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Abstract

Understanding the intricate dynamics of sediment-mediated microbial interactions and their

impact on plant tissue preservation is crucial for unraveling the complexities of leaf decay

and preservation processes. To elucidate the earliest stages of leaf preservation, a series of

decay experiments was carried out for three months on Nymphaea water lily leaves in

aquariums with pond water and one of three distinctly different, sterilized, fine-grained sub-

strates—commercially purchased kaolinite clay or fine sand, or natural pond mud. One

aquarium contained only pond water as a control. We use 16S and ITS rRNA gene amplicon

sequencing to identify and characterize the complex composition of the bacterial and fungal

communities on leaves. Our results reveal that the pond mud substrate produces a unique

community composition in the biofilms compared to other substrates. The mud substrate

significantly influences microbial communities, as shown by the correlation between high

concentrations of minerals in the water and bacterial abundance. Furthermore, more biofilm

formers are observed on the leaves exposed to mud after two months, contrasting with

declines on other substrates. The mud substrate also enhanced leaf tissue preservation

compared to the other sediment types, providing insight into the role of sediment and bio-

films in fossilization processes. Notably, leaves on kaolinite clay have the fewest biofilm

formers by the end of the experiment. We also identify key biofilm-forming microbes associ-

ated with each substrate. The organic-rich mud substrate emerges as a hotspot for biofilm

formers, showing that it promotes biofilm formation on leaves and may increase the preser-

vation potential of leaves better than other substrates. The mud’s chemical composition,

rich in minerals such as silica, iron, aluminum, and phosphate, may slow or suspend decay

and facilitate biomineralization, thus paving the way toward leaf preservation. Our study

bridges the information gap between biofilms observed on modern leaves and the mineral

encrustation on fossil leaves by analyzing the microbial response in biofilms to substrate

types in which fossil leaves are commonly found.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0315656 December 18, 2024 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Palmer B, Karačić S, Low SL, Janssen K,

Färber H, Liesegang M, et al. (2024) Decay

experiments and microbial community analysis of

water lily leaf biofilms: Sediment effects on leaf

preservation potential. PLoS ONE 19(12):

e0315656. https://doi.org/10.1371/journal.

pone.0315656

Editor: Przemysław Mroczek, Maria Curie-

Sklodowska University: Uniwersytet Marii Curie-

Sklodowskiej, POLAND

Received: July 1, 2024

Accepted: November 29, 2024

Published: December 18, 2024

Copyright: © 2024 Palmer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All sequences are

deposited in NCBI with the project number

PRJNA1145151.

Funding: Deutsche Forschungsgemeinschaft

Research Unit FOR 2685 on Fossilization, project

number 34804358 to CTG and GB, and grants GE

751/6-1 and GE 751/7-1 to CTG.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4940-2719
https://orcid.org/0000-0003-0440-2456
https://orcid.org/0000-0002-5363-4248
https://doi.org/10.1371/journal.pone.0315656
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315656&domain=pdf&date_stamp=2024-12-18
https://doi.org/10.1371/journal.pone.0315656
https://doi.org/10.1371/journal.pone.0315656
http://creativecommons.org/licenses/by/4.0/


Introduction

The fossil record provides a window into the history of life on Earth, offering us vignettes of

past biodiversity, organismal evolution, and ecological dynamics. While hard tissues such as

bones and shells have traditionally dominated paleontological research [1], many questions

regarding the fossilization of soft tissues remain unanswered. Leaves, essential components of

terrestrial ecosystems that consist of softer tissues compared to wood, also hold a wealth of

information about paleoecology and climate [2]. However, the factors governing their fossili-

zation, especially the earliest stages of leaf preservation, have remained elusive.

Decay experiments are an important approach that can be used to sort out biological and

geological factors involved in fossilization. Among these factors, the role of substrate in preser-

vation has received significant attention, because different sediment types can impact the pres-

ervation of organisms as varied as crustaceans [3], frogs [4], lobster eggs [5], and leaves [6].

Evidence of microbial mats found covering fossil organisms [7–9] and taphonomic observa-

tions and experiments on leaves [10–19] also suggest that protective biofilms produced by

microbial activity may be an essential first stage for leaf tissue preservation. Since biofilms are

primarily composed of water, it is likely that they will not fossilize. Consequently, there is no

evidence that fossil plant material such as leaves without observable traces of biofilm were not

originally covered by biofilms during the early stages of decay and subsequent preservation.

However, the presence of organic-rich laminas such as those found in the Ediacaran of South

Australia [20] and in the Cretaceous of Brazil [21, 22] indicate the potential role of biofilms in

the fossilization of delicate structures as the biofilm may provide the appropriate taphonomic

conditions to facilitate this preservation.

A biofilm is a structured community of microorganisms that forms on various surfaces,

including living plant leaves [23]. It is composed of microorganisms, such as bacteria, fungi,

and algae, embedded within a self-produced matrix of extracellular polymeric substances

(EPS) [23]. The EPS matrix provides structural support and protection to the microorganisms

within the biofilm and is made of polysaccharides, proteins, nucleic acids, and lipids [23]. Epi-

phytic microorganisms may harm the host plant by causing disease or through decomposition

processes [24, 25], or benefit the plant by protecting it from pathogens and desiccation that

may decay the plant structures [23].

Within the EPS matrix, the metabolism of many biofilm organisms can result in mineral

production including calcium carbonate, iron, silica, and phosphate minerals. These minerals

are deposited on and in the biofilm substrate through biomineralization [26–29]. The microor-

ganisms can contribute minerals from their cell walls, such as the silica from diatom frustules,

or influence the chemical conditions in their environment by metabolic processes, introducing

pH shifts or alterations in the redox potential, that lead to precipitation. In addition, passive

mineral precipitation can be induced by the negative charges of the biofilm polymers, which

bind cations and serve as nucleation points for precipitation [30]. Such processes provide a

mineral matrix that can reinforce and stabilize plant tissues during preservation [28] and

could help prevent the degradation and disintegration of plant cells [31, 32]. Minerals com-

monly associated with plant fossilization include carbon, silica, calcium carbonate, iron, alumi-

num, and phosphate minerals [33].

