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1 Introduction

The diversity of life is amazing: It is estimated that there are more than 10 million
living species on Earth today (Alberts et al., 2002). Even though all these species
appear very different, they all share one common property: heredity. The parent organ-
ism passes on all the information that accounts for the characteristics of the offspring.

Figure 1.1: (A) Neuronal cell
(Endo et al., 2009) (B) Blood
cells (Wikimedia Commons,
2012c) (C) 8 cell stage embryo
(nature.com, 2012)

Heredity is the basis for evolution, the process of change
that is shaping the diversity of species we observe today.
All living organisms consist of cells, sometimes one,

sometimes many millions. Mammalian organisms, like hu-
man or mouse, consist of hundreds of different cell types
which build the tissues. These cells are very different in
morphology and function (Figure 1.1). For example, neu-
ronal cells can span more than a meter, whereas cells of
the immune system are usually less than 100 µm in size
(Alberts et al., 2002). Nevertheless, their genetic basis is
largely identical: all cells that form the adult organism
originate from one single cell, the fertilised oocyte (zy-
gote). The zygote contains the information handed down
from the parents that defines the development of the off-
spring. Every time the cell divides, this genetic informa-
tion is passed on to the daughter cells. Therefore, all cells
of a living organism, whether they are neurons or immune
cells, share the same genetic information.
One key question is how the same genotype can give

rise to this large variety of cell types. It is known that
the cell tightly controls which part of the genetic infor-
mation is active for every specific cell through regulation
of gene expression. Many different factors govern gene
expression, amongst others external factors, the cellular
milieu or DNA accessibility (Coller and Kruglyak, 2008).
The importance of the different influences on gene expres-
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2 1 Introduction

sion was studied using a mouse model of what is known as Down syndrome in humans,
a disease where the affected carries an additional copy of chromosome 21 (Wilson et al.,
2008). However, instead of having three copies of the same chromosome, the researchers
used a mouse strain carrying a human chromosome 21. This model enabled them to
determine on a large scale, whether inter-species differences in transcriptional regula-
tion are primarily directed by human genetic sequence or mouse nuclear environment.
Strikingly, they found that in homologous tissues, genetic sequence is largely responsible
for directing transcriptional programs, whereas inter-species differences seemed to play
a secondary role. This experiment demonstrates that the information about when and
where genes are active is largely written into the DNA.

The genetic ‘switches’ that regulate gene expression are recognised and interpreted by
sequence-specific DNA binding proteins, the transcription factors. A large fraction of
transcription factor binding sites is located at long distances to the gene that is regulated
(enhancers, Tjian and Maniatis (1994); Heintzman and Ren (2009)). Long-distance gene
regulation is crucial for correct gene expression and facilitates the formation of different
cell types during development which all originated from the same, single cell (Maston
et al., 2006). This thesis combines experimental data with computational and statisti-
cal methods to study the properties and characteristics of long-distance gene regulatory
elements in mammalian cells.
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1.1 Outline of the Thesis

Chapter 1: Introduction and Background to Molecular Genetics

This chapter reviews the basics of molecular genetics and gives an overview of compu-
tational and experimental methods for identification of gene regulatory elements.

Chapter 2: Combinatorial Binding at Enhancers in Embryonic Stem Cells

In this chapter, genome-wide binding data of transcription factors and co-factors is
integrated to study the influence of combinatorial binding at long-distance enhancers on
transcription and evolution of gene regulation. This work was published in 2011 (Göke
et al., 2011).

Chapter 3: Alignment-Free Pairwise Comparison of Enhancer Sequences

Here, a novel alignment-free method, N2, is presented, which measures the pairwise
sequence similarity of regulatory sequences, analogous to alignments for protein-coding
sequences. N2 is applied to tissue-specific mammalian developmental enhancers. The
method was published in 2012 (Göke et al., 2012).

Chapter 4: Large-Scale Analysis of Developmental Enhancer Sequences

In contrast to Chapter 3 which is restricted to the case of pairwise sequence comparison,
this chapter aims at analysing large-scale enhancer data sets. The N2-based word
statistics are utilised to study sequence-specific properties of developmental enhancers.
First, a motif finding algorithm is presented (ALF-M). Second, N2 is used as a kernel
function to classify and predict regulatory potential of DNA sequences. Finally, N2 is
used to study the heterogeneity of tissue-specific enhancer data sets.

Chapter 5: Summary

This chapter provides a brief summary of the thesis.
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Figure 1.2: The structure of DNA sequences. (A) The basic unit of DNA sequences are the
nucleobases, Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). (B) DNA is a polymer of
nucleotides, nucleobases connected by a sugar phosphate backbone. (C) Schematic view of a single
strand DNA sequence. (D) Schematic view of a double stranded DNA sequence. The two strands
are connected by base pairing and form reverse complementary sequences. (E). DNA forms a double
helical structure in the cell. Illustrations A and E are based on Wikimedia Commons (2012h), B is
based on Wikimedia Commons (2012f).

1.2 Background: Introduction to Molecular Genetics

The hereditary information that is passed on from parents to offsprings and from a
parent cell to daughter cells is stored in the deoxyribonucleic acid (DNA). The DNA
is a pair of long polymer chains of smaller subunits, the nucleotides. A nucleotide is
composed of a sugar and phosphate backbone and one of the four nucleobases: Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T) (Figure 1.2A). These nucleotides are
attached to each other in a strictly linear fashion forming the sequence that encodes the
genetic information (Figure 1.2B-C). This code is universally readable, so that bacterial
DNA for example, which is inserted into a human cell will be correctly interpreted,
and vice versa (Alberts et al., 2002). The genome, the entirety of all the hereditary
information which is necessary to form a living organism, is thus encoded as a long
sequence of As, Cs, Gs and Ts.
The polymer of nucleotides forms a single DNA strand. In mammalian cells, every

DNA molecule consists of two such strands, the forward and the backward strand.
Both strands are connected by base pairing, A in one strand always binds to T on
the other strand and a C binds to a G (Figure 1.2D). The two DNA strands therefore
form complementary sequences. These complementary DNA strands are tightly twisted
around each other, forming a double helix (Figure 1.2E).
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Figure 1.3: (A) During the process of replication, the DNA is unwound and copied. Replication of
DNA is required to pass on the genetic information to the daughter cells. (B) During transcription,
the information encoded in the DNA is read and RNAs are synthesised according to the genetic
sequence. (C) Translation is the process that synthesises proteins from mRNAs. Proteins are the
major functional molecules in the cell and required for almost all biological processes. Illustration A
is based on Wikimedia Commons (2012g), B is based on Wikimedia Commons (2012a), C is based
on Wikimedia Commons (2012e).

1.2.1 Replication, Transcription and Translation of Genetic
Information

The power of this double helical structure becomes apparent during the process that
copies the genetic information: replication (Figure 1.3A). Every time a cell divides, the
DNA is exactly replicated and transmitted to the daughter cells. First, the double helix
is unwound so that both strands become accessible. Then the cellular machinery uses
these single strands to synthesise their complementary copies. This way, the original
double stranded DNA is replicated. Replication and DNA synthesis is common to all
living organisms and forms the basis for inheritance of genetic information.
The genetic information which is stored in the DNA is read through a process called

transcription (Figure 1.3B). Specific sequences in the genome, the genes, are recognised
by the cellular transcriptional machinery. The DNA of these genes is then used as a
template to synthesise ribonucleic acid (RNA). Similar to DNA, RNAs are polymers
of nucleotides with a slightly different backbone (ribose instead of deoxyribose) and a
different alphabet (A, C, G, and U (Uracil) instead of T). RNAs are exact copies from
DNA sequences using a slightly different language: A, C, G and T from the DNA are
transcribed into the complementary U, G, C and A of the RNA. These RNAs are much
smaller and flexible and provide the first step in interpreting the genetic information
encoded in the DNA. The enzyme that catalyses transcription of protein-coding genes
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Figure 1.4: Chromatin Structure.(A) DNA double helix. (B) DNA is wrapped around nucleosomes.
(C) Cellular DNA is packaged into a 30 nm fibre. (D) Chromatin during interphase. (E) During
metaphase, the densely packaged chromosomal structures known from karyotypes can be observed.
Illustration is based on Wikimedia Commons (2012b)

and several small RNAs is RNA polymerase II (POLII). POLII interacts with many
different proteins at the transcription start site (TSS) in order to initiate and elongate
transcription (Figure 1.5). POLII forms the core of the basal transcriptional machinery
that is needed in every cell type to maintain active transcription.
RNAs can have a variety of functions and there are many different classes of RNAs.

The best studied class of RNAs are the protein-coding messenger RNAs (mRNAs).
During a process called translation, proteins are synthesised according to the mRNA
sequence (Figure 1.3C). Similar to DNA and RNA, proteins are polymers of smaller
subunits, the amino acids. A sequence of three nucleotides corresponds to exactly one
amino acid. This way, the mRNA sequence is translated into a sequence of amino acids.
These amino acid chains build three dimensional structures, the proteins, which are able
to fulfil a large variety of functions. Proteins catalyse the large majority of chemical
processes in the cell, they participate in all major pathways and ultimately decide the
phenotype of all cells. Proteins are therefore the molecules that carry out the function
encoded in the DNA.

1.2.2 Structure of the DNA in the Cell

The DNA can be displayed as a sequence of nucleotides, however, to understand molec-
ular genetics, the structure and cellular organisation of the DNA is important. In mam-
malian cells, the DNA is located in the nucleus. The genetic information is distributed
to different DNA molecules, the chromosomes. The human genome consists of 24 chro-
mosomes. 22 of these chromosomes can be found in every human cell (autosomes) and
two chromosomes (X and Y) are sex-specific (sex chromosomes). Every somatic human
cell contains 46 chromosomes, two copies of every autosome and two sex chromosomes
(diploid cells). The cells of the germ line are haploid, they contain a single set of 23
chromosomes.
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Stretched out from end to end, the DNA of the smallest human chromosome (chro-
mosome 22) would extend about 1.5 cm (Alberts et al., 2002). The average diameter
of a mammalian nucleus is approximately 6 micrometers (Alberts et al., 2002). Clearly,
cellular DNA needs to be compressed in an organised manner to facilitate controlled
replication and transcription and to avoid damage. Indeed, chromosome 22 measures
only about 2 µm in its most compact form in the cell. The protein-DNA complex that
is responsible for DNA packaging is called chromatin (Figure 1.4).
The first level of DNA packaging is achieved by the histone proteins. Approximately

147 base pairs (bp) of DNA are wrapped around a set of 8 histones forming the nucle-
osome, the basic unit of DNA packaging in the cell (Figure 1.4A,B). Nucleosomes are
connected by a 60 to 80 bp long linker DNA, such that the DNA is organised in a chain
of Nucleosomes (“beads on a string”). In the cell, the DNA is further condensed into
a 30 nm fibre (Figure 1.4C). The accessibility of the DNA is regulated by the level of
condensation. In an ‘open chromatin’ structure, the DNA is accessibly by DNA binding
proteins and genes can be transcribed. The active chromatin formation is referred to as
‘euchromatin’. In contrast, tightly condensed, inaccessible, and transcriptional inactive
chromatin is referred to as ‘heterochromatin’. Both euchromatin and heterochromatin
are local structures, this way the same chromosomes can have both accessible and in-
accessible DNA. The highest level of DNA packaging into the most compact form can
only be observed at specific stages during cell division when the chromosomes form the
typical structure observed in karyotypes (Figure 1.4E).

1.3 Regulation of Gene Expression

Gene expression is the process that begins with reading the genetic information and
leads to the synthesis of a functional gene product. The process from reading the
genetic information on the DNA to the synthesis of a functional gene product is called
gene expression. Changes in gene expression can lead to cell division, differentiation or
proliferation. Tight regulation of gene expression is therefore crucial to ensure correct
embryonic development, but it is also involved in almost all physiological processes in
adults. Even minor errors in transcriptional regulation can lead to severe misbuildings
and diseases, such as cancer, heart failure or developmental disorders (Kleinjan and van
Heyningen, 2005).
The large diversity of transcripts and gene expression patterns that leads to the forma-

tion of different cellular phenotypes is obtained through cell type-specific transcription
factors (Maston et al., 2006; Coller and Kruglyak, 2008; Wilson et al., 2008). These
transcription factors recognise specific nucleotide sequences in order to regulate gene
expression in cis. Such cis-regulatory sequences can be proximal (promoter) or many
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Figure 1.5: Regulation of Gene Expression. Genes are controlled though proximal (promoter) and
distal (enhancer) regulatory elements. The promoter on the left is activated through binding of
sequence specific transcription factors and interaction with a distant enhancer, leading to active
transcription of the gene. Co-activator complexes such as p300 and Mediator and chromatin re-
modelling complexes such as Cohesin connect distal with proximal regulatory elements. Histones
near actively transcribed genes frequently show H3K4me3 at the promoter and H3K36me3 at the
gene body. Enhancers are marked by H3K4me1 or H3K27ac. Transcription can be silenced by pro-
teins which mediate repressive histone modifications at enhancers or promoters through recruitment
of histone deacetylases and methyltransferases. The promoter on the right shows such repressive
histone marks (H3K27me3) which ensure that the gene is silenced. See Sakabe and Nobrega (2010)
for a review.

kilo bases distant (enhancer) to the TSS of the gene which is regulated (Tjian and
Maniatis (1994); Heintzman and Ren (2009), Figure 1.5) .
Transcription factors form a very divergent protein family, many thousand genes en-

code for such proteins in the human genome (Vaquerizas et al., 2009). Every tran-
scription factor has a DNA-binding domain which recognises a specific DNA sequence
(DNA motif ). Transcription factors contain additional domains to integrate external
signalling, interact with transcriptional co-activators or chromatin modulator complexes
to initiate, enhance or repress transcription.

1.3.1 Epigenetic Regulation of Gene Expression

Epigenetics: ‘An epigenetic trait is a
stably heritable phenotype resulting from
changes in a chromosome without al-
terations in the DNA sequence.’(Berger
et al., 2009)

The word epigenetics summarises modifications which in-
fluence the cellular phenotype and which can be inherited
through cell division without changing the DNA sequence
(Berger et al., 2009). Epigenetic modifications that in-
fluence gene expression are DNA methylation and modi-
fications of histone proteins. DNA methylation involves
methylation of a CpG dinucleotide which ensures long-
term, almost irreversible gene silencing (Bird, 1986; Chavez et al., 2010). In contrast,
modification of histone proteins are reversible and highly dynamic.
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Modification Location Associated transcriptional activity
H3K4me3 Promoter Active
H3K4me1 Enhancer Active
H3K27ac Enhancer, Promoter Active
H3K27me3 Promoter Repressed
H3K36me3 Gene body Active

Table 1.1: Histone modifications at regulatory elements in mammalian cells. Active enhancers
are marked by H3K27ac and H3K4me1, active promoters are marked by H3K4me3. Promoters and
enhancers near repressed genes show increased levels of H3K27me3. H3K36me3 is typically enriched
at the gene body of transcribed genes.

Histones are the building blocks of the nucleosomes, the structures that are responsible
for chromatin assembly and condensation (see Section 1.2.2). Nucleosomes consist of
two copies each of the four core histone proteins H2A, H2B, H3 and H4. These histone
proteins can be post-transcriptionally modified at their N-terminus (histone tail). The
best studied modifications are acetylation and methylation of specific lysine residues
(Table 1.1). Enhancers and promoters can be marked by different histone modifications,
dependent on their transcriptional activity (Figure 1.5). Active enhancers are usually
marked by monomethylation of H3 Lysine 4 (H3K4me1) and acetylation of H3 Lysine 27
(H3K27ac). Active promoters are marked by trimethylation of H3 lysine 4 (H3K4me3).
Promoters near genes which are repressed are frequently marked by trimethylation of H3
lysine 27 (H3K27me3). Promoters which are marked by H3K4me3 and H3K27me3 at the
same time are called bivalent domains (Bernstein et al., 2006). Bivalent domains occur in
early stages of embryogenesis near genes involved in developmental processes and cell fate
determination (Bernstein et al., 2006). Recent literature also suggested that enhancers
can be marked by H3K27me3 (Rada-Iglesias et al., 2011). These enhancers were termed
poised enhancers, as they seem to be poised for activation after loss of this histone
modification. Transcriptional regulation is tightly linked to epigenetic modifications
of histone tails. The proteins that catalyse these reactions interact with sequence-
specific transcription factors and the basal transcriptional machinery (Kouzarides, 2007).
Similarly, chromatin accessibility and binding of transcription factors are influenced by
the epigenetic state of regulatory elements (Kouzarides, 2007).

1.3.2 DNA Looping and Chromatin Architecture

Currently, it is assumed that binding of specific transcription factors at distant enhancers
and at the promoter, and their interaction with co-activators and chromatin modulators



1.4 Identification of Transcription Factor Binding Sites 11

Figure 1.6: Modelling Transcription Factor Binding Sites. (A) The transcription factor TBP (blue)
binds to a specific sequence (TATA) in the DNA (red) (Figure from Goodsell (2005)). (B) Tran-
scription factors bind the DNA in a stochastic manner, which enables the recognition of different
DNA sequences that resemble a core structure. (C) Binding motifs of transcription factors can be
described using position frequency matrices. The columns contain the nucleotide frequencies for
every position, as obtained from experimental data. (D) Sequence logo visualisation of the DNA
binding motif of the TATA-box binding transcription factor with the consensus sequence displayed
below.

is required to bring the DNA of enhancers into close proximity to the TSS in order
to facilitate cell type-specific gene expression. The link between distant enhancers and
the promoter can be provided by co-activator proteins, such as p300 or the Mediator
complex (Kagey et al., 2010). Transcription factors interact with these co-activators,
which in turn interact with the basal transcriptional machinery. Chromatin loops are
established through interaction of Mediator with the Cohesin complex which can form
rings to connect DNA segments (Kagey et al., 2010). The interaction of general co-
activator complexes with transcription factors ensures cell type-specific DNA looping
and accordingly cell type-specific regulation of gene expression.

1.4 Identification of Transcription Factor Binding
Sites

One of the primary step towards analysing and understanding cis-regulatory sequences
is the identification of transcription factor binding sites in the genome (Vingron et al.,
2009). Binding of transcription factors at the DNA occurs in a stochastic manner,
dependent on the biophysical properties of the interaction of the binding domain and
the DNA sequence (von Hippel and Berg, 1986; Roider et al., 2007). This stochastic
binding leads to the effect that every transcription factor is able to bind to a variety
of DNA sequences that resemble a core structure (Figure 1.6A-B). The DNA binding
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motif of transcription factors can be described using a position frequency matrix, which
summarises the nucleotide counts at every position of the binding motif (Figure 1.6C).
This matrix can be transformed into a position weight matrix (PWM), for example
using log-odd ratios.
The DNA binding motif of the transcription factor can be visualised as a sequence

logo (Schneider and Stephens (1990), Figure 1.6D). Sequence logos show the frequency
of every nucleotide at every position. The height displays the information content,
indicating the flexibility of the motifs (Schneider et al., 1986).

1.4.1 Computational Approaches

The binding affinity of a transcription factor to the DNA can be estimated by the sim-
ilarity of the nucleotide sequence to the known binding motif. This similarity can be
used to estimate the regulatory potential of genomic DNA and to predict cis-regulatory
sequences. Depending on the motif, a transcription factor is expected to have a high
affinity binding site approximately every thousand base pairs. However, in vivo only a
minority of potential binding sites are bound by the transcription factor. Chromatin ac-
cessibility, co-factor binding, or protein-protein interactions ensure the correct, cell type-
specific binding of transcription factors in the cell. Since sequence-based approaches are
independent from the cell type, they are limited in their ability to predict genome-wide
locations.

1.4.2 Experimental Approaches

Mapping of genome-wide DNA-protein interactions became possible with the availability
of next generation sequencing technologies, in particular in combination with large scale
chromatin immunoprecipitation (ChIP-Seq; Johnson et al. (2007); Mardis (2007); see
Figure 1.7 for the detailed work-flow). In the first step, the DNA is experimentally fixed
to the proteins that are bound. Secondly, the DNA is sheared into small pieces which
are still cross-linked to the bound proteins. The protein of interest is then immunopre-
cipitated using a specific antibody. The DNA that is bound by the transcription factor
is purified, amplified and sequenced. This procedure results in many million short DNA
sequences (reads).
In order to obtain the genome-wide binding locations of the transcription factor,the

reads are mapped against a reference genome. The loci in the genome which are bound
by the transcription factor are enriched in reads, the mapping procedure results in
so-called peaks (Figure 1.7). The boundaries of these peaks can be identified using
peak-calling software (Zhang et al., 2008), resulting in a set of genome-wide locations
of cis-regulatory elements.
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ChIP-Seq can be used to identify cell type-specific transcription factor binding sites.
The technology can also be employed to identify loci that are bound by co-factors such
as the p300, resulting in data sets of tissue-specific enhancers (Visel et al., 2009).
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Figure 1.7: ChIP-Sequencing. Genome-wide DNA-protein interactions can be identified using chro-
matin immunoprecipitation followed by high throughput sequencing. See Section 1.4.2 for a de-
scription. Illustration based on Wikimedia Commons (2012d).



2 Combinatorial Binding at
Enhancers in Embryonic Stem
Cells

Transcription factors frequently interact in order to regulate gene expression. Many
transcription factor binding sites have been identified, but the influence of combinato-
rial binding on co-factor interaction and evolution of gene regulation has not been in-
vestigated. In the following chapter, I integrate genome-wide binding data from mouse
and human embryonic stem (ES) cells to study the role of combinatorial binding at
long-distance gene regulatory elements.

2.1 Introduction

ES cells are derived from the inner cell mass of the blastocyst (Thomson et al., 1998;
Evans and Kaufman, 1981). During the course of normal development, implantation of
the blastocyst results in further differentiation into distinct cell types of the three pri-
mary germ layers that will later form the tissues and organs of the developing embryo.
ES cells form the in-vitro model of the inner cells mass, as they can differentiate into all
somatic cell types. This pluripotent capacity of ES cells is maintained through a network
of transcription factors, co-activators and chromatin modulators (Babaie et al., 2007;
Chen et al., 2008; Jung et al., 2010). The importance of transcriptional regulation in
ES cells was demonstrated in a ground-breaking experiment, that showed that the tran-
scription factors, OCT4, SOX2, NANOG, and KLF4 can induce an artificial pluripotent
state in somatic cells (Takahashi et al., 2007; Yu et al., 2007; Nakagawa et al., 2008).
Expression of these four factors was sufficient to obtain ES cell-like induced pluripotent
stem (iPS) cells, showing that the pivotal step in inducing and maintaining the pluripo-
tency occurs at the level of genomic DNA by the binding of transcription factors to
regulate gene expression. Identification and analysis of these binding sites is therefore
highly important to understand pluripotency.

15
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Many large-scale data sets have been produced for ES cells using the ChIP-Seq tech-
nology (Table 2.1). ChIP-Seq data pinpoints many thousands of transcription factor
binding site candidates genome-wide. However, the high sensitivity comes along with
a low specificity. For example, binding events detected with the ChIP-Seq technology
can be indirect, non-functional for the cell type which is analysed, or technical artifacts,
making identification of functional sites challenging. Nevertheless, in order to under-
stand pluripotency at the level of transcriptional regulation, it is crucial to identify a
reliable set of regulatory elements that actively contribute to the regulation of gene
expression.

Sequence Conservation: Conserved
similarity of the DNA sequence at or-
thologous loci

Binding Conservation: Binding of or-
thologous transcription factors at or-
thologous loci

Mouse is a popular model system for human dis-
eases and development. Coding sequences show a re-
markably high level of conservation between mouse
and human, orthologous genes have 82% identical
amino acid sequences in average (Church et al.,
2009). Yet, the largest fraction of the genome is
non-coding and shows much stronger divergence.
Genome-wide binding events of OCT4 and NANOG
show less than 5% conservation in mouse and human
ES cells (Kunarso et al., 2010), despite their conserved function for embryonic develop-
ment. A study of genome-wide binding in liver tissue reported the same with only about
7% conserved binding events for the liver transcription factors CEBP and HNF4 between
mouse and human (Schmidt et al., 2010). These data show how fast cis-regulatory el-
ements can evolve compared to coding sequence, yet it is unknown what discriminates
conserved from non-conserved binding events. Sequence conservation has been used to
search for enhancers, but sequence conservation alone is insufficient to estimate conser-
vation of binding events (Blow et al., 2010). Furthermore, genome-wide comparisons
give average values over all observed binding events independently from their biolog-
ical relevance. Since the ChIP-Seq technology identifies not only functional binding
events, the level of binding conservation is currently unknown for a highly confident set
of enhancers.

