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Abstract
The interplay of surface roughness and stable stratification is investigated by direct numerical
simulation of Ekman flow. Our setup is well within the turbulent regime, reaching a friction
Reynolds number of Reτ ≈ 2700. Further, we reach the verge of the fully rough regime
under neutral conditions with a non-dimensional obstacle height H+ ≈ 40, corresponding
to a z-nought parameter in viscous units z+0 ≈ 2. Stability is imposed via a gradual decrease
of surface buoyancy from neutral (no stratification) to very strong stratification. The reduced
Reynolds number (Reτ ) in comparison to atmospheric problems warrants consideration of
viscous effects on our results, and we demonstrate a correction method that consistently
incorporates viscous effects, thus reducing the spread of data from our numerical results. The
weakly stable regime ismaintained at higher stability due to efficient production of turbulence
kinetic energy which counteracts buoyant restoring forces in the presence of roughness.
When scaled according to Monin–Obukhov similarity theory (MOST) our results for weak
stability compares excellent to known formulations based on atmospheric observations. The
coefficients of the stability correction functions formomentumandheat are estimated asβm =
3.45, βh = 5.21 respectively, and we observe a slight but significant increase of the turbulent
Prandtl number with stability. In the very stable regime, global flow properties (e.g. friction
velocity, Obukhov length) oscillate with a decaying amplitude and global intermittency, i.e.
the co-occurrence of turbulent/laminar fluid at large scale, is observed in the presence of
roughness. In such very stable conditions, a strong veering of the surface wind with respect
to the large-scale forcing (< 90◦) is observed.

Keywords Boundary-layer turbulence · Direct numerical simulation · Monin–Obukhov
similarity theory · Stable boundary layer · Surface roughness

1 Introduction

Static stability is ubiquitous in the atmospheric boundary layer (ABL) as radiative processes
in vicinity of and at the underneath surface cause vertical temperature gradients at various
time scales. In the mid-latitudes, the static stability primarily governs the ABL’s diurnal
cycle (cf. Figure 1.7 on p. 11, Stull 1988, ): During the day, the sun heats the Earth surface,
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plumes of warmer air rise from the ground, resulting in the well-mixed and turbulence-rich
convective boundary layer. In absence of solar irradiation – during night or polar night –
the surface cools and the stable boundary layer (SBL) forms, characterized by an upward
increase of potential air temperature (Mahrt 2014).

Static stability makes the buoyancy conversion term a sink in the budget of turbulence
kinetic energy (TKE), such that turbulence is exclusively generated by shear – a stark contrast
to convective conditions where both buoyancy and shear generation are a source of TKE.
The SBL is commonly classified according to the relative strength of stratification and the
impact of stratification on turbulent transport and mixing. This gives rise to classification
approaches, suggested, for instance, by Mahrt (1998); Howell and Sun (1999); Grachev
et al. (2013); Stopa et al. (2022). Mahrt (1998) distinguishes the weakly stratified boundary
layer (WSBL), where surface-layer similarity works very well, the temperature behaves like
a passive scalar, and the interaction of stratification with the turbulence structure is weak,
from the very stable boundary layer (VSBL), where buoyancy destruction of turbulence
substantially changes the surface-layer flow. Windy conditions (when shear-generation of
turbulence is strong), or moderate surface cooling give rise to the WSBL, characterized by a
state of continuous turbulence at reduced intensity. For large surface-cooling or weak wind,
in the VSBL, turbulence is suppressed, but a complete laminarization is not found in the
atmospheric measurements for its high Reynolds number. In such intermittently turbulent
flow (Businger 1973; Mahrt 1999; Ansorge and Mellado 2014; Shah and Bou-Zeid 2014;
Deusebio et al. 2015) the upper part of the VSBL decouples from the surface layer.

The WSBL is amenable by Monin–Obukhov Similarity theory (MOST) for the atmo-
spheric surface layer (ASL, Monin 1970; Högström 1988; Grachev et al. 2013) and by local
similarity aloft (Nieuwstadt 1984). On the contrary, the VSBL is intricate and despite intense
efforts over past decades, a number of issues remain unsolved (Holtslag et al. 2013; Sandu
et al. 2013; Steeneveld 2014; LeMone et al. 2019; Edwards et al. 2020). Global intermittency
plays a pivotal role in the VSBL, and it results in spatio-temporally complex organized turbu-
lence, characterized by anisotropy and wave-like/non-turbulent interaction between laminar
and turbulent flow (cf. gravitywaves on p. 87, Businger 1973;Vercauteren et al. 2019; Van der
Linden et al. 2020; Gucci et al. 2023, ). Most prominently, large-eddy simulation (LES) faces
severe challenges in the VSBL for the locality, anisotropy, and inhomogeneity of turbulence
(Jiménez and Cuxart 2005). A common problem is the local laminarization of the flow and
the associated runaway cooling (Jiménez and Cuxart 2005; Van de Wiel et al. 2012a). These
problems reflect a conceptual lack models of the VSBL and challenge classical modelling
approaches, calling for new avenues in turbulence parameterization (e.g. Stiperski and Calaf
2018; Maroneze et al. 2023; Boyko and Vercauteren 2024, ). Here, we use direct numerical
simulation (DNS) of the SBL to circumvent dependencies on turbulence closure models at
the cost of (i) a simplified setup, (ii) high computational expense, and (iii) a reduced scale
separation.

Neglecting the background rotation of the mean wind in the ASL, which is in accordance
with MOST, the ASL can be studied by virtue of the channel-flow analogy. DNS of stratified
channel flow (Garg et al. 2000; Nieuwstadt 2005; Flores and Riley 2011; García-Villalba and
del Álamo 2011; Donda et al. 2015, 2016, among others), commonly focuses on the col-
lapse of turbulence and associated laminarization in the intermittently turbulent regime. The
Obukhov length scaled in viscous units (later defined as L+

O and sometimes termed buoyancy
Reynolds number) for its appropriate characterization of turbulence instability in a stratified
flow–is identified as relevant scaling parameter for the turbulence collapse (Flores and Riley
2011). Over a smooth surface, the flow laminarizes below L+

O ≈ 100. For heterogeneous sur-
face conditions, they speculate LO/LR , where LR is a characteristic roughness length scale,
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is the appropriate parameter. This would suggest that roughness shifts the stability threshold
for transition to a laminar or intermittently turbulent flow to higher stability. More recently,
Mironov and Sullivan (2023) investigate the turbulence structure in a stratified Couette flow
for a thermally heterogeneous bottom boundary. They indeed demonstrate maintenance of
turbulence in very stable conditions over thermally heterogeneous surfaces due to the pres-
ence of local convective instability as a consequence of the thermal heterogeneity.

When the ABL is considered in its vertical entirety, Earth rotation, i.e. the Coriolis force,
manifests in a wind veer. This veer gives rise to the Ekman spiral (Ekman 1905) and a loss
of the lateral (spanwise) flow symmetry in comparison with channel flow. Rotational effects
are adequately represented in Ekman flow, the flow over a flat, rotating plate. The boundary
layer depth scale (outer scale) of the Ekman flow δ = uτ / f , with the friction velocity uτ and
the Coriolis parameter f , is constant under neutral stratification, but unknown a priori to the
simulation. The total turbulent scale separation of the outer δ (largest eddies of the size of
the boundary layer scale) and inner scale δν (smallest eddy size, where dissipation becomes
relevant) of the flow problem is expressed as the friction Reynolds number Reτ , defined as:

Reτ = δ

δν

= uτ δ

ν
, (1)

where δν is the viscous unit and ν the kinematic viscosity.
The neutrally stratified problem was studied by Coleman et al. (1990); Coleman (1999);

Shingai and Kawamura (2004); Miyashita et al. (2006); Spalart et al. (2008, 2009); Marlatt
et al. (2012); Ansorge (2019). Different regimes of density stratification are explored in Cole-
man et al. (1992); Ansorge and Mellado (2014, 2016); Shah and Bou-Zeid (2014); Deusebio
et al. (2014); Stefanello et al. (2022). The turning angle of the wind increases with stability,
while a drastic decrease of the boundary layer height is observed. The studies by Ansorge and
Mellado (2014, 2016) enabled a qualitative representation of the turbulence regimes only
by varying the strength of stability, measured by an external bulk Richardson number. At
sufficient stability, global intermittency is intrinsic to the VSBL and does not require external
trigger mechanisms. This intermittency occurs in space and time rather than as an on–off
processes in time which calls for conditional analysis and at the same time emphasizes the
importance of the laminar patches in the flow’s surface layer. As previous studies have indi-
cated, DNS of very stable Ekman flow with global intermittency are demanding for various
reasons: (i) the scale separation in terms of the friction Reynolds number Reτ has to be large
enough, (ii) fine grid resolution is necessary to resolve the occurrence of large gradients
in turbulent patches, (iii) large domain sizes are required to accommodate large-scale flow
structures and laminar/turbulent patches.

The aforementioned studies of Ekman flow cover a broad range of stratification, but
they are mainly constrained to aerodynamically smooth surfaces. At the same time, surface
roughness is an omnipresent and multiscale feature in the ABL. More importantly, the effect
of roughness is pronounced in the SBL, since the ABL thickness decreases by up to an order
of magnitude in contrast to neutral stratification, fromO(1 km) toO(10− 100 m) (cf. semi-
empirical boundary layer depth scheme for neutral and stable stratification by Zilitinkevich
et al. 2012, based onLES and observational data). An exception is Lee et al. (2020), who study
stratified Ekman flow over a periodic cosine-shaped hill. Their roughness setup is located
in the transitionally rough regime with H+ = 15, where H+ is the height H of the bumps
expressed in viscous units. A regime shift from the VSBL to the WSBL is observed, since
roughness is a triggering mechanism of turbulence and therefore counteracts the stability-
induced suppression of turbulence. More recently, Bhimireddy et al. (2024) describe the
effect of roughness on the SBL based on tower measurement from field observations and find
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that the increase in the turbulent velocity scale VT K E (equal to the square root of the TKE)
with the wind speed increases with the roughness length.

