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Kurzfassung
In dieser Dissertation werden Fortschritte bei der Beschreibung von Quantenma-
gneten vorgestellt, vor allem durch die Entwicklung einer neuen Methode, der
so genannten pseudo-Majorana functional renormalization group (PMFRG). Die
PMFRG ist in der Lage, stark wechselwirkende Quantenmagnete in schwierigen
Szenarien genau zu beschreiben, in denen die meisten anderen Methoden versagen.

Grundlegend für den Formalismus der PMFRG ist eine Resummation von
Feynman-Diagrammen, die eine direkte Behandlung des Vielkörperproblems im
thermodynamischen Limit von unendlich vielen Teilchen ermöglicht. Während ex-
akte Resummationsschemata unmöglich sind, nutzt die PMFRG den Rahmen der
Renormierungsgruppe, um eine numerische Summation mehrerer Klassen von Dia-
grammen bis zu unendlicher Ordnung durchzuführen. Bemerkenswerte Beispiele
für solche Diagramme stehen im Zusammenhang mit weit verbreiteten Phänomenen
wie der magnetischen Ordnung, aber auch mit exotischeren Quantenspinflüssigkeit-
en, die durch emergente Eichtheorien und Fraktionalisierung beschriebene Phasen
sind. Um diesen Vorteil auszunutzen, werden Spin-Operatoren, für die diagramma-
tische Techniken nur begrenzt verfügbar sind, auf Majorana-Fermionen abgebildet.
Diese Abbildung erweist sich als vorteilhaft im Vergleich zu den üblicherweise ver-
wendeten komplexen Fermionen. Nach der Etablierung des Formalismus wird die
PMFRG auf paradigmatische Probleme im Bereich des frustrierten Magnetismus
bei endlicher Temperatur angewendet. Die mit dem PMFRG erzielten Ergebnisse
erweisen sich als quantitativ genau, typischerweise mit Abweichungen zu exakten
Lösungen von weniger als 10%. Insbesondere ist die PMFRG auch auf allgemei-
nere frustrierter dreidimensionaler Magneten anwendbar, für welche keine exakten
Lösungen existieren und auf welche andere Methoden oft nicht anwendbar sind.

Desweiteren betrachtet diese Arbeit emergente Eichtheorien höheren Ran-
ges mit unbeweglichen Quasiteilchenanregungen, bekannt als Fraktonen. Zunächst
wird die Physik verschiedener Pinch-Point-Merkmale, die mit diesen Eichtheorien
einher gehen, analysiert. Unter Verwendung der PMFRG wird eine Instabilität
dieser Phasen unter Quantenfluktuationen festgestellt. Schließlich wird ein neu-
es Frakton-Modell konstruiert, welches einen analytisch lösbaren Punkt mit ei-
ner Spinflüssigkeit aufweist. Die Stabilität dieser Phase wird durch den Vergleich
von numerisch exakten Quanten-Monte-Carlo-Simulationen und der analytischen
Lösung der emergenten Rang-2-Gittereichtheorie verifiziert, womit es zum ers-
ten Zweikörper-Spinmodell mit einer emergenten Frakton-Quanten-Spinflüssigkeit
wird. In den folgenden Kapiteln werden daher wesentliche Fortschritte in zwei
wichtigen Gebieten der Physik vorgestellt: numerische Lösungen des Quantenviel-
teilchenproblems und die Untersuchung emergenter Eichtheorien in Spinsystemen.
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Abstract
This thesis presents advances in the description of quantum magnets, primarily
through the development of a new method called the pseudo-Majorana functional
renormalization group (PMFRG). The PMFRG is capable of accurately describing
strongly interacting quantum magnets in challenging scenarios where most other
methods fail.

Fundamental to the formalism of the PMFRG is a resummation of Feynman
diagrams, which allows direct treatment of the many-body problem in the ther-
modynamic limit of infinitely many particles. While exact resummation schemes
are impossible, the PMFRG uses the framework of the renormalization group to
perform a numerical summation of several classes of diagrams to infinite order.
Notable examples of such diagrams are associated with common phenomena such
as magnetic order, as well as more exotic quantum spin liquids, which are phases
described by emergent gauge theories and fractionalization. To exploit this advan-
tage, spin operators for which diagrammatic techniques are limited are mapped to
auxiliary Majorana fermions. This mapping proves to be advantageous compared
to the more commonly used complex fermions. After establishing its formalism,
the PMFRG is applied to paradigmatic problems in the field of frustrated mag-
netism at finite temperature. The numerical results obtained with the PMFRG
are shown to be quantitatively accurate, typically providing errors of less than
10% compared to exact solutions. In particular, the PMFRG remains applicable
to more general scenarios of frustrated three-dimensional magnets where exact so-
lutions are unavailable, and where most other methods are infeasible.

In addition, this thesis investigates emergent higher-rank gauge theories with
immobile quasiparticle excitations known as fractons. The physics of several pinch
point features associated with these gauge theories is then analyzed. Using the
PMFRG, it is found that these phases are very fragile under the inclusion of quan-
tum fluctuations. Finally, a new fracton spin model is constructed that exhibits
an exactly soluble point with a spin liquid phase. The stability of this phase is
then verified by numerically exact quantum Monte Carlo simulations of the spin
model compared to the analytical solution of the emergent rank-2 lattice gauge
theory, making it the first two-body spin model with an emergent fracton quantum
spin liquid. The following chapters therefore present substantial progress in two
important areas: numerical solutions of the quantum many-body problem and the
study of emergent gauge theories in spin systems.
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1
Introduction

The overwhelming majority of contemporary condensed matter physics consid-
ers simple systems consisting of elementary particles such as electrons interacting
via standard electromagnetic forces. Although both the particles and the forces
have been well-known for several centuries now, the laws of quantum mechan-
ics allow for an astonishing number of phenomena. Many of these effects occur
at extremely low temperatures, where quantum effects are predominant and the
huge number of electronic degrees of freedom is drastically reduced to a still vast
number of energetically favorable quantum states. Depending on microscopic de-
tails, the physics described by these accessible states can be of drastically different
nature than the original system of interest. Such observations often motivate a
reductionist approach, deriving simpler descriptions in terms of effective models
that can be used to gain a better understanding of the complex behavior of in-
teracting quantum particles. Quantum spin systems encapsulate a broad class
of such problems, describing the interactions between immobile particles with in-
trinsic quantum mechanical angular momenta, commonly referred to as quantum
spins. This simplified description has been immensely productive in identifying
and characterizing new physical phenomena, often establishing spin models as the
initial instructive example when establishing a new, much broader framework of
physics, such as in the case of finite-temperature phase transitions, quantum en-
tanglement, and the more recent field of emergent gauge theories. On the other
hand, the challenges of directly solving a system of interacting quantum spins are
still notoriously difficult, owing to the fact that the Hilbert space dimension grows
exponentially with the number of particles. For instance, solving the Hamiltonian
of just 100 interacting spins - arguably still far away from the physically interesting
thermodynamic limit - requires diagonalizing a 2100 ≈ 1030 dimensional matrix.
Storing only a single eigenvector alone would require about 6 × 1020 terabytes of
memory, easily exceeding the limits of anything that could be built by modern
technology.

The latter, in particular, will be one of the driving forces that motivate the
developments presented within this thesis. Presently, nearly all of the fundamen-
tal theories found in physics are expressed as gauge theories, from the theory of
electrodynamics over the theory of relativity and the standard model. In quantum
magnets with an emergent gauge theory, it is possible to observe physics in an
artificial universe, where different laws of physics apply. In such cases, the spin

13



Chapter 1. Introduction

degrees of freedom may fractionalize, meaning that the flip of a single spin cre-
ates two or more well-defined excitations, which may differ from all fundamental
particles found in nature. These quasiparticles can fully separate, moving indepen-
dently of each other and thus give rise to an entirely new description of physics,
such as a full theory of quantum electromagnetism with a different fine-structure
constant [12] or particles that are neither bosons nor fermions [13]. These prop-
erties, along with their technological prospects offered in the field of quantum
information, make physical systems with emergent gauge theories of immense in-
terest.

While the complexity of quantum many-body physics enables such fascinating
effects, it simultaneously poses severe challenges that need to be overcome in order
to correctly predict the physics of interacting systems. Toy models with the desired
properties are often challenging to realize in experiments due to limitations in the
control of microscopic interactions in real materials. It thus becomes necessary to
devise new methods capable of handling these less perfect scenarios where exact
solutions are unattainable. It can be easily checked that the mean-field descriptions
of spin systems are fundamentally incapable of describing magnetically disordered
states, let alone those with fractionalized particles and emergent gauge theories.
In this context, auxiliary particle representations have become useful, as they
provide a natural way for spins to fractionalize into fermionic or bosonic degrees
of freedom [14]. Of course, solving the original problem of many interacting spins
beyond the mean-field approximation remains severely challenging. This chapter
will serve as a guide for important concepts and methods that will be used in the
following chapters.

1.1. Introduction to quantum magnetism

It was in 1924, precisely one hundred years ago, that Ernst Ising’s first attempt at
explaining the origin of ferromagnetism was made using a simple classical model
which has since become famous under the name Ising model. In this description, a
magnet is thought to consist of a collection of binary microscopic magnets which
are strictly localized on the sites of a lattice. While such discrete microscopic mag-
netic moments, so-called spins, indeed exist as inherent properties of most funda-
mental particles such as electrons, protons, and neutrons they are fundamentally
of quantum mechanical nature. By contrast, in Ising’s original description, they
are treated as classical variables si = ±1 that interact via a phenomenological

14



1.2. Different types of order

coupling Jij such that the total energy of the system is given by

H = 1
2
∑
i,j

siJijsj. (1.1)

While Ising’s original solution in one dimension was unable to find a phase tran-
sition at any finite temperature, follow-up works such as Lars Onsager’s exact
prediction of a finite temperature phase transition in two dimensions have paved
the way for our modern understanding of magnetism [15, 16]. Astonishingly, even
in more modern times, the Ising model remains a topic of interest, for instance in
the study of spin glasses which culminated in the award of the 2021 physics Nobel
prize to Giorgio Parisi [17] and can emerge from Eq. (1.1) by randomizing the
couplings Jij. However, it is easily argued that the description of spins as simple
integers is ill-motivated in the general case and is thus blind to a vast number of
exciting phases and phenomena. To treat spins faithfully in their full quantum
mechanical nature, one must instead consider spin operators Sα = ℏ

2σ
α, where ℏ is

the reduced Planck constant and. For spin-1/2, spin operators can be represented
by the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.2)

In the following, we shall thus consider a generalization of Eq. (1.1), for which we
may define a Hamiltonian as

H = 1
2
∑
i,j

∑
αβ

Sα
i J

αβ
ij S

β
j . (1.3)

Note that the Ising limit is recovered for Jαβ
ij = Jijδ

αzδβz. In this case, the Hamil-
tonian only contains σz terms which mutually commute and can be replaced by
their eigenvalues ±1. Usually, the limit of classical spins, represented as vectors, is
recovered in the limit of large spin quantum numbers S[18, 19]. Another notable
limit is the isotropic Heisenberg model Jαβ

ij = Jijδ
αβ, which itself can be seen as

a special case of the Hubbard model at half filling [20]. In the following chapters,
a system of natural units will be considered where ℏ = kB = 1, where kB is the
Boltzmann constant.

1.2. Different types of order

Equation (1.3) encapsulates a vast spectrum of observable phenomena, ranging
from simple paramagnets to thermal or quantum phase transitions into mag-
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Chapter 1. Introduction

-

Figure 1.1.: Magnetic phases of quantum spin systems. Partially adapted from
Ref. [29].

netically ordered phases, peculiar effects such as order-by-disorder phase tran-
sitions [21, 22] or magnetically disordered low-temperature phases [23–28]. These
spin systems can also exhibit more rare quantum phases of matter such as valence
bond solids, which instead break translational or rotational symmetries [8, 27] or
even highly exotic quantum spin liquid phases which do not break any conventional
order at all, see Fig. 1.1. Ordered phases are typically well understood in the Lan-
dau paradigm, i.e., by defining a local order parameter ⟨O⟩ which is nonzero only
in the ordered phase. By contrast, any local order parameter has to vanish for a
quantum spin liquid. To distinguish such an exotic state from a trivial paramagnet
(which likewise does not break any symmetry of the Hamiltonian) the framework
of Landau theory becomes obsolete and must be replaced by a more sophisticated
description using gauge theories which are to be introduced later in Section 1.4.
Nonetheless, the concepts of conventional order prove quintessential in the study
of magnetic phases of Eq. (1.3) and will be briefly reviewed here. As an example,
let us first consider the case of magnetic order in which spins align in a regular
pattern. The most prominent case of this is, of course, ferromagnets, where spins
are all aligned along one direction allowing us to define a magnetization

Mα = 1
Nsites

Nsites∑
i

⟨Sα
i ⟩. (1.4)

It should be clear that this quantity can be used to distinguish between a ferro-
magnetic state, which has a finite value of M , and a paramagnetic phase, which has

16



1.2. Different types of order

M = 0 if one does not apply an external magnetic field. Note that in the case of an-
tiferromagnetic order, i.e., an anti-alignment of spins on neighboring sites, Eq. (1.4)
needs to be replaced by a staggered magnetization Mα

s = 1
Nsites

∑Nsites
i (−1)i⟨Sα

i ⟩.
There is, however, a subtlety: It is evident from Eq. (1.3) that states with Mα

have the same energy as states with a magnetization of −Mα. Even an exact
solution of Eq. (1.3) will thus never predict a finite magnetization upon averaging
over degenerate ground states. While nature provides perturbations that are able
to lift this degeneracy and allow for a spontaneous breaking of symmetry, in a the-
oretical calculation such a perturbation has to be introduced by hand, for instance
by a magnetic field h that is to be taken to zero at the end of the calculation.
We can then quantify a system’s tendency to form magnetic order by defining the
so-called magnetic susceptibility

χαβ ≡ ∂Mα

∂hβ

∣∣∣∣∣∣
h=0

. (1.5)

A system that exhibits ferromagnetic order will have a diverging susceptibility in
the thermodynamic limit, as any infinitesimal change in the magnetic field will
yield a drastic response of the magnetization, making the magnetic susceptibility
a powerful tool to study phase transitions. Moreover, by making use of linear
response theory, one can show that the susceptibility can also be computed from
a spin-spin correlation function. Generalizing Eq. (1.5), this may be written as

δMα(t) =
∑

β

∑
ij

∫ ∞

−∞
dt′χαβ

ij (t, t′)hβ(t′)

χαβ
ij (t, t′) = iθ(t− t′)

〈[
Sα

i (t), Sβ
j (t′)

]〉
. (1.6)

where δMα is the response in magnetization, θ the Heaviside step-function [A,B] =
AB−BA the commutator of two operators A and B, and Sα

i (t) the time-dependent
spin operator in the Heisenberg picture. The average ⟨O⟩ of an operator O at
temperature T is performed as usual as 1

Z Tr
[
e−H/T O

]
, where Z = Tr

[
e−H/T

]
is

the partition function. Note that energy conservation implies that χαβ
ij (t, t′) is a

function of t − t′ only, so that we may consider χαβ
ij (t) ≡ χαβ

ij (t, 0) without loss of
generality.

Instead of considering the correlations between all sites i, j, for translation-
invariant systems, it is more convenient to consider the Fourier transform of the
susceptibility

χ(q, t) = 1
Nsites

∑
ij

e−iq(ri−rj)χij(t), (1.7)
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Chapter 1. Introduction

While it has been argued that a divergent susceptibility signals a magnetic phase
transition, much can be learned from the precise nature of this divergence. First
and foremost, the momentum q at which this divergence occurs characterizes the
type of magnetic order, for instance, a ferromagnet will have a divergence at q =
(0, 0, 0), while an antiferromagnet will have a divergence at q = (π, π, π). A
profound observation is the scaling behavior of χ(q) ∼ (T − Tc)γ near second-
order phase transitions at a critical temperature Tc. This scaling is universal,
meaning that the dimensionless constant γ does not depend on microscopic details
of the system but instead on the universality class of the phase transition. For
instance, in the Heisenberg universality class, it is found as γ ≈ 1.39 [30]. In
later parts of this thesis, we shall see how this knowledge can be used to correctly
determine the critical temperature of a phase transition, even in the presence of
finite-size effects.

Related quantities
Next to the magnetic susceptibility defined here, related and often mathematically
equivalent quantities can also be found in the literature. For instance, the dynamic
spin structure factor S(q, ω) is defined as

Sαβ(q, ω) = 1
Nsites

∑
ij

e−iq(ri−rj)
∫ ∞

−∞
dteiωt

〈
Sα

i (t)Sβ
j (0)

〉
. (1.8)

It is a quantity that can be measured in inelastic neutron scattering experiments
and its frequency dependence ω contains information about spectrum of exci-
tations. By the fluctuation-dissipation theorem the dynamic structure factor is
related to the susceptibility as [31]

Imχ(q, ω) = 1 − e−ω/T

2 S(q, ω). (1.9)

Note that in many cases, determining dynamic correlators a technically chal-
lenging problem. A powerful approach is the imaginary time formalism, where one
replaces the time variable t by an imaginary time τ = it, such that time evolution
eiHt becomes equivalent to the density matrix e−H/T .

The imaginary time susceptibility χαβ(q, iωn) can be used to compute the
dynamic structure factor, if the former is known analytically. An infamous problem
arises if this is not the case, as the numerical analytic continuation from imaginary
to real frequencies is an ill-defined problem, as small errors in the numerical result
can cause drastically different results.
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1.3. The self-consistent gaussian approximation

In numerical solutions which are often limited to finite system sizes L, phase
transitions between magnetically ordered and paramagnetic phases are typically
identified via a finite size scaling of the susceptibility, or, alternatively, the corre-
lation length ξ which can be obtained from the equal-time spin structure factor
S(q) [32] via

ξ = L

2π

√√√√ S(q⋆)
S(q⋆ + 2π

L
eq⋆) − 1. (1.10)

Here, L is the maximal distance beyond which spin correlations are set to zero
(for example the system size)and q⋆ is the point in reciprocal space where S(q)
is maximal which corresponds to the wave vector of the magnetic order to be
probed. Furthermore, eq⋆ is a unit vector in reciprocal space that points towards
the direction of deepest descend away from q⋆. Crucially, a finite L has a similar
effect than a finite system size such that precisely at the critical temperature the
correlation length behaves as ξ ∼ L. This criterion is used to detect critical
ordering temperatures in numerical runs with varying T and L.

1.3. The self-consistent gaussian approximation

The Hamiltonian in Eq. (1.3) poses a formidable challenge and is typically devoid
of exact solutions in almost all cases. The underlying difficulty is the exponential
growth of the Hilbert space, for example, for spin-1/2, as the dimension grows
as 2N , making any attempt at diagonalizing the exponentially large Hamiltonian
matrix only possible for very small systems of about 30-40 sites. On the other
hand, most emergent phenomena are inherent many-body effects, requiring us to
study large, ideally infinite, systems.

Nonetheless, there are ways to extract some information even in such cases,
which shall be reviewed in the following. One of the simplest approximations is
to disregard quantum effects entirely and instead work with classical variables. It
should be clear that this approximation is of a rather qualitative nature. Nonethe-
less, a good understanding of a model is often obtained by considering the effect of
small quantum fluctuations around a classical ground state, as we shall see in Sec-
tion 1.4. The Ising model in Eq. (1.1) is an example of this since the spin operators
si = σz

i /2 all mutually commute and may thus be replaced by their eigenvalues
±1/2, yielding a fully classical Hamiltonian. The goal then becomes to minimize
the quantity H, a real number, as a function of all the spin variables si. While this
may appear simple at first, the catch is that the solution must obey the constraint
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Chapter 1. Introduction

that all spins must have values of either −1/2 or 1/2. This makes it impossible
to find the minimum as d

dsi
H = 0. One may appreciate just how difficult solving

the quantum many-body problem truly is: Even under the drastic simplification
of disregarding quantum effects, the Ising model is one of Karp’s 21 NP-complete
problems [33, 34], and thus equivalent to the most difficult problems known to
humanity. While approximate solutions can usually be found numerically to high
precision with Monte Carlo approaches [35], here we discuss an analytical tech-
nique called the self-consistent Gaussian approximation, or sometimes the large-N
method, which is ubiquitous in the study of classical frustrated magnets due to its
simplicity [36–47].

We consider a general spin Hamiltonian as in Eq. (1.3). Ultimately, our
strategy will be to simplify the problem at hand by relaxing the spin constraint
|Si| = 1/2 [48]. A symmetric crystal lattice can be expressed by a unit cell with
a finite number of (sublattice) sites as well as lattice vectors. Translating any site
by such a vector will result in the position of another site of the same sublattice.
To make use of this translational symmetry, the Hamiltonian is first rewritten in
terms of the Fourier transform of spin components on each sublattice, which are
indicated by roman letters, a, b:

Sα
a (q) = 1√

Ncells

∑
i∈a

e−iqriSα
i , Sα

i = 1√
Ncells

∑
q
eiqriSα

a (q). (1.11)

We may identify 1
Ncells

∑
i∈a
∑

j∈b J
αβ
ij e

−iq(ri−rj) ≡ Jαβ
ab (q) as the Fourier transform

of the couplings, which we assume only depend on the separation vector between
the two sites i, j. To simplify notation, we group sublattice and spin components
together and define superlabels:

a ≡ (α, a), b ≡ (β, b) (1.12)

and finally arrive at

H = 1
2
∑

q

∑
ab
Sa(q)Jab(q)Sb(−q). (1.13)

As an example, consider a Heisenberg model (N = 3) on a honeycomb lattice,
which features 2 sites per unit cell. Jab becomes a (6 × 6) matrix. Due to the
highly symmetric Heisenberg interactions Jab ≡ Jαβ

ab = Jabδ
αβ, this matrix can be

decomposed into 3 independent 2 × 2 blocks.

Ground states of Eq. (1.13) can be found by diagonalizing Jab(q) and minimiz-
ing its eigenvalues Ea(q). In the generic case, this minimum will be at a unique
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1.3. The self-consistent gaussian approximation

ordering wave vector q up to point group symmetries of the Hamiltonian, such as
rotations and reflections. Here, one may reasonably expect magnetic order in the
ground state despite the approximations made, as there is typically a valid spin
configuration of similar energy that can be described by such a wave vector, such
as, for instance, a spin spiral S(q) ∼ (cos q · r, sin q · r, 0). On the other hand,
a large degeneracy in the spectrum Ea(q) can be an indicator of more complex
behavior that motivates closer inspection.

Beyond identifying ground states, observables can be computed at arbitrary
temperature from the partition function:

Z =
∫
Dλ

∫
DSe−H/T +

∑
a

∑
i∈a λia(∑α

Sα
iaSα

ia −1). (1.14)

Here, the λia correspond to Lagrange multipliers, which exactly enforce the spin
constraint |Si|2 = 1 on each site1, and the path integrals over the classical fields
Sa

i , λi are defined by integrating over all configurations of each field, for example,∫
DS ≡

∫ ∏
i

∏
a dS

a
i [30, 49]. By inserting the Fourier transform from Eq. (1.11),

we may also write this using an equivalent transform for λi,a as in Eq. (1.11)

Z =
∫
Dλ

∫
DSe−

∑
ab

∑
qq′ Sa(q)( 1

T
Jab(q)δ(q+q′)−λa(q−q′)δab)Sb(q′)−

∑
aq λa(q) (1.15)

≡
∫
Dλ

∫
DSe−

∑
ab

∑
qq′ Sa(q)Mab(q,q′)Sb(q)−

∑
aq λa(q), (1.16)

where Mab(q,q′) = 1
T
Jab(q)δ(q + q′) − λa(q − q′)δab. For any generic two-body

Hamiltonian H, we can verify that the spin-dependent part in the exponent is
quadratic in S, taking the abstract form of a generalized matrix product SnMnmSm,
and thus allowing us to perform the Gaussian integral analytically [36, 38, 41, 43,
45, 47], yielding:

Z =
∫
Dλ exp

{
−1

2 Tr{logM} −
∑
aq
λa(q)

}
. (1.17)

Note that any constant prefactors of Z are neglected here and in the following
since they do not contribute to observables.

In order to solve the final integration, one has to rely on the saddle-point
approximation, assuming that the exponent is a function with a single well-defined
minimum around which it may be expanded as a function of λ2. To simplify

1Since observables do not depend on constant prefactors of Z but rather its derivatives, we can
freely define rescaled Lagrange multipliers, where here a factor of 1/i is chosen.

2In most derivations found in literature, this approximation is motivated by assuming isotropic
exchange couplings such that the trace over spin components yields a simple factor N of the
number of spin components. Subsequently, this number is taken to the limit N → ∞, such
that the exponential function becomes an infinitely sharp peak centered.

21



Chapter 1. Introduction

this part even further, one usually makes the approximation of neglecting spatial
fluctations by setting λa(q) → λδ(q).

Z = exp
{

−1
2 Tr{logM(λ0)} −NsitesNλ0

}
. (1.18)

The minimum of the exponent is given by taking the derivative with respect to
the single remaining variable λ

Nsites = −1
2Tr

[
M−1

]
1 = − 1

2Nsites

∑
q

∑
a

[J(q)/T − λ1]−1
aa. (1.19)

Once the Lagrange multiplier λ is determined by solving Eq. (1.19), observables
are determined by taking functional derivatives of the partition function. For
example, it is easily verified by using Eqs. (1.15) and (1.18) that the spin structure
factor is given by

Sab(q) =
〈
Sa(q)Sb(−q)

〉
= 1

Z
δZ

δJ(q)ab
= δ log Z
δJ(q)ab

. (1.20)

Using this with our result Eq. (1.18), we find

Sab(q) = −1
2
∑
q′

∑
a′

δ

δJab(q) [log J(q′)/T − λ1]a′a′

= −1
2
∑
q′

∑
a′

δJ(q′)
δJab(q) [J(q′)/T − λ1]−1

a′a′

= − 1
2T M

−1
ba (q). (1.21)

This result also allows for a particularly simple interpretation of Eq. (1.19), namely
that the correct choice of λ implies the fulfillment of the sum rule:∑

a

∑
i

〈
|Si|2

〉
=
∑

a

∑
q

⟨Sa(q)Sa(−q)⟩ = Nsites, (1.22)

or in other words, the spin length constraint is fulfilled on average [48]. Clearly, this
approximation is not quantitatively reliable, particularly when a system features
more than one inequivalent site per unit cell. Corrections, including spatial fluctu-
ations of λa(q), can be obtained within the so-called nematic bond theory [37, 46].
However, the Gaussian approximation remains a very popular tool in the study of
classical spin models due to its simplicity. In particular, for some models at zero
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1.4. Emergent gauge theories and quantum spin liquids

temperature, instead of solving Eq. (1.19), the spin structure factor in Gaussian
approximation can be obtained by projecting out certain spin components [50, 51],
making this approximation a practical starting point for several classifications of
classical spin liquids [52–54]. This will be discussed in more detail in Sections 6.3
and 7.2.

1.4. Emergent gauge theories and quantum spin
liquids

Depending on the context, the definition of what a quantum spin liquid is often
changes. One of the simplest and thus widespread definitions is that a quantum
spin liquid is a phase of matter that lacks any type of ordering down to zero tem-
perature [14, 29, 55–58]. While this definition captures many essential qualities, it
clearly includes some phases of matter that do not display any inherently interest-
ing phenomena. For instance, a trivial system consisting of a number of N fully
free, non-interacting spins will clearly never display any ordering. This example
might sound contrived (in any realistic setting, small couplings will generally be
generated one way or another), but it nonetheless shows that a rigorous definition
of a material beyond conventional order needs to go beyond conventional order-
ing concepts itself. It is also practically impossible to verify the absence of any
possible type of order, since one would need to check increasingly complex order
parameters.

Perhaps a better definition of a quantum spin liquid is a phase that can be de-
scribed by an emergent gauge theory [56], a theory in which a subset of the original
spin degrees of freedom (typically those states that are accessible at low energies)
form new, effective degrees of freedom that can be analogous to excitations of
quasiparticles with fascinating properties that may be rare or even impossible to
find in nature. Most famously, a single spin-flip excitation may fractionalize, i.e.,
form a pair of quasiparticles with fractional charges or spin moments that can
separate and move independently of each other. While interesting on its own, fea-
sible realizations of fractionalized particles can serve as a stable form of quantum
memory or even be used as a platform to achieve topological error correction in
quantum computers. We will now begin by reviewing a famous example of how
a particularly well-known gauge theory, U(1) electrodynamics, can emerge from
simple spin degrees of freedom in real materials.
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Chapter 1. Introduction

In cases where the spectrum has a subextensive degeneracy, i.e., the minima
of Ea(q) form lines or surfaces with a dimension less than the dimension of the
lattice, the ground state may be disordered, or selected entirely from entropic
fluctuations via a mechanism known as thermal order by disorder. In some special
cases, the degeneracy may even be extensive, i.e., one band Ea(q) is completely
flat. Even thermal fluctuations are then usually insufficient to select a unique
ground state, giving rise to a classical spin liquid. Probably the most illustrious
example of this can be found in the pyrochlore lattice, which features a four-site
unit cell (b0 = 0, bi = 1

2ai), within a face-centered cubic (fcc) basis

a1 = 1
2(1, 1, 0)T , a2 = 1

2(1, 0, 1)T , a3 = 1
2(0, 1, 1)T . (1.23)

This way, the sites are arranged on the vertices of corner-sharing tetrahedra as
depicted in Fig. 1.2. An extensive ground state degeneracy emerges in the case of
antiferromagnetic nearest-neighbor interactions, where for now we only consider
Ising interactions.

H = J
∑
⟨ij⟩

Sz
i S

z
j

= J

2
∑∑

i∈

Sz
i

2

+ const., (1.24)

where the second line, featuring a sum over all tetrahedra in the system, is
readily verified upon expanding the square. It can now be seen that any spin
configuration in which the total magnetization of each tetrahedron is zero, i.e.,∑

i∈

Sz
i = 0 ∀ (1.25)

realizes an exact ground state with an energy of 0. Such a rule is known as an ice
rule, and the corresponding state is spin ice, in analogy to observations in water
ice where the proton configurations of H2O molecules remain fluctuating down to
arbitrarily low temperatures, leading to a highly unusual residual entropy at zero
temperature [59]. Although such a phase was already predicted by Anderson in
1956 [60], an experimental realization was only found much later in 1997 in the
material Ho2Ti2O7 [61–64] and shortly after in Dy2Ti2O7 [65–67], featuring a local,
ferromagnetic Ising anisotropy instead of an antiferromagnetic one as in Eq. (1.24).
Such an anisotropy causes spins to either point inside a tetrahedron or outside, as
depicted in Fig. 1.2. Note that the ground state constraint ∑i∈ Sz

i = 0 translates
to a “two-in, two-out” rule, however, otherwise not much changes in its mathemat-
ical description. We may now identify the ground state constraint 1.25 in terms
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1.4. Emergent gauge theories and quantum spin liquids

of classical electrostatics, a U(1) gauge theory. To this end, one may perform a
coarse-graining of the spins to a continuous field E(r), which points in the direc-
tion of the spins and thus has no sources and no drains, as dictated by the “two-in,
two-out” rule. In other words, the electric field satisfies a charge-free Gauss law.

∇ · E(r) = 0 ⇔ q · E(q) = 0. (1.26)

Instead of coarse-graining, one may formulate a discrete version of electrodynamics
by defining an electric field on a dual lattice as a linear combination of spins on each
sublattice and identifying Eq. (1.25) as a discretized gradient [52, 68]. Indeed, this
slightly more involved description will be necessary for the description of quantum
spin ice.

The existence of an extensive degeneracy can be easily seen in the Gaussian
approximation by diagonalizing H in momentum space, but can also be verified
exactly in the Ising case by considering the effect of elementary excitations. As
shown in Fig. 1.2, a single spin flip acting on a ground state creates two defect
tetrahedra which can be seen as electric charges ∑i∈ Sz

i = ±2|Sz
i | since they are

given by the divergence of the electric field3.

In a system, charges are always conserved: This may be proved using Gauss’
law in the same way as in conventional electromagnetism by integrating the charge
density ρ(r) = ∇ · E(r) over some volume V with boundary S.∫

V
d3rρ(r) =

∫
S=∂V

dA · E(r) = Qenclosed. (1.27)

Any change in the total charge Qenclosed must thus be due to transport across the
boundary S, and the total charge, integrating over all space, is always zero. While
charges must always be created in pairs as a result, they are free to propagate
through the lattice by consecutive spin flips, as visible in Fig. 1.2. In particular,
positive and negative charges can recombine into the vacuum state, leaving behind
only a closed loop of flipped spins, a so-called Dirac string. This string is not a
physical object as it corresponds to a gauge transformation E → E + ∇ × χ,
however, it illustrates the extensive ground state degeneracy since it consists only
of a finite number of spins, with the smallest possible loop consisting of six spins.
Interestingly, this phase comes with an easily measurable smoking gun signature,

3Since the emergent field is given by spins which have an intrinsic magnetic field, the emergent
field is sometimes referred to as a magnetic field instead. The charges of this theory are
then referred to as magnetic monopoles in a seeming violation of the laws of electrodynamics.
While there is some arbitrariness in defining the electric and magnetic field, quantum fluctu-
ations will guarantee the emergence of the respective other field with corresponding charges.
Generally, magnetic monopoles can arise on a discrete version of the gauge theory since the
vector potential is only defined up to a phase 2π in contrast to continuum theories.
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Figure 1.2.: Spin fractionalization

a rare property for spin liquids [29, 55, 57, 69], so-called pinch point features in
the spin structure factor [36, 41, 42, 70]. While the structure factor is commonly
used to study magnetic order, the presence of a local ice-rule constraint results in
non-analyticities in the structure factor that are experimentally observable [71].
As outlined further in Chapter 5 and Chapter 6, thermal and quantum fluctuations
have predictable effects on these pinch points, which may be used as a diagnostic
tool to distinguish between different types of spin liquids.

Clearly, the presence of such a large degeneracy is highly artificial. Realisti-
cally, small perturbations to the model in Eq. (1.24) will lift this degeneracy and
select a unique ground state leading to a vanishing entropy at zero temperature.
However, this ground state does not necessarily have to be magnetically ordered
and indeed may be highly exotic if this perturbation introduces quantum fluctu-
ations. The most natural step to investigate this is to include small terms that
allow for spin flip processes

H = J

2
∑
⟨ij⟩

Sz
i S

z
j + J⊥

∑
⟨ij⟩

S+
i S

−
j + h.c. (1.28)

and perform a degenerate perturbation theory in J⊥/J [40, 72]. We may think of
the Ising model as a trivial quantum model, in which the Hamiltonian consists of
1×1 blocks, corresponding to the choice of the eigenvalues σz

i → ±1. It can be seen
that the first order in perturbation theory vanishes since ⟨x′|S+

i S
−
j |x⟩ = 0 for any

two classical spin configurations x,x′, with x = (↑1, ↓2, . . . , ↑Nsites) in the ground
state manifold. The lowest order non-diagonal process that tunnels between two
classical ground states are third order terms that flip an entire hexagonal plaquette
of spins, see Fig. 1.2. The effective low-energy description is thus given by plaquette
moves that flip a counterclockwise alignment of six spins to a clockwise one and
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vice versa 4:

Heff = −
∑
7
S+
71
S−
72
S+
73
S−
74
S+
75
S−
76

+ h.c. (1.29)

≡ −
∑
7

|⟲⟩⟨⟳| + |⟳⟩⟨⟲| . (1.30)

While sign-problem free and thus numerically solvable by quantum Monte Carlo [74,
75], some analytical understanding can be gained by interpreting this Hamiltonian
as a variant of a quantum dimer model [76, 77].

HRK = −
∑
7

|⟲⟩⟨⟳| + |⟳⟩⟨⟲| + µ(|⟲⟩⟨⟲| + |⟳⟩⟨⟳|). (1.31)

This model features an exactly soluble point at the Rokhsar Kivelson point µ = 1,
where the Hamiltonian takes the form of a projector

HRK|µ=1 =
∑
7

(|⟲⟩ − |⟳⟩)(⟨⟲| − ⟨⟳|). (1.32)

The lowest energy of such a projector, 0, can only be reached by the state that
is annihilated by it. This state is an equal weight superposition of all possible
classical configurations (up to a normalization constant)

|ψRK⟩ =
∑
{x}

|x⟩ . (1.33)

This state features massive entanglement and is a realization of the resonating
valence bond state originally proposed by Anderson [78], in other words, a quantum
spin liquid.

The effective theory of this ground state and its low-lying excitations is a theory
of lattice quantum electrodynamics, a compact U(1) lattice gauge theory5, meaning
that it is characterized by canonically conjugate fields

[
Aα

i , E
β
j

]
= iℏδijδ

αβ, where
A is the corresponding vector potential. In this context, compactness refers to the
fact that the magnetic field, given by a discrete form of the curl B = ∇7 × A, is

4Note that the sign of this Hamiltonian does not affect the low energy properties as it can be
accounted for in a unitary transformation [73]

5Strictly speaking, this gauge theory is also frustrated as the mapping to a U(1) theory is not
exact. This is due to the subtlety that the electric field is expected to take integer values
. . . ,−1, 0, 1, . . . , while spins quantum numbers are half-integers which exclude a value of 0.
This has important consequences, as otherwise, the gauge theory would always be confined,
meaning quasiparticle excitations are not free to move and would quickly decay. See Ref. [68]
for more details.
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only uniquely determined up to a multiplicity of 2π [55, 68]. Being a realization of
quantum electrodynamics, this theory predicts the excitation of linearly dispersing
photons as well as electric and magnetic monopoles, also referred to as spinons
and visons, respectively [79, 80]. Finally, recent discoveries in the compounds of
dipolar-octupolar pyrochlores such as Ce2Zr2O7 pose promising candidate systems
to realize quantum spin liquids and observe artificial photons in real materials [80–
87].

Other types of spin liquids
Quantum spin ice is a particularly instructive example of how a gauge theory
can emerge from simple spin degrees of freedom. However, there are many other
classes of spin liquids that can emerge. One of the most prominent examples is
the so-called Z2 spin liquid found as an exact ground state in Kitaev’s Toric code
and Honeycomb models [13, 88]. Instead of an emergent U(1) degree of freedom
(i.e., the gauge field can change by a phase eiϕ), this gauge field has only a discrete
degree of freedom ±1, and thus has vastly different properties. Most importantly,
while the aforementioned U(1) liquids come with gapless quasiparticle excitations
(photons, in the previous case), Z2 liquids typically have a topologically degenerate
ground state with a finite excitation gap, making them highly stable against small
and local perturbations [13, 88, 89]. Being a very active field of experimental
investigation, there are several candidate materials with suitable interactions for
hosting a Z2 quantum spin liquid, although no consensus has been reached so far
on the existence of this spin liquid phase.

Recently, significant advancements in the field of cold atoms have led to promis-
ing results in realizing Z2 spin liquids via Rydberg atom arrays [90–93]. There are
numerous other types of spin liquids, for instance, the gapless Dirac spin liquids
believed to be found as the ground state of the Heisenberg model on the Kagome
and triangular lattices [94–97], which also exhibit an emergent U(1) gauge field,
or chiral spin liquids [98–100], which have a chiral order parameter and thus break
time-reversal symmetry but do not order magnetically.

In Chapter 6, the even more exotic case of so-called fracton spin liquids will
be investigated. As we will see, fracton models can be constructed classically,
following local rules in close analogy to spin ice [51, 101]. However, it is still an
ongoing topic of research to determine if and how the effect of quantum fluctuations
can be used to install quantum fracton order.
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1.5. Fractons and higher-rank gauge theories

We shall now investigate a new type of spin liquid, which, surprisingly, has a close
connection to the pyrochlore model. Fractons, particles with restricted or fully ab-
sent mobility [102–113], have also been studied in a different context, particularly
in the realm of high-energy physics with connections to gravity [114], elasticity
theory [115], as well as glassy states of matter [116, 117]. Generally one distin-
guishes two types of fractons: type-I fractons, appear on the corners of membrane
operators. As a result, moving a fracton amounts to moving the entire membrane
which requires an infinite number of spin flips in the thermodynamic limit. In
nature, such a process is virtually impossible to occur due to thermal or quantum
fluctuations. This also implies that in such a theory there must be sub-dimensional
particles, so-called lineons, which consists of groups of fractons and can be moved
along a line. Type-II fractons, on the other hand, are found at the corners of fractal
operators. More generally, in a type-II fracton theory, there are no mobile excita-
tions [102]. However, it remains uncertain whether such a particle can be found
in nature. While there are spin models that exhibit exact gapped fracton ground
states, such as the X-cube model that realizes type-I fractons [89] and Haah’s code
that features type-II fractons [118], these models rely on artificial multi-spin inter-
actions that are challenging to implement in experimental platforms. In addition
to these models, significant insights have been gained through Pretko’s formula-
tion of fractons using higher rank gauge theories. These gauge theories resemble
U(1) electrodynamics, but with the crucial distinction that the emergent gauge
field, the electric field, is no longer a vector field but rather a tensor [103–105].
For instance, a rank-2 U(1) gauge theory can be expressed as

∂µ∂νE
µν(r) = ρ(r) (1.34)

where ρ(r) is a scalar field corresponding to a charge density. In full analogy to
Eq. (1.27), we can verify that this theory once more has well-defined and conserved
charge excitations by simply noticing that we can again derive a standard rank
1 Gauss law by defining a current vector field Jµ ≡ ∂νE

µν . However, the rank 2
theory has another conservation law: By integrating the dipole moment over some
volume, we find that the dipole moment is also a conserved quantity which, in a
closed volume, can only escape via the boundary [105, 106]∫

V
d3rxµρ =

∫
V
d3rxµ∂ν∂σE

νσ =
∫

S=∂V
dnσ(xµ∂νE

νσ − Eµσ). (1.35)

Here, the unit vector nσ is perpendicular to the surface S. This additional conser-
vation law has profound consequences regarding the mobility of charge excitations.
We have seen in Fig. 1.2 that moving a charge corresponds to a local creation of a
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Figure 1.3.: An isolated, immobile fracton (left) and a lineon, which can be moved
along a one-dimensional line by quadrupole exciations.

dipole moment, canceling one pair of opposite charges. As any local operator can
no longer change the dipole moment, an isolated charge thus becomes impossible
to move - the defining property of a type-I fracton phase. Similarly, a type-II
fracton phase may also be realized by a gauge theory featuring mixed derivatives
of the electric field which can imply infinitely many conservation laws and thus
fully immobile particles [52, 53, 113]. We may also use this argument to iden-
tify another peculiar type of quasiparticle in such a higher-rank U(1) theory: The
next-lowest local excitation that is allowed by conservation laws is a quadrupole.
Clearly, acting such an operator on a single charge will result in an energy cost
since it increases the total number of charges. On the other hand, a pair of charges,
a dipole, can be moved. This is depicted in Fig. 1.3. If a quadrupole of fractons
has been created, i.e., by flipping a single spin, it can be separated into two dipoles
which are deconfined and can be separated to arbitrary distances, as long as they
are only moved along one dimension. Such one-dimensional particles are referred
to as lineons. Similar to its rank-1 counterpart, a higher rank U(1) comes with
clear signatures, multifold pinchpoints in the spin structure factor [117]. In Chap-
ter 6, we will identify additional signatures found in spin models with emergent
higher rank gauge fields. Recently, within the Gaussian approximation featured in
Section 1.3, comprehensive classifications of various types of classical spin liquids
were done, see for example [52–54].

While a higher-rank U(1) gauge theory is thus certainly capable of describing
the peculiar behavior of these fracton phases, it seems highly unlikely that such an
artificial gauge field could exist in nature. In condensed matter systems, however, it
is certainly possible that such a phase could emerge as an effective theory. Recently,
it was found that an emergent higher-rank gauge field can emerge in a classical
spin Hamiltonian, following a similar construction to spin ice [51]. On the other
hand, this construction is valid purely at a classical level. The question of whether
such a phase becomes destabilized or enhanced under quantum fluctuations will
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be the subject of the later chapters of this thesis.

1.6. Basic concepts of the PFFRG

As the following chapters will review methodological advancements made in the
pseudo-Majorana functional renormalization group (PMFRG), we first briefly re-
view basic concepts and properties of the pseudofermion-FRG approach without
being exhaustive on all methodological details. A more detailed and self-contained
description can be found in Refs. [10, 119–122]. For a more general introduction,
see Ref. [123].

Motivation
The classical approximation neglects many important effects and will thus provide
an incorrect description of a quantum spin system. Due to the immense diffi-
culty in solving the quantum many-body problem, there exist a vast number of
numerical techniques, each with their distinct advantages and disadvantages. Gen-
erally, methods can be categorized into sampling-based methods such as quantum
Monte Carlo (QMC), wavefunction compression methods such as the density ma-
trix renormalization group (DMRG), diagrammatic approaches such as mean-field
theory, or the functional renormalization group (FRG).