This chapter addresses the role of combinatorial binding in embryonic stem cells and
early mammalian development. Genome-wide binding data of the key transcription fac-
tors OCT4, SOX2 and NANOG is integrated with co-activator binding data, histone
modification profiles and gene expression data. The integrated data is used to identify
enhancers in ES cells and it is shown that these are frequently active during embryonic
development. Additionally, combinatorial binding in mouse and human ES cells is com-
pared to more precisely understand the evolution of gene regulation at long-distance
regulatory elements.
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2.1.1 Methods I: Overview of the Data Used in this Study

For this study, genome-wide binding data of the transcription factors Oct4, Sox2 and
Nanog in mouse ES (mES) cells (Chen et al., 2008; Marson et al., 2008) was integrated
with binding data of the transcriptional co-activators p300 (Chen et al., 2008) and
Mediator (subunits Med1 and Med12) (Kagey et al., 2010) and with binding data for the
Cohesin complex (subunits Smc1 and Smc3) and CTCF (Kagey et al., 2010). These co-
factors are important to activate gene expression by linking regulatory elements with the
basal transcriptional machinery (see Section 1.3). Mouse developmental enhancers were
obtained from Blow et al. (2010). Potential binding events were identified using MACS
(Zhang et al., 2008) (‘peaks’, see Section 1.4.2). All peaks with a p-value > 1e − 05

and peaks that were detected in the control data were discarded. As a control for
the influence of the p-value cutoff, the data was analysed using only the top 10% of
peaks (sorted by p-value) from every experiment (‘stringent data set’). I intentionally
did not choose a false discovery rate (FDR) cutoff, since the FDR (as estimated by
MACS) is heavily dependent on the control data (Zhang et al., 2008) which is lacking
for some experiments (see Appendix, Figures VI.1, VI.2, VI.3, VI.4 for a comparison
of different cutoffs). To compare genome-wide binding in mouse and human ES cells,
data from human cells was processed in the same way (see Table 2.1 for a complete
listing of accession numbers, mapped reads and number of peaks). To investigate cell
type differences, genome-wide binding data of OCT4 from human embryonal carcinoma
cells (NCCIT) (Jung et al., 2010) was produced in collaboration with the laboratory of
James Adjaye. Important insights have been obtained from studies using ChIP-on-chip
data (Boyer et al., 2005), however due to its limitation to promoter regions, this data
was not integrated into this analysis. The complete data is available at the European
Nucleotide Archive (see Table 2.1) and can be accessed at http://enhancer.molgen.
mpg.de, where I provide a human and mouse genome browser displaying genome-wide
binding profiles, major histone modifications and RNA-seq data (Lister et al., 2011).
Figure 2.1 shows the aligned SOX2 locus in the mouse and human genomes along with
the data used for this study.

http://enhancer.molgen.mpg.de
http://enhancer.molgen.mpg.de
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Study Genome Cell Type Protein GEO/ENA ID Aligned Reads Peaks
Göke et al. (2011) hg19 NCCIT OCT4 ERS071642 10064877 (26%) 4359
Göke et al. (2011) hg19 NCCIT Control ERS071643 6926105 (27%) -
Kunarso et al. (2010) hg19 H1 OCT4 SRR037059-SRR037060 7353539 (57%) 19214
Kunarso et al. (2010) hg19 H1 NANOG SRR037061-SRR037063 7702058 (35%) 81891
Kunarso et al. (2010) hg19 H1 CTCF SRR037064-SRR037066 9731072 (46%) 77750
Kunarso et al. (2010) hg19 H1 Control 1 SRR139068-SRR139071 9312693 (58%) -
Kunarso et al. (2010) hg19 H1 Control 2 SRR139072-SRR139074 8832219 (51%) -
Lister et al. (2009) hg19 H1 OCT4 SRR027915-SRR027916 661981 (6%) 3404
Lister et al. (2009) hg19 H1 NANOG SRR027965-SRR027966 7604042 (34%) 60209
Lister et al. (2009) hg19 H1 SOX2 SRR027964 4242324 (47%) 33353
Lister et al. (2009) hg19 H1 p300 SRR027920 3189661 (35%) 16206
Lister et al. (2009) hg19 H1 Control SRR018484 7471411 (43%) -
Lister et al. (2011) hg19 H1 RNA-Seq SRR094768-SRR094775 - -
NIH (2011) hg19 IMR90 H3K27ac SRR029631-SRR029632 19926175 (68%) -
Chen et al. (2008) mm9 E14 Oct4 SRR002012-SRR002015 7924650 (33%) 9029
Chen et al. (2008) mm9 E14 Nanog SRR002004-SRR002011 9979157 (35%) 19702
Chen et al. (2008) mm9 E14 Sox2 SRR002023-SRR002026 8136347 (35%) 9012
Chen et al. (2008) mm9 E14 p300 SRR023866-SRR023869 8633464 (26%) 481
Chen et al. (2008) mm9 E14 CTCF SRR001985-SRR001987 6211286 (26%) 52474
Chen et al. (2008) mm9 E14 Control SRR001996-SRR001999 6939857 (29%) -
Marson et al. (2008) mm9 V6.5 Oct4 SRR015151 4024970 (46%) 38774
Marson et al. (2008) mm9 V6.5 Nanog SRR015149-SRR015150 7466443 (42%) 22962
Marson et al. (2008) mm9 V6.5 Sox2 SRR050356-SRR050357 7218075 (36%) 25306
Marson et al. (2008) mm9 V6.5 Control SRR015157-SRR015158 5878858 (51%) -
Kagey et al. (2010) mm9 V6.5 Med1 SRR058987-SRR058988 28391093 (61%) 27698
Kagey et al. (2010) mm9 V6.5 Med12 SRR058985-SRR058986 22776494 (60%) 34318
Kagey et al. (2010) mm9 V6.5 Nipbl SRR058989-SRR058990 31250219 (57%) 21464
Kagey et al. (2010) mm9 V6.5 Smc1 SRR058981-SRR058982 24176890 (62%) 48257
Kagey et al. (2010) mm9 V6.5 Smc3 SRR058983-SRR058984 22917455 (64%) 35539
Kagey et al. (2010) mm9 V6.5 Control SRR058997 3639594 (50%) -
Creyghton et al. (2010) mm9 V6.5 H3K27ac SRR066766-SRR066767 21872571 (67%) -
Creyghton et al. (2010) mm9 NPC H3K27ac SRR066773 8838081(71%) -

Table 2.1: Mapping statistics. NPC: neuronal progenitor cells. Peaks: Peaks after cleaning
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Figure 2.1: Overview of genome-wide binding data in human and mouse embryonic stem cells and
embryonal carcinoma cells. Shown is the locus of the SOX2 gene in the human genome (top),
along with mapped reads for OCT4, SOX2, NANOG and p300. Individual experiments are shown
as separate tracks. The orthologous locus in the mouse genome is aligned at the bottom along with
mapped reads from the individual experiments. The dark blue track indicates sequence conservation
(Pollard et al., 2010). The highlighted areas correspond to regulatory elements bound by different
combinations of transcription factors and co-activator complexes.
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2.1.2 Methods II: Data Processing

Bowtie (0.12.5) was used to map the sequencing reads (Langmead et al., 2009) with
options -m 1 and -v 2 which guarantees that only those reads are kept that map uniquely
and that contain at most two mismatches when being aligned to the reference. All
coordinates refer to the reference genome versions hg19 and mm9.
Peak calling was done using MACS (1.4.0) (Zhang et al., 2008) on the resulting BED

files with control data as summarised in Table 2.1. The MACS default parameters were
used, i.e. a p-value cutoff of 10−5, except for the tag and effective genome size which had
to be adjusted for every experiment, and -mfold 5,30. MACS was run on every negative
control data set to obtain unspecific peaks. All peaks from the original experiment that
overlapped with peaks from the control data were removed using BEDTools (Quinlan
and Hall, 2010). The resulting numbers of final peaks after this ‘cleaning’ procedure are
shown in Table 2.1.
Pre-computed whole genome alignments (Fujita et al., 2011) were used to compare

binding events from mouse and human ES cells. The peaks from the mouse-ChIP-
Seq experiments were aligned to the human genome using the UCSC LiftOver tool
(-minmatch 0.1) (Fujita et al., 2011).
To analyse the binding combinations, the different sets of peaks were integrated into

a binary matrix with rows for every genomic locus which is bound at least once, and
columns for every factor (i.e. ChIP-Seq experiment). The entry [locus X, factor Y] in
this matrix is set to ‘true’, if factor Y binds at locus X in the genome. All data sets
were iteratively integrated by extending the length of the combined regulatory sites to
span the overlapping peaks. The significance of the number of overlapping peaks for two
genome-wide binding profiles was estimated using a hypergeometric test. For this test,
it is assumed that only 25% of the genome can be bound by transcription factors. This
way it is accounted for mapping limitations in repetitive sequences and genome-wide
binding preferences. Furthermore, it is assumed that peaks overlap by 1 bp in average
to obtain conservative estimates of p-values. The p-values of the hypergeometric test
estimate the probability to observe the same number (or more) of shared binding events
for position-randomised data sets. Clustering was done using the z-scores obtained from
the hypergeometric tests. Enrichment of histone modifications was calculated on the
highest 10% of peaks. All analysis was carried out with R (R Development Core Team,
2010), Bioconductor and peakAnalyzer.
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2.2 Results

As a first step toward analysing combinatorial binding, I calculated the amount of pair-
wise co-localisation at the DNA in mouse ES cells (Figure 2.2). Co-localisation was esti-
mated with a hypergeometric test (Section 2.1.2) and these estimates were used to cluster
the experiments (Figure 2.2A). The clustering identified three distinct groups: enhancer
binding (Oct4, Nanog, Sox2), insulator binding/ chromatin architecture (CTCF, Co-
hesin subunits Smc1 and Smc3a), and transcriptional co-activation (Mediator subunits
Med1 and Med12). Interestingly, pairwise co-localisation as estimated from genome-
wide data on DNA-protein interactions reproduces known protein-protein interactions
(Manke et al., 2003): CTCF interacts with Cohesin at insulator elements, Oct4, Sox2
and Nanog interact at enhancers, and Mediator plays a central role by integrating sig-
nals from distant regulatory elements with Cohesin (Figure 2.2B). To test whether this

Figure 2.2: Co-localisation of proteins at the DNA reflect known protein-protein interactions.
(A)Clustering of genome-wide binding profiles from mES cells based on the number of shared
binding events identifies three main classes: Enhancer binding (Oct4, Sox2, Nanog), Insulator bind-
ing/ Chromatin looping (CTCF, Smc1, Smc3) and Mediator associated binding (Med1, Med12,
Nipbl). (B) Protein-protein interaction network inferred from genome-wide binding data. Edges
represent the pairwise similarities with the highest z-scores. (C-D) The number of co-localising
proteins is much higher than expected by chance, both for mouse binding data (mm9, D) and
human binding data together with the aligned mouse data (hg19, C). Randomised data sets show
only very few cases where more than five experiments overlap (black line). The data used in this
study show much stronger co-localisation with many loci where binding was detected in more than
five experiments (red line).
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Figure 2.3: Mediator co-localises with Oct4, Sox2 and Nanog at combinatorially bound enhancers.
(A) Bars indicate the fraction of loci where Med1 and Med12 binding can be observed, separated
by the combination of Oct4, Sox2 and Nanog as indicated by the boxes below. Dark boxes indicate
binding, white boxes indicate no binding. Med1 and Med12 preferentially co-localise when Oct4,
Sox2 and Nanog bind simultaneously (combinatorially bound loci). (B) CTCF co-localisation with
Oct4, Sox2 and Nanog. CTCF serves as a control to estimate unspecific binding. The binding
combination has no influence on CTCF co-localisation, confirming that Mediator co-localisation
is not caused by unspecific enrichment. (C). Comparison of different peak-calling cutoffs. Light
grey boxes (‘v’) indicate binding of at least one factor (‘OR’ relation). Combinatorial binding
is more sensitive than a stringent control of false positives: the 10% most significant peaks are
significantly associated with Med1 and Med12, however, the overall fraction is much lower compared
to combinatorially bound loci.

amount of overlap of transcription factor binding events can be expected by chance, I
calculated the overlap of position-randomised data sets (Figure 2.2C-D). Overall, the
overlap observed in the data is much higher than expected by chance. These results
support that the combination of binding events reflects functional interactions between
the proteins themselves.

2.2.1 Combinatorial Binding and Transcription

The data indicates that interactions are not restricted to pairs of proteins, but rather
extend to larger complexes. For example, Oct4, Nanog and Sox2 show co-localisation
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of all pairwise combinations, indicating that the combination of all three proteins might
be required to regulate gene expression. Active enhancers are frequently bound by
transcriptional co-activators such as Mediator, any influence of the binding combination
should therefore be reflected in different levels of recruitment of the Mediator complex.
To investigate the influence of higher order combinations, I calculated the fraction of loci
that co-localise with the Mediator subunits Med1 or Med12 for all possible combinations
of Oct4, Sox2 and Nanog (Figure 2.3A).
Between 5% and 30% of loci bound by Oct4, Nanog or Sox2 individually co-localise

with Med1 or Med12 (Figure 2.3A). In contrast, loci bound by Oct4, Nanog and Sox2
simultaneously (further referred to as combinatorially bound loci) co-localise much more
frequently with Med1 (44%) and Med12 (59%). Since these loci vary by number and
size, the expected overlap from randomised data sets was calculated (hypergeometric
test, see Section 2.1.2). These tests confirmed that the overlap of Med1 and Med12
with combinatorially bound loci is significantly higher than expected by chance (Med1:
z-score 155.9, Med12: z-score 215.5).
Co-localisation of DNA binding proteins could be unspecific, for example due to bind-

ing at open chromatin regions (see Park (2009) for a review). In such a scenario, the
increased co-localisation of Mediator at loci bound by multiple transcription factors
could be an artifact. Unspecific co-localisation is not accounted for with the theoret-
ical expected overlap. However, co-localisation levels of a factor which is known to
be unrelated, such as CTCF, would be affected (Handoko et al., 2011; Kagey et al.,
2010; Kunarso et al., 2010). Figure 2.2 shows that CTCF largely binds to different
regions than the enhancer binding proteins Oct4, Sox2 and Nanog, therefore CTCF co-
localisation should be depleted at combinatorially bound loci. Indeed, this is confirmed
by the data (Figure 2.3B). CTCF co-localisation is significantly depleted at loci bound
by Oct4, Sox2 and Nanog simultaneously (z-score=-10.5). This suggests that combi-
natorial binding reduces unspecific co-localisation and confirms the association of the
Mediator complex with combinatorially bound loci.
Next, I investigated whether the ChIP-Seq signal (‘binding intensity’) can be used to

obtain enhancers which co-localise with Mediator independently of the binding combi-
nation. The fraction of loci where Mediator co-localises with at least one of the three
transcription factors Oct4, Sox2 or Nanog, for the full data set and the stringent data
set that only contains the top 10% peaks with the highest binding signal was calculated
(Figure 2.3C). In the full data set, 25% of all loci show co-localisation with Med1. In
the stringent data set with the high intensity binding peaks, 16% of all loci show co-
localisation with Med1. This shows that choosing a cutoff on the binding intensity alone
has a lower sensitivity in identifying enhancers that co-localise with Mediator compared
to combinatorial binding (44% of loci show co-localisation). Integration of binding com-
binations has a similar effect in both the stringent and the full data set (Figure VI.2),
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Figure 2.4: The majority of loci bound by Oct4, Sox2 and Nanog is more than 1000 bp distal
from the nearest transcription start sites for all possible combinations (indicated by boxes below).
Mediator co-localisation mainly occurs at distal regulatory sites, showing that the increased co-
localisation of Med1 and Med12 at combinatorially bound loci is specific to enhancers.

confirming that the particular choice of p-value cutoff is of little importance in this
analysis.
Since Mediator occupies many promoters in the genome, transcription factors that

bind preferentially to promoter regions would be expected to show co-localisation with
Med1 or Med12. To test whether the interaction between Oct4, Sox2 and Nanog oc-
curs mainly at the promoter thereby causing the observed Mediator co-localisation, the
fraction of promoters and enhancers was calculated for all binding combinations (Fig-
ure 2.4). The majority of loci bound by Oct4, Sox2 and Nanog are at distant regulatory
elements (61%-97%), even when Mediator co-localisation can be observed. This shows
that the increased overlap at combinatorially bound loci reflects specific binding at dis-
tant regulatory elements and is not caused by simultaneous occupation of the proximal
promoter of actively transcribed genes.
The strong association of combinatorial binding with Mediator suggests that Medi-

ator bound loci are functionally different from loci without Mediator binding. Histone
modifications and gene expression indicate the activity of the regulatory elements (Sec-
tion 1.3.1). Here, I analysed the enrichment of histone marks and gene expression of
nearby genes to test for functional differences. Combinatorially bound loci occupied by
Mediator are strongly enriched in H3K27ac, a mark for active enhancers (Rada-Iglesias
et al., 2011; Creyghton et al., 2010), compared to loci without Mediator co-localisation
(Figure 2.5A). To test the effect of Mediator co-localisation on gene expression, I per-
formed a gene set enrichment analysis (GSEA, Subramanian et al. (2005)) using expres-
sion data from mES cells and differentiated cells after 14 days (Sene et al., 2007). All
genes were sorted according to their expression change between ES cells and differenti-
ated cells and then the enrichment scores were calculated for genes near loci bound by
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Figure 2.5: Functional analysis of combinatorially bound enhancers. (A) Average H3K27ac profile
in mES cells around combinatorially bound loci. Loci bound by Oct4, Sox2 and Nanog together
with Mediator are enriched in H3K27ac, a mark associated with active enhancers (black line). In
contrast, loci without Mediator co-localisation show a much weaker enrichment (red line) suggesting
that Mediator associates with active enhancers. (B-C) Gene Set Enrichment Analysis (GSEA)
of genes near combinatorial binding events. (B) Expression of genes in mES cells (V6.5) and
differentiated cells after 14 days (14d), sorted by the signal-to-noise ratio obtained from the GSEA
software (Subramanian et al., 2005). (C) The random walk that describes the gene set enrichment
over genes sorted by their rank according to signal-to-noise ratio (similar sorting as in B). Group 1
(Oct4, Sox2, Nanog and Med1/Med12 in blue) is enriched in genes active in mES cells (enrichment
score 0.43, p-value< 10−3), group 2 (Oct4, Sox2, Nanog without Med1/Med12 in yellow) is enriched
in genes active in differentiated cells (enrichment score -0.3, p-value=0.05).

Oct4, Sox2 and Nanog with Med1/Med12 (group 1) and without Med1/Med12 (group
2) (Figure 2.5B-C). Group 1 is significantly enriched in genes expressed in ES cells (en-
richment score 0.43, p-value< 10−3). Interestingly, group 2 shows a stronger enrichment
in genes which are expressed in differentiated cells (enrichment score -0.3, p=0.05), sug-
gesting that Oct4, Nanog and Sox2 might co-occupy poised enhancers. Both histone
profiles and gene expression data support the notion that combinatorial binding iden-
tifies enhancers in embryonic stem cells while Mediator co-localisation determines their
activity.
Active enhancers are frequently bound by transcriptional co-regulator complexes,

show specific histone modifications and are associated with increased expression of
nearby genes. The above results demonstrate that combinatorial binding has an in-
fluence on all three aspects, suggesting that combinatorially bound loci represent an
important set of enhancer in ES cells.
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2.2.2 Combinatorial Binding and Evolution

Using data from human ES (hES) cells, I investigated whether combinatorial binding can
help in discriminating conserved and non-conserved binding events. To test this, whole
genome binding data for OCT4, SOX2 and NANOG from human ES cells (Kunarso
et al., 2010; Lister et al., 2009) and OCT4 from human embryonal carcinoma (EC) cells
was analysed. EC cells are the malignant counterpart of ES cells (Przyborski et al.,
2004), however, they possess a distinct set of binding sites, extending the repertoire
of potential OCT4 bound loci (Jung et al., 2010). I used whole-genome alignments
to assign binding events in mES cells to their orthologous loci in the human genome,
retaining only those that could be aligned uniquely (Fujita et al., 2011) (Section 2.1.2).
A binding event is termed ‘conserved’ if binding of the same factor can be observed at
the aligned loci in the human and mouse genome.
For every combination of OCT4, SOX2 and NANOG binding, the fraction of conserved

binding was calculated (Figure 2.6A). Indeed, combinatorial binding is a good predictor
for conservation: Less than 5% of individual binding events are conserved, which is less
than expected. In contrast, about 15% of binding events at loci which are simultaneously
co-occupied by OCT4, SOX2 and NANOG in hES cells show conserved binding of the
respective transcription factor in mES cells (z-scores = 33.6, 41.3, 31.1). To test if
combinatorial binding itself is conserved, the binding combination at conserved binding
events in mouse was calculated for all combinations of OCT4, SOX2 and NANOG
in human cells (Figure 2.6D, top). 53% of combinatorial binding events in human are
simultaneously occupied by Oct4, Sox2 and Nanog in mouse, showing that combinatorial
binding is likely to be a conserved property of regulatory elements in ES cells.
To investigate whether increased binding conservation at combinatorially bound loci

is caused through unspecific effects, I calculate the fraction of loci bound by OCT4,
SOX2 or NANOG in human ES cells that show CTCF binding in mES cells. Since
these transcription factors do no co-localise with CTCF (Figure 2.3B), there should be
no association between combinatorial binding in human and CTCF binding in mouse.
Indeed, CTCF binding is significantly depleted at combinatorially bound loci (z-score =

−6.8). CTCF binding can be observed at higher levels for all other binding combinations,
most prominently OCT4 with SOX2. The combination of OCT4 and SOX2 without
NANOG scarcely occurs genome-wide (159 times, the combination OCT4, SOX2 and
NANOG occurs 6698 times). The high levels of CTCF at OCT4/SOX2 loci is therefore
likely to be unspecific and of low relevance, which is confirmed by the stringent data set
(Figure VI.3). This shows that the increased binding conservation at loci occupied by
OCT4, SOX2 and NANOG is specific to the combination of transcription factors.
I further tested if a cutoff that selects the peaks with the highest binding intensities

similarly identifies conserved binding events. For all loci which are bound by OCT4,
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Figure 2.6: The combination of OCT4, SOX2 and NANOG influences conservation of binding events. (A) Bars indicate
the fraction of loci where binding of Nanog, Sox2 and Oct4 can be observed at the orthologous loci in mouse ES cells for
all combinations of OCT4, SOX2 and NANOG in human ES cells (dark boxes: binding; white boxes no binding). Loci
simultaneously occupied by OCT4, SOX2 and NANOG in human show the largest fraction of conserved binding for Oct4, Sox2
and Nanog in mouse. (B) Estimation of unspecific binding (CTCF) in mouse at loci bound by OCT4, SOX2, or NANOG
in human. CTCF is not enriched at combinatorially bound loci, confirming that this effect is specific. (C) Comparison of
different peak-calling cutoffs. Light grey boxes with ‘v’ indicate binding of at least one factor. (D) Top: The fractions of
binding combinations in mES cells at conserved loci (for all combinations of binding in human cells as indicated by the boxes
below). Combinatorial binding of Oct4, Sox2 and Nanog in mES cells is much higher at combinatorially bound loci in human,
suggesting that combinatorial binding is conserved in evolution. Bottom: The fraction of proximal and distant binding sites for
conserved and non-conserved binding events, split up according to the binding combinations indicated below. The majority of
conserved binding events are distant regulatory elements.
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SOX2 or NANOG in human ES cells, the percentage of Oct4, Sox2, Nanog and CTCF
binding in mouse ES cells was calculated for the full and the stringent data set that
contains only the top 10% of peaks (Figure 2.6C). Less than 5% of binding events are
conserved between mouse and human in the stringent data set. This is higher than
expected, however, combinatorial binding is a more sensitive indicator for conservation
(3-5% conserved binding for p-value cutoff vs. 14-17% for combinatorial binding). Many
true binding sites will be lost in the stringent data set, increasing the number of false
negatives. This is avoided using combinatorial binding. On the other hand, CTCF levels
are strongly reduced in the stringent data set (Figure VI.3), showing that the number
of false positives is higher when the full data set is used. It is likely that combinatorial
binding decreases the number of false positives, as it is unlikely that these will be
identified in multiple experiments.
Interestingly, the fraction of loci within the proximal promoter (±1000 bp) is higher

for conserved binding events compared to non-conserved binding (Figure 2.6D), thus
suggesting that the promoter is under stronger evolutionary constraint. However, the
majority of binding events are distant from the predicted transcription start sites. The
increased level of conservation at combinatorially bound loci is therefore not caused by
a bias towards promoter binding, but specific to enhancers.