In a preliminary study (Kostelecky and Ansorge 2024a, hereafter KA24), we investigated
the effect of small-scale surface roughness on bulk properties of the neutrally stratifiedABL—
based on first principles, i.e. using DNS. The cases in KA24 only differ with respect to the
mean height of the roughness, and they cover the transitionally rough regime up to the
verge of the fully rough regime. From the DNS perspective, the setup exhibits a relatively
large scale separation in terms of the friction Reynolds number Reτ (up to Reτ ≈ 2700). In
fact, this scale separation is sufficient to explore the rough-wall scaling of the logarithmic
layer for velocity and a passive scalar, which allows extrapolation of our results to the high-
Reynolds-number regime in which the ABL is generally found. Here, we extend the setup
introduced by KA24 to stable stratification, and investigate four research questions: (1) Does
the presence of roughness extend the stability regime in which turbulence is maintained,
and how is the regime transition from weak to very stable s roughness? (2) Does large-
scale intermittency occur in the very stable regime and are its effects comparable to those
in aerodynamically smooth flow? (3) How does the flow topology change? (4) Are common
stability corrections for MOST applicable to our data and do the associated values of the
von Kármán constant κ , aerodynamic roughness length z0 and the zero-plane displacement
height d match expectations based on observational data from atmospheric measurement
campaigns?

2 Methodology

Weapproach the problembyDNS.The governing equations and their non-dimensionalization
are described in Sect. 2.1 followed by the algorithm used to solve the equations (Sect. 2.3).
The treatment of a rough surface and introduction of stable density stratification are described
in Sect. 2.4 and Sect. 2.5 before we introduce the set of simulation cases in Sect. 2.6.

2.1 Governing Equations

We solve the incompressible Navier–Stokes equations numerically under the Boussinesq
approximation in a horizontally doubly-periodic domain. Stratification effects are represented
by buoyancy:

b = θ ′

θ0
ggrav, (2)

with the gravitational acceleration−ggravê3 (pointing downwards). Neglecting diabatic heat-
ing, the energy conservation equation then becomes an advection–diffusion equation for
buoyancy. Here, θ0 is a reference temperature throughout the domain and θ ′ is the local devi-
ation from this temperature. For non-dimensionalization of the system,we use the geostrophic

windG (withG = (G1,G2, 0)T , andG =
√
G2

1 + G2
2), the Rossby radiusΛRo = G/ f with

the Coriolis parameter f , and the buoyancy differenceΔB = B0−0 between the bottom and
top boundaries of the domain. With these scales, the non-dimensionalized governing equa-
tions for continuity, momentum and buoyancy become (hats over dimensionless variables
are dropped for convenience):
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∂ui
∂xi

= 0, (3a)

∂ui
∂t

+ u j
∂ui
∂x j

= − ∂π

∂xi
+ 1

ReΛ

∂2ui
∂x2j

+ εik3(uk − gk) + RiΛbδi3, (3b)

∂b

∂t
+ u j

∂b

∂x j
= 1

ReΛPr

∂2b

∂x2j
, (3c)

with boundary conditions corresponding to Ekman flow:(
ui |z=0
ui |z=ztop

)
=

(
0
gi

)
and, (3d)

(
b|z=0
b|z=ztop

)
=

(
0
B0

)
. (3e)

Here, t is the time, xi the Cartesian coordinates with xi = (x, y, z)T , where x, y are the
streamwise, spanwise directions and z the wall-normal coordinate (pointing upwards from
the ground). The corresponding velocity vector is u = (u, v, w)T = (u1, u2, u3)T . The
ageostrophic non-hydrostatic pressure is π and the non-dimensional geostrophic wind vector
is g = (g1, g2, 0).

In case of RiΛ = 0 (no buoyancy), the buoyancy equation (3c) reduces to an equation for
a passive scalar s (non-dimensionalized with ΔS, the scalar difference between bottom and
top boundaries), without feedback on the momentum equations, since the buoyancy term in
(3b) is dropped.

2.2 Dimensionless Parameters

The system of Eqs. (3a–3c) is governed by three dimensionless parameters,

ReΛ = GΛRo

ν
, (4a)

Pr = ν

κd
, (4b)

RiΛ = ΔBΛRo

G2 , (4c)

the external Reynolds number ReΛ, the molecular Prandtl number Pr and the bulk
Richardson number RiΛ with the constant kinematic fluid viscosity ν and constant molecu-
lar diffusivity κd . The Reynolds number ReD = GD/ν = √

2ReΛ, the Richardson number
RiD = ΔBD/G2 = Fr−2 (Fr being the Froude number), based on the laminar thickness
of the Ekman layer D = √

2ν/ f and the Richardson bulk number RiB = ΔBδN/G2, with
the turbulent boundary thickness δN for a neutral flow, are given for comparison with other
studies. Whereas the ratios of ReD/ReΛ and RiD/RiΛ reduce to the length scale ratio of the
system of D/ΛRo.

The study of the turbulent problem requires a mapping from the non-dimensionalization
with external parameters to the classical inner (·)+ and outer (·)− normalization for velocities
and length scales (KA24):
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x+
i = xi u
ReΛ, (5a)

u+
i = ui

u


, (5b)

x−
i = xi

u


, (5c)

u−
i = ui . (5d)

The inner and outer scales are mapped by x+
i = Reτ x

−
i and u−

i = u
u
+
i . Here, x

+
i =

xiΛRouτ /ν, with the dimensional coordinate xiΛRo and the viscous unit ν/uτ . The non-
dimensional friction velocity u
 = uτ /G, where uτ is corresponding dimensional quantity
and is derived from an integration procedure described in KA24, which is linked to the non-
dimensional boundary layer depth scale δ
N = uτN (ΛRo f )−1 = u
N for neutral conditions
(subscript (·)N ). Further, we define the non-dimensional boundary layer depth scale δ
,95 (cf.
their Eq. 30, here without extrapolation, Kosović and Curry 2000), of relevance for stable
stratification, defined as:

δ
,95 = z

(√
〈u′w′〉2 + 〈v′w′〉2

u2

= 0.05

)
, (6)

the height, where the total vertical momentum stress is 5% of the total stress. In the following,
the temporal averaging of the flow variables is denoted by (·) and spatial averaging in the
horizontal by 〈(·)〉.

In stratified flow, the Obukhov length LO (Obukhov 1971; Nieuwstadt 2005; Flores and
Riley 2011) is commonly used to describe the relative impact of stratification. Here, for
the choice of Dirichlet boundary conditions for buoyancy, the evolution of LO is part of the
solution, i.e. unknown a priori. As suchwe diagnose it from the simulations.When expressed
in viscous units, L+

O = ReL is a Reynolds number, sometimes termed the buoyancyReynolds
number, and it can be interpreted as the inverse of the gradient-Richardson number RiG
evaluated at the surface (Ansorge and Mellado 2014) (commensurate with a flux-Richardson
number RiF evaluated at the bottom of the constant flux layer):

L+
O = LO

uτ

ν
=

(
u3

u
b


)+
, (7a)

RiG = 1

L+
O

. (7b)

The buoyancy friction value b
 is derivedwith an integration procedure described inKA24
(similar procedure to s
, the friction value of the passive scalar). In contrast to Obukhov
(1971), we follow the definition of Nieuwstadt (2005) and skip the von Kármán constant κ .
Therefore, the mapping is according to LO71

O = κ−1LO , where LO71
O is the Obukhov length

including the von Kármán constant as introduced by Obukhov (1971).

2.3 Algorithm

For the simulation and analysis of turbulent flow we use the highly scalable andMPI-parallel
tool-suite tLab,1 which is open-source and contains an extensive documentation, validation
routines and examples. tLab is based on a factorization of the pressure-Poisson equation, as

1 https://github.com/turbulencia/tlab.
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discussed by Mellado and Ansorge (2012), where details on the numerics and validation of
the code can be found. The horizontally periodic flow problem is discretized and solved in a
finite-size cuboidal domain

[
Lx , Ly, Lz

]
using compact Padé schemes of sixth order in the

interior of the domain (Lele 1992) and a fourth-order five-stage low-storage Runge–Kutta
scheme (Williamson 1980).

2.4 Surface Roughness

Roughness is represented via an immersed boundary method (IBM). Here, we use the alter-
nating direction reconstruction IBM (ADR IBM, based on Giannenas and Laizet 2021) with
cubic splines to fully resolve obstacles in the flow. The implementation of the ADR IBM in
the DNS code is discussed in Sect. 2.4 in KA24.

As roughness setup in the whole study we choose the case r3 (cf. KA24, Fig. 3), with
562 square blocks located at the lower domain boundary. To introduce a certain degree of
randomness, the blocks are slightly displaced from a regular grid and heights, widths of the
elements are uniformly distributed within ΔH+ = 13.8, ΔW+ = 27.6 and therefore:

H ∈
[
H+ − ΔH+

2
, H+ + ΔH+

2

]
, (8a)

W ∈
[
W+ − ΔW+

2
,W+ + ΔW+

2

]
. (8b)

The mean height is H+ = 40.8 and the mean width isW+ = 55.2. The roughness morphol-
ogy is characterized by the plan area density of λp = AP/AT ≈ 10% and frontal solidity of
λ f = AF/AT ≈ 7%, with the total surface area AT , the frontal area AF and the plan area
AP occupied by all roughness elements (cf. Figure 2 in Grimmond and Oke 1999, ). This
particular choice is considered as small-scale surface roughness, since the scale separation
measured in Reτ = 2688 is large from the DNS perspective and thus results in a small block-
ing ratio of H/δ ≈ 1.5% for relevance of the ABL. Case r3 is on the verge of the transition
to the fully rough regime, with a diagnosed apparent roughness length of z+0m ≈ 2. This
roughness setup is at the limit of what is possible with the available computational resources.

2.5 Stratification

For progression to the regimes of stronger stability, we use a constant-in-time Dirichlet
boundary condition for the buoyancy (Eq. 3e). This allows us to analyze the quasi-steady
state that is reached once the SBL is in equilibrium with the stratification imposed. Provided
the perturbation is not too large, the expected duration for this equilibrium to be reached is on
the order of the eddy-turnover time f −1. (Where the eddy-turnover time emerges as the ratio
of the boundary layer depth scale and the turbulent velocity scale.) For the first stratified case,
which is well within the weakly stratified regime, we use the flow fields from the neutrally
stratified precursor simulations as initial condition in combinationwith the initial temperature
profile described in Fig. 1, where the entire gradient is located above the highest roughness
elements, since mixing is strong here.