While most quantum Monte Carlo methods can deliver exact results (up to
quantifiable and numerically controllable standard uncertainties), their application
requires strictly positive statistical probabilities. These so-called sign-problem free
methods require the Hamiltonian to have a well-behaved sign structure, such as
strictly negative matrix elements. Unfortunately, this is only rarely the case,
most importantly not for almost all frustrated antiferromagnets [124, 125]. The
compression-based approaches, such as DMRG and tensor network methods, have
shown great promise in one and two dimensions. Their error is also numerically
controllable. However, their divide-and-conquer approach requires the system be-
ing studied to have only a small amount of entanglement between the two parts
that are separated. Crucially, they lack convergence if the amount of entanglement
in the system exceeds the area law, i.e., if the two parts of a system are entan-
gled only via their respective boundaries. These methods are difficult to apply
in three dimensions since the size of the boundary grows quadratically with the
dimension [126], in stark contrast to the constant boundary size in one dimension.
For most two- and virtually all three-dimensional frustrated magnets, this leaves
us with approximate solutions, which often do not have a controllable way of min-
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imizing the error of the approximation.

Other common techniques are variational approaches [127, 128], which make
use of the fact that the mean energy Ev = ⟨ψv|H|ψv⟩ of any state |ψv⟩ depending
on a set of variational parameters v is bounded from below by the true ground
state energy E0. Moreover, minimizing Ev with respect to the variational pa-
rameters v will maximize the overlap of |ψv⟩ with the true ground state, at least
for finite, gapped systems [129]. Certainly, a well-chosen variational wavefunc-
tion can give fantastic results [127]. However, a bias is certainly introduced by
this choice. A notable method is the variational Monte Carlo approach, in which
the energy is minimized by a stochastic optimization algorithm [130–133]. Re-
cent developments in the usage of neural networks as variational wavefunctions
have shown great promise in overcoming the limitations of traditional variational
wavefunctions [134–139]. However, even variational states with many parameters
may suffer from their limited expressibility, and in many cases, it can be that the
required number of neural network parameters exceeds the number of parameters
that can be trained in a feasible amount of time, especially if the system size be-
comes large.

These shortcomings of other methods have motivated the search for new ap-
proaches, particularly in two and three dimensions, which are of particular im-
portance for experimental materials. Computing the many-body wavefunction is
typically only the means to an end, while the real goal is the computation of ob-
servables, or even just the characterization of a phase diagram. In such cases,
diagrammatic many-body theory is a viable alternative. Within this approach,
a system’s many-body Green functions, which are the amplitudes of a quantum
transition from one state to another, are determined. As a concrete example,
the single-particle Green function determined as a thermal expectation value of
fermionic annihilation ck(τ) and creation c†

k(τ) operators, satisfying canonical an-
ticommutation relations

{
ck(τ), c†

k′(τ ′)
}

= δkk′δ(τ − τ ′). The Green function is
then given by

G(k, τ |k′, τ ′) ≡
〈
Tτc

†
k′(τ ′)ck(τ)

〉
, (1.36)

corresponds to the amplitude of the propagation of a fermion with momentum k
at time τ to a state with momentum k′ at time τ ′, where Tτ is the time-ordering
operator [30, 49, 140]. This concept is readily extended to the two-particle Green
function

G(2)(k1, k2, τ1, τ2|k′
1, k

′
2, τ

′
1, τ

′
2) ≡

〈
T c†

k′
1
(τ ′

1)c
†
k′

2
(τ ′

2)ck2(τ2)ck1(τ1)
〉

, (1.37)

which in turn can be used to compute relevant two-body observables, i.e., any
operator that can be expressed in terms of two fermionic creation and annihilation
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operators.

Many-particle Green functions may be computed perturbatively, accurate up
to some finite order in the interaction strength relative to some other non-interacting
energy scale. However, often times this approach suffers from infrared divergences
of individual terms at finite order. The renormalization group (RG) was designed
to circumvent this by summing up contributions to infinite order in a regularized
fashion. This regularization separates contributions by their energy scale, first
summing up the high-energy degrees of freedom, then continuously summing up
smaller energy scales, allowing individually divergent contributions to cancel each
other [141–144]. On the other hand, while formally exact and conceptually elegant,
the procedure of renormalization is in practice challenging and requires further ap-
proximations. In the following, we will give a quick overview of the main concepts
of the so-called functional renormalization group (FRG) [123, 145–148], whereas
the subsequent chapters 2 and 3 will introduce the formalism in more detail and
outline their application to spin systems.

The FRG’s fundamental building blocks are the so-called one-particle irre-
ducible vertex functions. Diagrammatically, the n-particle vertex function is de-
fined by taking the n-particle propagator, or Green function (i.e., Eq. (1.37))
and removing all diagrams that can be completely separated by cutting a single
fermionic propagator, as shown in Fig. 1.4. Inversely, the Green function can also
be determined from the irreducible vertex. For instance, the one-particle Green
function is given by the Dyson equation [49, 123].

G(k, iωn) = G0(k, iωn) +G0(k, iωn)Σ(k, iωn)G(k, iωn), (1.38)

where G0 is the non-interacting Green function and Σ is the one-particle vertex,
most commonly referred to as the self-energy. The first step of the renormalization
procedure is then to introduce an infrared cutoff that modifies the bare Green
function as G0 → ΘΛG0. This is shown in Fig. 1.4 where the modified propagators
are highlighted in red. While there is considerable freedom in choosing a regulator,
ΘΛ is often chosen to be zero for Λ → ∞ and one for Λ → 0. The most relevant
property is that it interpolates between an exactly solvable (though unphysical)
limit and the physical theory of interest. Formally exact flow equations, ordinary
differential equations, for vertex functions can be derived by taking a derivative of
the vertices with respect to the RG scale Λ. This is sketched in Fig. 1.4, for the full
derivative via the many-body path integral formalism, see [123]. Unfortunately,
this system of equations is infinitely large due to the fact that the derivative of
each vertex contains terms with higher-order vertices. In order to go to high orders
in this hierarchy, it requires solving an exponentially large number of differential
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Infrared cutoff Bare Green 
func�on

Figure 1.4.: Perturbative expansion of the two-particle vertex to second order.
Propagators are indicated by red arrows, which are affected by the
cutoff. Interaction lines are displayed as wavy lines. (Approximate)
FRG vertex flow equation can be derived by taking derivatives with
respect to the cutoff and grouping diagrams into three channels by
re-inserting the full vertex. Diagrams, which cannot be expressed this
way, i.e. corresponding to contractions of three-body interactions, are
discarded.

equations, which quickly becomes unfeasible. A well-established approximation is
to neglect all terms containing the six-point or three-particle vertex [123, 145–147,
149]. The resulting set of equations is shown in Fig. 1.4, where internal propagators
are colored in red. If the Hamiltonian of interest does not feature any three-body
interactions, this vertex is zero at the initial scale. However, as the renormalization
procedure allows for the generation of effective couplings, a finite six-point vertex
can be generated from two-particle interactions. As a result, we can expect this
approximation to hold as long as the two-particle vertex does not grow too large.
For strongly coupled systems, this limitation becomes by far the most severe, as
we shall explore in later chapters.

The pseudo-fermion functional renormalization group (PFFRG), first intro-
duced by Reuther and Wölfle in 2010 [119], has since been established as a capa-
ble tool for tackling these most challenging cases [9, 10, 82, 150–154]. Due to its
inclusion of important mean-field contributions, such as the random phase approx-
imation (RPA) and the ladder series diagrams to infinite order, it is particularly
suited to higher dimensions. These full inclusion of the RPA and ladder-type di-
agrams are particularly powerful: Magnetically ordered systems are known to be
well described by the RPA series, while quantum spin liquids are always obtained
in the limit N → ∞ of an SU(N) expansion in the number of fermionic flavors, a
limit equivalent to the ladder series [120, 155]. Individually, both series are biased
towards their respective effect; for instance, the RPA is incapable of describing any

34



1.6. Basic concepts of the PFFRG

magnetically disordered state and predicts a divergent magnetic susceptibility at
a mean-field critical temperature. The PFFRG, on the other hand, can be used to
approximate both the disordered and the ordered state, making it extremely flexi-
ble. At its core, there are only two fundamental challenges that limit the predictive
power of the PFFRG: The first is the truncation of the infinite series of diagrams
in the vertex expansion, ignoring the contributions of the six-point vertex which
includes many three-body terms. Although some three-body diagrams are gener-
ated in the course of the FRG flow, this approximation is inherently uncontrolled
and may lead to significant errors, which we shall explore more in the following
chapters. The other limitation comes from the fact that there is no exact represen-
tation of spins in terms of bosons or complex fermions, which are the foundation
of the path integral formulation and thus most diagrammatic techniques.

Auxiliary particle representation of spins
In order to apply the FRG to spin systems, one must first overcome a significant
obstacle: while the FRG is derived in terms of general fermionic or bosonic de-
grees of freedom, spin operators have more complicated commutation relations.
Crucially, the path integral formalism, from which the FRG is usually derived, is
inapplicable to spins as a result. Recently, there have been promising attempts to
formulate an alternative description of spin diagrammatics and FRG in terms of
pure spin operators [156–158].

The most common representation of spins through fermions by far is the
Abrikosov representation [159]:

Sα
i = 1

2ℏ
∑

σ,σ′∈{↑,↓}
f †

iσσ
α
σσ′fiσ′ . (1.39)

For each lattice site, this corresponds to placing a spin-up or spin-down fermion,
which is capable of representing the degrees of freedom of a single spin-1/2. How-
ever, by explicitly computing the product of two spin operators expressed via
Abrikosov fermions, we acquire an additional contribution:

SαSβ = iℏ
2 ε

αβρSρ + ℏ2

4 δ
αβ + ℏ2

4 δ
αβ
(
(n↑ − n↓)2 − 1

)
. (1.40)

From Eq. (1.40), we can see that the unphysical contribution arises if a site is
either empty or doubly occupied, in which case we have (Sα)2 = 0. As a result,
any approach that aims to employ such a representation needs a mechanism to
project out these extra unphysical degrees of freedom. In the context of the FRG,
this would mean including a fluctuating gauge field to enforce the single fermion
occupation constraint.
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Unfortunately, incorporating such a term is technically extremely challenging
and thus usually omitted. While the severity of this problem is somewhat limited
at zero temperature, as it can be argued that sites with an effective spin-0 moment
cannot contribute to the energy and thus come at a cost ∼ J , counterexamples to
this argument can be constructed. In either case, at finite temperature, there will
inevitably be a contribution from unphysical states, rendering PFFRG inapplica-
ble [1, 160]. It can be argued that the pseudo Majorana functional renormalization
group (PMFRG) introduced within this thesis effectively tackles both of the prob-
lems outlined above by switching to a spin representation in terms of Majorana
operators ηα instead. Majoranas are defined via their properties{

ηα, ηβ
}

= δα,β, (ηα)† = ηα, (1.41)
where spin operators are written by a product of two Majoranas [161–163]

Sx
i = −iηy

i η
z
i , Sy

i = −iηz
i η

x
i , Sz

i = −iηx
i η

y
i . (1.42)

It should be noted that this representation differs from the much better-known rep-
resentation used in Kitaev’s original solution of the Kitaev-Honeycomb model [13],
which features four Majoranas per site and, crucially, also unphysical states that
need to be projected out. We will see in the following that this representation
does not suffer from unphysical states despite also enlarging the Hilbert space.
Furthermore, as we will see in Chapter 4, the possibility of working at a finite
temperature T allows us to use the temperature T as a control parameter: At
large temperatures, the error introduced by neglecting higher vertices vanishes,
which allows for quantitatively accurate results in this regime, something which is
not possible in PFFRG. With more recent improvements to the formalism, such
as the temperature flow scheme which uses the physical temperature as a cutoff
and was shown to be capable of detecting phase transitions down to extremely low
temperatures [5], the PMFRG significantly improves upon the drawbacks of the
PFFRG while retaining its advantages of efficiency and flexibility [10].

The key benefit of the representation in Eq. (1.39) and, as we shall see,
Eq. (1.42), is that the resulting model becomes amenable to fermionic many-body
techniques such as the FRG, which is formulated in terms of irreducible fermionic
vertex functions (“essential parts of correlation functions”). The PFFRG is capa-
ble of treating general two-body spin Hamiltonians as in Eq. (1.3) however, in the
following, we consider only the special case of Heisenberg models:

H =
∑
(i,j)

Jij

∑
α

Sα
i S

α
j (1.43)

, where (i, j) refers to all possible pairings of sites. The centerpiece of the PFFRG
method is given by a hierarchy of flow equations reminiscent of one-loop diagram-
matic perturbation theory, which describe the change of vertex functions when a
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Matsubara-frequency cutoff parameter Λ, introduced in the bare Green function
G0,Λ(iω) = G0(iω)Θ(|ω| − Λ), is varied. The basic idea is that at the starting
point Λ = ∞, the bare propagator vanishes and all vertex functions are trivially
known. For a numerical solution of the flow equations down to Λ = 0 (the cutoff-
free physical case), a truncation of the formally exact hierarchy of flow equations,
usually at the level of the four-point vertex, is necessary.

The four-point vertex is directly related to the (momentum-resolved) static
spin susceptibility, which represents the central outcome of the PFFRG approach.
The onset of magnetic ordering is signaled by a divergence of the susceptibility
along the RG flow (which in a finite system typically reduces to a finite peak or
a kink). Accordingly, non-magnetic (and possibly quantum spin liquid) phases
are characterized by an RG flow that remains smooth down to the lowest acces-
sible Λ scales. Due to the lack of a small parameter in the purely interacting
pseudo-fermion Hamiltonian, the truncation of the flow equations is an - a pri-
ori - uncontrolled procedure. It can be shown, however, that within the usual
truncation on the level of the four-point vertex, both quantum fluctuations and
classical ordering tendencies are correctly described in leading orders of 1/N and
1/S, respectively [120, 121]. Here, N and S describe the artificial enlargement
of the spin’s symmetry group (SU(2) → SU(N)) and the spin length (1/2 → S),
respectively. In two very recent works, certain contributions of the six-point vertex
have been taken into account using a multiloop extension [164, 165], equivalent to
a solution of the parquet self-consistency equations [166, 167]. The quantitative
robustness of the results with respect to increasing loop orders was interpreted as
further evidence for the accuracy of the PFFRG.

1.7. Outline of the thesis

The preceding sections have highlighted specific areas motivating the investiga-
tion of quantum spin systems, provided an overview of the notorious challenge
that they pose, and the existing methodology. The following Chapter 2 will be-
gin with a detailed description of the pseudo Majorana functional renormalization
group (PMFRG). Subsequently, methodological advancements to this method are
discussed in Chapter 3. The PMFRG’s applicability then used in more complex
cases such as the paradigmatic Cubic lattice (Chapter 4) and Heisenberg Py-
rochlore model (Chapter 5). These chapters will show how the PMFRG at finite
temperatures can be used to obtain quantitatively accurate results for frustrated
and non-frustrated systems alike. The final chapters will cover the intriguing cases
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of spin systems with emergent higher-rank spin gauge theories. In particular, the
PMFRG will be employed in Chapter 6, to investigate a recently found classical
construction of several different types of higher-rank U(1) spin liquids in the pres-
ence of quantum fluctuations. Then, the particular case of an emergent rank-2
U(1) gauge theory is considered in Chapter 7, where a new model is constructed
with the goal to realize a quantum fracton spin liquid. Finally, in Chapter 8,
the major findings shall be summarized and contextualized in the broader scope
of ongoing and future research in many-body method development, the study of
emergent gauge theories.
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2
The Pseudo Majorana functional

renormalization group

Finding numerical solutions of quantum many-body problems is one of the core
disciplines in modern condensed matter theory. In a wide range of physical set-
tings the problem amounts to analyze ground-state and finite-temperature phases
of a system of interacting spins on a lattice. Even though the corresponding mi-
croscopic models are often conceptually simple, such as two-body Heisenberg spin
Hamiltonians, they may harbor a colorful range of physical phenomena includ-
ing exotic types of long-range orders [168], quantum phase transitions [31, 169] or
quantum spin liquids [29, 55, 78]. While quantum spin phases are traditionally de-
scribed in terms of broken or unbroken symmetries, a more modern understanding
also includes concepts such as long-range entanglement or topological order [170]
and reaches out to applications in the context of quantum information process-
ing [171].

Despite the shifts of focus which the field has gone through in the recent
decades, the accurate numerical treatment of interacting quantum spin systems
remains a highly challenging and longstanding problem. In fact, none of the cur-
rently available numerical methods is able to ultimately determine the eigenstates
of a generic spin model. For example, quantum Monte Carlo methods [172, 173]
which enjoy the invaluable advantage that numerical errors are, in principle, only
of statistical nature, suffer from the infamous sign problem when applied to frus-
trated spin systems. Similarly, density matrix renormalization group, matrix prod-
uct, and tensor network approaches [174–178] have made tremendous progress in
recent years and are the undisputed method of choice for a variety of spin systems
(particularly in one dimension). On the other hand, the scaling of the entangle-
ment entropy poses a serious challenge for such techniques in higher dimensions.

An alternative approach is based on functional renormalization group (FRG)
concepts [123, 179, 180] which are, in principle, oblivious to the system’s dimen-
sionality. In its standard fermionic formulation this technique has first been ap-
plied in the context of electronic Hubbard-like models [145, 181, 182] where it
has become an established tool to describe competing types of long-range orders.
In addition, a more recently developed variant of the FRG [119] specifically tar-
gets quantum spin systems. The key conceptual step of this latter technique is
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to express the spin operators in terms of auxiliary fermions [183], justifying the
name pseudofermion functional renormalization group (PFFRG). Within the last
decade the PFFRG has been successfully applied to a wide range of spin systems [7,
119–122, 150, 154, 155, 164, 165, 184–212] and has constantly been extended and
generalized. Today, the PFFRG is, hence, remarkably flexible with a scope of ap-
plicability comprising two dimensional [7, 119, 120, 122, 153, 155, 164, 165, 184–
186, 188–191, 193–198, 200, 202, 207–212] and three dimensional [7, 150, 187, 190,
192, 194, 196, 199, 201, 202, 204, 206] quantum spin systems on arbitrary lattices,
including complex frustrated and longer-range coupled networks [154, 197] with
general isotropic or anisotropic [122] two-body spin interactions. Further recent
developments concern the generalization to arbitrary spin magnitudes S [120] or
higher spin symmetry groups SU(N) [121, 155, 206] and, on a more technical level,
the implementation of multi-loop schemes [164, 165, 195].

Despite its success in accurately determining ground state spin correlations,
the PFFRG comes along with a well-known obstacle. The aforementioned pseud-
ofermionic description introduces an enlargement of the Hilbert space associated
with states that do not correspond to states of the physical spin system. These
unphysical states typically appear at energies above the ground state energy of the
spin system. Thus, on the level of zero-temperature investigations, this problem
has been argued to be rather mild and can be treated by shifting unphysical states
to higher energies [120]. In a recent investigation of this problem, on the other
hand, the average spin magnitude within the PFFRG was found to differ from the
theoretically expected result even for higher loop orders [164]. More importantly,
the enlarged Hilbert space has so far prohibited an application to finite tempera-
tures.

This chapter aims at resolving issues due to unphysical spin states by modify-
ing the PFFRG on a very fundamental level. Instead of using a complex fermionic
spin representation, we employ a certain, so-called SO(3) Majorana fermion rewrit-
ing of spin operators [161, 162] which does not generate unphysical states but only
introduces redundant Hilbert space sectors. This property distinguishes it from
other Majorana representations [163] and as such makes it attractive as a first can-
didate for a Majorana-based spin FRG. We, accordingly, dub this approach pseudo
Majorana functional renormalization group (PMFRG) method. This modification
opens up various directions of investigation: (i) Most importantly, the PMFRG be-
comes applicable to finite temperatures which only requires small methodological
adjustments presented below. (ii) As a side product, we discuss how to calculate
thermodynamic quantities such as the free energy, energy and heat capacity which
have so far not been studied within the PFFRG. (iii). The developments below are
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formulated in a general way such that they are applicable to arbitrary Majorana
models also outside the realm of quantum magnetism. (iv) Certain spin models,
most prominently the Kitaev honeycomb model [13], are exactly solvable when
expressed in terms of Majorana fermions. Although Kitaev’s spin representation
differs from the one employed here, the exact solution is also obtainable within
the SO(3) Majorana representation [163] used here. Even though not the focus of
this work, one may thus expect that the PMFRG performs better for Kitaev-type
spin models and perturbations thereof as compared to the PFFRG.

This chapter also features applications of the PMFRG to simple quantum spin
models allowing us to assess its accuracy. As a first benchmark test small clusters of
up to six interacting spins are treated where the results can be straightforwardly
compared with exact diagonalization. An overall finding is that the thermody-
namic behavior of the spin correlations from PMFRG are surprisingly accurate
and reproduce the exact result significantly better than PFFRG. It should be em-
phasized that despite the finite Hilbert space of small spin clusters, their treatment
within PMFRG is still highly non-trivial and poses the same challenges as for infi-
nite lattice systems. Indeed, due to the incorporation of various mean-field limits,
one can expect that the FRG unfolds its full strength only in infinite spin systems
of two and higher dimensions. Later chapters will then discuss the application of
the PMFRG to frustrated lattice models. A persistent technical issue, however,
occurs in the low temperature limit where PMFRG detects spurious divergencies
of spin correlations. Although such divergences are not uncommon in the context
of zero temperature FRG [10] it is argued that this behavior can be an artifact of
the redundant Hilbert space sectors in the Majorana representation. While such
subtleties remain to be further studied the developments introduced here lay the
groundwork for various future directions of research and significantly enlarge the
scope of applicability of FRG approaches.
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2.1. SO(3) Majorana Representation

In this section we discuss the SO(3) Majorana representation [161, 162] for spin-
1/2 in detail. For each spin Sα

i at site i, three different flavors α ∈ {x, y, z} of
Majorana fermions ηα†

i = ηα
i are introduced. They fulfill the anticommutation

relations {ηα
i , η

β
j } = δijδ

αβ which imply (ηα
i )2 = 1/2. The formal Hilbert space

dimension per Majorana is
√

2 as appropriate for half a (complex) fermion. The
spin operators Sα

i = − i
2
∑

βγ ε
αβγηβ

i η
γ
i , more explicitly written as

Sx
i = −iηy

i η
z
i , Sy

i = −iηz
i η

x
i , Sz

i = −iηx
i η

y
i , (2.1)

can be easily checked to fulfill the spin-1/2 algebra

Sα
i S

β
i = 1

4δ
αβ + i

2
∑
αβγ

εαβγSγ
i . (2.2)

As an example, a Heisenberg coupling term from Hamiltonian Eq. (4.1) is repre-
sented as ∑

α

Sα
i S

α
j = −(ηy

i η
z
i η

y
j η

z
j + ηx

i η
z
i η

x
j η

z
j + ηx

i η
y
i η

x
j η

y
j ). (2.3)

As usual for auxiliary particle representations, the SO(3) Majorana represen-
tation comes with a gauge freedom. The local Z2 gauge transformation ηα

i → εiη
α
i

with εi = ±1 leaves spin operators invariant since each spin consists of a product
of exactly two Majoranas with equal lattice index. This gauge freedom is also
relevant to understand the structure of the Majorana Hilbert space. To see this,
define the Majorana operator

τi = −2iηx
i η

y
i η

z
i , (2.4)

which anticommutes with any τj from a different site j ̸= i and fulfills

τiη
α
j =

ηα
i τi if i = j

−ηα
j τi if i ̸= j

. (2.5)

Consequently, τi commutes with all spin operators and thus with any spin Hamil-
tonian. To construct a set of mutually commuting operators one needs to pair τi

with another conserved Majorana operator.

One choice [213] is to define an additional Majorana η0
i per site, so that the

parity pi = 2iτiη
0
i with eigenvalues ±1 is a constant of motion. These eigenvalues
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2.1. SO(3) Majorana Representation

split the local Majorana Hilbert space of dimension four into two dynamically
decoupled two-dimensional parts each of which are in one-to-one correspondence
to the original local spin Hilbert space. To invoke η0

i in the Hamiltonian, parity
projection schemes are required that eventually lead to one of two alternative four-
Majorana spin representations [163]. However, as stated above, we will avoid this
additional complication in the remainder of this work.

An alternative, non-local pairing scheme which does not introduce additional
degrees of freedom requires an even number of sitesN [214]. Given an arbitrary but
fixed pairing of sites (i, j), we can define the N/2 parities p(i,j) = 2iτiτj = ±1. Sim-
ilar to above, each eigenstate of a spin Hamiltonian is 2N/2-fold degenerate, each
copy labeled by the above parities. In other words, the total Majorana Hilbert
space dimension of 23N/2 is organized into the usual 2N physical spin configura-
tions, each with an artificial degeneracy of 2N/2. Choosing a different pairing of
sites corresponds to a unitary rotation of the 2N/2 basis vectors for the artificial
part of the Hilbert space. Note that since Eq. (2.1) fully reproduces the correct
spin algebra without the need for an additional constraint, this Hilbert-space en-
largement introduces no unphysical states, but only exact copies of the physical
spin states [163]. This degeneracy is closely connected to the aforementioned lo-
cal Z2 gauge symmetry: As the transformation τi → −τi flips the parity p(i,j), it
switches between degenerate states of different parities.

For thermodynamic properties, the above degeneracy leads to the relation
Zpm = 2N/2Z between the exact partition functions defined in spin and SO(3)
pseudo-Majorana (pm) Hilbert space. Thus, we have for the physical free energy
per site, f = −T log (Z) /N ,

f = fpm + T

2 log (2) (2.6)

where the first term fpm ≡ − T
N

log (Zpm) will be computed via PMFRG and the
second term accounts for the redundancy inherent in the SO(3) Majorana repre-
sentation.

Any expectation values for spin operators (or correlators) Os are easily com-
puted in the Majorana representation as well. This follows from the observation
that the Majorana version of such an operator, Opm, is diagonal in the parity
sector and the same is true for any physical density matrix ρpm, like for example
the Boltzmann factor ρpm ∼ e−βHpm . Then the degeneracy factor 2N/2 simply can-
cels [215] and we have

⟨Os⟩ ≡ tr Osρs

tr ρs

= tr Opmρpm

tr ρpm

≡ ⟨Opm⟩ . (2.7)
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Chapter 2. The Pseudo Majorana functional renormalization group

Finally, we discuss the role of rotations in spin space. In order to employ
the global SO(3) symmetry of the Heisenberg Hamiltonian in Eq. (1.43) later on,
we demonstrate here that the three Majoranas transform under SO(3) rotations
like the coordinates of a physical vector. Using τi, the spin operators can be re-
expressed as

Sα
i = τiη

α
i . (2.8)

We may now consider the general SO(3) transformation ηα
i → ∑

β Rαβη
β
i with

Rαβ ∈ SO(3) being a three dimensional rotation matrix. As τi is invariant under
this transformation [163], spin operators must transform as

RαβS
β
i = τi

∑
β

Rαβη
β
i . (2.9)

It follows that physical SO(3) rotations of a spin i are equivalent to rotations of
the Majorana vector (ηx

i , η
y
i , η

z
i ).

2.2. General Majorana FRG Flow Equations

As a basis for the FRG treatment of spin systems in pseudo-Majorana repre-
sentation, we first introduce flow equations that are valid for general interacting
Majorana Hamiltonians. We consider

H = i

2
∑
µ1,2

Aµ1µ2ηµ1ηµ2

+ 1
4!

∑
µ1,2,3,4

Vµ1µ2µ3µ3ηµ1ηµ2ηµ3ηµ4 , (2.10)

where {µi} is an arbitrary set of single-particle indices. As above, we use the con-
vention

{
ηµi
, ηµj

}
= δµiµj

. Majorana exchange statistics require the antisymmetry
of A and V under exchange of any two indices, hermiticity mandates that both
couplings must be real.

Assuming thermal equilibrium, we move on to an imaginary time path integral
formulation [215, 216] defined in terms of Grassmann fields ηµ(τ). The action reads

S =
∫ β

0
dτ

(∑
µ

1
2ηµ(τ)∂τηµ(τ) +H ({ηµ(τ)})

)
, (2.11)

where ∂τ denotes a derivative with respect to imaginary time and β = 1/T . We
define the Fourier transform ηµ(τ) = T

∑
n e

iωnτηµ(iωn) where the fermionic Mat-
subara frequencies are given by iωn = πT (2n + 1), with n ∈ Z. In slight abuse
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2.2. General Majorana FRG Flow Equations

of notation, in the following, we will denote ωn1 by ω1 and equivalently for other
frequencies. The non-interacting part of the action may then be written as

S0 = −1
2

1
β2

∑
ω1,2

∑
µ1,2

ηµ1(ω1)
[
G−1

0

]
µ1ω1, µ2ω2

ηµ2(ω2). (2.12)

with the bare Majorana Green function[
G−1

0

]
µ1ω1, µ2ω2

= (iω1δµ1µ2 − iAµ1µ2) βδω1,−ω2 . (2.13)

This definition is analogous to the complex fermionic bare Green function except
for the opposing signs of the two frequencies in the Kronecker delta related to the
absence of an independent Grassmann partner field η̄ with a relative sign in the
Fourier transform.

We are now ready to apply the general FRG scheme from Ref. [123], derived
for an action of a superfield vector Ψ containing an arbitrary number of bosonic
or Grassmann fields labeled by the composite index l = (ωl, µl),

S[Ψ] = S0[Ψ] + Sint[Ψ]

= −1
2

∫
l

∫
l′

Ψl

[
G−1

0

]
l,l′

Ψl′ + Sint[Ψ]. (2.14)

where
∫

l = β−1∑
ωl

∑
µl

. A comparison of Eq. (2.14) and Eq. (2.12) yields the
direct correspondence Ψl=(µl,ωl) = ηµl

(ωl). The difference to the superfield vectors
of complex fermions or bosons is emphasized, which require an additional but
independent superfield label, i.e. Ψ = (ψ̄, ψ).

The starting point of the FRG scheme is the introduction of a cutoff scale
Λ in the bare Green function G0 → GΛ

0 such that GΛ=∞
0 = 0 and GΛ=0

0 = G0.
Although the flow equations describing the evolution of irreducible vertices with
Λ [123] below are general, in the rest of this work, we will consider a multiplicative
Matsubara frequency cutoff ΘΛ(ω1) to the bare Green function[

GΛ
0

]
µ1ω1,µ2ω2

= ΘΛ(|ω1|) [G0]µ1ω1,µ2ω2
. (2.15)

At zero temperature, this cutoff is often chosen to be a Heaviside function ΘΛ(|ω|) =
θ(|ω| − Λ), at finite temperatures a smooth cutoff must be chosen instead. While
a momentum based cutoff is also used in some works, we will not consider such
schemes here, as the main focus lies on pseudo-Majoranas without kinetic energy.

As a consequence of the cutoff, the self-energy Σ and the four-point vertex
Γ acquire implicit dependence on Λ. These quantities are defined via the Dyson
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Chapter 2. The Pseudo Majorana functional renormalization group

equation in a superspace spanned by (ωi, µi)

G =
[
G−1

0 − Σ
]−1

(2.16)

and the tree-expansion for the connected Green functions

G4,c
l1,l2,l3,l4 = −

∫
l1′,2′,3′,4′

Gl1l1′ Gl2l2′ Gl3l3′ Gl4l4′

× Γl1′ l2′ l3′ l4′ (2.17)

respectively. This Λ-dependence is given by coupled differential equations, referred
to as flow equations. Physical results can be extracted from the solution at Λ = 0.
Since the action for Majorana systems was rephrased in superfield notation, we can
employ the associated general flow equations [123] for the interaction correction
to the free energy, FΛ

int, ΣΛ and ΓΛ

d
dΛF

Λ
int = 1

2Tr
[
ĠΛG0,Λ

[
GΛ
]−1

ΣΛ
]
, (2.18a)

d
dΛΣΛ

1,2 = −1
2
∑
1′,2′

ĠΛ
1′,2′ΓΛ

1′2′,1,2 , (2.18b)

d
dΛΓΛ

1,2,3,4 = XΛ
1,2|3,4 −XΛ

1,3|2,4 +XΛ
1,4|2,3 , (2.18c)

XΛ
1,2|3,4 =

∑
1′,...,4′

ĠΛ
1′,2′GΛ

3′,4′ΓΛ
1,2,1′,3′ΓΛ

2′,4′,3,4. (2.18d)

As appropriate in thermal equilibrium, and to simplify notation, we employ a
modified version of the Green function and vertices with the frequency conserving
delta-function explicitly spelled out,

Gµ1ω1,µ2ω2 = Gµ1µ2(ω2)βδω1,−ω2 (2.19a)
Σµ1ω1,µ2ω2 = Σµ1µ2(ω1)βδω1,−ω2 (2.19b)

Γµ1ω1, µ2ω2, µ3ω3, µ4ω4 ≡ Γµ1µ2µ3µ4(ω1, ω2, ω3, ω4)
× βδω1+ω2+ω3+ω4,0. (2.19c)

With the above definition, the Dyson equation for fixed frequency indices, G−ω,ω =[[
G−1

0

]
ω,−ω

− Σω,−ω

]−1
, can be written as

G(ω) = [iω − iA− Σ(ω)]−1 . (2.20)

The Green function and self-energy defined in Eq. (2.19a) and (2.19b) fulfillG(ω) =
GT (−ω) and Σ(ω) = ΣT (−ω), respectively.
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2.2. General Majorana FRG Flow Equations

We also restrict ourselves to the absence of parity symmetry breaking (ex-
pectation values of odd numbers of Majorana operators vanish) and neglect the
contribution from the six-point vertex. The flow equation for the four-point vertex
then separates into three distinct channels, each of which is characterized by one
of the three bosonic transfer frequencies defined as

s = ω1 + ω2 = −ω3 − ω4,

t = ω1 + ω3 = −ω2 − ω4,

u = ω1 + ω4 = −ω2 − ω3. (2.21)

The Majorana flow equations for the interaction correction to the free energy, self
energy and the four-point vertex read [123]

d
dΛF

Λ
int = 1

2

∫
ν1,2,3,4

T
∑
ω′
SΛ

ν1ν2(ω′)G0,Λ
ν2ν3(−ω′)

[
GΛ
]−1

ν3ν4
(−ω′)ΣΛ

ν4,ν1(ω′)

(2.22a)
d

dΛΣΛ
µ1,µ2(ω) = −1

2

∫
ν1,2

T
∑
ω′
SΛ

ν1ν2(ω′)ΓΛ
ν1ν2µ1µ2(−ω′, ω′, ω,−ω) (2.22b)

d
dΛΓΛ

µ1,µ2,µ3,µ4(ω1, ω2, ω3, ω4) =
∫

ν1,2,3,4
T
∑
ω

SΛ
ν1ν2(ω)

×
[
ΓΛ

µ1µ2ν4ν1(ω1, ω2, ω − s,−ω)ΓΛ
ν2ν3µ3µ4(ω,−ω + s, ω3, ω4)GΛ

ν3ν4(ω − s)

+ΓΛ
µ1ν1µ3ν4(ω1,−ω, ω3, ω − t)ΓΛ

ν2µ2ν3µ4(ω, ω2,−ω + t, ω4)GΛ
ν3ν4(ω − t)

−ΓΛ
µ1ν4ν1µ4(ω1, ω − u,−ω, ω4)ΓΛ

ν3µ2µ3ν2(−ω + u, ω2, ω3, ω)GΛ
ν3ν4(ω − u)

]
.

(2.22c)

As the free energy does not feed back into the other flow equations it is usually
not considered within FRG schemes. In this chapter, we use its solution to derive
further thermodynamic quantities. In these expressions, we have introduced the
single-scale propagator which is defined as a matrix product of Green functions

SΛ = −GΛ
[

d
dΛ

[
GΛ

0

]−1
]

GΛ

SΛ(ω2) = −GΛ(ω2)
[

d
dΛ

[
GΛ

0

]−1
(ω2)

]
GΛ(ω2). (2.23)

In order to solve the flow equations, initial conditions for self-energy and the
four-point vertex are required. As the bare propagator vanishes in this limit, we
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Chapter 2. The Pseudo Majorana functional renormalization group

immediately see that

FΛ→∞
int = 0,

ΣΛ→∞
µ1,µ2 (ω) = 0,

ΓΛ→∞
µ1,µ2,µ3,µ4(ω1, ω2, ω3, ω4) = Vµ1,µ2,µ3,µ4 . (2.24)

2.3. Symmetry-Based Vertex Parametrization

We now specialize the general Majorana FRG of this section to treat the interacting
system of pseudo-Majoranas ensuing from the application of the representation
(2.1) to the Heisenberg spin-1/2 Hamiltonian (1.43),

H = −
∑
(i,j)

Jij

(
ηy

i η
y
j η

z
i η

z
j + ηz

i η
z
j η

x
i η

x
j + ηx

i η
x
j η

y
i η

y
j

)
. (2.25)

As a first step, we proceed with a detailed discussion of the parametrization of ver-
tices and propagators using the symmetries of Eq. (2.25). Following the approach
of Ref. [122], we will first derive symmetry relations for the Green functions defined
as

G(1, 2) =
∫ β

0
dτ1dτ2e

iω1τ1eiω2τ2 ⟨ηµ1(τ1)ηµ2(τ2)⟩

= Gµ1,µ2(ω2)βδω1,−ω2 (2.26)

G4(1, 2, 3, 4) =
∫ β

0
dτ1dτ2dτ3dτ4e

i(ω1τ1+ω2τ2+ω3τ3+ω4τ4)

× ⟨ηµ1(τ1)ηµ2(τ2)ηµ3(τ3)ηµ4(τ4)⟩ (2.27)
= G4

µ1,µ2,µ3,µ4(s, t, u)βδω1+ω2+ω3+ω4,0. (2.28)

where the labels (1, 2, 3, 4) contain all arguments that are not explicitly specified,
i.e 1 = (µ1, ω1) in this case. Matsubara frequency conservation follows from the
fact that thermal expectation values only depend on imaginary time differences.
The time-ordering operator is suppressed since it is included in the path integral
formalism by default. The properties derived in the following will then carry over
to Σ and Γ due to their relations via Eqs. (2.16) and (2.17).

Hermiticity
The Hamiltonian is a hermitian operator, satisfying H = H†. Due to ⟨O⟩∗ =

〈
O†
〉

and η(τ)† = e−HτηeHτ = η(−τ) in the Heisenberg picture, one can find the complex
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2.3. Symmetry-Based Vertex Parametrization

conjugate of the two-point Green functions as

G(1, 2)∗ =
∫
dτ1dτ2e

−iω1τ1−iω2τ2 ⟨ηµ2(−τ2)ηµ1(−τ1)⟩

= −G(1, 2). (2.29)

As a consequence, the two-point Green function in Matsubara frequency space is
purely imaginary and from an analogous argument, the four-point Green function
must be real

G(1, 2) ∈ iR,

G4(1, 2, 3, 4) ∈ R. (2.30)

Time reversal symmetry
Time reversal T is an anti-unitary operation (⟨ψ|ψ′⟩∗ = ⟨Tψ|Tψ′⟩) which in the
present case can be defined by performing a complex conjugation while leaving
Majorana operators invariant [217]:

TiT−1 = −i, TηµT
−1 = ηµ. (2.31)

This flips the sign of the spin operators (2.1) as required. Time reversal symmetry
is violated by an external magnetic field or, more generally, any Majorana bilin-
ear in the Hamiltonian. For a T -symmetric Hamiltonian THT−1 = H, thermal
expectation values obey ⟨O⟩ = ⟨TOT−1⟩∗. From this, we have ⟨ηµ1(τ1)ηµ2(τ2)⟩ =
⟨ηµ1(τ1)ηµ2(τ2)⟩∗ and with Eq. (2.26), it follows that

Gµ1µ2(ω1, ω2) = Gµ1µ2(−ω1,−ω2)∗. (2.32)

Similarly, the four-point correlator has the property

G4(1, 2, 3, 4) = G4
µ1µ2µ3µ4(−ω1,−ω2,−ω3,−ω4)∗. (2.33)

Local Z2 gauge redundancy
Since our considerations from here on require the explicit specification of site
indices, we will now separate the previously used superlabel µ into a site-index
and a Majorana flavor µ → (i, α). In the SO(3) Majorana representation spins
are invariant under the gauge transformation ηα

i → εiη
α
i for all α = x, y, z with

εi = ±1 for an arbitrary lattice site i. Since expectation values must be invariant
under gauge transformations as well, we may write〈

ηα1
i1 (τ1)ηα2

i2 (τ2)
〉

= εi1εi2

〈
ηα1

i1 (τ1)ηα2
i2 (τ2)

〉
, (2.34)
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where εi1εi2 = −1 may always be chosen for two different sites. As a consequence,
non-zero propagators must contain an even number of Majorana operators from
each site, so that

Gi1i2(1, 2) ≡ δi1i2Gi1(1, 2). (2.35)

Likewise, the four-point correlator can only depend on up to two distinct sites
only, so we choose

G4
i,i,j,j(1, 2, 3, 4) ≡ G4

ij(1, 2; 3, 4). (2.36)

Correlators of the form ijij and ijji need to be brought to the standard form
Eq. (2.36) using fermionic anticommutation rules, which restricts the number of
allowed permutations in G4

ij(1, 2; 3, 4) to exchanges of the first and last two indices
only. As a consequence of the (bi-)local nature of propagators (four-point vertices),
the site summations in the flow equations can be simplified. The special case i = j
for the four-point vertex needs to be considered separately. The corresponding
flow equations can then be expressed diagrammatically as shown in Fig. 2.1. The
bubble-diagram corresponding to the s-channel of the non-local vertex Γij shown
in Fig. 2.1 (d) is of particular interest. As in the PFFRG this diagram includes the
random-phase approximation which is responsible for the emergence of long-range
magnetic order [120].

Lattice symmetries
For simplicity, the systems that are considered in the following consist of equivalent
sites. Correlators can then always be computed with one arbitrary reference site
fixed. Combining this with local Z2 gauge redundancy eliminates all site indices
of the two-point correlator. Similarly, four-point correlators depend only on the
distance vector between the two sites. Although this means that the order of
site indices in Γij is irrelevant for systems with equivalent sites, we will not make
use of this property. As a result, the pseudo-Majorana flow equations presented
here are easily generalized towards non-Bravais lattices by adding an additional
sublattice-index. Most lattice systems further exhibit point-group symmetries,
such as the C4 rotation symmetry and mirror planes of the square lattice, which
can straightforwardly be used to reduce the numerical effort and are not further
discussed in the following due to their lattice-specific nature.

Global SO(3) rotation symmetry
The global SO(3) spin-rotation symmetry of the Heisenberg model can easily

be translated to vertex functions. As discussed in Sec. 2.1, global spin rotations
specified by a 3 × 3 rotation matrix Rαµ(ϕ) act on the Majorana fermions as

ηα
i →

∑
β

Rαβ(ϕ)ηβ
i ∀i. (2.37)
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Figure 2.1.: Z2-invariant Majorana FRG flow equations for the interaction cor-
rection to the free energy (a), the self-energy (b), and the local (c)
and nonlocal (d) four-point vertices. The order of labels 1 = (α1, ω1)
always corresponds to that on the left hand side of the vertex flow
equations such that the site index is conserved along solid lines. In
these equations, internal lines correspond to fully dressed Green func-
tions Gi(1, 2), while the single scale propagator Si(1, 2) is represented
by a slashed line. Similarly, the crossed line in (a) corresponds to the
local propagator [SG0G−1]i (1, 2).
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Angle x y z
π/2 ηy → −ηz ηx → ηz ηx → −ηy

ηz → ηy ηz → −ηx ηy → ηx

π ηy → −ηy ηx → −ηx ηx → −ηx

ηz → −ηz ηz → −ηz ηy → −ηy

Table 2.1.: Symmetry transformations corresponding to specific spin rotations
along the x, y and z axes.

The Heisenberg Hamiltonian is invariant under spin rotations due to the isotropic
nature of its couplings.

We will now apply this symmetry to restrict the types of vertices and find
relations between vertices with different flavor indices. Of particular interest are
the specific rotations along the x, y and z-axes as displayed in Table 2.1. The
combination Rx(π/2) ◦ Rz(π/2) ≡ P realizes an anti-cyclic permutation of the
flavors. We apply these symmetries to correlators, using the convention γ ̸= α ̸=
β ̸= γ to refer to fixed, pairwise different flavors. In this way, we find that the
two-point Green function does not depend on any flavor labels.

〈
ηα

1 η
β
2

〉 Rα(π)= −
〈
ηα

1 η
β
2

〉
= 0,

⇒ Gα1,α2(1, 2) = Gα1(1, 2)δα1,α2
P= G(1, 2)δα1,α2 . (2.38)

Because the four-point correlator has four flavor indices, at least two of them
must be equal. An argument analogous to above shows that only vertices with an
even number of flavors can be nonzero. Furthermore, rotations by π/2 transform
different flavor combinations into each other, for instance

〈
ηα

1 η
α
2 η

β
3 η

β
4

〉 Rα(π/2)= ⟨ηα
1 η

α
2 η

γ
3η

γ
4 ⟩ . (2.39)

These arguments identify four independent flavor configurations for the four-point
correlator, G4

xxxx(1, 2, 3, 4), G4
xxyy(1, 2, 3, 4), G4

xyxy(1, 2, 3, 4) and G4
xyyx(1, 2, 3, 4),

all other types are either zero or related by Eq. (2.39).