2.2.3 Conserved Combinatoriallly Bound Loci are Active in
Development

The outcome of transcription factor binding events is ultimately determined by the
function of the genes that they regulate. There are 720 conserved loci bound by OCT4,
SOX2 and NANOG in human and mouse ES cells, associated with 608 genes nearby.
Amongst the putative target genes are OCT4, SOX2, LEFTY1, JARID2 and many
other well known factors associated with pluripotency.
To obtain a more general picture of the downstream target genes of conserved com-

binatorial binding events I performed a Gene Ontology (GO) enrichment analysis using
the Genomic Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 2010).
GREAT calculates enrichment of biological processes against a background set to cor-
rect for the bias introduced through large non-coding regions near developmental genes.
All combinatorially bound regions in human were selected as background and the GO
term enrichment was calculated for the subset of combinatorial binding events which
are conserved between mouse and human (Figure 2.7A). Conserved combinatorially
bound loci are significantly enriched in the terms pattern specification process (p-value
= 4.7e-13), rationalisation (p-value = 2.5e-12) and developmental induction (p-value =
8.4e-8). Even though the background set is already enriched in developmental GO terms
(amongst others developmental induction, p-value = 2e-8), the association of conserved
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Figure 2.7: Conserved combinatorially bound loci are active in development. (A) GO enrichment
analysis of conserved combinatorially bound loci, using all combinatorially bound loci as background.
Genes near conserved loci are significantly enriched in processes important for development and
differentiation. (B) Average mouse neural progenitor cell H3K27ac profile around loci bound by
Oct4, Sox2 or Nanog in mES cells (O+S+N). Enhancers which are active in mouse development
are enriched in H3K27ac in neural progenitor cell (red line) supporting that these elements play a
role after differentiation of embryonic stem cells. (C) Average H3K27ac profile in human embryonic
fibroblasts around loci bound by OCT4, SOX2 or NANOG in hES cells. Enhancers bound by OCT4,
SOX2 or NANOG which are active in mouse development (red line) are enriched in H3K27ac in
human fibroblast cells supporting that many of these enhancers are developmentally active in human
as well. (D) Fraction of loci which show developmental activity in mouse; boxes below indicate the
combination of Oct4, Sox2 and Nanog.
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combinatorial binding events with developmental processes is even stronger. In support
of this, genes such as SOX21, FGF4, NEUROG3 and CDX2 which are located near
conserved combinatorial binding events have been shown to be important for directing
differentiation of ES cells (Mallanna et al., 2010; Spence et al., 2011; Chawengsaksophak
et al., 2004).
The GO enrichment analysis showed that binding of Oct4, Sox2 and Nanog frequently

occurs near developmental genes and gene expression data suggests that genes near
combinatorial binding events are indeed up-regulated after differentiation (Figure 2.5B).
The majority of loci bound by Oct4, Sox2 and Nanog together with Med1 or Med12
are likely to act as enhancers in embryonic stem cells. However, the function of loci
near inactive genes is unclear. Since many of these genes are active during development,
I tested whether Oct4, Sox2 and Nanog co-occupied loci act as early developmental
enhancers. I used a set of tissue-specific enhancers obtained from mouse embryos at
day e11.5 (Visel et al., 2009; Blow et al., 2010), a stage where neither Oct4 nor Nanog
is expressed. Surprisingly, combinatorially bound loci in ES cells overlap significantly
with these developmental enhancers (9%, z-score = 27.5).
The histone modification H3K27ac is associated with active enhancers. I calculated

the enrichment of H3K27ac in mouse neural progenitor (NP) cells derived from mouse
ES cells (Creyghton et al., 2010) at all loci bound by Oct4, Sox2 and Nanog (Fig-
ure 2.7B). The subset of loci which are additionally active during development shows
an enrichment of H3K27ac in NP cells, supporting that these indeed become active af-
ter differentiation. Next I tested whether these mouse developmental enhancers can be
used to estimate human developmental enhancers. I calculated enrichment of H3K27ac
in human embryonic lung fibroblast cells (IMR90, NIH (2011)) for all loci bound by
OCT4, SOX2 and NANOG in human ES cells (Figure 2.7C). The subset of combinato-
rially bound loci which align with mouse developmental enhancers shows an enrichment
in H3K27ac in IMR90 cells, suggesting that these enhancers can be used to estimate
activity during human embryonic development.
Identification of developmental enhancers in human is very difficult, the best known

examples were found using sequence conservation (Visel et al., 2007; Pennacchio et al.,
2006). The above evidence suggests that Oct4, Sox2 and Nanog frequently bind to de-
velopmental enhancers. Interestingly, less than 5% of individually bound loci are active
during development, whereas 10% of combinatorially bound loci show developmental
activity in the mouse embryo (Figure 2.7C). Most strikingly, 26% of enhancers which
show conserved combinatorial binding in mouse and human ES cells are active during
development. This suggests that conserved combinatorial binding of Oct4, Sox2 and
Nanog can be used to identify enhancers active during human embryonic development.
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Figure 2.8: Conservation of gene regulatory hotspots. (A) Bars indicate the fraction of loci where
binding of Nanog, Sox2, and Oct4 can be observed at the orthologous locus in mouse ES cells for
all combinations of OCT4, SOX2 and NANOG in human ES cells discriminated by developmental
activity as indicated by the boxes below. Dark boxes indicate binding, ‘?’ indicates no restriction.
Combinatorial binding events at developmentally active enhancers show the highest levels of binding
conservation between mouse and human ES cells (>50%). (B) The level of CTCF binding is not
affected by developmental activity, confirming that this effect is specific for conserved combinato-
rially bound loci. (C) Top: The fractions of binding combinations in mES cells at conserved loci
(for all combinations indicated by the boxes below). The majority of conserved binding events at
developmentally active enhancers where OCT4, SOX2 and NANOG bind simultaneously show com-
binatorial binding of Oct4, Sox2 and Nanog in mouse ES cells. Bottom: The fraction of proximal
and distal binding sites for conserved and non-conserved binding events.

2.2.4 Gene Regulatory Hotspots: A Model for Highly Conserved
Regulatory Elements

Conserved combinatorial binding hints at developmental activity. Vice versa, enhancers
which are active during development show high conservation of binding events in ES
cells (Figure 2.8A). Strikingly, 63%, 58% and 53% of OCT4, SOX2 and NANOG binding
events are conserved in mouse at enhancers that are active in early development. This
number is drastically higher than previous estimations (Kunarso et al., 2010) and shows
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Figure 2.9: The gene regulatory hotspot downstream of SOX21. (A) The human sequence of
the conserved combinatorially bound regulatory element downstream of SOX21 shows reproducible
activity during mouse development. Figure reproduced from the VISTA enhancer browser (Visel
et al., 2007). (B) The orthologous sequence of this regulatory element from amphioxus was tested
in zebrafish where it showed reproducible activity in forebrain. Figure reproduced from Hufton et al.
(2009). (C) Screenshot from the UCSC genome browser of the regulatory element downstream of
SOX21. This enhancer is bound by Oct4, Sox2 and Nanog in mouse and human ES cells and acts
as a developmental enhancer during mouse embryogenesis. Both, sequence and expression pattern
is conserved between human, mouse and amphioxus.

that combinatorial binding together with developmental activity of the bound loci are
strong indicators for binding conservation in embryonic stem cells.
The prominent difference in conservation between individual, isolated binding events

and combinatorial binding events at enhancers which are active in multiple cell types
suggests the existence of gene regulatory hotspots which are highly conserved in evo-
lution (Figure 2.10). These hotspots are enhancers which recruit multiple, interacting
transcription factors in pluripotent cells where they can be in an active or poised state.
The very same element recruits different sets of transcription factors after differentiation
and during development.
The element downstream of SOX21 is such an example and illustrates the intimate

connection between embryonic stem cells, pluripotency and development (Figure 2.9).
SOX21 plays a pivotal role during brain development by promoting neuronal differen-



2.3 Discussion 33

tiation (Sandberg et al., 2005). The downstream regulatory element is ultra-conserved
with high sequence similarity in human, mouse and zebrafish, where it is always in close
proximity to the SOX21 gene (Figure 2.9C). The cis-regulatory element is bound by
OCT4, SOX2, NANOG and p300 in human ES cells and Oct4, Sox2, Nanog and p300
in mouse ES cells. During mouse midbrain and forebrain development, this element is
bound by the enhancer binding protein p300 and expression data shows that Sox21 is in-
deed over-expressed in forebrain compared to the whole embryo at day 11.5 (Visel et al.,
2009). The human element was tested in vivo in mouse and showed reproducible activ-
ity in forebrain, midbrain, hindbrain and neural tube (Figure 2.9A Visel et al. (2007)).
The same element is conserved in amphioxus where it is associated with the SOX21
ortholog soxB2. The amphioxus sequence was tested in zebrafish where it showed re-
producible activity in forebrain (Figure 2.9B, (Hufton et al., 2009)). The conserved
enhancer downstream of SOX21 is therefore a unique example of a functionally and
genetically ultra-conserved cis-regulatory element that is bound in ES cells and active
during development. This finding is indeed remarkable as it has been estimated that
amphioxus split from vertebrates about 550 million years ago (Putnam et al., 2008).

2.3 Discussion

Protein interactions are required for all major cellular processes. Transcription factors
such as OCT4 and NANOG interact to regulate gene expression (van den Berg et al.,
2010). Since transcription factor recognise specific DNA motifs, it has been proposed
that their interaction is encoded in the DNA and that the binding combination effec-
tively determines the regulatory outcome. Computational approaches to study binding
combinations have been limited to promoters as enhancers are very difficult to iden-
tify using sequence alone (Section 1.4.1). In this chapter, combinatorial binding at
enhancers was investigated by analysing in vitro co-localisation of transcription factors.
This analysis revealed that combinatorial binding impacts recruitment of transcriptional
co-activators, histone modifications and has a significant impact on gene expression. Fur-
thermore, combinatorial binding events are more frequently conserved between mouse
and human, suggesting that combinatorial binding at enhancers increases the evolution-
ary constraint.
The enormous amount of genome-wide binding data produced in recent years has

improved our understanding of the self-renewing and pluripotent state of embryonic stem
cells (Boyer et al., 2005; Chen et al., 2008; Lee et al., 2006). By integrating data from
ES cells with developmental enhancers I demonstrated that the very same regulatory
elements bound by key pluripotency factors in ES cells frequently act as enhancers
during early development. This finding provides an unknown link between the gene
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regulatory networks of ES cells and early development at the level of transcriptional
regulation.
The finding that binding at developmental enhancers is highly conserved in mouse

and human ES cells suggests that these gene regulatory hotspots are crucial for the
maintenance of the pluripotent state (Figure 2.10). It is likely that these elements are
poised for activation (Rada-Iglesias et al., 2011; Creyghton et al., 2010), and an open
chromatin state might be maintained throughout development to enable recruitment of
transcription factors, co-activators, or histone modification proteins throughout cellular
specification. Enhancers bound in multiple developmental stages by multiple factors
influence gene expression in numerous cell types from pluripotent cells to at least cells
of the mouse embryo at day 11.5. The existence of such gene regulatory hotspots

Figure 2.10: Schematic view of gene
regulatory hotspots.

could explain the extraordinarily high level of bind-
ing conservation observed in ES cells, since mu-
tations of these elements would influence a major
part of early embryogenesis. In contrast to these
hotspots, loss of individual binding events can more
easily be substituted by nearby binding events, and
is likely to influence only a limited number of cell
types. This analysis therefore suggests that the fast
evolutionary rewiring of regulatory networks indeed
mainly affects individual binding events, while com-
binatorial binding at gene regulatory hotspots is un-
der stronger evolutionary constraint.
The definition of combinatorial binding in this

study relies on the ChIP-Seq technology. Here, com-
binatorially bound loci are defined as genomic re-
gions were binding of different transcription factors
in similar cell types can be observed. These ex-
periments are independent of each other and reflect
measures from a mixed population of cells. Co-
localisation could therefore be observed without di-
rect physical interactions (for example through in-
direct interaction or competitive binding). However, results of this and other studies
(van den Berg et al., 2010; Lemischka, 2010) support that co-localisation as observed by
the ChIP-Seq technology indeed reflects combinatorial binding.
One of the difficulties in analysing genome-wide data sets is how to discriminate true

binding sites from false positive binding sites. It is impossible to identify a set of exclu-
sively true binding sites, due to technical limitations, but also due to biological variation
since many binding events will only be important under specified developmental cues.
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A more stringent p-value cutoff decreases the fraction of false binding sites in the data
while at the same time true positive binding events will be lost. Combinatorial bind-
ing is likely to select for true binding sites as well, since non-functional binding events
are unlikely to be detected in multiple experiments. However, combinatorial binding
is different from a stringent control of false positives as can be seen by Mediator co-
localisation and binding conservation (Figures 2.3 and 2.6). It has been shown that
groups of transcription factor binding sites are more likely to be conserved than iso-
lated sites (Hemberg and Kreiman, 2011) which supports the value of combinatorial
binding for transcriptional regulation. This is an important insight for future studies,
which should consider the combination of transcription factors for defining regulatory
networks.

One limitation of the ChIP-Seq technology is that combinatorial binding cannot be
excluded. Weak or sporadic combinatorial binding events might be missed and therefore
wrongly assigned as individual binding events (false negatives). However, the results
obtained using two different cutoffs, a loose cutoff (full data set) with few false negatives
and a very stringent cutoff (stringent data set) with many false negatives largely agree.
Combinatorial binding events (OCT4, SOX2, NANOG) consistently show the strongest
association with Mediator and highest levels of binding conservation. This suggests that
the influence of the p-value cutoff and false negative binding events is limited on this
analysis.

Most of the binding data in this study is obtained from embryonic stem cells. In
mouse, data from two mouse embryonic stem cell lines (V6.5 and E14) was integrated.
Interestingly, loci bound in both cell lines are much more likely to show co-localisation
with Mediator (Figure VI.5A). In human, the available data was extended by OCT4
ChIP-Seq from embryonal carcinoma cells to obtain data from different cell lines. Loci
bound in both EC and ES cells are much more likely to show combinatorial binding
(Figure VI.5B). Therefore employing closely related cell lines is a biologically relevant
approach for identifying important binding sites when data on combinatorial binding is
not available.

A number of genes also show strong species-specific binding patterns, most promi-
nently Esrrb, an interaction partner of Oct4 (van den Berg et al., 2010) which is almost
exclusively bound in mouse ES cells. It would be of interest to more deeply investigate
genes that show strong species-specific binding patterns. Such an analysis could help to
better understand the differences of mouse and human ES cells.



36 2 Combinatorial Binding at Enhancers in ESCs

2.4 Conclusion

Developmental cues that lead to differentiation of cells during early embryogenesis in-
volves binding of transcription factors at regulatory sequences in the genome. I have
demonstrated that in ES cells, the combination of transcription factors that bind to
regulatory elements is important for transcriptional activation. Combinatorial binding
of OCT4, SOX2 and NANOG identifies enhancers characterised by H3K27ac and Medi-
ator co-localisation. Many of these combinatorially bound enhancers are active during
early development. The comparison of mouse and human ES cells showed that both
combinatorial binding and multiple activity of enhancers in ES cells and development
increase the evolutionary constraint. This analysis suggests that the fast evolutionary
rewiring of regulatory networks mainly affects individual binding events. In contrast
to these events, there is a group of conserved enhancers in the genome which recruit
multiple interacting factors and are active in multiple tissues of the developing embryo
(Figure 2.10). Many of these ‘gene regulatory hotspots’ are under strong evolutionary
constraints and seem to play a major role by linking the regulatory networks of cellular
differentiation during early mammalian development.



3 Alignment-Free Pairwise
Comparison of Enhancer
Sequences

Sequence similarity has been used to estimate the functional similarity of protein-coding
genes. The similarity of coding sequences is usually estimated with alignments. In
contrast to protein-coding genes, these alignment methods fail in the identification of
functionally similar regulatory sequences like enhancers. Enhancers which drive expres-
sion in the same tissues frequently share the same transcription factor binding sites,
therefore the number of shared DNA words can be used to compare such sequences. In
this chapter, I present a novel, alignment-free sequence comparison method, N2, which
can be used to calculate the pairwise sequence similarity of regulatory sequences.

3.1 Introduction

Sequence dependent gene regulation is mainly achieved through the binding of tran-
scription factors at enhancers and promoters. The promoter is crucial to activate gene
expression and it integrates different regulatory signals. Most frequently, the same pro-
moter is active in all tissues where the gene is expressed. Enhancers occur much more
frequently in the genome than promoters and multiple enhancers are associated with
every gene (Heintzman et al., 2009). This enables enhancers to influence gene expression
in a much more cell type-specific manner (Chen et al., 2008; Goto et al., 1989; Small
et al., 1991; Zinzen et al., 2009).
In Chapter 2 I showed that the cooperativity of transcription factors is important for

transcriptional activation. Studies in Drosophila showed that the combination of bind-
ing sites together with the set of transcription factors actively recruited to an enhancer
determines its cell type-specificity (Goto et al., 1989; Small et al., 1991; Zinzen et al.,
2009). More generally speaking, regulatory sequences with a similar binding site content
can be expected to drive similar expression patterns. This is analogous to coding se-
quences, where sequence similarity has been used for many years to estimate functional

37
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similarity. The pairwise similarity of coding sequences is usually computed using global
(Needleman and Wunsch, 1970) or local (Smith and Waterman, 1981) alignments. This
approach works well for sequences which are at least partially alignable, however this is
not the case for non-homologous enhancers. The location and orientation of binding sites
in enhancers that show similar cell type-specific activity may differ widely (Davidson,
2006), making it impossible to produce alignments.
Alignment-free methods compare sequences according to their word content, see Vinga

and Almeida (2003) and Bolshoy (2003) for an overview. The initial purpose was to
design a fast and accurate measure of pairwise (dis-)similarity that could be used in
databases where traditional alignments were too slow (Blaisdell, 1986; Hide et al., 1994;
Carpenter et al., 2002). In the meantime, alignment-free methods have been applied in
other contexts such as phylogeny (Wu et al., 2009) and motif finding (Gordân et al.,
2010). The idea to describe a sequence by its word content directly fits the model
of combinatorial binding in enhancers, where it is assumed that a similar function is
reflected in a similar binding site content.
Word count-based methods have been used to compare regulatory sequences (Kan-

torovitz et al., 2007; van Helden, 2004). However, these methods calculate the similarity
of sequences based on exact word counts, whereas transcription factor binding sites are
generally more flexible patterns (Section 1.4). Furthermore, the genomic orientation of
enhancers is most often unknown, therefore it is important to compare sequences ac-
cording to the word counts on both strands simultaneously. As an example, the word
w = CATAAT might be bound by the same transcription factor as the words CTTAAT
and ATTATG, the former having one substitution, the latter being on the reverse strand.
Exact word comparison methods consider these words dissimilar, highlighting the need
of a much more flexible approach for comparison of regulatory sequences.
More generally, let n(w) be the set of words which are similar to w (the ‘neigh-

bourhood’ of w). To overcome the limitation of exact word comparison methods, a
similarity measure that compares sequences based on word neighbourhoods needs to be
developed. Theoretical approaches that consider approximate word matches have been
studied before (Forêt et al., 2006; Burden et al., 2008; Forêt et al., 2009; Burden et al.,
2012), however no applicable method has been published for the purpose of pairwise
comparison.
In this chapter I will give a background to word statistics and an overview of current

alignment-free sequence comparison methods. I will then introduce N2, an alignment-
free sequence comparison method that is based on the concept of word neighbourhoods
to overcome the limitations of exact word comparison methods. I compare N2 to other
alignment-free methods on simulated sequences and tissue-specific enhancer sequences
identified in vivo in mouse embryos. I have implemented N2 and other alignment-free
similarity measures as part of the open source C++ library SeqAn (Doering et al.,
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2008). The fully documented code and an executable version (ALF) is available online
(http://www.seqan.de/projects/alf/).

3.2 Background: Word Statistics

Regulatory sequences are defined by the set of transcription factor binding sites. Since
these binding sites are most often unknown, regulatory sequences can be compared using
the set of all possible words. However, this introduces noise, as the majority of words is

Nomenclature: Word Statistics

S sequence

S[i . . . i+j] sub-sequence from position i to i+j

l length of sequence

A alphabet, A,C,G,T in the case of DNA

w word/ k-mer

k length of word/k-mer

NS
w , Nw number of occurrences of w in se-

quence S

Yi(w) binary indicator for an occurrence of w
starting at position i

D set of all words w of length k (‘dictio-
nary’)

|D| size of D (4k for DNA)

NS vector of word occurrences NS
w for all

w ∈ D

unlikely to act as a binding site. Therefore it is
important to identify words which are likely to
be biologically relevant. Words with frequencies
close to the expected frequency are of less bio-
logical interest, whereas words which occur more
often than expected will be more relevant, pre-
suming that this behaviour is due to a specific
biological function. In order to decide if some-
thing occurs more often than expected, one first
needs to know what to expect.
The occurrence of a transcription factor bind-

ing site in a DNA sequence can be described in
general terms as the occurrence of a word in a text
of letters from a specific alphabet. For a given al-
phabet A, let S be a sequence (‘text’) of length
l, with every letter S[i] ∈ A ∀ i = 1 . . . l and let
w be a word of length k < l. The number of oc-
currences of the word w in the sequence S (word
count) is then described as

NS
w =

l−k+1∑
i=1

1(S[i . . . i+ k − 1] = w) .

Nw is a random variable, the distribution of which is dependent on the sequence length,
sequence composition, word length, and word composition. For example, the words
w1 = AAAA, w2 = CGCG and w3 = CAGT have entirely different word count distributions
(Figure 3.1). Alignment-free comparison methods rely on an accurate description of the
distribution of NS

w in order to correctly weight word counts1. In the following, I will
introduce models that describe the expected behaviour and variance of the word count
Nw.

1The superscript indicator for sequence S will be omitted in the unambiguous case of a single sequence

http://www.seqan.de/projects/alf/
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3.2.1 Background Models for Biological Sequences

The aim of the model is to provide an accurate description of the phenomenon un-
der study (Robin et al., 2005). In order to study word statistics, it is assumed that
the sequence S = S[1]S[2] . . . S[l] was generated by a sequence of random variables
X1X2 . . . Xl. The possible values of Xi are the letters x ∈ A, A = A,C,G,T in the case
of DNA, with

∑
x∈A P (Xi = x) = 1.

Bernoulli Model

The Bernoulli model assumes that the Xi are independently identically distributed
(i.i.d.) random variables. For every position i in S, the distribution of letters x ∈ A is
described by µ(x), that is P (Xi = x) = µ(x) with

∑
x∈A µ(x) = 1. The probability that

a word w occurs at a specific position i in sequence S (further referred to as the word
probability µ(w)) is then the product of the probabilities of the letters of w:

µ(w) = P (S[i . . . i+ k − 1] = w) =
k∏
j=1

µ(w[j]) . (3.1)

Formula 3.1 gives the probability that w occurs at any position i in sequence S, where
the position is defined by the first letter of w. Let Yi(w) be the binary variable that
indicates if an occurrence of w starts at position i in S:

Yi(w) =

{
1 if S[i . . . i+ k − 1] = w

0 otherwise .

The indicator Yi(w) is a Bernoulli distributed random variable with parameter p =

P (Yi(w) = 1) = µ(w). The expected value E and variance V of Yi(w) are:

E[Yi(w)] =µ(w) (3.2)

V[Yi(w)] =µ(w)(1− µ(w)) . (3.3)

The properties of Yi(w) will be helpful to calculate the expected value and variance of
the word counts Nw, as these can be modelled using Yi(w):

Nw =
l−k+1∑
i=1

Yi(w) . (3.4)

Dependence between word occurrences. Importantly, Yi(w) and Yj(w) are not
independent for close positions i and j (|i − j| ≤ k − 1). For example, the probability
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that the word w = AAAA occurs at position i+d is much higher when w already occurred
at position i for d = 1, 2, 3, as it may overlap with itself, that is

P (Yi(w) = 1 , Yi+d = 1) 6= P (Yj(w) = 1)P (Yj−1 = 1) .

This dependency can be captured by calculating the word overlap indicator ε, which
indicates for every position u = 1 . . . k of w if w can overlap with itself:

εu(w) =

{
1 if w[k − u+ 1 . . . k] = w[1 . . . u]

0 otherwise .
(3.5)

The word overlap indicator can now be used to calculate the probability of observing
dependent word occurrences for all possible word overlaps |i− j| ≤ k − 1:

P (Yi(w) = 1 , Yj(w) = 1) = µ(w)εk−|i−j|(w)
k∏

d=k−|i−j|+1

µ(w[d]) . (3.6)

Expected Counts. The word count Nw is a sum of random variables (Formula 3.4).
The expected value of a sum of (dependent) random variables equals the sum of their
expected values (Formula VI.1). Therefore, Formula 3.2 can be used to calculate the
expected number of occurrences of the word w in the sequence S, E[Nw] (expected
counts):

E[Nw] =E[
l−k+1∑
i=1

Yi(w)] =
l−k+1∑
i=1

E[Yi(w)] =
l−k+1∑
i=1

µ(w)

=(l − k + 1)µ(w) .