The subsequent cases with higher stratification use the turbulent fields of buoyancy and
momentum from its respective precursors as initial condition (vertical connections in Fig. 2).
The increase in stratification is represented by a change in the Richardson number, which
corresponds to a ramp-up in stratification across the boundary layer. The presence of realistic

123



    5 Page 8 of 36 J. Kostelecky, C. Ansorge

Fig. 1 Temperature profile used for initialization of the first stratified case S001 in black. The linear temper-
ature profile (gradient corresponding to L+

O ≈ 1000) in red is smoothed to the boundary values. The gradient

is concentrated at the highest roughness elements z+N > Hmax (green shaded area relates to the range of
roughness element heights). The subscript (·)N , relates to the viscous units of the neutral case. The numerical
values of �ini can be found in the available data in Kostelecky and Ansorge (2024b) (10.17169/refubium-
45292)

Fig. 2 Temporal evolution of RiΛ for the sequence of stratified simulation (cf. Table 2). The neutral precursor
simulation r3 is shown as a green arrow (t− > 0) and dashed line (t− < 0). Further, the computational grid is
changed in favour of a lower one to resolve less of the laminar fluid aloft the PBL from (A) to (B) at t− ≈ 7.3,
where t− is the eddy turnover time f −1

turbulent perturbations in the initial fields (i) avoids a potential complete laminarization of
the flow, which leads on the one hand in a slow recovery and on the other to strong turbulent
bursts, which are numerically challenging (large gradients), and (ii) is a viable approach to
present the build-up of stable density stratification following the evening transition. At the
same time, however, each case reaches a quasi-steady state that can be analyzed in accordance
with surface-layer similarity. The aim of this procedure is not to exactly mimic a realistic
transition of the boundary layer but to enable a fast transition of the simulations into the
quasi-steady state where we can analyze the data in accordance with surface-layer similarity.
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Table 1 (a) Dimensionless numbers, grid and domain parameters for all cases

ReΛ ReD Pr Nxy × Nz
(
Lxy × Lz

)
/δ3N Δxy+

N × Δz+N ,min

5·105 103 1.0 38402 × 704 (A) 3.72 × 3.5 (A) 2.62 × 1.0

38402 × 576 (B) 3.72 × 1.5 (B)

Grids (A) and (B) are used in this study, with the latter (B) being cropped from the top. The
domain size normalized with the Rossby radius is (A) (Lxy × Lz)/Λ3

Ro = 0.272 × 0.26 and (B)

(Lxy × Lz)/Λ3
Ro = 0.272 × 0.11

2.6 Simulations

Tables 1 and 2 list the simulations used here. All cases share the same heterogeneity pattern
corresponding to case r3 in KA24, consisting of 56 × 56 roughness elements in quasi-
random arrangement. The molecular Prandtl number is Pr = 1, and the external Reynolds
is fixed at ReΛ = 5 · 105, corresponding to ReD = 1000. As initial condition, we use three-
dimensional fields of momentum and buoyancy of case r3 in KA24. These data reside on
a grid of Nxy × Nz = 30722 × 656 collocation points and are interpolated to grid (A) (cf.
Table 1), i.e. a slightly increased resolution. This is necessary as stronger gradients in stratified
flow (causing higher velocities in vicinity of roughness elements) pose numerical challenges
at the vertical walls of roughness elements. As a consequence of interpolating the fields, the
surface roughness of case N is not identical with case r3, but it features identical statistical
properties (mean height, width and distributions). Case N is run without stratification to
equilibrate the new roughness configuration on grid (A) before stratification is added to the
problem.

Starting from the neutral case N, stratification is sequentially increased in 12 steps from the
weak to the very strong stability (cf. Table 2 and Fig. 2). In the very stable regime, three cases
(S128P, S192P, S256P) are run in parallel on the new grid (B). Grid (B) is similar to
(A) but cropped on top to decrease computational cost, since the boundary layer thickness is
substantially decreased compared to the weakly stable cases.

Numerical integration is accomplished with the algorithm suite tLab on the high-
performance computing system hawk at HLRS Stuttgart. Simulations were run for 86.5
days of wall-clock time on 128 nodes (16,384 physical CPUs). The total simulation period
covers a time span Δt−total = ∑N=16

i=1 Δt−sim,i = 12.37, which corresponds to one week of
wall-clock time or 21, 500Node-hours per eddy turnover period (1/ f ). Processed results are
available for download in Kostelecky and Ansorge (2024b) (doi:10.17169/refubium-45292).

3 Bulk Statistics and Turbulence Regimes

3.1 Surface Friction and Boundary-Layer Depth

We commence by analyzing the statistics that form once the boundary layer has reached a
quasi-steady state in equilibrium with the surface state. Each increment in stratification, viz.
RiΛ, is followed by an adaptation period on the order of an eddy-turnover time (this initial
transient is depicted by dotted lines in Figs. 3, 5). During this initial transient, surface-layer
similarity is not expected to hold, and it is consequently excluded from subsequent analysis.
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Table 2 Overview of the
simulation cases of this study,
with the corresponding
stratification level (Richardson
numbers), grid type and the total
simulation time in eddy-turnover
times f −1 for each case

Case (ID) RiΛ RiB Grid Δt−sim[1/ f ] (ID)

N 0 0.000 A 1.06

S001 1 0.073 A 0.58

S002 2 0.147 A 0.44

S004 4 0.293 A 0.71

S005 5 0.367 A 0.48

S008 8 0.587 A 0.74

S012 12 0.880 A 0.51

S016 16 1.174 A 0.44

S020 20 1.467 A 0.39

S032 32 2.348 A 0.45

S042 42 3.081 A 0.55

S064 64 4.695 A 0.43

S128 128 9.390 A 0.48

S128P 128 9.390 B 1.95

S192P 192 14.086 B 0.97

S256P 256 18.781 B 2.19

Notation of case ID: N for neutral, S for stable, P for concurrent runs
and numbering according to the value of RiΛ

Fig. 3 aTemporal evolution of the friction velocity u
(t−) (thick lines) and boundary layer thickness δ
,95(t
−)

(6, thin lines). b Wind veer α(t−) at the surface z+ = 0 (thick lines) and above the roughness elements
z+ ≈ H+

max + 5 (thin lines). Markers for the analysis in Sect. 3.5. The coordinate system is aligned with the
geostrophic wind for estimating the wind veer. Dotted lines are excluded from the analysis, since these parts
are identified as initial transients. Case S128 (6.8 ≤ t− ≤ 7.8) is out of equilibrium and therefore excluded
from subsequent analysis
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If stratification is weak, the buoyancy term in the momentum equations is small in com-
parison to the dominant balance in the ASL. In such conditions, the downward buoyancy
flux is limited by small temperature gradients, and no substantial changes in the bulk statis-
tics (Fig. 3) are found. This is the case for our simulations S001-S002 (t− ≤ 2.1) where
buoyancy acts as a passive scalar. From case S004 onward, buoyancy starts o act on the flow
fields, and the thickness of the boundary layer, measured in terms of δ
,95, decreases by about
50 % (Fig. 3a). With increasing stratification, δ
,95 decreases to approximately one fifth of
its neutral value for case S064 (5.8 ≤ t− ≤ 6.8). In contrast, the friction velocity decreases
only slightly so that the ratio δ
,95/δ
 (not shown) drops from its neutral value 0.5 − 0.6 to
approximately 0.1 for the most stable cases. This indicates that shear production (u
) is no
longer the single appropriate scaling variable in the surface layer. Indeed, the Obukhov length
LO , in dimensional terms: the buoyancy flux, enters. The bulk statistics of the flow indicate a
regime transition fromWSBL to VSBL around t− > 6.8 (cases S128-S256P): instead of a
rather steady and smooth evolution for each case (t− ≤ 6.8), we now find sizeable oscillation
in the bulk quantities. This is in agreement with previous findings in Ansorge and Mellado
(2014): if strong stability is abruptly imposed on the flow, turbulence vanishes in vicinity of
the wall (in the viscous sublayer, located next to the ground and around roughness elements),
where mixing is attributed to viscous diffusion. The rapid change is followed by a somewhat
slower recovery and an overshoot (at t− ≈ 7.6 for case S128P and t− ≈ [9.2, 9.3] for cases
S192P, S256P).

3.2 WindVeer and Pressure-Driven Channeling

An over-veering of the surface wind, a rotation of more than 45◦, is sometimes observed
in particular under stably stratified conditions or for strongly anisotropic orography. With
increasing stability, the turbulence intensity decreases along with buoyant destruction of tur-
bulence and the velocity profile shifts to a more laminar-like profile with reduced velocity in
the vicinity of the ground and an enhanced velocity in the upper part of the SBL.Hence, veloc-
ity gradients close to the ground and within the roughness are reduced and u
(t) decreases
(by approximately 15%, cf. Figure 3a). Such reduced mixing comes with an increased sur-
face wind veer α
(t) in Ekman flow which is known from both theoretical (Rossby and
Montgomery 1935; Spalart 1989) and numerical (Coleman et al. 1992; Deusebio et al. 2014;
Shah and Bou-Zeid 2014; Ansorge andMellado 2014) consideration of the problem, see also
KA24 (their Eq. 7). We evaluate the veering both throughout the domain (α(z, t)) and at the
surface (α
(t)) as:

α (z, t) � (〈u (z)〉 , g) , (9a)

and α
 (t)� (−τ 
 (t) , g) , (9b)

where τ
(t) is the non-dimensional instantaneous, domain-averaged surface shear stress.
Stability further increases the turning, measured in terms of α
, that is already increased due
to roughness in neutral conditions (cf. Sect. 4.4 in KA24): α
 grows from ≈ 35◦ (case N)
to 65◦ (S064, cf. Figure 3b). If we consider the SBL above z+ = H+

max + 5, in other words
above the roughness, the veering angle approaches approximately 40◦, close to the laminar
limit of 45◦. A large portion of the increase in veering is concentrated within the roughness,
where Δα (here, specified in the range of 0 ≤ z+ ≤ H+

max + 5) triples from ≈ 10◦ to ≈ 30◦.
For homogeneous, smooth surface conditions under stable stratification one would expect

turning angles that are smaller than the laminar limit, viz. α
 < 45◦. However, observations
under certain orographic conditions indicate otherwise: In extended valleys (e.g. Upper Rhine
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Fig. 4 Schematic of the channeling mechanism for the case S256P, with the angles of the geostrophic wind
(z+ > δ+, red), the orthogonal pressure gradient (red dashed line), the horizontal velocity in the vicinity of
the crests of the roughness elements (z+ = H+

max + 5, green) and the angle of the surface shear stress on the
lower wall of the domain (z+ = 0, blue). Gray squares in the background depict the surface roughness

valley in Germany (Wippermann and Gross 1981), Tennessee valley in the USA (Whiteman
and Doran 1993), region of theMISTRAL campaign (Weber and Kaufmann 1998)), the near-
surface windmay turn bymore than 90◦ with respect to the large-scale geostrophic wind (e.g.
Wippermann andGross 1981;Kalthoff andVogel 1992. This phenomenon is termed pressure-
driven channeling and was first described by Fiedler (1983), where the near-surface wind
is observed to be preferably aligned with the valley axis in stable and low-wind conditions.
Fiedler (1983) relates the cause of this mechanism to the valley-aligned component of the
pressure gradient and friction on the side walls of the valley, while the Coriolis force was
assumed to be negligible in this context. In our rough setup, three principal axes (‘valleys’) for
the channeling mechanism exist: (i) the streamwise x-direction, (ii) the spanwise y-direction
and (iii) the transverse direction, inclined by 45◦ to the roughness grid. The wind can flow
through these ‘valleys’ more or less unimpeded by the surface roughness.

