a monotonic decrease of at least 2% each
month for all injection wells (see SM Section 4) (Figure 8 ‐ yellow line). This constraint smoothly reduces the
overall injection rate and therefore the Coulomb stress rate by the end of the 5 year management period.

We find that there are several wells in the optimization that are never injecting, and that the algorithm prefer-
entially chooses injectors toward the northeast more than other locations (Figure 13b). The northeast portion of
the basin is a relatively low SI area (Figure 4). The west‐central portion of the basin, which contains the highest SI
hazard, does not have large amounts of injection during the management period. The optimization preferentially
chooses to spread out large injectors from one another and to regions of lower SI (Figure 13b).

Another important observation is that prior injection still drives significant earthquake potential due to the time
delay of pressure diffusion continuing to elevate the Coulomb stress rate in the periphery of the basin (Figure 13a).
Earthquake potential is elevated in the west‐central and western portion of the basin by prior injection, despite the
optimization lowering injection in these areas. Our iterative technique still slowly reduces injection at wells and
areas associated with high prior hazard if hazard thresholds are not initially met. In this way, our method takes into
account prior injection through iterative forward solutions without direct inclusion in the optimization constraint
vector (see SM Section 5).

Figure 13. Prospective Case ‘Reduction’ Results. (a) Magnitude exceedance earthquake potential map for M≥4+ for the
5 years management window. Each location is taken as the sum in a 7 km radius. See SM Figure 1 in Supporting
Information S1 for yearly plots. (b) Mean injection rate (m3/month) at each well location (triangles). There are several
locations where the optimization chooses not to inject. The gray dots represent the model nodes.
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The enhanced hazard to the west in all of our models does not consider previously mapped faults unless they were
captured by the SI map. This earthquake potential is primarily driven by continued Coulomb stress rate increase
from prior injection. The inclusion of known faults is currently a limitation to our method. However, additional
spatial constraints from known faults could be implemented as additional rows/elements in the response matrix/
constraint vector prior to optimization. Constraint thresholds of Coulomb stress or Coulomb stress rate could be
applied to these known faults.

Visualizing the optimization at each time step is informative to the evolution of earthquake potential and how each
individual well injects over time (SM Video 1 in Supporting Information S1). For the prospective case
‘Reduction’, wells inject continuously in the northeast ‐ a low SI area ‐ for the entire management period. Higher
SI areas still receive injection but the optimization tends to spread the overall earthquake potential across the
basin.

3.3. Prospective Case ‘Safety’

Our second prospective case consider how the optimization algorithmmight disperse BAU injection rates in order
to minimize earthquake potential (i.e., ’Safety’) (see Section 2.5 and Figure 8).

The second optimization solution, which we call prospective case ‘Safety’, seeks an optimized solution that
lowers the overall earthquake potential while the basin‐wide injection rate is constrained at May 2022 levels for
the 5 years management period. The optimization will preferentially increase volume in wells where SI is lower,
because the Coulomb stress rate constraints will be relaxed in these areas (see Equation 10). By moving injection
volume to wells and areas with lower SI, the forecasted earthquake potential is reduced. The solution therefore
produces an overall annual exceedance curve that is lower for the same total injection volume (Figure 8 ‐ pink
line).

Figure 14 describes the optimization results across the basin for prospective case ‘Safety’. When the spatial
distribution of injection is compared to the Business As Usual case, we find that the optimization spread injection
volume out more evenly throughout the basin, instead of clustering injection in the central region. At the same,
earthquake potential increases on the peripheries of basin away from the higher SI zones in the central basin. In
the central basin, forecasted earthquake probability is reduced greatly, with less than 2% probability to exceed an

Figure 14. Prospective Case ‘Safety’ Results. (a) Total probability of exceeding a M≥4+ earthquake across the entire basin
during the total 5 years management window. Earthquake potential is spread more evenly throughout the model and in less
than the BAU case in areas that contribute to high hazard. See SM Figure 2 in Supporting Information S1 for yearly plots.
(b) Mean injection rate in m3/month at each well location (triangles). There are several locations where the optimization
chooses not to inject. The gray dots represent the model nodes.
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M≥4+ within 7 km. This is compared to nearly 20% probability to exceed an M≥4+ within 7 km in the Business
As Usual case in the central basin. Forecasted earthquake potential is highest in the northeast portion of the basin,
with 10% probability to exceed an M≥4+ within 7 km.