Variance of the word count. Since Nw is a sum of dependent random variables, the
variance of the word count V[Nw] can be computed according to

V[Nw] = V[
l−k+1∑
i=1

Yi(w)] =
l−k+1∑
i=1

l−k+1∑
j=1

Cov[Yi(w), Yj(w)] . (3.7)

The definition of the covariance (Formula VI.2) gives

Cov[Yi(w), Yj(w)] = E[Yi(w)× Yj(w)]− E[Yi(w)]E[Yj(w)] . (3.8)

The Yi(w) are Bernoulli distributed random variables where the expected value equals
the probability of success:

Cov[Yi(w), Yj(w)] =P (Yi(w)× Yj(w) = 1)− P (Yi(w) = 1)P (Yj(w) = 1) (3.9)

=P (Yi(w) = 1 , Yj(w) = 1)− P (Yi(w) = 1)P (Yj(w) = 1) . (3.10)
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Since the dependency in the Bernoulli model only extends to positions where overlaps
are possible, all Yi(w) and Yj(w) are independent for |i− j| > k − 1, that is

P (Yi(w) = 1 , Yj(w) = 1) = P (Yi(w) = 1)P (Yj(w) = 1) , therefore (3.11)

Cov[Yi(w), Yj(w)] = 0 for |i− j| > k − 1 . (3.12)

In the case of |i − j| ≤ k − 1 overlaps are possible and P (Yi(w) = 1 , Yj(w) = 1) is
defined according to Formula 3.6. Together with Formula 3.3, the covariance can be
calculated:

Cov[Yi(w), Yj(w)] =


µ(w)(1− µ(w)) for i = j

µ(w)εk−|i−j|(w)
k∏

d=k−|i−j|+1

µ(w[d])− µ(w)2 for |i− j| ≤ k − 1

0 otherwise .

Applied to Formula 3.7 we obtain the exact word count variance for the Bernoulli model.

Application of the Bernoulli Model. Figure 3.1A shows the observed word count
distribution for the words w1 = AAAA, w2 = CAGT, and w3 = CGCG for 15000 sequences of
length 15000 bp sampled according to the Bernoulli model, with µ(A) = 0.3, µ(C) = 0.2,
µ(G) = 0.2, µ(T) = 0.3. The expected value and variance exactly reproduce the observed
mean and variance. The figure also shows the importance to calculate the exact variance
which accounts for word overlaps. While ignoring dependencies of Yi still accurately
measures the variance for non-overlapping (CAGT) and rare words (CGCG), the variance
for words with frequent self-overlaps (AAAA) is under-estimated.
Applying this to sequences sampled according to the dinucleotide frequency observed

in the mouse genome shows that the Bernoulli model is still very limited (Figure 3.1B).
Both the expected value and the variance do not resemble the observed mean or vari-
ance. For DNA sequences, the assumption that every nucleotide is independent from
its neighbouring nucleotides is simply not correct, the CG dinucleotide (abbreviated as
CpG) is very rare in mammalian genomes (Gardiner-Garden and Frommer, 1987). This
directly leads to the formulation of Markov chains as a model for DNA sequences.

Markov Model

The main goal of Markov models is to include neighbouring dependencies of nucleotides
in DNA sequences. As stated above, it is assumed that the sequence S = S[1]S[2] . . . S[l]

was generated by a collection of random variables X1X2 . . . Xl, in other words, S is a
realisation of the discrete stochastic process (Xt)t∈N+ . In contrast to the Bernoulli
model, the assumption that all Xi are independent is dropped, instead it is assumed
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Figure 3.1: Word Counts for w1 = AAAA (red), w2 = CAGT (blue), and w3 = CGCG (green) in
15000 sequences of length 15000 bp each. Black dots indicate the expected value and the arrows
indicate the standard deviation for the simulated distributions for each word. (A) Sequences were
generated according to i.i.d. nucleotides. The expected value and variance for the Bernoulli model
and first order Markov model correctly resemble the observed values. Ignoring word dependencies
leads to an underestimation of the word count variance. (B) Sequences were generated according
to the dinucleotide distribution in the mouse genome. The expected value and variance for the
first order Markov model correctly resembles the observed values, whereas the Bernoulli model fails.
Similar to i.i.d. sequences, ignoring word dependencies leads to an underestimation of the word
count variance.

that the conditional probability distribution of future states of the stochastic process
depends only on the present state, not on the sequence of events that preceded (Markov
property):

P (Xi+1 = xi+1 | Xi = xi, . . . , X0 = x0) = P (Xi+1 = xi+1 | Xi = xi)

The conditional probability P (Xi+1 = xi+1 | Xi = xi) is called transition probability.
The transition matrix Π is defined as the matrix containing all transition probabilities
from state a to b (π(a, b) = P (Xi+1 = b | Xi = a) ∀ a, b ∈ A). Since Xi+1 is necessarily
drawn from the state space defined by the alphabet A, it holds that∑

b∈A

π(a, b) = 1 .

For every row of the transition matrix, the sum of all elements is equal to 1. For
DNA sequences, homogeneity of the stochastic process is generally assumed, that is
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Figure 3.2: Markov Models for DNA Sequences. (A) First order Markov model for DNA sequences.
The graph shows the states (nodes) and transition probabilities (edge width). The transition matrix
is shown below. (B) Bernoulli Model (‘zero order Markov model’). There are no dependencies of
neighbouring nucleotides, therefore all rows of the transition matrix are equal. (C) Higher order
Markov models can be reduced to first order Markov models by extending the state space. This
example shows a second order Markov model.

the transition probability π(a, b) does not depend on the position in the sequence. A
Markov process, or Markov chain, can be visualised as a graph where the states are the
nodes and the edges are associated with the transition probabilities (Figure 3.2A). The
Bernoulli model is a specific Markov model with equal transition probabilities for all
states, that is π(a, b) = µ(b) ∀ b ∈ A (‘zero’ order Markov model, Figure 3.2B). Markov
models of order m, where Xi depends on Xi, . . . , Xi−m can effectively be reduced to a
first order Markov model by extending the state space to oligonucleotides of length m
(Figure 3.2C). This observation will be used again later in this chapter.

Stationarity. Since X1 has no predecessor, it has to be sampled from a particular
distribution µ = {µ(A)µ(C)µ(G)µ(T)}. In the following, it is assumed that the Markov
chain is stationary, that is Xi+1 has the same distribution as Xi. Accordingly, since X1

is sampled from µ, all Xi are distributed according to µ. For every letter b ∈ A, it holds

µ(b) =
∑
a∈A

µ(a)π(a, b) .

µ is called the stationary distribution. In sufficiently long DNA sequences all 16 din-
ucleotides occur, which ensures irreducibility1 and aperiodicity2 of the Markov chain.
Given a finite state space, irreducibility, and aperiodicity of the Markov chain, the

1A Markov Chain is irreducible if it is possible to get to any state from any state.
2A Markov chain is aperiodic if for all states i there exists a t such that for all t′ > t: P (Xt′ = i |
Xt = i) > 0.
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stationary distribution µ = µΠ always exists and is unique (Robin et al., 2005). Sta-
tionarity of the Markov chain ensures that for every position i in the sequence S, the
probability that a letter a occurs is µ(a). The probability µ(w) that a word w occurs
at a specific position i therefore depends on the probability that the first letter occurs,
µ(w[1]) and can be calculated as follows:

µ(w) = µ(w[1])×
k∏
j=2

π(w[j − 1], w[j]) . (3.13)

Dependence between occurrences. Similarly to the Bernoulli model, the probability
to observe occurrences of a word w at positions that would allow self-overlaps can be
computed using the word overlap indicator ε (Formula 3.5):

P (Yi(w) = 1 , Yj(w) = 1) (3.14)

= µ(w)εk−|i−j|(w)
k∏

d=k−|i−j|+1

π(w[d− 1], w[d]) for |i− j| <= k − 1 . (3.15)

Additionally, non-overlapping words are dependent in the Markov model, as the prob-
ability to observe the first letter of the word w (w[1]) depends on its last letter w[k].
To observe occurrences of w at positions i and j, w has to occur at position i (µ(w)),
the first letter of w has to occur exactly |j − i| − k + 1 positions after the last letter of
the occurrence of w at position j (π|j−i|−k+1(w[k], w[1])), and w[1] has to be followed by
w[2 . . . k]:

P (Yi(w) = 1 , Yj(w) = 1) (3.16)

= µ(w)π|j−i|−k+1(w[k], w[1])
k∏
j=2

π(w[j − 1], w[j]) (3.17)

=
µ(w)2

µ(w[1])
π|j−i|−k+1(w[k], w[1]) for |i− j| > k − 1 . (3.18)

Expected counts. Similarly to the Bernoulli model, the number of occurrences is a
sum of (dependent) Bernoulli distributed random variables (Formula 3.4). Together
with Formula 3.13 the expected value of E[Nw] can be computed as

E[Nw] =E[
l−k+1∑
i=1

Yi(w)] =
l−k+1∑
i=1

E[Yi(w)] =
l−k+1∑
i=1

µ(w) (3.19)

=(l − k + 1)µ(w) . (3.20)
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Variance of the word count. The variance of the word count V[Nw] is the variance
of the sum of dependent random variables:

V[Nw] = V[
l−k+1∑
i=1

Yi(w)] =
l−k+1∑
i=1

l−k+1∑
j=1

Cov[Yi(w), Yj(w)] . (3.21)

The covariances can be calculated using the expected values (Formula 3.8). Since the
Yi are Bernoulli distributed random variables, the expected value equals the probability
of success (Formula 3.10). The calculation of the covariance can be separated into three
cases, identical positions i = j (Formula 3.3), overlapping positions |i − j| ≤ k − 1

(Formula 3.15), and non-overlapping positions |i− j| > k − 1 (Formula 3.18):

Cov[Yi(w), Yj(w)] =


µ(w)(1− µ(w)) for i = j

µ(w)εk−|i−j|(w)

k∏
d=k−|i−j|+1

π(w[d− 1], w[d])− µ(w)2 for |i− j| ≤ k − 1

µ(w)2

µ(w[1])π
|j−i|−k+1(w[k], w[1])− µ(w)2 for |i− j| > k − 1.

(3.22)

Together with Formula 3.21, the variance of the word count can be calculated.

Application of the Markov Model. For sequences that were generated according to
the Bernoulli model (i.i.d.) the Markov model of first order correctly estimates the ex-
pected value and variance of the word counts for w1 = AAAA, w2 = CAGT, and w3 = CGCG
(Figure 3.1A). Similarly, when applied to sequences that have the same dinucleotide
composition as the mouse genome, the Markov model accurately captures both mean
and variance (Figure 3.1B). In this scenario, the Bernoulli model fails. Ignoring depen-
dencies of overlapping words leads to an under-estimation of the word count variances
(Figure 3.1B).

Estimation of the Markov Model Parameters

The true transition probabilities are unknown, therefore they have to be estimated from
the observed sequence. Estimation of the Markov model parameters can be done using
the maximum likelihood method. The likelihood L of the parameters θ for the statistical
model given an observation S equals the probability to occur under this model:

L(θ | S) = P (S | θ) .
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In the maximum likelihood method, the true model parameters θ0 are estimated by the
value θ̂ which maximises L(θ | S):

θ̂ = arg max
θ
L(θ | S) .

In the case of DNA sequences, the maximum likelihood method is used to calculate the
transition matrix Π̂ with transition probabilities π̂(a, b) which most likely explain the
sequence S:

Π̂ = arg max
Π
L(Π | S) .

The maximum likelihood estimator of transition probabilities of a first order Markov
model for DNA sequences is given by (Durbin et al., 1998)

π̂(a, b) =
N(ab)∑
x∈AN(ax)

.

The same holds true for the Bernoulli model and Markov models of order m > 1, where
the state space can be extended from nucleotides to oligo-nucleotides of length m.

3.2.2 Alignment-Free Sequence Comparison Methods

The development of alignment-free sequence comparison methods was initially driven
by two main reasons. Technically, alignments can be slow to compute, alignment-free
methods provided the means for significant speed-up (Blaisdell, 1986; Pevzner, 1992).
Biologically, alignments assume sequences to be of linear order, which is not presup-
posed by alignment-free methods. The second reason makes alignment-free methods
particularly suitable for comparing regulatory sequences, where linearity can not be
assumed.
Traditionally, the idea of alignment-free methods is to compare two sequences S1

and S2, of length l1 and l2, based on the common word content using word frequency
statistics to estimate similarity. Let D denote the dictionary, the set of all words w
of length k (k-mers) and let |D| be the size of the dictionary (4k in the case of DNA
sequences). Every sequence S of length l is then associated with the word count vector
consisting of all word counts as defined in Formula 3.4:

NS =(NS
w1
, NS

w2
, . . . , NS

w|D|
) , with

NS
w =

l−k+1∑
i=1

Yi(w) .
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Figure 3.3: Dotplot, every line indicates a word of length 5 that is similar at the respective positions
in both sequences. (A) Dotplot of conserved exonic sequence from (JARID2) in mouse and human.
(B) Dotplot of two randomly selected sequences from the mouse genome. (C) Dotplot of two
enhancers that drive expression during mouse forebrain development (Visel et al., 2009).

Alignment-Free Similarities

D2. The most simple way to calculate a similarity of sequences using their word counts
is to calculate their inner product, D2 (Lippert et al., 2002):

D2(S1, S2) =< NS1 , NS2 >

=
∑
w∈A

NS1
w ×NS2

w .

The D2 similarity equals the sum of all pairs of word occurrences:

D2(S1, S2) =
∑
w∈D

l1−k+1∑
i=1

l2−k+1∑
j=1

Y S1
i (w)Y S2

j (w)

=

l1−k+1∑
i=1

l2−k+1∑
j=1

1(S1[i . . . i+ k − 1] = S2[j . . . j + k − 1]) .

This can be visualised as a dotplot (Figure 3.3), where a dot at position (i, j) indicates
a word of length k that is similar at position i in sequence S1 and at position j in
S2. In this representation, D2 is exactly the number of dots in a dotplot. Similar
sequences have a larger number of shared words (Figure 3.3A), whereas two random
genomic sequences show only randomly matching words (Figure 3.3B). In a dotplot,
regulatory sequences that drive similar expression patterns are almost indistinguishable
from random sequence pairs (Figure 3.3C), as they only share a limited number of
similar words.
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The dotplot representation highlights the major limitations of the D2 score. Firstly,
the score is directly dependent on the length of the sequences, larger sequences will
results in more matching words and higher pairwise scores. Secondly, words which
occur very frequently in only one sequence will still introduce a high pairwise score
(Figure 3.3B), therefore D2 may measure single sequence noise rather than sequence
similarity. Thirdly, in mammalian sequences the expected number of word occurrences
varies strongly dependent on the word probability and overlap structure (Figure 3.2).
High similarities calculated with D2 therefore may reflect an inappropriate background
model (uniform i.i.d) instead of high similarity.

D2z. The D2 z-score (D2z) was proposed to obtain a standardised D2 score (Kan-
torovitz et al., 2007):

D2z(S1, S2) =
D2(S1, S2)− E[D2(S1, S2)]√

V[D2(S1, S2)]
.

The D2 z-score corrects for length differences and incorporates a background model for
word probabilities, thereby addressing some of the limitations of D2. One limitation
of D2z is that it is biased towards single sequence noise similar to D2 (Reinert et al.,
2009).

D2*. The D2∗ score (Reinert et al., 2009) standardises the word counts instead of their
inner product. D2∗ is defined as the inner product of the standardised word counts:

D2∗(S1, S2) =
∑
w∈D

(NS1
w − E[NS1

w ])(NS2
w − E[NS2

w ])√
(l1 − k + 1)µ(w)

√
(l2 − k + 1)µ(w)

. (3.23)

Let µ(w) be the probability of w, the expected value of NS
w is then estimated by E[NS

w ] =

(l − k + 1)µ(w). The authors assume a Poisson distribution, which implies that the
variance is equal to the expected value. This assumption gives reasonable estimates for
rare, non-overlapping words (Robin et al., 2005). D2∗ was originally proposed with a
Bernoulli background model for the computation of µ(w), where the background model
is estimated on the concatenation of both sequences. For this study, I extended D2∗ to
use Markov background models of higher order.

Other extensions of D2 for Bernoulli sequences. Several other methods have been
proposed that approach some of the limitations of the D2 score. The distribution for the
D2 score has been derived which allows the estimation of the significance for pairwise
comparisons (Forêt et al., 2006). The D2 score has been extended to approximate
word matches (Burden et al., 2008; Forêt et al., 2006, 2009; Burden et al., 2012), and a
weighted word match statistic has been proposed (Jing et al., 2011).
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Alignment-Free Distances

dE. Among the first alignment-free distance measures proposed to compare sequences
was the squared euclidean distance of the word count vectors, dE (Blaisdell, 1986):

dE(S1, S2) = ‖NS1 −NS2‖2 =
∑
w∈D

(NS1
w −NS2

w )2 . (3.24)

Several limitations apply to the dE distance measure as discussed for D2, for example
it does not account for length differences, expected word frequencies or word overlaps.

dM. The squared Mahalanobis distance was proposed as a generalised statistical dis-
tance measure that corrects for all word correlations. The Mahalanobis distance is a
multinomial generalisation of the distance from a distribution to its mean vector (Wu
et al., 1997):

dM(S1, S2) = (NS1 −NS2)× Σ−1 × (NS1 −NS2) . (3.25)

=
∑
w∈D

∑
w′∈D

(NS1
w −NS2

w )σinvww′(NS1

w′ −NS2

w′ ) . (3.26)

The Mahalanobis distance requires the computation of the inverse of the covariance ma-
trix (Σ−1), which has a determinant near zero and therefore is almost singular (Vinga
and Almeida, 2003). Up to word length k = 4, the pseudo inverse has been used as an
estimate (Wu et al., 1997).

dS. The squared standardised euclidean distance is the special case of the squared Ma-
halanobis distance where all covariances are assumed to be zero (Wu et al., 1997):

dS(S1, S2) =
∑
w∈D

(NS1
w −NS2

w )2

σww
. (3.27)

In the case of regulatory sequences, euclidean distance based measures are less sensi-
tive compared to the inner product, as the quadratic term enforces that large word
count differences have stronger impact on the score than any small numbers of similar
words. Therefore, this analysis is restricted to alignment-free methods based on the
inner product (D2, D2z, D2∗, N2).

Other Methods

The above methods summarise alignment-free distance measures based on k-mer con-
tent. Many other methods have been proposed, using angle metrics (Stuart et al.,
2002a,b), information theory (Wu et al., 2001; Fernandes et al., 2009), Chaos The-
ory (Almeida et al., 2001; Joseph and Sasikumar, 2006; Almeida and Vinga, 2009),
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Kolmogorov complexity (Li et al., 2001), Poisson approximations (van Helden, 2004),
or compositional spectras (Kirzhner et al., 2002; Bolshoy et al., 2010), see Vinga and
Almeida (2003) for an overview. A variety of alignment-free sequence comparison meth-
ods have been applied for phylogenetic analyses and whole genome comparisons (Karlin
and Ladunga, 1994; Kirzhner et al., 2003; Sims et al., 2009a,b; Bolshoy et al., 2010), see
Bolshoy (2003) for an overview.

3.3 The N2 Similarity Score

Some of the limiting factors of alignment-free sequence comparison methods is their
restriction to exact word counts or their narrow assumptions on word probabilities and
variances. In the following N2 is presented, a novel alignment-free measure that allows
for approximate word matches and incorporates the exact expected value and covariance
of word counts with an additional improvement in running time compared to other inner
product-based alignment-free methods.

3.3.1 Definition: N2

N2 overcomes the restriction to exact word counts by introducing the concept of word
neighbourhood counts.

Weighted Word Neighbourhood Count. Let n(w) be the set of words in the neigh-
bourhood of the word w. The neighbourhood may be defined appropriately for every
application, for example, to fit transcription factor binding motifs, to allow for reverse
complement word counts or to include mismatches. Integrating neighbourhood counts
for every word w reduces the influence of w itself. This leads to word count ‘smoothing’,
i.e., inexact words are considered similar, but also to ‘blurring’, since inexact words
might not be related. To control for these effects, every word w′ in n(w) is associated
with a weight aw′ which may differ for the considered application. The weighted word
neighbourhood count NS

n(w) for every word w ∈ D in sequence S can be defined as
follows:

NS
n(w) =

∑
w′∈n(w)

aw′NS
w′ (3.28)

=
∑

w′∈n(w)

aw′

l−k+1∑
i=1

Yi(w
′) . (3.29)

Standardised Weighted Word Neighbourhood Count. Depending on the choice
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of the neighbourhood n(w), the word neighbourhood count Nn(w) will be a sum of
highly dependent random variables. Additionally, the variance of individual word counts
should be considered, since, for example, a high number of CAGCTG occurrences is more
informative than a high count of self overlapping words such as AAAAAA where a Poly-A
stretch of length 15 already gives 10 occurrences. Also, some words are more likely to
occur than others, GC-rich words for example are less frequent in mammalian genomes
than AT-rich words. In order to use word neighbourhood counts for alignment-free
sequence comparison, the counts have to be corrected for inter-variable dependency,
word count variances and word probabilities. For N2, this is achieved by standardising
the word neighbourhood counts:

ÑS
w =

NS
n(w) − E[NS

n(w)]√
V[NS

n(w)]
. (3.30)

Since the word counts are dependent, the covariance of all words in the word neighbour-
hood has to be computed to obtain V[NS

n(w)]. The formulae for the expected value and
variance of the weighted word neighbourhood counts are derived in Section 3.3.2.

Normalised Standardised Weighted Word Neighbourhood Count. The stan-
dardised neighbourhood count is normalised using the Euclidean norm (‖·‖). This re-
sults in the normalised and standardised weighted word neighbourhood count vector
N̂S = (N̂S

w1
, N̂S

w2
, . . . , N̂S

w|D|
), with

N̂S
w =

ÑS
w

‖ÑS‖
. (3.31)

N2. Using the above declarations, the N2 similarity of two sequences is defined as the
inner product of their normalised standardised word neighbourhood count vectors:

N2(S1, S2) =< N̂S1 , N̂S2 > (3.32)

=
∑
w∈D

N̂S1
w × N̂S2

w . (3.33)

As a consequence of the normalisation, N2 fulfils the properties −1 ≤ N2(S1, S2) ≤ 1

and S1 = S2 ⇒ N2(S1, S2) = 1, i.e., equal sequences will always have the maximum
pairwise similarity of 1.

3.3.2 Word Statistics for Word Neighbourhood Counts

N2 can be computed with Markov models of any order. In the following the word
statistics for N2 are derived assuming a first order Markov model with similar notation
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as introduced in Section 3.21.

Dependence Between Occurrences of Multiple Words. Similar to exact word
counts, NS

n(w) is a sum of dependent Bernoulli distributed variables Yi. However, in
the case of exact word counts, only dependencies of self-overlapping words had to be
considered (Yi(w) = 1 and Yj(w) = 1). In contrast, depending on the choice of n(w),
NS
n(w) incorporates dependencies of word pairs (Yi(w) = 1 and Yj(w′) = 1). For example,

occurrences of overlapping words such as w =CAAAA and w′ =AAAAA are highly correlated,
that is P (Yi(w) = 1 , Yj(w′) = 1) depends on the overlap structure of w and w′. The
overlap indicator ε can be extended to word pairs (Robin et al., 2005):

εu(w,w
′) =

{
1 if w[k − u+ 1 . . . k] = w′[1 . . . u]

0 otherwise .

This can be used to calculate the probability to observe an occurrence of the word w at
position i while considering any potential overlap with w′ at position j:

P (Yi(w) = 1 , Yj(w′) = 1) (3.34)

= µ(w)εk−|i−j|(w,w
′)

k∏
d=k−|i−j|+1

π(w′[d− 1], w′[d]) for |i− j| < k . (3.35)

Due to dependency of neighbouring nucleotides (Markov assumption), the probability
to observe the first letter of the word w′ (w′[1]) at position j depends on the last letter
of the occurrence of the word w (w[k]) at position i < j − k + 1. The probability that
the first letter of w′ occurs exactly |j − i| − k + 1 positions after the last letter of w
starting at position i equals π|j−i|−k+1(w[k], w′[1]), therefore:

P (Yi(w) = 1 , Yj(w′) = 1) (3.36)

= µ(w)π|j−i|−k+1(w[k], w′[1])
k∏
j=2

π(w′[j − 1], w′[j]) (3.37)

=
µ(w)µ(w′)

µ(w′[1])
π|j−i|−k+1(w[k], w′[1]) for |j − i| > k − 1 . (3.38)

Expected Word Neighbourhood Count2. In Section 3.2, the expected value for
1Let the sequences be modelled by a first-order homogeneous stationary Markov chain with transition
probabilities π(i, j). The probability µ(w) that a word w occurs at a specific position i depends on
the probability that the first letter occurs, denoted µ(w[1]) (stationarity of the Markov chain) and
can be calculated according to Formula 3.13.

