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Abstract: In this article, we introduce the concept of energy-variational solutions for a class of nonlinear
dissipative evolutionary equations, which turns out to be especially suited to treat viscoelastic fluid models.
Under certain convexity assumptions, the existence of such solutions can be shown constructively by an
adapted minimizing movement scheme in a general framework. Weak-strong uniqueness follows by a suitable
relative energy inequality. Our main motivation is to apply the general framework to viscoelastic fluid models.
Therefore, we give a short overview on different versions of such models and their derivation. The abstract
result is applied to two of these viscoelastic fluid models in full detail. In the conclusion, we comment on
further applications of the general theory and its possible impact.
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1 Introduction

Viscoelastic fluids can be seen as an in-between-state of Newtonian fluids and elastic solids. In elastic mate-
rials, the resistance to deformation is described in terms of the deformation and in viscous fluids in terms of
displacement rates. A combination of both leads to characteristics like a nonlinear stress strain relation or
even hysteresis in the stress–strain curve, creep, or memory effects in the material [9,25,33].

A standard model for viscoelastic fluids, is the so-called Oldroyd-B model, which couples the Navier-Stokes
equations for the fluid velocity �[ )× ∞ →v : Ω 0,

d with an additional evolution equation for the left Cauchy-
Green tensor � �[ )× ∞ → ×

: Ω 0,
d d,

�( )∂ + ⋅∇ + ∇ − + ∇⋅ = ∇⋅ =v v v v f vp μ βΔ , 0,t (1a)

� � � � � � � �( ) (( ) ) (( ) )∂ + ⋅∇ − ∇ − ∇ + − = =v v vα2 0, ,t
T

skw sym sym sym (1b)

endowed with appropriate initial and boundary conditions, where p denotes the pressure of the system,
( )∈ ∞μ 0, and �∈α β, having the same sign. Finally, f represents a given source.
If ≠α 0, this model formally satisfies the associated dissipation mechanism
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� �� ( )∣ ( ) ⟨ ⟩∫ ∫+ =v v f vτ τ, Ψ , d , d ,O s
t

s

t

O

s

t

(1c)

where the corresponding energy is given by

� � � �� ( ) ∣ ∣ ( )∫= + − −v v

β

α
x,

1

2

tr ln dO

Ω

2

and the dissipation functional by

� � � �( ) ∣( ) ∣ ( ( ) )∫≔ ∇ + − −
v vμ

β

α
xΨ , 2 tr d .O

Ω

sym

2 1 2

From a mathematical point of view, the analysis for these kinds of models is rather challenging. First and
foremost, the quadratic terms in (1b) are not known to be integrable from the a priori bounds of (1c), since
these only assure an L1-bound for the stress tensor � . Second, the highly nonlinear terms are not treatable by
compactness methods since no compactness due to embeddings is known to hold for � .

For =α 0, Lions and Masmoudi [36] showed existence of global weak solutions to (1a)–(1b) by a technique
called propagation of compactness [39]. Many other works in the field introduce the so-called stress diffusion �−Δ

on the left-hand side of (1b) to improve compactness [15,37]. This stress diffusion can be rigorously introduced by
thermodynamical modeling [42] and can serve tomodel the dispersion and attenuation of elastic waves, whichmay
be experimentally observed in some particular situations [47], but often it is added to infer strong convergence
properties for a suitable approximating sequence of � . Moreover, there are numerical studies showing that
numerical simulations for viscoelastic models are close to empirical data in the absence of stress diffusion effects
[41] or the simulated effects are closer to the expected phenomena for vanishing stress diffusion [1].

In this article, we therefore propose a novel analytical framework to treat especially viscoelastic models
without stress diffusion. We introduce the concept of energy-variational solutions for a general class of
evolutionary partial differential equations (PDEs) of the form

� �( ) ( )∂ + = =U U U UA 0 in * with 0 int 0 (2)

for two Banach spaces � and � such that � �⊂ *, � �[ )∞ × →A : 0, *, �∈U0 .
A smooth solution to (2) for any initial value formally fulfills the energy dissipation mechanism

�( ) ( )∫+ ≤U U τΨ d 0

s

t

s

t

(3)

for all [ )< ∈ ∞s t 0, , where � and Ψ are suitable energy and dissipation functionals defined on �.
A standard weak solution to (2) fulfills

⟨ ⟩ ⟨ ⟩ ⟨ ( ) ⟩∫− ∂ + =U U UA τ, Φ , Φ , Φ d 0

s

t

s

t

t (4)

for all [ )< ∈ ∞s t 0, and �� ([ ) )∈ ∞Φ 0, ;
1 . By introducing an upper bound for the energy �( )≥ UE , sub-

tracting (4) from (3), and, adding a term for the associated energy defect with weight �� [ )→ +∞: 0, , gives
the formulation

� �[ ⟨ ⟩] ⟨ ⟩ ( ) ⟨ ( ) ⟩ ( )[ ( ) ]∫− + ∂ + − + − ≤U U U U UE A E τ, Φ , Φ Ψ , Φ Φ d 0

s

t

s

t

t (5)

for a.e. [ )< ∈ ∞s t 0, and all �� ([ ) )∈ ∞Φ 0, ;
1 . We note that an energy-variational solution for =Φ 0 fulfills

∣ ( )∫+ ≤uE τΨ d 0s
t

s

t

for a.e. ( )< ∈s t T0, in case that�( ) =0 0. This guarantees compactness for the auxiliary
variable E , which is an upper bound of the energy. Moreover, for many physical systems, there exists a
regularity weight � such that the function
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� �( ) ⟨ ( ) ⟩ ( ) ( )↦ − +U U U UAΨ , Φ Φ

is convex and lower semicontinuous for all �∈Φ . This is the essential assumption for the stability of the
energy-variational formulation, making the inequality stable under the weak convergence in the topology of �.
These facts also explain why the weight K depends on the test function Φ. The error term � �( )( ( ) )−U EΦ

can be seen as a term measuring the difference between weak and strong convergence due to the missing
compactness that would guarantee convergence of the energy. We note that in the case that �( )= UE on
( )T0, , the formulation (5) simplifies to the sum of the energy inequality (3) and the weak formulation (4),
which is equivalent to both of them individually. Besides this existence of solutions, which is proven
constructively via a time-discretization based on sequential minimization, we also provide the weak-strong
uniqueness of solutions. This means that all energy-variational solutions coincide with a local strong solu-
tion emanating from the same initial datum, as long as the latter exists. Moreover, the solution is a semi-
flow. Up to our knowledge, this result is the first one entailing global existence and weak-strong uniqueness
result for such a general class of models.

Energy-variational solutions use ideas from more established solutions concepts like dissipative solutions
and measure-valued solutions. In dissipative solutions, the formulation is generalized to an inequality [35, Sec.
4.4], while in measure-valued solutions, an auxiliary measure is introduced so that the equations is fulfilled in
the limit [13]. Energy-variational solutions combine both approaches by adding an auxiliary variable relaxing
the formulation to an inequality. Nevertheless, the concept has many desirable properties, for instance: the
existence and weak-strong uniqueness of energy-variational solutions for a large class of models via a con-
structive existence proof. For certain systems in fluid dynamics, the equivalence of measure-valued solutions
and energy-variational solutions is known [16], even though the degrees of freedom are heavily reduced in the
second one, since the auxiliary matrix-valued measure is replaced by a real number in every point in time.
Moreover, in [32], it was observed that energy-variational solutions are very flexible, in the sense that they
allow us to identify the limit of numerical schemes, while this result seems to be out of reach with measure-
valued solutions. Moreover, the set of energy-variational solutions is weakly-star closed and in some cases set-
valued continuous, which enables to define minimization schemes on the solution set as proposed in [31].

Our main result, similar to the one of [16] related to hyperbolic conservation laws, introduces a stronger
solution concept with respect to the one of dissipative solutions [28,35] and thus also stronger than the solution
concept proposed in [14]. Moreover, the proposed result has potentially multiple applications outside of
viscoelastic fluid dynamics, like, for instance, the ones considered in [16] about the compressible and incpom-
pressible Euler equations as well as the incompressible magnetohydrodynamics.

After a brief introduction to different variants of viscoelastic models, the general result is applied to two
viscoelastic fluid models in full detail. The first model we consider is taken from [8], but allowing for vanishing
stress diffusion. As in [8], in case where the energy in (1c) is regularized by a quadratic term, leading to the
system

� � � �

� � � � � � � � �

( ) (( )( ) ( ))

( ) [( ) ] [( ) ] ( )( ) ( )

∂ + ⋅∇ + ∇ − − ∇⋅ − − + − = ∇⋅ =
∂ + ⋅∇ − ∇ − ∇ + + − = =

v v v v f v

v v v

p μ α β β

α δ

Δ 1 , 0,

2 0, 0,

t

t

2

skw sym sym sym skw

(6)

with μ, ( )∈ ∞δ 0, , �∈α , ( )∈β 0, 1 , and the associated energy

� � � � � �� ( ) ∣ ∣ ( ) ( ( )) ∣ ∣∫≔ + − − − + −v v β
β

x,

1

2

1 tr ln

2

dQ

Ω

2 2

and dissipation

� � � � � � � � �( ) ∣ ∣ ( ) ( ) ( ( ))∣ ∣ ( )∫≔ ∇ + − − + + − − + −−
v vμ β β δ β δβ xΨ , 1 : 1 : d ,Q

Ω

2 1 2 2 2

so that an associated energy-dissipation relation like in (1c) is formally fulfilled for solutions to (6) as well. We
prove existence and weak-strong uniqueness of energy-variational solutions to this system by applying the
aforementioned general result.
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Second, we consider a model inspired by [44] for a symmetrized Neo-Hookean approach, which leads to
the equations for the deformation gradient � , the velocity field v, and pressure p,

� �( ) ( )∂ + ⋅∇ + ∇ − − ∇⋅ − = ∇⋅ =v v v v f vp μ αΔ , 0,t
2 (7a)

� � � � � � �( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =−
v v vα 0, 0.t skw sym sym sym

1

skw (7b)

with ( )∈ ∞μ 0, , �∈α , and the associated energy

� � � �� ( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )∫≔ + − −v v x,

1

2

ln det dS

Ω

2 2 2 2

and dissipation

� � � � � �( ) ∣ ∣ ∣ ∣ ∣ ∣ ( )∫ ∫≔ ∇ + − = ∇ + − +− −
v v vμ x μ xΨ , d tr 2 d ,S

Ω

2 1 2

Ω

2 2 2

so that an associated energy-dissipation relation like in (1c) is formally fulfilled for solutions to (7) as well. Also
for this model, we prove existence and weak-strong uniqueness of energy-variational solutions, based on our
general result in Banach spaces (cf. Theorem 3.3).

In the conclusions, we mention different other models that fit into the proposed abstract framework and
give an outlook on possible future research directions.

We note that we prove the abstract existence result by a constructive time-discretization approach.
Similar to the minimizing movements scheme for Gradient flows, we define a time incremental minimization
algorithm for an approximation of the solution. We think that this is not the only similarity to the gradient flow
setting, where a lot of results were achieved in recent years, like general existence and uniqueness results [4]
and singular limit results [48] bridging between different scales [40]. We think that the general approach
presented in this article has the potential to generalize such results to a more general framework. By this
concept of energy-variational solutions, we introduce a novel formulation for nonlinear evolution equations
that is especially suited to treat viscoelastic fluid models. It allows to pass to the limit in the numerical
approximation only by means of convergence with respect to the underlying weak topology, and thus, it
does not require to add stress diffusion to the viscoelastic fluid models.

2 Preliminaries

2.1 Notation

We denote by �� ( )∞
Ω;c σ,

3 the space of smooth solenoidal functions with compact support. By ( )L Ωσ
p , ( )H Ωσ0,

1 ,

and ( )W Ωσ

p

0,

1, , we denote the closure of �� ( )∞
Ω;c σ,

3 with respect to the norm of ( )L Ω
p , ( )H Ω

1 , and ( )W Ω
p1, ,

respectively. By � ×d d, we denote d-dimensional quadratic matrices, by � ×d d
sym

and � ×d d
skw

the symmetric and

skew-symmetric subsets, and by � +
×d d

sym,
the symmetric positive definite matrices. Vectors are written bold

�∈a
d and matrices in blackboard bold� �∈ ×d d. The identity matrix is denoted by � and the zero matrix by

	. The negative part of a real number �∈x is denoted by ( )−x . The symmetric and skew-symmetric part of a
matrix � �∈ ×d d are denoted by �( ) sym and �( ) skw , respectively. We denote �( ) ( )≔ ×

L LΩ Ω;
p p d d
sym sym

and

�( ) ( )≔+ +
×

L LΩ Ω;
p p d d
sym, sym,

for [ ]∈ ∞p 1, . The duality pairing between ( )L Ω
p and ( )L Ω

q (with ∕ + ∕ =p q1 1 1), is
denoted by ( )⋅ ⋅, , ( )⋅ ⋅; , or ( )⋅ ⋮ ⋅ , for vectors, matrices, or tensors of third order. For a given Banach space
 , we
denote by
* its dual space, the space 
� ([ ] )T0, ;w denotes the functions on [ ]T0, taking values in
 that are
continuous with respect to the weak topology of 
 . For two Banach spaces 
 , �, we denote the set of linear
continuous mappings from 
 with values in � by 
 ��( ), . If the set M is a dense subset of the set X , we
denote it by ⊂M Xd . The total variation of a function �[ )∞ →E : 0, is given by
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∣ ∣ ∣ ( ) ( )∣([ )) ∑= −∞
= < < <∞ =

−E E t E tsup ,

t t k

n

k kTV 0,

0 … 1

1

n0

where the supremum is taken over all finite partitions of the interval [ )∞0, . We denote the space of all
bounded functions of bounded total variations on [ )∞0, by ([ ))∞BV 0, . Note that the total variation of a
monotone decreasing nonnegative function E only depends on the initial value, i.e.,

∣ ∣ ∣ ( ) ( )∣ ( ) ( ) ( )([ )) ∑= − ≤ − ≤∞
= < < <∞ =

−E E t E t E E t Esup 0 0 .

t t k

n

k k nTV 0,

0 … 1

1

n0

Note that for ([ ])∈f TBV 0, its left and right limits in any point ( )∈ ∞t 0, are well-defined and denoted by
( )−f t and ( )+f t , respectively.

Let� be a Banach space and �� [ ]→ ∞: 0, be a convex, lower semi-continuous function. The domain of �
is defined by �� �{ ∣ ( ) }= ∈ < ∞v vdom . We denote the convex conjugate of � by �∗, which is defined by

�
�

� �( ) [⟨ ⟩ ( )]= − ∈
∈

z z y y z* sup , for all *.

y

Then �* is also convex and lower semi-continuous. We introduce the subdifferential �∂ of � by

� �� � �( ) { ∣ ( ) ( ) ⟨ ⟩}∂ ≔ ∈ ∀ ∈ ≥ + −y z y y y z y y* ˜ : ˜ , ˜

for �∈y . The subdifferential �∂ ∗ of �∗ is defined analogously. Then the Fenchel equivalences hold: For
�∈y , �∈z *, we have

� � � �( ) ( ) ( ) ( ) ⟨ ⟩∈ ∂ ⇔ ∈ ∂ ⇔ + =z y y z y z z y* * , . (8)

A proof of this well-known result can be found in [7, Prop 2.33]. If �( )∂ y is a singleton for some �∈y , then � is
Fréchet differentiable in y and � �( ) { ( )}∂ =y yD . In this case, we identify �( )∂ y with �( )yD .

Lemma 2.1. Let ( )∈ ∞f L 0,
loc

1 , ( )∈ ∞∞
g L 0,

loc
and �∈g

0
. Then the following two statements are equivalent:

(i) The inequality

( ) ( ) ( ) ( ) ( )∫ ∫− ′ + − ≤
∞ ∞

ϕ τ g τ τ ϕ τ f τ τ ϕ gd d 0 0

0 0

0
(9)

holds for all � ([ ))∈ ∞ϕ 0,c
1 with ≥ϕ 0.

