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Heavy-boundary mode patterning and
dynamics of topological phonons in polymer
chains and supramolecular lattices on
surfaces

José D. Cojal González 1, Jakub Rondomanski2, Konrad Polthier2,
Jürgen P. Rabe 1 & Carlos-Andres Palma 1,3

In topological band theory, phonon boundary modes consequence of a
topologically non-trivial band structure feature desirable properties for
atomically-precise technologies, such as robustness against defects, wave-
guiding, and one-way transport. These topological phonon boundary modes
remain to be studied both theoretically and experimentally in synthetic
materials, such as polymers and supramolecular assemblies at the atomistic
level under thermal fluctuations. Here we show by means of molecular simu-
lations, that surface-confined Su-Schrieffer-Heeger (SSH) phonon analogue
models express robust topological phonon boundary modes at heavy
boundaries and under thermal fluctuations. The resulting bulk-heavy bound-
ary correspondence enables patterning of boundary modes in polymer chains
and weakly-interacting supramolecular lattices. Moreover, we show that upon
excitation of a single molecule, propagation along heavy-boundary modes
differs from free boundary modes. Our work is an entry to topological vibra-
tions in supramolecular systems, andmayfindapplications in thepatterningof
phonon circuits and realization of Hall effect phonon analogues at the mole-
cular scale.

The study of topology in the context of electronic band theory and
corresponding topological phases of matter is widespread1–8 Equiva-
lent topological concepts have been also applied to phononic
systems9–18, in both crystalline materials19–24 and periodic artificial
structures25–33, with the aim of identifying distinct phenomena in
phononic phases of matter which can be classified by so-called topo-
logical indexes or invariants. Yet vibrational and related dynamic and
topological phononphases, especially atfinite temperatures and in the
presence of disorder, remain to be explored in atomistic soft matter
i.e. molecule-based materials and synthetic materials such as poly-
mers, self-assembled networks, metal-organic frameworks and cova-
lent organic frameworks, to mention a few. Phonon bands are a

universal property of many extended molecule-based materials34,35, a
highly diverse set of materials which can be built from millions of
compounds36. Thus, the prospect of chemical compounds belonging
to two different sets of phonon phases of matter–a topological phase
and non-topological phase–could bear far-reaching implications.

Topology in physics and chemical physics, distinguishes itself
from topology in chemistry, which rather focuses on the study of
shapes in three-dimensional (3D) as well as in connectivity space35,37–43.
In physics, topology deals mainly with the mathematical study of the
equations of motion and eigenfunctions, usually in the context of
classifications of matrix operators and band theory44–46 leading to
various phases depending on their classification. For a quasi-1D
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material, like a linear polymer chain for instance, diverse topological
classification frameworks can be employed to define topological
invariants, such as holonomy groups, winding numbers and geometric
(Berry) phases35,47,48. One topological classification in differential geo-
metry entails classification according to the holonomygroup elements
of the vibrational space of coupled oscilators48. A more common
classification relies on algebraic topology, whereby the equations of
motion for coupled oscillators are expressed in anordinarydifferential
equation akin to the Schrödinger eigenproblem, and classified by
algebraic symmetries. This approach establishes a correspondence
between phonons (bosons) and electrons (fermions) band
topology49,50. Other strategies rely on identifying non-trivial topologi-
cal invariants in opposition to the ‘atomic limit’46, wherein atoms are
disconnected. The latter approach has been employed to search for
non-trivial phonon topology in crystallographic databases51–53.

Distinct phenomena can emerge in topological phases, such as
boundary modes with intriguing properties, expressing for example
robustness against local defects, nonreciprocity or unidirectionality of
vibrational excitations12,14,49,54–57. Thus far, mostly mechanical models,
such as Maxwell lattices12,58, have been employed to engineer and
demonstrate such vibrational topological properties59,60. These toy-
models consisting of masses, springs, bars and plates offer a minimal
framework for the design of metamaterials with applications in
acoustics25,28,61,62, robotics63, thermal diodes50,64 and waveguiding65–67,
among others. Despite recent experiments on topological phonon
modes in graphene68 and some transition metal monosilicides69,70,
topological phonon boundary modes at the atomic-scale have not
been demonstrated, and approaches towards their engineering akin to
metamaterials remain elusive. Topological vibrational boundary
modes (TBM) related to the Su-Schrieffer-Heeger (SSH) model71 are
well-known in mechanical systems consisting of spring chains12,72. The
identification of SSH-like and additional topological phonon phases in
molecule-based syntheticmaterials could serve as a departure point to
realise functional topological phononics at the atomic-scale, with
potential in the engineering of polymerisation dynamics9, thermal
management64, superconductivity enhancement73, negative spring
constant design74 and phonon circuitry to mention a few. However,
extended molecule-based materials are usually described by unit cells
of hundreds of atoms, rendering topological classification and deter-
mination of boundary modes challenging. Moreover, in order to pre-
dict topological phonon phases in soft matter, at least four steps are
needed: revision or development of mathematical topological models
which capture key symmetries and dimensions, addressing the effect
of disorder and temperature on said models, followed by assessment
of electronic and finally quantum corrections. Yet for polymers alone,
mathematical models are extensive75. Therefore, surface-confinement
e.g. from on-surface self-assembly fabrication strategies, offers means
to define symmetries and reduce dimensionality of complex
matter76,77. The versatility of supramolecular interactions in self-
assembly78 can be further employed to tailor effective spring con-
stants of vibrational matter, thereby leveraging topological design in
semiconducting79,80, sensing81 or switching82–84 applications of preci-
sion supramolecular lattices85–87.