2For clarity, the superscript indicator for sequence S is omitted in the following.
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exact word counts was introduced. In the case of weighted word neighbourhood counts,
the expected value E[Nn(w)] has to be extended to cover all words in the neighbourhood
n(w). Nn(w) can be modelled as a sum of dependent Bernoulli distributed random vari-
ables (Formula 3.29). The expected value of the word neighbourhood counts, E[Nn(w)],
can then be calculated according to:

E[Nn(w)] = E

 ∑
w′∈n(w)

aw′Nw′


=

∑
w′∈n(w)

aw′E[Nw′ ] =
∑

w′∈n(w)

aw′E[
l−k+1∑
i=1

Yi(w
′)]

=
∑

w′∈n(w)

aw′

l−k+1∑
i=1

E[Yi(w
′)]

=
∑

w′∈n(w)

aw′

l−k+1∑
i=1

µ(w′)

=
∑

w′∈n(w)

aw′(l − k + 1)µ(w′) .

Variance of the Weighted Word Neighbourhood Count. Since the word neigh-
bourhood count is the number of occurrences of potentially overlapping words, the vari-
ance of the word neighbourhood count has to include all possible overlaps from words
in n(w):

V[Nn(w)] = V

 ∑
w′∈n(w)

aw′Nw′

 (3.39)

=
∑

w′∈n(w)

∑
w′′∈n(w)

aw′aw′′Cov[Nw′ , Nw′′ ] . (3.40)

Therefore, the variance of the weighted word neighbourhood count, V[Nn(w)], equals the
sum of the weighted covariances of the word counts for all pairs of words (w′, w′′) in the
neighbourhood n(w). The covariance of word counts, Cov[Nw, Nw′ ], can be calculated
using the property that they form a sum of Bernoulli distributed random variables
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(Formula 3.4):

Cov[Nw, Nw′ ] = Cov[
l−k+1∑
i=1

Yi(w),
l−k+1∑
j=1

Yj(w
′)] (3.41)

=
l−k+1∑
i=1

l−k+1∑
j=1

Cov[Yi(w), Yj(w
′)] . (3.42)

The covariance can be calculated using the expected values:

Cov[Yi(w), Yj(w
′)] = E[Yi(w)× Yj(w′)]− E[Yi(w)]E[Yj(w

′)] . (3.43)

The expected value of Yi(w) equals the probability of success:

Cov[Yi(w), Yj(w
′)] =P (Yi(w)× Yj(w′) = 1)− P (Yi(w) = 1)P (Yj(w

′) = 1) (3.44)

=P (Yi(w) = 1 , Yj(w′) = 1)− P (Yi(w) = 1)P (Yj(w
′) = 1) . (3.45)

The calculation of the covariance for word pairs can be separated into the individual cases
(similar to the covariance of word counts for equal words introduced in Formula 3.22):
identical positions for identical words (i = j, w = w′) and non-identical words (i = j, w 6=
w′, Formula 3.45), overlapping positions |i−j| < k (Formula 3.35), and non-overlapping
positions |i− j| > k − 1 (Formula 3.38):

Cov[Yi(w), Yj(w′)] =



µ(w)(1− µ(w)) for i = j, w = w′

−µ(w)µ(w′) for i = j, w 6= w′

µ(w)εk−|i−j|(w,w
′)

k∏
d=k−|i−j|+1

π(w′[d− 1], w′[d])− µ(w)µ(w′) for |i− j| < k

µ(w)µ(w′)
µ(w′[1]) π

|j−i|−k+1(w[k], w′[1])− µ(w)µ(w′) for |j − i| > k − 1 .

Together with Formula 3.40 and 3.42, the variance of the weighted word neighbourhood
counts can be calculated.

3.3.3 Implementation, Instances, and Availability of N2

The calculation of the scores is divided into two steps, a pre-processing step and a
comparison step.

Pre-processing. The pre-processing step, as outlined in the following, is run for every
sequence individually. The running time of this step depends on the length of the input
sequences l, the Markov model’s order m, the word length k and the average size of
the word neighbourhoods. First, the background Markov model is estimated using a



56 3 Pairwise Comparison of Enhancer Sequences

maximum likelihood approach (see Section 3.2) on every sequence (O(4m)), then the
words are counted (O(l)), and the word probabilities and covariances are calculated
(O(4kNeighbourhoodSize2)). The neighbourhood word count variance is computed using
Formula 3.40. The covariance of word counts (Formula 3.42) can be computed by (Robin
et al., 2005):

Cov[Nw, Nw′ ] = (3.46)

µ(w)
k−1∑
d=1

(l − k − d+ 1)

[
εk−d(w,w

′)
k∏

j=k−d+1

π(w′[j − 1], w′[j])− µ(w′)

]
(3.47)

+µ(w′)
k−1∑
d=1

(l − k − d+ 1)

[
εk−d(w

′, w)
k∏

j=k−d+1

π(w[j − 1], w[j])− µ(w)

]
(3.48)

+µ(w)µ(w′)
l−2k+1∑
t=1

(l − 2k − t+ 2)

[
πt(w[k], w′[1])

µ(w′[1])
+
πt(w′[k], w[1])

µ(w[1])
− 2

]
(3.49)

−(l − k + 1)µ(w)µ(w′) . (3.50)

In the case where w = w′, we have Cov[Nw, Nw′ ] = V[Nw]. The word count variance
can be calculated as follows (Robin et al., 2005):

V[Nw] = (3.51)

(l − k + 1)µ(w)[1− µ(w)] (3.52)

+2µ(w)
k−1∑
d=1

(l − k − d+ 1)

[
εk−d(w)

k∏
j=k−d+1

π(w[j − 1], w[j])− µ(w)

]
(3.53)

+2[µ(w)]2
l−2k+1∑
t=1

(l − 2k − t+ 2)

[
1

µ(w[1])
πt(w[k], w[1])− 1

]
. (3.54)

Terms (3.54) and (3.49) are costly to compute and have minor effects on the variance and
covariance. Let the sequence S = S[1] . . . S[l] be a realisation of the irreducible, aperiodic
Markov chain X1 . . . Xl on the finite alphabet A (Section 3.2), then the distribution of
Xi converges to the stationary distribution µ:

lim
i→inf

P (Xi = a) = µ(a) . (3.55)

Furthermore, the convergence rate is exponential (Robin et al., 2005), therefore the
limiting distribution is reached quickly. Here, it is assumed that the limiting distribution
is reached for t >= k. This way, dependencies from non-overlapping word occurrences
are neglected by assuming that µ(w′[1]) ≈ πt(w[k], w′[1]) for t >= k.
Since the neighbourhoods of different words w1 and w2 can contain similar word

pairs ({w′, w′′} ∈ n(w1) ∩ n(w2)), the same covariance will be used multiple times. At
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the same time, some word pairs never occur in the same neighbourhood ({w1, w2} /∈
n(w)∀ w ∈ D), these covariance values won’t be needed. Therefore, every covariance
term is computed at its first occurrence to dynamically fill the covariance matrix. This
procedure allows the pre-computation of all required covariance values without pre-
computing unnecessary covariance terms.
As the last pre-processing step, the standardised normalised word neighbourhood

counts (Formula 3.31) are calculated for every sequence. The total complexity of the
pre-processing is linear in the number of input sequences n:

O(n(l + 4m + 4kNeighbourhoodSize2)) .

Comparison. In the comparison step, the inner product of the standardised normalised
word neighbourhood counts is computed for all pairs of sequences. The running time
of this step depends on the word length k and is quadratic in the number of input
sequences n. Due to the pre-processing, the comparison step has the same complexity
as calculating the inner product (D2), O(n24k).

Masked Sequences

Repeats such as SINE elements have a substantial influence on pairwise scores (horizon-
tal lines in Figure 3.3B). Repeat-masking can be used to hide those repetitive elements
by replacing nucleotides with the letter N (RepeatMasker (www.repeatmasker.org),
TandemRepeatsFinder, (Benson, 1999)). For N2, any repeat-masked sequence is split
into a set of repeat-free sub-sequences by cutting out all masked regions. Words are
counted in this set such that no artificial words are created by concatenation. The
length of the repeat-free sequence is estimated by (number of counted words) + k − 1.

Instances of N2

The most basic instance of N2, with n(w) = w will be referred to as N2∗. In the
implementation of N2, n(w) may be extended to include its reverse complement (rc),

nrc(w) = {w, rc(w)}

all words equal to w with one mismatch (mm, hamming distance disthamming ≤ 1),

nmm(w) = {w′|disthamming(w,w′) ≤ 1}

or the combination of both (mm, rc), where

nmm,rc(w) = {w′, rc(w′)|disthamming(w,w′) ≤ 1} .

www.repeatmasker.org
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In the following, these instances are referred to as N2rc, N2mm, N2mm,rc. The word
count of w (and its reverse complement when selected) is always weighted with aw = 1,
for all other words w′ in n(w) an alternative weight aw′ may be chosen. The weights for
mismatch neighbourhood counts are indicated in superscript, with aw′ = 1 (N2mm(1.0)) if
not stated otherwise. Note that the neighbourhood definition for nmm(w) and nmm,rc(w)

only covers direct neighbours, not neighbours of neighbours.

Availability

The implementation that I provide for N2 is part of the SeqAn library (Doering et al.,
2008) where the fully documented source code and a pre-compiled executable version
(ALF) is available for download (http://www.seqan.de/projects/alf/). ALF re-
quires a set of n sequences in fasta-format as input and returns a matrix with all pairwise
similarity scores. The word length k (default k = 5) and the background model order
(default 1) may be chosen manually and the normalised standardised word neighbour-
hood counts may be returned to obtain additional information on important words (see
Section 4.2).
Additionally, I implemented the D2, D2∗1 and D2z2 scores in the SeqAn library

(Doering et al., 2008) and ALF can be used to calculate these scores.

3.4 Results

3.4.1 Choice of Parameters for N2

The choice of parameters will influence the results obtained from alignment-free com-
parisons. For N2, the main parameters are the order of the Markov model m, the length
of the k-mers k and the weights of the words in the neighbourhood (aw).

Markov Model Order. Calculation of the expected value and variance of the word
counts assumes that the background model that describes the sequence is known. For
N2, the background model is estimated separately for every sequence using a maximum
likelihood approach. Since CpG dinucleotides in mammalian genomic sequences are very
rare (Gardiner-Garden and Frommer, 1987), a Bernoulli background model is insuffi-
cient to estimate word probabilities. This can be seen on simulations, where the first

1D2∗ was originally proposed with a Bernoulli background model for the computation of µ(w). The
implementation provides the extended score that allows usage of higher order Markov background
models.

2Repeat-masked sequences are treated equally for all methods. Note that this is slightly different to
the original method proposed forD2z, which introduced artificial words by concatenating sequences.

http://www.seqan.de/projects/alf/
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Figure 3.4: Running time comparison. All pairwise scores were calculated for random sequences of
length 1000 bp, k = 6, Markov model of order 1.

order Markov model consistently outperforms the Bernoulli model (Figure 3.1). The
optimal order for the Markov background model for enhancer sequences is an unknown
function of organism complexity and sequence length. Due to the limited size of en-
hancer sequences, estimating higher order Markov models likely results in overfitting
and poor estimates. This analysis will therefore rely on a first order Markov chain as
background model for all methods throughout this analysis.

Word Length k and Word Neighbourhood Weights aw. Since enhancer sequences
have no apparent preferential orientation of transcription factor binding sites, reverse
complement words are always weighted similar to the original words (w′ ∈ nrc(w) →
aw′ = aw). For the mismatch neighbourhood variant nmm(w), the choice of aw is con-
nected to the choice of the word length k. Therefore, all combinations k = 4, 5, 6 and
mismatch weights aw = {1, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01, 0.001} were tested (Appendix,
Figures VI.8, VI.9, VI.10). This analysis indicates that aw should be larger for higher
values of k where the expected number of k-mer occurrences is below 1. Different param-
eters might improve results for different data sets (Kantorovitz et al., 2007). However,
to have a consistent and comparable setup, I selected k = 6 and mismatch weights of 1
as reasonable parameters throughout the analysis. For completeness, results for k = 4

and k = 5 and different choices of aw can be found in the Appendix (Figures VI.9,VI.10).

3.4.2 N2 can be Computed Quickly

Genome-wide data sets consist of many thousand regulatory sequences. The compu-
tation of pairwise similarities needs to be efficient for large-scale usage. The running
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Running time in O notation
D2 O(nl + n24k)

D2z Kantorovitz et al. (2007)
D2∗ O(n2(l + 4k + 4m))

N2 O(n(l + 4m + 4kNeighbourhoodSize2) + n24k)

Table 3.1: Running time of the different methods in O-notation. n: number of sequences; l:
average sequence length; k:k-mer size; m: Markov model order. The running time for D2∗ is
dominated by the quadratic term. The running time for N2 is dominated by the linear term (pre-
processing).

time of each method was estimated on sets with various numbers of sequences where the
matrix of all pairwise similarities was computed (quadratic number of scores computed).
The methods show strong differences in practise (Figure 3.4), but N2 and its variants
are always faster than the other methods with a statistical model for realistically chosen
numbers. Computing pairwise scores for 5000 enhancers with k = 6 takes 2 hours (h)
for N2∗ (4h for N2rc, 20h for N2rc,mm), it takes about 42 h for D2∗ and 91 h for D2z.
The computation of N2 is dominated by the pre-processing step which scales linearly

in the number of sequences since the neighbourhood counts are calculated once for
every sequence in advance (Figure 3.4, Table 3.1, see Section 3.3.3). In contrast, D2z

and D2∗ cannot pre-compute normalised counts like N2, and scale quadratically in
the number of sequences. D2z calculates z-scores on pairs of sequences which are not
pre-processed (Kantorovitz et al., 2007), and D2∗ calculates the background model on
the concatenation of sequences which cannot be pre-computed (Reinert et al., 2009).
While this is likely to increase the accuracy of the model, running times are drastically
higher. Computing pairwise scores for realistically large data sets is therefore nearly
impossible for both D2z and D2∗. This makes the N2 score very attractive for large-
scale applications such as classification of regulatory sequences, or applications that
support pre-computed data structures such as database searches.

3.4.3 N2 is Robust Against Single Sequence Noise

Ideally, the pairwise score between two sequences should reflect the sequences’ similarity.
However, in practise, word count-based methods can be heavily influenced by noise
specific to individual sequences, meaning that some sequences will intrinsically have high
(or low) scores (Lippert et al., 2002; Reinert et al., 2009). Without proper correction,
the pairwise score is an attribute of the individual sequence rather than of the pair of
sequences. This is especially prominent for D2, where a high number of occurrences of
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Figure 3.5: Influence of single sequences on pairwise scores. All pairwise scores for 500 sequences
generated by the same model were calculated. Ci measures the number of sequence pairs for se-
quence Si among the highest 5% of all scores (‘high scoring pairs’). Since all sequences were created
using the same model, the distribution of C = {C1, . . . , Ci} from alignment-free methods should
be similar to the distribution of C obtained from a random scoring method (‘expected’, black line).
A different distribution would indicate that the number of high scoring pairs is strongly dependent
on the individual sequence, indicating that pairwise scores are dependent on the single sequence
noise rather than on the similarity of the sequence pair. (A) Uniform nucleotide distribution, all
methods show the expected behaviour. (B) AT rich nucleotide distribution, D2 and D2z differ from
the expected behaviour, showing that these pairwise scores are strongly influenced by the sequence
composition.
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a repetitive self-overlapping word (such as AAAAA) in one sequence will always induce
high pairwise scores.
To quantify the influence of single-sequence-specific noise on pairwise scores, I stud-

ied the behaviour of D2, D2z, D2∗ and N2∗ for scoring pairs of unrelated sequences
simulated by the same background model. Scores for all sequence pairs (Si, Sj) were
calculated for 500 such unrelated sequences. A threshold t was chosen to select the
top 5% highest scoring sequence pairs (‘high scoring pairs’). For every sequence Si, the
number of high scoring pairs is defined as Ci: Ci =

∑
j 1(score(Si, Sj) ≥ t). Since all

sequences were generated by the same model, the expected value of Ci, E[Ci], is equal for
all sequences Si. Here, 5% of the 499 sequence pairs of Si are expected to have a score
greater than t, thus E[Ci] = 24.95. As a reference, C = {C1, . . . , Ci} was calculated
for sequence pairs with randomly assigned scores. This method is not influenced by
the sequence at all and therefore recapitulates the expected behaviour for unrelated se-
quence pairs (Figure 3.5, black line). Then C was calculated for the four alignment-free
sequence comparison methods.
The distribution of C when N2∗ is used is close to the expected distribution for

unrelated sequences (Figure 3.5). This shows that N2 is robust against single-sequence-
specific noise as the numbers of high scoring sequence pairs are not influenced by the
individual sequences (see Supplementary Figures VI.6 and VI.6 for N2rc and N2mm,rc).
In contrast, D2 and D2z show a very different distribution of C from the expected

behaviour in the non-uniform case. Figure 3.5 B shows that the number of high scoring
pairs strongly varies, suggesting that the expected number for Ci is different for every
sequence Si, even though all sequences were generated by the same model. This shows
that the number of high scoring pairs detected with these methods is strongly influenced
by the individual sequence, indicating that pairwise scores measure the individual se-
quence composition and not the similarity of the sequence pair. Prior work comparing
regulatory sequences using alignment-free methods did not consider this effect (Kan-
torovitz et al., 2007; Dai et al., 2008). The above results confirm that neither the D2

nor the D2z-score should be applied to real biological sequences (Lippert et al., 2002;
Reinert et al., 2009).
Other sequence noise such as repeats and regions of low complexity occurs frequently

in genomic data. N2 is more robust to this type of noise than D2∗ and D2z due to its
correction for word overlaps and normalisation of counts (Appendix, Table VI.3). This
analysis suggests that N2 should be used when repeat-masking is not an option.

3.4.4 Pairwise Comparison: Simulations

First, I tested the performance of N2 on simulated data. Random sequences were gen-
erated with a similar dinucleotide content as the mouse genome (Thomas-Chollier et al.,
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Performance with implanted k-mers, random strand
5%-Precision AUC ROC AUC PR

Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2
D2 0.88 0.59 0.72 0.54 0.72 0.54
D2z 0.91 0.64 0.74 0.56 0.73 0.56
D2∗ 0.87 0.66 0.71 0.58 0.70 0.57
N2∗ 0.86 0.65 0.71 0.58 0.70 0.57
N2rc 0.93 0.71 0.77 0.60 0.77 0.59

Table 3.2: Simulations with implanted k-mers. Comparison of the different methods (k = 6,
mo = 1) when the genomic orientation of the motif is unknown. Bold numbers indicate best
performance.

2011) (mm9) as background sequences (‘negative set’). Then, m randomly chosen mo-
tifs of length 5 were implanted r times into the same background sequences to simulate
enhancers (‘positive set’; m1r8: m = 1, r = 8; m4r2: m = 4, r = 2). Following Kan-
torovitz et al. (2007), all pairwise scores were computed for the corresponding negative
and the positive sets. The pairwise scores from the negative and the positive sets were
then combined and ranked. Based on this ranked list, the performance of the D2-based
methods for pairwise sequence comparison was compared using the area under ROC
curve (AUC ROC) and area under Precision-Recall curve (AUC PR). Furthermore, the
interpolated precision at 5% recall was estimated, ‘5%-Precision’ for short. Results show
average values over 25 simulations, each time drawing 100 random sequences of length
1000 bp and inserting random motifs, thus covering different motif compositions in an
unbiased way. The performance was tested with word size k = 6 using a first order
Markov model for word probabilities (see Appendix, Tables VI.1 and VI.2 for k = 5).
Two different settings were simulated to evaluate the performance of the neighbour-

hood concept of N2. First, randomly sampled 5-mers were implanted into the forward
and backward strand of the sequences to simulate the orientation independence of bind-
ing sites in enhancers. The N2rc variant was specifically designed for this scenario and,
indeed, N2rc performs best (Table 3.2). Second, words were randomly sampled and im-
planted with one mismatch at a random position to simulate more flexible motifs. The
N2mm variant was designed for this scenario as it considers the word neighbourhood for
the similarity. In these simulations, the N2mm variant with mismatch weights aw = 1.0

shows the best performance, demonstrating the value of neighbourhood counts to score
sequences with approximate word matches (Table 3.3, see Appendix Figure VI.7 for
different choices of aw). These simulations confirm the value of extending exact word
count methods to word neighbourhoods.
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Performance with implanted k-mers, mismatch
5%-Precision AUC ROC AUC PR

Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2
D2 0.59 0.51 0.53 0.48 0.53 0.49
D2z 0.59 0.54 0.54 0.51 0.53 0.51
D2∗ 0.60 0.54 0.54 0.51 0.54 0.51
N2∗ 0.59 0.54 0.54 0.51 0.54 0.51

N2mm(0.01) 0.60 0.54 0.55 0.51 0.54 0.51
N2mm(1.0) 0.65 0.55 0.57 0.52 0.57 0.53

Table 3.3: Simulations with implanted k-mers. Comparison of the different methods (k = 6,
mo = 1) when motifs are sampled from all k-mers with one mismatch to the word. Bold numbers
indicate best performance.

Figure 3.6: Precision-Recall curve for enhancers active during mouse development. The plots show
the precision average over 25 samples each time drawing 500 enhancer sequences (‘positive’) and
500 unrelated genomic sequences of equal length as the enhancers (‘negative’). (A) Forebrain. (B)
Midbrain. (C) Heart. (D) Limb.

3.4.5 Pairwise Comparison of Developmental Enhancers

The above simulations demonstrated the ability of N2 to distinguish artificial enhancers
from unrelated sequences. Currently, our knowledge on regulatory sequences is limited
and simulations can only approximate the real nature of enhancers. Tissue-specific
enhancers in mouse embryos have been identified in a genome-wide manner using the
co-activator protein p300 (Visel et al. (2009); Blow et al. (2010), Chapter 2). Here,
these data sets are used to test whether alignment-free methods are able to discrimi-
nate in vivo identified enhancers that show similar activity from genomic background.
Enhancers active in forebrain, midbrain, limb and heart tissue of the developing mouse
embryo were used as as positive sets (Visel et al., 2009; Blow et al., 2010). All se-
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Performance on tissue-specific enhancer sequences
5%-Precision AUC ROC AUC PR

Tissue: F M L H F M L H F M L H
D2 0.61 0.64 0.55 0.50 0.55 0.55 0.50 0.45 0.54 0.55 0.51 0.47
D2z 0.66 0.69 0.63 0.56 0.57 0.57 0.56 0.53 0.57 0.57 0.55 0.52
D2∗ 0.71 0.70 0.67 0.60 0.62 0.62 0.59 0.55 0.60 0.60 0.58 0.54
N2∗ 0.65 0.64 0.62 0.58 0.58 0.57 0.56 0.53 0.57 0.56 0.55 0.53
N2rc 0.71 0.67 0.68 0.60 0.61 0.59 0.58 0.55 0.60 0.58 0.58 0.55

N2mm(1.0),rc 0.84 0.82 0.79 0.66 0.66 0.64 0.63 0.57 0.66 0.64 0.63 0.57

Table 3.4: Comparison of the different methods on tissue-specific enhancers. Bold numbers in-
dicate the best performance. Positive sequences were obtained by ChIP-Seq of p300 in forebrain
(F), midbrain (M), limb (L), and heart (H) tissue of the mouse embryo. Negative sequences were
randomly sampled from the mouse genome. All pairwise scores were computed with repeats masked,
k = 6, background Markov model of order 1. Results show average values over 25 samples each
time drawing 500 sequences.

quences were obtained from the UCSC pre-masked genome sequence (mm9, Repeat-
Masker (www.repeatmasker.org) and TandemRepeatsFinder (Benson, 1999)). Pair-
wise scores from these tissue-specific enhancers were compared with pairwise scores
from genomic sequences of the same length randomly sampled from the mouse genome,
ensuring a maximum of 30% of repetitive sequence for every negative sample. To obtain
accurate estimations, the average over 25 samples was calculated, each time drawing 500
sequences from the positive set. Using the same evaluation measures as in the previous
section, the ability of alignment-free sequence comparison methods to detect functional
similarity of regulatory sequences was measured.
Figure 3.6 and Table 3.4 show the results for pairwise comparison of tissue-specific

enhancers with alignment-free methods. Across all tissues, N2mm(1.0),rc gives the best
results, demonstrating that N2 is most suitable to detect tissue-specific activity of regu-
latory sequences. The results also confirm the value of the word neighbourhood concept:
comparing N2rc with N2∗ shows that the neighbourhood extension to the reverse com-
plement is always preferable (Table 3.4). Extending the word neighbourhood to all
words with one mismatch (N2mm(1.0),rc) further improves the results by 6-15% (Table
3.4). These results support the usage of N2 with word neighbourhood counts to score
the similarity of regulatory sequences.