After these simplifications, we consider a general rotation to find a relation
between those four different correlators. Since they are now parametrized in terms
of x and y, we only need to consider rotations along the z-axis. The ηx Majoranas
then transform as ηx

i → cos θηx
i − sin θηy

i so that

G4
xxxx

Rz(θ)= ⟨(cos θηx
1 − sin θηy

1) . . . (cos θηx
4 − sin θηy

4)⟩ . (2.40)
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Expanding the product and using the above symmetries, we obtain a relation
independent of θ

G4
xxxx = G4

xxyy +G4
xyxy +G4

xyyx, (2.41)
where the argument (1, 2, 3, 4) has been suppressed. Since we considered an ar-
bitrary rotation, our last consideration further serves as a proof that no other
symmetries than the ones already shown may be found from SO(3) rotations. In-
deed, one arrives at the same identity regardless of which type of correlator one
transforms (i.e. transforming G4

xyxy yields the same result). Rotations along the x
or y direction also generate no further information as a result of the permutation
symmetry P and rotations around an arbitrary axis may always be decomposed
as a product of x, y and z rotations.

2.4. Pseudo-Majorana FRG Flow Equations

The symmetries of the last section imply the following parametrization of the
pseudo-Majorana propagator,

G(1, 2) = G(−ω1)δi1,i2δα1,α2δω1,−ω2β, (2.42)

where the imaginary and antisymmetric self-energy, abbreviated as Σ(ω) = −iγ(ω),
enters via the Dyson equation (2.16),

G(ω) = 1
iω + iγ(ω) ≡ −ig(ω). (2.43)

In analogy to the real functions γ(ω) and g(ω) we also replace the imaginary
single scale propagator via SΛ(ω) = −iġΛ(ω). Due to the diagonal structure of the
propagators, the symmetries for the four-point Green functions then carry over
to vertex functions [cf. Eq. (2.17)] whose frequency dependence is parametrized
by the three bosonic frequencies introduced in Eq. (2.21). The three independent
four-point vertices are

Γa ij(s, t, u) ≡ Γxi, xi, xj, xj(s, t, u),
Γb ij(s, t, u) ≡ Γxi, xi, yj, yj(s, t, u),
Γc ij(s, t, u) ≡ Γxi, yi, xj, yj(s, t, u). (2.44)

In the special case i = j, there are only two independent vertices since

Γc ii(s, t, u) = −Γb ii(t, s, u). (2.45)
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Operation Symmetry for Γµ ij(s, t, u) valid µ
1 ↔ 2 t ↔ u and Γµ ↔ −Γµ a, b

T ◦ (1, 3) ↔ (2, 4) s ↔ −s a, b, c
T ◦ (1, 2) ↔ (3, 4) t ↔ −t and i ↔ j a, b, c
T ◦ (1, 2) ↔ (4, 3) u ↔ −u and i ↔ j a, b, c

Table 2.2.: Transformations of the frequency arguments under time reversal T and
specific permutations of indices inΓij(1, 2; 3, 4). The latter three rows
apply to all three types of vertices and allow for a parametrization using
positive frequencies only. Note that the final two permutations also
exchange the order of i and j which is of importance for non-Bravais
lattices. The remaining t ↔ u symmetry for Γc can be established
by the exchange 1 ↔ 2, which changes the vertex to the form Γxyyx.
Using Eq. (2.41) to express Γxyyx(s, t, u) = −Γc(s, u, t) in terms of the
other vertices used in the parametrization, we obtain Γc ij(s, u, t) =
(−Γa ij + Γb ij + Γc ij)(s, t, u).

Vertices with negative bosonic frequencies are symmetry related to positive fre-
quencies by time-reversal and a symmetry t ↔ u further allows to reduce the
numerical effort. Details are given in Table 2.2. In the above parametrization, the
flow equations for the interaction correction to the free energy per spin and the
self-energy may be simplified. Specifying the external flavor and site indices on
the left hand side of the flow equations, we directly perform flavor sums to obtain

d
dΛf

Λ
int = −3T

2
∑
ω

ġΛ(ω)g
0,Λ(ω)
gΛ(ω) γ

Λ(ω), (2.46)

d
dΛγ

Λ(ω1) = T

2
∑
ω

∑
j

ġΛ(ω)
{

ΓΛ
a ij(0, ω1 + ω, ω1 − ω)

+2ΓΛ
b ij(0, ω1 + ω, ω1 − ω)

}
. (2.47)

Similarly, we may now express the flow equations for four-point vertices in the
same way. For conciseness of notation, both the initial fermionic frequencies as
well as the exchange frequencies s, t and u will be used on the right hand side
which are defined by Eq. (2.21), or inversely,

ω1 = s+ t+ u

2 , ω2 = s− t− u

2
ω3 = −s+ t− u

2 , ω4 = −s− t+ u

2 . (2.48)
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2.4. Pseudo-Majorana FRG Flow Equations

d
dΛΓΛ

a ij(s, t, u) = XΛ
a ij(s, t, u) − X̃Λ

a ij(t, s, u) + X̃Λ
a ij(u, s, t) (2.49a)

d
dΛΓΛ

b ij(s, t, u) = XΛ
b ij(s, t, u) − X̃Λ

c ij(t, s, u) + X̃Λ
c ij(u, s, t) (2.49b)

d
dΛΓΛ

c i,j ̸=i(s, t, u) = XΛ
c ij(s, t, u) − X̃Λ

b ij(t, s, u) + X̃Λ
d ij(u, s, t) (2.49c)

XΛ
a,ij(s, t, u) = T

∑
ω,k

PΛ(ω, s)
[
ΓΛ

a,ki (s, ω + ω1, ω + ω2) ΓΛ
a,kj (s, ω − ω3, ω − ω4)

+ 2(a → b)
]

(2.50a)

XΛ
b,ij(s, t, u) = T

∑
ω,k

PΛ(ω, s)
[
ΓΛ

a,ki (s, ω + ω1, ω + ω2) ΓΛ
b,kj (s, ω − ω3, ω − ω4)

+ (a → b) + (a ↔ b)
]

(2.50b)

XΛ
c,ij(s, t, u) = T

∑
ω,k

PΛ(ω, s)
[
ΓΛ

c,ki (s, ω + ω1, ω + ω2) ΓΛ
c,kj (s, ω − ω3, ω − ω4)

+ (ω1 ↔ ω2, ω3 ↔ ω4)
]

(2.50c)

X̃Λ
a i,j ̸=i(s, t, u) = T

∑
ω

PΛ(ω, s)
{[

ΓΛ
a,ij (ω + ω2, s, ω + ω1) ΓΛ

a,ij (ω − ω4, s, ω − ω3)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
]

+ 2(a → c)
}

(2.51a)

X̃Λ
b i,j ̸=i(s, t, u) = T

∑
ω

PΛ(ω, s)
{[

ΓΛ
a,ij (ω + ω2, s, ω + ω1) ΓΛ

c,ij (ω − ω4, s, ω − ω3)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
]

+ (a → c) + (a ↔ c)
}

(2.51b)

X̃Λ
c i,j ̸=i(s, t, u) = T

∑
ω

PΛ(ω, s)
{[

ΓΛ
b,ij (ω + ω2, ω + ω1, s) ΓΛ

b,ij (ω − ω4, ω − ω3, s)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
]

+ (b → c)
}

(2.51c)

X̃Λ
d i,j ̸=i(s, t, u) = T

∑
ω

PΛ(ω, s)
{[

ΓΛ
b,ij (ω + ω2, ω + ω1, s) ΓΛ

c,ij (ω − ω4, ω − ω3, s)

+ (ω1 ↔ ω2, ω3 ↔ ω4, i ↔ j)
]

+ (b ↔ c)
}

(2.51d)

To reduce the length of expressions, the bubble propagator PΛ = ġΛ(ω)gΛ(ω+ s)
and single-channel contributions XΛ

a,b,c ij and X̃Λ
a,b,c,d ij were defined in Eqs. (2.50)

and (2.51) [195]. The flow equations of local vertices are obtained noting that
X̃Λ

a,b,c ii(s, t, u) ≡ XΛ
a,b,c ii(s, t, u). It is further stressed that no flow equation for
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Chapter 2. The Pseudo Majorana functional renormalization group

Γc ii is required in Eq. (2.49), as this vertex is equivalent to Γb ii by virtue of
Eq. (2.45).

In the PFFRG, the Katanin truncation scheme [149] was instrumental in pro-
viding sufficient feedback of the self-energy flow into the vertex flow equations [119].
It amounts to promoting the single-scale propagator in the flow equations of four-
point vertices to a full derivative of the Green function

SΛ(ω) → d
dΛGΛ(ω) ≡ Sconv.(ω) + SKat(ω)

= −G(ω)2 d
dΛ

[
G0Λ(ω)

]−1
+ G(ω)2 d

dΛΣΛ(ω). (2.52)

At zero temperature, frequencies become continuous and T
∑

ω → (2π)−1 ∫ dω.
Using the sharp frequency cutoff G0Λ(ω) = G0(ω)θ(|ω| − Λ), we thus obtain in the
usual way using Morris’s Lemma [218]

ġΛ
T =0(ω) = −δ(|ω| − Λ)

ω + γΛ(ω) + ġΛ
Kat(ω). (2.53)

At finite temperatures, a sharp cutoff of frequencies is no longer possible due to
ambiguities that arise if |ω| − Λ lies between two discrete Matsubara frequencies.
Noting that there is still freedom in the choice of a smooth cutoff [203, 219], here
we choose a Lorentzian cutoff function

ΘΛ(ωn) = ω2
n

ω2
n + Λ2 . (2.54)

Using Eqs. (2.15), (2.16) and (2.52) the expressions for the Green function and the
single-scale propagator become

gΛ(iωn) = ωn

ω2
n + ωnγ(ωn) + Λ2

ġΛ(iωn) = −g2(iωn)
(

2Λ
ωn

+ dγΛ(iωn)
dΛ

)
. (2.55)

Finally, we need to specify the initial conditions for the newly defined vertices.
After re-expressing the Heisenberg Hamiltonian (1.43) by insertion of Eq. (2.1) for
the spin operators, a comparison of coefficients yields

fΛ→∞
int = 0,

ΣΛ→∞ = 0,
ΓΛ→∞

a ij = ΓΛ→∞
b ij = 0,

ΓΛ→∞
c ij = −Jij. (2.56)
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To summarize, in the PMFRG scheme the flow equations for the free energy (2.46),
self-energy (2.47) and the vertex functions (2.49), are solved numerically starting
from large but finite Λ ≫ J down to Λ ≃ 0, approximating the initial conditions
with the Λ → ∞ values presented above. The flow of the free energy correction
is integrated along the way but does not feed back into the other flow equations.
The next section describes how to extract observables along the flow and, most
importantly, at the physical endpoint Λ = 0.

2.5. Observables

In this section, we discuss the observables for Heisenberg spin-1/2 systems that will
be studied in the following sections. These are the free energy, internal energy,
heat capacity and static susceptibility. We explain how these observables are
calculated from the eigenstates and -energies of the spin Hamiltonian (1.43), its
exact representation with SO(3) Majorana fermions and from the (approximate)
solution of the PMFRG flow equations.

From the partition function of a N -spin system with eigenenergies En, Z =∑
n e

−βEn , the free energy per spin is given by

F/N = f = − T

N
log (Z) = − T

N
log

∑
n

e−βEn . (2.57)

The energy per spin is

E/N = −∂ log (Z)
N∂β

= ∂(fβ)
∂β

= 1
NZ

∑
n

Ene
−βEn , (2.58)

which as a function of T also determines the heat capacity

C/N = ∂

∂T
E/N = 1

NT 2

(
1
Z

∑
n

E2
ne

−βEn − E2
)
. (2.59)

For small systems amenable to exact diagonalization, the rightmost expressions
are most convenient. From the solution of the PMFRG flow equation (2.46) for
the interaction correction to the pseudo-Majorana free energy per site, we find
fpm = fpm,0 + fΛ=0

int . The non-interacting free energy for three pseudo-Majoranas
per site is fpm,0 = −3T log(2)/2. Using the relation between fpm and f , Eq. (2.6),
we finally obtain

f = −T log(2) + fΛ=0
int . (2.60)
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Chapter 2. The Pseudo Majorana functional renormalization group

Figure 2.2.: Zero temperature PMFRG flow of the static local and nonlocal sus-
ceptibilities χij for the antiferromagnetic Heisenberg dimer. The grey
dotted line represents the exact physical (Λ = 0) result.

The static spin-spin correlator can be computed from

χij =
∫ β

0
dτ
〈
Sz

i (τ)Sz
j (0)

〉
. (2.61)

Note that χij can also be interpreted as a static (zero-field) susceptibility as it
measures the response of a spin at site i when a magnetic field is exerted at site
j. We represent the spin operators by Majorana fermions and obtain from the
vertices of the PMFRG at cutoff scale Λ,

χΛ
ij = + T 2 ∑

ω1ω2

gΛ(ω1)2gΛ(ω2)2ΓΛ
c ij(0, ω1 + ω2, ω1 − ω2)

+ T
∑
ω1

gΛ(ω1)2δij. (2.62)

2.6. Application: Small Spin Clusters

Spin dimer and the fermion parity issue
Small spin clusters constitute an ideal testbed for probing the accuracy of numeri-
cal approaches as they already represent non-trivial problems within the PMFRG
(and PFFRG) but are still exactly solvable. We first investigate the simple case
of two spins, i = 0, 1 coupled with an antiferromagnetic Heisenberg interaction
J = 1. Due to the small Hilbert space, this dimer model HN=2 = ∑

α S
α
0 S

α
1 is

58



2.6. Application: Small Spin Clusters

analytically solvable. While the free energy Eq. (2.57) is straightforwardly found,
some care is required for the calculation of the susceptibility from the Lehmann
representation where the term contributing in the case iν + En − Em = 0 is often
neglected in textbook derivations. We obtain

χ00 = eβ − 1 + β

2(eβ + 3) ,

χ01 = −eβ − 1 − β

2(eβ + 3) . (2.63)

The PMFRG results for the static susceptibility in the case T = 0 are shown
in Fig. 2.2 as a function of the cutoff. We find that χΛ

ij flows smoothly without
any feature, surpasses the exact results χij = ±0.5 and diverges at Λ = 0. This
unphysical divergence is not restricted to the Heisenberg dimer but appears in
all other models considered here. However, the dimer allows for the most simple
discussion of the origin of this divergence, which equally plagues the flow of the
nonlocal vertices of type Γa,01 = Γx0,x0,x1,x1 and Γc,01 = Γx0,y0,x1,y1.

To explain the origin of this divergence, consider the Heisenberg dimer which
can be exactly solved in the SO(3) Majorana representation,

HN=2 = −1
4p

xpypz (px + py + pz) . (2.64)

Here, pα ≡ 2iηα
0 η

α
1 are the three flavor parities related to the non-local parity

introduced in Sec. 2.1 via p(0,1) = 2iτ0τ1 = −pxpypz. While p(i,j) = ±1 is always
conserved for generic spin systems, pα = ±1 are additional constants of motion
only for the dimer, Eq. (2.64). As any state, the ground state is 2N/2 = 2 fold
degenerate and identified in this case by pα = 1 or pα = −1 for all α. Now
consider the effect of a small perturbation, HN=2 → HN=2 + vpx. This does not
correspond to any physical perturbation in terms of spin operators but lifts the
ground state degeneracy. From this point of view, the ground state expectation
value ⟨pα⟩ = 0 is fragile, any finite perturbation violating the conservation of τi as
defined in Eq. (2.4) with i = 0, 1 generically causes ⟨pα⟩ = ±1. This effect is of
course alleviated at finite temperature, where the relative population difference of
the two lowest states split by ∼ v is controlled by the ratio v/T . Kubo’s formula
allows to formalize the above considerations for the linear response of ⟨pα⟩ with
respect to vpx,

⟨pα⟩ = −vGR
pαpx(iωk = 0). (2.65)

In Matsubara frequency space, the retarded Green function above may be obtained
in the Lehmann representation noting that the parities are diagonal in the eigen-
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Chapter 2. The Pseudo Majorana functional renormalization group

basis of the unperturbed Hamiltonian ⟨n|pα|m⟩ = pα
nδnm,

Gpαpx(iωk = 0) = β

Z
∑

n

e−βEnpα
np

x
n. (2.66)

At low temperatures this yields β = 1
T

, similar to the Curie-like 1/T behaviour of
the spin susceptibility of a free spin 1/2 which also features a degenerate ground
state in the field-free case. In complete analogy to the spin susceptibility in
Eq. (2.62), we can now find the the tree expansion of the parity susceptibility
Gpαpx(iωk = 0) in terms of the non-local vertices of type Γa (for α = x) or Γc

(α = y, z). The expressions are similar to Eq. (2.62) but crucially probe different
frequency combinations of the vertices (t = 0 instead of s = 0). In other words,
non-local vertex components of order ∼ 1/T are inherently expected in the SO(3)
Majorana representation. In an exact calculation, these components are respon-
sible for the 1/T parity susceptibility of Eq. (2.66), but do not affect the spin
susceptiblity. However, the PMFRG is not an exact method and the unphysical
behavior of χΛ

ij at T = 0 must be a consequence of truncating the PMFRG flow
equations which apparently causes this divergence to spill over to the spin suscep-
tibility. It is an interesting question if an improved two-loop truncation scheme
(correct to order O(J3)) [195] or a recently developed but numerically demanding
multi-loop generalizations of the (PF)FRG [164, 165], can be a possible cure to
this problem.

Fortunately, as the unphysical divergence in the PMFRG flow only occurs at
Λ = 0 and for T = 0, there are other options to extract physically meaningful
results without going beyond the flow equations presented above. First, it is still
possible to detect magnetic phases, heralded by divergences at finite Λ as we have
tested for the J1 − J2 square lattice Heisenberg model (data not shown).

The rest of the discussion is devoted to a second option, which is the restriction
to finite temperatures. As explained above, this can be expected to suppresses the
unphysical divergence and we indeed find all vertices and flowing susceptibilities
converge towards Λ → 0, see lower inset of Fig. 2.3 for T = 0.1.

Dimer and hexamer at finite temperature
Results for the physical finite-T susceptibility of the dimer at Λ = 0 are shown
in Fig. 2.3. For T ≳ 0.2, we find a very close agreement between the suscep-
tibility obtained via PMFRG and the exact result (solid lines) from Eq. (2.63).
The difference between the exact result and the PMFRG increases with decreasing
temperature, in agreement with the discussion in the previous subsection. We also
show analogous results of the PFFRG, where the presence of unphysical states
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Figure 2.3.: (Free) energy, heat capacity per spin and static susceptibilities of the
Heisenberg dimer with J = 1 obtained via PMFRG (red symbols)
at Λ = 0 as a function of temperature. Displayed in solid (dashed)
grey lines are the results obtained by (pseudo-fermion) exact diago-
nalization, as well as the finite temperature spin susceptibilities of the
PFFRG in black symbols. Each data point corresponds to a fully con-
verged flow with respect to Λ as demonstrated in the exemplary plot
at T = 0.1 (cf. Fig. 2.2).
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seriously compromises the accuracy of the results at any finite temperature scale.
To support this interpretation, we have also included the results of an exact di-
agonalization scheme of the pseudo-fermionic Hamiltonian without projecting out
unphysical states, further referred to as PFED. The close agreement between PF-
FRG and PFED demonstrates the problematic impact of unphysical states at finite
temperatures which so far has no known resolution. One approach, the Popov-
Fedotov projection scheme, suppresses unphysical states in exact calculations of
observables upon the introduction of an imaginary chemical potential. Producing
a quarter-period shift of Matsubara frequencies [203, 220], this option can be in-
tegrated in the PFFRG, however, numerical results show that the spin constraint
|⟨Sz⟩|2 = 1/4 is violated at any temperature due to truncation effects, much in con-
trast to the PMFRG, where the constraint is always fulfilled by construction [160].

Besides the magnetic susceptibility, the solution of the free energy flow equa-
tion enables us to compute a variety of related thermodynamic observables, such
as the energy per spin and the heat capacity, also displayed in Fig. 2.3. We observe
good agreement at large enough temperatures. At intermediate scales T ≃ 0.5,
the quality of the thermodynamic quantities from the PMFRG decreases as can
be seen most clearly from the overestimation of the energy per spin or the under-
estimation of the peak in the heat capacity. These inaccuracies likely stem from
the underestimation of the Majorana self-energy at small frequencies, a known
problem in pseudo-fermion FRG approaches to spin systems of small dimension-
ality [184].

Analogous results are obtained for larger spin clusters such as the Heisenberg
hexamer, a hexagon of six equivalent spins with nearest and next-nearest neighbor
interactions, J1 = 1 and J2 = 0.5 respectively. As shown in Fig. 2.4, the PM-
FRG results are in good agreement with ED at not too small temperatures. The
susceptibilities are generally more accurate than the thermodynamic properties.
The susceptibility obtained via PFFRG shows large deviations from ED results
at all temperatures. It is emphasized again that small spin clusters are particu-
larly challenging within the FRG framework since its built-in mean-field limits are
generally not expected to describe such systems accurately. On the other hand,
mean-field approaches perform better in higher-dimensional systems. The FRG
is, hence, expected to reach its full potential for larger or even infinite systems to
which we move on in the later chapters Chapters 4 to 6.
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4 3

5 2

0 1

Figure 2.4.: PMFRG results for the Heisenberg hexamer in analogy to Fig. 2.3.
The corresponding PFFRG and PFED results of the spin susceptibility
are included in the inset.
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3
Extensions of the formalism

3.1. Parquet formalism and the multiloop expansion

Recently, a very active direction of research in the context of FRG method de-
velopment has been the multiloop expansion [164, 165, 167, 221–226]. Aiming to
improve upon the accuracy of the one-loop formalism, the goal is to systematically
increase the number of diagrams included in the flow equations by recursively
inserting loop diagrams into themselves. Eberlein’s initial inclusion of two-loop
corrections were motivated from diagrams that are included in the three-particle
vertex but can be expressed using a combination of two-particle diagrams, shown
in Fig. 3.1, similar in spirit to the inclusion of Katanin’s correction [149]. A de-
tailed derivation of the two-loop corrections for Majorana fermions is detailed in
Chapter B. In Chapter 5, we shall see the effect of these contributions on the
nearest neighbor pyrochlore ferro- and antiferromagnets.

Soon after this, Kugler and von Delft derived the iterative procedure to include
higher-loop corrections mentioned above [167]. More importantly, they showed
that this procedure converges at infinite loop order to the so-called Parquet ap-
proximation [227, 228], a self-consistent equation based upon the formally exact
Bethe-Salpeter equation [229] shown in Fig. 3.2.

The implementation of these corrections within the PFFRG, while ultimately
successful, were initially met with technical challenges that required significant
improvements to the numerical accuracy of Matsubara frequency discretization
and numerical integration [164, 165]. On the other hand, the PMFRG does not

Figure 3.1.: Two-loop approximation for the six-point vertex.
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Figure 3.2.: Diagrammatic Majorana parquet equations. (a) Self-consistent
Schwinger-Dyson equation for the self-energy Σ. (b) Decomposition of
the Majorana four-point vertex Γ into the fully irreducible vertex R,
two-particle reducible contributions in the s-channel, γ, and γ̄1,2|3,4 =
−γ1,3|2,4 + γ1,4|2,3 and (c) Bethe-Salpeter equation for γ.

require such efforts due to its application at finite temperature where the Mat-
subara frequencies are naturally discretized. To reduce the technical complexity
of this chapter, the reader is referred to Chapter C for details regarding the so-far
unpublished derivation of the Bethe-Salpeter and Schwinger-Dyson equations for
Majorana fermions, as well as the derivation of the one- and two-loop approxima-
tions from this formalism in Section C.2.

Indeed, at finite temperature it is possible to iteratively converge to a solution
of the parquet equations, without resorting to the multiloop expansion. On the
other hand, its benchmark applications to toy-models so-far have been of limited
success, yielding either no substantial improvement or even strictly worse [160],
see also Section C.3.

3.2. Temperature flow

While the parquet formalism surprisingly did not yield substantial improvements
to the one-loop PMFRG, we now turn to a formalism which exploits the existing
strengths of the one-loop formalism and was found to improve the detection of
magnetic phase transitions at much lower temperatures. While PMFRG simula-
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tions at finite temperature represent an important method extension and become
even perturbatively error-controlled at large temperature, the cost of this improve-
ment is significant, as it requires a separate solution of the numerically expensive
FRG flow equations at each temperature. The renormalization group parameter
is typically implemented through an artificial infrared cutoff Λ in the single parti-
cle Green function, suppressing fermionic propagation with Matsubara frequencies
|ωn| ≪ Λ. An alternative formulation was first demonstrated by Honerkamp and
Salmhofer in Ref. [230] for systems of itinerant fermions where temperature was
employed as a flow parameter instead. In this approach, a single FRG flow along
the physical temperature provides a whole slice through a finite-temperature phase
diagram at once. On the other hand, however, the usual notion of RG as a suc-
cessive integration of UV degrees of freedom is lost [181, 231].

Action and field rescaling
We shall assume a general spin-1/2 Hamiltonian

H =
∑
i,α

hα
i S

α
i + 1

2
∑

i,j,α1,α2

Sα1
i Jα1α2

ij Sα2
j , (3.1)

where Sα
i with α = x, y, z are the components of a spin-1/2 operator on site i, Jαβ

ij

are general anisotropic spin interactions and hα
i is a site-dependent magnetic field.

We map H onto a pseudo-Majorana Hamiltonian using the SO(3) representation
in Eq. (2.1)

We again consider a general system of interacting Majoranas with the action
written in imaginary time as in Eq. (2.11) τ [1], where we now write the interaction
part explicitly

S = 1
2

∫ β

0
dτ ηα1(τ)(δα1α2∂τ + iAα1α2)ηα2(τ)

+ 1
4!

∫ β

0
dτ Vα1α2α3α4ηα1(τ)ηα2(τ)ηα3(τ)ηα4(τ). (3.2)

Here, Einstein summation is assumed, β = 1/T is the inverse temperature and
ηα(τ) are real and antisymmetric Majorana fields satisfying {ηα, ηβ} = δαβ and
ηα(τ)† = ηα(−τ), while α refers to indices labeling an arbitrary set of single-
particle quantum numbers. The key step in the derivation of a temperature flow
FRG scheme is to gather all temperature dependence in the non-interacting part
of the Hamiltonian. Here, we do this by introducing a modified Fourier transform

η(ω) = T
1
4

∫ 1

0
dτ e−iωτη

(
τ

T

)
,

η
(
τ

T

)
= T− 1

4
∑
ω

eiωτη(ω), (3.3)
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with the dimensionless Matsubara frequencies ω = π(2n + 1) and n ∈ Z, which
is more convenient but otherwise equivalent to the rescaling of fields as done by
Honerkamp and Salmhofer [230]. In the case of Aα1α2 = 0 it is also equivalent to
the rescaling introduced in the interaction-flow scheme of Honerkamp et al. [231].
Crucially, the transformation is chosen in such a way that no implicit temperature
dependencies enter through frequencies and the interacting part of the rescaled
action. This way, we may express Eq. (3.2) as

S = −1
2
∑

ω1,ω2
α1α2

ηα1(ω1)G−1,T
0;α1α2(ω1, ω2)ηα2(ω2)

+ 1
4!

∑
ω1,...,ω4
α1...α4

Vα1α2α3α4ηα1(iω1)ηα2(iω2)ηα3(iω3)ηα4(iω4)δω1+ω2+ω3+ω4,0 (3.4)

where we defined

G−1,T
0;α1α2(ω1, ω2) = i

θ(T ) [ω1δα1,α2 − θ(T )2Aα1α2 ]δω1,−ω2 (3.5)

as the bare Green function. The crucial insight is that θ(T ) = T− 1
2 can be seen as

a regulator function since it implies a vanishing propagator GT
0 → 0 for T −→ ∞.

In the usual FRG formalism this is achieved by a regulator G0 → ΘΛG0 where
the function ΘΛ vanishes at the start of the flow at Λ → ∞. It is noted that,
while this suppression does not by itself act as an infrared cutoff of the Matsubara
frequencies, the finite temperature has a similar effect of regularizing infrared
divergencies as it shifts the smallest Matsubara frequency away from zero. In
Eq. (3.4), the temperature dependence is fully contained in the regulator θ(T ),
which trivially generates the same hierarchy of flow equations as in the standard
FRG formalism (see, for example Ref. [123]), upon simply replacing all derivatives
with respect to the artificial cutoff Λ by derivatives with respect to T .

Flow Equations and observables
The FRG flow equations are derived from the action [Eq. (3.4)] in full analogy to

the standard PMFRG formalism [1]. In this fermionic language, Majorana Green
functions are defined as the bare propagator GT

0 , full propagator GT and connected
two particle Green function G4,T

c

GT
1,2 = ⟨η2η1⟩, (3.6)

G4,T
c;1,2,3,4 = ⟨η4η3η2η1⟩ − ⟨η4η3⟩⟨η2η1⟩

+ ⟨η4η2⟩⟨η3η1⟩ − ⟨η3η2⟩⟨η4η1⟩, (3.7)
2This can be seen by setting the interaction-flow parameter g = T 3/2 which results in the same

bare Greensfunction as in Eq. (3.5)
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where we have introduced the superlabels 1 = (i1, µ1, ω1) that collectively describe
site, spin and frequency index where the latter emerges after Fourier transforming
the associated imaginary-time ordered correlation functions.

In the FRG formalism, the objects of interest are the self-energy Σ1,2 and
the four-point vertex Γ1,2,3,4 which are related to Green functions via the Dyson
equation and the tree expansion [123]

ΣT
1,2 = G−1,T

0;1,2 −G−1,T
1,2 , (3.8)

ΓT
1,2,3,4 = −

∑
1′,...,4′

G−1,T
1,1′ G

−1,T
2,2′ G

−1,T
3,3′ G

−1,T
4,4′ G

4,T
c;1′,2′,3′,4′ . (3.9)

As outlined in Chapter 2 in thermal equilibrium the Green functions and vertices
are frequency conserving while due to a local Z2 gauge symmetry in the Majorana
representation [Eq. (2.1)] the propagator and self energy are local and the vertex
is bi-local,

GT
1,2 =GT

i1;α1α2(ω2)δi1,i2δω1,−ω2 , (3.10)
G−1,T

0;1,2 =G−1,T
0;i1;α1α2(ω1)δi1,i2δω1,−ω2 , (3.11)

ΣT
1,2 =ΣT

i1;α1α2(ω1)δi1,i2δω1,−ω2 , (3.12)
ΓT

1,2,3,4 =δω1+ω2+ω3+ω4,0[ (3.13)
ΓT

i1i3;α1α2α3α4(ω1, ω2, ω3, ω4)δi1,i2δi3,i4

−ΓT
i1i2;α1α3α2α4(ω1, ω3, ω2, ω4)δi1,i3δi2,i4

+ΓT
i1i2;α1α4α2α3(ω1, ω4, ω2, ω3)δi1,i4δi2,i3 ].

In the following, we provide the flow equations for the interacting free-energy
fint = Fint/N = −T log

(
Z
Z0

)
, where N is the number of sites, the self-energy

ΣT
i1;α1,α2(ω1) and vertex ΓT

i1i3;α1α2α3α4(ω1, ω2, ω3, ω4) that can be derived analogously
to Eqs. (2.46), (3.14) and (3.16). With the transfer frequencies in Eq. (2.21) these
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flow equations are given by
d

dT
fint

T
= 1

2N
∑
k,ω

β1...β4

ΣT
k;β2β3(ω)GT

k;β3β4(ω)G−1,T
0;k;β4β1(ω) ∂

∂T
GT

0;k;β1β2(ω)

(3.14)
d

dT ΣT
i;α1α2(ω) = 1

2
∑
k,ω′

β1,β2

ΓT
ki;β2β1α1α2(−ω′, ω′, ω,−ω) ∂

∂T
GT

k;β1β2(ω′) (3.15)

d
dT ΓT

ij;α1α2α3α4(s, t, u) = Xij;α1,α2;α3,α4(s, t, u) − X̃ij;α1,α3;α2,α4(t, s, u)

+ X̃ij;α1,α4;α2,α3(u, s, t) (3.16)

Xij;α1,α2;α3,α4 = 1
2
∑
k,ω

∑
β1...β4

ΓT
ik;α1α2β1β2(ω1, ω2, ω − s,−ω)ΓT

kj;β3β4α3α4(ω, s− ω, ω3, ω4)

×P T
kk;β2β3;β4β1(ω, ω − s), (3.17)

X̃ij;α1,α2;α3,α4 =
∑
ω

∑
β1...β4

ΓT
ij;α1β1α3β3(ω1,−ω, ω2, ω − s)ΓT

ij;β2α2β4α4(ω, ω3, s− ω, ω4)

×P T
ij;β1β2;β4β3(ω, ω − s), (3.18)

where we define the single-scale propagator as
∂

∂T
GT

k;α1α2(ω) = −
∑
β1β2

GT
k;α1β1(ω)GT

k;β2α2(ω) ∂
∂T

G−1,T
0;k;β1β2(ω), (3.19)

and the bubble propagator as

P T
ij;α1α2;α3α4(ω, ω − s) = ∂

∂T

[
GT

i;α1α2(ω)GT
j;α3α4(ω − s)

]
. (3.20)

The main differences between the flow equations presented here and those
of Eqs. (2.22a) to (2.22c) are the definition of the propagator and the absence
of factors T associated with the frequency sums. The initial conditions follow
immediately from the fact that the bare propagator GT

0 vanishes at T = ∞ so that
the only nonzero vertex at the beginning of the flow is the bare spin interaction:

lim
T−→∞

fint

T
= 0, (3.21)

ΣT →∞
i;α1α2(ω) = 0, (3.22)

ΓT →∞
ij,α1α2α3α4(s, t, u) = −

∑
β1β2

ϵα1α2β1J
β1β2
ij ϵβ2α1α2 , (3.23)
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where ϵα1α2α4 is the fully antisymmetric tensor. Note that by convention the
magnetic field is implemented in the off-diagonal elements of the bare inverse
Green function in Eq. (3.5) instead of in the self-energy with Aα1α2 given by

Aα1α2 = −
∑

β

ϵα1α2βh
β. (3.24)

In the Katanin truncation scheme [149] that we use for all calculations below, the
partial derivative in Eq. (3.20) is changed to a total derivative, thus including a
feedback of the self-energy derivative into the vertex flow equation. This approxi-
mation is originally motivated by its inclusion of contributions from the six-point
vertex.

It is emphasized that the self-energy defined above is related to the Λ-flow
self-energy as ΣΛ=0(ω) = T 1/2ΣT (ω), while the vertex is unchanged ΓΛ=0

ij (s, t, u) =
ΓT

ij(s, t, u) 1. In practice, one can further reduce the number of independent vertex
components by considering the spin and lattice symmetries of the model of inter-
est [1].

Observables
A feature of the temperature flow is that we have direct access to the differentiated
vertices with respect to temperature. Therefore, we have direct access to the free
energy f and mean energy U = ⟨H⟩ while the heat capacity C = dU

dT
can be

obtained by numerical differentiation. By using the known result for the partition
function of free spins-1/2 in a magnetic field hi

log(Z0) =
∑

i

log
(

2 cosh
(

|hi|
T

))
(3.25)

we can write them as

f = fint − T log(Z0), (3.26)
U

N
= −T 2 d

dT

(
fint

T
− log(Z0)

)
, (3.27)

C = dU
dT . (3.28)

Other observables are the magnetization Mα
i = ⟨Sα

i ⟩, magnetic susceptibility

1Note that the full vertex function ΓΛ(ω1, ω2, ω3, ω4) ≡ ΓΛ(s, t, u)βδω1+ω2+ω3+ω4,0 has a relative
factor of β = 1/T .
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χα1α2
ij (ω) =

∫ β
0 e

iωτ ⟨Sα2
i (τ)Sα1

j (0)⟩ and the equal time spin-spin correlator ⟨Sα2
i Sα1

j ⟩:

Mα
j = −iT

1
2
∑
ω

∑
β1β2

ϵαβ1β2

2 GT
j;β2β1(ω), (3.29)

⟨Sα1
i Sα2

j ⟩ = 1
β

∑
ω

χα2α1
ij (ω), (3.30)

χα1α2
ij (ω) =βδ0,ωM

α1
i Mα2

j + δij

∑
ω1

αβγδ

ϵα2β1β2ϵα1β3β4

4

×
[
GT

i;β4β1(ω1)GT
i;β2β3(ω1 + ω) −GT

i;β3β1(ω1)GT
i;β2β4(ω1 + ω)

]
+

∑
ω1ω2

β1...β4
γ1...γ4

ϵα2β1β2ϵα1β3β4

4 ΓT
ij;γ4γ3γ2γ1(−ν,−ω1 − ω2, ω2 + ν − ω1)

×GT
β4γ4(ω1 − ν)GT

γ3β3(ω1)GT
β2γ2(ω2 + ν)GT

γ1β1(ω2) (3.31)

To verify the correctness of this implementation, in Section 3.2, we consider
a simple, exactly solvable model of two interacting spins. Note that this model
poses the same methodological challenge to the PMFRG as infinite systems and
thus provides an excellent benchmark. Overall, we observe similar or better results
as compared to the Λ-flow method. Note that as detailed in the Section 3.2, other
checks via exact relations between vertices are also possible, but less reliable as
they check only for conservations of specific constants of motions which may be
unrelated to quantities of interest.

Heisenberg dimer as benchmark model for T -flow PMFRG
To benchmark the temperature flow PMFRG, we investigate the Heisenberg dimer
H = ∑

α S
α
1 S

α
2 . Despite its apparent simplicity, this model provides a formidable

challenge to diagrammatic approaches such as the PMFRG which are oblivious
to the size of the Hilbert space. As the low dimensionality renders several crucial
mean-field contributions which are fully included in the FRG such as the RPA and
ladder-type series insufficient [10], one may consider it as a worst-case benchmark:
Generally speaking, the higher-dimensional systems treated in this work, are much
better described by mean-field contributions and are thus expected to be better
behaved. Due to its simple implementation and the availability of exact results,
the same dimer system has been studied previously for similar purpose [1, 160].

Here, we consider the static spin-spin correlators χ11(ω = 0) and χ12(ω = 0)
as well as the interaction correction to the free energy fint, the energy per site U
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3.2. Temperature flow

and the heat capacity C obtained by Eqs. (3.26)-(3.28). Alternatively, the internal
energy can also be obtained via U = ⟨H⟩ which for the general Hamiltonian in
Eq. (3.1) reads as

U =
∑
i,α

hα
i M

α
i + 1

2
∑
i,j
αβ

Jα,β
ij ⟨Sα

i S
β
j ⟩, (3.32)

where Mα
i = 0 in the present case, since no magnetic field hα

i is considered. These
quantities are compared against the exact solution in Fig. 3.3 shown as black
lines: The interaction correction to the free energy fint, shown in red in panel (a),
is obtained from the zero-point vertex in Eq. (3.14). We observe the temperature
flow (solid line) to be closer to the exact result than the Λ-flow result (square
markers). From fint, the energy per site U/N may be obtained using Eq. (3.27)
via a numerical derivative with respect to T . Again, we observe the T -flow curve
to be closer to the exact result than in Λ-flow in panel (b). In the T -flow scheme,
we may avoid inaccuracies from numerical derivatives by inserting the right hand
side of the flow equation in Eq. (3.14) for dfint

dT
in Eq. (3.27). The result is shown

by the blue dashed line. As the numerical accuracy of the solution is rather high
with a tolerance of ∼ 10−7, the result is identical to the one obtained via numerical
derivatives. Further shown in orange is the T -flow result obtained from spin-spin
correlations as defined in Eq. (3.32). For intermediate to large temperatures, this
quantity is the most accurate but becomes unphysical around T ∼ 0.25, showing
an increase as the temperature decreases. By taking a numerical derivative, we
may also obtain an estimate for the heat capacity C from all these results, shown
in panel (c). While the T -flow peak height of the heat capacity is closer to the
exact result than the Λ-flow result, its peak location is shifted. We conclude
that the energy per site and the heat capacity are strongly affected by truncation
errors, since already small errors introduced by neglecting the six-point vertex
propagate through the four- and two-point vertex to the zero-point vertex and are
then magnified even further upon taking derivatives.

On the other hand, the static spin-spin correlations χ11(ω = 0) and χ12(ω = 0)
are significantly less affected by this problem as they are obtained directly from
the four-point vertex via Eq. (3.31). At large temperatures T ≫ J , where both
PMFRG flow approaches are well controlled, they agree well with each other and
the exact result. At low temperatures, deviations from the exact result become
visible within both the T -flow and standard Λ-flow PMFRG. Somewhat surpris-
ingly, we observe that the local spin correlator χ11(ω = 0) appears much more
accurate in the temperature flow formalism, while the non-local one deviates from
the exact result in the same way as in the Λ-flow scheme. It is noted that this
improvement in accuracy may be incidental. In conclusion, we find that both
FRG approaches correctly describe correlations in the Heisenberg dimer at high
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and intermediate temperatures. This holds despite the challenges that the dimer
presents to diagrammatic approaches due to its low dimensionality. On the other
hand, thermodynamic observables such as the specific heat suffer considerably from
error propagation introduced in the derivatives and are thus much less reliable. As
a result, in this work we have only relied on results obtained from spin-spin corre-
lators.

Internal consistency checks for PMFRG
The truncation of the flow equation hierarchy by neglecting the six point vertex is
an inherently uncontrolled approximation at low temperatures, making estimates
of the exact error bars impossible. Instead, we can rely upon the fulfillment of a
Ward identity as a qualitative measure of the truncation error to indicate challeng-
ing parameter regimes: All pseudo-Majorana Hamiltonians feature a set of local
constants of motion,

θj = −2iηx
j η

y
j η

z
j . (3.33)

This allows us to derive an exact relation between fully local two- and four-point
Majorana correlators [1, 213, 215]. Hence we may express the static local spin-
spin correlator which is usually computed from the four-point Majorana vertex
[see Eq. (3.31)] alternatively through the two-point Green function, here shown
for the static part at ω = 0,

χα1α2
jj (ω = 0) =

∑
ω′

i

ω′
√
T
GT

j;α1α2(ω′). (3.34)

This relation must be satisfied for any exact calculation. For the approximate
PMFRG, we can use the degree of violation as an internal consistency check and
define the quantity

∆ =
∣∣∣∣∣χ

α1α2
jj (0)1 − χα1α2

jj (0)2

χα1α2
jj (0)1 + χα1α2

jj (0)2

∣∣∣∣∣, (3.35)

where the subscripts 1 and 2 refer to the two different methods of computing
χα1α2

jj (ω = 0), via Eq. (3.34) and Eq. (3.31), respectively.

Figure 3.4 shows the violation of the consistency condition ∆ = 0 for the
Heisenberg dimer from Section 3.2 in the Λ and T -flow schemes. We notice that ∆
is larger in the temperature flow scheme, compared to the Λ-flow PMFRG, despite
the overall better agreement of the temperature flow with the exact result.
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Figure 3.3.: Thermodynamic quantities for the temperature flow PMFRG on the
Heisenberg dimer in comparison to the exact result (black) and the
standard Λ-flow PMFRG (squares). (a): interaction correction to the
free energy fint from Eq. (3.14). For the energy per site U/N (b) and
the specific heat C/N (c), the darkred dash-dotted line represents the
value obtained via Eq. (3.32). The solid red line represents the value
obtained via Eq. (3.28). The same quantity can be obtained directly
via the flow equation Eq. (3.14) shown in blue dashed lines without the
need to perform numerical derivatives. (d) shows the two inequivalent
static spin-spin correlators χ11 and χ12 obtained via Eq. (3.31). 75
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Figure 3.4.: Violation of the consistency check [Eq. (3.35)] for the Heisenberg dimer
in the Λ-flow and T -flow PMFRG schemes.

Although ∆ can not replace a real error bar since it only contains information
about the violation of the conservation law for the constant of motion θj, a small
value of ∆ in the few-percent range is an indicator that the truncation of flow
equations is still in the well-controlled limit. However, it should be noted that
even with a large ∆ the method can produce qualitatively and in principle even
quantitatively accurate data for quantities which are not directly linked to the
conservation of θj which is violated. This is visible in the case of the dimer shown
in Fig. 3.4 where ∆ is larger in the temperature flow scheme as compared to the
Λ-flow result even though the quantities of interest, primarily the susceptibility,
lie closer to the exact result in T -flow.