Our goal is to describe the earliest stages of preservation and decay in water lily leaves

through microbial biofilms. While other plant groups such as dicot leaves or fern pinnules

have received some scientific attention in the lab [13, 16], the preservation potential of water

lily leaves and the foliage of other water plants has remained a puzzle. Water lilies, in particu-

lar, have a long fossil history that extends to the advent of the angiosperms in the Early Creta-

ceous [34]. They were one of the first clades of flowering plants to evolve, appearing as early as
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113 million years ago [35]. In the Cretaceous and Cenozoic record, the leaf is the most com-

monly preserved plant organ of the Nymphaeales and Nymphaeaceae [35].

Today, water lilies grow in low-energy, freshwater water environments, with fine-grained

substrates, as they commonly did in the paleontological past (Table 1). These sorts of quiet

lacustrine facies are particularly conducive to the preservation of fossil leaf compressions and

impressions [15, 36]. However, water lilies are rarer in the fossil record than would be expected

based on their habitat preferences in quiet freshwater environments [37, 38]. A Nymphaea leaf

was recently described from the Miocene Clarkia leaf compression flora in Idaho, USA, which

is widely known for its exceptional preservation [38]. Yet, despite the excellent fossilization

and abundance of plant specimens collected from the Clarkia Lake deposit, up to now, four

fossil leaves could be attributed to aquatic macrophytes, of which only one could be assigned

to Nymphaea sp. [38]. Earlier research suggested that microbial mats, a form of complex oxy-

genic biofilm, might have generated microenvironments conducive to fossilization. However,

varying oxygen and water levels in in freshwater lakes also play a significant role in the preser-

vation process [39]. The rapid decay of water lily leaves through microbial degradation before

and after deposition in the sediment or insect herbivory [40] certainly contributes to the

underrepresentation of water lilies in the fossil record. However, if decay processes could be

slowed down or halted by a protective, biofilm-facilitated, mineral coating on the leaf, then

there would be a greater chance for the leaf to continue the pathway toward preservation

instead of heading for biological degradation. In this way, the biofilm would act as a protective

Table 1. Well-documented leaves of Nymphaeales or Nymphaeaceae in the fossil record. Here, Table 1 from Taylor and Gee (2014) is expanded by listing the lithology

of the fossil matrix or fossil-bearing deposit, as well as the interpretation of the depositional environment of the fossil leaf site.

Taxon Geologic age Locality Lithology of fossil matrix or

fossil-bearing deposit

Interpretation of depositional

environment

References

Jaguariba wiersemana Coiffard,

Mohr et Bernardes-de-Oliveira

Early

Cretaceous

Crato Formation, Brazil Very fine-grained limestone Shallow, lacustrine wetland [41, 42]

Pluricarpellatia petalta Mohr,

Bernardes-de-Oliveira et Taylor

Early

Cretaceous

Crato Formation, Brazil Very fine-grained limestone Shallow, lacustrine wetland [41, 42]

Scutifolium jordanicum Taylor,

Brenner et

Basha

Early

Cretaceous

Jarash Formation, Jordan Carbonized silt–clay bed Possibly crevasse splay [43]

Aquatifolia fluitans Wang et Dilcher Cretaceous Dakota Formation, Kansas,

USA

Claystone Shallow margin of a freshwater

lake

[44, 45]

Brasenites kansense Wang et Dilcher Early

Cretaceous

Dakota Formation, Kansas,

USA

Claystone Shallow margin of a freshwater

lake

[44, 45]

Nymphaea mesozoica Dobruskina Late

Cretaceous

Upper member of the Ora

Shale Formation, Israel

Very shallow water environment,

i.e., lake margin

[46]

Nymphaeaceous leaf similar to

Nuphar
Late

Cretaceous

Cantwell Formation, Alaska,

USA

Fine-grained sandstone Overbank sediments in shallow

standing water

[47]

Nuphar? sp. 1 Late

Cretaceous

Chorrillo Formation,

Argentina

Dark, siliciclastic mudstone Low-energy, paludal, or marginal

freshwater environment

[48]

Nuphaea engelhardtii Gee et Taylor Middle

Eocene

Messel Formation, Germany Extremely organic-rich shale* Lake margin [49, 50]

Nymphaea elisabethae Gee et Taylor Late

Oligocene

Rott Formation, Germany Organic-rich siltstone* Freshwater lake [35, 51]

Nymphaea lignitica Wessel et Weber Late

Oligocene

Rott Formation, Germany Organic-rich siltstone* Freshwater lake [35, 51, 52]

Nymphaea sp. Middle

Miocene

Clarkia local flora, Wanapum

Formation, Idaho, USA

Light brown clay matrix in

laminated lake sediments

Freshwater lake [38, 53]

*Gee, own evaluation

https://doi.org/10.1371/journal.pone.0315656.t001
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layer in the early taphonomic stages, allowing for the precipitation of minerals in later stages.

This initial stage of biofilm protection is not understood, as prior research has focused mainly

on later stages in the taphonomic process [16].

To help unravel the complexities of sediment-mediated microbial interactions and their

impact on soft tissue preservation, as well as to understand the puzzling paucity of water lily

foliage in the fossil record of freshwater lakes, we selected the leaves of water lilies. Here, we

conduct a multi-aquarium experiment in the laboratory using the leaves of Nymphaea sp. sub-

merged in pond water with one of three distinct sediment types in which fossil leaves are com-

monly found—a clay-rich, organic-rich, or fine-sand substrate—along with a pond-water-only

control. Amplicon sequencing of 16S and ITS rRNA is used to identify the bacteria and fungi

comprising the biofilms and to characterize biofilm formers in the microbial communities on

leaves in each of the substrate treatments over the course of three months.

Methods

Leaf collection and aquarium set-up

In July 2021, 35 green leaves of the water lily Nymphaea sp. were gathered from a large fresh-

water pond at the Bonn University Botanic Garden. The floating leaves were collected several

meters away from shore using a rowboat. Upon collection, the leaves were immediately placed

in the aquariums (S1 Fig). The pond is approximately 1.5 meters deep and fed primarily by a

small stream and rainfall.

