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Explainable AI has brought transparency to complex ML black boxes, enabling us, in particular, to identify
which features these models use to make predictions. So far, the question of how to explain predictive
uncertainty, i.e., why a model ‘doubts’, has been scarcely studied. Our investigation reveals that predictive
uncertainty is dominated by second-order effects, involving single features or product interactions between

them. We contribute a new method for explaining predictive uncertainty based on these second-order effects.
Computationally, our method reduces to a simple covariance computation over a collection of first-order
explanations. Our method is generally applicable, allowing for turning common attribution techniques (LRP,
Gradient x Input, etc.) into powerful second-order uncertainty explainers, which we call CovLRP, CovGlI, etc.
The accuracy of the explanations our method produces is demonstrated through systematic quantitative
evaluations, and the overall usefulness of our method is demonstrated through two practical showcases.

1. Introduction

As deep learning methods make decisions in increasingly critical
scenarios, measuring the degree of certainty in a prediction becomes
important to avoid costly mistakes made by Al systems. In the context
of autonomous driving, a model anticipating high uncertainty may
choose a safer route [1] or prompt the human driver to take control in
dangerous situations. When performing reinforcement learning to train
a steering agent, uncertainty estimates can allow the model to reduce
speed in unfamiliar situations to avoid collisions [2]. In the context of
diagnosing diseases (e.g. [3,4]), predictive uncertainty can be used to
identify out-of-distribution tissue images [5] or help indicate in which
cases consultation with an expert clinician is necessary [6]. In the
field of finance, accurate real-time uncertainty predictions of portfolio
valuations are vital in identifying risk-optimal investing strategies [7].

High predictive uncertainty often occurs in the context of complex
machine learning tasks [8], where data scarcity prevents the hetero-
geneity of models in the ensemble from reaching a consensus on what
the actual prediction should be [9]. A consensus is even less likely to
be reached on which features should be the main drivers of the input—
output relationship. However, such information is essential, e.g. when
developing strategies to reduce the uncertainty of the ensemble and
arrive at more confident and accurate models.

To elucidate the source of predictive uncertainty, we require tools
to pinpoint the features contributing to it. Understanding a model’s

prediction in terms of input features has been tackled extensively
within the field of Explainable AI [10,11] with many successes, e.g. in
image classification [12,13]. In contrast, the explanation of predictive
uncertainty has received little attention. So-called ‘model-agnostic’ ex-
planation methods (e.g. [14-16]) are designed to explain potentially
any machine learning function. Yet, the question arises whether these
approaches are suitable to extract faithful explanations of predictive
uncertainty or whether the explanation of uncertainty needs to be
specifically addressed.

In this paper, we contribute new insights to the problem of ex-
plaining uncertainty for the common case where it is estimated as
the variance over an ensemble of predictions. We find that uncertainty
estimates are dominated by second-order effects, with these effects
further categorizable as (1) single-feature quadratic contributions and
(2) joint-feature bilinear contributions. Our investigation shows that
classical explanation techniques do not make such a distinction, leading
them to entangle these effects and perform unfaithfully.

We propose a novel second-order Explainable AI method for un-
certainty prediction that accounts for these second-order effects. Our
method derives from the identification of elementary product structures
in the uncertainty function, based on which the second-order effects
can be efficiently attributed to input features, in particular by disen-
tangling single-feature from joint feature contributions. Our method
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Fig. 1. Illustration of an ensemble model (top left), its prediction and predictive uncertainty (top right), and an illustrative cartoon example of our proposed predictive uncertainty
explanation in terms of features and feature interactions (bottom). Red patches and connecting lines highlight features and feature interactions, adding to predictive uncertainty;
blue connecting lines highlight feature interactions that decrease predictive uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

is applicable to general neural network structures, including highly
nonlinear ones, and integrates with existing explanation frameworks
such as LRP [12], Integrated Gradients [16] and Shapley Values [14].
Our method is shown schematically in Fig. 1 (the way our method
operates is illustrated in more detail in Fig. 2).

Through systematic benchmark experiments, we show that our
method yields substantially more faithful explanations of predictive un-
certainty than a simple and naive application of classical Explainable Al
methods to the uncertainty model. In addition, we demonstrate through
showcase examples (1) how the identification of features contributing
to uncertainty by our method can help to consolidate a dataset and
produce a more accurate ML model as a result and (2) how our method
helps to gain novel insights into a real-world dataset. Demo code and
code to reproduce our main results are available at https://github.com/
florianbley/XAI-2ndOrderUncertainty.

2. Related work

This section reviews the literature related to our work, focusing
on three main categories: the development of methods for identifying
uncertain ML model decisions, approaches to explain the uncertainty
behind model predictions, and Explainable Al techniques that identify
second- or higher-order effects in the decision behavior of general ML
models.

2.1. Estimating uncertainty

Predictive uncertainty can be obtained directly by modeling the
output distribution (e.g. [17,18]). However, this modeling approach
applied in the context of deep neural networks often leads to over-
confident uncertainty estimates [19]. Consequently, many uncertainty
estimation techniques have been proposed to remedy overconfidence
in deep models and produce more accurate assessments.