Here, we introduce surface-confined SSH dynamical matrix
point-mass models and equivalent atomistic molecular dynamics
(MD) simulations, to explore topological phases under thermal
fluctuations in polymers and supramolecular self-assembled lattices.
We demonstrate that topological phonon phases host topological
phonons at heavy boundaries in polymers and axial coordination
chains, paving the way for realising experimental platforms which
may decouple vibrations from surfaces. Specifically, our work is
presented in four main sections. First, we recall the SSH phonon
analogue (pSSH) for the study of topological vibrational modes in
polymers and supramolecular lattices. We elaborate the correspon-
dence between the pSSH topology and its topological heavy-

boundary mode and explore the effect of electronic structure by
studying realistic topological phonon phases in polyynes by density-
functional tight binding (DFTB) methods. Second, we introduce the
adsorbed SSH (aSSH) model on an implicit surface and correspond-
ing topologically non-trivial boundary modes in atomistic simula-
tions under thermal fluctuations. We provide the trivial case counter-
example in Supplementary Information. Third, we describe non-
trivial boundary modes of a double-chain adsorbed SSH (daSSH)
model, and the counter examples in the Supplementary Information.
Finally, we discuss how to identify topological phonon phases of the
daSSH model by patterning topological heavy-boundary modes in
all-atomistic axial coordination supramolecular chains, and study the
effect of topological mode excitation and propagation by compar-
ison to a free boundary mode on such arrays.

Our results reveal a topological boundary patterning principle
through the bulk-heavy boundary correspondence, phonon topology
under thermalised conditions and establishes supramolecular systems
as a functional platform for designing and patterning topological
physics, bridging the gap between vibrations in organic chemistry and
condensed matter physics.

Results
Phonon band topology and respective bulk-heavy boundary
correspondence in the 1D SSH phonon analogue
Numerous chemical compounds can be accurately represented by
spring-mass mechanical models, which allow for the expression of
topological vibrational modes. The exemplary case is a linear spring
chain consisting of alternating strong (stiff) and weak (soft)
springs12,49,57,63,72,88, the so-called pSSH model (Fig. 1a, b). In the fol-
lowing, we extend the pSSH model to adsorbed polymers at finite
temperatures (Fig. 1c–f) and introduce the heavy-boundary mode pat-
terning principle (Fig. 1g). Thesemodels and simulations aim to design
vibrational states unique to the sequence of strong and weak spring
constants in amaterial, as opposed to vibrational states pertaining to a
local end group. Topological vibrational modes may originate due to
eigenvalue (band) inversion26,89, whereby a low-energy vibrational
mode of the material moves to a high-energy mode via an eigenvalue
crossing (Supplementary Fig. 2) as characterised by a winding num-
ber of 1 (Supplementary Fig. 3). In the pSSHmodel, a boundary created
by a heavy mass (M) connected by a stiff spring, hosts a TBM, not only
because of the stiff spring itself, but due to an alternating sequence of
stiff and soft springs in the polymer or lattice. Conversely, if the
polymer is connected to the heavyboundary (M)by a soft spring, there
are no TBMs (Fig. 1b, d, f). Boundary modes are typically zero-
temperature eigenvalue problems solved by means of, e.g., dynamical
matrices and normal mode analysis (NMA). Atomistic classical mole-
cular mechanics and related dynamic approaches can be fur-
ther employed to study the robustnessof topological boundarymodes
under thermal fluctuations. Specifically, we use the dynamical matrix
approach90 to calculate band spectra for point-mass models and NMA
for the atomistic eigenmode problem in minimum energy configura-
tions (see Methods). Moreover, the Power Spectral Density (PSD)
bands are calculated using the autocorrelation function of the velo-
cities obtained fromMD simulations, thus obtaining the phonon band
structure for each simulation at finite temperature. In this way, we can
relate the phonon spectra of the thermalised models with the band
structure of the static configuration (see Methods section). Supple-
mentary Fig. 4 depicts the finite-temperature phonon band of the
pSSH heavy-boundarymodel. It follows well-known studies on the SSH
model49, with the difference that we demonstrate that the bulk-
boundary correspondence (indicator of a topological boundarymode)
holds when creating a heavy boundary (below). Similar studies have
shown the bulk-boundary correspondence of the phonon SSH model
by employing a fixed boundary72 and without temperature
fluctuations.
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For electronic states, the bulk-boundary correspondence91 is
manifested in the exponential localisation of boundary modes. We
now demonstrate that for the topological phases studied in this work,
the eigenmode displacement ε decays exponentially away from an
arbitrarily placed heavier mass (Fig. 2a).

For an alternating strong/weak spring system with N – 1 units of
pointmassesmb, and a single heavy unit ofmassmH, we can investigate
the localisation of a boundary by choosing to express the eigenmode
displacement of the unit of the chain furthest away from the boundary
ν−1, as a function of mH and N. We find that the function can be
expressed as:

ν�1 =Ae
�tðmH ÞN +BðN,mHÞ ð1Þ

Consequently, the eigendisplacement furthest from the heavy
boundary should vanish in the limit of large N,

limN!1ν�1 mH ,N
� �! δ;mH>mb ð2Þ

where δ is an asymptotic value related to B(N). Supplementary Fig. 5
explores this exponential decay for the pSSHmodel. Equation (2) is the
bulk-boundary correspondence expressed in a single unit. Figure 2
shows the bulk-heavy boundary correspondence for phonon SSH

analoguemodels studied further on. Theprinciple relates the presence
of a localised eigenmode next to the heavy unit when the winding
number is different from 0. For the cases κ1 > κ2, with a strong spring
next to the heavy unit, there is an exponential decay of the
eigendisplacements along the chain whenmH ≥mb. This topologically
non-trivial phase is characterised by a winding number of 1 around the
torus in the Brillouin zone (see Supplementary Fig. 3). Conversely, for
the cases κ2 > κ1, with a weak spring next to the heavy unit, the
eigenmodes are delocalised across the chain with an increment in the
eigendisplacements away from the heavy mass. This trivial phase is
characterised by a winding number of 0 (see Supplementary Fig. 3).