Pond water and mud from the pond bottom were also collected. The pond mud for the

mud-substrate aquarium was sterilized before the start of the experiment. Pond water was col-

lected in sterilized containers at the start of the experiment and immediately placed in the

aquariums.

To determine the substrate minerology of each substrate, X-ray powder diffraction data

were recorded on a PANalytical Empyrean diffractometer using CuKα radiation (λ = 1.54060

Å) at 40 kV and a tube current of 40 mA. Samples were hand-ground in an agate mortar and

scanned on a rotating stage at 2˚2θ/min (step size 0.02˚2θ) from 5–80˚2θ. The qualitative and

quantitative mineralogical analysis was performed using the HighScore Plus PANalytical soft-

ware. The pond mud contains a mineral composition of 30% quartz (SiO2), 62% illite ((K,

H3O) (Al, Mg, Fe)2(Si, Al)4O10[(OH)2�(H2O)]), and 8% alkali feldspar (KAlSi3O8). Two other

substrates were tested, kaolinite clay (Al2Si2O5(OH)4) and fine-grained quartz sand (SiO2),

which were purchased commercially. The grain size of the substrates was not as factor in this

experiment, but instead emphasized the differences in the mineral composition of the individ-

ual substrates.

The sediments were sterilized using an autoclave to ensure the starting microbial commu-

nity was derived only from the leaves and pond water. The experiment was run in four 60 L

aquaria. One aquarium contained pond water with no substrate as a control, while the other

three aquariums contained pond water and one of the following fine-grained substrates: kao-

linite clay, pond mud, or fine sand. Each aquarium was maintained at room temperature (~

20˚C) and was exposed to the natural daylight cycles in Bonn, which was 14 hours of daylight

on average during the experiment.

Each water lily leaf was placed into a hand-sewn mesh pouch to ensure that all the tissue

from individual leaves remained together during decay. Eight leaves were placed in each

aquarium at the water–substrate interface, held down by some substrate along the edges of the

pouches, but the leaves themselves were not allowed to overlap. Henceforth, for the sake of lin-

guistic convenience, we will refer to the leaves in the various treatments as green leaves (leaves

collected straight out of the pond in the Botanic Garden), control leaves (leaves in the
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aquarium with only pond water without any substrate), kaolinite clay leaves (leaves on the kao-

linite clay substrate), mud leaves (leaves on the pond mud substrate), and sand leaves (leaves

on the sand substrate).

Sampling of aquarium leaves

Water lily leaves were sampled after one (T1), two (T2), or three (T3) months. Three additional

leaves were collected from the pond and used as the T0 control (S1 Fig). Due to the large size

of the water lily leaves and the limited space in the aquariums, only two leaves could be sam-

pled from each treatment at T3. As time progressed, the leaves sunk and settled directly on the

substrate. By T3, the substrate coated the top and bottom of the leaf surfaces. After the leaves

were collected, a small section of each leaf was preserved in formaldehyde-acetic-alcohol

(FAA: 70% ethanol, 4% formaldehyde, 2% acetic acid) for subsequent microscopy. Another

small section of the leaf was dried and pressed between newspapers to preserve the leaf in its

degraded state for later study. The rest of the leaves were preserved in TE Buffer at -20˚C until

DNA extraction.

Scanning electron microscopy

The FAA-preserved leaves were transferred into a 70% ethanol solution and subsequently

dried using 22 cycles in a Leica EM CPD300 critical point dryer (CPD) at the Nees Institute

for the Biodiversity of Plants (now part of the Bonn Institute of Organismic Biology), Univer-

sity of Bonn. The CPD leaves were mounted on aluminum stubs and coated with a thin layer

of palladium. Scanning electron microscopy (SEM) was carried out using a Tescan Vega 4

LMU Scanning Electron Microscope at the Division of Paleontology, Institute of Geosciences

(now part of the Bonn Institute of Organismic Biology), University of Bonn.

Analysis of water chemistry

Concurrent with the sampling of leaves at T1 and T2, water samples were collected in 50 ml

Falcon tubes for chemical analysis. The water was measured for concentrations of iron, man-

ganese, silica, calcium, magnesium, sodium, and potassium, as well as for electrical conductiv-

ity, pH, and temperature. The composition and concentration of both cations and anions were

measured using inductively coupled plasma mass spectrometry (Agilent ICP-MS 7700) and

ion chromatography (Metrohm IC 930 Compact Flex 947 linked to a Professional UV/VIS

Vario detector) at the Institute for Hygiene and Public Health (University Hospital Bonn).

DNA extraction and sequencing

Using the leaves preserved in TE Buffer, leaf biofilms were separated from leaf surfaces with

sonication in an ultrasound bath (Branson 1210 Ultrasonic Cleaner; Emerson, St. Louis, Mis-

souri, USA) for 2 minutes. Subsequently, the samples were vacuum filtered using a

0.25-micrometer pore filter (mixed cellulose ester membrane; Berrytec GmbH, Grünwald,

Germany). The filters with the biofilm microbes were then cut into small pieces and kept in 2

mL microcentrifuge tubes with TE buffer and stored at -20˚C until further processing.

DNA extraction from the collected biofilm samples was performed using the FastDNA Spin

Kit for Soil, following the manufacturer’s protocol. This particular kit had previously been con-

firmed to be efficient for biofilm DNA extraction from water lily leaves [17]. The elution step

was carried out using 50 microliters of Dnase-free water. The concentration and quality of the

extracted DNA were assessed using a NanoDrop spectrophotometer (Thermo Fisher Scien-

tific, Waltham, Massachusetts, USA).
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For microbial community analysis, the V4 variable region of the 16S rRNA gene was ampli-

fied using the primers 16s-515F (GTGCCAGCMGCCGCGGTAA) and 16s-806R (GGACTACVSG
GGTATCTAAT) [54]. The ITS (Internal transcribed spacer) region was amplified using the

primers ITS1F (CTTGGTCATTTAGAGGAAGTAA) and ITS2R (GCTGCGTTCTTCATCGATGC)

[55]. This allowed for the quantification of both bacterial (16S) and fungal (ITS) microbial

communities. The polymerase chain reaction (PCR) reaction was a single-step PCR with Hot-

StarTaq Plus Master Mix Kit (QIAGEN). The PCR consisted of an initial denaturation step at

95˚C for 5 minutes, followed by cycling at 95˚C for 30 seconds, 53˚C for 40 seconds, and 72˚C

for 1 minute for 30–35 cycles. A final elongation step was performed at 72˚C for 10 minutes.