Tissue-Specificity of Enhancers

The above results indicate that tissue-specific enhancer sequences indeed have a similar
word content. However, a comparison of ChIP-Seq data with randomly sampled genomic

www.repeatmasker.org


66 3 Pairwise Comparison of Enhancer Sequences

Figure 3.7: Tissue-specificity of enhancers. Precision-Recall curve for forebrain enhancers in the
mouse. Enhancers active in different tissues were used as the background set.

sequences might be biased towards measuring similarities introduced by the technology,
such as similar GC content. To test this, I verified whether it is possible to discriminate
enhancers according to the tissue where they drive expression. For that purpose, all
pairwise scores of enhancers active in the same tissue (‘positive set’) and all pairwise
scores between enhancers active in other tissues (‘negative set’) were calculated, discard-
ing all enhancers active in multiple tissues. To correct for length differences between
data sets from different tissues, 750 bp in the middle of the reported enhancer sequences
were selected. Figure 3.7 shows that tissue-specific enhancers can be discriminated by
alignment-free methods (see Appendix, Figure VI.11 for the other data sets and k = 5).
While the performance decreases compared to using random sequences as the negative
set, these results show that activity in a similar tissue is indeed reflected in a higher
sequence similarity. Again, the neighbourhood extensions of N2 improves the results,
further highlighting the value of this concept for regulatory sequences.

3.5 Discussion

Section 3.4 showed that N2 improves alignment-free sequence comparison through its
flexible extension to word neighbourhood counts, thereby covering approximate and
orientation independent word matches. Previously, the D2z score has been extended
to allow for approximate matching words using estimates for the expectations and the
variances based on a Bernoulli background model, however, no implementation is avail-
able (Forêt et al., 2006; Burden et al., 2008; Forêt et al., 2009; Burden et al., 2012).
The framework that is presented here is much more general and powerful. N2 allows
for any desired word neighbourhood and associates words with weights such that the
signal of words matching exactly is not lost. Furthermore, N2 can be computed on
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any background model order, which is essential to properly describe genomic sequences.
Finally, N2 is much faster than D2z even without approximate matching, suggesting
that a z-score calculation for an approximate D2 score would be infeasible for any data
set of realistic size.
The differences between N2∗ as used in this study and D2∗ are mainly due to the

estimation of the background model. The better performance of D2∗ on real biological
data suggests that the concatenation of the sequences improves the accuracy of the
background model. However, it drastically increases the running time. The improvement
due to the extension to the word neighbourhood (N2∗ vs. N2mm,rc) is better than the
improvement due to different background model estimates (N2∗ vs. D2∗, see Table 3.4).
The simulation studies demonstrated that N2 performs well on the task it was de-

signed for, namely finding similarities between sequences based on shared words. Ex-
tending the word neighbourhood to the reverse complement (N2rc) improves the per-
formance, highlighting that binding sites can occur on both strands of the enhancer.
Extending the neighbourhood to words with one mismatch (N2rc,mm) further improves
the performance on experimentally identified enhancers. This suggests that there are
subtle signals like a common content of similar but not equal words which are charac-
teristic of genomic enhancers.
For many transcription factors, DNA binding motifs have been identified (Matys et al.,

2003; Bryne et al., 2008). Known transcription factor binding motifs have been used
for detection of regulatory sequences (Klein and Vingron, 2007), identification of inter-
acting transcription factors (Mysickova and Vingron, 2012) or comparison of regulatory
sequences (Koohy et al., 2010). If the binding motif for regulatory sequences is known,
incorporation of these motifs will improve the power of regulatory sequence compari-
son. However, the majority of binding sites in enhancers is unknown, and integration
of annotated binding sites might easily introduce biases. Therefore, N2 is based on
sequence information alone to provide a similarity measure that is independent of prior
knowledge.
Here it is assumed that a high number of shared words represents a similar binding

site content of enhancers. This assumption is violated by repeats, having a high number
of shared words only due to high sequence similarity. For this reason, repeats are masked
before calculating pairwise scores. Although some transcription factor binding sites have
been found in repetitive sequences (Kunarso et al., 2010; Zemojtel et al., 2009), the
sequence similarity of repeats is largely unrelated to regulatory activity and will eclipse
any shared word count from common DNA binding motifs. The usage of repeat masked
sequences is therefore generally recommended when comparing regulatory elements.
N2 is defined as the inner product of the standardised word count vectors. Many other

methods have been proposed and applied to compare word count vectors (Section 3.2.2).
Similarly, the neighbourhood word counts used for N2 could be combined in other ways,
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for example using the euclidean distance to obtain a distance measure. A ranked list-
based comparison of standardised word counts could also be applied to minimise the
influence of words with small weights. Here, the inner product was used for N2 as
it guarantees specific properties which are required for large-scale applications such as
classification (Chapter 4).
The idea of the N2 score is that enhancers which share the same binding sites have a

similar word content. N2 is based on standardised word counts, therefore every word is
associated with a k-mer weight that corresponds to a z-score. These scores can be used
to identify over-represented words and reconstruct the binding sites within enhancers.
This way, the N2 k-mer weights can directly be used to identify the motifs that lead to
the increased similarity of tissue-specific enhancers (Section 4.2).
Alignment-free methods have been used to predict cis-regulatory modules in flies and

mouse (Kantorovitz et al., 2009; Lee et al., 2011). The results on pairwise comparison
of enhancers suggests that the N2 similarity could as well be used to predict the reg-
ulatory outcome of enhancers. N2 fulfils all properties of a Kernel function and can
therefore directly be used for support vector machine based classification and prediction
(Section 4.3).
The tissue specific enhancers used in this study were identified by binding of the

enhancer-associated protein p300. However, the transcription factors that bind to these
enhancers are unknown. Even for enhancers from the same tissue it is likely that dif-
ferent sets of transcription factors are recruited and that the set of transcription factor
binding sites varies. The performance of any task that relies on tissue-specific enhancers
(such as pairwise comparison and classification) is therefore limited by the heterogeneity
of the data sets. N2 provides a similarity measure for enhancers and can be used to iden-
tify more homogeneous clusters in the data (Section 4.4). Usage of such homogeneous
data sets might further improve detection and prediction of tissue-specific regulatory
elements.

3.5.1 Conclusion

In this Chapter, N2 was presented, a novel alignment-free measure of sequence similarity
that overcomes the limitations imposed by traditional exact word count-based methods.
N2 includes the general concept of weighted word neighbourhood counts and it improves
the ability to detect similarity between regulatory sequences. The task of pairwise
comparison of regulatory sequences is much harder than traditional pairwise alignment
since only very few shared words might lead to a similar activity. Application of N2

to large-scale data sets of mammalian enhancers demonstrated that pairwise sequence
similarity of non-homologous regulatory elements is able to estimate similar in vivo
activity. The observation that word count-based similarity measures are able to detect
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tissue-specific activity of enhancers suggests that enhancers contain scattered binding
sites that contribute to their tissue-specificity. This result supports the importance of
combinatorial binding in transcriptional regulation (Chapter 2). Availability of methods
such as N2 which are able to compare enhancers based on sequence information alone
will greatly help to improve our understanding of the sequence-dependent regulatory
code that enables the establishment of a large diversity of cell types coded in one genomic
sequence.





4 Large-Scale Analysis of
Developmental Enhancer
Sequences

4.1 Introduction

Binding of transcription factors is one of the key events that governs transcriptional
regulation and gene expression. Transcription factors recognise specific DNA sequences
to regulate gene expression. These DNA binding motifs are required for many cellu-
lar processes, and consequently they show higher levels of sequence conservation (He
et al., 2011). The combination of transcription factor binding events (Chapter 2) and
the combination of binding patterns (Chapter 3) define the cell type-specific activity
of regulatory elements. The developmental enhancers analysed in Chapters 2 and 3
were identified by the enhancer binding protein p300, which does not bind to the DNA
directly. Instead, intermediate transcription factors bind to those enhancers and de-
fine their activity. Enhancers which are active in the same tissue show higher sequence
similarity, but the transcription factor binding sites are still unknown. Furthermore,
it is likely that these binding sites vary and that tissue-specific enhancers represent a
heterogeneous data set of enhancers with only partially similar binding sites. In order to
better understand gene regulation during development, the sequence-specific properties
of tissue-specific developmental enhancers have to be studied.
Availability of genome-wide data provides the possibility to use tools such as motif

finding, or classification. Chapter 3 aimed at estimation of the similarity of two enhancer
sequences (pairwise comparison) without any additional knowledge. While both motif
finding and classification require much larger data sets and would fail for this task, N2

can easily be used and extended to the analysis of large-scale data sets.
First, a N2-based motif finding algorithm is presented. This algorithm is applied to

large-scale enhancer data sets to identify transcription factor binding sites. Secondly,
N2 is used as a kernel function for support vector machine (SVM) classification and
prediction of enhancers. Finally, heterogeneity of tissue-specific enhancers is investigated

71
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by combining clustering with theN2 measure of similarity. All of these tasks are different
in their goal, yet connected through the usage of the same N2-based word statistics.
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4.2 Motif Finding: N2 Word Ranking

The task of motif finding is to identify statistically over-represented signals in a set of
sequences. Transcription factors regulate gene expression by binding to specific DNA
sequences, finding transcription factor binding sites in enhancers is therefore an instance
of the motif finding problem. The DNA binding sequence of transcription factors can
be identified experimentally with the ChIP-Seq technology which results in a large set
of sequences bound by the protein of interest (Figure 1.7). The DNA binding motif of
the transcription factor can then be identified by extracting over-represented words.
The set of enhancers analysed in Chapters 2 and 3 act by recruiting specific transcrip-

tion factors, which activate or repress gene expression. The developmental enhancers
were identified by binding of p300, but the transcription factors which are recruited to
the enhancers remain unknown. Knowledge of the DNA motifs in these enhancers is a
first step to identifying these transcription factors and to understand the functionality
of tissue-specific regulatory sequences.
Motif finding algorithms usually have two phases, derivation of an initial motif, and

subsequent refinement. MEME (Bailey et al., 2009), one of the most widely used tools
for motif finding, uses an expectation-maximisation algorithm. MEME makes prior
assumptions on how and where motif occurrences appear, such as one occurrence per
sequence (OOPS). While MEME is sensitive for finding motifs, it cannot be used for
large-scale data sets with several thousand sequences. Many other motif finding algo-
rithms have been developed, some of which are specifically aimed at analysing large-
scale data sets (Sinha and Tompa, 2002, 2003; Tompa et al., 2005; Pavesi et al., 2006;
Chakravarty et al., 2007; Bailey, 2011; Machanick and Bailey, 2011; Huggins et al., 2011;
Thomas-Chollier et al., 2012; Ma et al., 2012), see Das and Dai (2007) for an overview.
Identification of over-represented words is the basis for alignment-free sequence com-

parison. The N2 method (Chapter 3) calculates z-scores for the number of occurrences
for every possible word of a specific length in a sequence. Instead of calculating pair-
wise similarity, these z-scores can be directly used as a measure for over-representation.
Consequently, the standardised word counts from N2 provide the starting point for a
motif finding algorithm.

4.2.1 Algorithm: ALF-M

The N2-based motif finding algorithm (ALF-M ) starts with calculating z-scores for
all words of length k and returns the motifs associated with highest over-represented
words. Similar to other algorithms, ALF-M can be divided into two steps, derivation of
a starting pattern (steps 1-4, Figure 4.1) and refinement to obtain a more precise motif
description (steps 5-6, Figure 4.1).
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1. Calculate k-mer weights
Firstly, all words of a given length k (k-mers) are counted in the set of input se-
quences. As described in Chapter 3, the standardised word neighbourhood counts
are calculated and normalised (further referred to as k-mer weights). The k-mer
weights provide the estimation on the over-representation for every word (z-scores).

2. Rank k-mers
All k-mers are ranked according to their weight. The n k-mers with the highest
weight will provide the initial seed k-mers for steps 3-6.

3. Extend k-mers
Recursively, the k-mers with the highest weights are aligned to the seed k-mer to
obtain an extended pattern.

4. Calculate Weighted PFM
A position frequency matrix (PFM) is calculated from the extended k-mer align-
ment. In this step, the k-mer weights are used to obtain a weighted PFM. Based
on the PFM, a consensus motif is computed where all positions below a threshold
(0.8) are masked with the wild-card letter N.

5. Scan Sequences
The consensus motif is now used to scan all sequences for occurrences. By default,
two mismatches are allowed in the refinement step, however, this can be adjusted
freely.

6. Calculate Refined PFM
Based on all matches of the consensus motif in the set of sequences, the refined
position frequency matrix is calculated.

Steps 3-6 are repeated using the n highest ranking k-mers as seeds.

7. Cluster motifs and return non-redundant hits
Since the highest ranking k-mers might represent sub-words from the same motif,
redundant words have to be identified. This is achieved by clustering of all con-
sensus motifs. The tree is cut into m sub-clusters, from which a single motif is
returned.

Significance of the Motifs. The k-mer weights are standardised word counts. Every
word count is a sum of (dependent) random variables. If word overlaps and nucleotide
dependencies are ignored, the word count forms a sum of independent Bernoulli vari-
ables. In that case, the central limit theorem states that the standardised word counts
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Figure 4.1: Motif finding with N2 word statistics: ALF-M. For every k-mer a z-score is calculated
that estimates the level of over-representation (k-mer weights). The k-mers with the highest weights
are used as seeds, which are extended and refined to obtain a PFM description of the motif. Finally,
a clustering approach is used to return a set of non-redundant motifs.

converge to the standard Gaussian distribution (Reinert et al., 2009). The asymptotic
normality of the word counts can be established for higher order Markov models as
well (Robin et al., 2005). Therefore, for large sequences, the standardised word counts
follows an approximately standard normal distributed z-score, for which a significance
estimate (p-value) can be calculated. For ALF-M, the p-value of the motif is estimated
by the probability to observe the same or a higher z-score for the seed k-mer by chance.

Parameters. The parameters that can be decided by the user are the word length k
for the initial ranking, the number of k-mers n which will be used as seeds, the number
of mismatches d for the refinement step, and the number of motifs m which will be
returned after the clustering. The length e for the extension and alignment step can
also be chosen freely (default 2).

Running Time. The running time for ALF-M is dependent on the total length of all
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Figure 4.2: ALF-M correctly identifies motifs in simulated sequences (1000 sequences of length
1000 bp, 10 motifs of length 7 bp inserted each into 100 sequences. (A) K-mer ranking by k-mer
weights (z-scores). (B) P-value estimates for every k-mer. (C) Implanted motifs, top k-mer that
is part of this motif with k-mer rank and p-value, and the motif predicted by ALF-M.

sequences l, the order of the background Markov model mo, the choice of k, the size of
the word neighbourhood, and the number of k-mers used as seed n:

O(l + 4mo + 4kNeighbourhoodSize2 + nl + n)

In practise, ALF-M is very fast as the running time is linear in the length of sequences
analysed. For example, finding 20 motifs in 2000 sequences of length 500 using k = 5

and mo = 3 takes only a few seconds.

4.2.2 Motif Finding: Simulations

To test the ability of ALF-M to identify motifs I sampled sequences of length 1000 bp
with a similar word composition as the mouse genome (Thomas-Chollier et al., 2011).
10 random words of length 7 were implanted each into 100 sequences (m1r1) and ALF-
M was used to identify these 10 motifs in the combined data set of 1000 sequences
(Figure 4.2).
Within the top 24 k-mers, ALF-M returned significant motifs for all implanted words.

Among these 24 k-mers, only 5 k-mers were not fully part of an inserted motif. In total,
ALF-M identified 59 out of all 1024 k-mers as significantly over-represented (p-value
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Figure 4.3: Motif finding with ALF-M identifies known and novel transcription factor binding mo-
tifs. ALF-M can be applied to data which is specific for a single transcription factor (left) and to
enhancers where the transcription factors are unknown (right).

<0.05). 26 from all possible 30 5-mers that resemble the inserted motifs were among
those significant k-mers, and 37 overlapped by at least 4 nucleotides. This shows that
the p-value estimates from ALF-M are good indicators of statistically over-represented
words.
The k-mer based approach of ALF-M leads to identification of motifs which are longer

than the inserted words. This can be changed by choosing smaller values for the word
length k or extension length e, without affecting the k-mer ranking. These result demon-
strate the sensitivity of ALF-M and the N2 based word ranking, as it accurately iden-
tified words of length 7 which occur only once in 10% of all sequences.

4.2.3 Motif Finding: Enhancers

In chapters 2 and 3, two different kinds of data sets were analysed: binding data from
transcription factors such as Oct4 and Nanog, and binding data from the general en-
hancer binding protein p300. For Oct4, and Nanog, the binding motif is known (Schöler
et al., 1989, 1990; Loh et al., 2006). In contrast, the transcription factors that bind at
enhancers identified with p300 are unknown. I applied ALF-M to both kinds of data
sets (Marson et al., 2008; Visel et al., 2009; Blow et al., 2010; Creyghton et al., 2010),
selecting 2000 sequences of length 500 bp each time, to measure its ability to recover
known and novel transcription factor binding motifs.
Oct4 binds to the octamer motif (ATGCAAAT). ALF-M identifies this motif as the

highest scoring motif in the Oct4 data set (see Figure 4.3 for a summary of the motifs
identified with ALF-M in all data sets). Nanog is a homeobox transcription factor,
and the primary motif for Nanog identified by ALF-M is the homeobox binding motif.
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Nanog frequently co-localises with Oct4 in embryonic stem cells (Chapter 2) and ALF-
M identifies the octamer motif among the significant secondary motifs in the Nanog
binding data. Several other secondary motifs were identified by ALF-M confirming the
power of the N2 word count based approach for motif finding in transcription factor
binding data.
The enhancer binding protein p300 is not associated with a single transcription factor,

therefore motif finding in these enhancers might help identifying different factors bound
in the distinct tissues. In embryonic stem cells, p300 binds to enhancers were Oct4,
Sox2 and Nanog binds (Chen et al., 2008; Creyghton et al., 2010). The Sox2 binding
motif (CATTGTT, Chen et al. (2008)) is identified in the p300 binding data, as is the
primary Nanog binding motif (Figure 4.3, ESC). Interestingly, the primary motif for the
p300 data in embryonic stem cells resembles the Klf4 motif (CCCACC). This might reflect
that p300 frequently binds to promoters, and Klf4 is an important, promoter-specific
transcription factor involved in the maintenance of pluripotency (Chen et al., 2008).
This analysis of p300 binding data from embryonic stem cells shows that ALF-M is able
to identify motifs which correctly reflect the expected binding combinations (Chapter 2).
Much less is known about enhancers from mouse forebrain, midbrain, limb and heart

tissue (Thomas-Chollier et al., 2012). Enhancers from similar tissues can be compared
using N2 (Chapter 3), which indicates that these are bound by specific transcription
factors. In contrast to pairwise comparison, which is based on only two sequences, motif
finding can use a much larger data set. Applied to these developmental enhancers, ALF-
M returns homeobox motifs (TAAT), E-Box motifs (CAGCTG), GATA motifs (GATA) and
many other well known transcription factor binding sequences (Figure 4.3). Interest-
ingly, motifs identified in the Nanog data sets can be identified in forebrain and midbrain
enhancers. This is in line with results presented in Chapter 2, where it was shown that
combinatorial binding of Nanog with Oct4 and Sox2 identifies highly conserved devel-
opmental enhancers. Identification of shared motifs in the Nanog and p300 data sets
further supports the notion of gene regulatory hotspots, highly conserved regulatory
elements that are bound in multiple tissues.

4.2.4 ALF-M Identifies Conserved Motifs in Developmental
Enhancers

The key step for motif finding with ALF-M is computation of the standardised word
counts (N2). All motifs that are reported are essentially extensions of the k-mers with
the highest weights (z-scores). In order to estimate the value of the k-mer ranking, I
investigated the sequence conservation (PhyloP) of all words in the sequences (Pollard
et al., 2010).
The top motif identified in forebrain enhancers (CTAATTA) is the refined, extended
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Figure 4.4: ALF-M Identifies Conserved Motifs in Developmental Enhancers. (A) Shown is an
enhancer sequence that drives expression in mouse embryonic forebrain development. (Top) K-mer
weights (z-scores) and cumulative k-mer weights for every 5-mer at every position. Below is shown
the sequence conservation (PhyloP, Pollard et al. (2010)). Words with high k-mer weights fall into
the conserved parts of this enhancer sequence. Occurrences of the four k-mers with the highest
weights are highlighted. Below are depicted the occurrences of the motif which is predicted by ALF-
M. (B) Sequence conservation for all occurrences in the full data set of forebrain enhancers. (Left)
Sequence conservation of the k-mer with the highest rank (TAATT). (Middle) Sequence conservation
of the top 30 k-mers with the highest ranks. (Right) Sequence conservation of all other k-mers. The
k-mers with the highest k-mer weights show significantly higher sequence conservation (Wilcoxon
test: p < 10−16).

motif of the k-mer TAATT, which had the highest z-score (p < 10−16). For many fore-
brain enhancers, both the refined motif and the k-mer itself fall into highly conserved
regions (Figure 4.4A). Similarly, the cumulative sum of k-mer weights increases in con-
served regions, while it decreases in non-conserved parts (Figure 4.4A). To estimate the
significance of this observation, the average sequence conservation was calculated for all
occurrences of the k-mer with the highest weight (TAATT), the conservation for top 30
k-mers with the highest weights, and the conservation for all other k-mers in all fore-
brain enhancers (Figure 4.4B). Sequence conservation of the single top k-mer and of the
30 top k-mers is significantly higher compared to the conservation of all other k-mers
(Wilcoxon test: p < 10−16). This strongly demonstrates that the standardised word
counts used by N2 and ALF-M indeed identify functional, highly conserved sequence
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motifs which provide a proper seed for motif finding in regulatory sequences.

4.2.5 Discussion

Word statistics and k-mer counts have been used previously for motif finding algorithms
(Thomas-Chollier et al., 2012; Fratkin et al., 2006; Ma et al., 2012). The algorithm used
by ALF-M is closest to RSAT’s peak-motif software (Thomas-Chollier et al., 2012)
which is based on word over-representation statistics (van Helden et al., 1998). How-
ever, peak-motif does not account for word-overlaps as ALF-M does (Section 3.3.2).
These differences will likely reflect the ranking of significant motifs. Among the sig-
nificant motifs in the Oct4, Sox2, Nanog and p300 data sets, peak-motif and ALF-M
identify similar patterns (Figure 4.3, Thomas-Chollier et al. (2012)). Furthermore, both
methods have quick running times, reflecting similar approaches for motif identification.
In contrast to peaks-motif, ALF-M is able to integrate approximate word count statis-
tics. It would be of interest to investigate in detail the differences when mismatches are
included compared to exact word counts.
Currently, ALF-M refines the PWM only once by searching the input sequences for

occurrences of the consensus pattern. In this step, the flexibility of DNA binding motifs
is captured by allowing mismatches for pattern matching. Utilising a PWM-based search
algorithm might further improve the accuracy of the final motif returned by ALF-M.
Furthermore, multiple rounds of refinement and searching could be employed to return
more sensitive results.
In summary, these results highlight the versatility of the N2 word statistics for the

identification of transcription factor binding motifs. The analysis of the k-mer weights
showed that the most significantly over-represented k-mers identified by ALF-M are
highly conserved, confirming the value of the N2-based ranking. The results on sim-
ulations and on enhancer data showed that ALF-M recognises both known and novel
motifs, making it a powerful and quick tool for motif identification in large-scale data
sets. ALF-M can be used within R, making it particularly interesting as part of R
ChIP-Seq analysis pipelines.
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4.3 Classification: The N2 Kernel Function

The genome-wide identification of regulatory sequences revealed that hundred thousands
of enhancers are most likely active in every cell type (Heintzman et al., 2009). For some
cell types, like embryonic stem cells, the repertoire of regulatory sequences is already
mapped to a large degree (see Chapter 2). However, the data sets of developmental
enhancers only cover a few thousands identified at a specific time point and tissue during
development (Blow et al., 2010; Visel et al., 2009). Clearly, many more enhancers that
drive partially similar expression patterns exist, but their locations are unknown. The
identification of genomic enhancers and the estimation of their activity are therefore
major goals in molecular genetics.
Sequence conservation has been used to identify novel enhancers (Pennacchio et al.,

2006). Highly conserved non-coding sequences frequently act as enhancers during devel-
opment. However, sequence conservation alone is unable to predict the precise expression
pattern driven by the regulatory elements, this has to be tested using experimental es-
says (Visel et al., 2007). Additionally, many enhancers show only very weak sequence
conservation. Even though they are crucial for embryogenesis (Blow et al., 2010), these
enhancers cannot be identified using comparative genomics.
Both the identification of enhancers and the prediction of their activity are essen-

tially classification problems. Classification describes the procedure that assigns a new
observation into a known class. The identification of novel enhancers can be achieved
by classification of non-coding sequences into enhancer or random genomic background,
using the experimental data and randomly sampled background as known classes. Sim-
ilarly, an enhancer candidate sequence can be classified into one of the known groups of
tissue-specific enhancers to predict its regulatory activity.
Binary classification problems can be solved using support vector machines (SVMs)

(Cortes and Vapnik, 1995). Given a set of observations from two different classes (train-
ing data), the SVM predicts for new data points (test data) to which of the two classes
it belongs. SVMs have been applied successfully to DNA sequences where they are able
to predict locations of functional elements such as promoters, enhancers or splice sites
(Sonnenburg et al., 2006, 2007; Rätsch et al., 2006; Ben-Hur et al., 2008; Lee et al.,
2011).
Classification with SVMs is achieved by mapping the input data into a high-dimensional

feature space, where a hyperplane is constructed that optimally separates the two classes.
DNA sequences can be transformed into word count representations which can then
be classified with SVMs (Leslie et al., 2002, 2004). The feature space representation
needs not to be calculated explicitly if a kernel function is known that defines an inner
product on the feature space-transformed input data. The N2 method introduced in
Chapter 3 fulfils the properties of a kernel function, as it is defined as the inner product
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of feature-space transformed sequences, where the word neighbourhood counts represent
the feature space. Therefore, N2 can directly be plugged into an SVM for classification
of DNA regulatory sequences.