In [20], the authors established Monte Carlo dropout (MC dropout)
at test time to estimate uncertainty as the variance of model pre-
dictions. Variants of the idea based on dropping blocks of features
have also been proposed [21]. In [22], the authors pursued a similar
approach, this time using stochastic Batch Normalization at test time.
The authors of [23] treated model parameters as Gaussian distributed
and used stochastic weight averaging (SWAG) to estimate the approx-
imate posterior parameters. The authors of [24] employed ensembles
of randomly initialized deep networks to estimate predictive variation.
In [25], the authors consider a regression setting and assume, in addi-
tion to the conditional target distribution, a higher latent distribution
yielding the distribution parameters of the former. They then show
theoretically how training the latent distribution can be regarded as an

evidence-gathering process, which yields for each prediction an amount
of ‘virtual’ evidence from which the authors deduct uncertainty mea-
sures. For classification problems, Deep Prior Networks, as discussed
in [26], estimate the parameters of a latent Dirichlet distribution for
the conditional class probabilities in a similar way to allow for accurate
predictive uncertainty measures.

2.2. Explaining uncertainty

While much research has focused on estimating the predictive un-
certainty of deep models, there has been significantly less exploration
into explaining predictive uncertainty, e.g. in terms of input features.

In [27], the authors performed a gradient-based Sensitivity Anal-
ysis of predictive uncertainty to explain which features contribute to
uncertainty. The authors of [28] theoretically explored the approach
of applying Shapley Values [14] to various uncertainty measures such
as entropy and information gain and tested their approach in co-
variate shift and feature selection applications. In [29], the authors
extended perturbation-based explainers to the entropy measures of pre-
dictive distributions. Specifically, they resampled feature values from
a marginal feature value distribution to measure their effect on the
predictive uncertainty measure. The authors of [30] modified the In-
tegrated Gradients method by using gradient descent to move towards
a low-uncertainty region near the input point, incorporating contextual
information into the reference point. While all of these works propose a
way to score input features according to their relevance, none of them
address second-order effects. In particular, they do not disentangle the
contributions of individual features from those of feature pairs, which
our analysis and experiments show to be essential for high accuracy.

Finally, and in contrast to the above methods based on relevance
scoring, the authors of [31] used counterfactual explanations to ex-
plain predictive uncertainty. Specifically, they trained a generative
model and solved the optimization problem of finding a minimally
altered sample in latent space while maximally reducing model uncer-
tainty. While the authors could demonstrate good human interpretabil-
ity of counterfactuals, their approach necessitates training a generative
model. This adds additional complexity for the practitioner and renders
explanations exposed to potential biases in the generator.

2.3. Higher-order explanations

Various methods have been proposed to extract explanations in
terms of multiple interacting features. The Shapley Taylor Index [32]
extends the Shapley Value approach to highlight the contribution of
feature interactions to a prediction. Likewise, Integrated Hessian [33]
is an extension of Integrated Gradients [16] that enables an explanation
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in terms of feature interactions. The method operates by computing a
double path integral of the predictive model’s Hessian matrix towards
the data point. BiLRP [34] is a second-order method that specifically
addresses the explanation of product-type similarity models of pairs of
data points. Predicted similarities can then be robustly attributed to
pairs of input features associated to each data point. GNN-LRP [35] is
a higher-order explanation method developed for Graph Neural Net-
works, which decomposes the model’s prediction in terms of sequences
of connected edges in the graph.—Our proposed approach differs from
the methods above by specifically targeting the question of explaining
uncertainty. In particular, our method explicitly identifies the second-
order structure of uncertainty predictions, leading to explanations that
are reliable and fast to compute.

3. Proposed method for explaining uncertainty

In this section, we derive our proposed second-order approach to
explaining predictive uncertainty, specifically, attributing predictive
uncertainty to the input features. As a starting point, we assume that
the uncertainty estimate we want to explain is given by the variance
over the predictions of an ensemble of M neural networks:

M
1 -
=37 2 0w’ W

with y, the output of model m, and y the average prediction of the
different models. This formulation is general enough to include any
uncertainty quantification method relying on the variance of model
predictions such as deep ensembles [24], MC dropout [20], MC batch
normalization [22] or SWAG [23]. We observe that the predictive
variance stated in Eq. (1) can be rewritten as a linear combination of
prediction products, i.e.,

s = Z bt = YmYm » 2
m,m’
where b L. I L are the coefficients of the linear

m,m’ m=m'} — 32
combination with Iy the indicator function, and where Zm_m/ is a
nesting of two sums, each sum running over all models in the ensemble.

We now focus on the problem of attributing the predictive variance
52 to the input features. Denote by £(-) the process of attributing what
is given as an argument to the input features, as defined later. The
linearity observed in Eq. (2) lets us reduce the problem of attributing
the variance s? to:

8( Z bm,m’ : ymym’> = 2 bm,m’ : e(ymym’)' (3)

m,m’ m,m’

In other words, the problem of attributing the predictive variance
can be treated as solving simpler subproblems (attributing products of
model outputs) and linearly combining the results.