Paired-end sequencing (bTEFAP) was conducted by MR. DNA (Shallowater, Texas, USA)

using the Illumina MiSeq sequencing platform, following the manufacturer’s guidelines. Raw

sequence data were processed using QIIME2 with default parameters [56]. Sequence quality

control, denoising, and chimera removal were performed using DADA2 to generate amplicon

sequence variants (ASVs) [57].

Taxonomic classification of the 16S rRNA sequences was accomplished using the Silva 138

database [58], while the Unite database was used for the ITS sequence classification [59]. ASVs

and taxonomy data derived from the QIIME2 and DADA2 pipelines were integrated using R

version 4.2.1 [60].

For 16S sequences, additional classification was performed using GreenGenes2 [61], which

was employed for phenotypic inference using BugBase [62]. The BugBase phenotypic determi-

nation approach was employed to identify potential biofilm-forming bacteria present on the

water lily leaves.

Microbial community analysis

ASV richness and Simpson’s evenness were calculated separately for bacteria (16S) and fungi

(ITS) using “vegan” [63]. Each dataset (16S and ITS) was rarified to the lowest number of

sequences in each dataset (43,836 and 14,654, respectively). Statistical differences in richness

and evenness were calculated between substrate and time using ANOVAs. We used “ampvis2”

to create heat maps of the most abundant bacteria and fungi genera [64]. Similarities in the

ASV composition for bacteria and fungi were visualized using Venn Diagrams and the package

“ggvenn” [65] We used the “anosim” function in “vegan” to visualize the ASV diversity within

and between groups.

We used “microeco” to visualize the community composition of each substrate and time

point using an non-metric multidimensional scaling (NMDS) plot and Bray-Curtis distances

[66]. The statistical difference in microbial community composition was calculated using a

PERMANOVA (the “adonis2” function in “vegan”). Pairwise comparisons between substrates

and time were calculated using the “pairwise.adonis2.”

The correlation of the mineral content and other parameters of the water samples with

microbial community composition was assessed using the “envfit” function in “vegan” and

plotted using a dbRDA (distance-based redundancy analysis) in “microeco”. Only environ-

mental vectors with a statistically significant correlation (P<0.05) were inclided. Correlations

between the fifty most abundant genera based on DESeq2 differential abundance calculations

and water chemistry were visualized using Pearson’s correlation plot in “microeco” with a sig-

nificance cutoff of P = 0.05.

The influence of water chemistry, time, and substrate on the microbial community compo-

sition was evaluated using a variation partitioning analysis (VPA) within “vegan”. First, we cre-

ated a correlation matrix with the water chemistry data and removed those minerals with

collinearity greater than 0.8, which resulted in a model with Fe, Ca, and K (S1 Table). Hence,
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the VPA consisted of substrate, time, and Fe, Ca, and K. The data were transformed using the

“Hellinger” method. The resulting VPA shows the percent of the variation in the microbial

community composition that is explained by these three minerals. We then performed sepa-

rate redundancy analyses (RDAs) with ANOVAs to identify the individual impacts of sub-

strate, time, and water chemistry on community composition.

Finally, we used the BugBase data (16S only) to determine differences in the abundance of

biofilm-formers that developed between substrates over time. BugBase uses an algorithm to

predict functional pathways such as biofilm formation. We filtered the BugBase OTUs to only

include those tagged as “Forms Biofilms” and calculated the richness of biofilm formers for

each substrate and time point.

Results

SEM images show differences between substrate treatments

Immediately after removal from the aquarium, there was evident decay of the kaolinite and

sand leaves at T3 (S1 Fig). However, the differences in the level of decay between leaf samples

from each substrate over time became distinctly clear after SEM analysis and the study of the

pressed leaves themselves.

The control leaves at T1 were covered in bacteria and fungi. On the control leaves at T2,

there was an increase in fungi, and microbially produced EPS could be observed. On the con-

trol leaves at T3, there were mineral particles, perhaps deriving from the pond water, on the

leaf surfaces, and the leaves were coated in a biofilm with fungal hyphae. As observed on the

pressed leaves, the leaf cuticles were still intact after 3 months (Fig 1). The pressed leaves con-

sisted of pieces of leaf not preserved for SEM or used for DNA extraction and therefore do not

necessarily represent the level of degradation of the full leaves.

The kaolinite clay leaves at all three time points were heavily coated in sediment, which

made it difficult to discern any bacteria or fungi in the SEM images. When lifted out of the

aquarium, all kaolinite clay leaves simply disintegrated when touched. The pressed leaves sam-

ples showed a thick layer of kaolinite clay, and little of the leaf structure was preserved (Fig 1).

Fig 1. Photos and micrographs of water lily leaves over time. Conventional photos of leaves (left) and scanning electron micrographs of corresponding leaf

surfaces (right). Leaves pressed in newspaper immediately after collection at all time points for the control (A–C), kaolinite clay (D–F), pond mud (G–I), and

sand (J–L) treatments. Text boxes on the bottom corners of the micrographs describe the primary coverage of the leaf surface.

https://doi.org/10.1371/journal.pone.0315656.g001
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The mud leaves at T1 had flakes of mud on their leaf surface, and there were visible remains

of bacteria and fungi. The number of bacteria and fungi increased at T2, whereby the leaf sur-

faces were covered in fungal hyphae with bacteria embedded in the EPS between the fungi. At

T3, the leaf surfaces were covered in sediment, much like the kaolinite clay treatment, and it

was difficult to discern between bacteria and fungi. However, unlike the kaolinite clay samples,

the mud leaves retained intact cuticles which had not completely disintegrated by the end of

the experiment (Fig 1).

The sand leaves were covered in bacteria and fungi at T1, and like the leaves in the other

sediments, the quantity of fungal filaments had increased by T2. At T3, fungi and EPS coated

the leaf surface (Fig 1). The pressed sand leaves were not as degraded as the kaolinite clay

leaves but showed more signs of decay compared to the mud and control leaves. Judging from

only these visual observations, the sand leaves had also been colonized by microbial communi-

ties quite different from those on the mud, clay, and control leaves.