The above-mentioned point-mass pSSH model, consisting of a
spring chain of alternating spring constants κ1 and κ2, is the proto-
typical model to study band inversion and the corresponding winding
number under thermal fluctuations (Supplementary Fig. 3): Upon
thermalisation andheavy boundary formation, a localised andmid-gap
boundary mode evolves in the topological phase of the pSSH model
(Supplementary Fig. 4). Similar results are also obtained for the fully-
atomistic polyyne at a the DFTB level of theory (Fig. 2b and Supple-
mentary Fig. 8), thus drawing a direct equivalence with the point-mass
pSSH model. DFTB accurately predicts that the in-phase stretching of
all triple bonds in C50H2 at 1840 cm−1, falls within the expected range
for Raman Γ-mode vibration for a chain of this length92 in the range

Fig. 1 | Topological phases, their vibrational boundary modes and heavy-
boundary mode patterning in phonon Su-Schrieffer-Heeger (SSH) analogue
models. a A topological vibrational boundary mode occurs when a heavy bound-
ary is formed in polymers or lattices of coupled chains, with alternating weak/
strong (or soft/stiff) spring constants (denoted by κ), terminating in a stiff spring
connected to a heavier atom (M) (a topological SSH phase); as opposed to b. a soft
spring termination. These principles can be extended to c,d. a chain adsorbed on a

surface (aSSH model), and e, f a double chain (daSSH model). g A heavy-bound-
ary can be employed to pattern a topological mode at a desired point in a polymer
chain . The exponentially localised vibrations spanning few atoms (amplitude in
g representing the longitudinal eigendisplacements) have properties unique to the
global topology of the vibrational space, as opposed to the local chemical envir-
onment. Molecular dynamics simulations further explore the properties of the
topological boundary modes under excitation and thermal fluctuations.
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10–200K (Supplementary Fig. 8). To induce a pSSH-equivalent topo-
logical phase expressing a topological boundary mode, the hydrogen
atoms at the termini of polyyne C50H2 are changed to heavier phos-
phorus atoms, which are triple-bonded to carbon (C50P2). In such a
phase (cf. Supplementary Fig. 2), a mid-gap heavy-boundary mode
exponentially localised next to the heavy phosphorus atoms is
expressed. On the other hand, changing hydrogen in the trivial phase
for a singly-bonded heavier atom, such as chlorine in the compound
C50Cl2, does not provoke the expression of a boundary mode. While
these results predict the existence of two phononic phases ofmatter in
polyynes, they do not guarantee their experimental determination:
polarons or large nuclear quantum effects may breakdown the har-
monic approximations employed93 or broaden phonon spectra to the
point of making boundary modes undetectable.

From 1D to 2D: the adsorbed SSH polymer chain
The 1D and quasi-1D pSSH studies are not representative of a polymer
chain in solution or on a surface, due to the additional interactions and
corresponding equivalent spring constants in these environments. To
model a more realistic polymer environment, we introduce the adsor-
bed aSSHmodel on a surface, wherein an additional spring constant κ3
fixes the chain to the surface (Fig. 3a, top panel). The aSSH polymer is
modelled with equal masses, weak and strong alternating spring con-
stants to account for the chemical bonds, andwithout parameterisation
of van derWaals (vdW) interactions, angles or dihedrals (a full atomistic
system is presented in the next section). Two decoupled types of
longitudinal modes are recognised in the band structure, LA (LO) at
lower (higher) energy. Furthermore, the absorption results in a trans-
versal (T) flat mode (Fig. 3a, bottom panel). At the dynamical matrix
level, the model aSSH has only time-reversal symmetry (see Supple-
mentary methods). Moreover, the band inversion of the longitudinal
modes renders a winding number of 1 around the torus in the Brillouin
zone (see Supplementary Fig. 3). Upon heavy boundary formation, a

finite aSSH chain of 52 pearls expresses a TBMonlywhen κ1 > κ2, namely
the TBM is exponentially localised in the units next to heavy ones only
when they are bonded by a strong spring (see Supplementary Fig. 6).
The atomic surface roughness and height differences are ignored and
thermalising the polymer at 100K translates into serpentine motion of
the polymer (Fig. 3b, top panel). Interestingly, the phonon band struc-
ture and specifically the acoustic band of the aSSH model changes
during thermalisation (cf. Figure 3b,c). The last observation can be
explained by the coupling with the out-of-plane (transversal T) reso-
nators. Supplementary Fig. 9 shows how this coupling could occur: In
the zigzag (θ= 15°) aSSH model, there is the evolution of a new LA+T
band due to themixing with the T bandmode. Figure 3c shows that the
TBM in the aSSH model is expressed even in presence of disorder,
without crystalline symmetry, owing to the intrinsic alternating spring
constants. Here, MD simulations show that the TBM persists under
thermal disorder. Note that the combination of heavy boundary for-
mation and alternating spring constants express ‘sublattice symmetry’
or ‘chiral symmetry’94 (besides time-reversal symmetry) between the
bottom (LA) and top (LO) bands, rendering the aSSH model under
thermal disorder as BDI class95,96. Further, note that the LA+T mixing
does not significantly change the band inversion, thereby paving the
way for band inversion of few modes even in the presence of many
resonators, as it would occur in a full-atomistic system. We perform
normal mode analysis (NMA) of the linear aSSH model to understand
the contribution of the transversal and longitudinal bands to the
topological boundary state. We find that a heavy boundary expresses a
longitudinal topological boundary mode (inset in Fig. 3d). It is funda-
mental to note that the topological boundary modes are expressed as
(1) mid-gap states in the (2) second-last mass–two key indicators of the
topological origin of the boundary modes and the bulk-boundary cor-
respondence at play. The trivial case of the aSSHmodel does not showa
TBM (Supplementary Fig. 10), owing to the presence of a weak spring
next to the heavy boundary.