Previous works, such as [34], have demonstrated that product struc-
tures are mathematically more naturally attributed to pairs of input
features. For example, the product of two linear models is a quadratic
function, and its monomials (products of pairs of features) form a
natural basis for explanation. We denote the process of attributing to
such a basis as £(-;xx") (as opposed to £(-;x) for an attribution to
individual features). Inspired by [34], we propose to attribute a product
of two ML outputs as the outer product of their respective first-order
explanations:

E(YpYr s Xx7) = EQi X) @ EWpys X) “@

We provide some justification for Eq. (4) in Section 4, in particular, we
find that it allows for maintaining useful properties of an explanation,
such as conservation and zero-scores for irrelevant features. As a final
step, combining Egs. (3)-(4), we can finally observe that the overall
explanation becomes the covariance over the first-order explanations
of each ML model in the ensemble:

€(s2; xxT) = Cov,, (€(ym;x)), 5)
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a matrix of size d xd encoding the contribution of each pair of features
to the uncertainty. The proof is given in Supplementary Note A. In
practice, our proposed explanations can be computed in two steps:

1. Compute one classical explanation for the output of each model
in the ensemble, e.g., using LRP [12], resulting in a matrix of
size d x M, call it R.

2. Compute the covariance over these explanations (e.g.
numpy . cov (R, R)), resulting in the desired matrix of size dxd.

Our method is illustrated and contrasted with a classical explanation
workflow in Fig. 2. If we neglect the cost of computing the covariance
matrix from the individual explanations (step 2), our method has M
times the computational cost of a classical explanation of a single model
in the ensemble. The cost of our method is thus also comparable to
that of applying a classical first-order method on the whole ensem-
ble. Hence, our second-order analysis does not cause any significant
computational overhead compared to using a first-order approach.

In the presence of multidimensional targets (e.g. output time series),
predictive uncertainty can be modeled as the sum of the variances of
the individual output dimensions. The explanation then becomes a sum
of covariances, specifically £(X, st xx) = X, E(s3 ; xxT).

Note that our framework allows the user to choose which first-order
explanation technique to use within Eq. (5). We refer to the use of
our method alongside a specific first-order explanation technique by
adding to the latter the prefix ‘Cov’. For example, if one computes
E(y,,; x) using LRP, we refer to the resulting second-order explanation
of uncertainty, i.e., the output of Eq. (5), as ‘CovLRP’. Likewise, if
the underlying attribution technique is Gradient x Input (GI), one gets
‘CovGI'. There is no specific restriction on the choice of underlying
attribution technique, except for the satisfaction of basic conservation
properties (cf. Propositions 1 and 2).

4. Theoretical properties

We show in this section that our second-order method for attribut-
ing predictive uncertainty inherits certain properties of the first-order
explanation method it builds upon.

Proposition 1 (Conservation). If for each member m of the ensem-
ble, the corresponding output y,, is attributed to the input features in a
way that is conservative, ie., if Y, E(y,;x); = y,, then the attribution
of predictive uncertainty s> according to Eq. (5) is also conservative,
ie., Zij S(sz;xxT),-j =s2

One way of proving this is to combine Egs. (3) and (4) and observe
that summing all elements of the resulting matrix expression yields s2.
The detailed proof is given in Supplementary Note B.

Proposition 2 (Preservation of Irrelevance). If all models in the ensemble
are invariant to a given feature i, and if the explanations of each prediction
reflect that invariance by assigning a score of zero, i.e., if V,, : £(y,,;;x); =0,
then it results that £(s%; xxT)jk =0 for all pairs (j, k) where j =i or k = i.
In other words, the feature i neither contributes to uncertainty on its own
nor in interaction with other features.

This property is straightforward to demonstrate from an inspec-
tion of Eq. (4) where features that have been attributed zero by the
first-order explanations preserve their score of zero after the product
operation.

4.1. Reductions for special cases

We now show that our second-order uncertainty explanations
(which we can compute using Eq. (5)) reduce to simple and intuitive
forms for special cases of models and underlying attribution techniques.
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Fig. 2. Left: Classical explanation workflow, commonly used for attributing the output of a neural network model to individual input features (elements of x). Right: Proposed
explanation method for explaining predictive uncertainty. Predictive uncertainty (estimated by the variance over an ensemble’s predictions) is attributed to elements of xx' (a
second-order explanation) by computing a covariance over the explanations associated with each member of the ensemble.

Proposition 3. If each model in the ensemble is a linear homogeneous
function of the input, i.e., if y,, = w! x with w,, the vector of parameters of
model m and if the underlying first-order attribution method consists of the
element-wise product of the weights and the input,’ i.e., £(y,;x) = w,, O x,
then the outcome of our analysis reduces to £(s%; xx") = Cov,,(w,,) © xx".