Substrate type impacts microbial community composition

The 16S rRNA (bacteria and archaea) sequencing totaled 9,339,968 high-quality sequences,

with an average of 490 ± 298 ASVs per sample. The ITS (fungi) sequencing yielded 2,574,143

high-quality sequences with an average of 126 ± 55 ASVs per sample.

Regarding prokaryotic richness according to substrate type, the richness of the biofilm on

the mud leaves was greater (1,576 ASVs) compared to that of leaves of all other substrates. The

biofilm richness changed over time, peaking at T2 (Fig 2 and S2 Table). In contrast, Simpson’s

evenness remained unchanged between substrates and over time (Fig 2 and S2 Table).

Fungal richness was significantly lower on the green leaves, compared to the mud and sand

leaves (Fig 2 and S2 Table). Richness did not vary on the leaves on the other substrates. As

with the bacteria, Simpson’s evenness remained constant in the leaf biofilms across all sub-

strates throughout the experiment (Fig 2 and S2 Table).

Despite similarities in richness and evenness, the types of organisms colonizing the biofilms

differed between substrates and over time. The most dominant bacterial phyla included Proteo-

bacteria (44.8%), Firmicutes (19.8%), and Bacteroides (14.3%). It comes as no surprise, given its

high richness value, that the biofilms of the mud leaves contained the greatest diversity of phyla

(45), and that the low richness value of the green leaves meant that they had the fewest number

(23). Ascomycota (12.7%) and Basidiomycota (4.9%) were the most dominant fungal phyla,

although a large portion of the fungi could not be unidentified past the domain level (82%).

By identifying the most dominant genera among substrates and in the course of time, we can

start to understand the community composition and the ecological role of specific genera within

the biofilms (Fig 3). Desulfovibrio was the most abundant genus; it was found primarily on the

control, kaolinite clay, and sand leaves at T1 and decreased in abundance over time. Pseudomo-
nas was very abundant on the kaolinite clay leaves at T3, comprising more than 50% of the read

abundance. It was also found on the mud leaves at T3. It should be noted that there were few

Pseudomonas sequences at the early time points. Tolumonas showed a parabolic trend and

peaked in abundance at T2 on both the control and kaolinite clay leaves. Malikia was most dom-

inant on the mud leaves at T1, while Ralstonia was more abundant on the sand leaves at T1.

As stated previously, most of the fungi could not be identified at the generic level. However,

among those that could be assigned to a genus, Malassezia was common on the green leaves,

control leaves, and mud leaves. Sporobolomyces was abundant across samples at T1. Several

genera were found primarily on the green leaves, including Aspergillus, Neoascochyta, Chaeto-
mium, and Coniella. The genera Kazachstania and Phaeosphaeria were abundant on one mud

leaf.
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Given the differences in biofilm richness of the mud leaves compared to all that of leaves on

all other substrates, as well as the variety of genera found in all leaves, it was not unexpected to

find that community composition at each time point and across all substrates is unique (Fig 4).

Only 4.3% of the bacterial ASVs were found in every substrate (excluding green leaf), compared

to 12% of the fungal ASVs shared between substrates (Fig 4). The biofilm of the mud leaves had

a more distinctive community composition at every time point, compared to biofilms on leaves

on the other substrates. Based on the percentages of shared ASVs and the NMDS plot, the bio-

films on the sand and control leaves had similar microbial communities, while those of the mud

and kaolinite clay leaves were the most distinct from the green leaf. Based on the ANOSIM,

there was a difference in the community composition between experimental conditions involv-

ing both substrate and time, although there was large variability in the community composition

of a replication sand leaf at T1 which was considered during the interpretation here (S2 Fig).

This variability was also evident in the NMDS plot (Fig 4 and S3 Table).

Water chemistry and substrate interact and influence microbial

community

The substrate in each aquarium greatly influenced the microbial community on the leaves.

Substrate type also impacted the water chemistry in each aquarium, since the substrate added

Fig 2. Richness and evenness of microbial communities. (Left) Richness of (A) bacteria and (B) fungi, and (right) Simpson’s evenness. The first column in

blue represents the green leaf control at T0. The other sets of columns plot the values for the control (green) and each substrate (orange, yellow, purple)

through time (T1, T2, T3). Dashed lines separate the time trials.

https://doi.org/10.1371/journal.pone.0315656.g002
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a distinctive set of minerals to the original chemistry of the pond water. The concentration of

the water minerals measured varied between substrates and over time. Fe and Mg concentra-

tions increased in the aquarium water with the kaolinite clay and pond mud substrates over

time compared to the concentrations in the aquariums with the control and sand substrates.

Due to its complex mineralogy, the water in the mud aquarium had greater concentrations of

Mn, Ca, Si, and K, as well as higher conductivity compared to the other substrates. Na, pH,

and temperature were similar across all substrates (S4 Table). Fe concentration and tempera-

ture were higher at T1, while Mg, Na, K, and pH peaked at T2. Furthermore, the concentration

of minerals in the water correlated with microbial community composition (Fig 5). They are

significantly correlated at T1 and T2, with greater mineral concentrations correlated with the

community composition on the mud leaves. Fe, Mn, Si, Ca, K, and conductivity were signifi-

cantly correlated with the Bray-Curtis distances (Fig 5 and S5 Table).

Likewise, several of the most abundant genera on the mud leaves were correlated with min-

eral concentration (Fig 6). All genera that were significantly correlated with the minerals in the

mud substrate showed the same trend, aside from Na. All were negatively correlated with Fe,

Mn, temperature, and conductivity, and all were positively correlated with Si, Ca, Mg, Na, and

Fig 3. Heatmaps of genera abundance. Heatmaps for (A) bacterial and (B) fungal genera in each substrate at each time point. Red values indicate a high

abundance, while blue values indicate a lower abundance. Each column represents one replicate.

https://doi.org/10.1371/journal.pone.0315656.g003
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pH. These genera include WCHB1-32, Ruminococcus, Microbacter, Holophaga, Dechloromo-
nas, and Azospirillum.