Fig. 2 | Bulk-heavy boundary correspondence in phonon Su-Schrieffer-Heeger
(SSH) analogues: point-mass polymer model vs. fully-atomistic polyyne den-
sity functional tight-binding simulation. a An increase in the mass value at the
boundary in a topological phonon SSH phonon analogue (pSSH) point-mass chain
results in the expression of a vibration or phonon preferentially localised next to
the heavy boundary. The example depicts the intensity of the longitudinal eigen-
displacements (of eigenmode no. 26) for the topological (left hand side) and trivial
(right hand side) cases before and after imposing a heavy-boundary condition for a
pSSH system of 52 units. Mass ratio mH/mb (heavy mass divided by bulk mass)
increased from 1 to 1.1. Spring constant ratio κ1/κ2 = 3 (1/3) for the topological

(trivial) case. Eigenvalue spectra as a function of the heavymass are also shown (up
to five-fold increase). Supplementary Figs. 5–7 elaborates on the bulk-heavy
boundary correspondence for additional phonon SSH analogues. b Atomistic
polyyne modelled using density-functional tight binding (DFTB) methods. The
phosphaalkyne C50P2, featuring triple P ≡C bonds, realises a pSSH topological
phase with a heavy-boundary mode at 1700cm−1 (left hand side), whereas the
chloroalkyne C50Cl2, with Cl–C single bonds, is a trivial phase with no boundary
mode. The longitudinal eigenmode displacements are depicted transversally for
clarity.
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From 2D to 3D: the adsorbed SSH polymer double-chain
Having introduced the linear aSSH (θ =0° Fig. 3a), zigzag aSSH (θ = 15°,
Supplementary Fig. 9) and random angle thermalised models
(Fig. 3b, c), we now turn to a ‘fixed zigzag’ (θ = 60°) aSSHmodel and its
atomistic equivalent: A symmetry which can be realised by atomic or
molecular chains self-assembled into arrays or supramolecular lattices.
Figure 4 shows that the atomistic equivalent of the ‘fixed zigzag’ aSSH
is a double chain connected by alternating effective strong and weak
springs, which we refer to as the double-chain adsorbed SSH or daSSH
model (Supplementary Fig. 11 shows that the difference in effective
springs stiffness is due to adsorption asymmetry). The schematics of
the daSSH are shown in Fig. 4a, whereby the dynamical matrix band
structure is depicted in Fig. 4b. Two longitudinal acoustic (lower
energy) and two longitudinal optical (higher energy) bands are
recognized. One of each type presents phase inversion, also char-
acterised bywindingnumber of 1 around the torus in theBrillouin zone
(see Supplementary Fig. 3). By using the parameters κ1 = 3, κ2 = 1, κ3 = 3
and κ4 = κ5 = 0.5,θ = α = 60°,mM= 100 andmC = 1, the transversalmode
(T) lies just above the lower LO band.

In the Supplementary Fig. 7, the exchange of κ1 and κ2 is further
explored for a finite chain of 52 units, with heavy units,mM /mC = 100,
at both edges. A double degenerate topological boundary mode is

exponentially localised in the units next to heavy ones only when they
are bonded by a strong spring, meaning when κ1 > κ2. MD simulations
at 100K of the daSSH model of 52 masses reveals five main bands for
the infinite-chain case (Fig. 4b) and TBM for the finite-chain case with
localised heavy-boundary masses (Fig. 4c). The intensity of this TBM is
mainly located in the mass next to the heavy one and decreases
exponentially when moving to the bulk (Fig. 4d). As shown in Sup-
plementary Fig. 11, the bands do not invert their phases for the trivial
case of the daSSHmodel, leading to the absence of a TBM in the band
dispersion from MD simulations at 100K.

Discussion
The expression of surface-confined topological phonon boundary
modes under thermal fluctuations, paves the way for their engineering
through molecular self-assembly, notably in the field of molecular
materials on surfaces. The scope of their bulk-heavy boundary corre-
spondence can be discussed in equivalent supramolecular systems,
such as the daSSHmodel realised by two rows of an axial coordination
lattice with substituted DABCO ligands on top of an iron porphyrin
platform (Fig. 5a). Rows of the unsubstituted DABCO axial coordina-
tion lattice have been recently characterised by scanning tunnelling
and atomic force microscopy97 and choose a chiral trialkyl substituted