In other words, Proposition 3 states that for a feature to contribute
to uncertainty on its own, it must be present in the data, and the models
in the ensemble must disagree about the effect of that feature for
the prediction. Likewise, for two distinct features to jointly contribute
to uncertainty, both must be expressed in the data, and the models
should disagree, however, in some correlated manner. Specifically,
some models should respond positively to the two features, and other
models should disagree with the first models by responding negatively
to the two features. Proposition 3 can be demonstrated by the chain
equations: £(s%;xxT) = Cov,,(E(y,,)) = Cov,,(w,, ® x) = Cov,,(w,,) ® xx".

We now give a closed-form expression for a classical gradient-based
method, relating the proposed second-order explanation technique to
the Hessian of the predicted uncertainty.

Proposition 4. If each model in the ensemble is a piecewise linear function
of the input and if the underlying explanation method is Gradient x Input,
then the outcome of our analysis can be interpreted in terms of the Hes-
sian of s* w.r.t. the input features. Specifically, we get £(s*;xx') =
%stz(x)oxxT where V? denotes the Hessian operation, and x is the
feature vector.

A proof is given in Supplementary Note C. This result can be seen
as a generalization of the form of Proposition 3, where the Hessian
operation is a local estimation of the discrepancy between the members
of the ensemble.

5. Summarizing uncertainty explanations

In many applications of Explainable Al, the human interpreter
requires as an explanation a d-dimensional heatmap instead of a high-
dimensional matrix of feature interactions, which may be difficult
to visualize and interpret. To retrieve an explanation over individ-
ual features, we consider two approaches. Let R denote the original
explanation computed via Eq. (5) and its elements given by: R;; =

1 We note that LRP, Integrated Gradients, Gradient x Input or Shapley
values with a zero-valued reference point reduce to this simple attribution
(cf. [11D).

&(s?;xx");; A first approach to summarizing the original explanation
consists of retaining only its diagonal elements, i.e., keeping terms of
the explanation that can be unambiguously attributed to individual
features, and disregarding interactions between features, i.e., r?“’g =R;;.
We refer to it with the suffix ‘diag’ in our experiments. Because diagonal
terms are variance computations, the resulting explanation is strictly
non-negative and thus only sees features as sources of uncertainty
and never as inhibitors of uncertainty. An alternative summarization
technique consists of also including joint contributions and redistribut-
ing them equally to the two associated features, ie., r/™® = R, +
X 9£,( R + 3 R ;). The resulting explanation is also expressible as
the column w1se sum over the original explanation of size d x d. It
can be further interpreted as the covariance between an input feature’s
relevance and the total explained output (i.e. a marginalization over the
input features). In the experiments, we refer to this way of summarizing
the explanation with the suffix ‘marg’.

6. Quantitative evaluation

In the following, we proceed with a quantitative benchmark evalu-
ation of our proposed covariance-based explanation technique against
a number of existing techniques and baselines. We primarily consider
the CovLRP instantiation of our method, which corresponds to injecting
LRP explanations into Eq. (5). We use the generalized LRP-y rule (cf.
Supplementary Note D) and heuristically set its parameter y to 0.2
at each layer in MLP models. In CNN models, due to the increased
depth of the architecture, we chose a smaller y value of 0.1 in the
fully-connected layers and a value of 0.2 in the convolutional layers.
We experiment with the ‘diag’ and ‘marg’ summarization techniques
described in Section 5, and we refer to the resulting methods as
CovLRP-diag and CovLRP-marg, respectively.

6.1. Baselines

We compare our proposed approach with a number of ‘classical’
explanation methods applied directly to the uncertainty function of
interest s?(x). These include Gradient x Input (GI) [36]; Integrated Gra-
dients (IG) [16], which explains any function output by computing a
path integral of the input gradients along a segment connecting the
data point and some reference point (in our experiments, the training
data mean); Shapley Value Sampling (SVS) [14], a perturbation-based
explanation technique readily implemented in Captum AI (https://
captum.ai/); LIME [15,37], a surrogate-based explanation technique,
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AUFC scores of different explanation techniques for deep ensembles built on a selection of datasets. Lower AUFC values indicate better, more faithful explanations. For each dataset,
the best-performing explanation technique is shown in bold, and the second best is shown with an underlining.