The abundant genera in the kaolinite showed the opposite trend. Desulfovibrio Anaero-
vorax, and Acidaminobacter were positively correlated with Si, Ca, Mg, Na, K, and pH, and

were negatively correlated with Fe and Mn. Only Orbiliaceae gen. incertae sedis was signifi-

cantly correlated with the concentrations of minerals in the control, and Na was correlated

with those of the sand.

The VPA further confirms that substrate and water chemistry influence the microbial com-

munity composition (S3 Fig). Substrate alone best explains the variation in community com-

position between the groups (23.8%). The interaction between substrate and water chemistry

(Fe, Si, and K) explains 18.3% of the variation, while water chemistry alone is responsible for

16.3% of the variation. Time produces the smallest effect (4.8%). However, 36.1% of the varia-

tion remains unexplained.

Leaves on a mud substrate are a hot spot for biofilm-forming microbes

In addition to characterizing the microbial community composition and assembly processes,

we investigated the potential role of biofilm-forming microorganisms in leaf preservation by

Fig 4. Venn diagrams of shared ASVs. Venn diagrams showing the number of ASVs shared between each substrate for (A) bacteria and (B) fungi. Sediment

type is denoted by oval color: control (green), kaolinite clay (pink), pond mud (yellow), and sand (purple). (C) NMDS plot representing the influence of

substrate (colors) and time (shapes) on microbial community composition. The polygons show the connections between samples within the same substrate at

all time points. The stress value is located in the top right corner.

https://doi.org/10.1371/journal.pone.0315656.g004
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counting the OTUs correlated with biofilm-producing bacteria in Bugbase. At T1, the control

leaves contained the lowest number of biofilm formers, followed by the kaolinite clay, mud,

and sand leaves. In Fig 1, biofilms are evident in the control leaves at T1, and based on the

microbial analyses, these biofilms were formed by a low diversity of biofilm-formers. Notably,

the number of biofilm formers doubled on the mud leaves at T2, while a decline was observed

on leaves on the other substrates. The SEM images also show an increase in biofilm abundance

in the mud at T2, though the presence of biofilms in T3 is obscured by the substrate coating

the leaf surface (Fig 1). By T3, the kaolinite clay leaves had the lowest number of microbial bio-

film formers among leaves on all substrates (Fig 7). In addition to having the lowest number of

biofilm formers, there was little evidence of biofilms on the kaolinite leaves in the SEM images,

regardless of the time point (Fig 1).

Over time, the genera of biofilm-forming microbes underwent notable shifts. OTUs in the

fungal classes of Actinomycetes, Bacteroidia, Clostridia, and Spirochaetia primarily contrib-

uted to biofilm formation in the control leaves. At T2, only ASVs in the class Polyangia were

identified as biofilm formers. By T3, members of the classes Polyangia, Ignavibacteria, and

Spirochaetia contained biofilm-forming ASVs. On the kaolinite clay leaves, OTUs from Acti-

nomycetes and Spirochaetia were identified as biofilm formers at T1, while Desulfobacteria,

Gammaproteobacteria, Candidatus Kapabacteria, and Verrucomicrobiae contributed to

Fig 5. Ordination plot including water chemistry. A dbRDA depicting the correlation between water chemistry elements and microbial community

composition. Each point represents one sample, which are grouped by substrate (color). A dot or triangle denotes time point T1 or T2, respectively.

https://doi.org/10.1371/journal.pone.0315656.g005
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biofilm formation at T2. Interestingly, only the phylum Candidatus Kapabacteria contained

biofilm-forming ASVs at T3, albeit in low abundance.

In the mud leaves, biofilm formers were associated with the bacterial classes Alphaproteo-

bacteria, Bacilli, and Clostridia at T1. By T2, Alphaproteobacteria, Bacilli, Bacteroidia, Clos-

tridia, Gammaproteobacteria, Candidatus Kapabacteria, and Syntrophobacteria contained

biofilm-forming ASVs. At T3, biofilm formers from the classes Bacilli, Bacteroidia, Clostridia,

Gammaproteobacteria, Syntrophobacteria, and Verrucomicrobiae were identified.

Remarkably, the mud leaves had the highest number of bacterial biofilm formers. However,

the class Actinomycetes, which was found in all other substrates, was conspicuously absent on

all mud leaves. Moreover, the mud leaves uniquely hosted biofilm formers of the classes Alpha-

proteobacteria, Bacilli, Desulfobulbia, and Syntrophobacteria, underscoring their distinct

microbial composition. Conversely, the control leaves stood out as the only ones with biofilm

formers from the class Polyangia and no representatives of the Verrucomicrobiae (Fig 7).

Discussion

Decay patterns and the influence of sediment

Our investigation into microbial interactions and leaf preservation reveals that decay patterns

and the microbial community composition of the biofilms on Nymphaea water lily leaves vary

Fig 6. Correlation plot between water chemistry and genera. A heatmap showing Pearson’s correlations between the water chemistry elements and the most

abundant genera, as grouped by substrate. Red indicates a positive correlation, while blue indicates a negative correlation. * denotes a p-value<0.05, ** p-value< 0.01,

*** p-value< 0.001.

https://doi.org/10.1371/journal.pone.0315656.g006
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with sediment type and over time. Notably, the mud and control leaves exhibited the least

decay over three months, while the kaolinite clay leaves underwent substantial decay. Further-

more, microbial community analysis reveals differences in the composition and assembly of

microbial biofilms on each substrate over time.

Contrary to our results, previous research with animal carcasses found that carcasses buried

in kaolinite had better preservation [67, 68], perhaps resulting from low bacterial abundance

and diversity due to the interactions between the microbial community and the clay minerals,

that resulted in lower bacterial abundance and diversity [68, 69]. However, similar to our

results, a study with scallop carcasses buried in kaolinite indicates that burial in kaolinite leads

to decay as muscles in kaolinite lost more mass compared to those buried in sand [70]. This

strongly suggests that the sediment interactions, and consequently interactions with the micro-

bial community, vary between organisms and potentially lead to substrate-selective preserva-

tion. Thus, it is important to understand the microbial community dynamics for individual

groups of organisms.