Detection of magnetic phase transitions

When studying spin systems at finite temperatures one is commonly interested
in phase transitions or the lack thereof. Historically, magnetic phase transitions
in the pseudoparticle-FRG context have been detected as instabilities in the flow
equations, where a divergence is often detected as a sharp feature, i.e. “kink” in
the corresponding susceptibility. This approach has the disadvantage that the
exact point of the feature can heavily depend on numerical parameters such as the
maximum correlation length, the frequency discretization or the accuracy of the
ODE solver. Moreover, the distinction a weak “kink” from a disordered state is
subject to interpretation and thus often of more qualitative nature. As outlined in
previous works [2, 160, 232], finite-size scaling can instead be used as an unbiased
and reliable method to extract quantitatively accurate critical temperatures from
pseudo-particle-FRG calculations. We approximate the rescaled correlation length
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by fitting a Lorentz curve with width 1
ξ

to the largest peak located at wavevector
Q of the Fourier transformed susceptibility χα1α2(k) [32]

ξ

L
= 1

2π max
δ

√√√√ χmax(Q)
χmax(Q + 2π

L
δ) − 1

 (3.36)

χmax(Q) = max
α1α2

(χα1α2(Q)) . (3.37)

Here, δ is a vector of unit length and L is a measure of system size, and therefore,
the maximum correlation length. In translationally invariant systems we need only
consider sites i in Σi and Γij that lie in the first unit cell and set Γij = 0 if the sites
i and j are separated by more than L nearest neighbor bonds. We detect a phase
transition by calculating ξ

L
for multiple L. In a paramagnetic regime ξ

L
decreases

with L while in a magnetic regime ξ
L

increases with L. The critical temperature
is the temperature at which ξ

L
is independent of L.

3.3. Finite spin

Although the implementation of higher spin magnitudes S was previously shown in
the context of PFFRG [120], the present case requires further considerations which
we now discuss in detail. The SO(3) Majorana representation employed in PMFRG
is applicable only for spin-1/2 operators. Ideally, the solution for S > 1/2 would be
to find a representation of spin-S operators in terms of Majorana fermions, which
does not introduce any unphysical states. However, such a representation exists
only for S = 1/2 and S = 3/2, whereas for all other spin magnitudes unphysical
sectors cannot be avoided [233]. Thus, in the present S = 1 case we follow the
approach of Ref. [120] that introduces various copies (replicas) of spin-1/2 degrees
of freedom on each site but that also inevitably involves unphysical states that
need to be dealt with.

Specifically, our approach of implementing an effective spin quantum number
Seff amounts to introducing 2Seff spin-1/2 operators Siµ on each site i such that

Si,eff =
2Seff∑
µ=1

Siµ , (3.38)

where µ ∈ {1, 2, . . . , 2Seff} is the additional replica index. Here and in the follow-
ing, we use the convention that Siµ refers to a spin-1/2 operator, corresponding
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Figure 3.5.: Illustration of two effective spin-3/2 degrees of freedom, each com-
posed of three spin-1/2 replicas, interacting with each other. The spin
replicas Si1 , Si2 , Si3 are fully equivalent and colored differently only for
visual clarity. The grey arrow indicates an exemplary permutation of
replicas which leaves the model invariant.

to the µ-th replica spin located on site i whereas operators that implement higher
spins Seff are denoted Si,eff.

Thus, the effective model treated in PMFRG model results from replacing spin
operators by Si,eff according to Eq. (3.38) giving rise to a Hamiltonian in terms of
spin-1/2 operators,

H =
∑
(i,j)

∑
µ,ν

JijSiµ · Sjν + A
∑

i

(∑
µ

Siµ

)2

≡
∑
(i,j)

∑
µ,ν

Jiµ;jν Siµ · Sjν , (3.39)

where (i, j) denotes pairs of sites i ̸= j (summed over only once). To tune the
energy of unphysical states, we add a level repulsion term ∼ A on the right hand
side of the first line of Eq. (3.39): For A < 0, the Hilbert space sector where
the addition of angular momenta realizes the largest spin quantum number Seff is
energetically favored over (unphysical) states with smaller spin quantum numbers
S < Seff. Furthermore, in the second line of Eq. (3.39) we combine the original
couplings Jij and the level repulsion A into a joint interaction constant Jiµ;jν which
now depends on site indices i, j and replica indices µ, ν.

The replica construction is depicted in Fig. 3.5 for the case of two interacting
Seff = 3/2 spins. Colored circles correspond to S = 1/2 replicas which are coupled
to each other locally with the ferromagnetic coupling A and non-locally via the
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exchange interaction Jij. Strictly speaking, this mapping is only exact in the limit
A → −∞, which, however, cannot be treated within PMFRG. This is due to the
fact that the approximation of neglecting higher vertices in PMFRG breaks down
if the effective interaction becomes too large compared to the temperature. In
practice, it is sufficient to choose A to be proportional to the temperature,

A = −γT, (3.40)

such that unphysical states are always gapped out, while A is still small enough
to avoid methodological challenges. Below, we will determine the best parameter
γ in the present S = 1 case.

The Hamiltonian of this system treated via replicas µ = 1, 2, 3 is

H = J
3∑

µ=1

3∑
ν=1

S1µ · S2ν + A
2∑

i=1

 3∑
µ=1

Siµ

2

, (3.41)

where we set J = 1 in the following. In Fig. 3.6 we present results for the static lo-
cal spin correlator χ11(iν = 0) and the static non-local spin correlator χ12(iν = 0).
Shown in Fig. 3.6 are three different choices of the level repulsion A. For small
level repulsion |A| = 0.1 ≪ J ≡ 1, we observe good agreement between the exact
results for the spin-3/2 dimer before and after the introduction of replicas (i.e.,
without and with unphysical S = 1/2 states) at low temperatures. This is ex-
pected since the ground state of an unfrustrated spin system typically lies in the
sector with maximal (effective) spin as the interaction energy ∼ S1,eff · S2,eff is
largest in this case. It can be seen that PMFRG agrees remarkably well with the
exact result of the replica system in Eq. (3.41) (dashed line). At higher temper-
atures, the effect of unphysical states becomes visible since the excitation gap to
such states, determined by A, is too small to suppress their impact on physical
observables. Conversely, for a larger level repulsion of A = −2, we observe good
agreement between PMFRG and the exact result at higher temperatures as the
unphysical states are further shifted to higher energies. However, at low temper-
atures, methodological difficulties arise because the dominant energy scale in the
Hamiltonian (now given by A), also sets the temperature scale T ∼ |A| below
which results can become inaccurate. The solution to this problem is to introduce
a level repulsion A = −γT that scales linearly in temperature, as shown in the
bottom panel of Fig. 3.6. There we find that the value γ = 1.5 maximizes the
agreement between PMFRG and the exact result both at high and low tempera-
tures.
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Figure 3.6.: Spin correlations of the S = 3/2 Heisenberg dimer for different choices
of the level repulsion, A = −0.1, A = −2, A = −1.5T , from top to
bottom. The solid black (red) line indicates the exact solution of
the local correlator χ11 (non-local correlator χ12). The dashed lines
correspond to the exact solution after the introduction of replica spins
[see Fig. 3.5], i.e., in the presence of unphysical S = 1/2 spin states.
Squares indicate results from PMFRG.
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4
Magnetic phases of the J1 − J2 simple

cubic Heisenberg model

A wide spectrum of magnetic phenomena occurs in systems described by a
Heisenberg model [234] in which spin-1/2 operators Si located on lattice sites i are
coupled via isotropic exchange interactions Jij,

H =
∑
i<j

JijSiSj. (4.1)

In spite of the apparent simplicity of Eq. (4.1), the calculation of measurable
quantities remains a notoriously difficult problem, particularly in the most realistic
case of three spatial dimensions. Numerical methods, while indispensable and of
steadily increasing power, either suffer from an intrinsic bias, are limited in the
quantitative accuracy of their predictions or are unfeasible for the treatment of
generic three-dimensional (3D) systems.

Besides more established approaches such as quantum Monte Carlo (QMC) [235],
exact diagonalization [32], and density-matrix renormalization group (DMRG) [176],
new concepts like the functional renormalization group [123, 145] are currently on
the rise for spin systems, owing to their flexibility and applicability to even com-
plex coupling scenarios. While it is now possible to directly treat the RG flow of
spin-vertex functions [236], more established variants represent spin operators in
terms of auxiliary fermions. The pseudofermion functional renormalization group
(PFFRG) method [119, 120, 153, 155, 188] is particularly strong in calculating
ground state spin correlations. On the other hand, these methods are sometimes
associated with the weaknesses that (i) they are in no simple way endowed with a
parameter that systematically controls the accuracy and (ii) rigorous benchmark
tests with other methods are rarely possible. The recent application of multiloop
FRG extension [167] to the PFFRG [164, 165] has made an important step for-
ward concerning (i) by systematically increasing the loop order ℓ of diagrammatic
contributions to the vertex flow.

In this chapter, (ii) will be tackled by exploiting the PMFRG’s capability of
treating finite temperatures which opens up a plethora of further applications and
opportunities for benchmarking. The PMFRG in the conventional Λ-flow scheme
as introduced in Chapter 2 is applied to two types of models; the first ones are
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unfrustrated 3D systems such as the nearest-neigbor simple cubic lattice anti-
ferromagnet where one expects a finite temperature transition to a magnetically
ordered state. Details of these second-order phase transitions such as the crit-
ical temperature and -exponents are well studied from QMC [173] which treats
unfrustrated models in a completely unbiased and error-controlled way. For the
PMFRG, probing universal finite-size scaling [237] behaviors provides an optimal
testbed and allows us to demonstrate its beyond-mean-field character in a quan-
titative and rigorous way. Overall, the QMC results are very well reproduced,
which concerns the values of critical temperatures Tc, the critical exponent for the
correlation length ν which we confirm via a scaling collapse, and the anomalous
dimension η. An interesting byproduct of these results is the insight that the sys-
tem size parameter L which in PMFRG limits the range of spin-correlations can
be used for finite-size scalings in a similar way as the box-size in QMC.

4.1. Nearest-neighbor antiferromagnet

We start by investigating the capability of the one-loop PMFRG in systems with
well established magnetic long-range order. To this end, we study the Heisenberg
model [Eq. (4.1)] on the simple cubic lattice and set the nearest-neighbor antifer-
romagnetic coupling to J1 = 1. With no further-neighbor couplings present, this
model is unfrustrated and can be treated with the quantum Monte-Carlo method
(QMC). Sandvik [173] found magnetic Néel order with an ordering wavevector
qN = (π, π, π) below a critical temperature TQMC

c = 0.946(1). Finite-size scaling
of the static Néel susceptibility χN computed for a cubic-box geometry with a
linear size of up to LQMC

box ≤ 16 and periodic boundary conditions confirmed that
the transition is in the classical 3D Heisenberg universality class with correlation
length critical exponent ν = 0.71 and anomalous dimension η = 0.035 known from
Monte-Carlo simulations of numerically less demanding classical systems [238] or
the conformal bootstrap method, see e.g. [239]. The same critical exponents can
also be accessed within a FRG treatment of a classical bosonic order parameter
field theory [240, 241].

In the following, the one-loop PMFRG will be benchmarked against well-
controlled QMC results. In contrast to QMC, the PMFRG treats formally infinite
(translational invariant) systems but introduces a cutoff-length L. Correlations
between lattice sites with a distance larger than L are neglected by setting the
associated irreducible vertices Γ to zero. Consequently, convergence in L cannot
be expected if the system features large or even divergent correlation length scales

82



4.1. Nearest-neighbor antiferromagnet

Figure 4.1.: (a) Néel susceptibility from one-loop PMFRG in the antiferromagnetic
nearest-neighbor Heisenberg model on the simple cubic lattice for tem-
peratures around T = 0.9 and varying cutoff length L = 6, 8, 10, 12, 14.
The number of positive Matsubara frequencies is Nw = 32. (b)
Length-dependence of the susceptibility from (a); the critical temper-
ature can be identified from a pure power-law behavior (no curvature
in log-log plot). Adjacent curves have a temperature difference of
∆T = 0.01, except of the black curve which has additionally been
inserted for T = 0.905. (c) Scaling collapse for the data using the es-
tablished critical exponents ν and η from the classical 3D Heisenberg
universality class, the same with mean-field exponents is shown in (d).
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as, for example, close to a phase transition. While this effect has never been sys-
tematically studied in the context of PFFRG, here we turn it into an advantage
and demonstrate that in the spin-FRG context L can be used for finite-size scaling,
just as the box size LQMC

box in the context of QMC.

The PMFRG results for the static (end-of-flow) Néel-susceptibility χN around
T = 0.9 and cutoff-lengths L = 6, 8, 10, 12, 14 are shown in Fig. 4.1(a). As ex-
pected, the missing convergence of χN with L (except possibly at the largest T )
indicates the presence of a correlation length larger than Lmax = 14. Although this
number seems modest we are treating about 4/3πL3

max ≃ 11494 sites correlated to
a reference site, almost three times the maximal number of sites considered in the
QMC analysis of Ref. [173].

In Fig. 4.1(b), the critical temperature is determined from the expected behav-
ior χN(T = Tc, L)/L2 ∝ L−η, which singles out the data trace for the critical tem-
perature T = Tc from the condition of vanishing curvature 1. This way, one finds
Tc = 0.905(5), about 5% smaller than the QMC reference value TQMC

c = 0.946(1).
In principle η could be estimated independently from the slope of the Tc-data
trace. In practice, this is difficult due to the limited system sizes in a quantum
simulation and the numerically small value of η = 0.035, so that we are content
with showing consistency between the measured and predicted slope (dashed line).
In contrast, the value of the correlation length exponent ν is easier to confirm. In
Fig. 4.1(c) the anticipated finite-size scaling behavior is checked for temperatures
T in the vicinity of Tc [173],

χN(L, T ) ∝ |T − Tc|−ν(2−η)g± (L|T − Tc|ν) . (4.2)

Using Tc as obtained above, the PMFRG data collapses into two branches of
the scaling function g± for T ≷ Tc. Importantly, the quality of this collapse
decreases when mean-field exponents are used, see Fig. 4.1(d). This indicates the
beyond mean-field nature of the PMFRG, despite the fact that fluctuations of
the order parameter are not fully included due to the truncation of the six-point
and higher vertices. In more detail, the ϕ4 term in the effective field theory is
related to coarse-grained (connected) four-spin correlations, which naively would
require the eight-point Majorana correlators not included in this treatment which
is limited to Majorana four-point functions. However, we observe Sα

i (τ1)Sβ
i (τ2) ∼

ηα
i (τ1)ηβ

i (τ2) due to a presence of a constant of motion as explained in Ref. [242].
1For all scaling plots, we re-define L = [3/(4πn)N ]1/3 using the number N of sites correlated to

the reference site. The number of sites in unit volume is denoted by n, n = 1 for cubic- and
n = 16 for the pyrochlore lattice. This smoothens edge-effects for small L and yields better
scaling plots.
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4.1. Nearest-neighbor antiferromagnet

Figure 4.2.: Scaling plot of the cubic lattice susceptibility similar to Fig. 4.1, but
for the J1-J3 model with J3 = 0.4 (a) and the frustrated J1-J2 model
with J2 = 0.1 (b). PMFRG estimates for the critical temperatures
follow from the unique crossing points of the data traces.

As a consequence, the PMFRG’s four-Majorana correlators connect to four-spin
correlators if the latter are bilocal, i.e. ⟨SiSiSjSj⟩. Despite these considerations,
it should be emphasized, however, that the strength of the PMFRG lies within
its capability to treat microscopic models of frustrated quantum magnets, and is
not meant to compete with established high-precision methods to extract critical
exponents from effective field theories, see the discussion above.

In this spirit, we proceed by involving additional couplings between next-
nearest and next-next-nearest neighbouring sites, J2,3. Here, J2 (J3) is a coupling
between sites separated along the face (body) diagonal of an elementary cube. The
J1-J3 Heisenberg model is unfrustrated and can again be studied with QMC [243].
The PMFRG susceptibility for the case J3 = 0.4 known to enter a Néel ordered
phase, is shown in Fig. 4.2(a) and indicates a critical temperature Tc = 1.875,
again about 5% different from the QMC value TQMC

c = 1.7675.

Finally, the system is frustrated by a next-nearest neighbor coupling J2. In the
classical case, Monte-Carlo simulations [244] (with unit spin length) have found the
phase diagram in Fig. 4.3, see blue symbols. Increasing J2 from zero, the ordering
temperature for Néel order decreases until it reaches Tc ≃ 0.3 at J2 = 0.25 from
where on a striped antiferromagnetic order with wave vector (0, π, π) and equiva-
lent types take over and the ordering temperature increases again. In the quantum
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case of S = 1/2 spins, where QMC suffers from the sign problem, the phase dia-
gram has been studied with a variety of methods like spin-wave theory [245, 246],
spherically symmetric Green function approximation [247], differential operator
technique [248], coupled cluster method [249] and the PFFRG [243]. Despite all
these efforts, no consistent picture of the phase diagram has emerged. The qual-
itative question is if quantum fluctuations suppress the classical magnetic order
around J2 = 0.25 in favor of an intervening paramagnetic phase at T = 0. The
PFFRG, for example, qualitatively reproduces the classical result with a finite
break-down scale of the flow (see below) for all J2, see brown curve in Fig. 4.3 2.
The coupled cluster method, which infers ground state properties from extrapola-
tion of observables found for finite-size clusters, shows some indication for a tiny
paramagnetic phase around J2 ≃ 0.275.

In this challenging setting, the capabilities of the PMFRG to tackle frustrated
systems are now demonstrated by studying small J2 = 0.1, for which, according to
the scaling plot in Fig. 4.2(b), Néel order is detected below Tc = 0.435. This sur-
prisingly small value of Tc (at half the temperature estimated from the break-down
scale of the PFFRG flow in Ref. [243]) might hint towards a larger paramagnetic
region in the J2/J1-phase diagram of the model than previously thought. Indeed,
repeating the calculation of Tc for various J2 between zero and 0.1, we extrapolate
the observed linear-in-J2 behavior of Tc to find it vanishing around J2,c ≃ 0.19 (red
dots and red dashed line). Although this extrapolation has to be taken cautiously,
it seems to indicate the onset of a quantum disordered phase significantly below
the estimated value J2,c ≃ 0.275 from the coupled cluster method of Ref. [243,
249]. Interestingly, the scaling approach of the PMFRG susceptibility fails for
larger J2 where no line-crossings could be observed for the expected ordering wave
vectors, despite the susceptibilities growing significantly with decreasing temper-
ature. This will be further explored in the next section, by first considering the
temperature flow as an alternative method.

To summarize this section, these results indicate that one-loop PMFRG is suit-
able to study finite-temperature magnetic phase transitions in 3D frustrated and
unfrustrated Heisenberg systems. Although critical temperatures are a few percent
off from QMC reference values, the susceptibility data shows the expected scaling
behavior at second-order phase transitions, a strong indication for the beyond-
mean-field nature of the PMFRG. In particular, there is no breakdown of the
flow or any divergence in the susceptibility at any temperature treated. This is ex-
pected in the exact (or at least beyond-mean-field/RPA) treatment of an effectively
finite-sized system which should not show any spontaneous symmetry breaking.

2In PFFRG, a paramagnetic phase is found by adding a finite J3 > 0, see Ref. [243]
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4.1. Nearest-neighbor antiferromagnet

Figure 4.3.: Finite temperature phase diagram of the simple cubic J1-J2 Heisenberg
antiferromagnet. The data for the classical model with unit spin length
is reproduced from Ref. [244] (blue), the transition to the Néel phase
for J2 < 0.25 is second order, while the striped phase for J2 > 0.25
is reached via a first order transition. The PFFRG result reproduced
from Ref. [243] is shown in brown. The one-loop PMFRG results (red
dots) for ordering temperatures are only available for the second-order
transition and at not too small temperatures; extrapolation to larger
J2 (red dashed line) yields J2,c ≃ 0.19 at T = 0.
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The observed scaling behavior provides a significantly more accurate and rigorous
approach to detect magnetic phase transitions than previous PFFRG works where
kinks in the renormalization group flow have been used as a signature for ordering.
Furthermore, estimates for critical temperatures within PFFRG are complicated
by the presence of unphysical states. Instead, critical temperatures were previ-
ously based on the approximate (i.e. mean-field-like) relation Tc = πΛc/2 between
critical temperature and the divergence in the cutoff scale which may introduce
errors, particularly in the presence of strong quantum fluctuations. These results
show that it is advantageous to obtain finite ordering temperatures for frustrated
models from PMFRG which operates explicitly at finite temperatures instead.

4.2. Phase diagram in temperature flow

We now turn to the same model treated with the temperature flow description.
It should be noted that due to the truncation of flow equations, different flow
schemes are generally inequivalent and may lead to different results, particularly
in the limit of strong correlations.

Figure 4.4(a) displays a critical scaling of the correlation length as indicated
by the line crossings of ξ/L, where L is the spatial cutoff distance beyond which
vertices are approximated as zero. While this does not yield different results
compared to the scaling of χ ∼ L2−η used in the previous section, this more
self-contained approach does not require any external knowledge regarding the
system’s universality class. The critical temperature is detected as Tc ≈ 0.97. This
result is in good agreement to quantum Monte Carlo (Tc = 0.946). Incidentally,
and perhaps accidentally, it is marginally better compared to the previous Λ-flow
result shown in Fig. 4.1.

In the frustrated regime at finite J2 > 0, Monte Carlo simulations for classical
spins (|S| = 1) [244] find order at finite temperatures throughout the phase dia-
gram, with a continuous phase transition to Néel order for J2 < 0.25. For J2 > 0.25
antiferromagnetic stripe order with wave vector k = (π, π, 0) (and symmetry re-
lated wave vectors) is reached via a first order phase transition, see Fig. 4.4(c).

In the quantum spin-1/2 case, the possible presence of a small nonmagnetic
region around J2 = 0.25 is still debated. At T = 0, linear spin wave theory [250]
and the coupled cluster method [249] predict antiferromagnetic order from J2 = 0
that transitions into a small paramagnetic phase at J2 ≈ 0.25 before undergoing a
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Figure 4.4.: PMFRG results for the J1-J2 Heisenberg model on the cubic lattice.
(a) Finite-size scaling of the correlation length using T -flow PMFRG
for the simple cubic Heisenberg antiferromagnet at J2 = 0 in compari-
son to the standard Λ-flow PMFRG from Fig. 4.1 and quantum Monte
Carlo (QMC) [173]. (b) Finite-size scaling of the correlation length
using T -flow PMFRG for the simple cubic Heisenberg antiferromag-
net at J2 = 0.31. (c) Phase diagram: The transition temperature for
the classical model with unit spin length is reproduced from Ref. [244]
(blue). The critical temperatures obtained from T -flow (black crosses)
predicts slightly larger transition temperatures than the standard Λ-
flow PMFRG (green) in the Néel ordered regime. At J2 ≳ 0.25 the
T -flow scheme detects critical scaling towards a stripe-ordered phase
in qualitative agreement to the classical model. This critical temper-
ature is not detected in the Λ-flow scheme. 89
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second phase transition into the antiferromagnetic stripe phase for J1/J2 > 0.25.
On the other hand, nonlinear corrections [250] to spin wave theory as well as
a variational cluster approach [251], predict no paramagnetic phase between the
two ordered phases. Using the T -flow PMFRG as outlined above, we determine
the finite temperature phase diagram, detecting critical temperatures down to a
minimum simulation temperature of T ∼ 0.05, with the case J2 = 0.31 shown in
Fig. 4.4(b). The full phase diagram obtained this way is shown in Fig. 4.4(c). In
agreement with other methods, we find a phase transition to antiferromagnetic
Néel order for J2 ≲ 0.25 and to antiferromagnetic stripe order for J2 ≳ 0.25. Due
to the observed critical scaling in system size, all phase transitions are of second
order. In between, we observe a small regime without any sign of magnetic order.
Although intrinsic consistency checks seem to indicate less accurate results at lower
temperatures (see Section 3.2), these findings support claims that there might be
a small region with a paramagnetic phase in between the antiferromagnetic Néel
and stripe ordered phases.

4.3. Discussion of the stripe phase transition

As discussed above, the temperature formalism detects a second order phase tran-
sition towards stripe order in the regime J2 ≳ 0.25. Although expected from other
methods, this result initially appears incompatible with the previous findings in
the Λ-flow scheme, which, despite observing large dominant stripe correlations
could not detect a critical scaling. We will now see that this apparent discrepancy
has a simple explanation by further including this artificial infrared cutoff Λ into
the temperature flow scheme and interpreting it as an auxiliary parameter.

To compare differences between the two flow schemes we dress the temperature
flow propagator with the usual cutoff of the Λ-flow [1], ΘΛ(ω) = T 2ω2

T 2ω2+Λ2 so that

G−1,T
i;α1α2(ω1) = 1

ΘΛ(ω1)
G−1,T

0;i;α1α2(ω1) − ΣT
i;α1α2(ω1). (4.3)

By construction, in the limit Λ = 0, Eq. (4.3) reduces to the propagator
of the standard temperature flow scheme. Additionally, this propagator is now
equal to the Λ-flow propagator in the entire T,Λ parameter space (aside from the
trivial prefactors of T 1/2 due to the rescaling of Majorana fields). Hence, physical
observables at large T or Λ will be equal in both approaches. If both T ≲ 1 and
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Λ ≲ 1, however, the approximation of neglecting higher order vertices becomes
uncontrolled, generally allowing for different results between the two methods.
Figure 4.5 shows a comparison of the T -flow scheme (dressed with a Λ cutoff) and
the Λ-flow scheme as a function of T and Λ both at J2 = 0 (Néel order) and J2 = 1
(stripe order). As both T and Λ suppress spin correlations, magnetic order can
only be stabilized in a finite region around T = Λ = 0 as indicated schematically
in Fig. 4.5(a,b). As displayed further, the conventional Λ-flow scheme approaches
the ordered phase along lines of constant T while the T -flow approaches it along
constant Λ.

The remaining panels (c-f) display the difference of the rescaled correlation
length for the dominant susceptibility

∆ξ̃1,2 = ξ(L1)
L1

− ξ(L2)
L2

(4.4)

for two different spatial cutoff distances L1 > L2. At the phase transition, we have
ξ(L) ∝ L and thus ∆ξ̃ = 0. Consequently, for large enough L1,2, we can identify
the region with ∆ξ̃ > 0 (∆ξ̃ < 0) as the ordered (disordered) phase.

For J2 = 0 [see Fig. 4.5(c) and (d)] both Λ and T -flows find magnetic order
at Λ = 0 for T ≈ 0.9. Although RG flows can become unphysical below the
critical scale of a phase transition, in the Λ-flow the susceptibility and correlation
lengths converge to a large but finite plateau value. For small temperatures of
T < 0.3, on the other hand, we observe a very different behavior of the correlation
length which displays a peak as a function of Λ at a finite Λ ∼ 1.25 indicated
by the white circle in Fig 4.5(c). This sharp feature, also referred to as a flow
breakdown, originates from a peak of the maximum susceptibility (see Section 3.2)
in the renormalization flow. In zero-temperature approaches it is an established
signature of a phase transition [10, 150, 243, 252], whose detection, however, can
be ambiguous in practice. Below the critical temperature, the T -flow correlations
grow rapidly. Numerically, this requires increasingly smaller steps when solving
the flow equations, which we eventually terminate as seen for J2 = 0 in Fig. 4.5(d).
Strikingly, at a finite value of Λ in Fig. 4.5(d), the scaling collapse is no longer
obtained, leaving the right boundary of the magnetic phase seemingly absent, with
similar flow breakdown features as found in the Λ-flow scheme, also indicated via
a white circle.

We now move on discussing the T -Λ phase diagrams at J2 = 1 for both, the
Λ-flow and T -flow schemes in Fig. 4.5(e) and (f), respectively. The T -flow result
in Fig. 4.5(f) resembles the observation in Fig. 4.5(d) in that a critical scaling
is only found at small Λ but disappears as Λ increases. The Λ-flow behavior at
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J2 = 1 in Fig. 4.5(e) also resembles Fig. 4.5(d) and (f) but with the roles of T
and Λ reversed: While Fig. 4.5(e) only displays a phase transition at finite Λ ∼ 1
and small T ≲ 0.3, critical scaling is never found in the physically relevant limit
Λ = 0. This makes it impossible to extract a critical temperature in the J2 > 0.25
parameter regime within the Λ-flow scheme.

These results can be interpreted as follows: Clearly, both, Λ-flow and T -flow
PMFRG methods are sensitive to ordering tendencies. However, each approach is
better suited to detect phase boundaries that do not require a long flow through a
critical region close to a magnetic phase. For example, such situations occur when
a magnetically ordered phase is only grazed during the renormalization group
flow in either Λ or T , shown by green arrows in panels (a) and (b) of Fig. 4.5.
In these critical regions, vertices grow large and the approximation of neglecting
higher-order vertices is no longer accurate. Concretely, this means that the Λ-
flow scheme is more sensitive to phase boundaries found at finite Λ, while the
T -flow is better at detecting the opposite boundary at finite T and small values
of Λ. Indeed, one can approximate the shape of the full magnetic phase in the
T -Λ space by the complement of both methods. This is visualized by the yellow
dashed line in Fig. 4.5(d) and (f).

We see that for J1 = 1 the challenge to resolve magnetic order in the Λ-
flow scheme is especially pronounced as the top phase boundary in T -Λ space is
particularly flat [see Fig. 4.5(f)], and the ordering temperature much smaller. To
extract physical quantities, the FRG in the Λ-flow scheme needs to be solved all
the way down to Λ = 0, possibly flowing through an ordering transition, where
the truncation of flow equations is known to break down. The temperature flow
on the other hand needs to be followed only slightly beyond the boundary of the
phase transition. We can therefore conclude that the T -flow scheme is the favorable
method as it approaches the phase boundary from the physically relevant direction.
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Figure 4.5.: Magnetic phase diagram for the Λ-flow scheme (left) and the T -flow
scheme (right) both as functions of physical temperature T and the
artificial infrared cutoff Λ. (a,b): Schematic picture of the phase di-
agram and the direction of the flow (arrows) for both schemes. Each
arrow represents an independent FRG run. Green arrows indicate
problematic flow paths along the circumference of the ordered dome
close to the phase boundary. (c-f): The ordered (paramagnetic) phase
is determined by a positive (negative) difference of the rescaled corre-
lation length in Eq. (4.4) between two runs for L1 = 14 and L2 = 12.
Additionally, the phase boundaries given by the contour ∆ξ̃ = 0 are
indicated by black lines. In (d) and (f), the phase boundary from
the Λ-flow scheme is displayed in yellow. White circles highlight ex-
emplary positions of breakdowns of the PMFRG flow. For better
visibility, the color range is limited to a small region around ∆ξ̃ = 0.
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5
The Heisenberg Pyrochlore Model

While the previous chapter demonstrated the PMFRG’s applicability to sys-
tems ordering magnetically, strongly frustrated and magnetically disordered mod-
els are also treatable. A prominent example of a geometrically frustrated lattice
is the pyrochlore network [253], defined by a four-site basis arranged within an fcc
lattice. Here, as shown in Fig. 1.2, each site is placed at the vertex of an arrange-
ment of corner-sharing tetrahedra where the edges are given by nearest-neighbor
bonds [254]. The classical nearest-neighbor antiferromagnetic Heisenberg model
features an extensive ground state degeneracy as the lowest energy can be achieved
by any state fulfilling the constraint of a vanishing magnetization within each indi-
vidual tetrahedron, often referred to as a spin-ice rule [29, 61, 255]. The quantum
versions of models with such a degeneracy are often believed to evade magnetic
long-range ordering at low temperatures and, as such, are promising candidates as
hosts for quantum spin liquids. Recent studies confirm the non-magnetic ground
state of the nearest neighbor spin-1/2 pyrochlore antiferromagnet but suggest a
spontaneous breaking of C3 and inversion symmetry [8, 256, 257] possibly indicat-
ing a valence-bond solid. Yet, the predictions of magnetic monopole and emergent
photon excitations resulting from an underlying U(1) gauge structure remain a
fascinating research perspective for related models [73]. Arising from the local
nature of the ground state constraint, an interesting feature is the observation of
non-analytical points in the classical spin structure factor, so-called “pinch points”
(also referred to as “bow-ties”), at T = 0 within the hhl-plane [41–43].

5.1. Quantitative Benchmarks

Being well-suited to treat quantum systems at finite temperatures, we now investi-
gate the performance of the PMFRG in the case of the nearest-neighbor quantum
spin-1/2 pyrochlore antiferromagnet. In order to verify the quantitative reliability
of these results, we start comparing the static component of the spin susceptibil-
ity χ ≡ χ(q = 0) against DMRG [257] and diagrammatic Monte-Carlo [258] as
well as the Padé approximant of the high-temperature series expansion (HTSE)
in Fig. 5.1 [259, 260]. On the one-loop level the results differ from other methods
by ∼ 10% at T ∼ J1 with further increasing differences for lower temperatures,
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indicating a smaller accuracy than the one-loop results in Sec. 4. However, under
the additional inclusion of two-loop (ℓ = 2) contributions the results are found to
be in perfect agreement with all other methods, remaining consistent with DMC
even at temperatures as low as T ≃ 0.2. Figure 5.2 shows the energy per site e and
the specific heat capacity c = de

dT
as functions of the temperature. The energy per

site e can be alternatively found from the expectation value of the Hamiltonian,
which can be written in terms of equal time spin-spin correlators [164]

⟨H⟩ =
∑
i<j

Jij ⟨Si(0)Sj(0)⟩ (5.1)

with ⟨Si(0)Sj(0)⟩ = ∑
n χij(iνn).

It can be seen that the energy computed from the PMFRG susceptibility via
Eq. (5.1) is generally consistent with the one derived from the PMFRG free-energy
and HTSE, although acquiring an unphysical negative slope (i.e. negative heat
capacity) around T ≲ 0.3. This is likely a first indicator of the aforementioned
low-temperature divergence in the PMFRG flow discussed above and in Ref. [1].
The energies obtained via the free energy, by contrast, retain a positive slope
down to lower temperatures but will ultimately behave similar due to the free
energy’s indirect coupling to the four-point vertex. Despite this observation, it is
stressed that the energy is not to be understood as a measure of accuracy in the
variational sense and as such is not bounded from below by the true energy. While
a temperature below T ≃ 0.2J1 is currently not accessible, the finite temperature
energy compares well with a recent many-variable Monte Carlo (mVMC) study at
T = 0 (dashed black line).

5.2. Finite-width pinch points

The spin susceptibility of the pyrochlore features bow-tie patterns in the hhl-plane,
connected to the existence of the classical ground state ice rule [43]. Figure 5.3
shows the static susceptibility [Eq. (2.61)] obtained from two-loop PMFRG at
T = 0.2 in the hhl-plane, which features a pronounced peak structure around
q = (0, 0, 4π) (and symmetry-related points) where one would classically expect
the pinch points. In the classical case, the width of these peaks along the [00l]-
direction is known to vanish analytically in the T → 0 limit whereas thermal
fluctuations at T > 0 lift the non-analyticity of the pinch points. The associated
finite width σ ∼

√
T of the broadened peaks is a measure for how much the ice

rule is violated at finite temperatures [261–263].
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Figure 5.1.: Uniform (q = 0) susceptibility for the pyrochlore antiferromagnet
from PMFRG as a function of temperature in comparison with dia-
grammatic Monte Carlo (DMC) [258], density-matrix renormalization
group [257] (DMRG, cluster sizes 32 and 48) and the Padé approxi-
mant of the high temperature series expansion [259].

In a quantum system, thermal- and quantum fluctuations compete. Using the
PMFRG, the full-width at half maximum (FWHM) of the peak is measured along
the [00l]-direction, see Fig. 5.3(b). Although at low temperatures, we observe a
straight line in a plot over

√
T , an extrapolation to T = 0 results in a finite width

at T = 0 where two-loop PMFRG predicts a slightly smaller value than one-
loop. It can be concluded that while the qualitative applicability of the classical
ice rule remains visible in the overall structure of the susceptibility, a full

√
T -

law without a constant offset is only correct for the classical model. Quantum
effects not only broaden the peak at T = 0 [150], but remain strong enough
at finite temperatures to increase deviations from the classical ice rule ground
state. As discussed above, deviations from exact results at low temperatures stem
from the truncation of the flow equations. In an attempt to partially correct the
introduced errors, the two-loop corrections represent certain contributions from the
neglected six-point vertex, and the full multiloop expansion can be more generally
understood as a systematic way to iteratively recover all diagrams contained in the
parquet approximation [164, 165, 167, 221, 224, 264]. However, the effects of each
additional loop order and the overall properties of loop-convergence are highly
nontrivial for a purely interacting model such as the Heisenberg Hamiltonian and
require a careful case-based numerical analysis.
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Figure 5.2.: Energy per site (a) and specific heat capacity (b) as a function of
temperature for one-loop (ℓ = 1) in blue and two-loop (ℓ = 2) in red.
An estimate of the energy per site within PMFRG is accessible either
from a derivative of the free energy (solid), Eq. (2.22a), or through the
expectation value of H in terms of equal time spin-correlators (dashed)
Eq. (5.1). Additionally shown is the ground state energy estimate
from mVMC [8, 257] and the specific heat capacity from DMRG and
canonical typicality on a 48- and 32-site cluster, respectively [257].
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5.2. Finite-width pinch points

Figure 5.3.: (a) Two-loop static susceptibility of the antiferromagnetic Heisenberg
model on the pyrochlore lattice in the [hhl]-plane (qx = qy = h) at
T = 0.2 and (b) full-width at half maximum along of the pinch point
as a function of temperature. The inset shows the cut along the [00l]
line of the susceptibility from (a).

The results in Sec. 4 demonstrate that one-loop PMFRG allows one to accu-
rately determine critical temperatures and scaling behavior for second order mag-
netic phase transitions in 3D quantum magnets. On the other hand, in strongly
frustrated systems that remain magnetically disordered at low temperatures such
as the pyrochlore model investigated in the last section, one-loop results are less
accurate but two-loop corrections yield substantial improvements. What remains
to be discussed is how two-loop PMFRG performs when applied to magnetically
ordered systems.

To demonstrate the two-loop flow behavior in this case, we specifically consider
the ferromagnetic (J1 = −1) nearest neighbor pyrochlore Heisenberg model but
emphasize that the results below are typical for systems that order magnetically.
While as usual the susceptibility flows smoothly as a function of the cutoff Λ (see
Fig. 5.4), the one-loop susceptibility scales strongly with system size yielding a
critical temperature Tc ≃ 0.685 in good agreement to QMC (TQMC

c = 0.7182 [262]),
see the crossing lines in Fig. 5.5. However, for ℓ = 2, no such scaling and, hence,
no magnetic order is found. The large quantitative difference between one-loop
and two-loop in the magnetically ordered case suggests the necessity for higher
loop order corrections, which is left for future work.

Initially, it may appear surprising that the detection of magnetic order is prob-
lematic at second loop order. However, a similar observation has been made in a
recent multiloop PFFRG study [165], where magnetic ordering tendencies in the
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Figure 5.4.: (a) Ferromagnetic Heisenberg model on the pyrochlore lattice for
T = 0.5, well below the critical temperature Tc = 0.685 observed
in Fig. 5.5: Flow of the uniform susceptibility χΛ obtained in the one-
loop (thick) and two-loop (thin) PMFRG as a function of the cutoff Λ
for different maximum vertex lengths L. (b) Two-loop contribution to
the right hand sides of the flow equation for Γ where a ladder diagram
(with external site indices k, j) is inserted into the RPA channel (with
external site indices i, j).

flow are found to be strongly suppressed at ℓ = 2 but recovered at ℓ = 3.

A deeper understanding of this behavior can be obtained by inspecting the
diagrammatic contributions in different loop orders. First recall that the four-
point vertex flow is generated by different coupling channels with distinct physical
meanings. Particularly, the random-phase approximation (RPA) terms enable the
formation of magnetic long-range order, while all other channels (here, for simplic-
ity referred to as “ladder channels”) induce quantum fluctuations. In multi-loop
schemes these channels are inserted into each other, leading to a nested diagram
structure, see Fig. 5.4(b) for an example. The nesting is subject to the rule that a
contribution from a particular channel cannot be inserted into the same channel
again, as this would yield an overcounting of diagrams.

With this multiloop construction in mind, the RPA diagrams which in magnet-
ically ordered systems dominate the one-loop flow are dressed by ladder diagrams
in two-loop. This strongly suppresses magnetic order and explains our observation
in Fig. 5.4. In turn, the third loop order nesting can again be performed with RPA
diagrams which would strengthen ordering effects. Overall, one may, hence, ex-
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Figure 5.5.: PMFRG (ℓ = 1) results for the ferromagnetic Heisenberg model on
the pyrochlore lattice indicating a phase transition at Tc ≃ 0.685 in
good agreement with the QMC value TQMC

c = 0.7182 from Ref. [262].

pect an even-odd-effect of magnetic ordering tendencies in loop order. It is possible
that this type of behavior is characteristic for systems where one coupling channel
(here, the RPA channel) dominates the physical behavior. The more systematic
improvement upon increasing ℓ observed for the magnetically disordered antifer-
romagnetic pyrochlore Heisenberg model can then be interpreted as a consequence
of the fact that in this case all channels contribute more equally. However, as
discussed in Chapter C, even the full parquet solution seems incapable of detect-
ing order via a finite size scaling analysis. While the cause of this discrepancy is
still an ongoing investigation [10], it is evident that the particular combination of
diagrams in the one-loop truncations seems to include magnetic order and disorder
in a more balanced fashion, while higher loop-orders, while more accurate from a
purely perturbative perspective, may include a bias towards disordered states.

5.3. Spin 1 model

In this section, we address the finite-temperature properties of the nearest neighbor
pyrochlore Heisenberg model, i.e., we set J2 = 0. The ground state of this system
was found to be non-magnetic in several previous works [150, 262, 265]. The
investigation here also serves as a benchmark for the PMFRG method to check
whether the level-repulsion term introduced in Eq. (3.40) can correctly eliminate
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contributions from the unphysical states in thermodynamic quantities such as the
specific heat and the susceptibility.

First, we determine the optimal value γ for the nearest neighbor pyrochlore
model. To achieve this, γ is increased until convergence is found. As an addi-
tional verification of this procedure, after convergence density-matrix purification
data is used to benchmark the PMFRG results [4]. Even though the density-
matrix purification cannot access temperatures below T ∼ 2, the regime T ≳ 2 is
still suitable for benchmarks, since the effects of unphysical states are more pro-
nounced at higher temperatures. In Fig. 5.6 we show the specific heat capacity
CV and the uniform susceptibility χ a function of temperature for varying values
of γ. At the smallest level repulsion γ = 0.1, the effects of unphysical states are
still clearly visible from the deviation between the PMFRG result (blue curve)
and the density-matrix purification result (black curve). As the level repulsion is
increased, the PMFRG results first undergo significant changes, in particular the
specific heat. However, for γ ≳ 1 the changes become smaller upon varying γ and
we observe convergence around γ = 2. The agreement with the density-matrix
purification is best at γ = 2.5 (red curve). It is noted that for the conventional
one-loop truncation, the specific heat and the susceptibility from PMFRG show
a slightly enhanced deviation from the density-matrix purification results at the
lowest temperatures T ∼ 2 accessible within the density-matrix purification. As
discussed in Ref. [2], this can be remedied by a two-loop truncation of the vertex
flow equations, which significantly decreases these deviations. In principle, the
ideal choice of γ can change upon increasing J2. However the excitation gap to
unphysical states at constant γ and increasing J2 is expected to increase as a re-
sult of the decreasing frustration. Hence, the constant value γ = 2.5 should also
properly eliminate the impact of unphysical states for J2 > 0.

As we approach T ∼ 2 a maximum seems to be formed in the heat capacity
in agreement with the rotation-invariant Green function method [262]. Since the
heat capacity peak occurs at temperatures on the order of the coupling J1, the sys-
tem turns into a strongly correlated quantum magnet in this temperature region.
The PMFRG results are in remarkably good agreement with the ones from the
purification approach, especially for the two-loop truncation scheme, which was
previously found suitable for the S = 1/2 nearest neighbor pyrochlore Heisenberg
model [2]. Note that in PMFRG the specific heat is obtained via a numerical sec-
ond derivative of the free energy, and thus requires a numerically accurate solution
of the flow equations, making it prone to inaccuracies from error propagation. Due
to such effects we find a slightly negative heat capacity at the highest temperatures
T ∼ 100, where the physical contribution of the interaction correction to the free
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Figure 5.6.: Specific heat (top panel) and uniform susceptibility (bottom panel)
obtained from PMFRG in the standard one-loop truncation (left) and
two-loop truncation (right) as a function of temperature for different
choices of the level repulsion A = −γT ranging from γ = 0.1 (blue
lines) to γ = 2.5T (red lines). The values of γ for the thin gray lines in
between are γ = 0.2, 0.5, 1, 1.5, 2. The black lines denote the density-
matrix purification result.
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energy is vanishingly small but the dominant interaction from the level repulsion
A ∼ T is still considerable. Likewise, at the lowest temperatures, T ≲ 0.3 errors
from the truncation of PMFRG flow equations also lead to an unphysical heat
capacity CV < 0. We have omitted data at such low temperatures in Fig. 5.6.
Nonetheless, the overall agreement between the two very different methods serves
as an indication that even for spin magnitudes S > 1/2, PMFRG is a reliable
approach to address finite-temperature properties.