Our solution, during the 5 years management window, reduces the basin‐wide annual exceedance probability
M≥4+ from 75% to 71%. This optimized result is a relatively small reduction in the annual exceedance prob-
abilities. However, we found that injection prior to the management period contributes to a large portion of the
overall earthquake potential observed during the 5 years window. If the prospective case ’Safety’ is run without
prior injection, the optimization can reduce the annual exceedance probability M≥4+ from 75% to 58% (Figure 9
‐ green line). This reduction in earthquake potential is due to the optimization shifting injection to areas of
lower SI.

Simply excluding prior injection does not, in and of itself, reduce the overall exceedance probabilities. We ran a
earthquake potential forecast for the Business As Usual case excluding prior injection and found the annual
exceedance probability for a M≥4+ earthquake increased from 75% to 80% (Figure 9 ‐ BAU without prior in-
jection line). The reason for this increase in overall earthquake potential when excluding prior injection is that
prior injection was on a long‐term decline, especially in areas with high SI. These declining injection rates prior to
the management time period actually reduce the Coulomb stress rate in areas where the BAU injection is high.
Therefore, counter intuitively, excluding prior injection increases the earthquake potential in the BAU case and
decreases in the ’Safety’ case.

The results from the ’Safety’ case reveal that prior injection can have a large influence on how much the opti-
mization method reduces overall earthquake potential. Furthermore, it highlights the importance of optimizing
injection as early as possible in the course of an induced seismic sequence. In the case of Raton Basin, injection
and induced seismicity have been ongoing for multiple decades, which reduce the positive safety effects of
minimizing earthquake potential during the management period.

3.4. Prospective Case ‘Economic’

The third optimization solution, which we call prospective case ‘Economic’, seeks to increase the overall in-
jection rate but maintain the same basin‐wide earthquake potential as the BAU case (see Section 2.5 and Figure 8).

Figure 15. Prospective Case ‘Economic’ Results. (a) Total probability of exceeding a M≥4+ earthquake across the entire
basin during the total 5 years management window. The highest probability western part of the basin is associated with the
large fluid injection. See SM Figure 3 in Supporting Information S1 for yearly plots. (b) Mean injection rate in m3/month at
each well location (triangles). There are several locations where the optimization chooses not to inject. The gray dots represent
the model nodes.
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In this case, we allow the optimization freedom to increase the overall volume that can be injected in any month of
the 5 years management window. An optimal solution is found when the basin‐wide annual exceedance prob-
abilities are within ≤2% of the BAU probability of exceedance for M≥4+ (∼75%). We include two constraints on
individual wells in this solution: (a) no individual well injection rate can exceed 1,500 m3/day, and (b) an MIP
constraint that limits individual well injection rates to within a 6‐month running average so that the optimization
cannot drastically front‐load or back‐load the management period with injection volume. Again, the Coulomb
stress rate constraints derived from the SI map force the optimization to preferentially increase volume in areas
away from the largest earthquake potential (i.e., lower SI).

An optimal solution was found for the ’Economic’ case, which increased the overall injection rate basin‐wide
compared to the BAU case (Figure 8 ‐ green line). The solution shows a gradual increase in basin‐wide injec-
tion rate from ∼300,000 m3/month in 2022 to ∼375,000 m3/month in 2027. The increase in cumulative volume
injected in the ’Economic’ case is more than 1,080,000m3 (∼6,750,000 barrels) when compared to the BAU case.

The spatial distribution of injection in the ’Economic’ case shows a substantial change in the how the field would
be operated during the 5 years management period (Figure 15b). Of the 29 potential injection wells, the opti-
mization chooses to inject at only 12 wells, while the remaining 17 are completely shut‐in. Of the 12 wells which
operate during the 5 years window, only 6 inject at rates higher than 20,000 m3/month. These six injectors, where
the vast majority of fluid is injected, are spread out across the entirety of the well field and to regions of lower SI.
These 6 wells inject at a more or less a constant rate for the entire management time (SM Video three in Sup-
porting Information S1). Clustering of injection is held to a minimum when compared to the ’Reduction’ or
’Safety’ case.

This case highlights what the optimization method ultimately attempts to achieve: spatially distributed injection
across regions of lower SI. By spreading out injectors, the basin‐wide Coulomb stress rate is reduced by mini-
mizing superposition of clustered injectors. By concentrating injection in regions of lower SI, the Coulomb stress
rate that is created by injection results in lower induced seismicity. This combination of effects—spatially
distributed injection in regions of lower SI—allows for the highest basin‐wide injection rates (and largest cu-
mulative injected volume) for a given earthquake potential.