The variations in bacterial genera across the different substrates and time points underscore

the nuanced response of freshwater microbes to changing environmental conditions. Pseudo-
monas, while it appeared later, was abundant in the kaolinite clay and mud leaves, indicating

its involvement in advanced stages of tissue decay. It is well-known that some strains of

Fig 7. The abundance of biofilm-formers. The number of OTUs that were classified as biofilm formers by BugBase on the leaves collected from each sediment

over time. The different colors denote the control treatment and three substrate treatments.

https://doi.org/10.1371/journal.pone.0315656.g007
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Pseudomonas are plant pathogens and can cause cankers, leaf and stem spots, blight, soft rot,

and galls [71]. A previous experimental taphonomic study reported that Pseudomonas will

form a biofilm around marine embryos, and while the bacteria will then consume the organic

matter, the biofilm will retain the shape of the embryo [72].

Furthermore, some species of Pseudomonas can also form biofilms that replicate the exter-

nal morphology and internal structure of embryos [73]. The appearance of Pseudomonas in

the second month of our experimental decay series suggests that at this point, the environment

provided the ideal conditions for Pseudomonas growth and may have prompted different

responses from the original microbial community on the leaves. On the kaolinite leaves, Pseu-
domonas proliferated and became the most abundant genus in the biofilms. During this time,

we also observe more decay on the kaolinite leaves compared to leaves on the other sediments.

The biofilms on the mud leaves also contained Pseudomonas, though fewer ASVs. This indi-

cates that although Pseudomonas was present on the mud leaves, the effect of decay may have

been modulated by the high richness of other microbes on the leaves.

These other microbes include Malikia, Tolumonas, Uliginosibacterium, and Ralstonia, for

example. Malikia, a biofilm former, was abundant on the mud leaves at T1. Elsewhere, it has

been reported that Malikia performs well in aerobic environments [74]. Tolumonas, which

was most common bacterium on the control and kaolinite clay leaves at T2, can be facultatively

anaerobic and grow in anoxic freshwater [75, 76]. Uliginosibacterium was particularly abun-

dant on the control and sand leaves at T2 and T3 and has previously been described from

freshwater environments, such as sediment [77, 78] and lakes [79, 80]. The most abundant

genus on the green leaves (but not in the aquariums) was Ralstonia, a genus known to cause

plant diseases [81, 82]. That the bacterial communities were so variable between the sediments

indicates that each sediment type attracted a differently adapted bacterial community.

Fungal communities exhibited different patterns over time and between sediment types,

with Malassezia prevalent on green, control, and mud leaves. Malassezia is a pathogenic genus

often found on the skin of animals [83]. The pond water used in our experiment came from a

botanic garden freely open to the public, which may have been the source of the variety of

human pathogens found growing on the leaves in the aquariums. In the first month, Sporobo-
lomyces emerged as an abundant genus across all samples. It is a yeast that produces a red

carotenoid pigment that has been shown to exhibit antimicrobial properties [84]. Further-

more, Sporobolomyces inhabits the phyllosphere [85] and may have come from within the leaf,

instead of originating from the pond water. Other genera, namely, Aspergillus, Neoascochyta,

Chaetomium, and Coniella, were found predominately on the green leaves, highlighting the

diversity and abundance of fungi from the phyllosphere that may, in turn, impact the biofilm

community during leaf decay.

Interestingly, the influence of elemental concentrations, particularly Fe, Mn, Si, Ca, K, and

conductivity, on microbial community composition was significant, emphasizing the intricate

relationship between environmental factors and microbial dynamics. Based on the correlation

heatmap between water chemistry and the microbial community composition, communities

on both the mud and kaolinite clay leaves correlated with several minerals in the water. How-

ever, these correlations were not necessarily the result of the ion concentrations but rather

may have been influenced by the nutrients and organic matter present in the substrates. The

pond mud was from a natural environment and may have contained more organic matter and

nutrients that promoted the growth of different microbial communities, while the commer-

cially purchased sand and kaolinite may have contained less naturally occurring organic mat-

ter and nutrients.

On the mud leaves, a correlation exists between the presence of Paludibacter, Microbacter,
Holophaga, Dechloromonas, and Azospirillum with all minerals: there is a positive correlation
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with Si, Ca, Mg, Na, and pH, and a negative correlation with Fe, Mn, temperature, and con-

ductivity. Paludibacter, Microbacter, and Holophaga, which were slightly more abundant on

the mud leaves at T2, are anaerobic bacteria that excrete propionate and acetate [86–88].

Dechloromonas is a (per)chlorate-reducing genus [89], while Azospirillum is a microaerophilic,

non-fermentative, and nitrogen-fixing genus [90]. The genera that correlate with the minerals

in the water suggest that the environment on and within the biofilms was conducive to fer-

mentation and anoxic lifestyles. Elsewhere, it has been noted that the excretion of acids may

facilitate mineralization and aid in the preservation of soft tissues [91, 92].

On the kaolinite clay leaves, Desulfovibrio, Anaerovorax, and Acinetobacter were all posi-

tively correlated with Fe, Mn, and temperature. The dominance of Desulfovibrio, a sulfate-

reducing bacterium, on the control, sand, and kaolinite clay leaves suggests these substrates

provided an environment for Fe precipitation in the form of iron–sulfide solids (FeS) [93].

Previous studies have hypothesized that iron precipitation is a key process for leaf preserva-

tion, based on the observation of iron-encrusted plant fossils [6, 13]. However, the mud leaves

—which had the least visible decay after three months—had lesser amounts of Desulfovibrio.

Anaerovorax is strictly anaerobic bacterium with a fermentative metabolism, which excretes

acetate and butyrate [94]. The genus Acinetobacter, on the other hand, can readily form bio-

films [95] and furthermore can oxidize magnesium [96].

The application of the VPA further delineates the impact of substrate and water chemistry

on microbial community composition. While the type of substrate is the most important fac-

tor, the interaction between substrate and water chemistry substantially contributes to much

of the variation between the experimental treatments. Surprisingly, the variable of time exerted

a relatively minor effect on community composition, reflecting the resilience of microbial

communities to temporal changes.