Dataset (d) Model CovLRP LRP GI 1G SVS SA[27] LIME std®
diag marg

Bias Correction (21) DeepEns 0.352 0.444 0.411 0.559 0.546 0.513 0.600 0.478 +0.034
California Housing (8) DeepEns 0.344 0.370 0.415 0.430 0.394 0.391 0.480 0.408 +0.029
EPEX-FR (96) DeepEns 0.044 0.052 0.106 0.113 0.099 0.062 0.245 0.093 +0.035
kin8nm (8) DeepEns 0.391 0.388 0.462 0.427 0.405 0.386 0.481 0.382 +0.013
Seoul Bike Sharing (98) DeepEns 0.268 0.294 0.293 0.350 0.338 0.329 0.394 0.382 +0.025
Wine Quality (11) DeepEns 0.482 0.471 0.526 0.517 0.500 0.495 0.594 0.528 +0.026
YearPredictionMSD (90) DeepEns 0.155 0.173 0.184 0.264 0.273 0.195 0.422 0.310 +0.020
Bias Correction MCDropout 0.514 0.517 0.568 0.651 0.530 0.672 0.721 0.940 +0.039
California Housing MCDropout 0.674 0.691 0.728 0.812 0.703 0.787 0.963 0.950 +0.059
EPEX-FR MCDropout 0.085 0.091 0.137 0.146 0.119 0.125 0.292 0.311 +0.018
kin8nm MCDropout 0.483 0.486 0.568 0.586 0.498 0.593 0.634 0.619 +0.058
Seoul Bike Sharing MCDropout 0.520 0.590 0.555 0.640 0.568 0.676 0.727 0.974 +0.057
Wine Quality MCDropout 0.661 0.657 0.713 0.729 0.662 0.767 0.807 0.813 +0.052
YearPredictionMSD MCDropout 0.215 0.258 0.253 0.391 0.273 0.403 0.622 0.560 +0.047
YearPredictionMSD DeepEns-5 0.128 0.148 0.155 0.197 0.212 0.153 0.377 0.274 +0.022
YearPredictionMSD DeepEns-10 0.155 0.173 0.184 0.264 0.273 0.195 0.422 0.310 +0.020
YearPredictionMSD DeepEns-20 0.162 0.183 0.247 0.250 0.267 0.218 0.519 0.336 +0.033
YearPredictionMSD DeepEns-40 0.180 0.179 0.235 0.267 0.277 0.213 0.503 0.325 +0.025
EPEX-FR ConvNet 0.085 0.101 0.210 0.159 0.108 0.087 0.279 0.339 +0.012
Seoul Bike Sharing ConvNet 0.231 0.308 0.422 0.331 0.306 0.321 0.336 0.327 +0.057

2 For conciseness, we report only the maximum standard deviations over the different explanation methods.

and finally, plain LRP [12,38] (i.e., without our proposed covariance-
based formulation). Because LRP relies on a computational graph to
perform attribution, we represent Eq. (1) as an additional layer on top
of the M ensemble neural networks. This additional top layer consists
of the activation function, i.e., a(y,) = (y, — 5> with the mean
treated as constant, followed by linear aggregation. We further include
Sensitivity Analysis (SA), which scores input features according to the
model output’s partial derivatives, and which was specifically proposed
in [27] to explain predictive uncertainty.

6.2. Datasets

We perform our evaluation on multiple regression datasets, which
include the kin8nm dataset,”> as well as five datasets from the UCI
Machine Learning Repository, namely the Bias Correction, California
Housing, Wine Quality, YearPredictionMSD and Seoul Bike Sharing
datasets. For the latter dataset, where the input data to the prediction is
not strictly defined, we treated the prediction as a time series problem
and used a concatenation of past and present data of a given day as the
input representation.

The datasets were processed in a consistent manner: they were
shuffled and split into training and testing sets, with 75% of the data
allocated to training and the remaining 25% reserved for testing.® All
datasets were standardized by subtracting the training data mean and
dividing by the training data standard deviation per feature.

In addition, we considered the EPEX-FR dataset proposed in [39],
which serves as a benchmark for predicting day-ahead electricity prices.
This data, publicly available at the authors’ GitHub repository (https://
github.com/jeslago/epftoolbox), spans from January 2011 to December
2016. The task is to forecast the next 24 day-ahead electricity prices in
France based on the next 24 forecasted values for French electricity
demand and renewable electricity production and the previous 48 h of
day-ahead prices. The data is divided temporally, with data from 2016
reserved for testing and data from 2011 to 2015 used for training, as
recommended in [39]. As with the UCI datasets, EPEX-FR was centered
and standardized.

2 https://www.cs.toronto.edu/delve/data/kin/desc.html.
3 An exception is YearPredictionMSD, which comes with a predefined
training-test split.

6.3. AUFC evaluation metric

Good explanations should be able to identify the subset of fea-
tures that are most relevant to the model output. This quality of an
explanation is often evaluated using pixel-flipping [12,40] (which we
refer to as feature-flipping in the context of our tabular data). The
feature-flipping procedure consists of ranking the input features in
order of relevance according to the explanation. One then iteratively
flips (i.e., removes) features from most to least relevant (i.e., starting
with the most positive scores and terminating with the most negative
ones). As features are being removed one after another, we keep track
of the output of the network (in our case, the uncertainty score s2),
thereby creating a ‘flipping curve’. The faster the curve decreases, the
better the explanation. We summarize this decreasing behavior using
the area under the flipping curve (AUFC). Details of the computation of
AUFC scores are provided in Supplementary Note E. In our experiment,
we report the AUFC averaged over the 100 test examples with the
highest predictive uncertainty.