Our results indicate that option (iii) is relevant (cf. Figure 7c). The present results suggest
an explanation of the channeling mechanism based on the momentum balance (cf. Figure 4):
As stability increases, the wind speed within the roughness layer is substantially reduced
(here, by approximately half, leading to a more laminar-like velocity profile, compare cases
N vs. S256P) and, hence, the Coriolis and friction forces reduce. This results in a stronger
turning of the wind in favour of the pressure gradient, which is the remaining large-scale
forcing of the system. In our particular case, the large-scale forcing is shear-aligned for the
smooth surface case, i.e. has an angle of α ≈ 19◦ (KA24). Hence, the angle of the pressure
gradient with respect to the 45◦-axis is only ≈ 26◦, i.e. the projection of ∇π onto this 45◦-
axis is large. Therefore, we conclude that the triadic balance of the pressure gradient, friction
and Coriolis forces determine the observed strong turning of the wind within the roughness,
where the main mechanism for the super-rotation in the case of pressure-driven channeling is
a reduction of the Coriolis force due to the reduced wind speed. We conclude that frictional
effects alone do not explain the turning of the wind, and the balance of forces is only closed
and consistent if the Coriolis force is considered—also within the roughness layer.
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Fig. 5 a Temporal evolution of the Obukhov length in viscous units L+
O (t−) and b scaled in outer units with

LO (t−)/δ95(t
−). c Temporal evolution of the bulk Richardson number RiB,95 = Bδ95/G

2 = RiΛδ95/ΛRo.
Dotted lines are excluded from the analysis, since these parts are identified as initial transients.dTime-averaged

gradient Richardson number Rig = (∂z〈b〉)/
[
(∂z〈u〉)2 + (∂z〈v〉)2

]
, plotted as a function of the mean non-

dimensional height z/δ95 > Hmax/δ95 of the stable cases. The red dashed line indicates the linear fit for the
cases S005-S256P for 0.35 < z/δ95 < 0.7 with Rig,fit = 0.01 + 0.2z/δ95, the red shaded area depicts
the range of the critical Richardson number Rig,crit = 0.2 − 0.25 according to the literature, and the shaded
regions corresponds to the spread of the data

3.3 Obukhov Length

At a height z = LO (cf. 7a), the buoyant destruction of TKE equals its mechanical shear
generation, under the prerequisite that fluxes are truly constant; for the boundary layers
studied here, this is an approximation that is commonly used when interpreting data in the
context of ASL similarity. Hence, absent pressure redistribution and transport effects, the
shear generation dominates for z � LO . Alternatively, LO is the largest wall-attached eddy
for which the kinetic energy is sufficient to overcome stratification (Van de Wiel et al. 2008).

Flores and Riley (2011) propose the buoyancy Reynolds number ReL ≡ L+
O as scaling

parameter to indicate turbulence collapse in a hydraulically smooth SBL. They find that the
flow laminarizes for ReL < ReL,crit ≈ 40 which implies L+

O,crit = ReL,crit/κ ≈ 100. In
the case of rough walls, they suggest LO,crit/hr ≈ 1 as an appropriate criterion, where hr
is a characteristic roughness length scale. Here, the roughness length hr =̂ H is the mean
height of the roughness elements, in viscous units H+ ≈ 30 − 40 (with the range of u
(t)
in Fig. 3a). By coincidence, both suggested criteria are equivalent given our setup. In the
current study, we do not observe a complete laminarization of the flow since the most stable
cases at t− ≈ 8.7 drop to L+

O ≈ 75 (Fig. 5a). These cases are close to laminarization and
hence, it is a strong indicator of the intermittent regime, where turbulent and laminar regions
coexists in the flow. As previously discussed, the flow is effected by buoyancy for t− > 2.1,
where the ratio LO/δ95 < 1 for the first time (Fig. 5b). Here, buoyancy is the dominating
process, since LO � δ95. Interestingly, for the very stable case S128P at t− > 8 the ratio
LO/δ95 ≈ 1, whereas cases S192P, S256P oscillate with a damped amplitude (observable
for case 256P) around the value LO/δ95 ≈ 1.1−1.2.
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3.4 Richardson Number

An important indicator for the collapse of turbulence in stably stratified flow is the local
gradient Richardson number, defined as:

Rig = ∂〈b〉/∂z
(∂〈u〉/∂z)2 + (∂〈v〉/∂z)2 , (10)

with a ‘critical’ range of Rig,crit ≈ 0.2 − 0.25 (Garratt 1992), where the precise value
and nature of the threshold is still a matter of debate (cf. extensive discussion in Sect. 4.2,
Grachev et al. 2013). The flow regime we find for the stable cases S005-S256P (Fig. 5d) is
in accordance with previous findings regarding their Richardson number. The cases pass the
range of 0.2–0.25 for 0.8 < z/δ95 < 1.1. Above the boundary layer thickness δ95, the flow
is mostly laminar. Within the boundary layer Rig approximately follows a linear relation (cf.
red dashed line in Fig. 5d). The cases S001-S002 do not reach Rig,crit and are therefore
slightly effected by buoyancy. With respect to both field observation and numerical bulk
models of the SBL, the bulk Richardson number is a key parameter. We use here RiB,95
based on δ95 (Fig. 5c). While RiB � 1 for near-neutral cases where buoyancy acts as a
passive scalar, it reaches 1 for the most stable cases indicating that (i) our study spans the full
range of stability regimes and (ii) the criticality of stability is well reproduced in our rough
setup, also in terms of the bulk Richardson number.

3.5 Synopsis of the Turbulent Flow

Visual inspection of instantaneous snapshots of enstrophy ξ(xi ) for the neutral case N at t− ≈
1.1, weakly stable case S008 at t− ≈ 3.5 and very stable case S256P at t− ≈ 8.8 (Figs. 6, 7)
reveal the antagonistic interplay of static stability and small-scale surface roughness despite
the small blocking ratio (H/δN ≈ 0.015 for case N).

Immediately above the roughness elements, strong vortical activity is observable (Fig. 6a,
b), indicative of the buffer-layer (for homogeneous surfaces at 5 < z+ < 30, according
to Pope (2000); here, elevated by the roughness height). Here, turbulent production peaks
and the fine turbulent structures move upwards while increasing in size until the boundary
layer height is reached (blue bars in Fig. 6 for δ and δ95). Non-turbulent fluid from aloft is
entrained deeply into the boundary layer (cf. light regions in Fig. 6a, e.g. at 1 � t− � 1.5).
Simultaneously, ejections of turbulent fluid penetrate into the upper part of the boundary layer.
This phenomenon is inherent to boundary layer flow and related to the external intermittency
of the turbulent Ekman flow (Ansorge and Mellado 2014).

The suppression of turbulence by buoyancy reduces the boundary layer height of case
S008 (Fig. 6b), measured in terms of δ95, by half in comparison to N, whereas δ is reduced
by approximately 10 %. It is distinctly recognizable that δ95 rather than δ is the appropriate
scale of the boundary layer thickness in the presence of stable density stratification. Large-
scale structures are still visible for S008 at z > δ95 above the boundary layer, which is
attributed to residual turbulence inherited from case N. A further increase in stability leads
to a strong reduction in turbulence activity in the VSBL for case S256P (Fig. 6c) with a
boundary layer thickness of δ95 ≈ 3H . In this case the boundary layer becomes very thin
and there is a complex interplay between gravity waves, residual turbulence and large-scale
intermittency which is probably not relevant at atmospheric scale due to the mismatch in
scale separation vide the reduced Reynolds number of our setup.
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Fig. 6 Streamwise-vertical, instantaneous intersection of the logarithm of the enstrophy ξ(xi ) with a linear
colormap 0 ≤ ξ ≤ 16 of a case N, b case S008, and c case S256P; time corresponds to circles in Fig. 3.
The axes are scaled with the neutral boundary layer thickness and blue bars depict the instantaneous boundary
layer thickness δ
(t) and δ
,95(t). The roughness elements on the ground are shown as red cuboid blocks.
Green lines for the vertical position of Fig. 7d–f

Within the surface roughness (at half the height of the elements) and above the roughness,
located at the lower bound of the surface e.g. logarithmic layer, no distinct differences are
visible between the cases N and S008 (Fig. 7a, b, d, e). The flow is turbulent inside the
roughness, due to the high Reynolds number of the flow and instabilities induced by the
roughness elements (Fig. 7a,b). Above (Fig. 7d,e), the turbulence is homogeneous with the
imprint of hairpin vortices seen as elongated enstrophy filaments. Hairpins originate from the
buffer layer and are characteristic for wall-bounded flows in the logarithmic layer (Adrian
2007). In conclusion, the visual appearance of the turbulence in the close-wall region is
comparable for the neutral and weakly stable regime, which is consistent with the literature
(García-Villalba and del Álamo 2011; Watanabe et al. 2019; Atoufi et al. 2021), despite the
reduction in δ95 and the stronger turning angle α. In case of very strong stability, heavy fluid is
trapped inside the roughness and therefore, the surface layer is decoupled from the outer layer
(Van de Wiel et al. 2012a). Weak turbulence activity is visible within the roughness, which
is induced by the transverse flow (≈ 45◦) of the objects with sharp edges (Fig. 7c). Above
the roughness, the intermittent behaviour of the flow is clearly observable (Fig. 7f), where
patches of turbulent fluid (regions with sharp transitions) are embedded in non-turbulent
fluid (smeared regions). Global intermittency in the VSBL appears in space and time, and
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Fig. 7 Horizontal (streamwise-spanwise) intersection of the size
[
δN × δN

]
, corresponding to approximately

1/14 of the computational domain (time instances cf. circles in Fig. 3) with a linear colormap 5 ≤ ξ ≤ 15 (cf.
explanations in Fig. 6, identical turbulent fields are chosen). Shown are the cases a, d N, b, c S008 and c, f
S256P at half height of the roughness elements (a–c) z+N ≈ 20 and in the surface layer at z+N ≈ 65 [(d–f),
cf. green lines in Fig. 6]

is not an on–off process (Mahrt 2014; Ansorge and Mellado 2014). In order to investigate
this behaviour, computational domains of sufficient size are required that can accommodate
these laminar-turbulent patterns (Deusebio et al. 2014), which is the case here.