Fig. 3 | The point-mass adsorbed Su-Schrieffer-Heeger (aSSH) model at equili-
brium, polyyne–like equivalent under thermal fluctuations and their bulk-
boundary correspondence. a The aSSH model is realised by a four-parameter
dynamicalmatrix:MassmC,mM andbonds κ1, κ2; and interactionwith a virtual semi-
unmovable substrate (blue line on the blue surface) via κ3. This point-mass model
overall mimics the molecular mechanics parameters of polyyne strongly adsorbed
on a substrate (butwithout vdWparameters, angles nor dihedrals). Twomasses per
unit cell are allowed tomove either parallel or perpendicular to the substrate. Here,

the case of the transversal (T) mode crossing the lower energy mode (LA) is
depicted in yellow. b Band dispersion from molecular dynamics simulations of an
infinite-chainof 52masses atfinite temperature. Power spectral density (PSD) of the
periodic chain shows a spectrum comparable to the point-mass mode. The influ-
ence of the T mode leads to a change in the LA band, see Supplementary Fig. 9.
c, d A finite-chain with localised heavy-boundary masses expresses a longitudinal
topological boundary mode (magenta arrow in c), whose eigenmode is depicted
transversally in d for convenience. Source data are provided as a Source Data file.
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DABCO (DABCO-3Bu) due to the simplicity of tight-packing alkyl
chains by changing their length. The differences in spring constants
aremimicked by the asymmetry of the underlying platforms leading to
different vdW energies between and within rows, respectively: Sup-
plementary Fig. 12 shows the inter- and intra-row dissociation curves.
The resulting ‘strong/weak’ equivalent-spring pattern is shown in
Fig. 5b. We also note that the chemical modification of the alkyl-chains
or various axial ligands can enhance the asymmetry between ‘strong/
weak’ SSH-like interactions. In this regard, alkyl chains help explore
asymmetries at the weak interaction limit.

Amid-gap, second-last localised boundarymode (Fig. 5c) appears
in theNMAsimulation at thefinite chainwith heavyboundaries (Fig. 5f)
which is absent in the infinite chain in Fig. 5d and the free boundary
chain in Fig. 5e. A mid-gap signal is identified in the MD simulations at
10K, further providing evidence of the plausibility of the daSSH-
equivalent topological phase in supramolecular assemblies (Fig. 5f).
The corresponding trivial case is constructed by an equivalent weak-
spring termination (Supplementary Fig. 13), wherein no new boundary
mode is identified upon creating the heavy boundary.

The adsorbed SSH polymer double-chain in weakly-coupled
supramolecular lattices
We have developed analytical and heuristic guidelines for the
expression of topological boundary modes in SSH chain models with
the potential for experimental realisation employing supramolecular
systems on surfaces. This procedure represents a first entry point for
the design of boundary modes in lattice SSH models98 formed by
arrays of daSSH chains. Such supramolecular arrays can be designed
by lattices consisting of alternating weak-strong hydrogen-bonded,
metal-organic chains or van der Waals interactions. Here, three daSSH
models derived from Fig. 5, containing 98 iron porphyrins and 98
DABCO-3Bu, are explored: A periodic boundary conditions (pbc)
crystal (Fig. 6a) designed to illustrate vibrational properties not asso-
ciated with boundaries; a ribbon (Fig. 6b) created by lifting the

periodicity of the pbc crystal; and a heavy-boundary ribbon (Fig. 6c)
after increasing the mass of the boundary molecules (coloured in red)
of the ribbon three-fold. Figure 6d shows the NMA spectra for the pbc
crystal and the heavy-boundary ribbon, depicting a SSH chain model
boundary mode at 45.5 cm−1 and localised between bulk modes. This
boundary mode is exponentially localised at the second-to-last mole-
cules as depicted in the NMA map of Fig. 6e. The phonon band
structure from MD simulations at 10K shows a small free-boundary
mode appearing at46 cm−1 for the ribbon case (Fig. 6g)which isneither
present in the pbc crystal (Fig. 6f), nor in the trivial case (Supple-
mentary Fig. 14). A sharper signal is observed in the phonon spectra for
the heavy-boundary ribbon case, (Fig. 6h) providing evidence of cou-
pled daSSH topological boundary modes at finite temperature. Note
that when coupling 1D topological phases, meticulous attention is
necessary, as the classification might change significantly from quasi-
1D chains to quasi-2D lattices98. Furthermore, patterning of boundary
modes is possible by defining heavy masses anywhere in the material.
Experimentally, such mass increase can be implemented through the
use of heavier ligands or simply heavier isotopes. Figure 6i shows an
X-shape periodic pattern of heavymasses located along the centre of a
supramolecular ribbon, depicting the strong and weak interactions as
defined in the equivalent-spring pattern in Fig. 5b. TheNMAspectra for
the nanoribbon (Fig. 6j) and the corresponding NMA map (Fig. 6k)
show that the boundary mode at 20 cm−1 is exponentially localized on
the molecules adjacent to the heavy masses on the side of the strong
interaction.

Further, the excitation profile of the plausible topological bound-
ary mode is explored by applying an oscillating force to a single mole-
cule duringmolecular dynamic simulations at 1 K34. The applied force is
proportional to an element of the eigenmode depicted in Fig. 6e and
using the corresponding excitation period of 0.733ps (thermal
equivalent of 65K). The effect of this excitation is followed bymeans of
the root mean square deviation (RMSD) from the starting minimised
configuration. RMSD is used to identify fluctuations in the structural