5.4. Effect of the J2 coupling

As mentioned before, an antiferromagnetic next-nearest neighbor coupling J2 en-
hances spin correlations of so-called k = 0 type [150]. The corresponding classical
k = 0 order has ferromagnetic spin arrangements in each of the four sublattices of
the pyrochlore lattice, individually. On the other hand, the relative orientations
of the four spins in each tetrahedron fulfill the spin ice rule, which means that the
sum of the four spins in each tetrahedron vanishes. The k = 0 order manifests in
magnetic Bragg peaks in the spin structure factor at q = (4π, 0, 0) and symmetry-
equivalent points in the extended Brillouin zone. The main goal in this section
is to identify and locate the phase boundary where J2 interactions drive k = 0
magnetic order in the S = 1 system.

Figure 5.7 shows the equal-time spin structure factor S(q) in the non-magnetic
phase at J2 = 0.01875 in comparison between PMFRG and DMRG. Since, by con-
struction, all symmetries of the Hamiltonian remain intact within PMFRG, the
DMRG data in Fig. 5.7 is symmetrized to enable a direct comparison between
both approaches. Also note that the DMRG result corresponds to T = 0 while the
PMFRG data is taken at the lowest simulated temperature T = 0.25. Both meth-
ods agree well on their prediction of dominant wave vectors, however, in DMRG
the peaks in S(q) (which indicate the proximity to the k = 0 ordered phase) are
somewhat more pronounced. This is likely an effect of the different temperatures
involved in the comparison, where the finite temperature T = 0.25 used in PM-
FRG smears the signal. On the other hand, PMFRG can efficiently describe fully
translationally invariant systems, restricting only the length of spin correlations
(here, L = 10). If L is chosen to be larger than the physical correlation length,
this method provides a virtually infinite momentum resolution, which smoothes
the more ‘grainy’ appearance of the spin structure factor from DMRG. As a conse-
quence, remnants of the characteristic pinch-point pattern known from the J1-only
model become visible at q = (4π, 0, 0) within PMFRG. However, due to the finite
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Figure 5.7.: Spin structure factor S(q) for J2 = 0.01875 from DMRG at T = 0
with symmetrized wavefunction (bottom panel) and from PMFRG at
T = 0.25 (top panel) for L = 10. The left (right) plots show S(q) in
the [hhl] ([hl0]) plane.

J2 coupling a peak starts to grow out of the pinch-point center [150].

Upon increasing J2 we observe growing intensities of the spin structure factor
at the dominant wave vector q = (4π, 0, 0) within PMFRG (not shown). In order
to rigorously determine the transition to the k = 0 ordered phase in PMFRG we
study the model for three different values of the maximal correlation length L =
6, 10, 14 using the one-loop PMFRG scheme which was found to be more suitable
for resolving magnetic order than higher loop-orders [2]. Critical temperatures of
a second order phase transition are found via finite-size scaling of the correlation
length ξ [see Eq. (1.10)] which, at the critical temperature Tc, scales as ξ/L =
const., i.e., linear in the numerically chosen maximum correlation distance L. The
critical temperatures Tc determined this way are shown in Fig. 5.8 as a function
of J2. Although temperatures below T ≲ 0.3 cannot be resolved accurately due
to the effects of neglecting higher order vertices in the flow equations, Tc shows
a clear downward trend when lowering J2. The phase boundary Tc(J2) can be
accurately fitted by a parabolic curve which we extrapolate to obtain an estimate
for the phase boundary at T = 0, given by J2 = 0.035(8). The error bars for the
data points in Fig. 5.8 are estimated from the maximal difference between pairwise
crossing points of curves for different L (see inset). The error of the T = 0 phase
boundary is estimated through extrapolations of the errorbars as displayed in the
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figure.

While the value J2 = 0.035(8) from PMFRG is somewhat larger than the
critical coupling J2 ∼ 0.02 estimated with DMRG, taking into account the uncer-
tainties of the extrapolation to T = 0 in PMFRG and the fact that the DMRG
result is obtained for a small spin cluster, both critical couplings can still be re-
garded as consistent. Particularly, the small critical J2 found in both approaches
indicates a high fragility of the non-magnetic phase of the nearest neighbor model
to second neighbor couplings.

5.5. Discussion of previous PFFRG results

The position of the zero-temperature phase transition at J2 = 0.035(8) identified
by PMFRG in the previous section differs considerably from the critical coupling
J2 = 0.09(2) found in Ref. [150] obtained by the similar PFFRG approach. This
raises the question why these closely related approaches disagree so strongly in that
result. The following discussion provides an explanation, points out precautions
when using the PFFRG and describes how these methods should best be applied.

To start, it is worth explaining several properties of the PFFRG and how this
method detects quantum phase transitions between magnetically ordered and dis-
ordered phases. The PFFRG, as detailed in Section 1.6, expresses spin operators in
terms of complex fermionic auxiliary particles, so-called Abrikosov fermions, which
introduce unphysical states. While at T = 0, the impact of unphysical states is
usually found to be mild, at finite temperatures their contributions grow such that
a meaningful application of the PFFRG is restricted to T = 0 (unless a projection
via the Popov-Fedotov method is applied [160]). Thus, a finite-temperature phase
transition can never be directly observed in PFFRG but instead reveals itself at
finite cutoff Λ > 0 at T = 0. However, while Λ shares some properties with the
temperature T , its artificial nature complicates the physical interpretation of re-
sults at finite Λ. For example, it is currently unclear whether critical scaling in
the system size L is generally expected at finite Λ. Hence, the usual approach to
nevertheless identify the onset of magnetic order for given coupling parameters at
finite Λ and T = 0 within PFFRG is to search for instability features of the suscep-
tibility as a function of Λ, such as kinks or peaks. This identification of long-range
order, however, gets increasingly difficult if one approaches a quantum critical
point from the ordered side, since kinks get less pronounced, shift to lower Λ and
continuously disappear. Furthermore, at low Λ the PFFRG becomes increasingly
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Figure 5.8.: J2 dependence of the critical temperature Tc, obtained via a scal-
ing collapse of the correlation length ξ ∼ L calculated with one-loop
PMFRG. As an example, the inset shows the scaling collapse for the
red data point in the main panel for maximal correlation distances
L = 6, 10, 14. Error bars are estimated from the maximum deviation
between crossing points of different curves. The gray dashed line is an
extrapolation of the phase transition to T = 0 using a parabolic fit,
where the vertical black dashed line highlights the T = 0 critical J2
coupling obtained this way. The vertical blue line indicates the critical
J2 coupling from DMRG and the vertical red dashed line is the result
from Ref. [150].
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inaccurate (for the same intrinsic methodological reason why PMFRG becomes
uncontrolled at low T ) and the existence or absence of weak instability features
may sensitively depend on details of the implementation such as the chosen fre-
quency mesh. As an example, Fig. 13 of Ref. [150] illustrates these difficulties in
precisely locating zero-temperature phase boundaries in PFFRG, where a kink in
the susceptibility flow of the nearest neighbor pyrochlore Heisenberg model con-
tinuously disappears when the spin magnitude S is decreased. Usually, in PFFRG
the extent of a magnetically ordered zero-temperature phase is determined by the
coupling parameter regime in which kinks in the Λ flow of the susceptibility are
explicitly visible (although sometimes only faintly visible). The phase boundaries
obtained this way (such as the critical second neighbor coupling J2 = 0.09(2) of the
S = 1 J1-J2 pyrochlore Heisenberg model obtained in Ref. [150]), might, however,
underestimate the extent of ordered phases because there could be a parameter
window where magnetic order exists, but the instability features are too faint to
be visible in the susceptibility or the methodological limitations at small Λ, coarse
frequency meshes and finite system sizes prevent their observation.

Let us compare this situation with the more quantitative method of locating a
T = 0 phase transition in PMFRG where a finite size scaling and an extrapolation
to T = 0 is employed. The phase diagram in Fig. 5.8 shows that a phase transi-
tion into a k = 0 magnetic regime is only explicitly observed via critical scaling
for J2 ≳ 0.12, while for smaller J2 the methodological limitations at low T or the
actual absence of order prevent a direct detection of a phase transition. If the
extent of the k = 0 ordered phase is only determined from the J2 regime where
a transition is directly visible (via a susceptibility kink in PFFRG or via critical
scaling in PMFRG) the two values J2 = 0.09(2) in PFFRG and J2 = 0.12 in PM-
FRG are actually not so different. This indicates that the competition between
magnetic order phenomena and magnetic disorder fluctuations might be described
quite similarly in both approaches. A crucial difference, however, is that the more
quantitative approach of detecting phase transitions in PMFRG allows an extrap-
olation to T = 0, and thus provides access to actual quantum phase transitions.
Note that an analogous procedure in PFFRG, i.e., an extrapolation of kink-like
instability features to Λ = 0 would be considerably harder, since the Λ positions
of weak kinks often depend sensitively on details of the implementation (precise
choice of the frequency grid).

To summarize this discussion, the much larger zero-temperature critical J2
coupling from PFFRG compared to PMFRG does not necessarily indicate that
PFFRG intrinsically underestimates magnetic order. Rather, the usual approach
of identifying a quantum phase transition from PFFRG susceptibility data is in-
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accurate and can make magnetically ordered phases appear smaller than they
actually are. Therefore, zero-temperature phase boundaries from PFFRG are only
rough estimates and the obtained sizes of magnetically ordered regimes can be
understood as lower bounds for the actual extents of these phases. The results in
this paper also show how PMFRG solves this problem via extrapolations of phase
boundaries to T = 0, giving rise to more accurate positions of quantum phase
transitions.
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6
Quantum Effects on Unconventional

Pinch Point Singularities

6.1. Introduction

A particularly fascinating physical situation arises when a system of interacting
spins realizes an emergent gauge theory, which is one of the defining properties
of a quantum spin liquid [55]. Various different types of gauge theories may be
realized in such phases. For example, quantum spin ice represents a variant of
a quantum spin liquid, where an emergent U(1) gauge theory on a pyrochlore
lattice establishes an astonishing analogy to three-dimensional electromagnetism
including emergent photons and an effective fine-structure constant [12, 73]. The
key ingredient enabling these non-trivial properties is the gauge constraint which,
in the charge-free sector of a U(1) gauge theory, takes the form of a Gauss law
∇ · E(r) = 0.

Meanwhile, generalizations of the standard U(1) gauge theories have become
a new focus of theoretical investigations where the vector form of the Gauss-
law is replaced by a tensor structure [89, 103, 117, 266], e.g. ∑µν ∂µ∂νEµν(r) =
0, known as tensor gauge theories describing so-called fracton spin liquids [105,
106]. The most remarkable consequence of this generalization is that, besides the
effective charge of a quasiparticle, multipole moments of charges become conserved
quantities giving rise to excitations with fractionalized mobility [103]. Two cases
can be distinguished [102]: In type-I fracton phases [116, 267, 268], described by
symmetric tensor gauge theories, the quasiparticles are either completely immobile
or have a residual mobility along subdimensional manifolds. Otherwise, in type-II
fracton phases [118, 269, 270] all quasiparticles are completely immobile. In the
associated multipolar gauge theories the Gauss law contains derivatives of different
orders restricting charge configurations to certain fractal patterns [109, 111, 271,
272]. Remarkably, fracton phases also attract interest in fields such as quantum
information [107, 273] and high energy physics [108, 112, 266, 274].

Recently, important steps have been undertaken to bring the rather abstract
theoretical research on fracton phases closer to the established field of quantum
magnetism and to experiments. For example, it has been found that type-I frac-
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ton phases manifest themselves in multifold pinch-points [117] in the spin structure
factor [Fig. 6.2(a)], generalizing the famous twofold pinch points known from con-
ventional U(1) spin liquids [Fig. 6.1(c)]. Likewise, type-II fracton phases have been
argued to be associated with quadratic pinch points [Fig. 6.3(d)] where contour
lines exhibit a characteristic parabolic shape [113]. On a different front, a class of
simple classical spin models have been identified [51] which give straightforward
access to classical spin liquids described by tensor gauge theories and to uncon-
ventional pinch points in the spin structure factor. However, it is an open but
experimentally relevant question how stable these phases are under modification
from the ideal situations in which they are defined, e.g., by allowing for quantum
fluctuations.

In the following, we consider the effects of quantum fluctuations on the ground
state and finite-temperature phases of the classical spin model in Ref. [51]– the
so-called octochlore model – whose three dimensional octahedral lattice is real-
ized in rare-earth antiperovskites [275, 276]. This model represents a showcase
example for exotic classical spin liquids: Apart from known twofold and multifold
pinch points we identify exact realizations of quadratic pinch points [113] as well
as unconventional pinch line singularities [277]. We add quantum fluctuations to
the system by promoting it from a classical (S → ∞) to a quantum S = 1/2
Heisenberg model which is then numerically treated via two powerful quantum
many-body techniques, the pseudo fermion and the pseudo Majorana functional
renormalization group. Overall, we find that exotic pinch point features are dras-
tically affected by quantum fluctuations and appear more fragile compared to
conventional twofold pinch points.

6.2. Unconventional gauge theories from an
octochlore model.

The octahedral lattice consists of corner-sharing octahedra and is defined by simple
cubic lattice vectors am ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} together with a three site
basis bm = am/2. The Hamiltonian of the octochlore model [51] is constructed as
the sum of squared vectors Moct,αβ over all elementary octahedra

H = J

2
∑
oct

M2
oct,αβ, (6.1)
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Figure 6.1.: (a) Octochlore model: Differently weighted sites in Eq. (6.2) are in-
dicated by different colors. (b) Phase diagram of the model from
Ref. [51]. The labels A, B, C [with parameters (α, β) given in the
inset] indicate the locations of multifold pinch points, quadratic pinch
points and pinch lines as shown in Figs. 6.2, 6.3 and 6.5, respectively.
(c) Spin structure factor of a twofold pinch point at α = β = 0 for
the classical and quantum model. (d) Spin structure factor S(q) along
circular paths indicated in (c) normalized to their maxima.
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where Moct,αβ is the sum of spins in a cluster, weighted by dimensionless parame-
ters α, β,

Moct,αβ =
∑

i∈oct
Si + α

∑
i∈⟨oct⟩

Si + β
∑

i∈⟨⟨oct⟩⟩
Si. (6.2)

Here, a reference octahedron “oct” is given by the green sites in Fig. 6.1(a), while
its closest surrounding sites “⟨oct⟩” and further distant sites “⟨⟨oct⟩⟩” are colored
blue and cyan, respectively. Henceforth, we set the energy scale such that the
maximal Heisenberg coupling between two spins is equal to one.

For classical spins Si, the system’s extensively degenerate ground states follow
from the constraints Moct,αβ = 0 which constitute discrete versions of Gauss’s law.
These constraints can be expressed in reciprocal space as∑m Lm(q)Sm(q) = 0 [51],
where m = 1, 2, 3 label the sublattices, Sm(q) is the Fourier-transformed spin on
sublattice m and Lm(q) is the m-th component of the so-called constraint vector.
Normalized constraint vectors L̃m(q) = Lm(q)/

√∑
n(Ln(q))2 can be defined over

the entire q space except at singular points q⋆ where Lm(q⋆) = 0 for all m. For
isolated points q⋆ in momentum space and with L̃m(q) defined on the unit sphere
S2 one can assign a topological index to the defect configuration L̃m(q) around
q⋆ defined by the second homotopy group of S2, which is the Skyrmion number
Q [278, 279]. As demonstrated in Ref. [51] non-trivial Q ̸= 0 give rise to pinch
points at q = q⋆ in the equal-time spin structure factor S(q) ≡ ⟨S(−q) · S(q)⟩,
where |Q| = 1 is associated with twofold pinch points. Furthermore, expanding
Lm(q) in powers of q around q⋆ reveals the underlying continuum gauge theory.

The number of such defects and their arrangement in the Brillouin zone yields
a phase diagram spanned by α and β featuring 10 distinct classical spin liquids, see
Fig. 6.1(b). In particular, at points along the boundary [i.e., point A in Fig. 6.1(b)]
multiple defects with Q = ±1 merge, leading to a higher |Q| > 1 associated with a
tensor gauge theory and multifold pinch points, see Ref. [51]. In addition, we have
identified even richer phenomena at crossing points of several phase boundaries:
Point B in Fig. 6.1(b) displays a pinch point with purely parabolic contours, re-
cently predicted to be a hallmark signature of type-II fracton phases [113], while
point C features unusual, one-dimensional manifolds of pinch points, so-called
pinch-lines [277].
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6.3. Emergent gauge theories

6.3. Emergent gauge theories

As discussed in Ref. [51], the classical ground state constraint of the octochlore
model can be written as ∑

i∈c

ηiSi = 0 ∀c, (6.3)

ηi =


1, i ∈ oct
α, i ∈ ⟨oct⟩
β, i ∈ ⟨⟨oct⟩⟩

, (6.4)

where c is the cluster of octahedra shown in Fig. 6.1(a). In reciprocal space, the
constraint can be expressed using a constraint vector Lm(q)

Lm(q) =
∑

i∈m∈c

ηie
iq(rc−ri) (6.5)

nu∑
m=1

L∗
m(q)Sm(q) = 0 ∀q, (6.6)

where nu = 3 is the number of sites per unit cell, rc indicates the position of the
center of the cluster c and ri the position of site i. As all spin components are equiv-
alent, henceforth, we only consider the z-component. Even though the dimension
of Lm is given by the number of sublattices and can in principle be of arbitrary
dimension, here we shall label its three components as Lx, Ly, Lz for notational con-
venience. Equation (6.6) implies that the vector Sz

m is orthogonal to the constraint
vector Lm(q). Hence, the spin structure factor S(q) ≡ 1

nu

∑
m,n⟨Sz

m(−q)Sz
n(q)⟩ can

be approximated at zero temperature by summing over all elements of the matrix
projecting out L̃m(q) [42, 51]. This explains the appearance of pinch points when-
ever Lm(q) = 0 and the projector becomes singular. The effective gauge theory
is then given by expanding Lm(q) to leading order around the location of a pinch
point q⋆, corresponding to a coarse graining of the system. If the lowest non-
vanishing contribution is of first order, we obtain

∑
m

∑
µ

∂L∗
m

∂q̃µ

∣∣∣∣∣
q̃=0

q̃µS
z
m(q̃) ≡

∑
µ

q̃µEµ(q̃) = 0, (6.7)

where q̃ = q − q⋆. This is a simple Gauss’ law ∇ · E = 0 in reciprocal space.
The emergent gauge field Eµ(q̃) = ∑

m
∂L∗

m

∂q̃µ
|q̃=0S

z
m(q̃) in this example is of rank-1

U(1) type. An interesting special case emerges when the gradient of the constraint
vector also vanishes. In this case, the effective gauge field becomes a higher rank
tensor which may depend on terms such as ∂2L∗

m

∂qµ∂qν
. We now consider more explicit
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Chapter 6. Quantum Effects on Unconventional Pinch Point Singularities

examples found on the octochlore model, for which the constraint vector can be
written as

L(q) =


2 cos

(
qx

2

)
[2α(cos(qy) + cos(qz)) + 2β cos(qx) + 1 − β]

2 cos
(

qy

2

)
[2α(cos(qx) + cos(qz)) + 2β cos(qy) + 1 − β]

2 cos
(

qz

2

)
[2α(cos(qx) + cos(qy)) + 2β cos(qz) + 1 − β]

 . (6.8)

6.4. Twofold pinch points

We start with a brief discussion of more conventional twofold pinch points with
|Q| = 1, occurring in the bulk of every phase of Fig. 6.1(b) and previously
featured in Chapter 5. At the pinch point positions q = q⋆, the lowest non-
vanishing term in an expansion of Lm(q) is the linear one, and hence, the emer-
gent continuum Gauss law has the linear form ∇ · E(r) = q · E(q) = 0 where
E(q) = ∑

m S
z
m(q)∂qLm(q) 1. First, consider the simple special case α = β =

0. In this case we have L = 2 (cos(qx/2), cos(qy/2), cos(qz/2)) which vanishes
only at the pinch point q⋆ = (π, π, π) (and equivalent positions). Here, we find
∂qµLm(q⋆) = −δµm, i.e., the underlying gauge structure can be described by an
emergent rank-1 gauge field, as expected.

Under the influence of quantum fluctuations at T = 0 in the S = 1/2 case
treated with PFFRG, twofold pinch points show the typical broadening illustrated
in Fig. 6.1(c) for the case α = β = 0, while the overall pinch point shape stays
rather intact. In particular, we observe the effects of quantum fluctuations to
be analogous to those at a finite temperature T ∼ 1.3. This broadening indicates
violations of the ice rule constraint, and is expected as the absolute spin magnitudes
M2

oct,αβ of neighboring octahedra do not mutually commute and thus fluctuate, i.e.,
⟨M2

oct,αβ⟩ ≠ 0. Importantly, the signal at q = q⋆ remains strong and no indications
for magnetic long-range order are observed in the full α-β plane [42]. We find these
observations to be in direct analogy with past studies of the closely related nearest
neighbor pyrochlore Heisenberg model [2, 8, 150, 165, 257, 260, 262, 263, 280].

1Derivatives here are taken at q = q⋆ and q is meant to be the momentum relative to q⋆. Fur-
thermore, since the different spin components µ = x, y, z do not couple in the spin constraint,
one may restrict to the z-component without loss of generality.
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6.4. Twofold pinch points

Figure 6.2.: (a-d): Spin structure factor S(q) in the hhl-plane for a multifold Q =
−7 pinch point found at location A (α = −11

10 , β = 9
5) in the phase

diagram of Fig. 6.1. (e): S(q) for the two paths indicated in (a),
normalized to its maximum value along each path. (f): As in (e) but
comparing classical thermal and quantum fluctuations along the paths
in (b) and (c). The paths are counterclockwise and the start point
φ = 0 is indicated by a marker.
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6.5. Multifold pinch points

A vanishing linear term in an expansion of Lm(q) around q = q⋆ is associ-
ated with multifold pinch points [51, 117, 266]. An instructive example oc-
curs at α = −11/10, β = 9/5 and q⋆ = (π, π, π), with a topological index
Q = −7 and six lobes of large intensity in the hhl plane, see Fig. 6.2(a) and
Ref. [51]. We identify a gauge constraint of third rank ∑

µνσ qµqνqσEµνσ(q) = 0
where Eµνρ(q) = ∑

m S
z
m(q)∂qµ∂qν∂qρLm(q), implying conserved scalar charge,

dipole and quadrupole moments.

Fourfold pinch points

For α = 0, β = −1, L(q) simplifies to

L(q) =


4 cos

(
qx

2

)
(1 − cos(qx))

4 cos
(

qy

2

)
(1 − cos(qy))

4 cos
(

qz

2

)
(1 − cos(qz))

 . (6.9)

We find that all components of L(q) and its first derivatives vanish at q⋆ = (0, 0, 0).
The first nonzero contributions are all of second order

∂qµ∂qνLm

∣∣∣
q=q⋆

= 4δµνδµm (6.10)

As the underlying gauge field is a rank-2 tensor Eµν(q) = 4δµνS
z
µ(q), the

structure factor displays a fourfold pinch point. A gauge theory of this form
∂µ∂νEµν = 0 implies the existence of quasiparticle excitations with conserved
dipole moment [103, 117]. so-called fractons are thus immobile unless grouped
together to form pairs or larger clusters. The effect of quantum fluctuations is
seen to be rather similar to multifold pinch points, and shall be discussed in the
following2.

2A more detailed discussion of fracton spin liquids in relation to fourfold pinch points will follow
in Chapter 7.
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Multifold pinch point

At α = −11/10, β = 9/5, an even higher rank gauge theory of the form ∂µ∂ν∂ρEµνρ =
0 emerges, since both the first and the second order derivatives of the constraint
vector vanish at the pinch point q⋆ = (π, π, π). Explicitly, we find for the first
component of the constraint vector

∂3
qx
Lx(q⋆) = −54/5,

∂qx∂
2
qy
Lx(q⋆) = ∂qx∂

2
qz
Lx(q⋆) = 11/5, (6.11)

while other derivatives such as ∂2
qx
∂qyLx(q⋆) are zero. Consequently, not only

monopole and dipole moments, but also the quadrupole moment are conserved.
This feature is characterized by a skyrmion winding number of Q = −7 and dis-
plays a sixfold pinch point when cut through the hhl plane. Figure 6.2 shows
the impact of both quantum and thermal fluctuations on this multifold pinch
point. The value of S(q) along circular paths around the pinch point illustrates
the presence of the singularity: For the exact gauge theory in the classical T = 0
model, it retains the same strong angular dependence for arbitrarily small radii,
see Fig. 6.2(e). Thermal fluctuations induce a rather featureless broadening and
the angular dependence of the signal vanishes at small distances from the pinch
point, see full red line in Fig. 6.2(f). Interestingly, the effects of quantum fluctua-
tions are very different. In addition to a broadening, quantum fluctuations add a
shift of spectral weight away from the pinch point origin in favor of soft maxima
at incommensurate positions, effectively tearing apart the pinch point. It is noted
that this observation stands in stark contrast to the case of twofold pinch points
shown in Fig. 6.1(c), for which quantum fluctuations appear to act similarly to
thermal ones.

In order to physically interpret the data in Fig. 6.2, two types of quantum
effects need to be distinguished. First, the aforementioned broadening of pinch
points rather indicates the destruction of the underlying gauge theory. However,
a second well-known quantum effect consistent with a gauge theory is the forma-
tion of gapless photon modes with dispersion ω(q), resulting from an emergent
conjugate vector potential A(r). These photon modes give rise to an extra factor
ω(q) in the spin structure factor (i.e., S(q) → ω(q)S(q)) suppressing the signal
at the singularity due to ω(q⋆) = 0 [68, 113, 117]. To test whether the weight
distribution in Fig. 6.2(c) contains possible signatures of such a modulation, we
note that the mere multiplication of an exact pinch point with an isotropic factor
ω(q) ∼ |q − q⋆|γ (or, for that matter, any function ω(|q − q⋆|)) 3 leaves the sin-

3In the most common types of U(1) gauge theories including rank-1 and rank-2 versions the
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Chapter 6. Quantum Effects on Unconventional Pinch Point Singularities

gularity intact such that S(q) along rings around the pinch point, normalized to
its maximum on each path, would remain unchanged upon decreasing the radius
of the rings. However, the dashed red and blue graphs in Fig. 6.2(f) illustrating
the normalized signal along the ring-like paths in Fig. 6.2(c) are qualitatively very
different and, hence, these results seem incompatible with an emergent photon
mode. While it is possible that the ground state is described by a different gauge
theory (i.e., with an emergent electric field given by a more complex function of
spin operators), it is questionable whether fractonic phenomena that have been
associated with these spectroscopic features still occur in the S = 1/2 limit of the
Heisenberg model.

6.6. Quadratic pinch points

A further generalization occurs if the gauge constraint contains derivatives of dif-
ferent orders as is characteristic for multipolar gauge theories describing type-II
fracton phases. This gives rise to quadratic pinch points in the spin structure fac-
tor where lobes of strong intensity follow contour lines of the form q∥ ∝ aq2

⊥ with
q∥ and q⊥ being two perpendicular momentum space directions and a is the lattice
constant (which is set to one here). The mixing of derivatives causes the lattice
constant to explicitly appear in these spectroscopic patterns which is a direct man-
ifestation of the ultraviolet-infrared mixing described in recent literature [113].

At (α = 0, β = −1), a pinch point with purely parabolic contours can be found
at q⋆ = (0, 0, π). As pointed out by Hart et. al. in Ref. [113], such a pinch point
can be a signature of a type-II fractonic phase. Indeed, we verify that for the
present case, L has a nonzero first derivative only in the qz direction. For systems
with emergent photon excitations, a similar suppression is also observed [68]. Here,
the structure factor simply acquires a prefactor from the dispersion of a photon
with the speed of light c. ω(q̃) = c

√
q̃2

z +
(
q̃2

x + q̃2
y

)2
, where [68]

S(q̃) → ω(q̃) coth
(
ω(q̃)
2T

)
S(q̃). (6.12)

In Fig. 6.4, the effect of such a modification is considered in comparison to
the findings from PFFRG. The resulting structure factors are clearly qualitatively

photon dispersion is linear, i.e., γ = 1, as long as charges are scalar [117].
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6.6. Quadratic pinch points

Figure 6.3.: Pinch point with parabolic contours in the hhl-plane found at point B
(α = 0, β = −1). (a): Classical large-N result for temperatures T = 0
(left half) and T = 1.4 (right half). (b) Quantum model at T = 1.4 and
(c) at T = 0 obtained from PMFRG and PFFRG in the low cutoff
limit, respectively. (d-f): Magnifications of the regions indicated by
black squares in the upper panel together with black contour lines.
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Chapter 6. Quantum Effects on Unconventional Pinch Point Singularities

Figure 6.4.: Quadratic pinch point at T = 0 and T = 0.8. Dispersion-corrected
structure factor S(q) obtained from large N and Eq. (6.12) in (a) and
(c) in comparison of to PFFRG (b) and PMFRG (d).

distinct. While PFFRG is formally employed at zero temperature, the influence
of its finite cutoff is often similar to a finite temperature. To investigate this
possibility, a rough estimate of the structure factor can be obtained from large
N at finite temperature by applying the correction from the photon dispersion in
Eq. (6.12). Assuming that c = 1 (in units of the normalized lattice constant and
energy scale), the result is shown in panel (c) of Fig. 6.4. As in the case of quantum
spin ice, this returns some spectral weight back to the pinch point. Although the
intensity at the pinch point depends on microscopic details such as the value of
c, we notice that the position of the maxima remains indifferent, following the
original parabolic contour. This contrasts our numerical observations so that the
presence of emergent photons remains unlikely.

Strikingly, such quadratic pinch points can be found in the classical octochlore
model at α = 0, β = −1 and q⋆ = (0, 0, π). The effective gauge theory in this
case contains first derivatives along the z-direction, as ∂qzL3(q) ̸= 0, while for the
perpendicular x, y directions ∂qxLm(q) = ∂qyLm(q) = 0 for m = 1, 2, 3 and the
lowest non-vanishing contribution comes from second derivatives. Indeed, it can
be verified that for the present case, L has a nonzero first derivative only in the qz
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direction:

∂qµLm(q)
∣∣∣
q=q⋆

=
−4 µ = m = z

0 else
(6.13)

∂qµ∂qνLm(q)
∣∣∣
q=q⋆

=
4 µ = ν = m and m = x, y

0 else
. (6.14)

The resulting quadratic pinch point in classical large-N [Fig. 6.3(d)] has a
shape which is similar to predictions from the U(1) Haah code [113]. The effect
of finite temperatures in large-N only amounts to a broadening near q⋆ while
retaining the quadratic shape and the strong signal around q⋆. This is to be
contrasted with PMFRG at the same temperature where the signal is reduced near
q⋆ and quadratic contours are no longer discernible. This trend continues down to
T = 0 where the spin-structure factor appears even more strongly reduced around
q⋆. Again however, this result seems incompatible with emergent photons, see
Fig. 6.4.

6.7. Pinch-lines

As mentioned before, singularities in the structure factor are present at points q⋆

where Lm(q⋆) = 0. Inspecting Eq. (6.8), we immediately observe that a pinch
point can always be found at (π, π, π), where the prefactors cos(qµ/2) vanish.
Other pinch points emerge at more complicated positions determined by a delicate
balance between the parameters α, β and the wavevector q. This situation has
previously been studied in Ref. [277] where the phenomenon has been dubbed a
pinch line. Such patterns exhibit conventional twofold pinch points in all planar
cuts through the pinch line. For the classical pyrochlore model investigated in
Ref. [277] an underlying gauge constraint linear in the derivatives but with a
tensor structure has been identified and a possible relevance for the pyrochlore
material Tb2Ti2O7 [71] has been pointed out.

An analogous feature is found in the octochlore model at α = −1
2 and β = 1

where pinch lines run along [111] and symmetry related directions in momentum
space. The lowest non-vanishing derivatives of Lm(q) at q⋆ are first order deriva-
tives perpendicular to the pinch lines, in agreement with the pyrochlore model of
Ref. [277]. Since the topological defect is now line-like and observing that the nor-
malized constraint vector L̃m(q) avoids two opposite points on the unit sphere S2,
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Chapter 6. Quantum Effects on Unconventional Pinch Point Singularities

Figure 6.5.: (a-c): Temperature dependent spin structure factor for a pinch line
at α = −1

2 , β = 1 [C in Fig. 6.1(b)] in the [111] direction. Panels
(d-f) show a cut through the pinch line, here given by qz = 0.5π as
indicated by the solid dark red line in panels (a-c).
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6.8. Discussion

see Fig. 6.6, the topological index is given by the integer vortex winding number
w. We find |w| = 1 and consequently, twofold pinch points in planar cuts through
the line defect, see bottom panel of Fig. 6.5 depicting cuts at qz = 0.5π. Thermal
fluctuations in the classical model [Fig. 6.5(a), right] shift spectral weight towards
the pinch lines such that they become visible in the hhl plane as well defined,
broadened lines of constant strong signal. In the generic case, for a fixed set of
α, β, the requirement that all three components of L have to vanish leads to three
equations, determining the positions of the pinch points q⋆ uniquely (up to point
group symmetries). However, for appropriate α and β, one or more components
can become equivalent, leading to a line-like manifold of singularities.

The location of the pinch point feature can be found by setting qz = π, such
that Lz = 0. One can see that whenever qx = qy, the first two components of Lm

become equivalent:

L =


2 cos

(
qx

2

)
[cos (qx) (2α + 2β) + 1 − 2α− β]

2 cos
(

qx

2

)
[cos (qx) (2α + 2β) + 1 − 2α− β]

0

 (6.15)

These two components vanish for all qx = qy for α = −β = 1, resulting in a line of
pinch points, or pinch-line. This pinch line can be characterized by a topological,
winding number. Here, L̃m(q) = Lm(q)/

√∑
n L2

n(q) is traced on the unit sphere
as one moves along a closed loop around the pinch line. Since the corresponding
paths on the unit sphere avoid two opposite poles (see Fig. 6.6), the topological
index can be defined as the corresponding winding number. For each point on the
pinch line, the winding number takes the same integer value as long as the loop
does not contain or intersect any other pinch point (where L̃(q) is singular).

6.8. Discussion

The classical octochlore model is identified as an exquisite physical platform for
studying exotic spectroscopic features, such as multifold and quadratic pinch points
as well as pinch lines, all associated with unconventional gauge theories. Numerical
studies which systematically investigate the impact of quantum fluctuations on the
corresponding classical spin liquids are, however, lacking so far. In the endeavor
to fill this gap, the quantum spin S = 1/2 model is treated by employing state-
of-the-art PFFRG and PMFRG methods. A recurring theme is found in these
results: Multifold pinch points, quadratic pinch points and pinch lines all undergo
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Chapter 6. Quantum Effects on Unconventional Pinch Point Singularities

a significantly different modification under quantum fluctuations than conventional
twofold pinch points, showing a reduction of S(q) at q⋆ that is also at variance
compared to the effects of pure thermal fluctuations in the classical case. This
also implies that the absence of unconventional pinch points in an experimentally
measured spin structure factor does not necessarily exclude the realization of a
higher-rank U(1) gauge theory in the corresponding classical system.

From a methodological perspective, here, we benefit from the fact that the
octochlore model has SU(2) spin symmetry which simplifies the application of
PFFRG and PMFRG enormously. A (numerically more challenging) continua-
tion of the present work could be to lift the SU(2) symmetry by considering an
Ising version of the octochlore model supplemented with small transverse cou-
plings, thus realizing an analogous situation as in quantum spin ice models. This
will help identifying the fate of exotic pinch point singularities along a continuous
classical-to-quantum interpolation. These results strongly motivate new avenues in
the investigations of these exotic pinch points under quantum fluctuations, which
appear to have a more significant impact compared to twofold-pinch points. Fur-
thermore, this work sets the stage for determining the microscopic wave functions
describing these resulting quantum phases, and whose correlation functions give
rise to the static structure factors obtained here [198].
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6.8. Discussion

Figure 6.6.: Vortex winding number for pinch line. Left: Spin structure fac-
tor from large-N at T = 0 in a cut through the pinch line, with loops
of different radius. Right: For each loop, the normalized constraint
vector describes a path winding once around the same axis. Suffi-
ciently close to the pinch point, this path is of circular shape.
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7
Fracton phase in a square lattice model

In the previous chapter, we explored how quantum fluctuations behave in a
model known to exhibit a variety of exotic emergent gauge fields, including two
types of fracton phases. In all cases, it was found that little remains of the fea-
tures known to herald fractonic behavior, instead giving rise to rather complicated
physics certainly out of scope for most approaches. This is not entirely surprising
given the rather drastic differences between the classical and quantum Heisenberg
models: Due to the noncommuting nature of spin operators, ice rule states, pos-
ing as classical ground states, are no longer a valid starting point for finding the
quantum ground state as the charges M2

oct,αβ are no longer well-defined quantum
numbers.

On the other hand, one may want to consider a more gentle and controlled
way to introduce quantum fluctuations into the classically degenerate ground state
manifold by starting from a classical Ising model in which the charge excitations
are gapped. In this case, small quantum fluctuations, e.g. introduced by couplings
between transverse spin components Sx,y, will not be able to destroy this gap,
while allowing fluctuations between the classically degenerate ground states. While
this is certainly possible, the rather complicated nature of the interactions in the
previously introduced octochlore model poses some challenges to this approach.
In this chapter, we will therefore begin by constructing a more minimal model to
aid our analysis.

7.1. Construction of a classical fracton model

While the model presented in Chapter 6 follows a very general construction that
can be applied to other geometries such as the two-dimensional Honeycomb lat-
tice [51], the constraints constructed in this way will typically involve many sites
imposing additional restrictions on the dynamics of fractons and posing challenges
to the study of even classical models [101]. As a result, here we consider a different
approach which is to start directly from the desired gauge theory and discretize it
on a square lattice to arrive at a spin model. The simplest model which nonethe-
less will classically exhibit a fracton phase will be a gauge theory with a rank-2
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Figure 7.1.: Spiderweb model and its elementary excitations. a): The ground state
constraint and the fluctuator are only defined on separate × sublat-
tices. The couplings for the model are obtained by squaring the con-
straint. Red (blue) couplings are Jij = −1 (Jij = +1), while thick lines
correspond to an interaction |Jij| = 2. b): Isolated, immobile fracton
occurring on a domain between two different ground state patterns. c):
Derivative operators discretized on the lattice from a). d): A Lineon,
a pair of fractons, which can move along a single dimension. e): A
generic ground state with two plaquettes where the fluctuator can be
applied, indicated by red dots. f): The periodic staircase state, featur-
ing the highest density of flippable plaquettes. Flipping the plaquette
highlighted in green renders all other plaquettes in its vicinity (dashed
green line) unflippable, such as the one highlighted in red.
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tensor gauge field Eµν , where µ, ν = x, y such that Eµν is traceless (Exx = −Eyy)
and symmetric (Exy = Eyx) [105]

∂µ∂νE
µν = (∂2

x − ∂2
y)Exx + 2∂x∂yE

xy = ρ. (7.1)

Ultimately, we will replace the gauge field by localized spin degrees of freedom
Eµν(r) → Sz

i , such that the derivatives are replaced by finite differences. On a
square lattice with unit vectors of length 1, the derivatives in Eq. (7.1) acting on
an arbitrary scalar field f(x

y) are discretized as

∂2
xf(x

y) → f
(

x−1
y

)
− 2f(x

y) + f
(

x+1
y

)
∂2

yf(x
y) → f( x

y−1) − 2f(x
y) + f( x

y+1)

∂x∂yf(x
y) →

f
(

x+1
y+1

)
− f

(
x−1
y+1

)
− f

(
x+1
y−1

)
+ f

(
x−1
y−1

)
4 . (7.2)

Further, we need to associate each of the two independent components of the tensor
with its own sublattice, absorbing the factor of 2 in Eq. (7.1) for convenience.

Sz
2(q) = Exx(q) (7.3)

2Sz
1(q) = Exy(q). (7.4)

Combining Eqs. (7.1), (7.2) and (7.4), we obtain a constraint corresponding to a
discrete form of the desired gauge theory

Sz
1 + Sz

2 − Sz
3 − Sz

4 + Sz
5 + Sz

6 − Sz
7 − Sz

8 = 0, (7.5)

where corresponds to a cluster of sites centered around a sublattice 1 site,
and the labels 1, . . . 8 enumerate its sites in counterclockwise fashion as shown in
Fig. 7.1(a). We can easily define a classical Ising Hamiltonian whose ground states
fulfill Eq. (7.5), by squaring over all constraints

H1 = J

2
∑

C2 (7.6)

C = Sz
1 + Sz

2 − Sz
3 − Sz

4 + Sz
5 + Sz

6 − Sz
7 − Sz

8 . (7.7)

Expanding the squares in H1 leads to a network of spin interactions up to 5th
neighbors on the square lattice, which, on each cluster , resembles a spiderweb,
see Fig. 7.1a). Henceforth, this model will thus be referred to as the spiderweb
model. Before we move on to consider the effects of quantum fluctuations, we will
first discuss the properties of the classical model.
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7.2. Gaussian approximation of the classical model

We start by writing the ground state constraint defined in Eq. (7.5) as C =∑8
a=1 σ aS

z
a

= 0, where σ a ∈ {+1,−1} [see Fig. 7.1(a)]. In momentum space,
this becomes

2∑
m=1

L∗
m(q)Sz

m(q) = 0, (7.8)

where

L1(q) =
∑

a=2,4,6,8
σ ae

iq·r a = −4 sin qx sin qy ,

L2(q) =
∑

a=1,3,5,7
σ ae

iq·r a = 2(cos qx − cos qy) . (7.9)

Here, r a is the real space position of a site i, located relative to the center of
a cluster in the direction specified by the number a = 1, . . . , 8 as shown in
Fig. 7.1(a).

The constraint in the form of Eq. (7.8) implies that the Fourier components
(Sz

1(q), Sz
2(q)) of the ground state spin configurations must be ‘perpendicular’ to

the vector (L1(q), L2(q)) at each point in reciprocal space. The spin normalization
constraint (Sz

i )2 = 1/4 is in practice difficult to enforce in this momentum space
description and is instead approximated by an averaged one∑

i

(Sz
i )2 = 2

∑
q,m

Sz
m(q)Sz

m(−q)/Nsites = Nsites/4. (7.10)

With this approximation, the model becomes a classical Gaussian theory subject to
a single (global) constraint, in particular fully equivalent to the formalism outlined
in Section 1.3. The spin structure factor S(q) can then be obtained by projecting
out all Fourier components ‘parallel’ to (L1(q), L2(q)):

S(q) ≡
∑
mn

⟨Sz
m(−q)Sz

n(q)⟩

=
∑
mn

(
δmn − Lm(q)Ln(q)

L2
1(q) + L2

2(q)

)

= (cx − cy + 2sxsy)2

(cx − cy)2 + 4s2
xs

2
y

(7.11)

where we use the shorthand notation cµ = cos qµ, sµ = sin qµ with µ = x, y.
The resulting structure factor is shown in panel a) of Fig. 7.3. Note that the
average spin constraint in Eq. (7.10) simply amounts to a normalization of the
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7.2. Gaussian approximation of the classical model

Figure 7.2.: Band structure of H1 in Gaussian approximation with a flat lower
band, dispersive upper band, and quartic band touching points at
q = (0, 0) and q = (π, π).

spin structure factor by the size of the Brillouin zone, i.e., 4/Nsites. A known
property of this description is that the spin structure factor is non-analytic at
points in momentum space where (L1(q), L2(q)) = 0, giving rise to pinch points
indicating an emergent gauge theory [51]. In this case, (L1(q), L2(q)) = 0 for
q = (0, 0) and q = (π, π). Especially, since also the linear terms in q vanish
at these two points, i.e., ∂µ(L1(q), L2(q)) = 0 for µ = x, y, the pinch points are
four-fold [see Fig. 7.3(a)], as is characteristic for a rank-2 gauge theory [117].

An alternative way of discussing these properties is by diagonalizing H1 in the
space of the Fourier components Sz

1(q) and Sz
2(q). Using that H1 can be written

as
H1 = J

2
∑

q,m,n

Sz
m(−q)Lm(−q)Ln(q)Sz

n(q), (7.12)

this amounts to diagonalizing the 2 × 2 matrix

Hmn = J

2Lm(−q)Ln(q), (7.13)

which, due to its simple projector-like form, has eigenvalues ϵ1 = 0 and ϵ2 =
J(L2

1(q) + L2
2(q)/2. These eigenvalues, shown in Fig. 7.2, form a bottom flat

band and a higher dispersive band with a band touching point at q = (0, 0) and
q = (π, π). Particularly, as a consequence of the quadratic behavior of L1(q) and
L2(q) around these points, the band touching is of quartic type.
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Chapter 7. Fracton phase in a square lattice model

Crucially, expanding the constraint in momentum space around q = 0, the
lowest non-vanishing contribution arises in quadratic order q. With this property,
H1 describes an algebraic classical spin liquid according to the classification prin-
ciple in Ref. [52]. Setting 2Sz

1(q) = Exy(q) and Sz
2(q) = Exx(q), the constraint in

Eq. (7.8) in lowest non-vanishing order in q becomes

qµqνE
µν(q) = 0 or ∂µ∂νE

µν(r) = 0. (7.14)

Here, the right equation is the real-space continuum version of the left equation.
This is the generalized charge-free Gauss law of a 2D electrostatic trace-less rank-
2 U(1) gauge theory with an emergent matrix-valued electric field Eµν [103–106,
117]. The spectrum in Gaussian approximation depicted in Fig. 7.2, consists of
a completely flat bottom band that corresponds to the charge-free subspace and
a dispersive upper band that characterizes the charges ρ. In accordance with a
quadratically vanishing constraint vector (L1(q), L2(q)) at q = 0, the spectrum
features quartic band touching points at this momentum.