6.4. Results

We perform our evaluation on a diverse set of datasets and mod-
els, including classical deep ensembles and ensembles derived from
applying Monte-Carlo Dropout [20], a different uncertainty estimator
based on the generation of multiple predicting instances through the
dropout mechanism, and set the dropout rate to 0.1. The ensemble size
is set to 10, but we also experimented with ensemble sizes from 5
to 40. The deep ensemble consists of Multi-Layer Perceptrons (MLP)
with three layers composed of 900, 600, and 300 neurons and ReLU
activations, respectively. We also test deep ensembles of CNN instances
with three convolutional layers of 16, 8, and 4 channels, respectively,
and two fully-connected 100-neuron layers. The CNN ensembles were
trained on the EPEX-FR and Seoul Bike datasets transformed into a
channelized format. The channelized EPEX-FR dataset consists of 3
channels of 48 values, while the channelized Seoul Bike dataset consists
of 9 channels of length 10. All models undergo 100 training epochs.
During each epoch, we evaluate the loss on a 10% validation set held
out from the training data and save the best-performing model for the
final application. Uncertainty is calculated as the variance of model
predictions according to Eq. (1). The AUFC score of each explanation
technique on each dataset-model pair is shown in Table 1.


https://github.com/jeslago/epftoolbox
https://github.com/jeslago/epftoolbox
https://github.com/jeslago/epftoolbox
https://www.cs.toronto.edu/delve/data/kin/desc.html
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We observe that CovLRP systematically achieves the highest expla-
nation accuracy, specifically, CovLRP-diag, which drops feature inter-
action terms. Our approach not only improves over a naive application
of LRP to predictive uncertainty but also over a wide range of diverse
baselines. Furthermore, applying Cov(-)-diag on top of other expla-
nation methods also leads to similar explanation improvements, as
we show in Supplementary Note F. We can further demonstrate the
advantage of Cov(-)-diag over the first-order approach in synthetic
experiments where the produced explanation can be compared to some
ground truth (results in Supplementary Note F).

Overall, the superior performance of our proposed explanations
compared to first-order methods (including computationally more ex-
pensive ones) underscores the benefit of integrating second-order ef-
fects into the explanation procedure. The superiority of the diagonal
(‘diag’) over the marginal (‘marg’) summarization may appear sur-
prising, given that the diagonal does not include all the evidence for
uncertainty. We explain this result by the inherent difficulty of attribut-
ing feature interactions to individual features. These interactions are
inherently more sensitive to changes in feature values and thus only
locally informative. In contrast, single-feature contributions used in the
diagonal summarization constitute a more global (and thereby more
robust) form of explanation. Overall, our results also demonstrate the
benefit of disentangling these two types of second-order contributions,
which are otherwise entangled in the simpler baseline explanations.

7. Use case 1: Identifying underrepresented features in CelebA

High predictive uncertainty commonly arises when a model makes
predictions for data points dissimilar from the observed training data
[9]. Such a covariate shift may be caused by measurement biases
or insufficient and unrepresentative training data collection from the
whole data population.

As a consequence of insufficient training data collection, some input
features may remain underrepresented at training time. When these
features appear at test time, the model is ill-prepared to interpret
their effect on the prediction task. Thus, the model prediction is un-
reliable, and predictive uncertainty is high. In this case, explaining
predictive uncertainty in terms of underrepresented features can enable
the user to precisely diagnose what is missing in the current data and,
subsequently, gather additional training data to improve the model.

This section will demonstrate that our uncertainty explanation is
able to reveal underrepresented high-level features at test time and
how retraining on a consolidated dataset reduces uncertainty attributed
to the originally underrepresented feature. To show this, we consider
a setting of a model suffering from missing features in the training
data. We perform fine-tuning by introducing new data points with the
missing feature, improving model accuracy. We accompany this model
improvement with our Explainable AI method to explain the relevant
features inducing uncertainty of the original model and explain the
reduction of uncertainty after fine-tuning.

In this use case, we consider the CelebA dataset,* which contains
over 200,000 celebrity face images and multiple annotated visual fea-
tures per image. In addition, we consider the CelebA-HQ extension,®
which adds to 30,000 CelebA images detailed segmentation masks for
the visual features. We will use the 30,000 CelebA-HQ images as the
test set. The CelebA dataset allows us to simulate removing a visual
feature at training but not at test time, and the segmentation masks of
CelebA-HQ allow us to aggregate relevance attributed to these visual
features.

We trained two ensembles of five VGG-16 [41] networks on a
male/female classification task. We trained the first ensemble on a sub-
set of the training data, from which we removed all images exhibiting a

4 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.
5 https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebAMask HQ.html.
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particular feature (hats and eyeglasses). To create the second ensemble,
we fine-tuned a copy of the first ensemble using the previously omitted
data. Thus, while the first ensemble has no concept of the omitted
features, the fine-tuned one has. Fine-tuning enhanced test accuracy
from 97.9% to 98.2% when the ‘eyeglasses’ feature was originally
omitted, and from 98% to 98.3% when the hat feature was originally
omitted.

Following training, we consider the subset of 100 CelebA-HQ test
data points of the omitted feature with the greatest uncertainty reduc-
tion after fine-tuning. On this experimental dataset, we may expect that
the ground-truth cause of the original ensemble’s uncertainty lies in the
underrepresented feature. A truthful uncertainty explanation is then
expected to highlight this feature when explaining the uncertainty of
the original ensemble. When comparing uncertainty explanations be-
fore and after fine-tuning, it is expected that fine-tuning would reduce
the relevance of previously underrepresented features. To verify this,
we apply CovLRP-diag,® identifying for each instance the pixel-wise
contributions to predictive uncertainty.