3.6 Maximum Sustainable Heat Flux

The heat (buoyancy) flux 〈w′b′〉 represents at the same time also the buoyant destruction
(production) term in the TKE budget equation, and it is limited from two-sides given a large-
scale forcing (De Bruin 1994). In the WSBL, the vertical mean temperature profile is nearly
neutral with a small gradient, and turbulent mixing is strong. In these conditions, heat flux is
limited due to lack of temperature contrast, i.e. 〈b′b′〉. The other extreme is the VSBL, where
the restoration of buoyant forces is so strong that turbulent mixing in the boundary layer is
inhibited and the heat flux is limited for lack of velocity fluctuations 〈w′w′〉. In between these
two extrema, the heat flux assumes a maximum according to the concept of the maximum
sustainable heat flux (MSHF) Van de Wiel et al. (2012a, b).

The core of the MSHF concept is confirmed by the current simulations (Fig. 8). However,
we observe for the vertically integrated buoyancy term of the TKE budget a pronounced
plateau over two orders of magnitude in RiΛ rather than a distinct maximum, which differs
from stable Ekman flow over smooth surfaces, where the plateau width is less than one order
of magnitude in RiΛ (cf. Fig. 6c, Ansorge and Mellado 2014).

This characteristic behaviour of 〈w′b′〉 as a function of the stability, underpins the impor-
tance of roughness as a very efficient triggering mechanism of turbulence due to flow
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Fig. 8 Domain-wise, vertically integrated contributions to the TKE budget (shear production, buoyancy
destruction and dissipation of TKE). Bounds for vertical integration are Hmax to Lz as a function of the
external Richardson number RiΛ. Terms are normalized with the neutral production rate. The integration is
shown for Δt− ≈ 0.1 around the time instances depicted as ×-symbols in Fig. 3 (not all cases are considered)

instabilities on sharp edges (detached eddies),which counteracts efficiently buoyancy induced
reduction of turbulence and is assumed to form the observed plateau. The remaining imbal-
ance of the presented TKE terms (shear production, dissipation, buoyancy destruction) in
Fig. 8, especially for the more stable cases, are the integrated temporal tendency and trans-
port terms of the TKE budget (not shown). These terms are non-zero, as the more stable cases
are out of equilibrium to a certain degree.

4 Surface-Layer Similarity

For guidance in the subsequent gradient analysis, Fig. 9 present horizontal velocity and
buoyancy profiles with increasing stratification. In contrast to non-rotating flow problems,
the horizontal mean velocity profiles in Ekman layers exhibit a super-geostrophic velocity,
referred to as the low-level jet (LLJ) (Fig. 9a). With increasing stability, the height of the
LLJ maximum is reduced from z−N ≈ 0.4 for the neutral case N to z−N ≈ 0.1 for the most
stable case S256P, with a velocity increase of ≈ 4% (N) up to ≈ 20% (S064) with respect
to the geostrophic velocity. The reduction in the vertical LLJ position is accompanied by a
reduced boundary layer thickness (cf. Figures 3a, 6), which also reduces the outer length
scale relevant for the formation of turbulence. Due to the increased shear and turbulence
triggering by roughness, also the inner length scale of the turbulent boundary layer is reduced,
such that a turbulent boundary layer is maintained. While our data suggest the thickness
of the surface layer is marginal for the most stable cases, this cannot be judged based on
surface scales alone. Hence, the following discussion assumes existence of a surface layer,
which is common when using surface layer similarity in an observational, operational, or
modelling context. Within the roughness (indistinguishable in Fig. 9a) at z−N � H , the
velocity reduces with increasing stability, whereas for z−N � 2H the velocity enhances with
increasing stability.Here, above the roughness (z−N � 2H ), the velocity gradient increases due
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Fig. 9 a Horizontal mean velocity and b buoyancy profiles (normalized with b
(t)) of the stable cases S004,
S012, S032-S256P, case N only in (a) (green). The vertical strokes in (a) depict the position of the
super-geostrophic velocity. Temporal averaging according to the intervals in Fig. 3. The vertical distance is
normalized with the turbulent boundary layer thickness of the neutral case (N) as reference. The green shaded
areas depict the maximum height of the surface roughness

to less vertical mixing. With increasing stratification (RiΛ) the buoyancy profiles steepen,
respectively the gradient increases. Above the boundary layer thickness, where diffusion
dominates (approximately the position of the LLJ) buoyancy increases linearly and then
flattens (Deusebio et al. 2014).

4.1 ASL Similarity in Vicinity to the Rough Boundary

MOST, the corner stone of ASL similarity (Obukhov 1971; Foken 2006), is limited to hori-
zontally homogeneous and statistically stationary conditions (ASL, Obukhov 1971; Ansorge
2019). It further precludes that the stability (e.g. measured in terms of Ri) does not exceed a
critical value Ricrit and neglects the vertical flux divergence due to the Coriolis force, leading
to the so-called constant flux layer (maximum of the total turbulent flux varies less than 10%,
cf. Stull 1988) or channel-flow analogy. In KA24 we show that the neglect of the Coriolis
force in the ASL is a strong assumption for intermediate Re, where the share of the Coriolis
term in the total drag is up to 10% at the top of the roughness elements. Obviously, this
assumption becomes even stronger in stratified conditions where the ABL height decreases
in response to surface cooling. We intend here to also reach the regime of extreme stabil-
ity where not only the scale separation shrinks and existence of a surface layer becomes
questionable in general, but also the stability correction exceeds the order of one, which is
a fundamental problem from the perspective of flux parameterization. Nonetheless, in the
following, we stick to the common height range defined in terms of the friction thickness
δ
, which requires caution when interpreting data for strongly stable cases at the larger end
of the stability parameter (ζ , defined below). In fact, ASL closures implied by MOST are
ubiquitous in numerical models at all scales, and even if requirements are not fully met (e.g.
for complex terrain, the non-stationarity of the ABL, etc.), observations confirm to the theory
(Grachev et al. 2013; Stiperski and Calaf 2018).
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Within the ASL, MOST implies that appropriately non-dimensionalized gradients of
the horizontal wind speed, uh(z) = √〈u〉2 + 〈v〉2, and buoyancy, b(z), depend on a non-
dimensional height only, namely:

ζi = κi (z − di )/LO , (11a)

(here the von Kármán constants are included, since LO is formulated without). Based on the
TKE equation, ζ can be interpreted as a stability parameter representative of an eddy size
beyond which stability effects exceed inertia. The index i corresponds to (·)m for momentum
or (·)h for heat, reflecting the different von Kármán constants (κm = 0.42, κh = 0.35).
KA24 found different displacement heights for momentum and heat, but an overall small
dependence of the L2 error on the particular value. Here, we therefore stick to the common
assumption dh = dm ≡ d and use d/H = 2/3. For the non-dimensionalized gradients
Φm(ζm) and Φh(ζh) we obtain:

κm (z − d)

u


√(
∂〈u〉
∂z

)2

+
(

∂〈v〉
∂z

)2

= Φm (ζm) , (11b)

κh (z − d)

b


∂〈b〉
∂z

= Φh (ζh) . (11c)

The existence of such unique representations Φi (ζi ) is understood to indicate the suitability
of the assumptions of the constant-flux layer. The dependencies of Φm and Φh on ζm and ζh,
respectively, describe the stability dependence of the velocity and scalar profiles. In neutrally
stratified flow with ζi = 0 (since LO → ∞), the logarithmic law of the velocity emerges
with Φm (ζm = 0) = 1, whereas ζi > 0 for stably stratified flow. Based on observational
studies, the Businger–Dyer relations (Businger et al. 1971; Dyer 1974; Garratt 1992):

Φm (ζm) = αm + βmζm, (12a)

Φh (ζh) = αh + βhζh, (12b)

are widely accepted for the weakly stable regime (ζi � 1). The empirical parameters are
αm = 1, αh = 0.74 and βm = βh = 4.7 (Högström 1988, 1996; commonly approximated
with βi ≈ 5).

We find reasonable agreement with these observational fits for stability corrections ζ � 1
(Fig. 11).Asmentioned above, results for stronger stability should be interpretedwith caution,
which is in fact seen by an increased spread for higher stability and a systematic deviation
from the ASL fits in Fig. 10.

This also agrees with previous DNS of Ekman flow over smooth surfaces (Ansorge and
Mellado 2014; Shah and Bou-Zeid 2014; Ansorge 2019) and LES of Ekman flow with
subsidence (Bon et al. 2024). The best fits for the non-dimensional gradients of wind speed
and buoyancy are:

Φm(ζm) − αm = 5.3ζm, (13a)

Φh(ζh) − αh = 12.5ζh, (13b)

respectively, where we estimate αm = 0.89 and αh = 0.72 (cf. discussion in the Appendix
1). The analysis here is exempt from the exact value of the parameters αi . In terms of ζm,
we find Φh(ζm) − αh = 10.5ζm for cases S001-S064. In many practical applications of
ASL theory, ζh is approximated by ζm due to the lack of informative models for turbulent
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Fig. 10 Non-dimensional gradients of the a horizontal velocity and b buoyancy, as a function of the stability
parameter ζm, ζh, according to (11). The data in the regime z+log,i ≤ z+ ≤ 0.1Reτ is instantaneous and
spatially averaged in the horizontal, while using the respective instantaneous friction values of u
(t), b
(t)
(respectively s
 for the neutral case N) and the Obukhov length LO (t). The linear regression functions (red
dashed lines, with the r2-value, the coefficient of determination) are derived in consideration of the cases
S001-S064 with a zero-plane displacement of d/H = 2/3. The arrows (time) depict the temporal evolution

diffusivity. We use dh = dm, which implies:

Φh(ζm) = αh + κh

κm
βhζm. (14)

The data is fitted in the regime z+log,i ≤ z+ ≤ 0.1Reτ , with the lower boundary of the

logarithmic layer at z+log,i = 30+ d+
i (KA24) and the commonly accepted limit of the upper

boundary of the ASL with approximately 10 % of δ
.
Cases with stronger stability fall into the very stable regime where a linearization of the

stability correctionΦm−αm (magenta, orange, olive coloured cases) is no longer appropriate
(Mahrt 2014) for the limited extent of the ASL and large effects of stability.While outside the
ASL in terms of strict criteria (δ95, cf. Fig. 6), the very stable data of the casesS128P-S256P
show a distinct left curvature (cf. Ansorge 2019, Fig. 12). As the simulation time progresses,
a tendency is observed to the right, closer to the linear fit, indicating that the left curvature for
large values of the stability parameter (ζ > 0.1) is a transient effect reflecting the imbalance
of the ABL with the surface boundary condition.