As outlined in the previous chapter, the generalized charge-free Gauss law in
Eq. (7.14) is associated with four-fold pinch points in the spin structure factor
S(q) = ∑

mn⟨Sz
m(−q)Sz

n(q)⟩ at T = 0 [117]. These characteristic features are also
revealed in the spiderweb model in self-consistent Gaussian approximation, see
Fig. 7.3(a). In addition to the expected four-fold pinch point at q = 0 the same
type of singularity is also obtained at q = (π, π) which represents another quartic
band touching point in Fig. 7.2 and where an expansion of the constraint vector in
quadratic order in q yields the same higher-rank Gauss law as in Eq. (7.14) (but
with Exx → −Exx). The existence of two singular momenta with identical physical
properties follows from a symmetry of H which is invariant under a π rotation of
spins around the x-axis on one sublattice, combined with mirror reflection x → −x
in real space. For the spin structure factor this symmetry implies S(qx, qy) =
S(−qx + π, qy + π) mapping both pinch points onto each other.

The term H1 can be considered as a special case in a wider class of Hamilto-
nians that are obtained by weighting spins Sz

i on sublattice 1 with a factor λ ∈ R
in Eq. (7.6), i.e., Sz

a
→ λSz

a
for a = 2, 4, 6, 8. In Gaussian approximation, this

modification preserves the bottom flat band in Fig. 7.2, the form of the Gauss law
in Eq. (7.14), and the four-fold pinch points in the spin structure factor. It only
changes the factor in the relation between Sz

1(q) and Exy(q) to 2λSz
1(q) = Exy(q).

This shows that a fully rotation symmetric higher-rank Gauss law in the spin vari-
ables and an associated rotation symmetric band touching point at the singular
momenta requires λ = 1/2. However, the rotation invariance at long wavelengths
obtained at λ = 1/2 comes at the price of an imbalance of weighting of spins in the
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7.3. Classical Ising model

constraint: While the four spins on sublattice 1 in each cluster carry a prefactor
λ = 1/2 in C , the four spins on sublattice 2 carry a prefactor 1. When considering
actual discrete spin variables beyond the Gaussian approximation, this imbalance
reduces the number of possibilities for the contributions from both sublattices to
cancel each other to yield C = 0. To avoid such additional restrictions, here and
in the following, we only focus on the model as given in Eq. (7.6) with λ = 1,
despite its lack of rotation invariance at long wavelengths.

It should be noted that the recently proposed honeycomb snowflake model [52,
101, 277] is a similar 2D spin model featuring an effective rank-2 gauge constraint
as in Eq. (7.14). However, the spiderweb model can be considered somewhat
simpler since its constraint only requires eight spins, compared to twelve spins in
the honeycomb snowflake model.

7.3. Classical Ising model

While it was demonstrated that H1 realizes a classical spin liquid with an emergent
rank-2 gauge constraint on the Gaussian level, whether these properties survive in
the spin-1/2 Ising case of H1 is highly non-trivial. An analogous question for the
classical Ising honeycomb snowflake model was recently answered in the affirma-
tive [101]. Allowing for charges ρ ̸= 0, it can be seen that fractonic excitations,
as implied by Eq. (7.14), remain for Sz

i = ±1/2 spins: An isolated fracton (i.e., a
single violated constraint C ̸= 0) can be constructed as the corner of a rectangular
domain wall between a ferromagnetic Sz

i = 1/2 state and a regular pattern of three
quarter Sz

i = 1/2 and one quarter Sz
i = −1/2 spins, see Fig. 7.1(c). Moving such

an excitation requires flipping a number of spins proportional to the linear size of
the rectangular domain, which suppresses their motion for large domain sizes. It
should be emphasized that isolated fractons can also be constructed in less regular
spin patterns. Similarly, a lineon can be formed as a dipole of fractons at the ends
of a semi-infinite string of alternating Sz

i = ±1/2 spins [Fig. 7.1(d)] which retains
mobility in the direction perpendicular to its dipole moment.

A second key property required for classical spin liquid behavior is that H1
features exponentially many degenerate ground states with ρ = 0. This can best
be verified by identifying local operations that may be performed on a ground state
to lead to another ground state, which will be detailed further in the next section.
Third, to show that these ground states also give rise to the emergent charge-free
rank-2 Gauss law in Eq. (7.14), one must calculate S(q) by equal-weight sampling
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Chapter 7. Fracton phase in a square lattice model

over a large number of such ground state configurations.

A natural approach to this problem is to use a classical Monte Carlo simula-
tion, cooling a system down to temperatures near zero until a true ground state
is found (whose validity may be verified quickly). While theoretically possible,
this approach is severely limited due to the extremely limited mobility of fractons:
Since a single fracton cannot be moved without creating even more fractons, tra-
ditional Monte Carlo update schemes involving single spin flips are inapplicable,
as the acceptance rate of any Monte Carlo update vanishes at low temperatures,
leading to glassy dynamics. This problem was explored in more detail in Ref. [263],
where advanced update schemes have been proposed that make use of local moves
similar to the one shown in Fig. 7.1a), as well as lineon-like propagations similar
to Fig. 7.1d). While such an approach was shown to reach zero-charge ground
states, it remains numerically challenging to sample ground states as legal lineon
moves become less probable with increasing system size. Instead, here we attempt
to construct valid ground states directly.

Another intuitive idea is to employ a tiling approach: One may find all 3 × 3
tiles that satisfy the constraint on a single plaquette. Then, on each site of sublat-
tice , we place another random tile, ensuring that they share the same spins on
all overlapping sites. For larger system sizes, it frequently occurs that the configu-
ration is stuck, i.e., no matching tile can be found that correctly overlaps with its
surrounding tiles. In this case, it is necessary to backtrack and reset the configu-
ration to an earlier step. While this approach efficiently generates many feasible
ground states, the bias introduced by backtracking is impossible to control and
grows with increasing system size. As we will see below, one can introduce addi-
tional random constraints to alleviate this problem, but this drastically increases
the computational cost.

In order to employ state-of-the-art techniques, we may rephrase this problem
in the domain of integer programming, a field that aims to find integer-valued
solutions to problems. The ground state constraints can be posed as a linear
system of equations for the spins Sz

1 , . . . S
z
L2 :∑

j

CijS
z
j = 0. (7.15)

Here, Cij is a constraint matrix of dimension L2 ×L2/2. For continuous spins, this
can be algebraically solved, however, enforcing the spin length constraint (Sz

i )2 = 1
makes the problem NP-complete [281] and requires more sophisticated tools such
as mixed integer programming solvers. To employ these techniques, we only need
to provide the set of constraints as well as an empty objective function (as here we
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do not intend to optimize anything). It is evident that this approach will still be
highly biased, as the constraint solver certainly does not choose uniformly among
the feasible solutions.

This bias is overcome by systematically adding additional random constraints
with the goal of restricting the solution space to a few, or even a single solution.
These random constraints can be arbitrary. Here, we randomly select a fraction of
all spins and initialize them with a random value. The size of this fraction controls
the bias: If we place too many constraints, there will be no solution, if too few spins
are chosen then there are many solutions and the sampling will not be unbiased.
Ideally, we want to choose this fraction such that the system only has a single
solution. Here, we chose a large fraction of L2/6 randomly initialized spins, which
in most cases produces an infeasible problem, but may occasionally give rise to a
solution1 By repeating this process many times, we eventually accumulate enough
solutions that are virtually uncorrelated with each other. The result is shown in
Fig. 7.3b) and shows a structure factor surprisingly close to the one found in the
Gaussian approximation.

7.4. Fluctuator and symmetry properties

Next, we will introduce quantum fluctuations to this model with the goal of sta-
bilizing a massively entangled ground state with fractonic excitations. If these
fluctuations are perturbatively small, they will not be able to create charge exci-
tations, but instead will allow for fluctuations between the different ground states.
The effective dynamics of the model will thus be governed by the fluctuator F ,
which we define to be the lowest order operator that enables tunneling from one
ground state to another, in analogy to the ring exchange term in quantum spin
ice shown in Fig. 1.2 [68, 72, 80, 84]. Alternatively, and equivalently, we can also
define the fluctuator by discretizing the gauge transformations of Eq. (7.1)

Exx → Exx − ∂x∂yh, Exy → Exy + (∂2
x − ∂2

y)h
F = S+

1 S
−
2 S

−
3 S

+
4 S

+
5 S

−
6 S

−
7 S

+
8 , (7.16)

with a similar sign structure as the constraint defined in Eq. (7.5), but shifted by
one as shown in Fig. 7.1(a). In the following, a plaquette in a spin configuration

1We find this solution using the commercial software Gurobi [282], which we find to be signif-
icantly faster (though otherwise equally applicable) than non-commercial alternatives, such
as SCP [283].
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Chapter 7. Fracton phase in a square lattice model

Figure 7.3.: (a-c) Classical structure factor in Gaussian approximation (a), and
stochastic sampling of spin-1/2 (b) and spin 1 (c) ground states con-
nected via loop moves to the uniform Sz = 0 state. Quantum structure
factor in the spin-1/2 staircase sector at µ = 0 (d) and the RK point
µ = 1 from ED (e), and from GFMC (f). The color scale in (f) is
rescaled by a factor of 1/3 for better visibility of the other plots.

138



7.5. Spin-1/2 spiderweb model

x = (Sz
1 , . . . , S

z
Nsites) is referred to as flippable if the state |x⟩ is not annihilated

by both F and F †. Panel e) of Fig. 7.1 shows an exemplary spin configuration
satisfying all constraints and its flippable plaquettes. The fluctuating part of the
Hamiltonian then becomes

H = H2 + H3

= −J ′∑(
F + F †

)
+ µ

∑(
F †F + F F †

)
. (7.17)

Note that while the first term proportional to J ′ in Eq. (7.17) allows for fluc-
tuations, it also favors states with many flippable plaquettes. The second term
proportional to µ is a Rokhsar-Kivelson potential, with a special point at µ = J
where the ground state becomes an exact, equal-weight superposition of all classical
spin configurations. The eight-site spin flip terms F may seem artificial at first;
however, they arise naturally for small perturbations around H1. For example,
F is generated in fourth order perturbation theory in transverse nearest-neighbor
interactions Sx

i S
x
j +Sy

i S
y
j , similar to the quantum dynamics generated by hexagon

ring exchange terms in third order in pyrochlore quantum spin ice [68, 73], also
detailed in Section 1.4. Alternatively, H is generated in eighth-order perturbation
theory in a transverse magnetic field ∼ Sx

i . It should be noted that this eight-site
fluctuator F is considerably simpler than the 24-site spin flip term of the hon-
eycomb snowflake model [101]. In the following, we shall see that this is also a
significant advantage for the realization of a quantum fracton phase.

7.5. Spin-1/2 spiderweb model

Next, we add quantum dynamics by setting J = 1, µ = 0 and again assume
T = 0, where H acts on charge-free states ρ = 0. We find that this quantum
spin-1/2 spiderweb model is an instance of extreme Hilbert space fragmentation,
where H splits up the Hilbert space into many sectors disconnected under the
action of F and F †. In most cases of randomly generated charge-free states
[see Fig. 7.1(e) for an example], the flippable eight-site clusters are sparse and
non-overlapping, such that flipping one cluster neither enables nor disables other
flippable clusters. Quantum dynamics is trivial in such sectors. Systematically, it
was found that the charge-free state with the largest density of flippable clusters,
which we identified as the ‘staircase state’ in Fig. 7.1(f), where half of all clusters

are flippable. Due to its maximal density of flippable clusters, we find that the
overall ground state of H lies in the sector of the staircase state. The existence of
this state with a finite density of flippable clusters also proves the extensive ground
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Chapter 7. Fracton phase in a square lattice model

state degeneracy in the classical J ′ = 0 case mentioned above, since the number
of classical configurations that can be generated starting from the staircase state
is already extensive itself.

Despite the large density of flippable clusters, the quantum dynamics in the
staircase sector is still relatively simple. As shown in Fig. 7.1(f), the action of F
or F † disables flippable clusters in a 5 × 5 square area around it, but its repeated
action across the lattice cannot drive the system further away from the stair-
case parent state. By exhaustively generating all classical configurations within
a given system size and bookkeeping which states are connected via single spin
flips, the Hamiltonian can be constructed and exactly diagonalized (ED) to obtain
the ground state. As this procedure considers each block in the Hamiltonian sep-
arately, this approach allows for considerably larger system sizes than naive ED
approaches. In the staircase sector, systems with around ∼ 14 × 14 sites can be
solved exactly, while for larger sizes, the exponential growth of the Hilbert space
becomes prohibitive. Section F.1 contains further details regarding the ED im-
plementation. Fortunately, as the matrix elements of the Hamiltonian are strictly
negative, larger system sizes can still be treated using the numerically exact Green
function Monte Carlo (GFMC) method. Here, instead of performing an exhaustive
search of all possible classical configurations, observables are sampled probabilis-
tically by performing a random walk in the space of configurations. This method
is further described in Section F.2.

In Fig. 7.3(d), it can be seen that S(q) obtained in the staircase sector features
a large ordering peak, inherited from the staircase order, with only a faint fluctu-
ating background. This shows that, despite the classical spin liquid at J ′ = 0, the
quantum dynamics at J ′ > 0 is too restricted for spin-1/2 and leads to too much
Hilbert space fragmentation to generate a quantum spin liquid.

While the existence of long-range order in the presence of only ring-exchange
terms is a common observation also in other models [284], a possibility to still
generate a quantum spin liquid is to add a potential term µ ̸= 0 for flippable
clusters in Eq. (7.17) and tune it to the Rokhsar-Kivelson (RK) point µ = J ′ [76],
see also Section 1.4. At this point, each classical spin configuration contributes
equally to the ground state, since the kinetic H2 and potential term H3 in Eq. (7.17)
cancel each other. The exact ground state wavefunction must then have an energy
of E0 = 0 and can be constructed in each sector by an equal weight superposition
of all states in that sector. While this implies that the equal weight superposition
of all charge-free states [that gives rise to the four-fold pinch points in Fig. 7.3(b)]
is also a quantum ground state at the RK point, the quantum dynamics still suffers
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7.6. Spin-1 spiderweb model

from the same restriction and fragmentation as for µ = 0. To show this, S(q) is
displayed at the RK point in the staircase sector in Fig. 7.3(e,f), which still features
sharp peaks that grow with system size, indicating long-range staircase order at
variance with a quantum spin liquid.

At first glance, this prediction of a magnetically ordered ground state at the
RK point may seem highly paradoxical, since the exact solution |ψ⟩RK = ∑

x |x⟩
suggests a spin liquid. However, it should be emphasized that at the RK-point
all Hilbert space sectors contribute equally to the ground state. On the other
hand, since quantum fluctuations cannot tunnel between different sectors, this
state shares more similarities with the classical spin liquid discussed in the previous
section than with a true quantum spin liquid. It is thus evident that an actual
realization of a quantum spin liquid in the spiderweb model needs to overcome the
severe Hilbert space fragmentation.

7.6. Spin-1 spiderweb model

A natural way to reduce Hilbert space fractionalization and hopefully generate
non-trivial quantum dynamics in the spiderweb model is to move on to the corre-
sponding spin-1 model where the availability of more local spin states Sz

i = −1, 0, 1
increases the possibilities for quantum fluctuations. A first important observation
is that the charge-free spin-1 state with the largest density of flippable clusters is
simply the homogeneous state with Sz

i = 0 for all i. This state has the unique
property that all clusters are flippable by F and by F †. Notably, computing
S(q) via a uniform sampling of all ground states in the Sz

i = 0 sector yields in-
tact four-fold pinch points [Fig. 7.3(c)] in excellent agreement with the Gaussian
approximation2. This implies that even at J ′ = 0, the Sz

i = 0 sector of the spin-
1 spiderweb model is a classical spin liquid with an emergent rank-2 Gauss law.
Both properties justify investigating the quantum dynamics of the spin-1 spider-
web model.

If indeed the spin system realizes an emergent quantum higher rank U(1) gauge
theory [68, 73, 285], the properties of this liquid can be derived by expressing
the spin flip operators as S±

i =
√

2e±iAα
i where Aα

i ∈ [0, 2π] is a component of
2Note that a uniform sampling of configurations can be efficiently implemented by performing

GFMC at the RK point using the exact solution as a guiding wavefunction, see Section F.2.
However, a fully unguided random walk while less efficient will also yield the result shown in
Fig. 7.3(c)
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a compact matrix-valued field (generalized ‘vector’ potential) on site i with the
convention that α = xy (α = xx) when i is on sublattice 1 (2). Furthermore, Sz

i

is identified with a conjugate integer-valued matrix electric field Sz
i = Eα

i where
[Aα

i , E
α
i ] = i with the same convention for i and α 3. This allows us to define a

gauge invariant emergent magnetic field B for each cluster via

B = Axy
1 − Axx

2 − Axy
3 + Axx

4 + Axy
5 − Axx

6 − Axy
7 + Axx

8 , (7.18)

where the sign pattern follows that of the fluctuator [Fig. 7.1(a)], and the notation
for sites i = a is the same as in Eq. (7.17). It follows that H ∼ −∑ cosB , which
gives an energy density of the magnetic field ∼ B2 when expanded to quadratic
order, as in a Maxwellian field theory. Thus, by collecting all the relevant terms,
we can formulate an effective field theory for the spiderweb model, given by

Heff = U

2
∑

i

(Eα
i )2 + K

2
∑

B2 + W

2
∑

N 2, (7.19)

with
N = Exy

1 − Exx
2 − Exy

3 + Exx
4 + Exy

5 − Exx
6 − Exy

7 + Exx
8 . (7.20)

The first term ∼ U , not directly contained in H, is introduced to energetically
suppress high values of |Eα

i | which mimics the hard constraint |Sz
i | ≤ 1. It describes

the energy density of the electric field and has the same form as the corresponding
term in a usual Maxwellian field theory. The last term ∼ W mimics the RK
potential µ, where the exact RK point is realized in the limit U/K → 0 [68].
Following the construction principle of Refs. [68, 73], N is obtained from B by
replacing Axy → Exy and Axx → Exx in Eq. (7.18). An effective field theory
can generally contain further gauge invariant terms, however, as we will see below,
Eq. (7.19) is sufficient to explain the numerical results. Note that, in contrast to the
spin-1/2 quantum spin ice where the effective U(1) field theory is ‘frustrated’ [73]
due to the impossibility of vanishing local electric fields, the mapping of the spin-1
system has the advantage of a well-defined vacuum Sz

i = 0 of electric fields.

In order to find a solution to Eq. (7.19), we express the fields E,A in Fourier
space defining in analogy to Eq. (1.11)

Ea(q) = 1√
Ncells

∑
i∈a

e−iqriEa
i , Ea

i = 1√
Ncells

∑
q
eiqriEa(q) (7.21)

3Note that this definition for the relation between Sz
i and Exy

i differs slightly from the one above
Eq. (7.14) where an additional factor 2 appears. This redefinition is necessary to ensure that
Exy

i takes the integer values Exy
i = ±1 expected in the field theory. The consequence for the

continuum rank-2 Gauss law for Eµν is that it no longer has the simple form of Eq. (7.14)
but becomes (∂2

x − ∂2
y)Exx + ∂x∂yE

xy = 0 without rotation symmetry. This symmetry can
only be restored in a model with λ = 1/2.
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with equivalent expressions for A. Noting that the sum ∑ by definition iterates
only the sites of one sublattice, we may write Eq. (7.18) more simply as

B =
∑

q
eiqr B(q) =

∑
q
eiqr [2Axy(q)(cos qx − cos qy) + 4Axx(q) sin qx sin qy].

(7.22)
A quadratic bosonic Hamiltonian that may be diagonalized using a Bogoliubov
transform is then found by expressing the canonically conjugate fields E,A by a
single bosonic field

[
(aa(q))†, aa(q′)

]
= δ(q − q′) as

Aa
i = 1√

2
[
aa

i + (aa
i )†
]
, A(q)a = 1√

2
[
aa(q) + (aa

i (−q))†
]
,

Ea
i = 1√

2i
[
aa

i − (aa
i )†
]
, E(q)a = 1√

2i
[
aa(q) − (aa

i (−q))†
]

(7.23)

After these transformations, the model in Eq. (7.19) is a simple bosonic Hamilto-
nian with only quadratic terms that can be written as

Heff =
∑

q
A†(q)HeffA(q) , (7.24)

where A(q) is a four-component operator

A(q) = (axy(q), axx(q), [axy(−q)]† , [axx(−q)]†) (7.25)

and the 4 × 4 matrix Heff is given by

Heff = KV T
+ V+ +WV T

− V− + U

4


1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

 (7.26)

with
V± = (cx − cy, 2sxsy,±(cx − cy),±2sxsy) (7.27)

and cµ = cos qµ, sµ = sin qµ with µ = x, y.

As it does not feature any interactions, Equation (7.24) can be solved exactly
by using a Bogoliubov transform [286, 287], further detailed in Section F.3. The
elementary excitations are given by a photon mode with the dispersion

ω(q) = 2
√
K
[
(cx − cy)2 + 4s2

xs
2
y

]√U
4 +W

[
(cx − cy)2 + 4s2

xs
2
y

]
. (7.28)
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Figure 7.4.: (a-c) Structure factor obtained from the U(1) field theory in Eq. (7.31)
for the ratios U/W = 100 (a), U/W = 1 (b) and U/W = 1/100 (c).

It can be seen that ω(q) is gapless with nodal points at the pinch point locations.
An expansion of ω(q) around these two points yields for U ̸= 0 in the lowest non-
vanishing order

ω(q) ≈
√
KU

4
√
q4

x + 14q2
xq

2
y + q4

y . (7.29)

This function is quadratic in any radial direction away from the gapless points,
however, it is not rotationally symmetric. On the other hand, exactly at the RK-
point U = 0, the photon dispersion becomes quartic,

ω(q) ≈
√
KW

4
(
q4

x + 14q2
xq

2
y + q4

y

)
. (7.30)

From this solution the structure factor can be computed through the electric field
correlator

S(q) = ⟨(Exx(−q) + Exy(−q)) (Exx(q) + Exy(q))⟩

= C
(cx − cy + 2sxsy)2√

(cx − cy)2 + 4s2
xs

2
y

√
U
W

+ 4
[
(cx − cy)2 + 4s2

xs
2
y

] , (7.31)

defining the dimensionless constant C =
√

K
4W

and the ratio U/W . While the effect
of C is only a rescaling of S(q), U/W determines the modulation of the structure
factor around the pinch point, as shown in Fig. 7.4. It interpolates between the
RK point at U/W = 0, which becomes analogous to the classical Gaussian theory
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7.6. Spin-1 spiderweb model

Figure 7.5.: Expected phases in the spin 1 spiderweb model as a function of µ.
The trivial phase for µ → ∞ is a product state of all configurations
with zero flippable plaquettes. The coefficients of the wavefunction
|ψ⟩ depend on µ but are real and positive. At the RK point µ = 1 all
cx all equal.

Eq. (7.11) and sharp pinch points are visible, and U/W → ∞, where the structure
factor is modulated by the quadratic photon dispersion S(q) = ω(q)Scl(q), where
Scl(q) is the classical spin structure factor in the Gaussian approximation from
Fig. 7.3(a). This modulation of the classical result by the photon dispersion, has
already been noted in previous works [68, 113, 117].

The structure factor obtained from the field theory will allow for a direct com-
parison to numerical results. However, it is useful to first discuss the expectations
for varying values of µ, setting J ′ = 1. A sketch of the expected phase diagram is
shown in Section 7.6. Setting µ = ∞ in Eq. (7.17), it is evident that the ground
state must be an eigenstate of H3. Since H3 commutes with Sz

i , it follows directly
that the ground state is a trivial state, consisting only of classical spin configura-
tions that minimize the number of flippable plaquettes. Of course, there are states
with no flippable plaquettes, for example, the ferromagnetic Sz

i = 1 state. While
there can be many such states, they cannot fluctuate into each other, leading to a
trivial state with no quantum dynamics. This phase extends until the RK point4.
Precisely at µ = 1, the ground state realizes an equal weight superposition of all
configurations. It is worth noting that in the Sz

i = 0 sector, the spin structure
factor will be equivalent to Fig. 7.3(c), as a uniform sampling over ground states
converges to the exact sum over all classical configurations. On the other side of

4States with zero flippable plaquettes remain eigenstates with zero energy for all µ ≥ 1, since
they are annihilated by the fluctuator. As the Hamiltonian is positive semi-definite, the
ground state energy must be zero. The definiteness follows from the Gershgorin circle theo-
rem, according to which eigenvalues must lie within a distance

∑
x′ ̸=x |Hxx′ | from Hxx. For

µ ≥ 1, the diagonal elements become larger than the sum of off-diagonal elements, so no
eigenvalue can be negative.
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Chapter 7. Fracton phase in a square lattice model

the phase diagram towards µ → −∞ another trivial phase is expected. Although
no classical configuration can be an eigenstate of H2, the ground state will gener-
ally featuring only small fluctuations around the classical configuration with the
largest number of flippable plaquettes. The behavior for µ < 1 remains to be
determined. An expectation from quantum dimer models on bipartite lattices is
a symmetry-broken ground state [77]. Similarly, from a field theory perspective,
one might expect a confining phase transition: The second assumption of small B
fluctuations is known to be non-trivial in two spatial dimensions since phase-slip
events B → B + 2π in 2+1 dimensional spacetime, so-called instantons [288],
can proliferate, gap out the photons, and drive a system into an ordered phase.

While a numerical study of the spin-1 spiderweb model in the Sz
i = 0 sector

shows no sign of magnetic order even at µ = 0, simulations initialized in different
sectors of Hilbert space can have lower ground state energies. On the other hand,
initializing the Hilbert space containing the state shown in Fig. 7.6(a) will lower the
energy. Here, for small values of µ ≲ 0.4, sharp peaks at moments q = (π/2, π/2)
are found instead, a clear signature for a symmetry-broken phase. On the other
hand, for larger values of 0.4 ≲ µ ≤ 1 the structure factor becomes increasingly
similar to the field theory prediction in Fig. 7.4. Moreover, the structure factor
smoothly transitions into the expected result of sharp fourfold pinch points at the
RK point, indicating no further phase transition in this regime. At µ = 1.05,
the pinch point pattern gets disrupted in favor of several sparsely distributed
peaks. While this clearly signalizes a breakdown of the spin liquid phase, there
are evidently several disconnected states which minimize the number of flippable
plaquettes leading to highly non-ergodic behavior. While it is likely that other,
magnetically ordered sectors with lower energy can be found, we shall first consider
the possibility of realizing a quantum spin liquid in an excited sector.

The absence of magnetic order at µ ≳ 0.4 and the smooth transition into the
RK point is a highly promising sign for a realization of a quantum spin liquid.
This is further investigated in Fig. 7.7 where the spin structure factor for µ =
0.7 is compared against the field theoretical prediction. The free parameters C
and U/W for the analytical result have been obtained via the best fit to the
GFMC data at moderate values of µ away from the RK point shown in Fig. 7.7(b).
Visually, both results are in excellent agreement and in particular, the suppression
of the structure factor at the pinch point location can be seen as a indication of
emergent photon excitations. Figure 7.7(c) compares a cuts along a path of high-
symmetry points which shows a truly astonishing degree of agreement between the
numerical and analytical results to further evidence the realization of an emergent
rank-2 U(1) gauge theory. It should be emphasized that the fit was obtained
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Figure 7.6.: (a): Spin-1 configuration where the maximally flippable state realizes
magnetic order with a 4 × 4 unit cell. The colors of squares indicate
the spin value in Sz basis: black, grey and white correspond to ↓, 0 ↑,
respectively. (b): Spin structure factor of the spin-1 model obtained
from GFMC starting in the sector containing the spin configuration
from panel (a) for a system of 32 × 32 spins. The result is shown for
different values of µ as indicated above each plot.

using only two coefficients for the entire Brillouin zone, where the effect of the
constant C only corresponds to a global rescaling of the structure factor which is
a natural expectation as the electric field correlator obtained in the field theory is
not subjected to any sum rules.

7.7. Discussion

This chapter introduces a new construction of a fracton model, named the spi-
derweb model, by explicitly discretizing a rank-2 U(1) gauge theory. Using a
numerical construction of valid ground states, it is confirmed that, even in the
spin-1/2 Ising case, the spiderweb model realizes a classical spin liquid described
by an electrostatic rank-2 U(1) theory. However, it is found that when quantum
dynamics are introduced, the lowest order spin flip terms are not sufficient to in-
duce a quantum spin liquid. This is because the quantum ground state occurs
in a magnetically ordering sector of a strongly fragmented Hilbert space. The
origin of the observed Hilbert space fragmentation is the restrictive nature of the
lowest-order operator, which can induce fluctuations that require a specific pat-
tern of 8 spins, which is seldom realized for spin-1/2. This restriction is somewhat
relaxed at higher spin quantum numbers, where the larger number of local spin
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Figure 7.7.: Spin structure factor in the Maxwellian field theory (a) fitted for
U/W = 25.66, C = 2.33. (b) Spin structure factor of the spin - 1
model obtained from Monte Carlo simulation for µ = 0.7. (c) Cut of
the E-correlators and structure factor along the paths through high-
symmetry points indicated in panels (a,b).
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7.7. Discussion

degrees of freedom allows for more fluctuations. As a result, the model is further
investigated at spin 1 using numerically exact quantum Monte Carlo simulations
initialized in an excited sector of the Hilbert space. Depending on the value of a
model parameter µ, three extended phases are identified, where one is found to be
a magnetically disordered phase. This phase is adiabatically connected to a fine-
tuned Rokhsar-Kivelson point at µ = 1, for which the model realizes an exactly
solvable quantum spin liquid ground state. Using the analytical solution of the
compact rank-2 U(1) lattice gauge theory in comparison with numerical results in
the spin model, an excellent agreement in the spin structure factor is found, further
supporting the claim that the magnetically disordered phase is the realization of
a quantum fracton spin liquid in an extended region of the parameter space. This
agreement also includes the field theoretical expectation of a vanishing intensity of
the spin structure factor at the pinch point due to the emergent photon excitations
with gapless dispersion relations [68].

In the language of field theory, the spiderweb model becomes a gapless com-
pact 2+1 dimensional field theory, which would typically be expected to exhibit
confinement via instanton proliferation [288]. However, the only known mecha-
nism to circumvent this, a duality between the electric and magnetic fields, is not
realized in this model. It is therefore likely that the true ground state, taking
into account all sectors of Hilbert space, may exhibit magnetic order throughout
the phase diagram. Practically, the search for this sector is extremely challenging,
as it would require an exhaustive analysis of the large number of Hilbert space
sectors. On the other hand, if the assumption of an ordered ground state is cor-
rect, the presented finding of a stable quantum spin liquid surviving in an excited
sector would be a remarkable result, as it represents another rare mechanism for
escaping instanton confinement in a compact U(1) gauge theory. Moreover, the
observation of a quantum fracton spin liquid phase makes the quantum spiderweb
model an intriguing candidate for possible realizations in Rydberg systems, which
have shown great promise in the realization of two-dimensional quantum spin liq-
uids [90–93, 289–293]. In conclusion, the spiderweb model represents a significant
advancement in the theoretical study of emergent fracton spin liquids and towards
the realization of fracton phases in experimental platforms.
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8
Conclusion

Solving the quantum many-body problem, while certainly of immense interest,
remains one of the most notorious problems in contemporary physics. Hence, ap-
proaches to improve our understanding of strongly interacting many-body systems
have to choose between two primary strategies. The first strategy is to advance
our methodological toolkit by inventing new techniques or significantly improving
existing ones (i). The second strategy is to identify new problems with intriguing
many-body properties to which the existing methodology can be applied (ii). This
dissertation contains instances of both of these crucial approaches.

The first part of this dissertation has been devoted to addressing (i) via the
development of the PMFRG, a new and powerful method for studying quantum
many-body systems. The PMFRG’s applicability at finite temperatures has en-
abled predictions that can be quantitatively compared to numerically exact meth-
ods. This is in stark contrast to many other diagrammatic approaches, including
the PFFRG, whose results are often of qualitative nature. The ability to make
quantitative comparisons also provides accountability and serves as an immensely
useful aid in the process of formalism improvements. In Chapter 4, we came to
the remarkable conclusion that critical scaling phenomena can be resolved accu-
rately with PMFRG, allowing for an unbiased way to detect and map out magnetic
phases determining their critical temperature in good agreement with numerically
exact quantum Monte Carlo, wherever applicable. The only initial disadvantage of
the PMFRG, its inaccuracies in resolving phase transitions at low temperatures,
as well as the practical need for many expensive calculations at different tem-
peratures, have been drastically improved by utilizing the temperature as a fully
physical renormalization flow parameter. In addition, it was shown in Chapter 5
that the PMFRG can be applied to spins S > 1/2, rigorously demonstrating that
unphysical states can be treated even at finite temperature. The PMFRG can thus
be considered a true successor to its methodological ancestor, the PFFRG [294].
It retains the major strengths of flexibility and numerical efficiency while signifi-
cantly improving its quantitative predictiveness.

It is interesting to point out other noteworthy avenues of further research that
these developments in the PMFRG have opened up. One of the most important
challenges to address is the loss of accuracy at low temperatures. Attempts to
include higher loop orders or even to solve the full parquet equations have shown
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Chapter 8. Conclusion

somewhat limited improvements, except in some rare cases such as the Heisenberg
pyrochlore model. It remains an open question whether the drawbacks, such as
the lack of critical scaling, can be mitigated.

These questions raised by the preceding work have motivated an increasing
number of related efforts in the community to improve diagrammatic methods for
spin systems [10, 160, 236, 295, 296]. It is currently unknown whether improve-
ments can be made by attempting to fix ward identities [158, 225], exploring other
approximations for solving the Bethe-Salpeter equations [296–298], or even entirely
new formulations of the FRG formalism based on spin operators [157, 158, 299].
Another drawback of spin-FRG methods is the limited access to measurable ob-
servables beyond spin-spin correlation functions. While this is partially addressed
by the PMFRG through its capabilities in computing thermodynamic observables
such as entropy and the specific heat, many observables which are in direct re-
lation to spin liquid properties, such as the entanglement entropy, are currently
inaccessible. However, there are promising developments underway to improve the
number of accessible observables. One such development is the employment of
the Keldysh formalism for the FRG, which allows access to dynamical correlators.
These correlators are useful for comparison to experiments and can provide in-
sights into low-energy excitations [300–303].

Regarding goal (ii), the final Chapters 6 and 7 provides important contribu-
tions to the study of emergent gauge theories in spin systems. These chapters
investigate a variety of models with two-body spin interactions featuring emergent
higher-rank gauge theories in the presence of quantum fluctuations. In the Heisen-
berg Octochlore model, strong quantum fluctuations lead to significant deviations
in the structure factor, potentially disrupting the emergent gauge theory. How-
ever, in the presence of a perturbative inclusion of quantum effects, cooperative
fluctuations between classically degenerate ground states may be supported with-
out closing the excitation gap of electric charges. This allows for the existence of
well-defined fracton and photon quasiparticles.

To test this hypothesis, a new spin model is constructed by explicitly discretiz-
ing a rank-2 U(1) gauge theory on a square lattice. This model is first verified
to exhibit a Fracton spin liquid in the classical Ising limit. Notably, this recipe
offers a much simpler description compared to other classical fracton models and
allows for more tunneling events between classical ground states via successive spin
flips [101].

Introducing quantum effects, it is shown how local fluctuations lead to an
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effective description of a ring-exchange Hamiltonian with a large number of dis-
connected Hilbert space blocks. For spin-1/2, this Hilbert-space fragmentation
does not leave any blocks large enough to support a massively entangled ground
state. However, by increasing the spin quantum number to 1, this obstacle is
mitigated considerably. Furthermore, this model can be fine-tuned to a special
Rokhsar-Kivelson point that exhibits an exact solution with a quantum spin liq-
uid ground state. The strong agreement between Quantum Monte Carlo and the
exact solution of the emergent rank-2 lattice gauge theory is a testimony that the
spin-liquid phase has a finite stability region away from this point for spin-1 sys-
tems at least in some of the disconnected Hilbert space sectors.

In summary, this dissertation establishes that the PMFRG can be used as
a particularly powerful extension for the PFFRG, capable of providing accurate
estimates for the finite-temperature magnetic phase diagram of generic frustrated
two-body spin models. Moreover, this dissertation investigates concrete examples
of emergent higher-rank gauge theories and introduces the first model with two-
body spin interactions to realize a quantum fracton spin liquid.
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A
Inclusion of the RPA

In order to investigate the PMFRG’s behaviour regarding a magnetic phase
transition, we consider the contributions of the RPA channel in the (one-loop)
PMFRG flow equations. We can do this mostly in analogy to Ref. [120], except
that we now explicitly consider finite temperatures. In the RPA approximation
for PMFRG, we restrict ourselves to diagrams with internal Majorana bubbles,
i.e. site summations. As a result, the flow equations for the three types of vertices
as presented in Ref. [1] decouple from each other. As seen in Eq. (E.1) the only
vertex which is nonzero initially is the spin vertex Γc = Γxyxy,

d
dΛΓΛ

c ij(s, t, u) = T
∑
ω

ġΛ(ω)gΛ(ω + s)
∑

k

[
ΓΛ

c,ki (s, ω + ω1, ω + ω2) ΓΛ
c,kj (s, ω − ω3, ω − ω4)

+(ω1 ↔ ω2, ω3 ↔ ω4)
]
. (A.1)

Since the vertices of type Γa and Γb are vanishing, it follows that the self energy
must be zero as well and thus

gΛ(iωn) = ωn

ω2
n + Λ2 ,

ġΛ(iωn) = −2Λ
ωn

g2(iωn). (A.2)

Using that ΓΛ→∞
c ij = −Jij does not depend on any frequencies, we note that no

dependence on t and u is generated from Eq. (A.1). The dominant contribution is
the static component ΓΛ

c ij(s = 0) ≡ ΓΛ
c ij for which

d
dΛΓΛ

c ij = −4Λ
∑

k

ΓΛ
c,kiΓΛ

c,kjT
∑
ω

(gΛ(ω))3

ω
,

d
dΛΓΛ

c (k) = −4ΛΓΛ
c,(k)2T

∑
n

ω2
n

(ω2
n + Λ2)3 ,

(A.3)

where in the second step a Fourier transform to momentum space has been per-
formed. The Matsubara sum may be evaluated exactly using the poles zp ≡ iωn =
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Appendix A. Inclusion of the RPA

±Λ to obtain

T
∑

n

ω2
n

(ω2
n + Λ2)3 =

∑
zp=±Λ

Res
(

z2

(z2 − Λ2)3nF (z)
)∣∣∣∣∣

z=zp

=
sech2

(
βΛ
2

) (
sinh(βΛ) + βΛ

(
βΛ tanh

(
βΛ
2

)
− 1

))
32Λ3 . (A.4)

Inserting this result into Eq. (A.3), the differential equation with ΓΛ→∞
c (k) =

−J(k) has the exact solution

ΓΛ
c,(k) = − 8J(k)Λ

2J(k) tanh
(

βΛ
2

)
+ βJ(k)Λsech2

(
βΛ
2

)
+ 8Λ

,

[
ΓΛ=0(k)

]−1
= − 1

4T − 1
J(k) , (A.5)

in the simplified case of a single site per unit cell.

Below a critical temperature TRPA
c = 1

4J(k), the RPA-vertex from Eq. (A.5)
diverges before the end of the flow at Λ = 0 is reached. This result exactly
equals the one derived in Ref. [120], except here, no identification of Λc with Tc

is necessary as Eq. (A.5) has been derived directly for arbitrary temperatures.
Figure A.1 shows the flow of the RPA vertex in a nearest-neighbor cubic lattice
where TRPA

c = 1.5.

Interestingly, the full PMFRG solution is in stark contrast to bare RPA: While
we could show here that the RPA’s individually diverging contributions are con-
tained in the PMFRG, no divergence at finite Λ is observed, in favor of a finite
and smoothly flowing susceptibility as shown in Fig. 5.4. This beyond mean-field
nature of the PMFRG, a result of the additional contributions from other chan-
nels, is quite surprising: In the closely related PFFRG formalism, a divergence of
the RPA channel is often observed and, in particular, serves as the main indicator
for the onset of magnetic order. In Chapter 4, we demonstrated that the absence
of such an RPA-like divergence is extremely beneficial: The finite susceptibility
which becomes physical at Λ = 0 can be used in combination with a finite-size
scaling analysis to obtain a more accurate estimate of critical temperatures.
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Figure A.1.: RPA solutions as a function of the cutoff Λ from Eq. (A.5) for the
nearest-neighbor cubic lattice for different temperatures. The solution
for the critical temperature TRPA

c = 6
4 = 1.5 (yellow) diverges exactly

at Λ = 0, while at lower temperatures, the divergence is shifted to
finite cutoffs.
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B
Two-loop contributions within PMFRG

As detailed in previous works [195, 221], the one-loop FRG truncation can be
extended by the inclusion of two-loop corrections using approximations based on
the flow equation of the six-point vertex.

We start from the general form of the FRG flow equations, as found in Eq.
(7.71) of Ref. [123] and expand the summations, neglecting all contributions from
vertices with an odd number of legs as well as the eight-point vertex. For Majorana
systems, the exchange statistics implies Z = −1 so that

d
dΛΓ6 Λ

1,2,3,4,5,6 = 1
2Tr

[
S1,2,3,4|5,6ĠΛΓ4, Λ

5,6 GΛΓ6, Λ
1,2,3,4 (a)

+ S1,2|3,4,5,6ĠΛΓ6, Λ
3,4,5,6GΛΓ4, Λ

1,2 (b)
+ S1,2|3,4|5,6ĠΛΓ4, Λ

5,6 GΛΓ4, Λ
3,4 GΛΓ4, Λ

1,2

]
(c)

+ O(V 4
int). (B.1)

Bold quantities are matrices defined as
[
Γ6, Λ

1,2,3,4

]
5,6

= Γ6, Λ
5,6,1,2,3,4.

This expression further contains the symmetrization operator S which ensures
that the derivative of the six-point vertex is fully antisymmetric. Formally, it can
be written as a sum over all permutations of indices with the appropriate sign
together with a prefactor to prevent overcounting of already antisymmetric terms.
For instance, the symmetrization S1,2,3,4|5,6 in term (a) of Eq. (B.1) contains a
summation over all permutations of the numbers 1 to 6 as well as a prefactor

1
4!2! since the expression is already antisymmetric in the first four and the last
two indices. If we define the outer derivative ∂Λ which only acts on the explicit
Λ-dependence of two-point Green functions(treating ΣΛ as a constant), we may
write this as

d
dΛΓ6 Λ

1,2,3,4,5,6 = 1
2
∑

1′,...,4′

[
∂Λ
(
GΛ

1′2′GΛ
3′4′

)
S1,2|3,4,5,6Γ6, Λ

2′,3′,3,4,5,6Γ
4, Λ
4′,1′,1,2

]
+ 1

6
∑

1′,...,6′

[
∂Λ
(
GΛ

1′2′GΛ
3′4′GΛ

5′6′

)
S1,2|3,4|5,6Γ4, Λ

2′,3′,1,2Γ
4, Λ
4′,5′,3,4Γ

4, Λ
6′,1′,5,6

]
+ O(V 4

int) (B.2)
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The defining step of the two-loop scheme is to promote the partial derivative to
a full one which, in particular, also acts on vertex functions. The error generated
by this step is of order O(V 4) in the interaction and thus no larger than the error
already present [195, 221]. The resulting equation can be integrated as a function
of Λ and leads to a self-consistent equation for Γ6 for which in first iteration, we
get

Γ6 Λ
1,2,3,4,5,6 = 1

12
∑

1′,...,4′

∑
β1,...,β6

[
GΛ

1′2′GΛ
3′4′S1,2|3,4,5,6Γ4, Λ

4′,1′,1,2

×
(
GΛ

β1β2G
Λ
β3β4G

Λ
β5β6S1′,2′|3,4|5,6Γ4, Λ

β2,β3,2′,3′Γ4, Λ
β4,β5,3,4Γ

4, Λ
β6,β1,5,6

)]
+ 1

6
∑

1′,...,6′

[(
GΛ

1′2′GΛ
3′4′GΛ

5′6′

)
S1,2|3,4|5,6Γ4, Λ

2′,3′,1,2Γ
4, Λ
4′,5′,3,4Γ

4, Λ
6′,1′,5,6

]
+ O(V 4

int).

(B.3)

Figure 3.1 shows the diagrammatic form of this equation. While the first term is of
fourth order in the interaction and will not be considered explicitly, we note that
some of its contributions are precisely those generated by the Katanin substitution
as detailed in Ref. [195].