In Fig. 3, we show on the left a T-SNE embedding of the CelebA
dataset, where our experimental dataset (images for which fine-tuning
leads to a maximum reduction in uncertainty) is highlighted in red.
On the right, we display a selection of those input images and their
pixel-wise uncertainty explanations before and after fine-tuning. Pixel-
wise explanations confirm that omitted features (‘eyeglasses’ and ‘hat’)
are a primary source of predictive uncertainty in the original ensemble
and that fine-tuning on the full data significantly reduces these sources
of uncertainty. Our observations are confirmed quantitatively by the
histograms in the middle column, which measure the uncertainty at-
tributed to the different CelebA visual features averaged over the whole
experimental data and highlight that the reduction in uncertainty is
primarily attributable to the ‘eyeglasses’ and ‘hat’ features.

8. Use case 2: Insights into German day-ahead electricity prices

Practitioners of Explainable Al are often motivated by the prospect
of performing data science and extracting new insights from large
datasets that would otherwise be too complex for human investigation.
To uncover interesting features within a dataset, an ML model can
be trained on the data, and Explainable AI techniques can then be
applied to highlight input features that are relevant for predicting an
output [42,43]. In the following, we demonstrate through a practically
relevant use case how Explainable Al’s ability to characterize input—
output relationships can be extended to the case where the output has
the structure of an uncertainty estimator.

We considered the task of predicting German day-ahead electricity
prices on the EPEX-DE dataset as in [39], with a particular interest
in price volatility. We organized the dataset into one target series of
24 future hourly day-ahead prices and three input channels (x|, x5, x3).
These three input channels, representing past prices, renewable energy
production, and electricity demand (i.e., grid load), respectively, were
organized as series of 48 entries. The past price series consists of
the previous 48 hourly prices. The electricity demand and renewable
energy production series each consist of 24 historical values and 24
forecasts for the next day.

We applied deep ensembles to predict price volatility.” We trained
a deep ensemble of 10 convolutional neural networks with three con-
volutional layers, three dense layers, and 24 output neurons. In all
layers, we used the ReLU activation function. We used data from the

% The underlying LRP explanations are computed using the generalized
LRP-y with y = 0.1 in the convolutional layers and y = 0.01 in the dense
layers.

7 While price volatility can, in principle, be learned from price time series
and predicted directly (using, e.g., a classical neural network), such a direct
approach will tend to underestimate volatility on unseen data [19].


https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Fig. 3. Comparison of the uncertainty attribution of the original and the fine-tuned ensemble for two different underrepresented features. In the upper row, the original ensemble
was trained without ‘eyeglass’ images; in the lower row, the original ensemble was trained without ‘hat’ images. Left: T-SNE visualization of the original ensemble’s hidden
activations for the test data points, with the actual class labels colored in green-blue and the experimental set in red. Middle: Share of uncertainty attributed to different visual
features for the original and the fine-tuned ensemble, highlighting the primary role of ‘eyeglass’ and ‘hat’ features in reducing uncertainty. Right: Heatmap explanations of the
original and the fine-tuned ensemble for three images from the experimental data, illustrating on a pixel-wise basis the reduction of ‘hat’ and ‘eyeglass’ features as contributors to
uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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associated with these two features. The figure shows a negative correlation between residual demand and uncertainty and the explanation’s focus on low residual demand periods.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

year 2019 for training and data from the year 2020 for validation. The
neural networks were randomly initialized, and we stopped training
at minimal validation loss. In order to understand price volatility in
terms of input features, we then applied CovLRP to the predicted
uncertainty. We produced LRP explanations using the generalized LRP-
y rule and set y = 0.3 in the convolutional layers and y = 0.1 in the
dense layers. Because LRP-y and its generalized variant always assign
zero relevance to zero-valued features, potentially biasing the result
of the analysis, we performed an affine transformation of the input
data before training, where for each channel x;, we applied the map
x; = (1 =x;,1+x;,2—x;,2 + x;), thereby forcing features to always
have at least one non-zero value after mapping, and thus allowing any
feature value to be attributed relevance.

As a starting point for our investigation into volatility-inducing
features, we analyze the uncertainty explanation associated with three
high-uncertainty days between February 9th and February 11th. During
that period, storm ‘Sabine’ passed over Germany, causing extremely
high wind power generation. Fig. 4 displays the predictive uncertainty
in February 2020, with a focus on the three days of storm, for which we
additionally show the three input channels’ time series, their respective
contribution to uncertainty (CovLRP’s diagonal terms), and the most
significant feature interactions (CovLRP’s off-diagonal terms normal-
ized by the corresponding diagonal terms®). The analysis of relevant
feature interactions is simplified by only considering interactions of
simultaneous feature values and aggregating interactions over six-hour
intervals (e.g., 11 h-17 h, 17 h-23 h, etc.).