Fig. 4 | A point-mass double-chain atomistic ladder Su-Schrieffer-Heeger
(daSSH) model and atomistic equivalent under thermal fluctuations. The
model is realised by additional springs connecting next-nearer neighbour masses,
leading to a dynamical matrix depending on themassesmC,mM and angles θ and α,
and bonds κ1, κ2, κ4, κ5, with eachmass bonded to a semi-unmovable substrate (blue
dot on the blue surface) via a spring κ3. a Following the dynamical matrix approach
for the daSSH model in the case of θ = α = 60°, two decoupled types of modes are
recognized: longitudinal, including two bands showing band inversion; and a
transversal flat mode. b Band dispersion from molecular dynamics (MD)

simulations of an infinite-chain of 52 masses at finite temperature considers more
values of θ andα around the equilibrium value of 60°. cA finite-chain with localised
heavy-boundary masses induces a topological boundary mode (TBMmarked with
magenta arrow) at 13 THz. d The boundary mode is mainly localised at the second-
to-last mass (blue). The inset shows the maximum of the power spectral density
(PSD) around the frequency of the TBM. Dashed lines serve as view guides when
moving from the boundary to the bulk of the chain. A snapshot of the MD simu-
lations shows the first seven masses of a finite chain. Source data are provided as a
Source Data file.
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conformation of the molecules due to the excitation of a mode. The
oscillating force is applied to the core of the red molecule circled in
yellow in Fig. 7. Three replicas with different initial velocities were
simulated. For each excitation case a baseline (without excitation)
shares the same initial velocities. RMSD fluctuations show larger con-
figurational changes in the excitation case compared to the baseline
(Supplementary Fig. 15) for the neighbour and next-neighbour mole-
cules.Moreover, the effect of the excitation shows apreference towards
larger fluctuations in the molecules on the boundary, when compared
to the bulk (cf. RMSD 2nd neighbour vs. 1st neighbour in Fig. 7).

Boundary modes that cannot be classified after the SSH chain
model have been also identified in the supramolecular materials of
Fig. 699. Figure 8 shows the phonon spectra in y direction from MD
simulations at 10 K. The lower frequency region of the band structure
for the pbc crystal (Fig. 8a) shows a gap between 24 and 29 cm−1, in
which a very intense flat band appears at 26.1 cm−1 (Fig. 8b). Analysis of
the NMA intensity map for the ribbon (Fig. 8c) shows a prominent
libration mode localised at the boundary of the material decreasing in
intensity towards the bulk. The excitation profile of this libration
boundary mode is also evaluated by applying an oscillating force to a
single molecule (red molecule circled in yellow in Fig. 8d) during
molecular dynamic simulations at 1 K. The force is applied to the one
boundary molecule belonging to the eigenmode in Fig. 8c and using
the corresponding excitation period of 1.249 ps (thermal equivalent of
38 K). Notably, the RMSD in Fig. 8d shows that the excitation does not
propagate, contrary to the Fig. 7 and as compared to the RMSD
baseline without excitation (Supplementary Fig. 16). Differences in

propagation between trivial and topological boundary modes are not
an unambiguousmarker for topology, but are a plausible consequence
of topological phonons stemming from topological robustness against
perturbation. Trivial and simply localised phononboundarymodes are
disrupted by the phonon excitation, unlike topological boundary
modes whose eigendisplacements are exponentially localised.

In summary, we studied phonon band formation on adsorbed
polymer chain models and atomistic weakly-interacting molecular lat-
tices, designed as SSH analogues with alternating soft and stiff springs,
or spring-like interactions. Specifically, we showed that creating a heavy
boundary in such polymer models and self-assembled supramolecular
lattices (bulk-heavy boundary correspondence) leads to the emergence
of exponentially localised phonons at the atom or molecule next to the
heavy boundary for non-trivial topology.We show that such topological
boundary modes can be patterned and are robust at finite tempera-
tures, aiming towards phonon circuitry at the molecular scale. In
supramolecular lattices, upon excitation of a single molecule of the
mode, the modes stemming from the bulk–heavy boundary corre-
spondence propagate, contrary to in-gap protected, free boundary
modes. By demonstrating that topological boundary modes can be
patterned by mass changes, we anticipate phonon engineering in self-
assembled chains of strongly-interacting systems such as covalent,
metal-organic, or supramolecular polymers and frameworks. Our work
constitutes a stepping stone in topological phononics at interfaces, with
far-reaching implications related to emerging quasiparticles unique to
supramolecular systems, and to phononic logic and eigen-
solvers in atomic-scale themodynamic computing.

Fig. 5 | An atomistic double-chain adsorbed Su-Schrieffer-Heeger (daSSH)
model under thermal fluctuations. a One nitrogen atom (blue sphere in 3D
model) of a DABCO-3Bu molecule coordinates with the iron (purple sphere) of an
octaethylporphyrin to form a supramolecular complex. b A double chain of the
supramolecular complex is found equivalent to an alternating chain of strong and
weak springs resembling the daSSH model. c Eigenmode mapping at 29.3 cm−1

showing eigendisplacements exponentially localised at the second-to-lastmolecule
from the heavy boundary of the finite chain. The colormap represents the angle of
the eigenvector’s components with respect to the xy-plane. d–f Band dispersions

from molecular dynamics simulations at 10 K identify a (topological) boundary
mode as a mid-gap signal. d The case with periodic boundary conditions (PBC)
shows a gap between 28 and 32 cm−1 in the power spectral density (PSD). Here, the
shadedmolecules depict the repetitionof themain cell, representedby highlighted
molecules. eCreating a boundaryby lifting PBC (absent shadedmolecules in d) and
subsequently f a heavy boundary (heavier molecules marked in red), promotes the
appearance of a signal assigned to a daSSH topological boundary mode at 30 cm−1