The linear fit of Φm is very close to the widely-used Businger–Dyer relation, whereas Φh

does not agree. We attribute this disagreement to insufficient convergence, respectively, the
nonequilibrium state of the data for large stratification, since the linear fit improves if only
the weakly stable cases S001-S005 are considered (βh = 4.9). We further note that also
Högström (1988) estimates βh ≈ 8 after eliminating systematic errors from observational
data.

For large stratification, the linear stability correction is known to deviate in the very sta-
ble regime, due to its highly non-stationarity (inertial oscillation, adaptation of the turbulent
boundary layer to strongly modified surface boundary, intermittency) and strong turning of
the wind within the substantially decreasing boundary layer thickness (Fig. 3). Moreover,
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Fig. 11 Similar to Fig. 10. Here, with the instantaneous and local (in the vertical) values of u
(z, t), b
(z, t),
Λ(z, t), according to the local theory of Nieuwstadt (1984). The close-up views and the similarity functions
are fitted up to the height z+ < 0.1δ
, and data is plotted up to z+ < 0.3δ
. a Lines: Businger–Dyer
relation, Φm − 1 = 4.7ζm (black dotted line); Chinita et al. (2022) Φm − 1 = 3ζm (black dotdashed
line); S001-S064, Φm − αm = 3.45ζm (red dashed line) with r2 = 0.97. b Lines: Businger–Dyer relation,
Φh−0.74 = 4.7κmκ−1

h ζh (black dotted line); Chinita et al. (2022),Φh−0.74 = 3κmκ−1
h ζh (black dotdashed

line); S001-S064 Φh − αh = 5.21ζh (red dashed line) with r2 = 0.981

turbulence is observed to be highly anisotropic, respectively of non-Kolmogorov type (Stiper-
ski and Calaf 2018). Then, the surface flux seizes to be a relevant scaling parameter, and we
follow the local scaling approach of Nieuwstadt (1984) (cf. Fig. 11), while using local values
of the Obukhov length Λ(z, t) for the stability parameters ζi and the local friction values
u
(z, t), b
(z, t) for the stability functions Φi . This approach yields a better collapse of the
data compared to Fig. 10, since the scattering of data is significantly reduced. Chinita et al.
(2022) proposes for the local MOST based on LES simulations the parameters βi ≈ 3 (rather
than βi ≈ 5). Notably, the very stable cases do follow the proposed linear stability correc-
tion functions as well, even though, according to strict criteria, some values originate from
above the ASL. Anyhow, the values of βh in the weakly stable and moderately stable regimes
are higher compared to the proposed value. Again, this is assumed to be related to limited
simulation times and insufficient convergence.

In the context of the local scaling approach, the very stable cases indicate a right curvature
of the data with respect to the linear fits, which is in accordance to observations (e.g. Chenge
and Brutsaert 2005; Grachev et al. 2013, ). For ζi � 1 a levelling-off of Φi (Fig. 11) is
observed, while Φm reaches a peak and continues with a negative slope and Φh forms a
plateau. Peak and plateau values of Φi decrease with increasing stability of the cases. Mahrt
(2007) links this characteristic with a simultaneous increasing stability and non-stationarity
of the flow (wave-like, meandering motions) and thus an enhanced mixing efficiency. As a
result, the slopeΦi decrease for large ζi , whereas this behaviour is pronounced formomentum
compared to buoyancy. However, the data are presented up to the upper bound 0.3δ
, which
is outside the very stable boundary layer, measured in terms of δ
,95 (cf. Figure 6), and is
thus associated with problems in LES and observations where the first model layer or the first
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measurement point under strongly stable conditions could as well lie outside the boundary
layer.

Surface roughness increases u
 in comparison to a smooth surface with similar forcing
of the flow. Hence, the scale separation measured in Reτ is enhanced, which results in a
deeper logarithmic layer. As a consequence of the rise of Reτ , we observe a higher degree of
consistency of our data for a wider range of stability in contrast to the smooth case at similar
ReD (cf. Ansorge 2019, Fig. 12). The induced growth in scale separation by roughness is
counteracted by increasing stability, since it reduces the extent of the remaining logarithmic
layer until a critical value, here RiΛ > 64, is reached from where measurements deviate
from the theory.

4.2 Non-dimensional Gradients in the Roughness Region

Thevalidity ofMOST is limited to the inertial sublayer.Hence, classic surface-layer similarity
only holds above the top of the roughness elements. This is in part for theoretical reasons, but
also due to practical limitations, as in the field, it is virtually impossible to obtain data within
small-scale roughness. Here, we briefly report on the scalings observed below the height
of the roughness elements. In the lower part of the roughness region, i.e. below z+ ≈ 10,
the velocity gradients appear to fall in a narrow band that grows linearly with distance from
the wall (Fig. 12a). This suggests that the viscous law of the wall is appropriate here. The
classical scaling u+ = z+ would be re-covered if a truly wall-based velocity scale would be
considered, i.e. if the friction velocity were calculated from the bottom shear alone. Near the
top of roughness elements, the scaling is not universal and would need to include information
on the velocity scale at the top of the roughness elements. Interestingly, the transition of the
velocity profile to the different velocities in the outer region (higher for stronger stability)
is mostly confined to the upper region of the roughness region, where a strong stability-
dependence is observed. This dual behaviour suggests that it will not be possible to prescribe
profiles in the roughness region by either awall-based or a surface-layer-base scaling; instead,
a complete description will need to resort to a mixed scaling incorporating information from
the friction at the top of the roughness elements and the friction at the actual domain bottom.
The partitioning of friction between the top of roughness elements and the actual domain
bottom is hence a key parameter to determine the dynamics within the roughness region.

The scalar profiles show a similar duality suggesting wall-based scaling below z+ ≈ 10
and profile-dependency above. Interestingly, there is amaximum in the scalar gradient around
z+ ≈ 10 and a plateau and collapse of data (cases S001-S064) for the non-dimensional
buoyancy gradients (Fig. 12b). The plateau is located above the viscous sublayer z+ > 5 and
below the lowest roughness elements, here limited to z+ < 20 with a value of 0.76, which is
close to αh. This maximum of the gradient is related to a local minimum of turbulent scalar
transport, and we suppose it is due the separation of the mixing at the roughness tops from
the mixing at the domain bottom. Apparently, this separation is stronger for buoyancy (which
shows a local maximum) than it is for momentum (which only shows a right curvature in
the profile at the respective height). This difference underlines the critical role of pressure
(blocking) effects in the roughness region which are the root cause for differences between
scalar and momentum quantities and cause a stability and height-dependence of the turbulent
Prandtl number (cf. Sect. 4.4).
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Fig. 12 Non-dimensional gradients of the a horizontal velocity and the b buoyancy within the reach of the
roughness elements (Hmin and Hmax depict the distribution of roughness element heights, red markers),
plotted against the vertical distance in viscous units z+. The presented data is instantaneous and horizontally
averaged, while using the respective instantaneous values of u
(t), b
(t). b The mean value is derived in
consideration of the cases S001-S064 in the range 5 < z+ < 20

4.3 Reynolds Number Effects on the ASL Similarity

ASL theory commonly neglects viscous effects for the very high Reynolds number encoun-
tered in geophysical problems. For typical scales of the neutralABL, themagnitude of ReABL,
indicative of the scale separation in a neutrally stratified atmosphere, isO(108) (Mellado et al.
2018). With increasing stability and thus decreasing depth of the ABL (cf. Figure 3a), the
relevant scale separation ReABL is reduced and viscous effects may matter, at least to some
extent. For the intermediate Reynolds number of our setup (Reτ ≈1800–2700), we expect
viscous stress to be non-negligible in the ASL theory at strong stability. While this is not
necessarily the case in atmospheric conditions, we need to consider those viscous effects to
allow for an uncontaminated formulation of the similarity theory with respect to the actual
geophysical scale separation. We, however, note that close to the surface these effects also
occur in the atmosphere which may be relevant for some very high-resolution LES stud-
ies with resolutions on the sub-metre scale. Further, this section makes use of the common
assumption that it is the total stress, total vertical gradient and total horizontal velocity which
scale in the context of surface-layer similarity. While this is certainly an increasingly strong
assumption for stratified flow, it is consistent with the way in which surface-layer similarity
is commonly applied.

The total stress τtot in the boundary layer is composed of the viscous and turbulent stress,
which in our non-dimensionalized formulation reads as:

τ
,tot = τ
,visc + τ
,turb = 1

ReΛ

∂〈uh〉
∂z

+
√

〈u′w′〉2 + 〈v′w′〉2. (15a)

Here, we consider the horizontal velocity and total vertical flux, since the veering of the
wind within the surface layer is substantial. Commonly, the turbulent stress is modelled with
the eddy viscosity approach introduced by Boussinesq (cf. Sect. 3.4.1 on p.171, Rotta 1972),
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where the turbulent flux is related to the local vertical mean gradient, given by:

τ
,turb = −K
,m
∂〈uh〉
∂z

, (15b)

with: K
,m = l2
,m
∂〈uh〉
∂z

. (15c)

The eddy viscosity K
,m ismodelledwith themixing length l
,m,where the simple relation
l
,m = κmz (Prandtl 1925) is used. Therefore, K
,m is the eddy viscosity non-dimensionalized
by GΛRo, and not constant but rather a function of time and space. The non-dimensionalized
total shear stress τ
,tot (15a) is given by:

τ
,tot = ∂〈uh〉+
∂z+

+ (
κz+

)2 (
∂〈uh〉+
∂z+

)2

= ∂〈uh〉+
∂z+

+ [
Φm,cor (ζm)

]2
, (15d)

whereas Φm,cor is the stability function (11b) corrected by the viscous stress and hence,

Φm,cor (ζm) = Φm (ζm) −
√

∂〈uh〉+
∂z+

= αm + βm,corζm. (16a)

In this reading, Φm,cor corresponds to the actual non-dimensional gradient in the context
of similarity theory and Φm corresponds to the classic estimate used above.