(ii) The inequality

( ) ( ) ( )∫− + ≤g t g s f τ τd 0

s

t

(10)

holds for a.e. [ )< ∈ ∞s t 0, , including =s 0 if we replace ( )g 0 with g
0
.

If one of these conditions is satisfied, then g can be identified with a function in ([ ))∞BV 0, such that

( ) ( ) ( )∫+ − − + ≤g t g s f τ τd 0

s

t

(11)

for all [ )≤ ∈ ∞s t 0, , where we set ( )− ≔g g0
0
. In particular, it holds ( )+ ≤g g0

0
and ( ) ( )+ ≤ −g t g t for

all ( )∈ ∞t 0, .

A proof of this assertion can be found in [16, Lem. 2.11]. In the cited Lemma, the assertion is proved for a
finite time horizon, but the reasoning also works on [ )∞0, since one may restrict to a finite time, either t in (10)
or the domain of the function ϕ in (9).

Lemma 2.2. Let� be a Banach space, �� [ )→ ∞: 0, strictly convex coercive and� be a Banach space such that
� �⊂ dom *

d . Let A, �∈B dom such that ⟨ ⟩− =A B, Φ 0 for all �∈Φ . Then, it holds that =A B.
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Proof. To derive a contradiction, we assume that ≠A B. Due to the density and the fact that �∂dom * is dense in
�dom * [7, Cor. 2.38], we find two sequences � �{ } ⊂ ∂∈Φ dom *B

n
n and � �{ } ⊂ ∂∈Φ dom *A

n
n so that → ξΦA

n
A and

→ ξΦB
n

B in �* with �( )∈ ∂ξ AA and �( )∈ ∂ξ BB . This implies due to ≠A B and the strict convexity of � that

� � �( ) ( ) ⟨ ⟩ ⟨ ⟩< + − ⎛
⎝

+ ⎞
⎠ ≤ − − = − − =

→∞
A B

A B
ξ ξ A B A B0 2

2

1

2

, lim

1

2

Φ Φ , 0A B
n

A
n

B
n (12)

which is a contradiction and so we conclude =A B. □

3 General existence result

In this section, we consider a general nonlinear evolution equation of the form

� �( ) ( ( )) ( )∂ + = = ∈U U U Ut A t t, 0 in * with 0 .t 0 (13)

Hypothesis 3.1. Let � �⊂ be two Banach spaces such that � �⊂ *
d . Let � be reflexive Banach space and

�� [ ]→ ∞: 0, be a strictly convex, lower semi-continuous, superlinear functional on�, i.e.,
� �

�

‖ ‖
( )

‖ ‖
= ∞→∞lim v

v

v
.

Let �[ ) [ ( ) ]∞ × → − ∞C tΨ : 0, ,Ψ be a mapping so that �( )⋅ ⊂tdomΨ , dom is convex, � ( ) ( )∈ ⋅yD t* domΨ , for

all �∈y and a.e. ( )∈ ∞t 0, . Here, [ ) [ )∞ → ∞C : 0, 0,Ψ is such that ( )∫ < ∞
∞

C t td
0

Ψ . Let �[ )∞ × → ∗A : 0, domΨ

such that
� �⟨ ( ( )) ⟩ ( ( ))=A t D t D, * Φ , Φ Ψ , * Φ (14)

for all �∈Φ , a.e. [ )∈ ∞t 0, and �∘ ∗DΨ is continuous on � with �( ) ( )= =U Ut0 Ψ ,min min , being Umin the
minimizer of � . Both Ψ and A are assumed to be measurable with respect to the first variable. Finally, we
assume that there exists a convex continuous function �� [ )→ ∞: 0, such that the mapping

� �( ) ⟨ ( ) ⟩ ( ) ( )↦ − +U U U Ut A tΨ , , , Φ Φ (15)

defined on domΨ is convex and lower semi-continuous for every �∈Φ and a.e. [ )∈ ∞t 0, .

Remark 3.1. (Hypothesis 3.1) We note that the condition (14) formally assures that the system (13) fulfills the
energy-dissipation-mechanism (3). Indeed, formally, we may test (13) by �( )∂ U , which leads by the Fenchel
equivalences (8) and the chain rule formula to

� � �⟨ ( ) ( ( ))⟩ ⟨ ( ( )) ( ( ))⟩ ( ( )) ( ( ))= ∂ ∂ + ∂ = ∂ +U U U U U Ut t A t t t t t t0 , , , Ψ , .t t

Definition 3.2. We call a pair �( ) (( ) ) ([ ))∈ ∞ × ∞∞
U E L, 0, ; BV 0, an energy-variational solution to (13) if

�( ) ≤U E a.e. on ( )∞0, and if

� �[ ⟨ ⟩]∣ ⟨ ⟩ ( ) ⟨ ( ) ⟩ ( )[ ( ) ]∫− + ∂ + − + − ≤U U U U UE τ A τ E τ, Φ , Φ Ψ , , , Φ Φ d 0s
t

s

t

t (16)

for all �� ([ ) )∈ ∞Φ 0, ;
1 and for a.e. ( )< ∈ ∞s t 0, including =s 0 with ( ) =U U0 0.

Theorem 3.3. For every �∈U dom0 , there exists an energy-variational solution in the sense of Definition 3.2
with �( ) ( )+ = UE 0 0 .

Remark 3.2. We note that every energy-variational solution with �( )= UE on an interval [ ] [ )⊂ ∞t t, 0,0 1 is a
weak solution.

Indeed, we infer from (16) multiplied by >α 0 and with =Φ Θ
α

1 , where �� ([ ) )∈ ∞Θ 0, ;
1 and �( )= UE that

�[ ( ) ⟨ ⟩] [⟨ ⟩ ( ) ⟨ ( ) ⟩]∫− + ∂ + − ≤U U U U Uα α τ A τ τ, Θ , Θ Ψ , , , Θ d 0

s

t

s

t

t
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for all [ ]< ∈s t t t,0 1 and all �� ([ ) )∈ ∞Θ 0, ;
1 . As →α 0, we infer the weak formulation (4) with an inequality.

But for = −Φ Θ
α

1 , the inequality with the opposite sign is inferred such that we showed the weak formula-
tion (4).

From the formulation (16), we can even read off a higher regularity of the solution such that the relations
are even fulfilled everywhere instead of almost everywhere in time.

Corollary 3.4. Let ( )U E, be an energy-variational solution in the sense of Definition 3.2. Then there exists
��( ) ([ ) ) ([ ))∈ ∞ × ∞U E˜ , ˜ 0, ; BV 0,w so that ( ) ( )=U UE E˜ , ˜ , a.e. in ( )∞0, and the inequality �( ) ( ( ))≥ UE t t˜ ˜ holds

true for all [ )∈ ∞t 0, and

� �[ ⟨ ⟩] [⟨ ⟩ ( ) ⟨ ( ) ⟩ ( )[ ( ) ]]∫− + ∂ + − + − ≤
−

+

U U U U UE τ A τ E τ˜ ˜ , Φ ˜ , Φ Ψ , ˜ , ˜ , Φ Φ ˜ ˜ d 0

s

t

s

t

t

holds for all �� ([ ) )∈ ∞Φ 0, ;
1 and for all ( )< ∈ ∞s t 0, .

If, additionally, it holds that �( ) ( ( ))+ = UE s s and � is ρ-uniformly convex, i.e., there exists a strictly
monotone increasing function [ ) [ )∞ → ∞ρ : 0, 0, with ( ) =ρ 0 0 so that

�� � �( ) ( ) ( ) (‖ ‖ )
⎛
⎝ + ⎞

⎠ ≤ + − −U V U V U Vρ2

1

2

for all U , �∈V dom , then U is even right-hand continuous at s, i.e., ( ) ( )=↘ U Ut slimt s in �.

Proof. In the same way as in [16, Prop. 3.1], we infer the existence of functions ��( ) ([ ) ) ([ ))∈ ∞ × ∞U E˜ , ˜ 0, ; * BV 0,w

fulfilling the asserted inequalities everywhere in time. We now prove the second statement of the corollary. The higher
regularity �� ([ ) )∈ ∞Ũ 0, ;w follows from Lemma 2.2. Indeed, consider a sequence �{ } [ )⊂ ∞∈t 0,n n such that

[ )→ ∈ ∞t t 0,n . From the boundedness, �(( ) )∈ ∞∞
U L 0, ; , we infer that the sequence �{ ( )} ∈U tn n admits a weakly

converging subsequence in�. The fact that �� ([ ) )∈ ∞U 0, ; *w allows us to identify this limit in� so that Lemma 2.2
and the uniqueness of weak limits also guarantee that ( ) ( )⇀U Ut tn in � for the whole sequence.

Now let �{ } ( )⊂ ∞∈t s,n n such that ↘t sn , we infer from �� ([ ) )∈ ∞U 0, ;w that ( ) ( )⇀U Ut sn . The mono-
tonicity of E and the weakly lower semi-continuity of � imply

� �( ) ( ) ( ( )) ( ( )) ( )≥ ≥ ≥ =
↘ →∞

U UE s E t t s E slim liminf

t s
n

n
n

n

(17)

such that � �( ( )) ( )=→∞ U Utlimn n . From the weak convergence and the strict convexity of � , we infer the
strong convergence by

�

� � �

� � �

(∥ ( ) ( )∥ )

( ( )) ( ( ))
( ) ( )

[ ( ( )) ( ( )) ⟨ ( ( )) ( ) ( )⟩]

≤ −

≤ ⎡
⎣⎢

+ − ⎛
⎝

+ ⎞
⎠
⎤
⎦⎥

≤ − − ∂ − =

→∞

→∞

→∞

U U

U U

U U

U U U U U

ρ t t

t t
t t

t t t t t

0 lim

liminf 2

2

lim , 0,

n
n

n
n

n

n
n n

where the second inequality is due to the ρ-uniform convexity of �, the third one follows from the definition of
the subdifferential, and the equality follows from the convergence of the energy and the weak convergence.
This proves the strong convergence. □

Remark 3.3. (Properties of solutions) Energy-variational solutions enjoy the semi flow property according to
John Ball [6]. That means that for a solution on [ )∞0, every restriction on an interval [ ]s t, for all [ )< ∈ ∞s t 0,

to the initial value ( ( ) ( ))−U s E s, is again a solution. Moreover, if ( )U E,
1 1 is an energy-variational solution on

[ ]r s, to the initial value ( ( ) ( ))−U r E r,
1 1 and ( )U E,

2 2 is an energy-variational solution on [ ]s t, with initial value
( ( ) ( ))−U s E s,

2 2 with ≤ < < < ∞r s t0 and ( ( ) ( )) ( ( ) ( ))+ = −U Us E s s E s, ,
1 1 2 2 , then the concatenation

( )
( ) [ ]

( ) [ ]
≔

⎧
⎨
⎩

U

U

U

E
E r s

E s t
,

, , on ,

, , on ,

1 1

2 2

(18)
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is a solution on [ ]r t, with initial value ( ( ) ( )) ( ( ) ( ))− = −U Ur E r r E r, ,
1 1 .

Energy-variational solutions are not unique, they are even far from being unique. If ( )U E, is an energy-
variational solution in the sense of Definition 3.2, also ( )+U E h, is an energy-variational solution for any ≥h 0.
The set is therefore admittedly too large. But this peculiar nonuniqueness is ruled out by the condition

�( ) ( )= UE 0 0 in Theorem 3.3. Nevertheless, energy-variational solution cannot be expected to be unique.
However, the set of energy-variational solutions to a given initial value is convex and weakly-star closed,
which follows in the same way as in [16, Prop. 3.4]. Moreover, for the example of incompressible Newtonian
fluid dynamics, the solution set is continuous in the Kuratowski sense. These can be seen as indicators that the
solution set is amenable for additional selection criteria to single out a reasonable solution via minimization.
The proposed algorithm in (23) follows from this idea by selecting the time-discrete solution that minimizes the
energy at the current time point.

To state the second main result of the article concerning weak-strong uniqueness of solutions, we need to
reinforce Hypothesis 3.1 by the following.

Hypothesis 3.5. In addition to Hypothesis 3.1, we assume that � � �( )∈ intdom
2 and that there exist a Banach

space� with � � �⊆ ⊆ , [ )∈ ∞p 1, , and a constant >C 0 such that

� �‖ ‖ ( ( ) ( ( )) )∫ ∫≤ + + +U U Ut C t C td Ψ , 1 d

T

p

T

p

0 0

Ψ

for all >T 0 and for all ∈U domΨ, which implies that � �⊂ ⊂domΨ . In addition, we assume that ⟨ ⟩A, Φ and
Ψ are Gateaux differentiable for all �∈Φ and a.e. ( )∈t T0, with respect to the second variable.

By using the space � , we define  � �( ) (( ) ) (( ) )≔ ∩∞T L T L T0, 0, ; 0, ;
p and ( )͠ ≔T0,

� �(( ) ) (( ) )⊕ ′
L T L T0, ; * 0, ; *

p1 , where ′p denotes the conjugated exponent to p, i.e., ′ = −p
p

p 1
.

Remark 3.4. This space ( )T0, is only one possibility to characterize additional regularity of the energy-
variational solution. Indeed, it is possible to choose a larger space( )T0, in certain examples. One possibility
is to assume that the space� admits a decomposition� � �= × ×… n1 such that ( )=U U U, …,

T
n
T T

1
. Then, we

assume that there exist { } { }=p
i i n1, … , such that [ )∈ ∞p 1,

i
, and we may replace the left-hand side of the condition

in Hypothesis 3.5 by �‖ ‖∫ ∑ = U td

T

i

n

i

p

0
1 i

i . This will already imply higher regularity in the first example below.

Proposition 3.6. (Relative energy inequality) Let �( ) (( ) ) ([ ))∈ ∞ × ∞∞
U E L, 0, ; BV 0, be an energy-variational

solution in the sense of Definition 3.2 and let Hypothesis 3.5 be fulfilled. Then it holds

� � � � � �( ∣ ) ( ∣ ) ⟨ ( ) ( )( )⟩ ( ( )) ( ∣ )∫ ∫+ + ∂ + − ≤U U U U U U U U U U U UE τ A τ D τ D E τ, ˜ , ˜ ˜ , ˜ , ˜ ˜ d ˜ , ˜ d

s

t

s

t

t

s

t

2 (19)

for all [ ]< ∈s t T0, for all � �� ([ ] ) ( )∈ ∩U T L T˜ 0, ; 0, ;
p0 so that

�



 �



 

�

�

� �

( ) (( ) )

( ) ( )

( ) ( ( ) (( ) ))

( ) ( )

( ) ( ( ) ( ))

͠

͠

∈
∈
∈

∂ ∈
∈

∞
U

U

U

U U

U

D L T

D t T

DA t T L T

A t T

D T T

˜ 0, ; ,

Ψ , ˜ 0, ,

, ˜ 0, ; 0, ; * ,

˜ , , ˜ 0, ,

˜ 0, , 0, ,

t

1

2

(20)

where ( ]∈ ∞T 0, . Here, we denote the relative energy by

� � �( ∣ ) ( ) ⟨ ( ) ⟩≔ − − −U U U U U UE E D, ˜ ˜ ˜ , ˜

and the relative dissipation via
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� �

� � � � �

( ∣ ) ( ) ( ) ⟨ ( ) ⟩ ⟨ ( ) ( ) ( )( ) ( )⟩

( ( ))[ ( ) ( ) ⟨ ( ) ⟩]

≔ − − − − − − −
+ − − −

U U U U U U U U U U U U U

U U U U U U

t t t D t A t A t DA t D

D D

, ˜ Ψ , Ψ , ˜ Ψ , ˜ , ˜ , , ˜ , ˜ ˜ , ˜

˜ ˜ ˜ , ˜ .