(marked by a magenta arrow). Source data are provided as a Source Data file.
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Fig. 6 | A finite-ribbon double-chain adsorbed Su-Schrieffer-Heeger (daSSH)-
array equivalent model with patterned heavy-boundaries under thermal fluc-
tuations and guided excitation of the topological boundary mode.
a–c Supramolecular array used to compare and pattern boundaries. Periodic
boundary conditions (PBC) in x and y constitute a Crystal (a), PBC in y form a
Ribbon (b, c). Increasing the mass by three-fold in boundary molecules of the
ribbon (in red) forms the heavy-boundary ribbon (c). d Normal mode Analysis
(NMA) of Ribbon and Crystal shows a new eigenmode at 45.5 cm−1 between bulk
modes (magenta arrow), when the boundary of the crystal is opened. e Eigenmode
mapping at 45.5 cm−1 exhibits exponential localisation at the second-to-last mole-
cules of the Ribbon. The colormap represents the angle of the eigenvector’s

components with respect to the xy-plane. f–h Band dispersions from molecular
dynamics simulations at 10 K of the crystal (f), Ribbon (g) and Ribbon with heavy
boundaries (h) helps to identify the sharp resonance of a potential topological
boundary mode marked with magenta arrows. i Supramolecular Ribbon with
heavier innermolecules, marked in red, whosemass has been increased three-fold.
The shaded molecules depict the repetition of the main cell, represented by
highlightedmolecules. jNMAof the system showing an inner boundary eigenmode
at 20 cm−1 and whose mapping is shown in k. k Eigenmode mapping at 20 cm−1,
mostly localised at the molecules with a stronger interaction to the heavy ones as
depicted in i. Source data are provided as a Source Data file.
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Methods
Dynamical matrix for phonon band calculation
The connectivity matrices and corresponding dynamical matrix
method for pSSH, aSSH and daSSH models is described in Supple-
mentary Methods. Corresponding Python analysis scripts and Jupyter
notebookswere employed to calculate the band structures (Figs. 2a, 3a
and 4a and Supplementary Figs. 2, 3, 5, 6, 7, 9 and 11).

Topological index
A winding number was calculated as the total phase difference gath-
ered along a closed path in k-space47. The phase difference between
the eigenstates n at two different points k0 and k1 is given by Δφn,1:

eiΔφn, 1 =
unðk0Þjunðk1Þ
� �
unðk0Þjunðk1Þ
� ��� �� ð3Þ

Δφn, ‘ = Im ln unðk‘�1Þjunðk‘Þ
� � ð4Þ

Where un is the nth eigenvector with winding number given by:

wn =
1
2π

Im
XN
‘= 1

ln un k‘�1

� �jun k‘

� �� �
+ Im ln un kN

� �jun k0

� �� � !
ð5Þ

Molecular simulations at finite temperature for phonon spectra
calculation
Molecular dynamics for the calculation of the phonon spectra at finite
temperature (Figs. 3b, c, 4b, c, 5d–f, 6f–h and 8a, b) and for NMA (in
bothmodels and atomistic systems) in thisworkwere carriedout using
CHARMM c45b1100 and Gromacs 2021.3101. Force field atom types and
parameters were assigned from the CgenFF 3.0.1 forcefield102,103. Force
fields reproduce the dynamics of large molecules with very high
accuracy below 80 K104 and can also reproduce probability densities77.
Optimisations for the iron octaethylporphyrin (FeP) were used as
reported by Adam et al.105 and for DABCO by Burtch et al.106. A two-
dimensional harmonic restraining potential was applied to the non-
hydrogen atoms of the porphyrins core. Distance and orientation of

FeP are from Wang et al. from DFTB+ minimisation.97 Simulations at
finite temperatures were performed by means of the Bussi-Donadio-
Parrinello thermostat with a 0.1 ps coupling constant. Configuration
and force field files intended to reproduce the calculations and simu-
lations are included in Supplementary Data. To obtain the phonon
spectra (PSD) band we first calculate the projection of the velocities in
the direction of a specific wavevector k:

vk tð Þ=
XN

i
vie

�ik�riðtÞ ð6Þ

Where ri and vi are the position and velocity of a specific atom in the ith
unit cell, respectively, andN refers to theunit cells considered. Second,
we calculate the autocorrelation function of vk at a time t is given by:

Ck tð Þ= vk ðt0Þ � v*
k ðt0 + tÞ

� �
vk ðt0Þ � v*

k ðt0Þ
� � ð7Þ

Where vk* denotes the complex conjugate of vk. A more computa-
tionally efficient procedure to calculate the autocorrelation of vk using
fast convolutions with FFT algorithms can be used:

Ck tð Þ= F�1 FR vk
� � � F *

R vk

� �h i
ð8Þ

where F−1 is the inverse Fourier transform of the product of the Fourier
transform of the velocity FR (vk) with its complex conjugate FR*(vk).
Finally, the PSD Is obtained as the discrete-time Fourier transform of
Ck. As pointed out by Koukaras et al. this method should be employed
for each atom type in the unit cell107,108: one Ck for each atom type. For
simulations in supramolecular systems, we averaged Ck among alkyl
carbons (types CT2 and CT3) to increase the sampling of the
autocorrelation function.