4. Discussion
The combination of physics‐based forecasting with optimization management shows promise for future work in
mitigating induced earthquake potential at the basin‐scale. The optimization framework allows a user to maxi-
mize a particular objective (i.e., reduction, safety, or economic) while maintaining a specified induced earthquake
potential. Our method is also flexible and adaptable to other regions or other types of fluid injection that induce
seismicity. The main components are the following.

1. Physics‐based model of pressure and/or stress change. First, a physics‐based model of injection must be
built of the region that has good estimates of the relevant reservoir flow parameters. Here, we have built a fully
coupled, poroelastic numerical model using the finite‐element method calibrated using injection data from
reservoir step‐rate tests. However, a finite‐difference model could also work (e.g., MODFLOW). Any linear
system is the key. Depending on whether the poroelastic stress effects are marginal to the pore pressure effects
may influence this decision.

2. Seismogenic Index (SI) Map. Second, a SI map (see Section 2.3) must be calibrated from the empirical
relationship of seismic response to injection. Thus, some degree of prior injection and earthquake history are
required for forecasting. Without the SI map, optimization is still possible, but will not be constrained by a
desired earthquake potential.

3. Response Matrix. Third, a response matrix of the system is built from impulse‐responses of the system to a
unit injection at each prospective injection site (see Section 3.1.2). The response matrix allows the optimi-
zation to scale injection rates of individual wells to find the combination which satisfies the constraints and
maximizes the objective function.

4. Optimization Framework. Lastly, an optimization framework of an objective function, constraints, and
decision variables are input. The model then seeks the optimized solution that will satisfy either a reduction,
safety or economic objective and maximize fluid injected.
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The adaptability of this method to other regions is possible through the gathering of required basin‐specific input
data on reservoir flow parameters, injection and seismicity response. In addition, the method is flexible enough to
consider any fluid injection that produces a linear poroelastic response. Listed below are some of the potential
improvements and limitations of the current framework.

1. Real‐time optimization and forecasting: Once the physics‐based model and SI map are initially calibrated
the user could develop an optimal injection strategy and continuously update the SI map if seismicity evolves
in new areas. The response matrix method allows for quick integration of new constraints without the need to
re‐run elaborate physical models continuously. Therefore, rapid adjustments in well optimization are possible
as the SI adjusts and improves in new areas of the basin.

2. Stacked optimization for model uncertainty:As described in SM Section 4, stacked optimization allows the
user to find one set of optimal injection rates that explicitly account for the uncertainty in the physical model.
The existing framework contains uncertainty in the earthquake potential due to the Poisson distribution within
the SI model. However, stacked optimization allows the user to consider uncertainty within the physical model
(i.e., a distribution of flow parameters). Stacked optimization does require more computational power as it
requires N (where N is the number of wells) additional model runs for each uncertain distribution to be
appended to the response matrix.

3. Non‐linear programming: Non‐linear programming allows optimization of non‐linear objective functions
and constraints. Currently, our linear program cannot explicitly optimize injection using earthquake potential
(R) as a constraint because R is non‐linearly related to CFS rate. Therefore, we rely on an iterative approach to
optimize injection to a desired earthquake potential (see SM Section 5). Non‐linear programming may be able
to address the issue of local‐minima in the optimal solution where currently non‐unique solutions may be
found by a linear program. Our iterative method slowly adjusts the constraint locations one at a time to prevent
any over saturation in earthquake potential and injected fluid at any one location in the solution. Non‐linear
programming may be able to save computational time as compared to the iterative approach.

4. Incorporating known fault maps: A key piece of future work is the integration of known fault maps within
the optimization framework. Known faults would serve as additional constraint locations appended to the
response matrix and constraint vector, where pressure and/or stress change would be limited. From a practical
point of view, known faults in many cases of induced seismicity are not the primary drivers of induced
earthquake potential (i.e., Oklahoma), but users may desire to avoid stressing faults when optimizing basin‐
scale injection. This optimization framework would allow the consideration of both an SI map and fault maps.

5. Incorporating risk for policy: While we looked at the total earthquake potential in the region, it would be
possible to constrain hazard spatially depending on seismic risk (Schultz et al., 2021). For example, agreement
might be met with industrial well operations that maximizes the fluid injected while restricting earthquake
potential in an area with high risk, like a densely populated area. A scientifically informed policy, for example,
one that limits the probability of exceeding a M≥5+ earthquake within a high risk zone, could be met while
still reaching the economic objective of the well operators.