Remark 3.5.We note that, due to the convexity of the energy � and the condition �( )≥ UE , the relative energy

� � � � �( ∣ ) [ ( )] [ ( ) ( ) ⟨ ( ) ⟩]≔ − + − − −U U U U U U U UE E D, ˜ ˜ ˜ , ˜

is nonnegative and vanishes iff �( )= UE and =U U˜ . Moreover, due to assumption (15), the relative dissipation
� is nonegative, since it is the subdifferential of the convex function in (15).

Furthermore, the condition ��( ) ∈UD ˜ implies that � �( ( ))UD ˜ is well defined. Finally, we observe from
Hypothesis 3.1 that � �( ( )) ∈UD D* ˜ domΨ.

Note that the Gateaux derivatives of Ψ and A are also well defined due to Hypothesis 3.5.

Corollary 3.7. (Weak-strong uniqueness) Let ( )U E, be an energy-variational solution in the sense of Definition 3.2
with �( ) ( ( ))= UE s s for one [ )∈ ∞s 0, and let Hypothesis 3.5 be fulfilled. Let � �� ([ ] ) ( )∈ ∩U T L T˜ 0, ; 0, ;

p0 be
a strong solution, i.e., a function fulfilling the equation (13) in ( )͠ T0, with ( ) ( )=U Us s˜ and <s T , enjoying the
additional regularity of (20), then it holds that

( ) ( ) [ ]= ∈U Ut t for all t s T˜ , . (21)

Remark 3.6.We note that the above corollary is stronger than the usual weak-strong uniqueness results, since
the generalized solution coincides with the strong solution as soon as both coincide at one point in time.
Usually these results are only formulated for =s 0 such that the solutions only coincide, if they coincide in the
initial value. Moreover, inequality (19) gives a continuous dependence results for solutions on the initial value
as long as the strong solution exists. This can be observed from the inequality (22) below. If Ũ is a strong
solution, ( )∂ + =U UA t˜ , ˜ 0t so that the difference in the initial values and the regularity of the solution Ũ

bounds the difference of the solutions.

Remark 3.7. (Comparison to dissipative solutions) Under Hypothesis 3.5 every energy-variational solution is a
dissipative solution in the sense of Lions [35, Sec. 4.4]. Indeed, from inequality (19), we infer by a version of
Gronwall’s inequality and estimating �( )≥ UE and inserting �( )= UE0 0 as in the result of Theorem 3.3 that

� � � �

� �

� �

� �

( ( ) ( ( ))∣ ( )) [ ( ∣ ) ⟨ ( ) ( )( )⟩]

( ( )∣ ( ))

( ( ))

( ( ))

∫ ∫

∫

+ + ∂ + −

≤

U U U U U U U U U U

U U U

t t t τ A τ D e s

e

, ˜ , ˜ ˜ , ˜ , ˜ ˜ d

, ˜ 0 ,

U

U

t

t
D τ

D s

0

2
˜ d

0 0

˜ d

s

t

t

0

(22)

for all � �� ([ ] ) ( )∈ ∩U T L T˜ 0, ; 0, ;
p0 fulfilling (20), which is very similar to the dissipative formulation

according to Lions (cf. [35, Sec. 4.4]).
Another established generalized solvability concept are the so-called measure-valued formulation, where

the weak limits under nonlinear functions are identified via Young measures [2]. In a more modern formula-
tion, so-called dissipative weak solutions [16, Definition 4.4], the PDE is fulfilled in a distributional sense up to a
defect measure. In the recent work [16,18], it was shown for the incompressible and the compressible Euler
equations that dissipative weak solutions are essentially equivalent to energy-variational solutions. For vis-
coelastic fluid models, it is not entirely clear how a reasonable measure-valued formulation should be con-
structed, which is why energy-variational solutions seem to be a good alternative.

Proof of Theorem 3.3. We divide the proof into several steps.
Step 1: equidistant time discretization. Let �∈N such that�( ) < N0 , we define ≔ ∕τ N1 , and we set ≔t τnn

for �∈n to obtain an equidistant partition of [ )∞0, . For convenience, we define � [ )→ ∞Ψ : 0,
n

via ( ) ( )∫≔ −U Ut tΨ Ψ , d
n

τ t

t1

n

n

1 , �→A : domΨ *
n n via ( ) ( )∫≔ −U UA A t t, d

n

τ t

t1

n

n

1 , and ( )∫= −C C t td
n

τ t

t

Ψ

1

Ψn

n

1 . We set

�≔ ∈U U dom
0

0 and define
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� � � � � �( ∣ ) ( ) ( ) ( ( ) ( ) ) ( ) ⟨ ⟩ ( ) ⟨ ( ) ⟩≔ − + − − − − + −− − −
U U U U U U U U UτC τ τ τ AΦ Φ , Φ Ψ , Φ .

n n n n n n n1 1

Ψ

1

The set � � � �{ ∣ ( ) ( ) ( )}≔ ∈ + ≤ −
U U U UτΨ

n n n 1 is convex and weakly compact in �. Indeed, the
convexity follows from condition (15) with =Φ 0 and all [ )∈ −t t t,

n n1 and the fact that �( ) <τ 0 1 such that
� � � � �( ) ( ) ( ( ) ( ) ( )) ( ( )) ( )+ = + + −U U U U Uτ τ τΨ Ψ 0 1 0

n n . Since �( ( ))− >τ1 0 0 and � is coercive, the set
�n is even weakly-compact. We define the iterate for ≥n 1 for a given −

U
n 1 via

� �

� ( ∣ )=
∈ ∈

U Uarg min sup Φ .

U

n n

Φ
n

(23)

In the next steps, we show that this definition actually makes sense.
Step 2: Min-max theorem. To show that

� � � �
� �( ∣ ) ( ∣ )=

∈ ∈ ∈ ∈
U Uinf sup Φ sup inf Φ

U U

n n

Φ Φ

n n (24)

we apply a min-max theorem. Recall that the set �n is convex and weakly compact in �. The function
� ( ∣ )↦U U Φ

n is convex and weakly lower semi-continuous for every �∈Φ due to Hypothesis 3.1. Moreover,
the function � ( ∣ )↦ UΦ Φ

n is concave for all �∈U with � �( ) ( )≤ +−
U U τCn n1

Ψ
since � is convex. Therefore,

(24) follows from Fan’s min-max theorem [17, Theorem 2].
Step 3: Discrete energy variational inequality. We want to prove the inequality

� �

� ( ∣ ) ≤
∈ ∈

Uinf sup Φ 0.

U

n

Φ

n (25)

From Step 2, we infer the equality (24). To show (25), we consider �∈Φ arbitrary and � �( )≔ ∈U D˜ * Φ dom .
We define � ( )≔U D αˆ * Φ with =α 1 if � �( ) ( ) ( )+ < −

U U Uτ˜ Ψ ˜n n 1 and with ( ]∈α 0, 1 such that �( ) ( )+ =U Uτˆ Ψ ˆn

�( )−
U

n 1 , if � �( ) ( ) ( )+ ≥ −
U U Uτ t˜ Ψ , ˜n n 1 . We can always find such a value ( ]∈α 0, 1 since the function

� � � �[ ] [ ( ) ( )] ( ) ( ( )) ( ( ))→ + = +U Uf τ f α D α τ D α: 0, 1 0, ˜ Ψ ˜ ; * Φ Ψ * Φ
n n

is continuous with ( ) =f 0 0 and � �( ) ( ) ( ) ( )= + ≥ −
U U Uf τ1 ˜ Ψ ˜n n 1 due to the intermediate value theorem. The

continuity of �∘ DΨ * follows from Hypothesis 3.1 and the continuity of � � ( )↦ ∘α D α* Φ from convex
analysis. Indeed, via Fenchel’s equivalences, we may write � � � �( ) ⟨ ( ) ⟩ ( )∘ = −D α D α α α* Φ * Φ , Φ * Φ and
from the assumptions on � , we infer the continuity of �* with �� =∗

dom * [7, Prop. 2.25 and Thm. 2.14].
The mapping �∂ * is single-valued and demi-continuous [46, Thm. 5.20], which implies the continuity of f . Since
Umin is the strict minimizer of � , it holds �( )∈ ∂ U0 min and thus by Fenchel’s equivalences � ( )∈ ∂U 0*min . Since
the subdifferential is indeed single-valued, due to the superlinearity and strict convexity of � [7, Prop. 2.47] and
[46, Thm. 5.20], we infer �{ } ( )=U D 0*min , which implies due to Hypothesis 3.1 that ( ) =f 0 0.

With this choice of Û , we observe that � � �( ) ( )≤∈ U Uinf , Φ ˆ , ΦU

n nn for which, we find

� � � � � �

� � � � �

� � � �

( ) [ ( ) ( )] ( )[ ( ) ( ) ] ( )

[⟨ ⟩ ⟨ ( ) ⟩]

( )[ ( ) ( ) ] [ ( ) ( ) ( )]

( )[ ( ) ( ) ] ( )[ ( )]

= − + − − +

− − +

≤ − − + ⎛
⎝ − ⎞

⎠ + −

= − − ≤ − + ≤

− −

−

− −

−

U U U U U U

U U U

U U U U U

U U U

τ τC τ

α
α τ A α

τ τC
α

τ

τ τC τ C

ˆ , Φ ˆ Φ ˆ Ψ ˆ

1
ˆ , Φ ˆ , Φ

Φ ˆ 1

1
ˆ Ψ ˆ

Φ ˆ Φ Ψ ˆ 0,

n n n n n

n n

n n n n

n n n n

1 1

Ψ

1

1

Ψ

1

1

Ψ

2

Ψ

where we used (14) and the convexity of � to infer the inequality and the choice of α to infer the second
equation. The choice of Û and the lower bound on Ψ allow us to deduce the two last inequalities.

Step 4: Well-defined optimization problem. Let us define �	 �( ) ( ∣ )= ∈U Usup Φ
n

Φ
. As the supremum of

convex lower semi-continuous functions, 	 is a convex lower semi-continuous function on the convex and
weakly compact set�n,	 is even strictly convex due to the strict convexity of �. From the previous two steps,
we infer that 	 is proper, i.e., not equal to +∞ everywhere on �n. Thus, the minimization problem

� 	( )∈ UminU
n has a unique minimizer and so definition (23) makes sense.
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Step 5: Interpolation. For functions � ([ ))∈ ∞∞
ϕ 0,c and �� ([ ) )∈ ∞Φ 0, ;

1 , we define ( )≔ϕ ϕ tn n , ( )≔ tΦ Φ
n n ,

and �( )≔ UEn n for �∈n . Inserting = −
Φ Φ

n 1 in (25), multiplying the resulting inequality by −ϕn 1 and summing
this up for �∈n provides

� �

[ ( ) ⟨ ⟩]

[ ( ) ⟨ ( ) ⟩ ( )( ( ) )]

∑

∑

− − −

+ − + − − ≤

=

∞
− − − − −

=

∞
− − − −

U U

U U U

ϕ E E ϕ

τ ϕ A E τC

, Φ

Ψ , Φ Φ 0.

n

n n n n n n n

n

n n n n n n n n n n

1

1 1 1 1 1

1

1 1 1 1

Ψ

Since there exists a �∈n0 such that =ϕ 0
n for all ≥n n0, we may use a discrete integration-by-parts formula

and divide by >τ 0, to obtain

�

� �

[ ⟨ ⟩] [ ( ) ⟨ ⟩]

[ ( ) ⟨ ( ) ⟩ ( )( ( ) )]

∑

∑

−
⎡
⎣⎢

−
− −

− ⎤
⎦⎥

− −

+ − + − − ≤

=

∞ −
−

−

=

∞
− − − −

U U U U

U U U

ϕ ϕ

τ
E ϕ

τ
ϕ

ϕ A E τC

, Φ ,

Φ Φ

Φ ,

Ψ , Φ Φ 0.

n

n n

n n n n n

n n

n

n n n n n n n n n n

1

1

1

1

0

0

0

0

1

1 1 1 1

Ψ

(26)

We define the piece-wise constant interpolants

�

�
�

( )
( ]

( )
( ) ( ]

( )
( ) ( ) [ )

≔
⎧
⎨
⎩

∈
=

≔
⎧
⎨
⎩

∈
=

≔ ∈

−

−
− −

U

U

U

U

U

U

t
t t t

t

E t
t t t

t
E t t t t

for , ,

for 0,

for , ,

for 0,

for ,

N
n n n

N
n n n

N n n n

1

0

1

0

1 1

for all �∈n . Analogously, for test functions 
� ([ ) )∈ ∞ψ 0, ;
1 , where 
 is � or �, we define the piece-wise

constant and piece-wise linear interpolants by



( )
( ) ( ]

( )
( ) ( ) [ )

( )
( ) ( )

( ) ( ) [ ]

≔
⎧
⎨
⎩

∈
=

≔ ∈

≔
−

− + ∈

−
− −

−
− − −

ψ t
ψ t t t t

ψ t
ψ t ψ t t t t

ψ t
ψ t ψ t

τ
t t ψ t t t t

for , ,

0 for 0,

for , ,

for ,

N
n n n

N n n n

N
n n

n n n n

1

1 1

1

1 1 1

for all �∈n . Inserting this notation, the discrete energy-variational inequality (26) becomes

  �

� � �

[ [ ⟨ ⟩] ⟨ ⟩ ( )( ( ))]

[ ( ) ⟨ ( ) ⟩ ( ) ( )] ( )[ ( ) ⟨ ( ) ⟩]

∫

∫

− ∂ − − ∂ + +

+ − + − − ≤

∞

∞

U U

U U U U U

ϕ E ϕ ϕ E τC t t

ϕ t A t t ϕ

, Φ , Φ Φ d

Ψ , , , Φ Φ d 0 Φ 0 , 0.

t

N N N N N N
t

N N N N

N n n N N N

0

Ψ

0

0 0

(27)

Step 6: Convergence. Since we have ( )+ ≤UE τ EΨ
N n N N so that − ≤ −E τC En n n

Ψ

1 fulfilling

∣ ∣ ( ) ( )∫∑ ∑− ≤ − + ≤ +
=

−

=

∞

E E E E τ C E C t t2 0 2 d ,

i

k

i i k

i

k

i

1

1 0

1

Ψ

0

Ψ

we obtain that ( )↦t E t
N and ( )↦t E tN are nonnegative and bounded in ([ ))∞BV 0, .