Hence, we expect that the corrected coefficient βm,cor matches better field observations
where viscous effects are smaller than in our DNS.

Analogously, the viscous correction approach is applied on the stability functionΦh (11c)
for buoyancy, with:

Φh,cor (ζh) = Φh (ζh) −
√

∂〈b〉+
∂z+

= αm + βh,corζh. (16b)

Our findings (Fig. 13) are in accordance with ( Chung and Matheou 2012, § 4.4); with
decreasing Reynolds number and thus increasing stability (cf. u
 in Fig. 3a), a shift of the
data to the left is observed.

For decreasing Reynolds numbers, the stability parameters βi are enhanced compared to
the atmospheric value βi = 4.7 (similar characteristic is observed in the study of Shah and
Bou-Zeid 2014, ). Here, we measure βm,cor = 4.88 instead of βm = 5.31 (Fig. 10a) and
βh,cor = 11.7 instead of βm = 12.51 (Fig. 10b). The relative importance of the viscous
correction term in the regime ζi < 0.1 is up to approximately 25%. Near surface data of
the corrected stability functions Φi,cor for the cases S064-S256P reveal a better collapse
of data with the weakly stable cases (grey to black data points in Fig. 13), observable in the
region 0.04 � ζi � 0.08.

Högström (1988) proposed a second-order regression for the weakly stable regime (ζi �
1) up to a threshold ζi = ζi,1 (ζm,1 = 0.15 and ζh,1 = 0.2), above which the common linear
regression (12a) is valid. This approach improves the fit in the region ζi < 0.1, since the
linear regression systematically overestimates the data (Fig. 13). The best quadratic fits based
on the cases S001-S064 in the region z+log,i ≤ z+ ≤ 0.1Reτ are:

Φm(ζm) − αm = 2.41ζm + 16.48ζ 2
m, (17a)

Φh(ζh) − αh = 4.66ζh + 55.84ζ 2
h . (17b)

Weobserve a larger scatter and stronger curvature of the data to the left forΦh (cf. Figures 10b,
13b) compared to Φm (Fig. 13b) and hence, estimate a large quadratic term which deviates
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Fig. 13 Similar to Fig. 10, with the viscous correction (magnitude of the correction depicted with red data
points) with Πi,cor = Φi,cor(ζi ) − αi . Only the weakly stable regime is shown for ζi < 0.1. Nevertheless,
the regression lines (green and red dashed lines) are computed for z+ < 0.1δ
. a Lines: S001-S064,
Φm − αm = 2.41ζm + 16.48ζ 2m with r2 = 0.948 (red dashed line); S001-S064, Φm − αm = 4.88ζm
with r2 = 0.865 (green dashed line); Högström (1988), Φm − 1 = 3.43ζm + 8.4ζ 2m (black dotted line).
b Lines: S001-S064, Φh − αh = 4.66ζh + 55.84ζ 2h with r2 = 0.929 (red dashed line); S001-S064,

Φh − αh = 11.7ζh with r2 = 0.818 (green dashed line); Högström (1988), Φh − 0.95 = 5.24ζh + 6.3ζ 2h
(black dotted line)

from the fits in the literature. In comparison, the quadratic fits according to Högström (1988)
are Φm − (1 ± 0.018) = (3.34 ± 0.32)ζ + (8.4 ± 5.9)ζ 2 and Φh − (0.95 ± 0.039) =
(5.24± 0.64)ζ + (6.3± 11.8)ζ 2, with standard error estimates (for ζi ≤ 0.1). In their study,
they claim that the data base for Φh is also less clear.

4.4 Dependence of the Richardson and Turbulent Prandtl Numbers on Stability

The Richardson flux and gradient numbers Ri f and Rig (10) are, in addition to the Monin–
Obukhov stability parameter ζi , decisive measures of the flow stability and can be defined as
(Stull 1988; Coleman et al. 1992):

Ri f = 〈w′b′〉
〈u′w′〉 (∂〈u〉/∂z) + 〈v′w′〉 (∂〈v〉/∂z) = ζm

Φm
, (18a)

Rig = ζmΦh

Φ2
m

, (18b)

where Rig = N 2/S2 is the ratio of the buoyancy, respectively the Brunt–Väi -sä -lä frequency
N and the shear frequency S. The Richardson flux number is the ratio of the TKE destruc-
tion (production) by buoyancy to the TKE production by shear and is a key parameter for
turbulence closure schemes (cf. Mellor and Yamada 1974, 1982, ). The ratio of Richardson
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Fig. 14 a, b The gradient and flux Richardson numbers Rig(ζm), Ri f (ζm) as functions of the local stabil-
ity parameter ζm and (c) the Richardson flux number Ri f (Rig). The parameters of the stability functions
Φi in (a, b) from Fig. 11, the green curve in (c) after Mellor and Yamada (1974, 1982) (MY82) with

Ri f = 0.725

[
Rig + 0.186 −

(
Ri2g − 0.316Rig + 0.0346

)1/2]
. The coloured data is plotted within the

constant-flux layer located in the region between the peak of the total turbulent fluxmax{
√

〈u′w′〉2 + 〈v′w′〉2}
and where the flux is reduced by 10% (Stull 1988). Light grey data in is plotted in the region z+log,i ≤ z+ ≤
0.1Reτ

numbers Rig/Ri f forms the turbulent Prandtl number Prt , given by:

Prt = Rig
Ri f

= (∂〈b〉/∂z) [〈u′w′〉 (∂〈u〉/∂z) + 〈v′w′〉 (∂〈v〉/∂z)]

〈w′b′〉 [
(∂〈u〉/∂z)2 + (∂〈v〉/∂z)2] = Φh

Φm
= K̃
,m

K
,h
. (19)

The turbulent Prandtl number Prt describes the difference in eddy viscosity K̃
,m and dif-
fusivity K
,h, i.e. the difference in turbulent mixing of momentum and heat (cf. review by
Li 2019, ). In (19), we follow the approach of Coleman et al. (1992) for K̃
,m which differs
from the previous definition of K
,m in (15c). We define the dimensionless numbers (18, 19)
by considering the veering of the wind (coordinate system rotation) within the surface layer,
since the lateral v-velocity component is nonzero for an Ekman flow.

The Richardson numbers in Fig. 14a, b increase with the stability parameter ζm and follow
the proposed scaling approaches (red dashed lines), while a systematic shift of the data to
the right is observed at higher stabilities.

This overestimation of Rig , Ri f is assumed to originate from the deviation of the linear
stability functions and data in Fig. 11 at large ζi . Within the considered regime Rig ≤ 0.1, the
dependence of Ri f (Rig) is linear (O(Ri f /Rig) = 1, cf. Figure 14c). The linear dependence
of Ri f (Rig) for small ζm is in agreement with previous studies, e.g. Pardyjak et al. (2002)
reports an increase of Ri f with Rig until Rig ≈ 1 and subsequently a levelling-off of Ri f
with a maximum of approximately 0.4 − 0.5 (cf. also Fig. 9, in Grachev et al. 2013, ). This
characteristic can not be approved with our data, since the scatter of data is large outside the
ASL for MOST.We observe an overestimation of Ri f by the parameterization of Mellor and
Yamada (1974, 1982) of ≈ 20%.

The turbulent Prandtl number data as a function of the stability in the regime z+log,i ≤
z+ ≤ 0.1Reτ exhibits a large scatter (Fig. 15).

If the turbulent Prandtl number is considered in the constant-flux layer (validity region
of MOST), or merely at the lower bound at z+ = 50 where the vertical turbulent flux tends
to peak (red data points in Fig. 15), Prt increases with stability (similar for Prt (Ri f ), not
shown here) with a neutral value of Prt,0 = Prt |Rig=0 ≈ 0.94 and hence, the surface-layer
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Fig. 15 a Turbulent Prandtl number Prt (ζm), with the parameters of the stability functions Φi from Fig. 11.
b Prt (Rig) vs. stability (RiΛ), with the fit (green line) based on (20) (cf. Equation 3.6, Venayagamoorthy and
Stretch 2010, (VS10)) and the fit (red line) based on (Zilitinkevich et al. (2008), (Z08)) with Prt = 0.8+5Rig .
The data shown here is similar to Fig. 14 and red data points are located at z+ = 50

data is located between the envelopes Prt = Φh/Φm and Prt − 0.15 = Φh/Φm (Fig. 15a).
The Prt (Rig)model of Venayagamoorthy and Stretch (2010) (their Eq. 3.6), which is refined
from Schumann and Gerz (1995) (their Eq. 22), takes the form of:

Prt = Prt,0 exp

(
− Rig
Prt,0Ri f ,∞

+ Rig
Prt,0

)
+ Rig

Ri f ,∞
, (20)

with Ri f ,∞ = Ri f
∣∣
Rig=∞. The model (20) shows surprisingly good agreement with our

data (Fig. 15b), with Prt,0 = lim
Rig→0

Prt (Rig) = 0.15 + αh/αm ≈ 0.94 and Ri f ,∞ =
lim

Rig→∞ Ri f (Rig) = β−1
m ≈ 0.29. Further, Zilitinkevich et al. (2008) propose the relation

Prt ≈ Prt,0 + 5Rig , with the asymptote Prt,0 ≈ 0.8, based on measurement campaigns,
experimental and modelling results. In contrast to the previous model (20) this overestimates
our data for large Rig , and underestimates for small Rig . The increasing behaviour of Prt with
increasing stability is supported by the findings of Mauritsen and Svensson (2007), where
they find finite values of themomentum flux and zero values of the heat flux for Rig � 1. The
asymptotical behaviour of Prt for small ζ is Prt,0 ∼ αh/αm (z-less stratification, Wyngaard
1973) and therefore, 0.74 for Businger et al. (1971) and 1.0 for Dyer (1974). Townsend
(1976); Yakhot and Orszag (1986) predict a neutral value of ≈ 0.7 and Schumann and Gerz
(1995) expect values between 0.7 and 1.2. The asymptotical value of Ri f ,∞ is according to
Nieuwstadt (1984) 0.2 and Schumann and Gerz (1995) 0.25 and hence, our values of Prt,0,
Ri f ,∞ fit well with those of the literature.