In the same way, some of the derived two-loop contributions are equivalent
to Katanin corrections of the one-loop flow equations. Naturally, the next step
will be to identify these terms and omit them to prevent overcounting. Doing so
requires explicitly evaluating all permutations generated by the symmetrization
operator S. Initially, now using the shorthand notation Γ4 → Γ, we thus have

d
dΛΓΛ

1,2,3,4 ≡ Γ̇Λ 1L
1,2,3,4 + Γ̇Λ 2L

1,2,3,4

Γ̇Λ 2L
1,2,3,4 = − 1

12
∑
1′,2′

ĠΛ
1′,2′

∑
β1,...,β6

[
(
GΛ

β1β2G
Λ
β3β4G

Λ
β5β6

)
S1′,2′|1,2|3,4ΓΛ

β2,β3,1′,2′ΓΛ
β4,β5,1,2ΓΛ

β6,β1,3,4

]
. (B.4)

Here, Γ̇Λ 1L
1,2,3,4 refers to the three one-loop terms in Eq. (2.18c), which do not origi-

nate from the six-point vertex.

Expanding the symmetrization näıvely generates 6! = 720 permutations, how-
ever many of these are equivalent. Most importantly, all trivial permutations that
exchange two indices on the same vertex are divided out by definition of S. This
means we only need to consider 720

2!·2!·2! = 90 terms. Since we do not want to include
terms which are given by the Katanin correction to the one-loop procedure, we will
then neglect all diagrams in which a single vertex is contracted by the single-scale
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Figure B.1.: One-loop and two-loop bubble functions from Eqs. (B.6) and (2.18d).

propagator, i.e. those where 1′ and 2′ appear on the same vertex. Hence, only 72
diagrams remain, 24 for each the s, t and u channel.

It is helpful to note that t and u channels are given by re-labeling external
indices of the s-channel, i.e. the first of the terms in Eq. (2.18c). Thus, we only
need to consider the s-channel, which is defined by a pairing of either the indices
1 and 2 on one of the vertices or 3 and 4. Using the freedom to relabel internal
site indices in the summation, only two distinct diagrams remain, one where 1 and
2 appear together on a vertex and the other two appear separately on the other
two vertices and vice versa. In close analogy to the previous one-loop notation, we
may then define

Γ̇Λ 2L
1,2,3,4 = Y Λ

1,2|3,4 − Y Λ
1,3|2,4 + Y Λ

1,4|2,3 (B.5)
Y Λ

1,2|3,4 = −
∑

1′,...,4′
GΛ

1′,2′GΛ
3′,4′

(
ΓΛ

1,2,4′,2′XΛ
3,3′|4,1′ + ΓΛ

1′,3′,3,4X
Λ
2′,1|4′,2

)
, (B.6)

where Y Λ
1,2|3,4 defines the s-channel of the two-loop bubble function and is anti-

symmetric under permutations of the first and last two indices as visible from
Fig. B.1. Since Eq. (B.6) takes an analogous expression as the one-loop equations,
using pre-computed one-loop bubble functions, computing the two-loop contri-
butions amounts the same numerical complexity as the one-loop terms and thus
approximately doubles the numerical effort.
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Appendix B. Two-loop contributions within PMFRG

B.1. Parametrization

As usual, an efficient implementation requires the explicit parametrization of ver-
tices in analogy to Ref. [1]. This parametrization is equivalent for both the one-loop
(X) and the two-loop bubble-functions Y so that for brevity we shall only write
the results for X explicitly. It is evident from their definitions that the bilocal
property of vertices carries over to X and Y due to the local nature of propaga-
tors. In the case of vertices, it is possible to re-arrange indices such that they
are always of the form ΓΛ

iijj, however, for X and Y only the first and last two
indices may be interchanged and hence we need to distinguish two distinct types
of bubble-functions upon real-space parametrization

XΛ
ij ≡ XΛ

ii|jj

X̃Λ
i ̸=j ≡ XΛ

ij|ij, X̃Λ
ii = XΛ

ii . (B.7)

Physically, XΛ
ij corresponds to an RPA-type contribution in which a summation

over all sites occurs. This can be seen from Fig. B.1, where after external site in-
dices are inserted, the propagators carry an internal site index k which may differ
from both i and j in contrast to X̃ij. Furthermore, energy conservation implies
X(ω1, ω2|ω3, ω4) ∝ δω1+ω2+ω3+ω4,0 and equally for Y which allows the usual defi-
nition via only three exchange frequencies s, t, u. Subsequently, summations over
flavors may be computed explicitly by making use of the global SO(3) symmetry
to distinguish three X-types Xa, Xb, Xc and four X̃-type vertices X̃a, X̃b, X̃c, X̃d.
Here, the labels a . . . d are defined as sets of flavor indices:

a ≡ xx|xx b ≡ xx|yy c ≡ xy|xy d ≡ xy|yx. (B.8)

All other combinations of flavors are either zero (e.g. the types xx|yz), or may be
transformed into the ones above via global SO(3) rotations (e.g. zz|xx → xx|yy).
The d type channels need to be defined since the first and last two indices may no
longer be permuted separately for X̃ type vertices. This finally allows us to write
Eq. (B.6) as:

Γ̇Λ 2L
a ij (s, t, u) = Y Λ

a ij(s, t, u) − Ỹ Λ
a ij(t, s, u) + Ỹ Λ

a ij(u, s, t) (B.9a)
Γ̇Λ 2L

b ij (s, t, u) = Y Λ
b ij(s, t, u) − Ỹ Λ

c ij(t, s, u) + Ỹ Λ
c ij(u, s, t) (B.9b)

Γ̇Λ 2L
c ij (s, t, u) = Y Λ

c ij(s, t, u) − Ỹ Λ
b ij(t, s, u) + Ỹ Λ

d ij(u, s, t) (B.9c)

where Ỹ Λ
d ii(s, t, u) = −Ỹ Λ

c ii(s, u, t) = −Y Λ
c ii(s, u, t) and the definitions of Ya etc.

are given in Section B.2.
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B.2. Symmetries

B.2. Symmetries

For the numerical implementation of the X, X̃, Y and Ỹ -terms, symmetries of
the transfer frequencies s, t and u are crucial. In analogy to Ref. [1], the identities
summarized in Table B.1 can be proven.

Operation XΛ
µ, ij(s, t, u) X̃Λ

µ, ij(s, t, u)
1 ↔ 2 Xa/b(s, t, u) not allowed

↔ −Xa/b(s, u, t)
T ◦ (1, 3) ↔ (2, 4) s ↔ −s s ↔ −s, i ↔ j
T ◦ (1, 2) ↔ (3, 4) t ↔ −t, i ↔ j t ↔ −t
T ◦ (1, 2) ↔ (4, 3) u ↔ −u, i ↔ j u ↔ −u, i ↔ j

Table B.1.: Transformations of the frequency arguments under time reversal T and
specific permutations of indices in XΛ ij

1,2|3,4 and X̃Λ ij
1,2|3,4. The exchange

1 ↔ 2 would change Xc to the form Xxyyx and X̃ to Xji|ij. Hence,
the resulting symmetries take the slightly different form in Eq. (B.13).
Equivalent relations hold for XΛ → Y Λ and X̃Λ → Ỹ Λ.

Finally, we prove an identity which eliminates the need of implementing a flow
equation for the d-type-bubble functions. With the starting equation Eq. (B.10a)
being a result of global SO(3) symmetry as proven in Ref. [1] we have:

ΓΛ, µ
xxxx =ΓΛ, µ

xxyy +ΓΛ, µ
xyxy + ΓΛ, µ

xyyx (B.10a)
⇒ XΛ, µ

xx|xx =XΛ, µ
xx|yy+XΛ, µ

xy|xy +XΛ, µ
xy|yx (B.10b)

⇒ Y Λ, µ
xx|xx =Y Λ, µ

xx|yy +Y Λ, µ
xy|xy + Y Λ, µ

xy|yx, (B.10c)

where µ ≡ (i1, i2, i3, i4, ω1, ω2, ω3, ω4) refers to an arbitrary fixed set of site and
frequencies, noting that no use of permutation symmetry is made in the following.
To demonstrate that Eqs. (B.10b) and (B.10c) follow from Eq. (B.10a), the latter
is inserted into the definitions of the one-loop and two-loop channel functions
Eqs. (B.6) and (2.18d). Using that propagators are diagonal and computing the
flavor summation first before any site or frequency parametrization is applied, we
obtain

XΛ, µ
α1α2|α3α4

∼
∑

β1,β3

ΓΛ, ν
α1α2|β3β1

ΓΛ, ρ
β1β3|α3α4

. (B.11)

Here, for convenience of notation, the propagators are kept only implicitly. After
inserting external flavor labels on the left, the summation can be carried out so
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Appendix B. Two-loop contributions within PMFRG

that

XΛ, µ
xx|xx ∼ ΓΛ, ν

xxxxΓΛ, ρ
xxxx + 2ΓΛ, ν

xxyyΓΛ, ρ
xxyy

XΛ, µ
xx|yy ∼ ΓΛ, ν

xxyyΓΛ, ρ
xxxx + ΓΛ, ν

xxxxΓΛ, ρ
xxyy + ΓΛ, ν

xxyyΓΛ, ρ
xxyy

XΛ, µ
xy|xy ∼ ΓΛ, ν

xyyxΓΛ, ρ
xyxy + ΓΛ, ν

xyxyΓΛ, ρ
xyyx

XΛ, µ
xy|yx ∼ ΓΛ, ν

xyxyΓΛ, ρ
xyxy + ΓΛ, ν

xyyxΓΛ, ρ
xyyx. (B.12)

Equation (B.10b) may then be proven by inserting these expressions into it and
subsequently using Eq. (B.10a) on all occurring instances of Γν and Γρ to verify
the equivalence of the left and right hand side. This procedure may be repeated
for the definition of the two-loop contributions to finally prove Eq. (B.10c).

As a result of this symmetry, we do not need to compute XΛ
c ij(s, u, t) and

Y Λ
c ij(s, u, t) for t > u and in particular no flow equation is required for X̃Λ

d and Ỹ Λ
d

since Eq. (B.10b) can be written as

XΛ
c ij(s, u, t) =

(
−XΛ

a ij +XΛ
b ij +XΛ

c ij

)
(s, t, u) (B.13a)

X̃Λ
d ij(s, t, u) =

(
X̃Λ

a ij − X̃Λ
b ij − X̃Λ

c ij

)
(s, t, u). (B.13b)

Explicit parametrization of bubble functions
Using the one-loop bubble functions X and X̃ from Ref. [1], the two-loop bub-

ble functions can be given explicity. In the equations below, the propagator is
iGΛ

i (ω) = ω
ω2+ωγi(ω)+Λ2 , with γi(ω) = iΣi(ω). While the site index is kept here for

generality, it can be dropped in the case of lattices consisting of equivalent sites
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B.2. Symmetries

only.

Y Λ
a ij = −T

∑
ω

∑
k

Gk(ω)Gk(s+ ω)
[
(
ΓΛ

a ki (s, ω + ω1, ω + ω2) X̃Λ
a kj (ω − ω4, s, ω − ω3)

+ΓΛ
a kj (s, ω − ω3, ω − ω4) X̃Λ

a ki (ω + ω2, s, ω + ω1)
)

+2(ΓΛ
a → ΓΛ

b , X̃
Λ
a → X̃Λ

c )
]

(B.14a)

Y Λ
b ij = −T

∑
ω

∑
k

Gk(ω)Gk(s+ ω)
[
(
ΓΛ

b ki (s, ω + ω1, ω + ω2) X̃Λ
a kj (ω − ω4, s, ω − ω3)

+ΓΛ
b kj (s, ω − ω3, ω − ω4) X̃Λ

a ki (ω + ω2, s, ω + ω1)
)

+(ΓΛ
b → ΓΛ

a , X̃
Λ
a → X̃Λ

c ) + (X̃Λ
a → X̃Λ

c )
]

(B.14b)

Y Λ
c ij = −T

∑
ω

∑
k

Gk(ω)Gk(s+ ω)
[
ΓΛ

c ki (s, ω + ω2, ω + ω1) X̃Λ
b kj (ω − ω4, s, ω − ω3)

+ΓΛ
c kj (s, ω − ω4, ω − ω3) X̃Λ

b ki (ω + ω2, s, ω + ω1)
−ΓΛ

c ki (s, ω + ω1, ω + ω2) X̃Λ
d kj (ω − ω4, s, ω − ω3)

−ΓΛ
c kj (s, ω − ω3, ω − ω4) X̃Λ

d ki (ω + ω2, s, ω + ω1)
]

(B.14c)

Ỹ Λ
a ij = −T

∑
ω

Gi(ω)Gj(s+ ω)
[
(
ΓΛ

a ji (ω − ω3, s, ω − ω4) X̃Λ
a ji (ω + ω2, ω + ω1, s)

+ΓΛ
a ji (ω + ω1, s, ω + ω2) X̃Λ

a ji (ω − ω4, ω − ω3, s)
)

+2(ΓΛ
a → ΓΛ

c , X̃
Λ
a → X̃Λ

d )
]

−T
∑
ω

Gj(ω)Gi(s+ ω)
[
(
ΓΛ

a ij (ω + ω2, s, ω + ω1)XΛ
a ij (ω − ω4, s, ω − ω3)

+ΓΛ
a ij (ω − ω4, s, ω − ω3)XΛ

a ij (ω + ω2, s, ω + ω1)
)

+2(ΓΛ
a → ΓΛ

c , X
Λ
a → XΛ

c )
]

(B.15a)
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Ỹ Λ
b ij = −T

∑
ω

Gi(ω)Gj(s+ ω)
[
(
ΓΛ

c ji (ω + ω1, s, ω + ω2) X̃Λ
a ji (ω − ω4, ω − ω3, s)

+ΓΛ
c ji (ω − ω3, s, ω − ω4) X̃Λ

a ji (ω + ω2, ω + ω1, s)
)

+(ΓΛ
c → ΓΛ

a , X̃
Λ
a → X̃Λ

d ) + (X̃Λ
a → X̃Λ

d )
]

−T
∑
ω

Gj(ω)Gi(s+ ω)
[
(
ΓΛ

a ij (ω + ω2, s, ω + ω1)XΛ
c ij (ω − ω4, s, ω − ω3)

+ΓΛ
a ij (ω − ω4, s, ω − ω3)XΛ

c ij (ω + ω2, s, ω + ω1)
)

+(ΓΛ
a → ΓΛ

c , X
Λ
c → XΛ

a ) + (ΓΛ
a → ΓΛ

c )
]

(B.15b)

Ỹ Λ
c ij = T

∑
ω

Gi(ω)Gj(s+ ω)
[
(
ΓΛ

c ji (ω + ω1, ω + ω2, s) X̃Λ
b ji (ω − ω4, ω − ω3, s)

+ΓΛ
c ji (ω − ω3, ω − ω4, s) X̃Λ

b ji (ω + ω2, ω + ω1, s)
)

+(ΓΛ
c → ΓΛ

b , X̃
Λ
b → X̃Λ

c )
]

−T
∑
ω

Gj(ω)Gi(s+ ω)
[
(
ΓΛ

b ij (ω + ω2, ω + ω1, s)XΛ
b ij (ω − ω4, ω − ω3, s)

+ΓΛ
b ij (ω − ω4, ω − ω3, s)XΛ

b ij (ω + ω2, ω + ω1, s)
)

+(ΓΛ
b → ΓΛ

c , X
Λ
b → XΛ

c )
]

(B.15c)

and as a consequence of Eq. (B.10c)

Ỹ Λ
d ij = Ỹ Λ

a ij(s, t, u) − Ỹ Λ
b ij(s, t, u) − Ỹ Λ

c ij(s, t, u). (B.15d)
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C
Parquet formalism for Majorana fermions

In this section, parquet equations for interacting Majorana fermions are de-
rived from first principles. We proceed in close analogy to Ref. [222], where the
complementary calculation for complex fermions has been carried out. To begin
with, let us introduce the basic objects relevant for the derivation, namely, gener-
ating functionals and their derivatives. We consider the Majorana action

S[η] = −1
2(η, g−1

0 η) + 1
4!Γ0,a1a2a3a4ηa1ηa2ηa3ηa4 , (C.1)

where equal indices are summed over. Here, ηa is a Grassmann valued field with
the multi-index α encompassing its relevant quantum numbers and (η, g−1

0 η) ≡
ηa1g

−1
0,a1a2ηa2 . The matrix g0 is closely related to the bare propagator G0 via

G0,a1a2 = ⟨ηa2ηa1⟩0 = −g0,a2a1 , (C.2)

where ⟨ . ⟩0 denotes the Gaussian average. To set up the diagrammatic formalism,
we define the partition function in the presence of external (Majorana) source fields
h as

Z[h] =
∫
D[η]e−S[η]+(h,η) , (C.3)

where Z0 denotes the partition function for the Gaussian action. We can now
introduce the generating functional

Gc[h] = ln
(
Z[h]
Z0

)
, (C.4)

from which the n-point connected correlation function G(n)
c is obtained as

G(n)
c,a1...an

= δnGc[h]
δhan ...δha1

∣∣∣∣∣
h→0

. (C.5)

Here and in the following, δ
δf

= δ⃗
δf

for an arbitrary Grassmann field f is to be
understood as a left-derivative. For our purposes, the one- and two-particle corre-
lators G(2)

c and G(4)
c are most relevant. Using Eq. (C.4), they can be straightfor-

wardly computed and evaluate to

G(2)
c,a1a2 = G(2)

a1a2 = Ga1a2

G(4)
c,a1a2a3a4 = G(4)

a1a2a3a4 −Ga1a2Ga3a4 +Ga1a3Ga2a4 −Ga1a4Ga2a3 , (C.6)
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Appendix C. Parquet formalism for Majorana fermions

where G(2) and G(4) denote the disconnected one- and two-particle Green functions
generated by G[h] = Z[h]

Z[h=0] . Note that we have assumed vanishing Majorana-odd
correlators in order to derive these identities. This is because they are generally
not invariant under local Z2 gauge transformations, which becomes important for
the Majorana representation of spin operators discussed in Chapter 2. Finally, we
can amputate propagators from the connected four-point correlator to obtain the
one-particle irreducible (1PI) vertex Γ as

Γb1b2b3b4 = −G−1
b1a1G

−1
b2a2G

−1
b3a3G

−1
b4a4G

(4)
c,a1a2a3a4 . (C.7)

The remainder of this section is divided into two parts. In the first part, the
derivation of the Schwinger-Dyson equation, which expresses the self-energy Σ in
terms of the Majorana vertex Γ, is presented. In a subsequent step, we derive a
self-consistent decomposition of Γ itself, allowing us to group its contributions in
terms of their two-particle reducibility.

C.1. Schwinger-Dyson equation

We begin by noting that Z[h] can alternatively be written as

Z[h] =
∫
D[η]e−S[η−ϵ]+(h,η−ϵ) , (C.8)

where we performed the substitution η → η − ϵ, for which the increment D[η]
is invariant. Recall that for complex fermions, where conjugate fields also need
to be included, one has to consider the employed shift separately in both the
original and the conjugate field and prove that the final results are equivalent.
This complication is, however, absent here. Expanding the integrand to linear
order in ϵ, we obtain (up to O(ϵ2) corrections)

e−S[η−ϵ]+(h,η−ϵ) = e−S[η]+(h,η) +
[(
hb − δS[η − ϵ]

δϵb

)
e−S[η−ϵ]+(h,η−ϵ)

]
ϵ=0

ϵb , (C.9)

and by counting powers in ϵ, it can be shown that[
δS[η − ϵ]

δϵb

]
ϵ=0

= g−1
0,ba2ηa2 − 1

6Γ0,ba2a3a4ηa2ηa3ηa4 = −δS[η]
δηb

. (C.10)

Combining Eqs. (C.8), (C.9) & (C.10) we thus find the identity

0 =
∫
D[η]

(
hb + δS[η]

δηb

)
e−S[η]+(h,η) . (C.11)
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C.1. Schwinger-Dyson equation

Taking the derivative δ
δhb′

and pursuing the limit h → 0 yields

0 =
∫
D[η]

(
δbb′ − δS[η]

δηb

ηb′

)
e−S[η] = δbb′Z −

∫
D[η]δS[η]

δηb

ηb′e−S[η] , (C.12)

and by multiplying with 1
Z

we thus obtain

0 = δbb′ + g−1
0,ba2Gb′a2 − 1

6Γ0,ba2a3a4G
(4)
b′a4a3a2

= δbb′ −Gb′a2G
−1
0,a2b − 1

6Γ0,ba2a3a4G
(4)
b′a4a3a2

. (C.13)

As a last step, we add a factor G−1
ab′ to both sides, which yields

Σab = −1
6Γ0,ba2a3a4G

−1
ab′G

(4)
b′a4a3a2

, (C.14)

where we identified G−1
ab −G−1

0,ab = −Σab via the Dyson identity. Using Eqs. (C.6)
& (C.7) the disconnected four-point correlator G(4) can be expressed by another
1PI vertex, which yields

Σab = − 1
2Γ0,baa3a4Ga4a3 + 1

6Γ0,ba2a3a4Ga4c4Ga3c3Ga2c2Γac4c3c2 . (C.15)

Using the antisymmetry of G and Γ under pairwise permutations of their respective
indices, we have finally obtained the Schwinger-Dyson equation

Σab = − 1
2Γ0,aba3a4Ga3a4 + 1

6Γ0,aa2a3a4Ga4c4Ga3c3Ga2c2Γbc2c3c4 , (C.16)

which is diagrammatically displayed in Fig. 3.2(b).

Vertex decomposition and Bethe-Salpeter equations

Similar to the derivation of the Schwinger-Dyson equation, we first introduce
a modified partition function

Z[H] =
∫
D[η]e−S[η]+ 1

2 (η,Hη) , (C.17)

where (η,Hη) = ηaHabηb. The source field H is understood as a product of
two Grassmann fields (e.g., Hab = hahb) and is therefore Grassmann-even and
antisymmetric with respect to its indices, i.e., Hab = −Hba. Consequently, we
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can define the generating functional G̃[H] = ln
(

Z[H]
Z0

)
, whose first and second

functional derivatives evaluate to

δG̃[H]
δHa1a2

∣∣∣∣∣
H→0

= Ga1a2 , (C.18)

and

δ2G̃[H]
δHa3a4δHa1a2

∣∣∣∣∣
H→0

= G(4)
a1a2a3a4 −Ga1a2Ga3a4 ≡ χa1a2|a3a4 . (C.19)

The horizontal line in the subscripts of χ indicates that this vertex is antisymmetric
under permutations within either the first or second set of indices. Our goal is to
find an independent expression involving χ to determine it self-consistently. We
begin with the trivial identity.

Ga1b[H]G−1
ba2 [H] = δa1a2 , (C.20)

where Ga1a2 [H] is defined by Eq. (C.18) without the limit H → 0. Computing the
derivative δ

δHa3a4
using the Leibniz rule, we find

δGa1a2 [H]
δHa3a4

= −Ga1b1 [H]
δG−1

b1b2 [H]
δHa3a4

Gb2a2 [H] . (C.21)

The derivative on the right hand side can also be expressed via the Dyson identity

δG−1
a1a2 [H]
δHa3a4

=
δG−1

0,a1a2 [H]
δHa3a4

− δΣa1a2 [H]
δHa3a4

. (C.22)

To continue, we recall that the self energy has a skeleton expansion Σ[H] =
Σ[G[H],Γ0] allowing us to rephrase

δΣa1a2 [H]
δHa3a4

= δGb1b2 [H]
δHa3a4

δΣa1a2 [H]
δGb1b2 [H] . (C.23)

Combining this result with Eqs. (C.21) & (C.22) we find

δGa1a2 [H]
δHa3a4

= −Ga1b1 [H]
(
δG−1

0,b1b2 [H]
δHa3a4

− δGb3b4 [H]
δHa3a4

δΣb1b2 [H]
δGb3b4 [H]

)
Gb2a2 [H] . (C.24)

Taking the limit H → 0 and identifying

δGa1a2 [H]
δHa3a4

∣∣∣∣∣
H→0

= δ2G̃[H]
δHa3a4δHa1a2

∣∣∣∣∣
H→0

= χa1a2|a3a4 (C.25)
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we finally obtain a self-consistent equation for χ

χa1a2|a3a4 = −Ga1b1

(
δG−1

0,b1b2 [H]
δHa3a4

∣∣∣∣∣
H→0

− χb3b4|a3a4

δΣb1b2 [H]
δGb3b4 [H]

∣∣∣∣∣
H→0

)
Gb2a2 . (C.26)

To determine the two leftover derivatives, we first recall, that G0,b1b2 [H] corre-
sponds to the propagator in the Gaussian approximation, i.e. ⟨ηb2ηb1⟩0[H], which,
from the definition of the Majorana action Eq. (C.1) directly implies that

G−1
0,a1a2 [H] = G−1

0,a1a2 +Ha1a2 (C.27)

For the derivative of the self energy, we, at least for now, simply note that the
resulting object is a two-particle vertex

Qa1a2|a3a4 = δΣa1a2 [H]
δGa3a4 [H]

∣∣∣∣∣
H→0

, (C.28)

since removing a propagator from a self energy (i.e. a two-point diagram), gener-
ates two more external legs. We will come back to the explicit discussion of this
term once we have obtained our final result. Plugging everything into the equation
for χ yields

χa1a2|a3a4 = −Ga1b1

(
δb1a4δb2a3 − δb1a3δb2a4 − χb3b4|a3a4Qb1b2|b3b4

)
Gb2a2

= −Ga1a4Ga3a2 +Ga1a3Ga4a2 +Ga1b1χb3b4|a3a4Qb1b2|b3b4Gb2a2

= +Ga1a4Ga2a3 −Ga1a3Ga2a4 +Ga1b1χb3b4|a3a4Qb1b2|b3b4Gb2a2 . (C.29)

The remainder of the calculation revolves around converting this equation into a
self-consistent relation for the two-particle vertex instead of one for χ. Plugging
in the definition of χ, Eq. (C.19), one finds

G(4)
c,a1a2a3a4 = Ga1b1G

(4)
c,b3b4a3a4Qb1b2|b3b4Gb2a2

−Ga1b1Gb3a3Gb4a4Qb1b2|b3b4Gb2a2 +Ga1b1Gb3a4Gb4a3Qb1b2|b3b4Gb2a2 ,
(C.30)

and subsequently, using Eq. (C.7)

Γa1a2a3a4 = Qa1a2|b3b4Gb3c3Gb4c4Γc3c4a3a4 − 2Qa1a2|a3a4 . (C.31)

Employing the definitions

Ia1a2|a3a4 = −2Qa1a2|a3a4

γa1a2|a3a4 = −1
2Ia1a2|b3b4Gb3c3Gb4c4Γc3c4a3a4 , (C.32)
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we thus have the relation

Γa1a2a3a4 = Ia1a2|a3a4 + γa1a2|a3a4 , (C.33)

which is shown diagrammatically in Fig. 3.2(a). Using the antisymmetry of the
vertex Eq. (C.33) can be written in three equivalent ways

Γa1a2a3a4 = Ia1a2|a3a4 + γa1a2|a3a4 = −Ia1a3|a2a4 − γa1a3|a2a4 = −Ia1a4|a3a2 − γa1a4|a3a2 .
(C.34)

Defining

γs,a1a2|a3a4 = +γa1a2|a3a4

γt,a1a2|a3a4 = −γa1a3|a2a4

γu,a1a2|a3a4 = −γa1a4|a3a2 , (C.35)

and concomitantly

Is,a1a2|a3a4 = +Ia1a2|a3a4

It,a1a2|a3a4 = −Ia1a3|a2a4

Iu,a1a2|a3a4 = −Ia1a4|a3a2 , (C.36)

we can write Eq. (C.34) in the more compact form

Γ = Is + γs = It + γt = Iu + γu , (C.37)

which resembles the widely employed parquet decomposition of the two-particle
vertex for complex fermions. This motivates the following definitions:

1. A diagram is called two-particle reducible in the s-channel if it can be dis-
connected by cutting two propagator lines, such that one disconnected part
is antisymmetric under (a1 ↔ a2) and the other one under (a3 ↔ a4). Dia-
grams that do not possess this property are consequently called two-particle
irreducible in the s-channel.

2. A diagram is called two-particle reducible in the t-channel if it can be dis-
connected by cutting two propagator lines, such that one disconnected part
is antisymmetric under (a1 ↔ a3) and the other one under (a2 ↔ a4). Dia-
grams that do not possess this property are consequently called two-particle
irreducible in the t-channel.

3. A diagram is called two-particle reducible in the u-channel if it can be dis-
connected by cutting two propagator lines, such that one disconnected part
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is antisymmetric under (a1 ↔ a4) and the other one under (a3 ↔ a2). Dia-
grams that do not possess this property are consequently called two-particle
irreducible in the u-channel.

4. Diagrams that are not reducible in any channel are called fully irreducible.

Note that diagrams cannot be reducible in more than one channel. The contri-
butions γc are c-reducible, which follows directly from their definition Eq. (C.32).
Ic ∼ δΣ

δG
, on the other hand, contains only c-irreducible contributions. This can

be seen by considering the Skeleton expansion of Σ in which c-reducible diagrams,
after removing a fermionic propagator line, are absent. As a last step, we introduce
the fully irreducible vertex R = Ic −∑

c̄ ̸=c γc, such that the vertex decomposition
finally reads

Γ = R +
∑

c

γc . (C.38)

C.2. Multiloop Flow equations

Although we find that it is possible to directly obtain the solution to the parquet
approximation, from a methodological perspective, it is useful to demonstrate that
the previously employed one- and two-loop schemes follow from the first two orders
of a multiloop expansion of the parquet approximation.

We start from the Bethe-Salpeter equation

γ1,2|3,4 = −1
2I1,2|1′,3′G1′,2′G3′,4′Γ4′,2′,3,4

≡ [I ◦ Π ◦ Γ]1,2,3,4 (C.39)

Assuming the sum convention for repeated indices (e.g., indicated as 1′), this
self-consistent equation relates the s-reducible parts γ, the full vertex Γ, and the
s-irreducible vertex I. The tensor contraction ◦Π◦, as defined by Eq. (C.39),
connects the outer two indices of the left vertex with the inner two indices of
the right one. Note that the prefactor −1

2 is also included in the definition of Π.
From this form, it immediately follows that the considerations made for complex
fermions [164, 165, 167] in the derivation of the flow equations directly carry over
to the present case of Majorana fermions. The only exception is that we only need
to consider the s-reducible channel, as the others are given by permutations of
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Appendix C. Parquet formalism for Majorana fermions

indices. By definition, the vertex is given by the sum of an s-reducible part γ and
the s-irreducible part I.

Γ = I + γ = I + I ◦ Π ◦ Γ (C.40)
= I + I ◦ Π ◦ I + I ◦ Π ◦ I + I ◦ Π ◦ I ◦ Π ◦ I + . . . (C.41)

Taking a derivative with respect to the cutoff Λ of Eq. (C.38) and using the parquet
approximation R = Γ0, it follows that Γ̇ = γ̇+ ˙̄γ. Using Eq. (C.39) and Eq. (C.41),
we then have

γ̇ = ∂Λ [I ◦ Π ◦ I + I ◦ Π ◦ I ◦ Π ◦ I + . . . ] . (C.42)
Using the product rule, we can distinguish two cases: The derivative can act on a
double-propagator Π at any position in the expansion. One can see that all these
contributions are given by expanding

γ̇(1) ≡ Γ ◦ Π̇ ◦ Γ (C.43)

via Eq. (C.41). As this diagram contains only a single internal loop connecting
the two vertices, it is commonly referred to as the one-loop contribution. All the
other diagrams contain derivatives of the s-irreducible part I instead. Similar to
the previous case, the infinite series can be replaced by the full vertex so that we
may write altogether

γ̇ = γ̇(1) + İ ◦ Π ◦ Γ + Γ ◦ Π ◦ İ ◦ Π ◦ Γ + İ ◦ Π ◦ Γ. (C.44)

In the parquet approximation, the derivative of the s-irreducible vertex is readily
determined as İ = ∂Λ [Γ0 + γ̄] = ˙̄γ. To finally obtain an expression in terms of
quantities that may be computed in the FRG scheme, we may formally expand
Eq. (C.44) in loop orders, i.e., in orders of the double-propagator Π, so that γ̇ =∑

ℓ γ̇
(ℓ). The full one-loop contribution, which is also computed in the Katanin

truncated one-loop FRG scheme, has already been identified in Eq. (C.43). The
second part of Eq. (C.44) generates all higher orders upon inserting ˙̄γ = ∑

ℓ
˙̄γ(ℓ).

As a result, we may write the multiloop flow equations as

γ̇(1) = Γ ◦ Π̇ ◦ Γ
γ̇(2) = ˙̄γ(1) ◦ Π ◦ Γ + Γ ◦ Π ◦ ˙̄γ(1) ≡ γ̇(2,L) + γ̇(2,R)

γ̇(ℓ≥3) = ˙̄γ(ℓ−1) ◦ Π ◦ Γ + Γ ◦ Π ◦ ˙̄γ(ℓ−2) ◦ Π ◦ Γ + Γ ◦ Π ◦ ˙̄γ(ℓ−1)

= ˙̄γ(ℓ−1) ◦ Π ◦ Γ + ˙̄γ(ℓ−1,R) ◦ Π ◦ Γ + Γ ◦ Π ◦ ˙̄γ(ℓ−1) ≡ γ̇(ℓ,L) + γ̇(ℓ,C) + γ̇(ℓ,R).
(C.45)

We will make further simplifications by re-inserting the explicit definitions of Π
and ˙̄γ. Starting with the one-loop equation, we have

γ̇
(1)
1,2|3,4 = −1

2Γ1,2,1′,3′(Ġ1′,2′G3′,4′ +G1′,2′Ġ3′,4′)Γ4′,2′,3,4. (C.46)
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In the second term, we may re-label the indices (1′2′) ↔ (3′, 4′) and use the an-
tisymmetry of propagators and vertices to find it equal to the first one, canceling
the pre-factor of 1

2 . For the higher-loop contributions, we may do similar simplifi-
cations, e.g:

γ̇
(ℓ,L)
1,2|3,4 = −1

2G1′,2′G3′,4′ ˙̄γ(ℓ−1)
1,2|1′,3′Γ4′,2′,3,4

= −1
2G1′,2′G3′,4′

(
−γ̇(ℓ−1)

1,1′|2,3′ + γ̇
(ℓ−1)
1,3′|2,1′

)
Γ4′,2′,3,4

= G1′,2′G3′,4′ γ̇
(ℓ−1)
1,1′|2,3′Γ4′,2′,3,4 ≡ B2

(
γ̇(ℓ−1),Γ

)
1,2|3,4

, (C.47)

where we have defined the four-point bubble B2 as a shorthand notation. In
addition, we may use the fact that the central part takes the form of the left one,
and the right part must be equal to the left one after exchanging the first and last
two indices with each other. Altogether, the general multiloop flow equations for
Majorana fermions are thus

γ̇
(1)
1,2|3,4 = Ġ1′,2′G3′,4′Γ1,2,1′,3′Γ2′,4′,3,4. (C.48a)

γ̇
(2)
1,2|3,4 = γ̇

(2,L)
1,2∥3,4 + γ̇

(2,R)
1,2∥3,4 (C.48b)

γ̇
(ℓ≥3)
1,2|3,4 = γ̇

(ℓ,L)
1,2∥3,4 + γ̇

(ℓ,C)
1,2|3,4 + γ̇

(ℓ,R)
1,2∥3,4 (C.48c)

γ̇
(ℓ,L)
1,2∥3,4 = B2

(
γ̇(ℓ−1),Γ

)
1,2∥3,4

(C.48d)

γ̇
(ℓ,C)
1,2|3,4 = B2

(
γ̇(ℓ−1,R),Γ

)
1,2|3,4

(C.48e)

γ̇
(ℓ,R)
1,2∥3,4 = B2

(
γ̇(ℓ−1),Γ

)
3,4∥1,2

, (C.48f)

where it can be seen that the one-and two-loop contributions are equivalent to
the equations derived previously. [2].

Parametrization of bubble functions

This section will employ the usual symmetry-based parametrization, in close
analogy to previous works [1, 2]. Defining generic bubble functions, the special
cases of one- or multiloop flow equations, and in particular the Parquet formalism
are contained.

Most symmetries previously proven for the one- and two-loop bubble functions
immediately generalize to higher loop orders. For instance, the antisymmetry
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Figure C.1.: Right part of γ̇(ℓ) with site indices made explicit. The internal prop-
agators are local, while the vertex and γ̇(ℓ−1) are bilocal.

γ̇
(ℓ,R)
1,2∥3,4 under the exchange of the first and second two indices can be extended

straightforwardly to arbitrary loop orders via induction. It is important to point
out that while each bubble function γ̇(ℓ) and even γ̇(ℓ,C) are symmetric under
(1, 2) ↔ (3, 4), this is not the case for the left and right channels individually,
which instead transform into each other as in Eq. (C.48f). While this special case
requires attention in the derivation of final flow equations, we can prove all other
symmetries directly on the level of γ̇(ℓ). Figure C.1 shows how a bilocal vertex and
a bilocal bubble function of loop order ℓ−1 imply that the left part (and thus also
γ̇(ℓ)) must be bilocal as well. After the external indices are specified, the indices
of the internal propagators are determined. In the present example, the internal
propagators take the form GliGlj = 0, so the diagram must vanish (assuming that
i ̸= j). This way, it can be seen that external sites of γ̇(ℓ,L) must always be in pairs
for a nonzero contribution.

It can be immediately seen that this argument can be made analogous to the
flavor structure. Furthermore, global SO(3) rotations still allow for transforma-
tions zz|zz → xx|xx. As a result, we may parametrize γ̇(ℓ,R) (and thus also γ̇(ℓ))
analogous to the one and two-loop bubble functions. We thus identify three γ̇(ℓ,R)-
types Xa, Xb, Xc and four ˙̃γ(ℓ,R)-type vertices ˙̃γ(ℓ,R)

a , ˙̃γ(ℓ,R)
b , ˙̃γ(ℓ,R)

c , ˙̃γ(ℓ,R)
d . where the

labels a, . . . , d are short for

a ≡ xx|xx b ≡ xx|yy c ≡ xy|xy d ≡ xy|yx. (C.49)

Finally, there is the slightly more involved symmetry

γ̇
(ℓ,R)
xx∥xx = γ̇

(ℓ,R)
xx∥yy + γ̇

(ℓ,R)
xy∥xy + γ̇

(ℓ,R)
xy∥yx, (C.50)

which again follows inductively through all loop orders. The proof is equivalent to
the procedure outlined in Ref. [2], i.e., starting from Eq. (C.48e), the identity can
be inserted on both sides of the equation to derive a trivial equality. Frequencies
Energy conservation allows specification of γ̇(ℓ,R) using the usual three exchange

frequencies s = ω1 + ω2, t = ω1 + ω3, u = ω1 + ω4. The symmetries regarding
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Operation γ̇
(ℓ,R)
µ, ij (s, t, u) ˙̃γ(ℓ,R)

µ, ij (s, t, u)
1 ↔ 2 γ̇

(ℓ)
a/b(s, t, u) not allowed

↔ −γ̇(ℓ)
a/b(s, u, t)

T ◦ (1, 3) ↔ (2, 4) s ↔ −s s ↔ −s , i ↔ j
T ◦ (1, 2) ↔ (3, 4) t ↔ −t , i ↔ j, L ↔ R t ↔ −t, L ↔ R
T ◦ (1, 2) ↔ (4, 3) u ↔ −u , i ↔ j, L ↔ R u ↔ −u , i ↔ j, L ↔ R

Table C.1.: Transformations of the frequency arguments under time reversal T and
specific permutations of indices in the left part of bubble functions.
The corresponding identities for the full bubble functions γ̇(ℓ,L) + γ̇(ℓ,R)

are equivalent, while swaps of L and R may be ignored.

these exchange frequencies pointed out in Ref. [2] naturally apply to higher loop
bubble functions too, since they are based on permutations of indices. However,
as changing the sign of t and u frequencies requires exchanges of the left and right
parts of a diagram, we need to keep track of all such changes to ensure that all
flow equations are still valid when computing the central part. The frequency
symmetries are summarized in Table C.1.

As the left, right, and central parts are very similar in form, we need only
explicitly consider the central channel and derive the others from there: The left
part is essentially equal to the central one, and one simply needs to replace all
occurrences of γ̇(ℓ−1,R) and γ̇(ℓ−1,L) with a full bubble function γ̇(ℓ−1). The right
part can be obtained from the left one after swapping the left and right pairs of
indices. In the explicit parametrization, this means

γ̇
(ℓ,R)
µ, ij (s, t, u) = γ̇

(ℓ,L)
µ, ji(−s, t,−u) = γ̇

(ℓ,L)
µ, ji(s,−t, u) (C.51)

˙̃γ(ℓ,R)
µ, ij (s, t, u) = ˙̃γ(ℓ,L)

µ, ij (−s, t,−u) = ˙̃γ(ℓ,L)
µ, ij (s,−t, u), (C.52)

since the flavor structure never changes under this transformation (i.e. (xy ∥
yx) → (yx ∥ xy) still corresponds to the d-type vertex by virtue of the global
SO(3) symmetry). Note, however, that the site indices will generally be affected
by this transformation. With these considerations in mind, we may proceed to
derive the final form of the flow equations as usual by starting from Eq. (C.48e)
and eliminating site, frequency, and flavor summations using the (anti-)diagonality
of Green functions initially:

G1′,2′ = G
i1′
β1,β2(−ω1′)βδω1′ ,−ω2′δi1′ ,i2′ . (C.53)
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This step leads to the form

γ̇
(ℓ−1,C)i1,i2∥i3,i4
α1,α2∥α3,α4

(ω1, ω2 ∥ ω3, ω4) = −T
∑
ω

∑
β1,...,β4

∑
k,l

Gk
β1,β2(ω)Gl

β3,β4(ω + s)

× γ̇
(ℓ−1,R),i1∥l,k,i2
α1,β3∥β2,α2

(ω1,−ω − s ∥ ω, ω2)Γi3,i4,l,k
α3,α4,β4,β1(ω3, ω4, ω + s,−ω).

(C.54)

Note that to arrive here, we re-labeled internal indices as (1′, 2′, 3′, 4′) → (3′, 4′, 2′, 1′)
and defined ω = −ω′

1 in order to keep the frequency arguments in both Green
functions positive. Then, upon specifying external indices corresponding to the
parametrized bubble functions, i.e.,

γ̇
(ℓ,R)
c, ij (s, t, u) = γ̇

(ℓ,R)
xi,yi∥xj,yj(ω1, ω2 ∥ ω3, ω4)βδω1+ω2+ω3+ω4,0 (C.55)

, the remaining sums are evaluated and occurring vertices and bubble functions are
replaced by their parametrized versions, making use of their allowed permutations.
This leads to the final equations:

Γ̇a ij(s, t, u) =
∑

ℓ

γ̇
(ℓ)
a ij(s, t, u) − ˙̃γ(ℓ)

a ij(t, s, u) + ˙̃γ(ℓ)
a ij(u, s, t) (C.56a)

Γ̇b ij(s, t, u) =
∑

ℓ

γ̇
(ℓ)
b ij(s, t, u) − ˙̃γ(ℓ)

c ij(t, s, u) + ˙̃γ(ℓ)
c ij(u, s, t) (C.56b)

Γ̇c ij(s, t, u) =
∑

ℓ

γ̇
(ℓ)
c ij(s, t, u) − ˙̃γ(ℓ)

b ij(t, s, u) + ˙̃γ(ℓ)
d ij(u, s, t) (C.56c)

where the one-loop versions are found in Ref. [1] and bubble functions for higher
loop orders can be computed via the expressions in Section C.2.

Finally, we note that although the particular form of the flow equations appears
highly symmetric, a separate evaluation of all three contributions (L,R,C) is still
necessary. For the left part, this is easy to see since it requires insertion of a
completely different object on the right-hand side of the flow equations and thus
will not be equal to the central part. The right part γ̇(ℓ,R) is equivalent to the
left one upon inversion of the t (or u) frequency, which essentially requires us to
compute the left part for a negative transfer frequency. Here, we chose to restrict
ourselves to positive frequencies only and instead treat γ̇(ℓ,R) as an individual
contribution.