Moreover, by the coercivity of � and the ∞L bound of E
N , we infer from �( ( )) ( )≤U t E t

N N that the
sequence �{ } ∈U

N
N is bounded in �(( ) )∞∞L 0, ; . Thus, we may extract (not-relabeled) subsequences so that

there exist ([ ))∈ ∞E E, BV 0, ; and �(( ) )∈ ∞∞
U L 0, ; so that

�(( ) )

( ) ( ) ([ ))

⇀ ∞

⇀ ∞

∗ ∞

∗
U U L

E E E E

in 0, ; ,

, , in BV 0, ,

N

N N
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where we used the weak* compactness of functions of bounded variation in ([ ))∞BV 0, [3, Proposition 3.13]. We
show next that E

N and EN converge to the same limit, that is, =E E a.e. in ( )∞0, . Due to the estimate
≤ +−E E τCn n n1

Ψ
, we find

∣ ∣ ∣ ∣

(∣ ∣ )

( )

( )

( ) ( )

( ) ( )

∫

∫

∫

∑

∑

∑

∑

⎜ ⎟

− = −

≤ − − +

= − + +

= − +

=
⎛
⎝

−
⎞
⎠

+

≤
⎛

⎝
⎜ +

⎞

⎠
⎟⟶ → ∞

∞

=

∞
−

=

∞
−

=

∞
−

=

∞
−

→∞

∞

∞

E E t τ E E

τ E E τC τC

τ E E τC τC

τ E E τC

τ E E τ C t t

τ E τ C t t N

d

2

0 lim 2 d

0 2 d 0 as ,

N N

n

n n

n

n n n n

n

n n n n

n

n n n

n

n

0
1

1

1

1

Ψ Ψ

1

1

Ψ Ψ

1

1

Ψ

0

Ψ

0

Ψ

where the first equality follows from the definition of E
n and EN , the first inequality is the triangle inequality,

the subsequent equality follows from the fact that the occurring term in the absolute value has a sign, and the
last inequality follows from the nonnegativity of the values En. This allows us to identify = ≕E E E a.e. in
( )∞0, . At the discrete level, it holds that �( ) ( ( ))= UE t t

N N for all [ )∈ ∞t 0, . For any � ([ ))∈ ∞∞
ζ 0,c with

( ) ≥ζ t 0 for all [ )∈ ∞t 0, , we observe that

� �( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))∫ ∫ ∫ ∫= = ≥
∞

→∞

∞

→∞

∞ ∞

U Uζ t E t t ζ t E t t ζ t t t ζ t t td lim d lim d d ,

N

N

N

N

0 0 0 0

where the inequality holds due to the weakly lower semi-continuity of � and Fatou’s lemma. This implies that
�( )≥ UE a.e. in ( )∞0, . Since ϕ and Φ are continuously differentiable on ( )∞0, , we have



 �

[ )

[ )

∂ → ∂ → → ∞ → ∞

∂ → ∂ → ∇ → ∇ ∞ → ∞

ϕ ϕ ϕ ϕ ϕ ϕ N

N

, , pointwise in 0, as ,

Φ Φ, Φ Φ, Φ Φ in pointwise in 0, as .

t

N

t

N N

t

N

t
N N

With these observations, we may pass to the limit in the weak form (27). We note that U
N occurs

linearly in the first line of (27). All other terms are bounded and converge almost everywhere in ( )∞0, .
This implies that

  �

�

[ ⟨ ⟩] ⟨ ⟩ ( )( ( ))

[ ⟨ ⟩] ⟨ ⟩ ( )

∫

∫

− ∂ − − ∂ + +

= − ∂ − − ∂ +

→∞

∞

∞

U U

U U

ϕ E ϕ ϕ E τC t t

ϕ E ϕ ϕ E t

lim , Φ , Φ Φ d

, Φ , Φ Φ d .

N
t

N N N N N N
t

N N N N

t t

0

Ψ

0

The term �( ) ( )∫∞
τ ϕ C t tΦ d

N N

0
Ψ can be bounded by τ times a constant such that it vanishes as →τ 0. Observing

that the second line in (27) is bounded from below due to Hypothesis 3.1, since every lower semi-continuous
function on a bounded set is bounded from below, and that ≥ϕ 0 in [ )∞0, , we may apply Fatou’s lemma and
the weakly-lower semi-continuity of the function from (15) as well as the continuity of� to pass to the limit in
the second line of (27), which yields
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� �

� �

� �

[ ( ) ⟨ ( ) ⟩ ( ) ( )]

[ ( ) ⟨ ( ) ⟩ ( ) ( )]

[ ( ) ⟨ ( ) ⟩ ( ) ( )]

∫

∫

∫

⎡

⎣
⎢ + +

⎤

⎦
⎥

≥ − +

≥ − +

→∞

∞

∞

→∞

U U U

U U U

U U U

ϕ t A t t

ϕ t A t t

ϕ t A t t

liminf Ψ , , , Φ Φ d

liminf Ψ , , , Φ Φ d

Ψ , , , Φ Φ d .

N

N N N N

N

N N N N N N

T

0

0

0

Summarizing, we infer in the limit from (27) that

�

� �

[ ⟨ ⟩] ( )[ ( ) ⟨ ( )⟩]

[⟨ ⟩ ( ) ⟨ ( ) ⟩ ( )[ ( ) ]]

∫

∫

− ∂ − − −

+ ∂ + − + − ≤

∞

∞

U U U

U U U U

ϕ E t ϕ

ϕ t A t E t

, Φ d 0 , Φ 0

, Φ Ψ , , , Φ Φ d 0.

t

t

0

0 0

0

Via Lemma 2.1, we now end up with the energy-variational inequality (16) and with

�[ ( ) ⟨ ( ) ( )⟩] ( ) ⟨ ( )⟩− ≤ −
↘

U U UE t t tlim , Φ , Φ 0 ,

t 0

0 0

after possibly redefining the function on a set of measure zero. Choosing ≡Φ 0, we find �( ) ( )+ ≤ UE 0 0 so that
�( ) ( )= UE 0 0 . Multiplying the aforementioned relation by >α 0 and choosing = −αΦ Φ̃

1 for �∈Φ̃ , we find
⟨ ( ) ⟩ ⟨ ⟩≤↘ U Utlim , Φ̃ , Φ̃t 0 0 and the same for Φ̃ replaced by −Φ̃. That implies ⟨ ( ) ⟩+ − =U U0 , Φ 00 for all �∈Φ .

From Lemma 2.2, we infer that ( )+ =U U0 0 in �. This concludes the proof of Thm. 3.3. □

Proof of Proposition 3.6. Adding and subtracting the term �⟨ ( ) ( )( )⟩∂ + −U U U U UA t D˜ , ˜ , ˜ ˜
t

2 from (16), with
�( )= UDΦ ˜ , we find

� � �

� �

� � �

[ ⟨ ( )⟩] [⟨ ( )⟩ ⟨ ( )( )⟩]

[ ( ) ⟨ ( ) ( )⟩ ⟨ ( ) ( )( )⟩]

⟨ ( ) ( )( )⟩ ( )[ ( ) ]

∫

∫

∫

≥ − + ∂ − ∂ −

+ − − −

+ ∂ + − + −

U U U U U U U U

U U U U U U U

U U U U U U

E D D D τ

τ A τ D A τ D τ

A τ D E τ

0 , ˜ , ˜ ˜ , ˜ ˜ d

Ψ , , , ˜ , , ˜ ˜ d

˜ , , ˜ ˜ Φ d .

s

t

s

t

t t

s

t

s

t

t

2

2

2

(28)

From the main theorem of differential and integral calculus, we observe

� �

� � �

[⟨ ( )⟩ ⟨ ( )( )⟩]

⟨ ( ) ⟩ [ ( ) ⟨ ( ) ⟩]

∫

∫ ∫

∂ − ∂ −

= ∂ = − ∂ −

U U U U U U

U U U U U U

D D τ

D τ D τ

, ˜ ˜ , ˜ ˜ d

˜ , ˜ ˜ d ˜ ˜ , ˜ d .

s

t

t t

s

t

t

s

t

t

2

2

(29)

From (14), we find �⟨ ( ) ( )⟩ ( )=U U UA t D t, ˜ , ˜ Ψ , ˜ for all �∈Ũ . Taking the derivative of relation (14), we infer

� �⟨ ( ) ⟩ ⟨ ( ) ( ) ⟩ ⟨ ( ) ( )⟩= +U U U U UD t ξ A t D ξ DA t ξ DΨ , ˜ , , ˜ , ˜ , ˜ , ˜ .
2 (30)

By inserting (29) and the aforementioned two relations into (28), we conclude
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�

� � � �

�

( ∣ ) [ ( ) ( ) ⟨ ( ) ⟩]

[⟨ ( ) ( ) ( )( ) ( )⟩ ( ( ))[ ( ) ]]

⟨ ( ) ( )( )⟩

∫

∫

∫

≥ + − − −

− − − − + −

+ ∂ + −

U U U U U U U

U U U U U U U U

U U U U U

E τ τ D τ τ

A τ A τ DA τ D D E τ

A τ D τ

0 , ˜ Ψ , Ψ , ˜ Ψ , ˜ , ˜ d

, , ˜ , ˜ ˜ , ˜ ˜ d

˜ , , ˜ ˜ d ,

s

t

s

t

s

t

s

t

t
2

(31)

which implies the assertion. □

4 Overview of viscoelastic models

In this section, we introduce a brief presentation of different incompressible viscoelastic models available in
the literature. Our aim is to apply the abstract theoretical framework introduced in Section 3 to prove the
existence of energy-variational solutions of viscoelastic models, without the need to introduce, as typically
done in the literature, diffusive regularizations in the transport equations for the kinematic variables to obtain
the existence of weak solutions. Throughout the discussion, we will indicate the model variants which con-
stitutively satisfy the assumptions introduced in Section 3, and thus which are fitted by the general theoretical
framework, while we will highlight the limits which forbid its application to some other model variants.

The starting point for the derivation of viscoelastic models is the definition of a kinematic variable
� �[ )× ∞ → ×

: Ω 0,
d d, which is a mapping for infinitesimal deformations between the initial and the current

configurations of a viscoelastic body. In Eulerian coordinates, given the velocity field �[ )× ∞ →v : Ω 0,
d, the

kinematic variable � satisfies an hyperbolic equation of type

� �( )= ∇vD h , ,t (32)

where � � �≔ ∂ + ⋅∇vDt t is the material derivative in the Eulerian coordinates and � � �× →× × ×h :
d d d d d d is

a function representing the time variation of the mapping associated with infinitesimal deformations,
depending on both � and ∇v.

The model equations can be derived from the principle of virtual powers, which gives the conservation
equations for the linear and angular momenta expressed in terms of the kinematic variable � and of a stress
tensor � , which is the power-conjugated variable to ∇v. The form of the stress tensor is constitutively assigned,
in terms of the kinematic variable and of the velocity field, for the system to satisfy the following mechanical
version of the Clausius-Duhem inequality in isothermal conditions [23, Appendix A]:

( ( ))

( )

∫ ≤
t

e x W R t
d

d

d ,

R t

(33)

where ( ) ⊆R t Ω is an arbitrary part of the material moving with the material, e is the free energy of the system,
which has to be constitutively assigned, and ( ( ))W R t is the rate of working on ( )R t of all the forces exterior
to ( )R t .

Specifically, the principle of virtual powers states that the sum of the virtual power of acceleration
forces plus the virtual power of internal forces expended within ( )R t is equal to the virtual power expended
in ( )R t by material external to ( )R t or by external forces [21,24]. Defining the set of virtual velocities

�
 { [ ) [ )}≔ × ∞ → = ∂ × ∞v v vˆ : Ω 0, , ˆ on Ω 0,
d

d d , where ∂ ⊆ ∂Ω Ωd , the virtual power of acceleration and
internal forces are defined as follows:

�( ( ) ) ( ( ) )

( ) ( )

∫ ∫≔ ⋅ ≔ ∇v v v v vp R t D x p R t x, ˆ ˆ d , , ˆ : ˆ d ,

R t

t

R t

acc int (34)

and the virtual power of external forces is defined as follows:

14  Abramo Agosti et al.



( ( ) )

( ) ( )

∫ ∫≔ ⋅ + ⋅
∂

v f v t vp R t x S, ˆ ˆ d ˆ d ,

R t R t

next

where f is an external field, while tn is a traction on the boundary of ( )R t . Moreover, as a consequence of
frame-indifference, the internal power expended within ( )R t for rigid virtual velocities must be equal to zero.

Then, the principle of virtual powers becomes


( ( ) ) ( ( ) ) ( ( ) ) ( )+ = ∀ ∈ ∀ ⊆v v v vp R t p R t p R t R t, ˆ , ˆ , ˆ , ˆ , Ω,
acc int ext

(35)

which implies, together with the kinematical constraint (32), that the following system of coupled PDEs is
satisfied

�− = =v f vD div , div 0,t (36)

� �( )= ∇vD h , ,t (37)

endowed with the boundary conditions

�[ ) [ )= ∂ × ∞ = ∂ × ∞v v n ton Ω 0, , on Ω 0, ,d d n n (38)

with ∂ ∪ ∂ = ∂Ω Ω Ωd n , ∣ ∣∂ ∩ ∂ =Ω Ω 0d n . We observe that we are considering only Dirichlet and Neumann
boundary conditions for ease of exposition, but also other boundary conditions, like Robin, could be
allowed in the present theoretical framework. Moreover, defining the set of rigid virtual velocities as

� �
 { [ ) }≔ × ∞ → = +v v v xˆ : Ω 0, : ˆ
d

rigid 0 , for any constant �∈v
d

0 and constant � �∈ ×d d
skw

, the fact that
( ( ) ) =vp R t , ˆ 0

int
for any 
∈v̂ rigid , ( )∀ ⊆R t Ω, implies that � �∈ ×d d

sym
. Assuming the energy density of the

system to be of the form

� �( ) ∣ ∣ ( )= +v ve e,

1

2

˜ ,
2 (39)

i.e., given by the sum of the kinetic energy density and of the elastic free energy density ẽ , and observing that
the rate of working on ( )R t of all the forces exterior to ( )R t is equivalent to the actual power of the external
forces, the Clausius-Duhem inequality (33) with inertia takes the form

�( ) ( ( ) ) ( ( ) )

( ) ( )

∫ ∫≤ + +v v v v

t
e x p R t p R t p x

d

d

, d , , div d ,

R t R t

acc int (40)

where p is the Lagrange multiplier for the incompressibility constraint =vdiv 0 and where we used the
principle of virtual powers (35). Applying the Reynolds transport theorem and using (39) and (34), the Clau-
sius-Duhem inequality becomes

�
� �

( ) ( ) ( ) ( ) ( ) ( )

∫ ∫ ∫ ∫ ∫ ∫⋅ +
∂
∂

+ ≤ ⋅ + ∇ +v v v v v v vD x
e

D x e x D x x p xd

˜

: d div d d : d div d ,

R t

t

R t

t

R t R t

t

R t R t

(41)

Specific forms for the stress tensor � are then constitutively assigned for (41) to be satisfied.
Different choices for the kinematic variable �, together with different constitutive assumptions for the

form of the free energy density �( )ẽ , lead to different viscoelastic models. In the following, we list different
variants, associated with different choices of the kinematic variable, which have been considered in the
literature.

Kelvin-Voigt viscoelasticity. A standard approach is to consider as kinematic variable � the deformation
gradient � (i.e., the Jacobian of the deformation map between the initial and the current configuration) (see
e.g. [25]), which satisfies the transport equation:

� �= ∇vD .t (42)

Considering (42) in (41), we obtain that

�
� � ( )

( ) ( ) ( )

∫ ∫ ∫∂
∂

∇ ≤ ∇ + −v v v

e
x x p e x

˜

: d : d div d ,

R t

T

R t R t
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hence a general constitutive assumption for the stress tensor which verifies inequality (40) is

� �
�
� � �( )= ∇ − +

∂
∂

≕ +vμ p
e

2

˜

,
T

elsym visc
(43)

where we renamed ← −p p e, and >μ 0 is the fluid viscosity of the material. Here, � �( )≔ ∇ −vμ pvisc sym is the
viscous contribution to the stress tensor and � �

�
= ∂

∂el

e T
˜ is the elastic contribution.

Another common possibility is to consider as kinematic variable the left Cauchy-Green tensor
� �� �= ∈ ×T d d

sym
, which satisfies, as a consequence of (42), the transport equation:

� � �( )= ∇ + ∇v vD ,t
T (44)

which is a form of the Oldroyd-B equation [43]. Considering (44) in (41), analogously to (43), a general con-
stitutive assumption for the stress tensor in terms of the variable � , which verifies inequality (40) is

�
�
�=

∂
∂

e
2

˜

.el
(45)

We also cite the possibility to describe viscoelasticity through the kinematic variable given by the elastic stress
tensor (45) [38].

Remark 4.1. As reported in [44], given the formula � ��= T , the most general transport equation for the
deformation gradient � , which implies the Oldroyd-B equation (44) is

� �� �= + ∇vD ,t (46)

for any� �∈ ×d d
skw

.