The dependence of the Prandtl number in the stable regime is controversial. A major
challenge, apart from the large scatter of measurement data, is self-correlation of Prt with the
stability measures, due to shared variables (e.g. velocity and buoyancy gradients are present
in Prt and Rig , cf. discussions in Grachev et al. (2007); Mahrt (2007); Anderson (2009);
Sorbjan and Grachev (2010). Mahrt (2007) points out the importance of non-stationarity
in the VSBL, where non-turbulent motions (e.g. wave-like, meandering motions) transport
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Fig. 16 The turbulent Prandtl number Prt (RiΛ) as a function of the external stability parameter RiΛ (4c).
The data points are in the constant-flux layer and the box plots are derived from the data shown here

momentummore efficiently than heat, suggesting an increase of the turbulent Prandtl number
with stability. This behaviour is supported by the ratio Rig/Ri f , since Ri f is assumed to
reach a constant, whereas Rig increases. Howell and Sun (1999) observed Prt (ζ ) ≈ 1.0 for
10−2 < ζ < 101, with a large scatter in the data similar to Yagüe et al. (2001), where an exact
dependence of Prt on ζ remains uncertain. Whereas Yagüe et al. (2001) reports an increase
of Prt (Rig) at Rig � 0.1. Sorbjan and Grachev (2010) found a neutral value Prt,0 = 0.9
and a slight decrease with Rig to 0.7, after neglecting outliers in Rig from the analysis.

To circumvent self-correlation, Grachev et al. (2007) considers the Prt as a function of
the Richardson bulk number RiB (cf. their Eq. 6 for the bulk Richardson number RiB ) and
finds a decrease with stability. Anderson (2009) proposed a self-correlation free method and
observes an increase of the Prandtl number as a function of the gradient Richardson number
Prt (Rig). In our simulations, the turbulent Prandtl number Prt (RiΛ) in the surfaces layer
increases as a function of the external Richardson number RiΛ (4c, Fig. 16), contrasting the
results of Grachev et al. (2007).

While the data for Prt presented in this study (Figs. 15, 16) exhibit a substantial scatter,
we find that Prt increases in the constant-flux layer with any of the stability measures
Rig, Ri f , ζm, RiΛ. The most stable, intermittently turbulent case S256P shows a different
behaviour, which is related to the large imbalance in TKE; in fact, this case features such a
thin boundary layer that it is not possible to identify a surface layer by strict criteria.

5 Discussion and Conclusions

We investigate the competing interaction of small-scale surface roughness and stable stratifi-
cation onASL similarity using idealizedDNSof turbulent Ekmanflow.The surface roughness
is fully resolved with an immersed boundary method (ADR IBM) and the flow is driven with
an identical large-scale forcing for all cases. On the lower boundary there are 56 × 56 rect-
angular blocks with a certain degree of randomness in structure and layout, which leaves the
setup under neutral stratification on the verge of the transitionally to fully rough regime, with
z+0 ≈ 2. The stability of the flow is incrementally increased in 12 steps to cover the full span
of the stability regime, from the WSBL to the VSBL at meaningful scale separation (high
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Reynolds number in DNS context, Reτ,N ≈ 2700, ReD = 1000). We now conclude with
respect to the research questions posed in Sect. 1.

(1) The presence of small-scale surface roughness extends the stability regime, where
turbulence is in a continuous state. Roughness is observed to be a very effective triggering
mechanism of turbulence by inducing flow instabilities, since flow around objects with sharp
edges creates detached eddies and turbulent mixing. This enhances the production of TKE in
the ASL and counteracts the suppression of turbulence by buoyancy. The WSBL regime is
extended, which is characterized by a decreasing boundary layer depth and a continuous state
of turbulence. This gives rise to a pronounced plateau of the vertically integrated buoyancy
flux (MSHF concept) over an extensive stability regime. The regime transition from the
WSBL to the VSBL manifests itself in distinct oscillations of global flow properties with
decaying amplitude in time, such as u
 and L

+
O . At the transition to the VSBL, where a drastic

decrease of turbulence is observable, buoyancy is dominating with LO � δ95, RiB,95 ≈ 1
and where L+

O gets close to ReL,crit .
(2)Global intermittency is an inherent characteristic of the rough VSBL. In the presence of

surface roughness, global intermittency in the VSBL is successfully simulated and observed
to appear in space (across the boundary layer) and time (oscillating intensity). In this study,
it was not possible to completely laminarize the flow at very strong stability. We therefore
assume that the intermittency in the VSBL over heterogeneous surfaces lasts over a broader
stability range than in the VSBL over smooth surfaces, where complete laminarization of
the flow occurs for smaller values of stable stratification. This is supported by observation
of intermittency in the real-world SBL, since the atmospheric Reynolds number is large, the
Earth’s surface is rough and hence, a complete laminarization is not observed. Here, further
investigation would shed light on the intermittency phenomenon over rough surfaces.

(3) Turning of the wind is enhanced in the rough VSBL and an appropriate boundary layer
depth scale is δ
,95. The turning of the surface wind with respect to the geostrophic wind is
enhanced by roughness. In theVSBLvalues ofα
 > 90◦ are observed for caseS256P, which
exceeds by far the laminar limit of α
 = 45◦ for an Ekman flow. The proposed mechanism is
based on the momentum balance within the surface roughness. With increasing stability, the
velocity is reduced and so are the Coriolis and friction force. Eventually, the wind turns in
favour of the pressure gradient force, resulting in a large α
, which we suggest as the reason
for pressure-driven channeling in more complex situations. With increasing stratification, the
boundary layer thickness decreases: When comparing the neutral case N and the very stable
case S256P, δ
 is reduced by approximately 30 %, δ
,95 by 90 %, which changes their ratio
from δ
,95/δ
 ≈ 0.55 in the neutral regime to ≈ 0.08 in the VSBL. Both visual inspection of
the flow and scaling of global stability measures, such as RiB,95, LO/δ95 suggest that the
boundary layer depth δ
,95 is an appropriate scale in case of stable stratification rather than
the scale δ
.

(4) Surface layer similarity holds in the known limits for the cases S001- S064. With the
displacement height d/H = 2/3, von Kármán constants of heat and momentum κm = 0.42,
κh = 0.35, we estimate the following parameters of the linear MOST correction functions:
αm = 0.89, αh = 0.72 and βm = 5.3, βh = 12.5. In contrast to classical MOST, local
similarity theory results in a more accurate collapse of the data onto the linear fit, with slope
parameters of βm = 3.45, βh = 5.21. For large stability values, we observe a levelling-off
of the stability correction, which is in accordance with observations. Viscous effects impact
ASL theory, due to the present intermediate Reynolds number compared to the atmospheric
one. Hence, we propose a viscous correction method for the MOST and reveal, that fitting
parameters converge closer to the observational values. Furthermore, based on the current
data, we observe that a linear stability correction function is overestimating for small and
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underestimating for large stabilities (ζ ). Here, a quadratic fit in the WSBL regime seems to
improve the collapse of data, in agreement with the fits derived by Högström (1996) based
on observational data.

Regarding the controversial discussion on the turbulent Prandtl number Prt and its depen-
dence on stability (e.g. ζ , Ri f , Rig), –despite substantial scatter–we observe an increase with
stability and a neutral value of Prt,0 ≈ 0.94.

In summary, we provide a setup consistently treating outer dynamics in the boundary
layer (i.e. the rotation, and associated triadic balance in Ekman flow), the turbulent mixing
in the logarithmic layer and the immediate interaction with the surface through a roughness
layer and viscous sublayer. While this requires substantial numerical resources on the largest
supercomputers, it yields valuable insight to the boundary-layer dynamics. Based on an
analysis of well-known surface-layer scaling relations, we show that roughness helps to
maintain turbulence and shifts the stability regimes to higher stratification (cf. 1), that global
intermittency is an intrinsic characteristic, also of the rough boundary layer (cf. 2), that
stratification and roughness together can cause over-veering of thewind (cf. 3). The agreement
of results fromsuch a strongly idealized setupwithMOSTand the semi-empirical fits basedon
field observation demonstrates the consistency of our setup and its relevance for atmospheric
conditions when the data is scaled properly. Indeed, the results underline the potential of such
idealized setup to further address open questions regarding land–atmosphere interactions on
the process-level, for the first time also including processes in the roughness sublayer.

Appendix 1: Determination of the Stability Functions for Neutral Strati-
fication

The linear stability correction functions (12a) reduce to Φi |ζi=0 = αi at neutral stratification.
Based on theory, the empirical parameter for momentum αm is equal to unity in order to retain
the logarithmic law of the wall for the mean velocity. For buoyancy, the parameter αh equals
the ratio of the von Kármán constants of heat and momentum αh = κh/κm (Brutsaert 1982;
Chenge and Brutsaert 2005), or it is interpreted as αh = αm/(Kh/Km), depending on the
ratio of the eddy diffusivities Kh, Km. For momentum, the common value in the literature is
αm = 1, while the picture is less clear for buoyancy. Chenge and Brutsaert (2005) proposed
equal values for the von Kármán constants and therefore αh = 1 (the so-called Reynolds
analogy, namely equal transport properties for heat and momentum), Businger et al. (1971)
give αh = 0.74 and Högström (1988) gives αh = 0.95. However, Businger et al. (1971)
corrected the value of the commonly accepted von Kármán constant κm = 0.4 to κm = 0.35
to obtain αm = 1 instead of αm = 1.15 and used κm = κh and argued that the eddy
diffusivities are different for heat and momentum.

The empirical slope parameters βi from Sect. 4.1 with βm = 5.31, βh = 12.51 are taken
to estimate the parameters αi with a least squares fit within the constant-flux layer for the
cases S001-S064, where MOST is valid (cf. Fig. 17).

With this approach, we estimate αh = 0.72, which is similar to the common literature
value, and αm = 0.89, which does not fit the expected value of unity.

Here, we do not follow the approach by Businger et al. (1971) to correct the von Kármán
constants to gain αm = 1.We take the carefully estimated values of the vonKármán constants
from KA24 at neutral stratification, namely κm = 0.42, κh = 0.35 and assume that these
are universal, since the flow type is unchanged between the current study and KA24. The
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Fig. 17 Stability correction functionsΦi (ζi ) for the casesS001-S064. The data is plottedwithin the constant-
flux layer located in the region between the peak of the total turbulent flux max{

√
〈u′w′〉2 + 〈v′w′〉2} and

where the flux is reduced by 10% (Stull 1988). The linear regression lines (red dashed lines) are derived with
the slope parameters βi from Sect. 4.1

analysis concerning the MOST in the current study is exempted from the precise values of
αi through removing the neutral share of the dimensionless gradients.
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