Our study also identifies key biofilm-forming microbial OTUs associated with each sub-

strate. The biofilms on the kaolinite clay leaves, for example, contained the sulfate-reducing,

biomineralizing biofilm formers of Desulfobacteria [97, 98]. These biofilms also contained Can-
didatus Kapabacteria which has been found in anoxic, high-sulfide, wetlands [99], as well as in

microbial mats in hot springs [100], indicating their ability to tolerate hostile environments.

However, based on our observations of the rapid decay of the kaolinite leaves, it appears that

the biofilm microbial community does not form a protective layer on the leaves that would pre-

vent decay and encourage the formation of a mineral veil in the early taphonomic stages.

On the other hand, the genus Clostridia was also a prominent biofilm former on the mud

leaves. Previous taphonomic work found Clostridia in the biofilms on decaying crayfish and

hypothesized that Clostridium may be involved in adipocere formation and, consequently,

instrumental in the pyritization of soft tissue fossils [101]. In leaves with less evident decay,

like those in the mud, it is likely a consortium of microbes will tip the scales from decay

towards a protective layer.

The shifting prevalence of biofilm formers over time and among different substrate types

further emphasizes their dynamic roles in soft tissue preservation. It is worth mentioning

again that the leaves on the mud substrate emerged as a hotspot for biofilm formers in our

decay experiments. This, in combination with our observations of less morphological decay on

the pressed mud leaves, suggests the biofilm-forming microbes likely slowed down leaf decay.

Hence, mud substrates appear to support water lily leaf preservation better by facilitating the

stronger development of more microbially diverse biofilms than kaolinite or sand clay sub-

strates. The microbial-mediated biofilms would also facilitate mineral precipitation on leaf sur-

faces that will enclose and protect the leaf tissue from abrasion and damage during transport

and from invertebrate herbivory, as well as slow down decay from further bacterial activity

and preserve the fine-scale morphological features of the plant tissue [12, 102].
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Limitations of the experimental design

Although this multi-aquarium experiment was successful in elucidating the role of sediments

on the biofilm microbial community of water lily leaves, there are important limitations to

consider. First, microbial communities are highly variable, and the community composition

and the environmental conditions can change over time which could impact replicability.

Future work should perform the experiment over multiple timeframes throughout the year to

identify changes in the microbial community and the effect of the substrate. Second, the sand

and kaolinite were purchased commercially for this experiment while the organic-rich pond

mud was derived from a nearby pond. In order to improve applicability of this experiment to

natural conditions, future work should use naturally derived substrates of varying mineral

compositions. Furthermore, though this work focused on the microbial composition of the

biofilms, future experiments should address how sediment impacts the mineral content within

the biofilms, as this likely differs between the organic-rich pond mud and the other sediments.

This would also allow future researchers to test the role of organic matter in leaf fossilization.

Finally, this study emphasizes the role of biofilms and sediment in the preservation of water

lily leaves. However, the underrepresentation of water lily foliage in the fossil record is due in

large part to rapid decay [38]. Future experiments should be performed with other plant leaves

abundant in the fossil record to identify if these patterns are consistent across plant species.

The preservation of water lily leaves in the fossil record

Here, we provide evidence that biofilm formation and biofilm microbial communities differ

depending on the substrate in the early stages of leaf decay. These differences in community

composition and the consequential metabolisms of the microbes could slow decomposition

long enough for the formation of a mineral veil that can protect the leaf until it enters the ideal

conditions for fossilization [13]. This veil may not become preserved in the fossil record, but

act as a protective barrier until the conditions for preservation are met. Thus, the occurrence

of water lilies in the fossil record may be influenced by the substrate type and, consequently,

the biofilm microbial community on their leaves during decay.

In our survey of well-documented occurrences of water lilies in the geological record

(Table 1), the fossil leaves are nearly always found in sedimentary rocks such as marlstone,

claystone, mudstone, and siltstone [103]. Common to most examples, too, is the occurrence of

a dark, carbonaceous, or organic-rich rock matrix, which may represent the muddy substrate

at the bottom of an ancient pond or lake.

The preservation of the fossil water lily leaves in such sediments does not come as much of

a surprise, given the biofilm-enhancing properties of a pond mud substrate, which is attributed

to the mud substrate’s rich and complex mineralogy. It is also perhaps not a coincidence that

the site with the greatest number of water lily specimens, totaling over 39 leaves, bears the

extremely dark, oil-bearing shales of the middle Eocene Lake Messel in Germany [50] and is

the most organic-rich locality of all those described here with fossil Nymphaeales and Nym-

phaeaceae foliage.

Thus, the sedimentology of these water lily leaf-bearing sites implies that a substrate such as

pond or lake mud may be the most conducive for the fossilization of nymphaealean leaves. As

shown, a mud substrate containing a complex suite of minerals may support the preservation

of leaf tissues better than other substrates by facilitating the stronger development of micro-

bially diverse, biomineralizing biofilms. To produce well-preserved fossil leaves, the develop-

ment of strong, protective biofilms in the earliest stages of leaf decay, before the onset of

substantial tissue degradation, may be crucial. The need for a protective biofilm has also been

emphasized in several other studies [15, 18].
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Conclusions

Decay experiments on Nymphaea water lily leaves in aquariums were carried out for three

months to elucidate the effect of different fine-grained substrates on microbes and biofilms.

Using 16S rRNA and ITS gene amplicon sequencing, it was revealed that microbial communi-

ties in the leaf biofilms were significantly influenced by the mud substrate, as was reflected in

the correlation between bacterial abundance and high concentrations of minerals in the water.

In contrast to the leaf biofilms in the aquariums with kaolinite clay, fine-grained sand, or no

substrate at all (the control), more bacterial biofilm formers were found on the leaves on the

mud substrate after two months. Thus, the organic and mineral-rich mud substrate emerges as

a hotspot for biofilm formers, which may increase the preservation potential of leaves that are

deposited in such an environment. Our survey of the fossil record shows there is an association

between fossil water lily leaves and a fine-grained, usually dark, carbonaceous, or organic-rich

matrix, which may represent the muddy substrate at the bottom of an ancient pond or lake.

Hence, the sedimentology of the fossil sites also suggests that an organic-rich lake or pond

mud is a substrate that is conducive for the fossilization of nymphaealean leaves.
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