In [44], the following general form of the transport equation for � is considered instead of (42):

� � �( )= ∇ + ∇v vD a b ,t
T (47)

with �∈a b, . This corresponds to nonstandard elasticity where the strain measure � does not necessarily
respond as the Jacobian of the deformation, but it may take into account incompatible components coming
from the molecular theory of viscoelasticity. Frame indifference implies that there exists �∈α such that

= +
a

α 2

4
, = −

b
α 2

4
[27]. Considering (47) in (41), analogously to (43), a general constitutive assumption for the

stress tensor, which verifies inequality (40) is

�
�
�

�
�( )= +

∂
∂

=
∂
∂

a b
e α e˜

2

˜

.el
T T (48)

As a consequence of (47), the left Cauchy-Green tensor � ��= T satisfies the transport equation:

� � � � � � �( ( ) ) (( ) ) (( ) ) (( ) )= ∇ + ∇ + ∇ + ∇ = ∇ + ∇v v v v v vD a b α2 .t
T T

skw sym sym sym (49)

Considering (49) in (41), analogously to (43), a general constitutive assumption for the stress tensor in terms of
the variable � , which verifies inequality (40) is

�
�
�

�
�( )= +

∂
∂

=
∂
∂

a b
e

α
e

2

˜ ˜

.el
(50)

Generalized viscoelasticity with stress relaxation.We now introduce viscoelastic models, which consider the
phenomenon of stress relaxation, which is a process resulting from the collective microscopic dissipative
phenomena in a viscoelastic material modeling living tissues. We refer the interested reader to [38], where a
general framework to describe stress relaxation is obtained by expressing the deformation gradient � as a
multiplicative decomposition in terms of a dissipative component and an elastic component. A first variant of
(47) found in literature (cf., e.g., [44]) is the transport equation:

� � �
�

( )= ∇ + ∇ −
∂
∂

v vD a b
μ

e1

2

˜

,t
T

p

(51)
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where >μ 0
p

is a relaxation constant related to the material viscosity. The latter transport equation is the one
considered in [44], which adds to (47) a dissipative contribution proportional to

�

∂
∂

ẽ . Considering (51) in (41),
analogously to (43), we obtain the general constitutive assumption

�
�
�

�
�( )= +

∂
∂

=
∂
∂

a b
e α e˜

2

˜

.el
T T (52)

Moreover, the dissipative contribution in (51) gives rise to the term

� �
( )

∫≔
∂
∂

∂
∂μ

e e
xΨ̃

1

2

˜

:

˜

d

p
R t

in the inequality (40), where Ψ̃ is the dissipation associated with the elastic deformation. Another variant of
(47) found in the literature is the transport equation:

� � � ��
�

( )= ∇ + ∇ −
∂
∂

v vD a b
μ

e1

2

˜

,t
T

p

T (53)

where the dissipative contribution is proportional to the elastic free energy derivative up to transformation
via the metrics ��T . The latter contribution in the transport equation gives rise to the dissipation term

�
�
�
�

( )

∫≔
∂
∂

∂
∂μ

e e
xΨ̃

1

2

˜

:

˜

d .

p
R t

T T

As a consequence of (51), the left Cauchy-Green tensor � ��= T satisfies the transport equation:

� � � � �
�
�

� �
�
�

( ( ) ) (( ) )

(( ) ) (( ) )

= ∇ + ∇ + ∇ + ∇ −
∂
∂

= ∇ + ∇ −
∂
∂

v v v v

v v

D a b
μ

e

α
μ

e

1 ˜

2

1 ˜

.

t
T T

p

p

skw sym sym sym

(54)

The latter transport equation may be seen as a generalized Oldroyd-B type equation [43]. Considering (54) in
(41), analogously to (43), we obtain the general constitutive assumption for the stress tensor

�
�
�

�
�( )= +

∂
∂

=
∂
∂

a b
e

α
e

2

˜ ˜

,el
(55)

and the dissipation term

� �
�

( )

∫≔
∂
∂

∂
∂μ

e e
xΨ̃

1 ˜

:

˜

d .

p
R t

(56)

The transport equation for the left Cauchy-Green tensor associated with (53) is

� � � � � �
�
�

� � �
�
�

( ( ) ) (( ) )

(( ) ) (( ) )

= ∇ + ∇ + ∇ + ∇ −
∂
∂

= ∇ + ∇ −
∂
∂

v v v v

v v

D a b
μ

e

α
μ

e

1 ˜

2

1 ˜

.

t
T T

p

p

skw sym sym sym

(57)

The latter transport equation may be seen as a generalized Giesekus type equation [22]. The dissipative
contribution in (57) gives rise to the dissipation term

�
�
� �

�
�

( )

∫≔
∂
∂

∂
∂μ

e e
xΨ̃

1 ˜

:

˜

d .

p
R t

T T (58)

We now specify different variants of viscoelastic models, associated with different choices of the kinematic
variable �, giving constitutive assumptions for the form of the free energy density �( )ẽ . The standard elastic
free energy density for Oldroyd-B and Giesekus type models is of the Neo-Hookean form, i.e.,
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� � � �( ) ( ( ))= − −ẽ tr ln . (59)

Collecting (36), (55), (54), and (59), we obtain the following generalized Oldroyd-B model:

�( )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ , 0,t (60a)

� � � � � � 	 � 	( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =v v vα
μ

2

1

, .t

p

skw sym sym sym skw (60b)

Collecting (36), (55), (57), and (59), we instead obtain the following generalized Giesekus model:

�( )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ , 0,t (61a)

� � � � � � 	 � 	( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =v v vα
μ

2

1

, .t

p

skw sym sym sym

2

skw (61b)

We observe that both the models (60) and (61) do not satisfy Hypothesis 3.1 of the abstract theoretical frame-
work, and thus, the existence of energy-variational solutions to these models cannot be inferred from Theorem
3.3. Indeed, the elastic free energy (59) is not superlinear, and thus, the energy functional � does not satisfy the
hypothesis in 3.1. Moreover, as observed in Section 1, the a priori bounds coming from the dissipative
inequality (40) do not imply the integrability of the quadratic terms in (60b). Recently the existence of
weak solutions to the Giesekus model was shown using different mathematical tools [12].

A natural regularization of the energy (59) was introduced in [8] by adding a quadratic term leading to

� � � � � �( ) ( ) ( ( )) ∣ ∣= − − − + −e β
β

˜ 1 tr ln

2

,
2 (62)

with < <β0 1. We note that (62) is superlinear. In [8], a transport equation for � , which takes into account
both Oldroyd-B type and Giesekus-type relaxation processes was considered, leading to the model

� � �( ) (( )( ) ( ))∂ + ⋅∇ + ∇ − − ∇⋅ − − + − = ∇⋅ =v v v v f vp μ α β I βΔ 1 , 0,t
2 (63a)

� � � � � � � � 	 � 	( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − + − = =v v vα δ2 , .t skw sym sym sym

2

skw (63b)

Note that for =δ 0 the transport equation (63b) is of Oldroyd-B type, while for >δ 0 it is of Giesekus type. Note
also that the particular form of the relaxation terms in (63b) breaks the dissipative structure of the system if

≠ −δ
β

β1
, i.e., in this case, the dissipation cannot be interpreted as a multiple of the derivative of the free energy

with respect to � . In [8], stress diffusion is added to the aforementioned model, which breaks the dissipative
structure as well. We disregard stress diffusion here and prove existence of energy-variational solutions to
system (63) in Theorem 5.2.

We conclude this section by observing that a possible way to overcome the impossibility of inscribing the
generalized Oldroyd-B model (60) in our abstract theoretical framework could be to consider its counterpart
expressed in terms of the kinematic variable � , i.e. considering the Neo-Hookean elastic free energy density

� � � �( ) ∣ ∣ ∣ ∣ ( ( ))= − −ẽ log det ,
2 2 2 (64)

which is superlinear. The drawback of this approach is that (64) is not necessarily convex, since the tensor �
is not symmetric, and hence, it does not satisfy Hypothesis 3.1. Indeed, we recall that the function

( ( )) ( ( ))− = −X Xlog det 2 log det
2 is convex on the set � +

×d d
sym,

[10, Section 3.1.5], while it has no convexity proper-
ties on the set�+

×d d. Unlike the kinematic variable� , which is symmetric as a solution of its transport equation
if it is symmetric at the initial time, the transport equations 47, 51, or 53 do not imply that their solutions have
any symmetry. A possible way to proceed is to consider a transport equation for � of the type (46), i.e.,

� �� � �( )= + ∇ + ∇v vD a b ,t
T (65)

choosing the skew tensor� in such a way that

�� � � 	( ( ) )+ ∇ + ∇ =v va b ,
T

skw
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implying that the solution of the transport equation is symmetric if it is symmetric at the initial time. This
approach has been employed in [5]. In the Appendix, we will derive the general form for such a� , giving a
mechanical and geometrical interpretation to it as (minus) the angular velocity for the system (A3), while the
corresponding symmetric solution � is the square root of � and contains information about the stretching in
the system. We observe that, since� � �( )= ∇v, depends linearly on ∇v but non linearly on� , it is difficult to
fit the theoretical framework to the model obtained with this approach, checking that Hypothesis 3.1, in
particular the convexity of the mapping (15), is verified.

An alternative and more practicable way to proceed in this direction is to consider the symmetrized
transport equation of (51), i.e.,

� � � � � � �( ( ) ) (( ) ) ( )= ∇ + ∇ + ∇ + ∇ − − −
v v v vD

a b

μ2 2

1

,t
T T

p

1 (66)

where the solution preserves the symmetry of initial conditions. We observe that (66) corresponds to the
generalization (47) of the transport equation applied to a symmetric tensor � of the form (in components)

� ⎟⎜=
⎛
⎝
∂
∂

+
∂
∂

⎞
⎠

x

X

x

X

1

2

,ij

i

j

j

i

with x X, coordinates of the current and the initial configurations, respectively. This means that the symmetric
mapping � represents pure shear. Note that for pure shear the angular velocity,� 	≡ , and in this case, the
viscoelastic model becomes

�( ) ( )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ , 0,t
2 (67a)

� � � � � � 	 � 	( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =−
v v vα

μ
2

1

, .t

p

skw sym sym sym

1

skw (67b)

The corresponding Oldroyd-B model to (67), which is formally derived from (67) by multiplying (67b) by�
and defining � �= 2, is the model

�( )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ , 0,t (68a)

� � � � �( ) [( ) ] [(( ) ) ]∂ + ⋅∇ − ∇ − ∇v v vα2 4t skw sym sym sym sym
(68b)

� � � � 	 � 	( ) ( ) ( )− ∇ + − = =vα
μ

1

, .

p

sym skw (68c)

We want to remark that the described equivalence of the model is only formal. We can only show the
existence of an energy-variational solution to the system (67) in Theorem 6.2 and not the necessary additional
regularity of this solutions to infer the existence of an energy-variational solution to the system (68). Never-
theless, the solutions of the systems should exhibit similar phenomena.

5 Oldroyd-B model for viscoelastic fluid with regularized energy

In this section, we want to apply the abstract result contained in Theorem 3.3 to system (63) describing viscoelastic
fluids with a regularized energy, which was proposed in [8]. We repeat the system here for convenience,

� � � �( ) (( )( ) ( ))∂ + ⋅∇ + ∇ − − ∇⋅ − − + − = ∇⋅ =v v v v f vp μ α β βΔ 1 , 0,t
2 (69a)

� � � � � � � � 	 � 	( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − + − = =v v vα δ2 , ,t skw sym sym sym

2

skw (69b)

with ( )∈β 0, 1 , � { }∈α \ 0 , and ( )∈ ∞δ μ, 0, . This system is equipped with initial and boundary conditions,

� �( ) ( )= =v v0 , 0 in Ω0 0 (69c)
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[ )= ∂ × ∞v 0 on Ω 0, . (69d)

Remark 5.1. (Boundary conditions) In comparison to the model proposed in [8], we delete the stress diffusion
and chose certain constants to be 1. Moreover, we choose homogeneous Dirichlet boundary conditions for the
velocity field in comparison to the following Navier-slip boundary conditions in [8],

� � � �(( ( ) (( )( ) ( ))) ) [ )⋅ = − = ∇ + − − + − ⋅ ∂ × ∞v n v v nμ α β β0, 2 1 on Ω 0, .τ τsym

2 (70)

The handling of these boundary conditions is somehow standard, and we decided to simplify the model in this
regard for the readers’ convenience. However, the same results hold true with some obvious changes for the
generalized formulation in terms of additional boundary terms and the underlying spaces.

We define the space � to be given by � ( ) ( )≔ ×L LΩ Ωσ
2

sym

2 , and we define the energy �� [ )→ ∞: 0, via

�
� � � � � �

�( )
‖ ‖ ( ) ( ( )) ∣ ∣ ( )

( ) ∫≔

⎧

⎨
⎪

⎩⎪

⎡

⎣
⎢ + − − − + −

⎤

⎦
⎥ ∈

∞

+
v

v β
β

x L
,

1

2

1 tr log

2

d if Ω

else

.L Ω

2

Ω

2

sym,

2

2 (71)

We define the space � to be

� � �( )( ) ( )( )≔ ∩ × ∩∞ ∞ ×
HW L WΩ; Ω; .σ

d d d1,

0,

1 1,3

sym
(72)

Definition 5.1. We call the triple

�( ) (( ) ( )) (( ) ( )) (( ) ( )) ([ ))∈ ∞ ∩ ∞ × ∞ × ∞∞ ∞
+v L HE L L L L, , 0, ; Ω 0, ; Ω 0, ; Ω BV 0,σ σ

2 2

0,

1

sym,

2

an energy-variational solution to (69a)–(69a) with the initial values ( )∈v L Ωσ0

2 and � ( )∈ +L Ω0 sym,

2 , if
��( ) ≤v E, and

�

� � � � �

� � � � � � �

� � � � � � � � �

�� �

[ ( ) ( )] ⟨ ⟩

( ) ( ) ( (( )( ) ( )) )

(( ) ) (( ) ) (( ) ) ( ( ) )

( ) (( )( ) ( ( ))( ) ( ) )

( )( ( ) )

∫

∫

∫

∫

∫

− − − −

+ ∂ + ∂ + ⊗ − ∇ − − − + − ∇

+ ⋅∇ + ∇ + ∇ − − + −

+ ∇ ∇ + − − + + − − + − −

+ − ≤

−

v φ σ f v φ

v φ σ v v v φ

v σ v σ v σ

v v

φ σ v

E τ

μ α β β τ

α δ σ τ

μ β β δ β δβ τ

E τ

, , , d

, , 1 ; d

; 2 ; ; ; d

, 1 1 ; d

, , d 0

s

t

s

t

s

t

t t

s

t

s

t

s

t

2

skw sym

2

1

holds for a.e. ( )> ∈ ∞t s 0, including =s 0 with ( ) =v v0 0 as well as � �( ) =0 0 and all ��( ) ([ ) )∈ ∞φ σ, 0, ;
1 ,

where the regularity weight � is given by

��( ) { }‖( ) ‖ ‖ ‖
( )

‖ ‖
( )

( ) ( ) ( )= ∇ + ∇ +
+

+
+ −

−
−

∞ × ∞φ σ φ σ σα
C

βμ

α

μβ

β δ δβ

β
, 2 max 1,

2

4

2 3

.L L Lsym, Ω;

2

Ω

2

2

Ω

2
d d

3 (73)

The first result regards existence of energy-variational solutions for (69a)–(69b) as well as their weak-
strong uniqueness.

Theorem 5.2. For every ∈v Lσ0

2, � ∈ +L0 sym,

2 with � ( )∈ Lln det Ω0

1 and (( ) ( ) )∈ ∞f HL 0, ; *σ
2

0,

1 , there exists an
energy-variational solution in the sense of Definition 5.1 with ��( ) ( )=v E, 00 0 .
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Let �( )ṽ, ˜ be a weak solution to (69) with

� �

(( ) ( )) ([ ] ( ))

(( ) ( )( )) ([ ] ( ))

∈ ∩
∈ ∩ ∩

∞ ∞

∞ ∞
+

×

v LL T W C T

L T W L C T L

˜ 0, ; Ω 0, ; Ω

˜ 0, ; Ω; 0, ; Ω

σ

d d

1, 1 2

1,3

sym,

1

sym

2
(74)

so that there exists a ( )∈b 0, 1 with � ≥ bdet ˜ for a.e. ( ) ( )∈ ×x t T, Ω 0, as well as � �( ( ) ( )) ( )=v v˜ 0 , ˜ 0 ,0 0 . Then
it holds that

� � ( ) ( )= = ∈ ×v v and for all x t T˜ ˜ , Ω 0, .