Bethe-Salpeter and Schwinger-Dyson equations
Instead of using the Multiloop-FRG approach, one can also try to iteratively solve
the Bethe-Salpeter equations in the parquet approximation and the Schwinger
Dyson equation. As it turns out, this can be done numerically efficiently using our
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previously gained knowledge on the parametrization. We start with Eq. (C.39)
and insert I = Γ0 + γ̄, which we can then simplify to

γ1,2|3,4 = 1
2B2

(
Γ0,Γ

)
+ B2 (γ,Γ) . (C.57)

The relative factor of 2 between both terms originates from the elimination of γ̄ in
favor of two equivalent terms with γ analogous to Eq. (C.47). Writing the equation
in this form allows us to find the parametrized version from the parametrized
bubble functions in Section C.2. To realize this, we note that all properties of γℓ

carry over to the irreducible vertex γ inductively. For the first term containing
the bare interaction, the equation can be further simplified by noting that the
parametrization allows us to simply permute indices to replace Γ̃-like expressions.
In total, we may thus insert

Γ0
c, ij = −Jij (C.58)

Γ̃0
b, ij ≡ Γ0

xi,xj,yi,yj = −Γ0
xi,yi,xj,yj = −Γ0

c, ij (C.59)
Γ̃0

d, ij = Γ0
c, ij (C.60)

Γ0
a = Γ0

b = 0 (C.61)
Γ̃0

a = Γ̃0
c = 0. (C.62)

Using the four-point bubble, the Schwinger-Dyson equation may also be iter-
ated efficiently. Starting from its previously derived form

Σ1,2 = −1
2Γ0

1,2,1′,2′G1′,2′ + 1
6G1′,2′G3′,4′G5′,6′Γ0

1,1′,3′,5′Γ2,2′,4′,6′ (C.63)

we may define a self-energy bubble as

B1 (Γ)1,2 = G1′,2′Γ2′,1,2,1′ , (C.64)

where we have chosen a permutation of indices that is most easily translated into
diagrammatic form. The convention is to label indices on a vertex in a counter-
clockwise direction starting from the top-left. In the second term we may then
identify the one-and two-particle bubbles

G1′,2′

(
G3′,4′G5′,6′Γ0

1,1′,3′,5′Γ2,2′,4′,6′

)
= G1′,2′

(
G3′,4′G5′,6′Γ0

1,3′,1′,5′Γ6′,4′,2,2′

)
= G1′,2′B2

(
Γ0,Γ

)
1,1′|2,2′

= G1′,2′B2
(
Γ0,Γ

)
2′,1|2,1′

= B1
(
B2
(
Γ0,Γ

))
1,2
. (C.65)
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Altogether, we have

Σ1,2 = 1
2B1

(
Γ0
)

1,2
+ 1

6B1
(
B2
(
Γ0,Γ

))
1,2
. (C.66)

Again, to insert the explicit parametrization, we consider the more general case in
which a two-particle bubble is inserted into a self-energy bubble:

B1
(
B2
)

1,2
= G1′,2′B2

2′,1|2,1′[
B1
(
B2
)]

xi,xi
(ω1) = T

∑
ω

∑
β

∑
k

Gk(−ω)B2
βk,xi|xi,βk(−ω, ω1| − ω1, ω)

= −T
∑
ω

∑
k

Gk(−ω)
[
B̃2

a, ki(−ω, ω1|ω,−ω1)

+2B̃2
c, ki(−ω, ω1|ω,−ω1

]
= −T

∑
ω

∑
k

Gk(ω)
[
B̃2

a, ki(ω + ω1, 0, ω − ω1)

+2B̃2
c, ki(ω + ω1, 0, ω − ω1)

]
. (C.67)

This derivation is analogous if a vertex is inserted instead of a bubble. As in
the previous case, we simply need to replace Γ̃a, ik(s, t, u) = Γa, ik(t, u, s) and
Γ̃c, ik(s, t, u) = Γb, ik(t, u, s). Note that this implies that in the current parametriza-
tion, the bubble containing only the bare vertex vanishes.

Numerical procedure

To solve the Bethe-Salpeter and the Schwinger-Dyson equations self-consistently,
we start from the parquet approximation I = γ̄ + Γ0 and further set the initial
values as Γ = Γ0 and Σ = 0. As detailed in Fig. C.2, these values are inserted into
the parquet formalism, which involves the following steps:

• Computing the bubble functions B2 (Γ0,Γ) and B2 (γ,Γ) using the given
vertex and self-energy.

• Obtaining the irreducible vertex γ from the bubble functions.

• Using the parquet approximation Γ = Γ0 + γ̄.

• Solving the Schwinger-Dyson equation using the current vertex and bubble
functions. This is done self-consistently by re-evaluating the SDE using the
updated self-energy in propagators until convergence is reached.
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C.2. Multiloop Flow equations

Figure C.2.: Iterative Parquet algorithm. Arrows indicate the input of data. The
Schwinger-Dyson equation is solved self-consistently at each step until
convergence is reached, which is numerically feasible if the bubble
function B2 is computed explicitly.

Parametrization of Bubble functions
Finally, we can write the parametrized form of the flow equations concisely by

using the parametrized version of four-point bubble functions.

γ̇ℓ,L
µ, ij(s, t, u) = B2

(
γ̇ℓ−1,Γ

)
µ, ij

(s, t, u) (C.68a)

γ̇ℓ,C
µ, ij(s, t, u) = B2

(
γ̇ℓ−1,R,Γ

)
µ, ij

(s, t, u) (C.68b)

γ̇
(ℓ,R)
µ, ij (s, t, u) = γ̇

(ℓ,L)
µ, ij (s, t, u)

∣∣∣
ω1↔−ω3,ω2↔−ω4,i↔j

(C.68c)

˙̃γ(ℓ,R)
µ, ij (s, t, u) = ˙̃γ(ℓ,L)

µ, ij (s, t, u)
∣∣∣
ω1↔−ω3,ω2↔−ω4

(C.68d)

with expressions for ˙̃γ(ℓ,L) and ˙̃γ(ℓ,C) analogous to Eqs. (C.68a) and (C.68b)
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B2
(
γ̇ℓ−1,R,Γ

)
a, ij

(s, t, u) = −T
∑
kω

Gk(ω)Gk(ω + s)(
Γa, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)

a, ki (ω + ω2, s, ω + ω1)

+2Γb, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)
c, ki (ω + ω2, s, ω + ω1)

)
(C.69a)

B2
(
γ̇ℓ−1,R,Γ

)
b, ij

(s, t, u) = −T
∑
kω

Gk(ω)Gk(ω + s)(
Γb, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)

a, ki (ω + ω2, s, ω + ω1)

+Γa, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)
c, ki (ω + ω2, s, ω + ω1)

+Γb, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)
c, ki (ω + ω2, s, ω + ω1)

)
(C.69b)

B2
(
γ̇ℓ−1,R,Γ

)
c, ij

(s, t, u) = −T
∑
kω

Gk(ω)Gk(ω + s)(
−Γc, kj (s, ω − ω4, ω − ω3) ˙̃γ(ℓ−1,R)

b, ki (ω + ω2, s, ω + ω1)

+Γc, kj (s, ω − ω3, ω − ω4) ˙̃γ(ℓ−1,R)
d, ki (ω + ω2, s, ω + ω1)

)
(C.69c)

B̃2
(
γ̇ℓ−1,R,Γ

)
a, ij

(s, t, u) = −T
∑
ω

Gi(ω)Gj(ω + s)(
Γa, ji (ω − ω3, s, ω − ω4) ˙̃γ(ℓ−1,R)

a, ji (ω + ω2, ω + ω1, s)

+2Γc, ji (ω − ω3, s, ω − ω4) ˙̃γ(ℓ−1,R)
d, ji (ω + ω2, ω + ω1, s)

)
Gj(ω)Gi(ω + s)(
γ̇

(ℓ−1,L)
a, ij (ω + ω2, s, ω + ω1) Γa, ij (ω − ω4, s, ω − ω3)

+2γ̇(ℓ−1,L)
c, ij (ω + ω2, s, ω + ω1) Γc, ij (ω − ω4, s, ω − ω3)

)
(C.70a)

184



C.3. Benchmarks

B̃2
(
γ̇ℓ−1,R,Γ

)
b, ij

(s, t, u) = −T
∑
ω

Gi(ω)Gj(ω + s)

×
[
Γc, ji (ω − ω3, s, ω − ω4)

(
˙̃γ(ℓ−1,R)
a, ji (ω + ω2, ω + ω1, s)

+ ˙̃γ(ℓ−1,R)
d, ji (ω + ω2, ω + ω1, s)

)
+Γa, ji (ω − ω3, s, ω − ω4) ˙̃γ(ℓ−1,R)

d, ji (ω + ω2, ω + ω1, s)
]

+Gj(ω)Gi(ω + s)
×
[
Γa, ij (ω − ω4, s, ω − ω3)γ̇(ℓ−1,L)

c, ij (ω + ω2, s, ω + ω1)

+Γc, ij (ω − ω4, s, ω − ω3)
(
γ̇

(ℓ−1,L)
a, ij (ω + ω2, s, ω + ω1)

+γ̇(ℓ−1,L)
c, ij (ω + ω2, s, ω + ω1)

)]
(C.70b)

B̃2
(
γ̇ℓ−1,R,Γ

)
c, ij

(s, t, u) = −T
∑
ω

−Gi(ω)Gj(ω + s)[
Γc, ji (ω − ω3, ω − ω4, s) ˙̃γ(ℓ−1,R)

b, ji (ω + ω2, ω + ω1, s)

+Γb, ji (ω − ω3, ω − ω4, s) ˙̃γ(ℓ−1,R)
c, ji (ω + ω2, ω + ω1, s)

]
+Gj(ω)Gi(ω + s)

[
γ̇

(ℓ−1,L)
b, ij (ω + ω2, ω + ω1, s) Γb, ij (ω − ω4, ω − ω3, s)

+γ̇(ℓ−1,L)
c, ij (ω + ω2, ω + ω1, s) Γc, ij (ω − ω4, ω − ω3, s)

]
(C.70c)

B̃2
(
γ̇ℓ−1,R,Γ

)
d, ij

(s, t, u) =B̃2
(
γ̇ℓ−1,R,Γ

)
a, ij

(s, t, u) − B̃2
(
γ̇ℓ−1,R,Γ

)
b, ij

(s, t, u)

−B̃2
(
γ̇ℓ−1,R,Γ

)
c, ij

(s, t, u) (C.70d)

C.3. Benchmarks

In this section, we shall review the performance of the Parquet algorithm for
simple benchmark models with known solutions. A rigorous test of the correctness
of FRG methods and their implementation is to observe whether the expected
error scaling is reproduced. This is verified in Fig. C.3, which shows that at
higher temperatures, the Parquet formalism indeed displays an error of the self-
energy proportional to T−4. This is more easily seen in the higher frequency
components, as the error of the zero-frequency component has a sign change at
intermediate temperatures. Despite this promising result, the Parquet formalism
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fails to yield improvements for the more relevant magnetic susceptibility at lower
temperatures. For the nearest neighbor cubic antiferromagnet, shown in Fig. C.4,
it can be observed that the Parquet formalism, unlike the more simple one-loop
FRG, fails to resolve magnetic ordering. This finding is in qualitative agreement
with independent two-loop results shown for the pyrochlore FM in Fig. 5.5 and
suggests that the Parquet formalism and the multiloop expansion are not suitable
for the study of magnetic ordering in frustrated systems.

While this conclusion seems paradoxical, given the fact that the diagrams of
the Parquet formalism form a strict superset of the one-loop diagrams, and thus
reduce the approximation error in a perturbative sense, the application of FRG is
typically done in a highly non-perturbative setting. In such cases, the validity of
a given approximation can easily depend on other factors rather than the number
of included diagrams. The unintuitive nature of these findings highlights the im-
portance of performing quantitative benchmarks when comparing the efficiency of
different diagrammatic methods.
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C.3. Benchmarks

Figure C.3.: Benchmark of the Parquet algorithm for the spin-1/2 dimer. Shown
are the asymptotic scalings of the two susceptibilities χ11 and χ12, the
self-energy γ(n), and their respective absolute errors as a function of
temperature. Symbols correspond to the one-loop ℓ = 1, two-loop
ℓ = 2, and Parquet solutions. The expected error scaling of the self-
energy compared to the exact solution is indicated by solid lines.
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Figure C.4.: Susceptibility and rescaled correlation length obtained from the Par-
quet formalism. The expected ordering temperature Tc = 0.941 from
QMC is far surpassed without any indication of critical scaling. At
lower temperatures, the Parquet equations fail to converge.
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D
Spin-S flow equations and correlation

functions
In PMFRG, we simulate the model in Eq. (3.39), i.e., a system of 2SeffN spin-

1/2 degrees of freedom Siµ that are labelled by a site index i and a replica index
µ. At first glance treating this model may look like a considerable increase in
numeric complexity since the number of bonds with a coupling Jij increases by
a factor (2Seff)2 relative to a genuine spin-1/2 model in which the replica index
takes only a single value µ = 1 (i.e., no different replicas exist). However, below
we will see that the introduction of replicas has virtually no impact on numerical
performance due to a large number of symmetries in the replica index.

The central object to be calculated in PMFRG is the vertex function Γf ;iµ;jν (s, t, u)
corresponding to the effective interaction between sites/replicas iµ and jν , where
f corresponds to the flavor combination, e.g. xyxy [1] and s, t, u are Matsubara
frequencies. At the initial cutoff scale Λ → ∞ the vertex function is determined by
the bare couplings Jiµ;jν . Since an efficient PMFRG implementation only considers
symmetry-inequivalent vertex functions Γf ;iµ;jν (s, t, u), the first step is to determine
all independent site/replica arguments (iµ, jν) that have to be taken into account.
As illustrated in Fig. 3.5, replicas µ, positioned on the same site i, are equivalent,
implying an invariance of the system under local permutations of replicas iµ → iµ′ .
Thus, the site/replica arguments of vertex functions (iµ, jν) can be divided into
three equivalence classes of bonds denoted (i1, j1), (i1, i1), (i1, i2) where each of
the three bonds corresponds to a representative element in each class. The three
classes are defined by

(iµ, jν) =


(i1, j1), i ̸= j

(i1, i1), i = j and µ = ν

(i1, i2), i = j and µ ̸= ν

. (D.1)

The first (i1, j1) and second bond (i1, i1) are the inter-site and onsite bonds already
known from a genuine spin-1/2 model. On the other hand, the last bond (i1, i2)
between two different replicas on the same physical site i does not exist in the
genuine spin-1/2 case. Notably, apart from additional factors in the flow equation
as discussed below, the introduction of replicas only amounts to the consideration
of the additional symmetry-inequivalent bond (i1, i2) regardless of the value of Seff
which explains the negligible costs of the replica construction.
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We now make use of the equivalence classes to determine the flow equations
for arbitrary Seff. To this end, we consider an exemplary term on the right hand
side of the flow equation for dΓf ;ij(s, t, u)/dΛ in Eq. (51) of Ref. [1] which, before
the introduction of replicas, has the form

Xij =
∑

k

Γ(L)
ki Γ(R)

kj Pkk. (D.2)

Equation (D.2) is written in a strongly condensed form: As frequency indices and
Majorana flavors x, y, z are irrelevant for our discussion, they are omitted in the
bubble propagator Pii ≡ −SΛ

i (ω)GΛ
i (ω′) where SΛ

i (ω) is the single-scale propagator
and GΛ

i (ω′) is the fully dressed single-particle propagator. Likewise, to suppress
frequency and flavor indices, we use dummy labels for vertices Γ(L)

ij and Γ(R)
ij to refer

to arbitrary left and right vertices as appearing in each term of the flow equations
in Eq. (51) of Ref. [1], for example Γ(L)

ij = ΓΛ
a,ij(s, ω + ω1, ω + ω2) in Eq. (51a) of

Ref. [1].

Upon introducing the spin-1/2 replicas by splitting the sum over k as ∑k →∑
k

∑2Seff
µ=1 , we reorganize and group the terms in the summation over µ according

to the equivalence classes in Eq. (D.1). It is noted that due to the aforementioned
permutation symmetry in the replica index µ, we may write the propagator as
Giµ = Gi1 ≡ Gi and thus Piµ,iµ ≡ Pi,i. Hence, Eq. (D.2) in the class of bonds
(i1, j1) becomes

Xi1j1 =
∑
kµ

Γ(L)
kµ,i1Γ(R)

kµ,j1Pkµ,kµ

= 2Seff
∑

k ̸=i,j

Γ(L)
k1,i1Γ(R)

k1,j1Pk,k

+ Γ(L)
i1,i1Γ(R)

i1,j1Pi,i + Γ(L)
j1,i1Γ(R)

j1,j1Pj,j

+ (2Seff − 1)
(
Γ(L)

i1,i2Γ(R)
i1,j1Pi,i + Γ(L)

j1,i1Γ(R)
j1,j2Pj,j

)
. (D.3)

The first term is equivalent to the non-local contributions in the genuine spin-1/2
case, rescaled by a factor 2Seff accounting for all replicas. On the other hand, the
newly introduced bond (i1, i2) requires us to add the last line in Eq. (D.3). It can
be seen that in the special case Seff = 1/2, when no replicas are introduced, this
expression reduces back to Eq. (D.2). In the same way we obtain for the bonds
(i1, i1) and (i1, i2):

Xi1,i1 = 2Seff
∑
k ̸=i

Γ(L)
k1,i1Γ(R)

k1,i1Pk,k

+ Γ(L)
i1,i1Γ(R)

i1,i1Pi,i + (2Seff − 1)
(
Γ(L)

i1,i2Γ(R)
i1,i2Pi,i

)
(D.4)

190



and

Xi1,i2 = 2Seff
∑
k ̸=i

Γ(L)
k1,i1Γ(R)

k1,i1Pk,k

+
(
Γ(L)

i1,i1Γ(R)
i1,i2 + Γ(L)

i1,i2Γ(R)
i1,i1

+ (2Seff − 2)Γ(L)
i1,i2Γ(R)

i1,i2

)
Pi,i. (D.5)

The site summation for the self energy similarly changes through the introduction
of replicas and its terms, are the same as found for Xi1,i1 , see [1]. It is worth
emphasizing again that the only additional terms compared to a genuine spin-
1/2 model are those containing vertex functions on (i1, i2) bonds. Hence, for a
PMFRG implementation of models with higher spins S > 1/2 one can copy most
terms from a spin-1/2 code while only the terms with (i1, i2) bonds need to be
added manually 1.

Ultimately, the object of interest are spin correlators χij ≡ ⟨Si,eff · Sj,eff⟩. Since
the PMFRG only returns replica correlators ⟨Siµ ·Sjν ⟩, we obtain χij via replacing
Si,eff by its definition in Eq. (3.38) and expanding the replica summation. Again,
we use the equivalence classes in Eq. (D.1) to simplify the expression. For non-
local correlators i ̸= j, all terms in the sum are equal and thus we obtain a simple
prefactor (2Seff)2. For local correlators i = j we distinguish between contributions
from two different replicas ⟨Si1 · Si2⟩ and contributions from identical replicas
⟨Si1 · Si2⟩:

χi,j ̸=i = (2Seff)2⟨Si1 · Sj1⟩ (D.6)
χi,i = 2Seff⟨Si1 · Si1⟩ + 2Seff(2Seff − 1)⟨Si1 · Si2⟩ (D.7)

As the heat capacity is determined from PMFRG via derivatives of the interacting
free energy, we also adjust this quantity to be

fint → 2Sefffint. (D.8)

1This must only be implemented once for an arbitrary lattice. An examplary code implementa-
tion can be found in the publicly available package SpinFRGLattices.jl, where a given lattice
geometry may simply be modified to obtain the corresponding effective spin-S model.
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E
Details on the numerical PMFRG

implementation

This appendix will give a few general remarks regarding the numerical imple-
mentation of the PMFRG method featured in this thesis. Numerical results of the
previous chapters are obtained using the self-developed package PMFRG.jl found
under https://github.com/NilsNiggemann/PMFRG.jl.

The solution of the flow equations amounts to the numerical integration of
a large system of coupled ordinary differential equations (ODE’s). The initial
conditions are given as

ΓΛ0
c ij(s, t, u) = −Jij

γΛ0
i (ω) = ΓΛ0

a ij(s, t, u) = ΓΛ0
b ij(s, t, u) = 0, (E.1)

with Λ0 (or T0 in the case of the temperature flow method) at least two orders
of magnitude above the largest exchange coupling. To obtain a finite system of
equations, only the first Nω non-negative Matsubara frequencies are considered
(negative frequencies are related by symmetries). Matsubara sums over iωn are
truncated for |n| > Nw. The error made in this approximation is controlled since
the contribution of large frequencies is typically small due to the vanishing propa-
gator G(iωn) ∼ 1/iωn. For four-point vertices, we must pay special attention to the
fact that combinations of bosonic Matsubara integers ns, nt, nu are (un-)physical
if their sum ns + nt + nu is odd (even) [1]. Vertices with unphysical frequency
arguments will never appear in flow equations and are thus not computed. If one
or more Matsubara integers are greater or equal to Nω, the vertex is approximated
by setting the associated index to either Nω − 1 or Nω − 2 such that ns + nt + nu

is odd. This avoids the introduction of errors at the boundaries of the frequency
range. For the same reason, we also refrain from the alternative of interpolating
between frequencies and instead raise the number of positive frequencies until con-
vergence is reached. Good results are typically obtained at Nω = 32, particularly,
for temperatures T ≳ 0.5. For the lowest temperature treated, usually a larger
number of frequencies, Nω = 64, or even more may be needed. While the latter is
typically a good rule of thumb, it is usefull to check convergence for each individual
case.

Regarding the real space cutoff used here, no significant dependence on the
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particular choice of the cutoff is reported. If the maximum vertex length is defined
by the number of nearest-neighbor bonds instead of an (isotropic) distance L, the
same scaling behaviour is observed.

Numerically, the flow equations were solved using adaptive, error-controlled
methods provided in the Julia package “DifferentialEquations.jl” [304]. To allow
for accurate numerical derivatives of the free energy, a relative tolerance ∼ 10−8

is required in which case the Dormand-Prince(5) method was found to be most
efficient.

194



F
Implementation details regarding the

spiderweb model

F.1. Exact diagonalization in block diagonal Hilbert
space

Due to the exponential growth of the Hilbert space with the number of sites, it is
inefficient to work directly in the Sz basis. However, the large number of indepen-
dent Hilbert space blocks simplifies this problem significantly. To determine the
ground state of the Hamiltonian in Eq. (7.17), we must thus first identify all states
within a given Hilbert space sector. We start with a classical spin configuration
and find all flippable plaquettes to generate all other classical configurations that
the state can tunnel into via application of H2 defined in Eq. (7.17). As an exam-
ple, consider the staircase state displayed in Fig. 7.1 f), which we shall here label
as |x0⟩: A single plaquette flip can be applied in 36 different locations, indicated
by red dots, resulting in 36 new configurations. We assign a unique label to each
newly generated state |x1⟩ . . . |x36⟩ and record Hx0,xi

= −1,∀i ∈ 1, 2, . . . , 36 for
the elements of the Hamiltonian of so-far unspecified dimension. This procedure
is then repeated for each of the new states generated this way. It is evident that
the labels |xi⟩ of newly found states must be unique such that no single configu-
ration may be mapped to two different labels. Numerically, this can be efficiently
achieved by using a hash-map, usually implemented as a dictionary in many lan-
guages. While it is possible to use the entire spin configuration as a key to the
dictionary, hashing an entire array is slow, so further compression is useful. In the
case of spin-1/2, we may uniquely determine each state by a number of plaquette
flips acting on the parent state, for example the stair case state. If we identify
all position of flippable plaquettes, we may encode a single configuration within a
single bitstring, i.e. the state ”0000” corresponds the staircase state with no pla-
quettes flipped while the state ”0100” differs by applying a single plaquette flip
of plaquette number 2. A single UInt64 has 64 bits of information and may thus
represent any state in a Hilbert sector with no more than 64 possible plaquette
positions.

For finite system sizes, after a finite number of iterations, no new configurations
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are found, i.e. all states that are found have already been assigned their label. The
resulting sparse Hamiltonian matrix may then straight-forwardly be diagonalized
with standard linear algebra routines and observables such as the spin structure
factor can be evaluated by converting the unique bitstrings from found previously
back into their corresponding spin configurations.

In the language of graph theory, we can also specify the above procedure as a
breadth-first search algorithm of an undirected graph where the nodes are given
by classical spin configurations and the edges are determined by the applicabiblity
of single plaquette flips. The Hamiltonian Hxi,xj

= 0,−1 is then equivalent to the
adjacency matrix of this network.

In this way, we can determine exact eigenvalues and eigenvectors in a given
block of the Hamiltonian for systems up to ∼ 14 × 14 sites. For larger systems,
the exponential growth of the Hilbert space quickly leads to extreme memory
requirements to store the classical spin configurations, even when represented as
bitstrings. To investigate larger sizes at spin 1, we employ the Green function
Monte Carlo method.

F.2. Green function Monte Carlo

Quantum Monte Carlo methods are numerically exact ways to determine ground
state properties of Hamiltonians that are free from the sign problem. Here, the
Green Function Monte Carlo (GFMC) approach is implemented as in Ref. [305],
which we find particularly useful for the given problem. See also References [125,
306, 307]. In essence, GFMC avoids the exhaustive computation of the entire
Hilbert space in favor of a statistical sampling of observables by performing a
random walk instead. The random walk is utilized to realize a projection approach,
i.e. making use of the fact that repeated applications of the Hamiltonian to a
trial state |ψT ⟩ converge to the ground state exponentially, or, more precisely,
(Λ − H)P |ψT ⟩ → |ψ0⟩ for P → ∞. The constant Λ can be used to shift the
spectrum such that the dominant eigenvector of G ≡ Λ − H corresponds to the
ground state of H as opposed to the maximally excited one. If the Hamiltonian
has purely negative elements, λ = 0 is sufficient as Emax ≤ |E0| according to the
Perron–Frobenius theorem. If H has positive diagonal elements, we may choose a
finite Λ ≥ maxx Hxx. The only requirement for the trial wavefunction |ψT ⟩ is that
it has nonzero overlap with the ground state. This can be asserted by ψT (x) > 0
for all configurations x.
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As outlined in the previous section, the Hilbert space is represented by a graph
with an adjacency matrix Hxx′ . Despite the exponential growth of the Hilbert
space, there are at most L2/2 neighboring states for which Hxx′ ̸= 0 for a given
configuration |x⟩. Thus, starting from the initial configuration |x0⟩ = (0, 0, . . . , 0),
we can perform a random walk by randomly selecting one of the neighboring states
accessible by a single plaquette flip. To discuss how the formalism works, we first
consider a special case in which the Hamiltonian is equivalent to a stochastic
transition matrix px′x ≥ 0 that fulfills the property∑

x′
pxx′ = 1. (F.1)

In a sector with N non-overlapping plaquettes, none of the moves affect each
other, and we can easily identify Gxx′ = pxx′N . We will discuss later how to treat
the more general case.

Starting from an initial configuration |x⟩, at each step of the random walk,
we select one of the configurations |x′⟩ with a probability given by pxx′ , defining a
Markov process. After a sufficiently long time, the probability amplitude ψEq

x to
be in any state x converges to an equilibrium [307]∑

x′
pxx′ψEq

x′ = ψEq
x . (F.2)

Interpreting the above as an eigenvalue equation, we see that the equilibrium
probability distribution ψEq

x is an eigenvector of pxx′ and thus also of H with
eigenvalue 1. It can be easily seen that this is fulfilled by the eigenvector given as
ψEq = (1, 1, . . . , 1). Moreover, due to Eq. (F.1), the spectrum of pxx′ is bounded
such that all other eigenvalues λi ≤ 1 [307]. Since the largest eigenvalue of pxx′ cor-
responds to the minimum eigenvalue of Hxx′ , we can identify ψT (x) = ψEq(x) = 1.
As this trial wavefunction is exact, we can determine any observable O in the
ground state by sampling over a large enough number N of equilibrated configu-
rations xn:

⟨O⟩ = ⟨ψT |GPOGP |ψT ⟩
⟨ψT |GPGP |ψT ⟩

(F.3)

= lim
N→∞

1
N

N∑
n

⟨ψT |O|xn⟩ . (F.4)

In the second line, we used the fact that |ψT ⟩ =
∣∣∣ψEq

〉
and HP

∣∣∣ψEq
〉

∼
∣∣∣ψEq

〉
. We

now discuss the more general case in which Gxx′ ≁ pxx′ . In this case, we can still
define a random walk by defining the probability as

pxx′ = Gxx′∑
x′ Gxx′

≡ Gxx′

wx

. (F.5)
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Clearly, the ground state is no longer given by the equilibrium ψEq
x , and the projec-

tion in Eq. (F.3) is nontrivial. To measure an observable O, we must first apply G
for P steps to a configuration |xn⟩ and sample the value of O. Averaged over many
runs, this corresponds to an evolution of the walker of P steps, with probability
given by pxx′ . However, since Gx,x′ = px,x′wx, we also need to multiply the weights
wx at each step. Any observable may thus be computed exactly as

⟨O⟩ =
∑N−P

n=P WP
n O(xn)∑N−P

n=P WP
n

. (F.6)

The weights of the projection before and after applying the operator O to the trial
state are accumulated as

WP
n =

n+P∏
n−P

wxn . (F.7)

If the operator O in Eq. (F.6) is diagonal in x, i.e. ⟨x′|O|x⟩ ∼ δxx′ , both the
numerator and the denominator can be determined from the same Markov chain.
This is because applying O at any step does not alter the configuration and the
weight at step n only needs to be rescaled by ⟨xn|O|xn⟩. For off-diagonal ob-
servables, applying O changes the configuration |xn⟩, so that a new simulation of
length P needs to be run starting from one of the possible configurations obtained
from applying O |xn⟩ (chosen with weights given by Ox′xn

1). The above proce-
dure converges to the correct mean; however, the product in Eq. (F.7) leads to
strong fluctuations that diverge exponentially in P , rendering this basic approach
extremely ineffective. In order to reduce the statistical fluctuations, two important
additions to the formalism are necessary.

Importance sampling – A purely random walk is a rather inefficient way to
sample the Hilbert space. Better convergence can be achieved by favoring classical
states with a large overlap with the ground state wavefunction. Such a guiding
wavefunction can be employed simply by rescaling Gxx′ by a factor of ψT (x′)/ψT (x).
If the exact ground state wavefunction is chosen, as shown in the previous example,
the variance of the energy is exactly zero and the projection converges at P = 0.
In the generic case, the exact solution is typically unattainable; however, the re-
quired number of projection steps and statistical fluctuations can still be greatly
reduced by choosing an optimal variational function. Crucially, no bias is intro-
duced provided that the guiding wavefunction is nonsingular, i.e., ∞ ≠ ψT (x) ̸= 0
for any x. A good starting point is the relatively simple variational wavefunction
ψT (x) = exp(αN (x)), where a positive α increases the contribution from states
with a higher number of flippable plaquettes N (x) = F †F + F F †. This choice

1Or, in the case of importance sampling introduced below, Ox′xn
ψT (x′)/ψT (xn)
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will yield good results as it can be shown that it is equivalent to an imaginary
time evolution of length α of the RK wavefunction.

⟨x|e−αH |ψRK⟩ = e−α
∑

x′ Hx′,x = eαN (x). (F.8)

For larger system sizes, it is helpful to optimize a variational wavefunction with
more parameters. A good choice is

ψT (x) = exp
∑

i

αin i
(x) +

∑
i<j

βi,jn i
(x)n

j
(x)
, (F.9)

where the index i iterates over all plaquettes. The variational parameters αi and
βij are optimized using the stochastic reconfiguration method [308]. In principle,
it is also possible to choose even more sophisticated variational approaches, such
as neural network states or even results from tensor network methods [134, 309].
As the guiding wavefunction is evaluated many times in each Markov step, it is
crucial that it is efficient to evaluate.

Many walker formalism–

To reduce the amount of fluctuations at large values of P , we employ the many-
walker formalism. The procedure used here is the one introduced in Ref. [305],
which is particularly useful as it does not introduce any systematic errors regardless
of the number of walkers [307, 310]. The many-walker approach is used as follows:
First, Nw walkers are initialized and evolve fully independently for nbranch steps,
accumulating their weight wα = ∏nbranch

1 wαn for α = 1, . . . Nw as described before.
Afterwards, we perform the reconfiguration in which each walker is given a new
configuration from all walkers, sampled with probability wα/

∑Nw
α wα. This process

is a single Markov step which will contribute an ensemble of configurations with
a single weight w = 1

NW

∑Nw
α wα. This reconfiguration ensures that walkers with

negligible weight are eliminated while those with large weight are multiplied, which
explores the Hilbert space much more efficiently. It is noted that to measure
observables with the forward walking method, the exact reconfiguration process
has to be saved, as some of the walkers are eliminated during the reconfiguration
steps following the application of O. See [125, 305] for more details.

Ergodicity

Although numerically exact, GFMC, like any Markov-based method, can po-
tentially suffer from long correlation times, especially if the graph of the Hamilto-
nian features large, sparsely connected clusters [284, 311]. We have found that this
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can be diagnosed by initializing a large fraction, approximately 9/10, of the walk-
ers with a random configuration in the Sz = 0 subsector (chosen by performing
approximately 20,000 fully random plaquette flips) for several independent runs.
If the equilibration times are too long, this may result in very large errors in the
mean energy, even at P = 0. By using a sufficiently large number of walkers
and keeping the number of branching steps NBra high enough, the reconfigura-
tion process drastically improves equilibration and keeps errors of all quantities
low between several independent runs. As the accuracy of the simulation can be
extremely high for smaller system sizes, it is also practical to verify that physical
properties do not change upon increasing the system size. A demonstration of the
application of GFMC in comparison with ED is given in Fig. F.1. A good indicator
of the convergence of the projection is the ground state energy shown in panel (a).
The data point at P = 0 for the single walker corresponds to a variational Monte
Carlo (VMC) estimate using the trial wavefunction. The many-walker formalism
can be seen to improve statistical errors at higher projection orders.

If the Hamiltonian features large positive diagonal elements, it is advisable to
consider the continuous-time limit Λ → ∞, in which the projector is equivalent
to e−H∆τ for a numerically chosen time step τ [125]. Using the forward walking
formalism, arbitrary observables in the Sz basis can be measured. All observables
can be seen to converge to the exact result after 50 projection steps for Nw = 20
walkers. The required number of projection steps usually depends on the system
size L and the number of walkers. For example, for Fig. 7.3(c), an ensemble of
12,800 walkers was used that were evolved with a continuous-time step ∆τ = 0.2
for 12,000 steps after equilibration. The mean and standard deviations (error
bars) were estimated by performing 14 independent runs. The projection typically
converged after τ ≳ 15. For smaller system sizes, a much lesser number of steps
and walkers is usually sufficient. It should be noted that the projection procedure
requires the existence of a gapped spectrum. While a gapless spectrum is predicted
in some cases in the thermodynamic limit, one can expect a finite size gap for all
finite systems.

F.3. Details on the rank-2 U(1) field theory

The Maxwellian field theory in Eq. (7.19) is derived by expressing the spin flip
operators in H2 in terms of rotor variables S±

i =
√

2e±iAα
i , where Aα

i plays the role
of a generalized ‘vector’ potential. The operators Aα

i (which follow the convention
that α = xy when i is on sublattice 1 and α = xx when i is on sublattice 2) are the
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Figure F.1.: Comparison of GFMC in the spin-1/2 staircase sector with ED for
L = 14 with open boundary conditions. (a): Ground state energy as a
function of the projection order for a single walker (grey) compared to
an ensemble of 20 walkers (black) and the exact result (red horizontal
line). (b): Different expectation values of different one- and two-point
spin correlators each compared to the exact result in the same color.
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components of a trace-free and symmetric matrix-valued field, i.e., Axx
i = −Ayy

i

and Axy
i = Ayx

i . Furthermore, Aα
i is compact, i.e., its eigenvalues lie in the interval

[0, 2π]. In addition to the notation Aα
i , we will use the alternative notation Axy

(Axx) to indicate that Axy
i (Axx

i ) is defined for each site i that is the center of a
cluster ( cluster). The z-components of the spins Sz

i take the role of a conjugate
integer-valued matrix electric field Sz

i = Eα
i with [Aα

i , E
α
i ] = i. We will also use

the notation Exy and Exx for the electric field components, in analogy to Axy and
Axx. With these definitions, H2 takes the form

H2 ∼ −
∑

cosB ∼ +
∑

B2 (F.10)

where B is defined for each cluster as given in Eq. (7.18), and the rightmost
expression in Eq. (F.10) represents the expansion of H2 in the lowest non-trivial
order in B . Together with the electric field term ∼ (Eα

i )2 and the RK potential
∼ N 2, we obtain the effective field theory in Eq. (7.19). An important property
of this theory that distinguishes it from conventional U(1) gauge theories is the
absence of electromagnetic duality. This is already evident from the different
properties of the electric and magnetic fields, where the former is a matrix while
the latter is a scalar.

The field theory has a local gauge freedom that follows from the rank-2 Gauss
law and amounts to the invariance under the operation [55]

U(f ) = exp
(

i
∑

f C
)

(F.11)

where f is an arbitrary function defined for each cluster or, stated differently,
f is located on sublattice 1. Using

C = Exx
1 + Exy

2 − Exx
3 − Exy

4 + Exx
5 + Exy

6 − Exx
7 − Exy

8 (F.12)

the sum in the exponent of Eq. (F.11) can be rearranged yielding

U(f ) = exp
[
i
∑

Exy(f 2 − f 4 + f 6 − f 8)
]
×

exp
[
i
∑

Exx(f 1 − f 3 + f 5 − f 7)
]
. (F.13)

Here, the notation Exy
a
, f a with a = 2, 4, 6, 8 and Exx

a
, f a with a = 1, 3, 5, 7

makes use of the site labelling convention in Eq. (7.17) where, e.g., f 1 is a site to
the right of the center of a cluster, such that f 1 is still defined on sublattice
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Sublattice 1 Sublattice 2
Center of cluster Center of cluster

Quantities on sublattice 1: Quantities on sublattice 2:
C (constraint) F (fluctuator)
ρ (fractons) B (magnetic field)
Axy, Exy Axx, Exx

(fields of U(1) theory) (fields of U(1) theory)
f (gauge transformation) N 2 (RK potential)

h (height field)

Table F.1.: Definitions of the two sublattices of the spiderweb model and location
of different quantities.

1 (center of a cluster). Since exp(iθEα
i ) with θ ∈ R shifts Aα

i → Aα
i + θ the

operation in Eq. (F.13) can be written as

Axy → Axy + f 2 − f 4 + f 6 − f 8 ,

Axx → Axx + f 1 − f 3 + f 5 − f 7 . (F.14)

By simple bookkeeping of all terms it can be checked that Eq. (7.18) is indeed
invariant under this transformation.

Table F.1 summarizes all the definitions related to the two sublattices and the
quantities located on them. The gauge transformation in Eq. (F.14) becomes more
transparent in a continuum description, where it can be written as:

Axy → Axy + 4∂x∂yf,

Axx → Axx + (∂2
x − ∂2

y)f. (F.15)

Using the continuum definition of the magnetic field in Eq. (7.18):

B = −4∂x∂yA
xx + (∂2

x − ∂2
y)Axy, (F.16)

it is immediately obvious that B is invariant under the gauge transformation in
Eq. (F.15). The special property of Eq. (F.16) is that B is constructed from second
derivatives of Axx and Axy. This is in contrast to a three-dimensional scalar charge
rank-1 or rank-2 U(1) gauge theory, where one derivative is sufficient to construct
a gauge-invariant magnetic field [103].

Returning to the lattice version of our rank-2 U(1) gauge theory [see Eq. (7.24)],
this Hamiltonian can now be solved using a bosonic Bogoliubov transformation.
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The näıve approach would be to diagonalize Heff using the usual unitary transfor-
mations, leading to a Hamiltonian

Heff =
∑
qa
εa(q)γ†

a(q)γa(q). (F.17)

However, this transformation does not preserve the bosonic commutation relations
and would thus lead to the wrong result. The solution is to use a paraunitary
transformation, which can be shown to preserve the commutation relations [286,
287]. Put precisely, we need to rewrite Heff in terms of Bose operators C(q) for
the eigenmodes:

C(q) = (c1(q), c2(q), c†
1(q), c†

2(q)) (F.18)
where C(q) = J (q)A(q), such that (J †)−1HeffJ −1 is diagonal. The paraunitary
4×4 matrix J(q) satisfies J †gJ = g with g = diag(1, 1,−1,−1) [286]. A subtlety
arises because of the gauge invariance of Heff, which manifests in a bosonic zero
mode. While these zero modes are known not to contribute to gauge-invariant
quantities, such as correlators [68], here they are dealt with via an additional term
in the Hamiltonian of the form 2d∑i(Aα

i )2, which breaks gauge invariance and
allows for an explicit calculation of J (q). The gauge-invariant limit d → 0 can
then be recovered at the end of the calculation. The transformation matrix J (q)
is found to be:

J (q) = 1√
8(L2

1 + L2
2)

×

×


L1ξ+ L2ξ+ −L1ξ− −L2ξ−

−L2λ+ L1λ+ L2λ− −L1λ−
−L1ξ− −L2ξ− L1ξ+ L2ξ+
L2λ− −L1λ− −L2λ+ L1λ+

 (F.19)

with

ξ± =
(
U

d

)1/4
± 2

(
d

U

)1/4

, (F.20)

λ± =
√

2
(η2

η1

)1/4

±
(
η1

η2

)1/4
 , (F.21)

η1 = d+K
[
(cx − cy)2 + 4s2

xs
2
y

]
, (F.22)

η2 = U

4 +W
[
(cx − cy)2 + 4s2

xs
2
y

]
, (F.23)

and L1, L2 are defined in Eq. (7.9). Diagonalizing Heff with J leads in the limit
d → 0 to a zero mode due to the systems gauge freedom and a single photon mode
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with the dispersion

ω(q) = 2√
η1η2

= 2
√
K
[
(cx − cy)2 + 4s2

xs
2
y

]
× (F.24)

×
√
U

4 +W
[
(cx − cy)2 + 4s2

xs
2
y

]
. (F.25)

This photon dispersion is gapless at q = (0, 0) and q = (π, π). An expansion of
ω(q) around these two points yields for U ̸= 0 in lowest non-vanishing order

ω(q) ≈
√
KU

4
√
q4

x + 14q2
xq

2
y + q4

y . (F.26)

This function is quadratic in any radial direction away from gapless points, how-
ever, it is not rotation symmetric. On the other hand, exactly at the RK-point
U = 0, the photon dispersion becomes quartic,

ω(q) ≈
√
KW

4
(
q4

x + 14q2
xq

2
y + q4

y

)
. (F.27)

Another prediction of the field theory is the spin structure factor

S(q) = ⟨(Exx(−q) + Exy(−q)) (Exx(q) + Exy(q))⟩, (F.28)

which can be obtained by expressing the electric fields in terms of aα
i , (aα

i )† bosons
via Eq. (7.23), transforming them into the eigenbasis of C bosons using the matrix
J and exploiting that the groundstate is free of any photon excitations. For d → 0
this yields

S(q) =
√
η1

η2

(L1 − L2)2

L2
1 + L2

2

=
√
K(cx − cy + 2sxsy)2√

(cx − cy)2 + 4s2
xs

2
y

√
U
4 +W

[
(cx − cy)2 + 4s2

xs
2
y

] . (F.29)

In the RK limit U → 0, where η1/η2 = K/W is a constant, the expression in
Eq. (F.29) becomes (up to a prefactor) identical to the classical spin structure fac-
tor in Eq. (7.11). This is expected because at the RK point, a ground state can be
constructed by an equal weight superposition of all Sz

i basis states in a given Hilbert
space sector, similar to a classical (non-coherent) superposition. Furthermore, at
W = 0, when η2 = U/4 is a constant, the spin structure factor in Eq. (F.29) cor-
responds to the classical result, multiplied by the photon dispersion ω(q), which
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suppresses the four-fold pinch points around their center. The interpolation be-
tween both limits is determined by the term

√
U/4 +W

[
(cx − cy)2 + 4s2

xs
2
y

]
in the

denominator of Eq. (F.29). For finite W > 0, there is a threshold momentum qc

(which decreases with increasing W ) above which the W -term dominates and the
spin structure factor resembles the classical one. On the other hand, for q ≲ qc,
the U -term dominates and the spin structure factor is suppressed.
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[119] J. Reuther and P. Wölfle, “J1-J2 frustrated two-dimensional Heisenberg
model: Random phase approximation and functional renormalization group”,
Physical Review B, vol. 81, no. 14, p. 144 410, Apr. 2010. doi: 10.1103/
PhysRevB.81.144410.

[120] M. L. Baez and J. Reuther, “Numerical treatment of spin systems with unre-
stricted spin length S: A functional renormalization group study”, Physical
Review B, vol. 96, no. 4, p. 045 144, Jul. 2017. doi: 10.1103/PhysRevB.
96.045144.

[121] F. L. Buessen, D. Roscher, S. Diehl, and S. Trebst, “Functional renormal-
ization group approach to SU(N) Heisenberg models: Real-space renormal-
ization group at arbitrary N”, Physical Review B, vol. 97, no. 6, p. 064 415,
Feb. 2018. doi: 10.1103/PhysRevB.97.064415.

[122] F. L. Buessen, V. Noculak, S. Trebst, and J. Reuther, “Functional renor-
malization group for frustrated magnets with nondiagonal spin interac-
tions”, Physical Review B, vol. 100, no. 12, p. 125 164, Sep. 2019. doi:
10.1103/PhysRevB.100.125164.

[123] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the Functional
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[152] V. Noculak, D. Lozano-Gómez, J. Oitmaa, R. R. P. Singh, Y. Iqbal, M. J. P.
Gingras, and J. Reuther, “Classical and quantum phases of the Pyrochlore
S=1

2 magnet with Heisenberg and Dzyaloshinskii-Moriya interactions”, Phys-
ical Review B, vol. 107, no. 21, p. 214 414, Jun. 2023. doi: 10 . 1103 /
PhysRevB.107.214414.
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