We observe that the variable x,; representing past prices contributes
to uncertainty when those prices are negative.’ Furthermore, renewable
production x,, which is constantly high over these three days, tends
to contribute strongly to uncertainty, especially at night. Dips in ex-
pected electricity demand (variable x3) during the night and weekend'®
also contribute to overall uncertainty. Moreover, strong uncertainty-
inducing interactions can be observed around midnight between high
renewable production (x,) and low electricity demand (x3).

The combined effect of high renewable energy production and low
electricity demand on uncertainty is intriguing. It leads us to hypoth-
esize that our method has uncovered the residual demand, defined in
power markets as the difference between electricity demand (x;) and
renewable energy production (x,), as a primary driver of uncertainty.
When the expected residual demand is low and renewable sources

8 Or equivalently, off-diagonal terms of the correlation matrix of LRP
heatmaps.

9 Negative prices are often caused by inflexible fossil energy production and
low demand.

10 February 9th, 2020 was a Sunday.

are at peak production, fossil energy producers are compelled to re-
duce their output. This often results in high down-regulation costs.
Depending on fuel prices, producers may choose to sell electricity below
production cost to avoid these down-regulation costs. This decoupling
between electricity supply and price can result in increased price
volatility.

We then test our hypothesis by analyzing the relationship between
residual demand (x; — x,) and predictive uncertainty over an extended
period consisting of all days of February 2020. Results are shown in
Fig. 5. We observe that predictive uncertainty negatively correlates
to the residual demand. Furthermore, the overall contributions of the
associated features x, and x; to uncertainty are consistently high at
residual demand troughs, suggesting a deeper connection between
residual demand and uncertainty than a mere data correlation.—As
renewable electricity production will undoubtedly increase over the
next years, these results suggest that existing ML models based on
demand and supply data will become insufficient to forecast day-ahead
prices precisely. More generally, this analysis exemplified that the
explainability of model uncertainty can help practitioners anticipate
trends, such as a gradual decline in the predictive performance of ML
models.

9. Conclusion and discussion

Predictive uncertainty, or ‘knowing when the model doesn’t know’,
can be critical for real-world predictive systems. So is the ability to
explain predictive uncertainty to ensure that those uncertainty estimates
are ‘right for the right reasons’.

We have contributed new insights to the problem of explaining
uncertainty in the common and popular case where the latter is com-
puted as the variance over an ensemble of predictions. We highlighted
that the structure of predicted uncertainty is dominated by second-
order effects, including both single-feature quadratic contributions and
joint-feature contributions, a distinction that classical explanation tech-
niques do not make. Putting these insights into algorithms, we have
proposed a novel framework for uncertainty explanation that efficiently
extracts the second-order feature contributions. Our derivation leads
to a general scheme for computing uncertainty explanations, namely a
covariance over an ensemble’s individual classical explanations. Thus,
our method allows to systematically transform classical first-order ex-
planation techniques (LRP, GI, etc.) into more powerful second-order
uncertainty explainers (CovLRP, CovGlI, etc.).

In a quantitative evaluation, we demonstrated the high performance
of our approach, with CovLRP achieving the highest explanation ac-
curacy (as evaluated by a feature-flipping experiment), outperforming
classical LRP as well as a number of other competitive baselines. We
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found that the superiority of CovLRP holds consistently across the
multiple tabular datasets included in our benchmark, as well as for
a variety of uncertainty models (deep ensembles and MC dropout)
and neural network architectures (fully-connected and convolutional).
We attribute the high performance to the ability of our approach to
expose and disentangle the second-order effect, in particular, favoring
single-feature contributions over the less robust interaction terms. Fur-
thermore, our CovLRP approach inherits technical advantages of LRP
such as applicability to general neural network structures, and high
compute efficiency.

We then applied our framework to two practical use cases. Our
first use case demonstrated that the proposed method could reveal
uncertainty caused by covariate shift at test time. By identifying under-
represented features, our method can guide practitioners in collecting
additional training data in a targeted fashion, ultimately improving
model performance. In our second use case, we explored an electricity
price dataset and focused on predictive uncertainty as a model of price
volatility. Our uncertainty explanation revealed the difference between
electricity demand and renewable production to be a key factor of
uncertainty, enabling a scientist to test the viability of existing ML
approaches in the context of a gradual increase in renewable energy
production.

Limitations and future work:. So far, our investigation has been lim-
ited to ensemble-based uncertainty estimators, where uncertainty derives
from the disagreement between ensemble members. Although those
uncertainty estimators are among the most common and popular, our
proposed uncertainty explanation method could be extended in the
future to explain other forms of uncertainty, such as in Mixture Density
Networks [18], or more diverse sets of models such as fuzzy decision
systems [44-46]. An additional limitation of our work is the focus
on variance as a measure of uncertainty, which can cause distortions
in the presence of strong outliers. Incorporating robust statistics into
our explanation framework, disentangling between valid and outlier
predictions, would be an important future work. Finally, while our
investigation has focused on explanations in terms of the input features
(e.g. pixels), further understanding of predictive uncertainty may be
more efficiently achieved in a dedicated latent space representing more
abstract concepts. Such concept-based uncertainty explanations may
be potentially achievable within the framework of virtual inspection
layers [47].
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