5. Conclusions
Here, we investigated the relationship between wastewater injection and seismicity in the Raton Basin of Col-
orado and New Mexico using a physics‐based forecasting framework. First, a 3D finite element model of a
poroelastic crust is used to estimate time dependent Coulomb stress changes over the more than two decades of
Raton Basin injection. The outputs of Coulomb stress rate from our finite element model were combined with a
seismogenic index (SI) model to forecast induced seismicity in space and time throughout the basin. Using this
hybrid physics‐statistical forecasting model we found the following conclusions.

1. The recent and ongoing induced seismicity within the Raton Basin is well explained by our physics‐based
forecasting model. Declining seismicity rates between 2016 and 2022 are forecasted well by the decline in
basin‐wide injection rate. Despite injection rate declines, modeled Coulomb stress rate is still increasing in
several regions of the basin, suggesting that induced earthquake potential is still ongoing. Our model also
shows that induced seismicity is driven primarily by the pore pressure component of the poroelastic stresses,
with poroelastic stress changes accounting for about 5% of the driving force.

2. Using our physics‐based forecasting model, we estimated the induced earthquake potential produced by
continued Raton Basin injection at May 2022 levels through 2027 (Business As Usual case). Our 5 years
forecast estimates the probability to exceed a M≥4+ event is 75% and M≥5+ event 14%.
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3. Linear‐programming optimization using the response matrix method is implemented successfully using a
safety objective framework that reduces earthquake potential for a given amount of fluid injection (safety
objective) or (b) maximizes fluid injection for a prescribed earthquake potential (economic objective).

4. Across the different objectives tested, the optimization algorithm tends to spread injection out across the field
when compared to the Business As Usual case. In the safety and economic objective cases, we observed the
algorithm spreading out higher rate injection wells from one another and to regions of lower seismogenic index
(SI). We also demonstrate that injection prior to the optimization management period may have differing
effects on earthquake potential during the management period. In the reduction and safety cases, we show that
prior injection enhanced earthquake potential during the management period, thus decreasing the impact of
injection optimization. We conclude that optimization of injection earlier in an induced sequence will allow for
better control of earthquake potential during the management period.

Appendix A: Coulomb Stress Rate Response Matrix
The rate response matrix is represented as differences in the original Response Matrix between adjacent time
intervals, analogous to a derivative. It is helpful to define components of the original Response Matrix as Rn,w,t
corresponding to the response at n model output points by w wells during the time interval t. Similarly, the in-
jection rate for all wells w during the time interval t is given by qw,t One of these components is equivalent to the
colored blocks in SM Figure 12 in Supporting Information S1.

It is informative to expand on the derivation of the rate response matrix by working out how each time step
portion is generated, and its relation to the rate constraint. First, the initial time step is simply:

Rn,w,1qw,1 ≤ ẋn,1

Then for the second time step, rate constraint xn,2 must satisfy the difference between the response generated in
step 2 from the response generated prior. In other words, the difference between the second ‘row’ of the Response
Matrix (the response at t = 1) and the response at t = 2:

(Rn,w,2qw,1 + Rn,w,1qw,2) − (Rn,w,1qw,1)≤ ẋn,2

Which, we then factor out the independent injection rates at specific time steps from:

(Rn,w,2 − Rn,w,1) qw,1 + (Rn,w,1) qw,2 ≤ ẋn,2

Repeating the two steps above for the next time step, a pattern begins to emerge:

(Rn,w,3qw,1 + Rn,w,2qw,2 + Rn,w,1qw,3) − (Rn,w,2qw,1 + Rn,w,1qw,2)

≤ẋn,3(Rn,w,3 − Rn,w,2) qw,1 + (Rn,w,2 − Rn,w,1) qw,2 + (Rn,w,1) qw,3≤ẋn,3

so that in general the rows for each time step t of the rate response matrix Ṙn,w,t are appended by:

Ṙn,w,t = ∑
t− 1

N=0
(Rn,w,t− N − Rn,w,t− N− 1)

Therefore, the coefficients for each qw,t factor can be combined in a rate response matrix which only requires the
individual Rn,w,t components from the original response matrix to generate. Once generated, if desired, you can
choose to optimize the injection rate from the rate constraints exclusively or combined with other constraints.

Data Availability Statement
The wastewater injection data is available from the Colorado Oil and Gas Corporation Commission website
(COGCC, 2024, https://ecmc.state.co.us/data.html#/cogis). The wastewater injection data is available from the
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New Mexico Oil Conservation Division Permitting website (NMOCD, 2024, https://wwwapps.emnrd.nm.gov/
OCD/OCDPermitting/Data/Wells.aspx). Data of Abaqus files, post‐processing scripts, SI model scripts, opti-
mization methodology scripts, and figure generation scripts are available online Hill (2024).
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