4.3.1 The N2 Kernel Function

Let X be the (input) space, a function K : X ×X → R is called Kernel, if there exists
a feature space F and a function φ : X → F such that for all x, y ∈ X, K(x, y) equals
the inner product < ·, · > of φ(x) and φ(y):

K(x, y) =< φ(x), φ(y) > ∀ x, y ∈ X .

Since N2 is defined as the inner product of the normalised standardised word neighbour-
hood counts N̂ (feature space), N2 provides a kernel function on the set of sequences
S:

N2(S1, S2) =< N̂S1 , N̂S2 > ∀ S1, S2 ∈ S .

The matrix of all pairwise N2 scores forms the kernel matrix which will be used for
classification. The same instances of N2 will be used as defined in Section 3.3.3. Among
the other alignment-free sequence comparison methods (Chapter 3), only D2 is a kernel
function with precisely defined φ (Spectrum kernel, Leslie et al. (2002)). Nevertheless,
even though both D2∗ and D2z scores do not form an inner product space, they provide
similarity matrices which I will use for SVM-based classification to show the comparison.

Classification with the N2 Kernel

To classify regulatory sequences with the N2 kernel function, an SVM model is built us-
ing training data. The optimal hyper-plane can be constructed by solving a constrained
quadratic programming problem with cost parameter C that controls the penalty for
misclassified training data points (Karatzoglou and Meyer, 2006). Here, I used the R
package kernlab (Karatzoglou et al., 2004) to train the SVM (C − svc, C = 1). The
raw decision values of the support vector model are then calculated on the test data to
predict their class.
The accuracy of N2 for classification of regulatory sequences is estimated using 10-fold

cross-validation. The data is randomly partitioned into 10 equally sized groups. Every
single group is used exactly once as test data, while the remaining 9 groups are used as
training data. The performance is evaluated using the average ROC curve calculated
on the decision values from the test set. The parameters were fixed to k-mer size k = 5

and Markov model order 1 (see Appendix Figure VI.14 for k = 6).
The developmental enhancers were obtained using p300 ChIP-Seq data from Visel

et al. (2009) and Blow et al. (2010). Reads were mapped using Bowtie (Langmead
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Figure 4.5: Classification with the N2 kernel function, simulated sequences. Shown are the aver-
age ROC curves after 10-fold cross-validation, numbers indicate the AUC. (A) Comparison of the
alignment-free sequence comparison methods for classification (m2r2l5). (B) Words are implanted
on a random strand of the sequences to simulate the orientation independence of transcription factor
binding sites. N2rc shows the best performance. (C) Words were implanted on a random strand
with one mismatch to model the flexibility of transcription factor binding sites. Here, N2rc,mm

performs best.

et al., 2009), peaks were called using MACS (Zhang et al., 2008). Enhancer sequences
were obtained by selecting 1000 bp around the centre of the peak. All data sets were
analysed using the top 1000 peaks (sorted by p-value).

4.3.2 Classification: Simulations

To test the accuracy of N2 for classification, 1000 regulatory sequences and 1000 random
genomic sequences of length 1000 bp were simulated. Random genomic sequences were
simulated such that they have the same dinucleotide content as the mouse genome
(negative set). Regulatory sequences were simulated similarly and m = 2 motifs of
length l = 5 were each implanted r = 2 times into every sequence (positive set, m2r2l5,
see Appendix Figure VI.12 for m1r1l7, m1r4l6, m2r4l5).
N2∗ accurately classifies positive and negative sequences (AUC: 0.93, Figure 4.5A).

Furthermore, N2∗ outperforms the simple string kernel D2 (AUC: 0.9). For these sim-
ulations, the inner product based alignment-free sequence comparison methods D2∗

(AUC: 0.9) and D2z (AUC: 0.85) provide reasonable results as well, even though they
do not fulfil the properties of a kernel function.
The novelty of N2 for classification is its ability to include standardised word neigh-

bourhood counts. To test the usability of the neighbourhood concept, two different
scenarios were simulated, one that accounts for orientation independent transcription
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Classification of tissue-specific enhancer sequences
Tissue: ESC-F ESC-M ESC-L ESC-H F-M F-L F-H M-L M-H L-H
D2 0.84 0.86 0.79 0.76 0.63 0.74 0.82 0.76 0.81 0.78
D2z† 0.47 0.35 0.55 0.62 0.53 0.58 0.42 0.50 0.32 0.51
D2∗† 0.80 0.82 0.71 0.72 0.62 0.73 0.81 0.70 0.79 0.73
N2∗ 0.85 0.81 0.83 0.77 0.67 0.79 0.84 0.75 0.78 0.80
N2rc 0.87 0.84 0.85 0.81 0.69 0.81 0.87 0.79 0.82 0.82

N2mm(0.1),rc 0.89 0.86 0.85 0.81 0.72 0.83 0.88 0.79 0.84 0.83
† Not a kernel function.

Table 4.1: Classification of tissue-specific developmental enhancers. Values indicate the AUC after
10-fold cross validation. ESC: embryonic stem cells; F: forebrain; M: midbrain; L: limb; H: heart.

factor binding sites, and one that additionally includes mismatches.
The orientation independence of transcription factor binding sites was simulated by

implanting words on the forward or backward strand with equal probability (m2r2l5

random strand, see Appendix Figure VI.12 for m1r1l7, m1r4l6, m2r4l5). In this simu-
lation, the N2rc (AUC: 0.86) variant performs better than the other inner product based
alignment-free comparison methods (Figure 4.5A). This shows that the extension of the
neighbourhood to score words on both strands (rc) improves the classification.
In order to simulate the variability of transcription factor binding sites, words were

implanted on the forward or backward strand with one mismatch to the original word
(m2r2, random strand, 1 mismatch, see Appendix Figure VI.12 for m1r1l7, m1r4l6,
m2r4l5). On these simulations, the mismatch variant of N2, N2rc,mm(0.1) outperforms
the other methods (Figure 4.5B). Together, these simulations demonstrate the value of
the extended word neighbourhood counts used by the N2 kernel function for classifica-
tion of sequences.

4.3.3 Classification of Developmental Enhancers with N2

Classification of regulatory sequences can be used to identify novel enhancers. For
example, the sequences upstream of coding genes could be classified according to a
known group of enhancers or as random genomic background. To estimate the power
of N2 for this task, the developmental enhancers used in Section 4.4 were used as the
positive class (Blow et al., 2010; Visel et al., 2009; Creyghton et al., 2010). To obtain
data for the negative class, random positions in the mouse genome were sampled that
do not overlap any known enhancer element. Only sequences containing less then 20%
repetitive elements were retained for the analysis.
Classification of sequences as enhancer or background can be achieved with an AUC

between 0.81 (limb) and 0.88 (forebrain) when the N2rc,mm(0.1) kernel with word size
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Figure 4.6: Classification of embryonic enhancers using the N2 kernel function, shown are the
average ROC curves after 10-fold cross-validation, numbers indicate AUC. (A) Classification of
embryonic stem cell (ESC) enhancers (positive) and random genomic background (negative set).
(B) Classification of embryonic forebrain enhancers (positive) and random genomic background
(negative set). (C) Classification of embryonic stem cell enhancers (positive set) and embryonic
forebrain enhancers (negative set). (D) Classification of embryonic limb enhancers (positive set)
and embryonic heart enhancers (negative set).

k = 5 is used (Figure 4.6A-B, Appendix Figure VI.13, Appendix Figure VI.14 for k = 6).
For all tissues, N2∗ outperformed the D2 string kernel and both D2∗ and D2z. The
extension ofN2 to count words on both strandsN2rc and to include mismatchesN2rc,mm

improved the performance across all data sets.
The second application for classification of regulatory sequences is the prediction of

tissue-specific enhancer activity. For example, a novel identified enhancer sequence can
be classified according to the known groups of developmental enhancers. I verified the
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Figure 4.7: Prediction of the epigenetic state of enhancers. (A) Active and poised enhancers can
be classified using the N2 kernel, suggesting that the cell type-specific epigenetic state can be partly
predicted from sequence alone.(B) Ranking of the k-mer weight differences for active and poised
enhancers. (C) The primary motif associated with the k-mers enriched in active enhancers over
poised enhancers. (D) The primary motif associated with the k-mers enriched in the poised class
of enhancers compared to active enhancers. (E) The primary motif in poised enhancers in human
embryonic stem cells is similar to the motif identified in developmental enhancers.

power of N2 to correctly predict tissue-specific activity using enhancers from two dif-
ferent tissues, one as the positive and the other as the negative class (Figure 4.6C-D,
Table 4.1). Across all combinations of tissues, the N2rc,mm(0.1) kernel most accurately
predicted the tissue-specific activity of enhancers. Depending on the pair of tissues used
as positive and negative sequences, the AUC varies between 0.72 (forebrain versus mid-
brain) and 0.89 (embryonic stem cells versus forebrain). The comparison of the different
alignment-free methods shows that N2∗ generally outperforms D2. D2∗ performs worse
than D2 and D2z frequently yields random predictions (Table 4.1).

4.3.4 Prediction of the Epigenetic State of Enhancers

Not all enhancers identified in a specific tissue drive similar expression patterns. While
most enhancers are active, some enhancers are poised for activation (Rada-Iglesias et al.,
2011). Active and poised enhancers have first been described in human embryonic
stem cells (Rada-Iglesias et al., 2011). Active enhancer are marked by the histone
modifications H3K4me1 and H3K27ac which are associated with active transcription.
In contrast, poised enhancers are marked by the histone modification H3K27me3 which
mainly occurs near repressed genes. Both classes are bound by the enhancer binding
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protein p300, therefore both active and poised enhancers fall into the same class of tissue-
specific enhancers, even though they have highly different functionality. One of the key
questions is whether the active and poised state of enhancers is reflected in differences of
the DNA sequence. In other words, can tissue-specific enhancers be sub-classified into
the active and poised epigenetic state based on sequence information alone?
Data sets of active and poised enhancers have been published for human embryonic

stem cells (Rada-Iglesias et al., 2011). Here, I used these poised enhancers as the
positive set and the active enhancers as the negative set. The classification of enhancers
by epigenetic state was then tested using 10-fold cross-validation (Figure 4.7A). Indeed,
active and poised enhancers can be classified using the N2 string kernel (AUC:0.65).
This strongly supports that the epigenetic state of enhancers can be partially predicted
from the DNA sequence.
These results suggest that differences in DNA sequence cause epigenetic differences of

poised and active enhancers. To analyse sequence-specific differences, I calculated the
difference in k-mer weights from active and poised enhancers (Figure 4.7B). These k-mer
weight differences were ranked and used as input for ALF-M to identify motifs specifi-
cally associated with poised and active enhancers (Figure 4.7C-D). The identified motifs
might hint at transcription factors that interact with the histone modifying enzymes to
establish the epigenetic state. Among the motifs which are specifically enriched in poised
enhancers is the same motif which was identified in developmental enhancers in mouse
(Figure 4.7C-D). The close connection of embryonic stem cells and developmental en-
hancers was highlighted in Chapter 2, where it was shown that enhancers are frequently
bound in multiple cell types (gene regulatory hotspots). This analysis suggests, that
poised enhancers in embryonic stem cells similarly act as such gene regulatory hotspots
during early mammalian development.

4.3.5 Discussion

The k-spectrum kernel function (Leslie et al., 2002), has been extended to integrate
mismatches (Leslie et al., 2004). These kernels have been applied to classification of
the developmental enhancers from midbrain, forebrain and limb used here (Visel et al.,
2009; Lee et al., 2011). The authors reported that an extended k-spectrum kernel based
on normalised, non-redundant, reverse complement word counts yielded the best results
(Lee et al., 2011).
These results are not directly comparable with results in Section 4.3.3 due to dif-

ferences in data sets and classification methods. For example, Lee et al. (2011) use
sequences of different length whereas the sequences used here are all of equal length.
Furthermore, the random genomic sequences are not the same, which will influence the
ROC curve. Additionally, Lee et al. (2011) use a different platform for classification
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(Sonnenburg et al., 2010) which will yield different results. The AUC values reported
in Section 4.3.3 are lower compared to Lee et al. (2011) for the k-spectrum kernel D2

when enhancers are classified against random genomic sequences (D2, k = 5, AUC: 0.74
(limb), 0.81 (midbrain), 0.83 (forebrain); Lee et al. (2011): Supplementary Figure S1A,
k = 5, AUC: 0.90 (limb), 0.90 (midbrain) and 0.92 (forebrain)) whereas forebrain en-
hancers classified against midbrain enhancers give higher AUC values (D2, k = 5: 0.68;
Lee et al. (2011), only k = 6: 0.56). Another apparent difference is that including mis-
matches improved the results with N2, whereas the usage of the mismatch-kernel gave
slightly poorer performance in Lee et al. (2011). However, for a balanced comparison,
the usage of the same classification pipeline and data sets is required.
N2 was designed for pairwise comparison of enhancers, therefore the statistical back-

ground model is calculated on the individual sequences. For the task of classification,
a much larger data set could be used to estimate the background model. This would
drastically reduce the pre-processing time as all neighbourhood word count covariances
could be precomputed at once for fixed length sequences (Section 3.3.3). Therefore,
estimation of the background model on the full set of sequences could yield more robust
estimations of the Markov model, and would enable the usage of much larger choices of
k through the decrease in running time.
Results from simulated sequences and enhancers show that the N2 string kernel can

be used to accurately classify regulatory sequences. Similarly to pairwise comparisons,
the reverse complement and the neighbourhood instances yielded additional improve-
ment. Interestingly, N2 is able to predict a poised state of enhancers in embryonic stem
cells. Therefore, this is the first report of sequence-based classification of enhancers into
epigenetically distinct groups, suggesting that epigenetic differences are partially caused
by sequence-specific properties, such as nucleotide composition, or binding site content.
These results show that N2 provides a novel string kernel that accurately predicts the
regulatory potential in DNA sequences.
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4.4 Clustering: N2 Similarity Measure

Mammalian enhancer sequences show only limited sequence similarity (Section 4.3.3,
Chapter 3.4.5). Even regulatory sequences which drive expression in the same tissue are
highly divergent. This might be expected as enhancers frequently drive expression in
multiple cell types (Section 2.2.4) and have sometimes antagonistic functionality (Rada-
Iglesias et al. (2011); Section 4.3.4). Therefore, data sets of tissue-specific enhancers are
highly heterogeneous collections of sequences.
Heterogeneity of data sets strongly influences their analysis. Both pairwise sequence

comparison and classification of tissue-specific enhancers is limited to the subset of
truly similar enhancers, yet this subset is unknown. For example, enhancers active in
mouse embryonic heart tissue can only partly be discriminated from random genomic
sequences (Chapter 3). Even tough these enhancers were identified in the same tissue,
it is very likely that they differ substantially in sequence composition and transcription
factor binding site content. In general, some enhancers will be bound by the same set
of transcription factors and share the same binding sites, while others will be bound
by different transcription factors. Therefore, due to the data heterogeneity, it won’t be
possible to perfectly discriminate them from enhancers active in other tissues.
A partitioning of enhancers into more homogeneous groups would provide a more

precise basis to study tissue-specific regulation of gene expression. The idea of cluster
analysis is to partition objects into groups (clusters) such that all objects in one cluster
are more similar to each other than to the objects in other clusters (Jain et al., 1999).
Clustering is a very general method and can be applied to every data set on which a
similarity can be defined. Whole-genome alignment-free sequence comparison methods
have been used in combination with clustering for phylogenetic analyses (Bolshoy et al.,
2010). The alignment-free N2 method provides an estimate on the pairwise similarity
of regulatory sequences (see Chapter 3). The distribution of all pairwise N2 scores
therefore gives an estimate on the homogeneity of a cluster of enhancers. In order to
maximise the homogeneity of enhancers, they can be clustered such that their pairwise
N2 scores are maximised within the clusters.
Centroid-based clustering algorithms, such as k-means, minimise the distance from

the data points to the cluster centres (MacQueen, 1967; Lloyd, 1982). For k-means,
the number of clusters k is fixed, and the algorithms searches for the cluster centres
and assigns all data points to the nearest centroid such that the distance is minimised.
k-means can be applied using the N2 scores directly, however, the number of clusters
in the enhancer data is unknown. Hierarchical clustering groups objects based on their
distance, such that similar objects will be closer, resulting in a dendrogram-like ordering
(see Figure 2.2). In contrast to k-means, the number of clusters is not a priori fixed,
but determined by the maximum distance allowed between objects within the clusters.
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Figure 4.8: Clustering of simulated sequences with N2 and k-means. (A) Shown are all pairwise
scores for 1000 simulated sequences in random order. The true groups are displayed at the bottom.
(B) The same set of sequences after k-means clustering. The 10 groups of sequences are largely
identified. The true clusters are displayed at the bottom. (C) ROC curve, for pairwise scores from
positive sequences versus negative sequences, before and after clustering. Clustering identifies more
homogeneous groups, improving the detection of pairwise similarity.

4.4.1 Simulations

To simulate a heterogeneous cluster of regulatory sequences, two words were inserted
each four times into 100 random sequences of length 1000 bp (m2r4, see Section 4.2.2).
This was repeated 10 times to obtain a data set of 1000 sequences, consisting of 10
true clusters. Only the sequences within the true clusters share the same motifs and are
therefore similar, while all other sequence pairs correspond to wrongly labelled true pos-
itives. For this data set all pairwise similarities were calculated using N2 (Figure 4.8A).

k-means

In the simulation setup, the number of true clusters (10) is known, therefore k-means
was used to predict exactly 10 clusters (Figure 4.8B). On average, 97% of the predicted
clusters belonged to the same group of sequences (‘true cluster’). This shows that the
N2 similarity in combination with k-means results in highly homogeneous clusters.
To verify the benefit of prior clustering, the power of N2 to detect sequence similarity

for every predicted cluster was tested. All sequence pairs from sequences with inserted
motifs were used as true positives, and pairwise scores from sequences without inserted
motifs were used as false positives (see Section 3.4.4). The ROC curve displays the
true positive rate (sensitivity) versus the false positive rate (1-specificity), and the area
under the ROC curve (AUC) corresponds to the probability that a randomly selected
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Figure 4.9: Hierarchical clustering of simulated sequences with N2. (A) Dendrogram showing the
hierarchical clustering of 1000 simulated sequences consisting of then 10 groups. The tree was cut
at the height that resulted in 10 clusters, the resulting predicted clusters are highlighted. (B) The
true clusters of sequences according to the implanted motifs. (C) The two primary motifs identified
using ALF-M. (D) Inserted words, every word-pair was inserted four times into 100 sequences. The
clustering exactly corresponds to these implanted motifs.

true positive will be scored higher than a randomly selected false positive.
The ROC curve prior to clustering (Figure 4.8C, black line) includes 90% of random

sequence pairs as wrongly labelled true positives (inter-cluster sequence comparisons).
The AUC is higher for all clusters compared to the full, heterogeneous data set (Fig-
ure 4.8C). Since the intra-cluster N2 similarity was maximised during cluster generation,
this behaviour is expected. However, this simulation demonstrates the value of having
homogeneous data sets, as the ROC curve reflects both sequence similarity and homo-
geneity of the data.

Hierarchical Clustering

For real enhancer sequences, the optimal number of clusters is unknown. Hierarchical
clustering provides a means to determine the number of clusters in the data, therefore
the same simulated data was used as for k-means. The distances for all sequences were
estimated by calculating the euclidean distance on the pairwise N2 scores, clustering was
performed using Ward’s methods (Ward, 1963) (Figure 4.9A). To estimate homogeneity
of the predicted clusters, the dendrogram was cut at the height that resulted in 10
clusters. For these predicted clusters, in average 86% of the sequences belonged to
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Figure 4.10: Clustering of embryonic heart enhancers.(A) Heatmap showing the pairwise N2 sim-
ilarities of embryonic heart enhancers ordered according to the hierarchical clustering. (B) The top
motifs identified by ALF-M for five clusters.

the same true cluster (Figure 4.9B). While this is lower compared to k-means, it still
drastically increases the homogeneity compared to the full data set, suggesting that
hierarchical clustering could be used on real enhancer sequences when the number of
clusters is unknown.
To further demonstrate the power of homogeneous data sets, the N2 based motif

finding algorithm ALF-M was applied to the predicted clusters (Figure 4.9C-D). For
every cluster, the two highest ranking motifs identified by ALF-M corresponded to the
implanted words. This demonstrates the power of word based similarity measures to
partition data sets of regulatory sequences based on the transcription factor binding site
content.

4.4.2 Clustering of Developmental Enhancers

Enhancer sequences identified in the same tissue have higher pairwise N2 scores (Chap-
ter 3). However, the clustering simulations (Figure 4.8) showed that the ability of N2

to compare regulatory sequences might be influenced by the heterogeneity of the data.
Enhancers active in mouse embryonic heart showed the smallest difference to random
sequences (Figure 3.6, Table 3.4), suggesting that this data set consists of a more het-
erogeneous collection of regulatory sequences than enhancers of other tissues.
In order to study the heterogeneity of heart enhancers, all pairwise N2rc,mm scores

were calculated on 2000 heart enhancers (Blow et al., 2010) of length 1000 bp, each
having maximal 30% of its sequence covered by repeats. Similarly to the simulated
sequences, a hierarchical clustering was computed (Figure 4.10A). First, ALF-M was
used to identify motifs in five sub-clusters. While some clusters have more similar
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Figure 4.11: Hierarchical clustering identifies homogeneous groups of enhancers. The hierarchical
clustering of mouse embryonic heart enhancers is shown on top. The homogeneity of the clusters
was estimated by a ROC curve (bottom). (A) Full data set, single cluster. (B) Two clusters. (C)
Three clusters. (D) Four clusters.

motifs, others are very different (Figure 4.10B). This shows that clustering using the
N2 similarity results in clusters having different nucleotide and word compositions.
Since N2 was used to obtain the clustering, N2 gives an estimate on the cluster

homogeneity. Similar to the simulations, the ROC curves before and after clustering
were calculated using pairs of sequences randomly selected from the mouse genome to
estimate the false positive rate. The number of clusters was stepwise increased as the
true number is unknown (Figure 4.11).
The ROC curve calculated on the full data set confirms that pairwise scores from

heart enhancers are close to pairwise scores from random sequences (Figure 4.11A).
Splitting the data into two clusters already demonstrates the heterogeneity of the heart
enhancer data set (Figure 4.11B). A small cluster has pairwise scores lower than random,
these sequences are more dissimilar than is expected by chance. In contrast, the large
majority of sequences are more similar than expected by chance, as is reflected by the
ROC curve. Splitting the data into three (Figure 4.11C) and four (Figure 4.11D) clusters
further separates heart enhancers into more homogeneous clusters. Before clustering,
the AUC is 0.56. After partitioning the data set into 4 clusters, the AUC for the largest
cluster (705 sequences) is 0.70, for the most homogeneous cluster (487 sequences, cluster
3) 0.91, and for the cluster of dissimilar sequences (416 sequences, cluster 1) the AUC



94 4 Large-Scale Analysis of Enhancer Sequences

Figure 4.12: Dotplot (word size 5) of sequences from clusters 1 (dissimilar) and cluster 3 (highly
similar), N2rc,mm scores are indicated in the top left corner for every pair. Pairwise scores are
higher for sequences from cluster 3 compared to sequences from cluster 1. However, the sequence
similarity can not be estimated from the dotplots or alignments.

is 0.30. This confirms that the poor performance of the heart enhancer data set in
Chapter 3 can be partly explained by the heterogeneity of the data and in particular by
a sub-population of sequences (cluster 1) that do not seem to share many binding sites
as quantified by the N2 similarity.