Remark 5.2. We also want to stress that the assertions of Corollary 3.4 hold since � given in (71) fulfills the

ρ-uniform convexity assumption with ( ) =ρ x x
1

2

2. This also shows that the initial values are actually attained
in the strong sense.

Proof. To prove Theorem 5.2, we want to apply Theorem 3.3. Therefore, we have to show that Hypothesis 3.1 is
fulfilled.

As mentioned earlier, � ≔ ×L Lσ
2

sym

2 and the energy is given by (71). The dissipation potential
� [ ]→ ∞Ψ : 0, is given via the potential

� � � � � � � � �( ) ∣ ∣ (( ) ( ) ( ( ))( ) ( ) )≔ ∇ + − − + + − − + −−
v vχ μ β β δ β δβ, tr 1 1 ,

2 1 2 2 2

so that

�
� � �

( )
( ) ⟨ ( ) ⟩∫

⎪

⎪

=
⎧
⎨
⎩

− ∈ ∈ ∈

∞

+
−

+
v

v f v v H

t

χ x t L L

Ψ , ,

, d , if and with

else

.

σ

Ω

0,

1

sym,

3 1

sym,

1

(75)

For the lower bound of the dissipation potential, we may choose ( ) ‖ ‖
( )

≔ fC t
HμΨ

1

2

2

*
σ0,

1 . Indeed, via Young’s
inequality, we can estimate

�( ) ‖ ‖ ⟨ ( ) ⟩ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ( )( ) ( )
≥ ∇ − ≥ ∇ − ∇ ≥ ∇ − ≥ −v v f v v v f v ft μ t μ

μ

μ
C tΨ , , ,

2

1

2

.
H HL L L L

2 2 2 2

Ψ* *σ σ

2 2
2

0,

1
2

0,

1

Note that the regularity of (( ) ( ) )∈ ∞f HL 0, ; *σ
2

0,

1 is essential for Ψ to be well-defined and lower semi-
continuous.

To check the next assumptions, we need to calculate the convex conjugate of the energy �. The subdiffer-
ential is single-valued on its domain and is given by

� �
� � � �

�� �( )
( )( ) ( )

∂ → ∂ = ⎛
⎝ − − + −

⎞
⎠−v

v

β β
: 2 ,

1
.1

* (76)

Its inverse gives the subdifferential of the convex conjugate according to Fenchels equivalences, which is
single-valued on � �=* and given by

� �� � ( )
( )

( )∂ → ∂ = ⎛
⎝

⎞
⎠ ∈ +φ σ

φ

B σ
σ φL 0* : * 2 * , when and , else.

T
sym,

2 (77)

Here, we used the definition

� �
�( )

( ) ( ( ) ) ( )
=

− −
+

− −
+

−
B σ

σ σβ

β

β

β

β

β

1 2

2

1 2

4

1

,

2

2

(78)

which comes from the fact that σ solves the matrix equation � � � �( )( ) ( )= − − + −−
σ β β1

1 and as a con-
sequence of the positive definiteness of � , it holds

� � � �( ( ) ) ( )= − − − − −σβ β β0 1 2 1 .
2
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The plus sign in front of the square root in the definition of B reflects the fact that �∂ * should map into the
domain of � . We note that the derivative � ( ) ∈φ σD * , domΨ for all �( ) ∈φ σ, , which follows from the fact
that ∈φ H σ0,

1 and ∈ +σ L
sym,

2 implying that the second component of �∂ * belongs to +L
sym,

2 .
The operator �→A : domΨ * is given by all terms in the equations (69) despite the time derivative, such

that

� � � � �

� �

� � � � �

⟨ ( ) ( )⟩ ⟨ ⟩ ( (( )( ) ( )) )

⟨ ( ) ⟩ ( ) (( ) )

(( ) ) ( ( ) )

= ∇ ∇ − ⊗ − − − + − ∇
− − ⊗ ⋮ ∇ − ∇
− ∇ + − + −

v φ σ v φ v v φ

f φ v σ v σ

v σ σ

A t μ α β β

t

α δ

, , , , , 1 ;

,  , ;

; , .

2

skw

sym

2

(79)

We need to show that (14) is fulfilled for A and Ψ as given above, i.e.,

� �( ( )) ( ( ))
⎛
⎝

⎞
⎠ =φ σ

φ

σ
φ σA t D t D, * , ; Ψ , * , .

To verify this assumption, we insert =v φ and � ( )= B σ in (79). This calculation resembles the usual energy
estimate. Since φ is a solenoidal vector field, the convection term vanishes, ( )⊗ ∇ =φ φ φ; 0. From the identity

�( )( ( ) ) (( ( )) ( )) ( )− − + − − =B σ B σ B σ σB σβ β 01 ,
2

we find that

�

�

(( )( ( ) ) ( ( ) ( )) ) (( ) ( ) )

(( )( ( ) ) ( ( ) ( )) ( ) ( ) )

− − + − ∇ − ∇

= − − + − − ∇ =

B σ B σ B σ φ φ B σ σ

B σ B σ B σ σB σ φ

α β β α

α β β

1 ; ;

1 ; 0.

2

sym

2

sym

Furthermore, we observe by an integration by parts and expressing σ in terms of ( )B σ that

� � � �

�

�

( ( ) ) (( ) ( ) )

(( ) ( ) ( )( ( )) ( ( ) )) (( ) ( ) ( )( ( )) ( ( ) ))

( )( ) ( ( ) ( ( ))) ( )∣ ( ) ∣

(( ) ( )( ( ) ) ( ( ) ( )))

∫

− ⊗ ⋮ ∇ − ∇
= ⋅∇ − − + − − ∇ − − + −

= − ⋅∇ − + ⋅∇ −

− ∇ − − + − =

− −

B σ φ σ φ B σ σ

φ B σ B σ B σ φ B σ B σ B σ

φ B σ B σ φ B σ

φ B σ B σ B σ

β β β β

β
β

x

β β

 , 2 ;

; 1 2 ; 1

1 tr ln

2

d

2 ; 1 0.

skw

1

skw

1

Ω

2

skw

2

The first two terms on the right-hand side vanishes since φ is a solenoidal vector field and the last two terms
since both are a Frobenius product of a skew-symmetric and symmetric matrix. By using all these cancella-
tions, we find for the remaining dissipative terms:

⟨ ( ( )) ( ) ⟩ ( ( )) ⟨ ( ) ⟩ ( ( ))∫= − =φ B σ φ σ φ B σ f φ φ B σA t χ x t t, , , , , d , Ψ , ,
T

Ω

for all �( ) ∈φ σ, . Due to (77), this calculation implies that assumption (14) is fulfilled. The continuity of the
function B in σ implies the continuity of the function �∘ DΨ * in the topology of �. Since χ is a continuous
function in� , the combination of continuous functions is continuous and the boundedness allows us to deduce
continuity of �∘ DΨ * by Lebesgue’s theorem on dominated convergence. We also observe from (71) and (75)
that at their global minimum � ��( ) ( )= =v v, Ψ , 0min min min min with =v 0min and � �=min .

The final condition, we need to verify is (15). Therefore, we observe the following estimates:

� � � �

� �

�

�

� �

( ( ) ) ( ( ) ( ) )

(‖ ‖ ‖ ‖ )‖( ) ‖

‖( ) ‖ { } ( )

( ) ( ) ( )

( )

⊗ − − ∇ = ⊗ − − ∇
≤ + − ∇

≤ ∇

∞ ×

∞ ×

v v φ v v φ

v φ

φ v

αβ αβ

αβ

α

; ;

2 max 1, ,

L L L

L

2 2

sym

Ω

2

Ω

2

sym Ω;

sym Ω;

d d

d d

2 2

and
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� � �

� �

� �

��

( ) (( ) )

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

⊗ ⋮ ∇ = − ⊗ ⋮ ∇

≤ − ∇

≤ ∇ − ∇

≤ ∇ + ∇

v σ v σ

v σ

v σ

v σ v

β
β

μ β
C

βμ

μ C

βμ

 ,  ,

1

2

, ,

L L L

L L L

L L

Ω Ω Ω

Ω Ω Ω

Ω

2

2

Ω

2

6 2 3

2 2 3

2 3

where we used that �( ) ( ( ))⊗ ⋮ ∇ = ∇ =v σ v σ , , tr 0. Furthermore, we obtain, by using the equations
‖( ) ‖ ‖ ‖ ‖( ) ‖( ) ( ) ( )∇ = ∇ = ∇v v v2 2L L Lskw Ω Ω

2

sym Ω
2

2
2 for all ∈v H σ0,

1 , that

� � � �

� �

� �

��

(( ) ( ) ) (( ) ( ) )

( ‖( ) ‖ ‖( ) ‖ )‖ ‖ ‖ ‖

( )‖ ‖ ‖ ‖ ‖ ‖

‖ ‖
( )

‖ ‖ ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

− ∇ − − ∇ −
≤ ∇ + ∇ −

≤ + ∇ −

≤ ∇ +
+

∞

∞

∞

v σ v σ

v v σ

v σ

v σ v

α

α

α

μ α

μβ

2 ; ;

2

1

2

2

2

2

4

, .

L L L L

L L L

L L

skw sym

skw Ω sym Ω Ω Ω

Ω Ω Ω

Ω

2

2

Ω

2

2 2 2

2 2

2

Moreover, we observe that

� � ��(( ) ) ‖( ) ‖ ( )( )− − ≤ − ∞σ σ vδ
δ

β
;

2

, .L
2

Ω (80)

Notice that we always manipulated the appearing terms of� by subtracting the identity to have a good L2 estimate
in terms of the energy. The additional terms only give linear contributions and do not affect the analysis.

These three inequalities imply that the mapping

� � � � �

� � � �

�

�

� �

�

( ) ‖ ‖ ( ( ) ) (( ) )

(( ) ( ) ) (( ) ( ) )

{ }‖( ) ‖ ‖ ‖ ( )

( )
‖ ‖ ‖( ) ‖ ( )

( )

( ) ( )

( ) ( )

⎜ ⎟

⎜ ⎟

↦ ∇ + ⊗ − − ∇ + − ⊗ ⋮ ∇

+ ∇ − + ∇ −

+ ⎛
⎝

∇ + ∇ ⎞
⎠

+ ⎛
⎝

+
+ ⎞

⎠

−

−

∞ ×

∞ ∞

v v v v φ v σ

v σ v σ

φ σ v

σ σ v

μ αβ

α

α
C

βμ

α

μβ

δ

β

, ;  ,

2 ; ;

2 max 1, ,

2

4

2

,

L

L L

L L

Ω

2 2

skw sym

sym, Ω;

2

Ω

2

2

Ω

2

Ω

d d

2

3
(81)

is nonnegative. Moreover, since it is quadratic, it is also a convex mapping. The linearity of the mapping

� � � � �( ) ⟨ ⟩ (( )( ) ) (( ) ) ⟨ ⟩ (( )( ) )↦ − ∇ ∇ + − − ∇ + ∇ − − − − −v v φ φ v σ f v φ σμ α β α δ, , 1 2 ; ; , 1 ;sym (82)

assures its convexity and therewith also its weakly-lower semi-continuity [26].
For the remaining dissipative terms, we find

� � � � � � � � �

� � � �

(( )( ) ( ( ))( ) ( )) ( )

(( ) ( ( )) ( ) ( )( ) )

− − + + − − + − −
= − − − − + − − + + − − +

−

−

β β δ β δβ

β β δ β δβ B β δ δβ B δβ

1 1 :

tr 1 1 1 1 3 3 .

1

1 2 3

Defining the mapping �� [ )→ ∞+
×

: 0,
d d
sym,

via

� � � � � �

� �

�( ) ( ) ( ) ( ( )) ( ) ( ) ( )∣ ∣ ( )

( ) ∣ ∣

≔ − − − − + − − + + − − +

+ + − −

−

−

β β δ d β δβ β δ δβ δβ

β δ δβ

1 tr 1 1 1 3 tr 3 tr

3 ,

1 2 3

2

(83)

we observe that � is convex. Indeed, the constant and linear terms are trivially convex. The condition
� �∈ +

×d d
sym,

assures that the mapping � � �( ( ) )↦ + − −δβ βtr 1
3 1 is convex. For the quadratic term, we

observe that by adding ��( ) ( )+ − − vβ δ δβ3 , , this term becomes nonnegative and thus convex. Combining
(81), (82), and (83), we find that the condition (15) is fulfilled such that Theorem 3.3 can be applied and assures
the existence of a solution in the sense of Definition 5.1.
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Now, we want to prove the second part of Theorem 5.2 concerning the weak-strong uniqueness of solu-
tions. Therefore, we want to apply Proposition 3.6, and we have to assure that Hypothesis 3.5 is fulfilled and
that a strong solution enjoying the regularity (74) fulfills the regularity assumptions of (20).

For this example, we define� = ×H Lσ0,

1

sym

3 and =p 2 such that

( ) (( ) ) (( ) )≔ × ∩ ×∞
H LT L T L L T L0, 0, ; 0, ;σ σ

2

0,

1

sym

3 2

sym

2

and

 �( ) (( ) ( ) ) (( ) ( ) )͠ ≔ × ∩ × ∕
HT L T L L L T L0, 0, ; Ω; 0, ; * .

d
σ

1 2

sym

2 2

0,

1

sym

3 2

First, we observe that � ( ( ))∈ ×∞L T˜ Ω 0, and its positive definiteness � ≥ >bdet ˜ 0 a.e. in ( )× TΩ 0, implies
that also � ( ( ))∈ ×− ∞L TΩ 0,

1 . This implies, by the calculation (76), that for � �( ) (( ) )∈ ∞
v L T˜, ˜ 0, ; , it holds

that � ��( ) (( ) )∂ ∈ ∞
v L T˜, ˜ 0, ; .

Second, we rewrite the operator A via

� � � � � �

� � � �

� � � � � � �

⟨ ( ) ( )⟩ ⟨ ⟩ ( (( )( ) ( )) )

⟨ ⟩ (( ) ) (( ) )

(( ) ) ( ( ) )

∫ ∫

∫

∫

= ∇ ∇ − ⊗ − − − + − ∇

− − ⋅∇ + ∇

− ∇ + − + −

v w v w v v w

f w v v

v

A t t μ α β β t

t

α δ t

, ˜, ˜ , ˜ , ˜ d ˜, ˜ ˜ ˜ 1 ˜ ˜ ˜ ; ˜ d

, ˜ ˜ ˜ ; ˜ 2 ˜ ˜ ; ˜ d

˜ ˜ ; ˜ ˜ ˜ ˜ ; ˜ d ,

T T

T

T

0 0

2

0

skw

0

sym

2

so that we may estimate

� � � �

� �

� � �

‖ ( )‖ ‖ ‖ ‖ ‖ ‖ (( ) ‖ ‖ )‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ( ∣ ∣)‖ ‖ ‖ ‖

( ‖ ‖ )‖ ‖

( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

͠⋅ ≤ + + − + −

+ + + +

+ + −

×∞

∞

∞

v v v

f v v

A μ α β β

α

δ

, ˜, ˜ ˜ ˜ 1 3 ˜ ˜

˜ ˜ 2 ˜ ˜

3 ˜ ˜ .