Density functional tight binding
Simulations at a quantum level were performed using the DFTB
method as implemented in the 24.1 release of the DFTB+ software109.
To fully relax the molecules to a local minimum, self-consistent DFTB

Fig. 7 | Guided excitation of a boundary mode along the heavy-boundary.
a During molecular dynamics simulations at 1 K, all non-hydrogen atoms of the
molecule circled and highlighted in red are excited by an oscillating force (with a
period of 0.733ps or 45.5 cm−1 and a force constant of 123.4 pN). The excitation
occurs in the direction corresponding to the eigenmode of the single-molecule
element depicted in Fig. 6e. The zoomed-in area shows the eigenvector’s compo-
nents of the excitedmolecule, whose angles with respect to the xy-plane are shown
using the colormap. b The root mean square deviation (RMSD) from the initial

minimised configuration for eachmolecule (with colours corresponding to those in
panel a) shows fluctuations that propagate up to the 4th boundary neighbour. Each
RMSD data set is offset by 0.25Å relative to its (second) nearest neighbour along
the (boundary) bulk for clarity. Same-seed trajectories without excitation are pro-
vided in the Supplementary Information Fig. 15. Arrows in panel a serve as a guide
to the eye for the RMSD fluctuations in b. Source data are provided as a Source
Data file.
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calculationswereperformedwith a tolerance set at 1 × 10−6 electrons to
ensure accurate electronic structure convergence. The parameters
used to construct the Hamiltonian were derived from the Third-Order
Parametrization for Organic and Biological Systems110,111, which is
known for its accuracy in modelling such molecular systems.

Normal modes were calculated using the mass-weighted Hessian
matrix, calculated from finite difference second derivatives of the
energy with respect to atomic positions. A finite difference step size of
10−6 atomic units was used.

Molecular simulations at finite temperature for propagation
studies
To explore the excitation profile at the nanoribbon’s boundary, all the
non-hydrogen atoms of a selected molecule were excited using an
oscillating force during molecular dynamic simulations at 1 K, with the
Berendsen thermostat in the parallel version of CHARMM c45b1100

using 32 CPUs. The oscillating force is given by:

F tð Þ= F0 cos
2πt
Tk

� �
wk ð9Þ

Where wk is the partial eigenvector containing the entries of the
eigenmode k associated with the excited molecule, the rest of the
entries are zero. Tk is the period corresponding to the eigenvalue λk,

satisfying
ffiffiffiffiffi
λk

p
= 2π=Tk . For the excitation in Fig. 5, Tk = 0.7331 ps

(45.5 cm−1) and F0 = 123.4 pN, so that the maximum force applied to a
single atom is limited to 50pN. For the excitation in Fig. 6, Tk = 1.249 ps
(26.7 cm−1) and F0 = 123.4 pN. To avoid thermalisation of the applied
excitation, we set the scaling velocity frequency ieqfrq and auto-
centering frequency ntrfrq (and iprfrq) to every 5 ps.

Workflow for the identification of the topological boundary
modes at finite temperatures
A standing challenge is the calculation of topological invariants from
phonon band eigenvectors for materials with thousands of atoms and
at finite temperature. Therefore, a workflow (Fig. 9) is employed to
provide evidence of topological boundary modes for the materials in
Figs. 5, 6 and 7 following the design principles of SSH heavy-boundary
model introduced and elaborated in Figs. 3 and 4.Wepropose that this
workflow can be used to find topological boundary modes in most
materials which are designed following the aSSH or daSSH heavy-
boundary models.
(a) Normal mode analysis (NMA) using CHARMM c45b1100 to obtain

the spectra of independent harmonic oscillations.
(b) Identification of boundary eigenvectors from NMA (Eigenmode

maps in Figs. 5c, 6e and 8c) using custom Python scripts.
(c) New modes detected after steps a and b, are verified to meet the

following conditions: (i) are the newmodes within a gap between

Fig. 8 | Guided excitation of an in-gap free boundarymode. a, b Band dispersion
for molecular dynamics (MD) simulations at 10 K shows a gap between dispersive
bulk nodes in the crystalmaterial (a) and a localised boundarymodewithin this gap
for the case of the Ribbon (b). c Eigenmode mapping at 26.7 cm−1 localised at the
edges of the Ribbon. The colormap represents the angle of the eigenvector’s
components with respect to the xy-plane. d All non-hydrogen atoms of the circled
and coloured in redmolecule are excited by an oscillating force (period of 1.249 ps
or 45.5 cm−1 and force constant 123.4 pN), in the direction corresponding to the

eigenmode’s single molecule element in c during MD simulations at 1 K. e The root
mean square deviation (RMSD) from the initial minimised configuration for each
molecule (with colours corresponding to those in panel d) reveals that the exci-
tation does not propagate to the boundary neighbours. Each RMSD data set is
offset by 0.25Å relative to its (second) nearest neighbour along the (boundary)
bulk for clarity. Same-seed trajectories without excitation are provided in the
Supplementary Information Fig. 16. Arrows inpaneld serve as a guide to the eye for
the RMSD fluctuations in e. Source data are provided as a Source Data file.
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bulk modes? (ii) are the new modes exclusively localised at
second-to-last molecules? Now these modes are candi-
dates to TBM.

(d) If the candidates are also found in the PSD band from MD simula-
tions at finite temperatures, then they are called boundary modes.

(e) Finally, the topology origin of the modes is evidenced by con-
structing counter-examples: (1) trivial case and (2) the non-heavy,
free boundary example and repeating steps a–d. Both counter
examples should not fulfil the criteria of the candidate TBM at
similar energies, that is, should not express an in-gap boundary
mode, should not be localised at second-to-last molecule, nor
should be found in the band dispersion at finite temperatures.

Source Data
Source Data file including all the numerical source data for the plots.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Source data are available with this paper. Source data are provided
with this paper.

Code availability
Simulation files, Python analysis scripts and Jupyter notebooks have
been deposited in the NOMAD database under accession code https://
doi.org/10.18653/v1/2020.acl-main.173https://doi.org/10.17172/
NOMAD/2024.11.20-1.
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