H

H H

T L L L L T L L

L L L L W L L L

L L L L

0,

2

Ω 0,

*

σ

σ σ

2

0,

1
4 4

2

sym

2

2

0,

1 2 6 2 1,3 2

0,

1 2

2 2

sym

2

Hence, we obtain that � ( ) ( )͠∈vA t T, ˜, ˜ 0, . From the regularity assumption (74), we also infer
� ( ) ( )͠∂ ∈v T, 0,t

T .
Third, we observe that A and Ψ are polynomials in ∇v, v, � , and �−1 and as such Gateaux-differentiable

(c.f. (75)). All appearing terms are well defined for the given regularities such that the conditions
� ( ) ( )͠∈vD TΨ ˜, ˜ 0, and  ��( ) ( ( ) (( ) ))∈UDA T L T˜ 0, ; 0, ; *

1 are fulfilled.
Finally, we calculate the Hessian of the energy,

�
�

� � � �
�( )

( )
⎜ ⎟= ⎛
⎝ − ⊗ + ⊗

⎞
⎠− −vD

β β
˜, ˜

0

0 1
,

2

1 1
(84)

and we need to prove that �  � �( ) ( ( ) ( ))∈vD T T˜, ˜ 0, , 0,
2 . Since in the first entry ��( )vD ˜, ˜2 is the identity, the

property is obvious. Since � ( ( ))∈ ×− ∞L TΩ 0,
1 and ( )T0, do not include any spatial derivative for the second

component, this property also follows in the second variable of ��( )vD ˜, ˜2 . Hence, we proved that the conditions
(20) are fulfilled such that the weak-strong uniqueness result follows from Proposition 3.6 and Corollary 3.7. □

6 Oldroyd-B model for viscoelastic fluid via symmetrized Neo-
Hookean approach

In this section, we want to apply the abstract result of Theorem 3.3 to system (67), which we recall here for the
readers’ convenience
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� �( ) ( )∂ + ⋅∇ + ∇ − − ∇⋅ − = ∇⋅ =v v v v f vp μ αΔ , 0,t
2 (85a)

� � � � � � �( ) [( ) ] [( ) ] ( ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =−
v v vα

μ
2

1

0, 0.t

p

skw sym sym sym

1

skw (85b)

We take the parameters � { } [ )∈ ∈ ∞α μ μ\ 0 , , 0,
p

, and we equip the system with the following initial and
boundary conditions,

� �( ) ( )= =v v0 , 0 in Ω0 0 (85c)

[ )= ∂ × ∞v 0 on Ω 0, . (85d)

We define the space � to be given by � ( ) ( )≔ ×L LΩ Ωσ
2

sym

2 and the energy �� [ )→ ∞: 0, via

�
� � � �

�( )
‖ ‖ ∣ ∣ ∣ ∣ ( ( )) ( )

( ) ∫≔

⎧

⎨
⎪

⎩⎪

⎡

⎣
⎢ + − −

⎤

⎦
⎥ ∈

∞

+
v

v x L
,

1

2

log det d if Ω

else

.L Ω

2

Ω

2 2 2

sym,

2

2 (86)

The space � can be defined as in (72).

Definition 6.1. We call the triple

�( ) (( ) ( )) (( ) ( )) (( ) ( )) ([ ))∈ ∞ ∩ ∞ × ∞ × ∞∞ ∞
+v L HE L L L L, , 0, ; Ω 0, ; Ω 0, ; Ω BV 0,σ σ

2 2

0,

1

sym,

2

an energy-variational solution to (85a)–(85b) with the initial values ( )∈v L Ωσ0

2 and � ( )∈ +L Ω0 sym,

2 , if
��( ) ≤v E, and

� � � �

� � � � � � �

�� �

[ ( ) ( )] ( ) ( ) ( ) ( ) ⟨ ⟩

(( ) ) (( ) ) (( ) ) ( )

( )( ( ) )

∫

∫

∫

− − + ∂ + ∂ + ∇ ∇ − ∇ + ⊗ − − ∇ − −

+ ⋅∇ + ∇ + ∇ + − − −

+ − ≤

− −

v φ σ v φ σ v v φ v v φ f v φ

v σ v σ v σ σ

φ σ v

E μ α τ

α
μ

τ

E τ

, , , , , : , d

, 2 , ,

1

, d

, , d 0

s

t

s

t

t t

s

t

p

s

t

2

skw sym

1 1

holds for all ��( ) ([ ) )∈ ∞φ σ, 0, ;
1 and for a.e. ∞ > > ≥t s 0 including =s 0 with ( ) =v v0 0 and � �( ) =0 0,

where the regularity weight � is given by

�( ) { }‖( ) ‖
( )

‖ ‖ ‖( ) ‖ ‖ ‖( ) ( ) ( ) ( )
= ∇ +

+
+ + ∇−∞ ∞ ∞φ σ φ σ σ σα

α

μ μ

C

μ
, 2 max 1,

2

4

1

.L L

p

L Lsym Ω

2

Ω

2

Ω

2

2

Ω

2
3

Then, we obtain the following.

Theorem 6.2. For every ( )∈v L Ωσ0

2 , � ( )∈ +L Ω0 sym,

2 with � ( )− ∈ Lln det Ω0

1 and right-hand side
(( ) ( ( )) )∈ ∞f HL 0, ; Ω *σ

2

0,

1 , there exists an energy-variational solution in the sense of Definition 6.1 with
��( ) ( )=v E, 00 0 .

Let �( )ṽ, ˜ be a weak solution to (85) with

� �

(( ) ( )) ([ ] ( ))

(( ) ( )( )) ([ ] ( ))

∈ ∩
∈ ∩ ∩

∞ ∞

∞ ∞
+

×

v LL T W C T

L T W L C T L

˜ 0, ; Ω 0, ; Ω

˜ 0, ; Ω; 0, ; Ω

σ

d d

1, 1 2

1,3

sym,

1

sym

2
(87)

so that there exists a ( )∈b 0, 1 with � ≥ bdet ˜ for a.e. ( ) ( )∈ ×x t T, Ω 0, as well as � �( ( ) ( )) ( )=v v˜ 0 , ˜ 0 ,0 0 . Then
it holds that

� � ( ) ( )= = ∈ ×v v x t T˜ and ˜ for all , Ω 0, .
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Proof. To prove Theorem 6.2, we want to apply Theorem 3.3. Therefore, we have to show that Hypothesis 3.1 is
fulfilled. As mentioned earlier, letting � ( ) ( )≔ ×L LΩ Ωσ

2

sym

2 and the energy be given by (86). The dissipation
potential � [ ]→ ∞Ψ : 0, is given by

�
� � �

( )
∣ ∣ ⟨ ( ) ⟩ ∣ ∣ ( )∫⎪

⎪
=

⎧
⎨
⎩

∇ − + − ∈ ∈

∞

−
+

v

v f v v H

t
μ t

μ
x L

Ψ , ,

,

1

d if , Ω

else

p

σ

Ω

2 1 2

0,

1

sym,

2

(88)

on its domain. In a standard way, we may choose ( ) ‖ ‖
( )

≔ fC t
HμΨ

1

2

2

*
σ0,

1 and estimate via Young’s inequality that
�( ) ( )≥ −t v C tΨ , , Ψ as in the previous example. To check the next assumptions, we need to calculate the convex

conjugate of the energy � . The subdifferential is single valued on its domain and is given by

� �
� �

�� �( )∂ → ∂ = ⎛
⎝ −

⎞
⎠−v

v

: 2 , .
1

* (89)

Its inverse gives the subdifferential of the convex conjugate according to Fenchels equivalences, which is
single-valued on � �=* and given by

� �� � ( )
( )

( )∂ → ∂ = ⎛
⎝

⎞
⎠ ∈ +φ σ

φ

F σ
σ φL 0* : * 2 * , when  and ,  else.

T
sym,

2 (90)

Here, we used the definition �( ) = + +F σ
σ σ

2 4

2

, which comes from the fact that σ solves the matrix equation
� �= − −

σ
1, and as a consequence of the positive definiteness of � , it holds � � �= − −σ0

2 . The plus sign in
front of the square root in the definition of F reflects the fact that �∂ * should map into the domain of �. We
note that the derivative � ( ) ∈φ σD * , domΨ for all �( ) ∈φ σ, , which follows from the fact that ∈φ H σ0,

1 and
∈ +σ L

sym,

2 implying that the second component of �∂ * belongs to ( )+L Ω
sym,

2 .
The operator �→A : domΨ * is given by all terms in the equations (85) despite the time derivative, so that

� �

� � � � �

⟨ ( ) ( ) ⟩ ⟨ ⟩ ( ) ⟨ ⟩

( ) (( ) ) (( ) ) ( )

= ∇ ∇ − ⊗ − ∇ −

− ⊗ ⋮ ∇ − ∇ − ∇ + − −

v φ σ v φ v v φ f φ

v σ v σ v σ σ

A μ α

α
μ

, , , , ; ,

 , 2 ; ;

1

, .

T

p

2

skw sym

1
(91)

We need to verify that (14) is fulfilled for A and Ψ as given above, i.e.,

� �( ( )) ( ( ))
⎛
⎝

⎞
⎠ =φ σ

φ

σ
φ σA t D t D, * , ; Ψ , * , .

To verify this assumption, we insert =v φ and � ( )= F σ in (91). This calculation resembles the usual energy
estimate. Since, φ is a solenoidal vector field, the convection term vanishes, ( )⊗ ∇ =φ φ φ; 0. From the identity

( ) ( )− =F σ σF σ I2 , we find that

�( ( ) ) (( ) ( ) ) ( ( ) ( ) ( ) ) ( )∇ − ∇ = − ∇ = ∇ =F σ φ φ F σ σ F σ σF σ φ φα α α α; ; ; ; 0.
2

sym

2

sym

Furthermore, we observe by an integration by parts and expressing σ in terms of ( )F σ that

� �

�

( ( ) ) (( ) ( ) )

(( ) ( ) ( ) ( ( )) ) (( ) ( ) ( ) ( ( )) )

( ) ( ) ( ( )) ( ) ( ( ) )∫

− ⊗ ⋮ ∇ − ∇
= ⋅∇ − − ∇ −

= ⋅∇ ⎛
⎝ − ⎞

⎠ − ∇ − =

− −

F σ φ σ φ F σ σ

φ F σ σ F σ φ F σ σ F σ

φ F σ F σ φ F σ x

 , ;

; ;

tr

1

2

ln : d 0.

skw

1

skw

1

Ω

2

skw

2

The first term vanishes since φ is a solenoidal vector field and the second one since �( ) −F σ
2 is symmetric. By

using all these cancellations, we find for the remaing dissipative terms the following equality

⟨ ( ( )) ( ) ⟩ ‖ ‖ ⟨ ( ) ⟩ ‖ ‖ ( ( ))
( ) ( )

= ∇ − + =φ F σ φ σ φ f φ σ φ F σA t μ t
μ

, , , , ,

1

Ψ , ,
T

L
p

LΩ

2

Ω

2
2 2

holding true for all �( ) ∈φ σ, . Due to (90), this calculation implies that assumption (14) is fulfilled and also
that the mapping �� ( ) ( ( ))∘ =φ σ φ σDΨ * , Ψ , given earlier is continuous on�. We also observe from (86) and
(88) that at their global minimum � ��( ) ( )= =v v, Ψ , 0min min min min with =v 0min and � �=min .
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The final condition, we need to verify is (15). Therefore, we observe the estimates

� �

�

�

�

� �

( ) ( ( ) )

(‖ ‖ ‖ ‖ )‖( ) ‖

‖( ) ‖ { } ( )

( ) ( ) ( )

( )

⊗ − ∇ = ⊗ − ∇
≤ + ∇

≤ ∇

∞ ×

∞ ×

v v φ v v φ

v φ

φ v

α α

α

α

; ;

2 max 1, ,

L L L

L

2 2

sym

Ω

2

Ω

2

sym Ω;

sym Ω;

d d

d d

2 2
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� �

�

��

( ) ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

⊗ ⋮ ∇ ≤ ∇
≤ ∇ ∇

≤ ∇ + ∇

v σ v σ

v σ

v σ v

C

μ C

μ

 ,

2

, .

L L L

L L L

L L

Ω Ω Ω

Ω Ω Ω

Ω

2

2

Ω

2

6 2 3

2 2 3

2 3

Furthermore, we obtain from the fact that ‖( ) ‖ ‖ ‖ ‖( ) ‖( ) ( ) ( )∇ = ∇ = ∇v v v2 2L L Lskw Ω Ω

2

sym Ω
2

2
2 for all ∈v H σ0,

1

� �

�

�

��

(( ) ) (( ) )

( ‖( ) ‖ ‖( ) ‖ )‖ ‖ ‖ ‖

( )‖ ‖ ‖ ‖ ‖ ‖

‖ ‖
( )

‖ ‖ ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

− ∇ − ∇
≤ ∇ + ∇

≤ + ∇

≤ ∇ +
+

∞

∞

∞

v σ v σ

v v σ

v σ

v σ v

α

α

α

μ α

μ

2 ; ;

2

1

2

2

2

2

4

, .

L L L L

L L L

L L

skw sym

skw Ω sym Ω Ω Ω

Ω Ω Ω

Ω

2

2

Ω

2

2 2 2

2 2

2

These three inequalities imply that the mapping

� � � � �

�� �

( ) ‖ ‖ ( ) ( ) (( ) ) (( ) )

{ }‖( ) ‖ ‖ ‖
( )

‖ ‖ ( )

( )

( ) ( ) ( )
⎜ ⎟

↦ ∇ + ⊗ − ∇ + ⊗ ⋅⋅ ∇ + ∇ + ∇

+ ⎛
⎝

∇ + ∇ +
+ ⎞

⎠
∞ × ∞

v v v v φ v σ v σ v σ

φ σ σ v

μ α α

α
C

μ

α

μ

, ;   , ; ;

2 max 1,

2

4

,

L

L L L

Ω

2 2

skw sym

sym Ω;

2

Ω

2

2

Ω

2
d d

2

3

is nonnegative. Since it is quadratic, it is also a convex mapping. The linearity of the mapping,

� �( ) ⟨ ⟩ ⟨ ⟩ ( )↦ − ∇ ∇ − − −v v φ f v φ σμ
μ

, , ,

1

,

p

assures its convexity and therewith, weakly-lower semi-continuity [26].
For the dissipative term depending on the stress tensor � , we find

� � � �‖ ‖ ‖ ‖ ‖ ‖
( ) ( ) ( )

− = + −− − d2 .
L L L

1

Ω

2

Ω

2 1

Ω

2
2 2 2 (92)

The first term is obviously quadratic and convex and the constant term, does not change this. Finally, we
consider the mapping � �� →+

×
:

d d
sym,

given via

� � � �� (( ) ) ( ) (( ) ) ( )↦ + −− −
−: tr tr Φ tr Φ ln det .

1 2 1 2

The first derivative in direction � �∈ +
×d d

sym,
is given by

� � � � �� � �� � � �� � ��⟨ ( ) ⟩ ( ) ( ) ( ) (( ) ) ( )= − − − −− − − − − − − −
−

−D , tr tr tr Φ tr Φ tr .
1 1 1 1 1 1 1 1 2 1

Calculating the second derivative, in the directions � and � �∈ +
×d d

sym,
, we find

� � � � �� � �� � � �� �� � � �� ��

� �� �� � � �� �� � � �� � ��

� �� �� � �� �� �� �� �� ��

�⟨ ( ) ( )⟩ ( )

( )

( ( )) (( ) ) ( )

= + +
+ + +
+ + + +

− − − − − − − − − − − −

− − − − − − − − − − − −

− − − − − −
−

− − − −

D , , tr

tr

tr Φ tr Φ tr ,

2 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 1 1 1 1

so that

Energy-variational solutions for viscoelastic fluid models  27



� � � � �� � � �� � �� �

� �� ��

� �� � � �� � �� �

� �� ��

� �� � � �� � �� �

�⟨ ( ) ( )⟩ (( ) ( ) ( ) )

( ( ( ) )) (( ) ) (( ) )

(( ) ( ) ( ) )

(( ) ) ( ( ) ) (( ) ) (( ) )

(( ) ( ) ( ) )

= + +
+ +

≥ + +
− +

≥ + + >

− − − − − − − −

− −
−

−

− − − − − − − −

−
− −

−
−

− − − − − − − −

D , , 2tr

2tr Φ 2tr Φ tr

2tr

2tr Φ tr 2tr Φ tr

2tr 0

2 1 1 2 1 1 1 2 1 1 2 1

1 1 2 2 1 2

1 1 2 1 1 1 2 1 1 2 1

1 1 2 2 1 2

1 1 2 1 1 1 2 1 1 2 1

as long as � 	≠ . The first inequality follows from

� �� �� � � � ��(( ) ) ( ( ) ( ) )= ≥+
− − − − ∕

+
− ∕ − ∕ − ∕

tr Φ tr Φ 0
1 1 1 1 2 1 2 1 2 1 2 2 (93)

since the positive semi definite matrix � �( )− ∕
+

− ∕
Φ

1 2 1 2 induces a positive quadratic form. Note that � is a
positive definite matrix such that also their inverse and products remain positive definite. To deduce the
second inequality, we used the trace property �� � �( ) ( ) ( )≤tr tr tr

2 2 , which implies

� � �� � �� � � � �( ) ( ) (( ) ) (( ) ) ( ) ( )= ≤ + ≤ +λ λ λ λtr tr tr tr tr tr
2 2 2 2 2 2 2

for positive definite symmetric matrices � , and � , as well as >λ 0. The inequality

� �� � � �� ��(( ) ) ( ( ) ) ( ( ) ) (( ) ) (( ) )≤ +−
− − − − −

−
−

tr Φ tr tr tr Φ tr
1 1 2 1 1 1 2 2 1 2

follows from by choosing � �= −1, � ��= −1 and (( ) )= −λ tr Φ .
Thus, we have shown that the mapping � is convex, since its second derivative is positive definite. Hence,

(15) is fulfilled and thus, Hypothesis 3.1 is fulfilled, which implies the first assertion concerning the existence.
Now we want to argue that Hypothesis 3.5 is fulfilled as well as the regularity assumption (20), so that we

may apply Proposition 3.6 and Corollary 3.7. In this regard, we choose� ( ) ( )≔ ×H LΩ Ωσ0,

1

sym

2 , =p 2 so that

( ) (( ) ( )( )) (( ) ( )( ))≔ × ∩ ×∞
H LT L T L L T L0, 0, ; Ω 0, ; Ωσ σ

2

0,

1

sym

2 2

sym

2

and

( ) (( ) ( )( )) (( ) (( ) )( ))͠ ≔ × ∩ ×HT L T L L L T L0, 0, ; Ω 0, ; * Ω .σ
1 2

sym

2 2

0,

1

sym

2

Similarly to the previous example, we observe that � ( ( ))∈ × ∞− ∞L˜ Ω 0,
1 because � ≥ >bdet ˜ 0 a.e.

in ( )× TΩ 0, . This implies, by the calculation (89), that, for � �( ) ([ ) )∈ ∞∞
v L˜, ˜ 0, ; , it holds that

� ��( ) (( ) )∈ ∞
vD L T˜, ˜ 0, ; . The validation of the regularity assumption (20) for strong solutions fulfilling (87)

is very similar to the reasoning at the end of Section 5; hence, we will not report this here in detail. Thus, the
second assertion of Theorem 6.2 follows from Proposition 3.6 and Corollary 3.7. □

7 Conclusion and outlook

In the previous sections, we introduced and exemplified a new formulation and solvability concept for non-
linear evolution equations especially suited to treat viscoelastic fluid models. This formulation allows us to
pass to the limit in possible approximations only be means of compactness in weak topologies and thus, does
not require to add stress diffusion in viscoelastic fluid models. We are able to provide existence and weak-
strong uniqueness under proper assumptions, which we show to be reasonable at the hand of two different
examples in the Sections 5 and 6.

To further support our claim that this new approach has the potential to provide an adaptable and
transferable concept, we want to comment on the applicability to other viscoelastic fluid models and possible
directions of future research in this last section.

7.1 Peterlin model

Another viscoelastic fluid model that received a lot of attention in recent years with a quadratic (hence
superlinear) elastic free energy density
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� � � �( ) ( ( ) ( ) ( ( )))= − −ẽ
1

2

tr tr 2tr ln
2 2 (94)

is the so-called viscoelastic Peterlin model for polymeric fluids introduced in [45] (cf. [11]). Collecting (36), (55),
(54), and (94), and assuming, as in [11], that the parameter −

μ
p

1 is a linear function of �tr representing a
generalized relaxation term as a material viscometric function, we obtain the following model:

� �( ) (( ) )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ tr , 0,t (95a)

� � � � � � � � �( ) [( ) ] [( ) ] (( ) ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =v v vα 02 tr tr , 0.t skw sym sym sym skw (95b)

The dissipation term (56) coming from the relaxation processes is in this case

� � � � � � � � �

� � � �

( ) ∣ ∣ ( ) (( ) ) (( ) )

∣ ∣ ( ) ( ) ( ) ( )

∫

∫

≔ ∇ + − −

= ∇ + − +

− −

−

v v

v

μ x

μ x

Ψ , tr tr : tr d

tr 2tr tr tr d .

Ω

2 1 1

Ω

2 4 2 1

The last term in this dissipation potential is not convex as a mapping of � . Defining � � ��( ) ( ) ( )= −
tr tr

1 , we
may calculate the second derivative as follows:

� � � � � �� � � �� � � �� ����⟨ ( ) ( )⟩ ( ) ( ) ( ) ( ) ( ) ( )∂ = − − +− − − − − − −
, , tr tr tr tr 2tr tr .

2 1 1 1 1 1 1 1

This form is not positive for � �= and can not be made positive by adding a multiple of the energy. Indeed,
we may estimate the two terms with the negative sign via

� � � � � �� � � �� ��

�
�

�

� �

��⟨ ( ) ( )⟩ ( ) ( ) ( ) ( )

( )
( )

( )

( ) (( ) )

∂ = − +

≥ −

≥ −

− − − − −

−

−d

, , 2tr tr 2tr tr

2tr

tr

tr

2 tr tr .

2 1 1 1 1 1

2

1

2 1 2

However, from the second derivative of the energy, we obtain the term � � � � ��⟨ ( ) ( )⟩ (( ) )− ∂ = −
ln det , , tr

2 1 2 .
To have any hope to find a multiple of the energy that when added to� makes the sum convex, we would need
to find a >η 0, � � � �( ) ( ) (( ) )≤− −ηtr tr tr

2 1 2 1 2 . But this does not seem to be possible. Mainly, the problem lies in
the nonconvexity of the dissipation potential. Thus, the hypothesis of convexity of the mapping (15) cannot be
shown to be satisfied, and hence, we cannot apply Theorem 3.3 to infer the existence of energy-variational
solutions to system (95).

Collecting (36), (55), (57), and (94), we obtain the following variant of the generalized Peterlin model:

� �( ) (( ) )∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =v v v v f vp μ αΔ tr , 0,t (96a)

� � � � � � � 	 � 	( ) [( ) ] [( ) ] (( ) ) ( )∂ + ⋅∇ − ∇ − ∇ + − = =v v vα
μ

2

1

tr , .t

p

skw sym sym sym

2

skw (96b)

The dissipation term (58) coming from the relaxation processes is in this case

� � � � � � �( ) ∣ ∣ (( ) ) (( ) )∫≔ ∇ + − −v vμ
μ

xΨ ,

1

tr : tr d .

p
Ω

2

With the latter term in the system dissipation the hypothesis of convexity of the mapping (15) is satisfied. We
can also allow more general dissipation functionals as long as the convexity assumption (15) for the associated
mapping is fulfilled.

7.2 Lin-Liu-Zhang model

There are also other viscoelastic fluid models that fit into the proposed model framework. A very simple one

arises, if we combine (43) with the energy � �( ) ∣ ∣=ẽ
1

2

2, this leads to the system considered in [34],
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��

� � � �

( ) ( )

( )

∂ + ⋅∇ + ∇ − − ∇⋅ = ∇⋅ =
∂ + ⋅∇ − ∇ = ∇⋅ =

v v v v f v

v v

p μΔ , 0,

0, 0.

t
T

t

For this system, all assumptions of abstract result in Theorem 3.3 are fulfilled with regularity weight
� ( ) ‖ ‖ (‖ ‖ ‖ ‖ )( ) ( ) ( )= ∇ + ∇ +∞ ∞φ σ φ σ σC, 2 L L L1 Ω

Ω

2

Ω

2
3 , where the test functions are chosen as in the two examples

above. In this context, the normalization condition �∇⋅ = 0 could also be disregarded. But, by the div-curl
lemma, it can be observed that the weakly-lower semi-continuity of the associated functional in the assump-
tion (15) can be already deduced for � ( ) ‖ ‖ ( )= ∇ ∞φ σ φ, 2 L2 Ω . Thus, a future direction to further sharpen our
result is to weaken the convexity assumptions of the associated form in (15) to also sharpen the associated
result for this basic example. Note that for the improved regularity weight �2, it can be shown that the
existence of energy-variational solutions implies the existence of measure-valued solutions as proposed in
[34] in the same way as it is proven for the Ericksen-Leslie system in [32].

Moreover, it would be desirable to also include energies into our framework, which do not necessarily
have superlinear growth, which could allow us to further understand at least the Giesekus model (61) or
variants of it. We note that the superlinearity of the energy is essential to infer that �� =dom * *. In case that �
is only of linear growth, its convex conjugate �* may only be finite on a subset of�*. This especially hinders an
argument as in Step 3 of the proof of Theorem 3.3, where the continuity of the function � �( ) ( ( ))=f α D α* Φ is
shown for all � �∈ ⊂Φ *.

But still it may be possible to show the continuity of the function on a smaller (nonlinear) set, � �⊂ dom *.
This would lead to a set of test functions � that is not linear anymore. But this can still be a reasonable class of
solutions fulfilling existence and weak-strong uniqueness. Indeed, in the proof of the weak-strong uniqueness
result in Proposition 3.6, we have to chose �( )= UDΦ ˜ for the strong solution Ũ . By the Fenchel equivalences
(8) it is clear that � � �( ) ⊂ ⊂yD Ddom * dom * so that it would make sense to restrict the test space to
� �⊂ dom *. We plan to investigate such models in the future.

Thus, we think that this new approach may provides some fruitful new insight into the analysis of
viscoelastic fluid models. The proposed formulation includes a large class of models and incorporates desir-
able properties. Beside the existence and weak-strong uniqueness, we observed that the solutions form a semi
flow (Remark 3.3). It can also be inferred that the set of solutions is weakly-star closed. Therefore, it could be
desirable to select a special solution of the set of solutions as the physically relevant one as proposed in [30] for
incompressible fluid dynamics. We note that this is already the idea of the time-incremental minimization
algorithm proposed in the proof of Theorem 3.3, where the energy is minimized in (23).
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Appendix

This appendix has two parts. First, we give an explicit formula for the matrix � in (65), and Second, we
calculate the abstract relative energy-inequality (19) for the first example (69) explicitly.

A.1 Explicit formula for the matrix�

Let us consider the polar decomposition of the deformation gradient, i.e.,

� ��= ,

valid if � >det 0, where� is a rotation tensor and � is a symmetric and positive definite matrix. We start from
the relation

� � �( )= ∇ + ∇v vD a b ,t
T (A1)

which becomes

� � � � � �� ��( ) ( )= + = ∇ + ∇v vD D D a b .t t t
T (A2)

The latter relation involves d2 equations, the tensor � has ( )−dd 1

2

degrees of freedom, and the tensor � has
( )+dd 1

2

degrees of freedom, so both� and � can be determined by the previous relation. Multiplying (A2) by�T

from the right, and introducing the angular velocity tensor� � �( )≔ Dt
T , we obtain that

� � � ��( ) = +D D .t
T

t (A3)

Also,

� � � � ��( ) = −D D .t
T

t (A4)

By subtracting the latter two equations, we obtain that

�� �� � � � � �[( ) ( ) ] [( ) ( )]+ = ≔ ∇ − ∇ + ∇ − ∇v v v va b .
T T

The latter relation is a well-known tensorial equation of the kind

�� �� �+ = ,

with � �∈ ×
sym

3 3 , � � �∈ ×
,

skw

3 3 (in three space dimension). A solution of the latter equation is of the form [49]

� � � � � � ��( ) ( )( )= − +f g ,
2 2 (A5)

where � �( ) ( )f g, are defined in terms of the linear invariants of � as follows:

� �
� �

� � � � � �

( ) ( )≔
−
−

≔
−

f
I II

I II III
g

I II III
,

1

.

2

Note that (A5) is well defined if � is positive definite. Hence, we have that

� �� � �( )+ − ∇ − ∇ =v v 0D a b ,t
T

with

� � � � � � � � � � � �( ) ( ) ( ) ( )( ( ) ( ) )∇ = ∇ − ∇ + ∇v v v vf g, , , , .
2 2

We note that the latter model is equivalent to the model for � derived in [5], where � is interpreted as the
symmetric square root of the conformation tensor � . In the present case, we have derived more coincise
formulas for the expression of� , with a clearer mechanical and geometrical interpretation, then the ones
reported in [5, Appendix A].
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B Relative energy inequality for the first example

It has been shown in the proof of Theorem 5.2 that the assumptions of Proposition 3.6 are fulfilled such that the
relative energy inequality (19) is fulfilled for the system (69). The same holds for system (85). With the help of
Corollary 3.7, we inferred the weak-strong uniqueness results from Theorems 5.2 and 6.2. Nevertheless, the
calculation of the relative energy inequality (19) remains a nonstandard task, at least for non purely quadratic
energy and dissipation. We exemplify the calculations here for the convenience of the reader.

By the definition of the relative energy in Proposition 3.6, we observe for the system (69)

� � � �
� �

� � � � � � � � �

� � � � � � � � � �

� � � � � � � �

� � �

�

�

( ∣ ) ( ) ( )

( ) ∣ ∣ [∣ ∣ ∣ ∣ ( )( )]

( ) [ ( ( )) ( ( )) ( )( )]

( ) ∣ ∣ ∣ ∣ ( ) ( ( ))

∫

∫

∫ ∫

= − − ∂ ⎛
⎝

−
−

⎞
⎠

= − + − + − − − − − −

+ − − − − − − − − −

= − + − + − + − − −

−

− −

v v v v

v v

v v v

v v v

E E

E
β

x

β x

E x
β

β x

, , ˜, ˜ ˜, ˜ ˜, ˜ ,

˜

˜

,

1

2

˜

2

˜ 2 ˜ ˜ d

1 tr ln tr ˜ ln ˜ ˜ ˜ d

,

1

2

˜ d

2

˜ 1 tr ˜ ln ˜ d .

Ω

2 2 2

Ω

1

Ω

2

Ω

2 1 1

Note that the relative energy is nonnegative, which can be observed for the last term by the fact that � �−
˜

1 is
positive definite. To calculate the relative form� , we insert the definition of the dissipation potential (75) and
the system operator (79), we find
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where B is defined in (78) and � in (73). From the convexity assumption (15), which was shown to hold in the
Proof of Theorem 5.2, we infer that � ��( ∣ ) ≥v v, ˜, ˜ 0 for all solutions �( )v, in the sense of Definition 5.1 and
functions �( )ṽ, ˜ fulfilling (74). To calculate � , we inserted the simplifications

� � � � � � � � � � � � � � �� � ��( ( ) ( ) [( ) ( ) ]( )) ( [ ( ) ])− − − − − + − − = − +− − − − − − − −
tr ˜ ˜ ˜ 2 ˜ ˜ ˜ tr ˜ ˜ 2 ˜1 2 2 1 2 1 1 1 1 1 1

and

� � � � � � � � � � � � � � � � � �( ( ) ( ) [( ) ( )]( )) ([ ]( ) )− − − − − + − − = + − −tr ˜ ˜ ˜ 2 ˜ ˜ ˜ tr 2 ˜ 2 ˜ .
2 2 2 2

The second derivative of the energy was already calculated in (84). Inserting everything into the relative
energy inequality (19) and estimating � from below by zero, we end up with
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This shows that the nonquadratic energy also requires a nonlinear testing of the equations to infer the proper
weak-strong uniqueness result. As in Corollary 3.7, we may infer weak strong uniqueness from the above
inequality, but it can also be interpreted as a continuous dependence result as long as a strong solution exists.
The relative energy inequality is also used in the literature to analyze multiple scales via singular limits [19],
estimate errors of model simplifications [20], and optimal control and numerical approximation [29].
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