Several sequence properties could have an impact on the clustering with N2. For
example, repetitive sequences (high word count, sequence noise, see Section 3.4.3) or
large regions of sequence similarity (alignable sequences) could induce high N2 scores.
One way to visualise pairwise sequence comparisons is a dotplot (see Section 3.2.2).
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Figure 4.13: Clustering of Mouse Developmental Enhancers. Enhancer data sets can be separated
into more homogeneous sub-clusters. (A) Forebrain. (B) Midbrain. (C) Limb. (D) Embryonic
stem cells.

Figure 4.12 shows the dotplots of all pairwise comparisons for two sequences from cluster
1 (low N2 scores) and two sequences from cluster 3 (high N2 scores). All sequence
pairs, between and across the two clusters, show similar amounts of matching words,
therefore neither repetitive sequences nor high sequence similarity (alignability) seem to
influence the clustering. Furthermore, the dotplots demonstrate the power of alignment-
free sequence comparison over traditional alignments, as none of the heart enhancers
show stretches of similar words that could have been captured with local or global
alignments.
To test whether the other enhancer data sets show similar characteristics, the same

analysis was performed on forebrain (Visel et al., 2009), midbrain (Visel et al., 2009;
Blow et al., 2010), limb (Visel et al., 2009), and embryonic stem cell enhancers (Creyghton
et al., 2010) (Figure 4.13). Across all data sets, clustering results in a partitioning of
the data into one cluster of dissimilar sequences, one cluster of highly similar sequences
and one cluster of sequences with intermediate similarity, likely reflecting intra-cluster
heterogeneity.
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4.4.3 Discussion

Clustering of regulatory sequences requires a sensitive measure of pairwise similarity.
In contrast to large-scale applications such as motif finding and classification, pairwise
sequence similarity is restricted to two sequences and therefore a very difficult task. N2

provides a sensitive measure of similarity for regulatory sequences and thereby facilitates
a large-scale cluster analysis.
The analysis of enhancer sequence data emphasises the influence of data homogeneity

on the results. Global measures such as ROC curves and AUC values are strongly
limited by heterogeneous data and provide only partial information on the performance
of the method. For example, pairwise comparison of regulatory sequences with N2 can
be achieved with an AUC of 0.91 for mouse embryonic heart enhancers after clustering.
It is very likely that other tasks such as classification and prediction (Section 4.3) or
motif finding (Section 4.2) will similarly profit from more homogeneous data and yield
more sensitive results.
Since the numbers of true clusters is unknown for enhancer data, hierarchical clus-

tering was used here. Yet, the simulations showed that k-means might result in more
homogeneous clusters. Hierarchical clustering could be used to estimate the number of
clusters, and k-means could then be used for the final clustering. The two clustering
methods used here only provide a small subset and many other methods exist that have
specific advantages (Jain et al., 1999). Nevertheless, usage of hierarchical clustering
combined with the N2 similarity measure already highlighted the heterogeneity of the
data.
All enhancer data sets could be partitioned into smaller clusters that were more

homogeneous. The structure of the data (Figure 4.13) shows that all data sets consist of
2-3 larger clusters. Yet, even these clusters consist of many hundred sub-clusters. While
further partitioning of the data would result in smaller data sets that are of limited use
for large-scale applications, the data structure is still of interest. It is very likely that
all the small sub-clusters of sometimes only a few sequences represent enhancers with a
large number of shared motifs, while the larger clusters represent enhancers with fewer
shared words. Such a structure of regulatory sequences would enable the cell to direct
gene expression programs on a larger scale (tissue, larger cluster) and on a more refined
scale (cell types, developmental stages, smaller clusters). Therefore, the structure of
the clustering of long-distance regulatory elements might reflect the structure of tightly
connected transcriptional regulatory networks that facilitate the concerted embryonic
development in mammals.



5 Summary

Mammalian organisms consist of several hundred different cell types. Although every
cell has the same repertoire of genes only a subset will be expressed to enable cell type-
specific functions. Regulation of gene expression is organised in a highly connected
manner through the binding of transcription factors at specific DNA sequences (Chan
et al., 2011; Lee et al., 2002; Davidson, 2006). These cis-regulatory elements can be
found in close proximity to the transcription start site (promoters) or can be many
kilobases distant (enhancers). Most of our knowledge of transcriptional regulation was
obtained from studies of promoters, since enhancers are much harder to identify and
study (Heintzman and Ren, 2009). However, enhancers are crucial for cellular differen-
tiation and embryonic development (Rada-Iglesias et al., 2011). This thesis deals with
the analysis of such long-distance regulatory elements.

Transcription factors typically do not act in isolation but instead act in a combinatorial
manner to regulate cell type-specific gene expression. For example, in mouse embry-
onic stem cells (ESCs), the key factors Oct4, Sox2 and Nanog are frequently found at
the same distal regulatory elements (Figure 2.2). Chapter 2 investigates the influence
of combinatorial binding of Oct4, Sox2 and Nanog on transcription and evolution of
gene regulation. It is shown that in contrast to loci where only one of the transcription
factors binds, loci with multiple factors binding are enriched in several properties asso-
ciated with active enhancers. These properties include binding by the transcriptional
co-activator Mediator, enrichment in the histone modification H3K27ac, and increased
expression of nearby genes. The target genes of these combinatorially bound enhancers
are frequently active during embryonic development. A comparison with enhancers
from different developmental stages of the mouse embryo (Blow et al., 2010; Visel et al.,
2009) shows that the same elements which are bound by Oct4, Sox2 and Nanog in ESCs
frequently drive expression in developmental tissues.
It has been described that only a minority of enhancers (2-7%) shows conserved

binding between mouse and human (Schmidt et al., 2010; Kunarso et al., 2010). A
comparison of genome-wide binding data from OCT4, SOX2 and NANOG in human
ESCs with mouse ESCs shows that combinatorially bound enhancers are more frequently
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conserved (15%). More than 50% of enhancers which are bound by all three factors and
which are active in development show binding conservation, suggesting that these are
specifically important for embryonic development.
ChIP experiments typically identify many thousands of binding sites, which raises

the question: which of these elements are actually relevant to regulate the expression
of associated genes? In Chapter 2 it is shown that integration of combinatorial binding
identifies highly conserved developmental enhancers important for pluripotency and em-
bryogenesis, highlighting the importance of combinatorial regulation of gene expression
at distal regulatory elements.

The large-scale identification of regulatory elements in recent years is comparable to
the large-scale identification of protein coding genes after the initial sequencing of the
human genome. For many years, sequence similarity has been used to estimate the func-
tional similarity of protein coding genes. Sequence similarity is usually computed using
global (Needleman and Wunsch, 1970) or local alignment tools (Smith and Waterman,
1981) such as BLAST (Altschul et al., 1990). In contrast to coding sequences, these
alignment methods fail in the identification of functionally similar regulatory sequences.
In Chapter 3 a novel alignment-free sequence comparison method (N2) is presented,
which can be used to compare regulatory elements.
The basic idea of N2 is to estimate the similarity of regulatory sequences by the num-

ber and combination of shared words. This approach is motivated by the observation,
that regulatory sequences which drive expression in the same cell type have similar com-
binations of transcription factor binding sites (Chapter 2). Therefore, sequences that
share similar combinations of words have a high N2 similarity score.
The novelty of N2 is the flexible framework of standardised word neighbourhood

counts. This framework extends existing alignment-free sequence comparison methods
to approximate word matching. Application of N2 to developmental enhancers demon-
strates that N2 is able to identify enhancers which are active in the same tissue using
sequence information alone.

Even though N2 was designed for pairwise sequence comparison, it provides many pos-
sibilities for large-scale data analysis of regulatory sequences. Chapter 4 utilises N2 and
the underlying word statistics to analyse the sequence-specific properties of mammalian
enhancers in embryonic stem cells and early embryonic development.
Since the regulatory function of enhancers is determined by their transcription fac-

tor binding site content, the knowledge of these binding sites is of great interest. In
Section 4.2, ALF-M is presented, a de novo motif finding algorithm. The initial step is
provided using the N2 word statistics: a k-mer ranking is created based on the standard-
ised word neighbourhood counts. Application of ALF-M to enhancers in embryonic stem
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cells identifies the motifs that correspond to the combinatorial regulation of gene ex-
pression reported in Chapter 2. Applied to developmental enhancers, ALF-M identifies
several candidate transcription factor binding motifs which have significantly increased
levels of sequence conservation.
In Section 4.3, N2 is used as a kernel function for SVM-based classification of regu-

latory sequences. The N2 instance that includes mismatches and reverse complement
word counts (N2rc,mm) achieves a maximum AUC of 0.89 for classification of develop-
mental enhancers, confirming that the word content is largely sufficient to determine
the tissue-specific activity of regulatory sequences.
Section 4.4 investigates the heterogeneity of large-scale enhancer data sets. The N2

similarity measure is used to cluster developmental enhancers into homogeneous groups.
This analysis highlights that tissue-specific enhancer data sets most likely consist of
enhancers which are only partially similar. Such a clustering might provide the basis
for a detailed analysis of transcriptional regulatory networks based on the binding site
content of long-distance enhancers.

In summary, this thesis presents new insights into the combinatorial regulation of gene
expression in embryonic stem cells and provides a novel method for sensitive pairwise
comparison of enhancers and in-depth analysis of large-scale data sets of regulatory
elements.
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VI.1 Supplementary Information for Chapter 2

Figure VI.1: Comparison of different cutoffs for peak calling. The diagram shows the percentage
of Oct4 bound loci that are bound by Nanog and Sox2. The observed level of co-localisation is
comparable across data sets with different cutoffs. (A) Full data set, all peaks with p<e-05. (B)
FDR controlled data set, peaks with p<e-05 and FDR<2%. (C) Stringent cutoff, the 10% most
significant peaks from all peaks with p<e-05.
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Figure VI.2: Mediator co-localises with Oct4, Sox2 and Nanog at combinatorially bound enhancers.
For every data set, only the 10% most significant peaks of all peaks with p<e-05 are considered
(‘stringent data set’). (A) Bars indicate the fraction of loci where Med1, Med12 and CTCF binding
can be observed, depending on the combination of Oct4, Sox2 and Nanog, indicated by boxes below.
Dark boxes indicate binding, light grey boxes with ‘v’ indicate binding of at least one factor (‘OR’
relation). Both Med1 and Med12 preferentially co-localise at loci bound by Oct4, Sox2 and Nanog
simultaneously. CTCF serves as a control to estimate unspecific binding. (B) The majority of loci
bound by Oct4, Sox2 and Nanog are more than 1000 bp away from the nearest transcription start
sites for all possible combinations (indicated by boxes above). Mediator co-localisation mainly occurs
at distant regulatory sites, showing that the increased overlap of Med1/Med12 at combinatorially
bound loci is not caused by promoter specific co-localisation
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Figure VI.3: The combination of OCT4, SOX2 and NANOG influences conservation of binding
events. For every data set, only the 10% most significant peaks of all peaks with p<e-05 are
considered. (A) Bars indicate the fraction of loci where binding of Nanog, Sox2, Oct4 or CTCF
can be observed at the orthologous locus in mouse ES cells for all combinations of OCT4, SOX2
and NANOG in human ES cells as indicated by the boxes below. Dark boxes indicate binding, light
grey boxes with ‘v’ indicate binding of at least one factor (‘OR’ relation). Combinatorial binding
of OCT4, SOX2 and NANOG shows the largest fraction of conserved binding for Oct4, Sox2 and
Nanog in mouse. (B) The fractions of binding combinations in mES cells at conserved loci (for all
combinations of binding in human cells as indicated by the boxes above). Combinatorial binding
of Oct4, Sox2 and Nanog in mES cells is much higher at combinatorially bound loci in human,
suggesting that combinatorial binding is conserved in evolution. (C) The fraction of proximal and
distant binding sites for conserved and non-conserved binding events, split up according to the
combinations of binding as indicated by the boxes above. The majority of conserved binding events
are distant regulatory elements.
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Figure VI.4: Combinatorial binding in ES cells is highly conserved at developmental enhancers.
For every data set, only the 10% most significant peaks of all peaks with p<e-05 are considered.
(A) Bars indicate the fraction of loci where binding of Nanog, Sox2, Oct4 and CTCF can be
observed at the orthologous locus in mouse ES cells for all combinations of OCT4, SOX2 and
NANOG in human ES cells discriminated by developmental activity as indicated by the boxes below.
Dark boxes indicate binding, light grey boxes with ‘v’ indicate ‘OR’ relation, ‘?’ indicates no
restriction. Combinatorial binding events at developmentally active enhancers show the highest
levels of binding conservation between mouse and human ES cells (>40%). (B) The fractions of
binding combinations in mES cells at conserved loci (for all combinations indicated by the boxes
above). The majority of conserved binding events at developmentally active enhancers where OCT4,
SOX2 and NANOG bind simultaneously show combinatorial binding of Oct4, Sox2 and Nanog in
mouse ES cells. (C) The fraction of proximal and distant binding sites for conserved and non-
conserved binding events (split up according to the combinations of binding as indicated by the
boxes above). The majority of conserved binding events are distant regulatory elements.
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Figure VI.5: Integrating data from different cell lines identifies functional binding events. (A)
Shown is the fraction of loci where one, two or three (Oct4, Sox2, Nanog) transcription factor
binding events can be observed. Binding events detected in both cell lines are more frequently
bound by multiple transcription factors (dotted lines). (B) Shown is the fraction of loci where one,
two, three or four different factors are binding (OCT4, SOX2, NANOG, p300). The fraction of
loci bound by all four factors is much higher when data from embryonic stem cells and embryonal
carcinoma cells are combined (dotted lines).
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E[
n∑
i=1

Xi] =
n∑
i=1

E[Xi] . (VI.1)

Cov[X, Y ] = E[XY ]− E[X]E[Y ] . (VI.2)

Performance with implanted k-mers, random strand, k = 5

5%-precision AUC (ROC) AUC (PR)
Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2

D2 0.88 0.59 0.74 0.54 0.73 0.53
D2z 0.96 0.67 0.79 0.58 0.79 0.57
D2∗ 0.92 0.69 0.75 0.59 0.74 0.58
N2∗ 0.91 0.68 0.75 0.59 0.74 0.58
N2rc 0.95 0.73 0.81 0.62 0.81 0.61

Table VI.1: Simulations with implanted k-mers. Comparison of the different methods (k = 5,
mo = 1) when the genomic orientation of the motif is unknown. Bold numbers indicate best
performance.
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Performance with implanted k-mers, mismatch, k = 5

5%-precision AUC (ROC) AUC (PR)
Motif setting: m1r8 m4r2 m1r8 m4r2 m1r8 m4r2

D2 0.60 0.51 0.53 0.47 0.53 0.47
D2z 0.62 0.54 0.56 0.51 0.55 0.51
D2∗ 0.63 0.55 0.56 0.52 0.55 0.51
N2∗ 0.62 0.54 0.56 0.52 0.55 0.51

N2mm(0.1) 0.63 0.54 0.56 0.52 0.55 0.51
N2mm(1.0) 0.65 0.54 0.57 0.52 0.57 0.52

Table VI.2: Simulations with implanted k-mers. Comparison of the different methods (k = 5,
mo = 1) when motifs are sampled from all k-mers with one mismatch to the word. Bold numbers
indicate best performance.

Influence of repeats, k-mer model, m4r2
5%-precision AUC ROC AUC PR

Repeat masked: N Y N Y N Y
D2 0.52 0.52 0.51 0.50 0.50 0.49
D2z 0.67 0.82 0.67 0.71 0.62 0.69
D2∗ 0.91 0.97 0.82 0.81 0.81 0.83
N2∗ 0.94 0.97 0.90 0.90 0.89 0.89

Table VI.3: Influence of repeats on pairwise sequence comparison. Values are averages over 25
simulations, numbers in bold indicate the best performing method for the given setting. Mammalian
genome sequences contain to a large degree repetitive sequences. I studied the influence of repeats
on pairwise scores by randomly selecting sequences from the mouse genome and implanting 4 words
of length 6 each twice into the sequences. Repeat-masking improves the results. N2 is most robust
against repeats, whereas D2z is strongly influenced by repeats.
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Figure VI.6: Influence of single sequences on pairwise scores on the N2 variants. (A) Uniform
nucleotide distribution. (B) AT-rich nucleotide distribution. Alignment-free sequence comparison
methods can easily be influenced by nucleotide composition and low complexity or repetitive se-
quences (see Section 3.4.3). The N2 variants that use mismatches and the reverse complement as
extended word neighbourhood are robust against a change of nucleotide distribution, they perform
as expected (black line).

Figure VI.7: Influence of the mismatch weights aw on the pairwise scores of simulated se-
quences.(A) AUC values for simulated sequences (m1r8). (B) AUC values for simulated sequences
(m4r2). (C) Precision-Recall plot for simulations with implanted k-mers (mismatch model) for
different choices of aw. The combination of k = 6 and k = 5 with aw = 1.0 produced the best
results. For k = 4, smaller mismatch weights gave better results.
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Figure VI.8: Influence of mismatch weights aw and word length k on the pairwise scores of devel-
opmental enhancers. In all data sets, the combination of k = 6 and aw = 1.0 produced the best
results. For k = 4, smaller mismatch weights gave better results, probably because words in the
neighbourhood are more likely to occur by chance. (A) Forebrain. (B) Midbrain. (C) Heart. (D)
Limb.

Figure VI.9: Precision-Recall curve for enhancers active during mouse development, k = 4. The
plots show the precision average over 25 samples each time drawing 500 enhancer sequences (‘pos-
itive’) and 500 unrelated genomic sequences of equal length as the enhancers (‘negative’). Results
are shown for enhancers active in forebrain (A), midbrain (B), heart (C),limb (D).

Figure VI.10: Precision-Recall curve for enhancers active during mouse development, k = 5. The
plots show the precision average over 25 samples each time drawing 500 enhancer sequences (‘pos-
itive’) and 500 unrelated genomic sequences of equal length as the enhancers (‘negative’). Results
are shown for enhancers active in forebrain (A), midbrain (B), heart (C),limb (D).
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Figure VI.11: Tissue-specificity of enhancers, k = 5. Precision-Recall curve for mouse enhancers
active in the same tissue versus enhancers active in different tissues. The performance is reduced
compared to randomly selected genomic sequences. Nevertheless, enhancers active in the same
tissue have higher pairwise scores. Enhancers obtained from embryonic heart tissue (D) can not be
distinguished from other embryonic tissues by N2, D2z or D2∗. Midbrain and forebrain enhancers
are both active in neuronal tissues and show greater similarities then heart enhancers, which might
lead to the poor performance. Heart enhancers show much weaker sequence conservation Blow
et al. (2010), it is therefore expected that this set assembles a highly divergent set of enhancers
with a limited number of shared transcription factor binding sites. Interestingly, the heart data set is
the only data set were D2 shows better performance than the other methods, this might be caused
by repetitive sequences which escaped repeat-masking.
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VI.3 Supplementary Information for Chapter 4

Figure VI.12: Classification with N2, simulated sequences. Shown are the ROC curves for different
methods, parameters, and simulations. The numbers indicate the AUC.
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Figure VI.13: Classification of embryonic enhancers (positive set) versus random genomic se-
quences (negative set), numbers show the AUC (10-fold cross-validation). (A) Midbrain enhancers.
(B) Limb enhancers. (C) Heart enhancers.
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Figure VI.14: Classification of tissue-specific embryonic enhancers (positive set) versus enhancers
active in other tissues (negative set), numbers show the AUC (10-fold cross-validation), k = 6.
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C cytosine
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AUC area under curve

bp base pair
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DNA deoxyribonucleic acid

EC cell embryonal carcinoma cells

ES cell embryonic stem cell

ESC embryonic stem cell

FDR false discovery rate
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GSEA gene set enrichment analysis

hES cell human embryonic stem cell
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NP cell neural progenitor cell

PR precision recall

PWM position weight matrix

RNA ribonucleic acid

ROC receiver operating characteristic

SVM support vector machine

TSS transcription start site



Notations

S sequence

S[i...i+ j] sub-sequence from position i to i+j

l length of sequence

A alphabet, A,C,G,T in the case of DNA

w word/ k-mer

k length of word/ k-mer

NS
w , Nw number of occurrences of w in sequence S

Yi(w) binary indicator for an occurrence of w starting at position i

D set of all words w of length k (‘dictionary’)

|D| size of D (4k for DNA)

NS vector of word occurrences NS
w for all w ∈ D

ε word overlap indicator

µ(w) word probability

E[X] expected value

V[X] variance

Cov[X1, X2] covariance

π(a, b) transition probability

µ stationary distribution

L likelihood
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n(w) word neighbourhood

aw word weight

Nn(w) weighted word neighbourhood count

Ñw standardised, weighted word neighbourhood count

N̂w normalised, standardised, weighted word neighbourhood count



Glossary

Promoter Regulatory DNA sequence upstream of transcription start sites.

Enhancer Regulatory DNA sequence that enhances transcription, can be several
kilo bases distal from the nearest transcription start site.

Motif Sequence motif, here: a nucleotide pattern which is recognised by a
transcription factor.

Peak Accumulation of reads from ChIP-Seq data, resulting in a peak-like
shape in genome browser visualisations. A peak corresponds to a DNA-
protein interaction.

Word Count The number of occurrences of a word w in a sequence.

Word Probability The probability that a word w occurs at a specific position in a
sequence.

Expected Count The expected number of occurrences of a word w in a sequence.

Dictionary Set of all words w of length k (D)

k-mer Word of length k

Dotplot Graphical representation of the similarity of two sequences S1 and S2,
a dot at position (i, j) indicates a similar word at position i in S1 and
position j in S2.

Word Neighbourhood Count The number of occurrences of all words w′ which are in
the neighbourhood of the word w.

Motif Finding Identification of functional patterns (motifs) in sequences.
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Availability

OCT4 Chip-Seq in NCCIT Cells

OCT4 ChIP-Seq data in NCCIT cells (Göke et al., 2011) is publicly available at the Euro-
pean Nucleotide Archive (http://www.ebi.ac.uk/ena/, accession number ERP001004).

Public Data Sets

All data sets used in this work have been downloaded in fastq format from the European
Nucleotide Archive, the accession numbers are summarised in Table 2.1.

Data Access

The mapped sequencing data can be accessed at http://enhancer.molgen.mpg.de,
where I provide a human and mouse genome browser.

N2

The code for N2, D2, D2∗, D2z and the underlying word statistics is available at http:
//www.seqan.de/ along with examples and complete documentation. The executable
(ALF) can be downloaded at http://www.seqan.de/projects/alf/.
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Zusammenfassung

Der Menschliche Organismus besteht aus vielen hundert verschiedenen Zelltypen. Jede
Zelle besitzt das gleiche Repertoire an Genen, von denen jedoch nur ein Teil exprimiert
wird. Die große Vielfalt an verschiedenen Zellen wird durch zelltypspezifische Regulation
der Genexpression ermöglicht. Die Information, wann und wo ein Gen aktiv ist, ist in
der DNA kodiert und kann durch DNA-bindende Proteine, den Transkriptionsfaktoren,
gelesen werden. Die DNA-Bindestellen können direkt neben einem Gen liegen (Pro-
moter), aber auch viele tausend Basenpaare entfernt sein (Enhancer). Enhancer spielen
eine wichtige Rolle in der Zelldifferenzierung und der Embryonalentwicklung und sind
entscheidend daran beteiligt, dass sich die große Vielfalt von Zelltypen im ausgewach-
senen Organismus bilden kann. Diese Dissertation beschäftigt sich mit der Analyse von
solchen Enhancern, regulatorischen Sequenzen die weit entfernt von Genen deren Ex-
pression steuern.

Zunächst wird eine Einführung in die Grundlagen der molekularen Genetik und Gen-
regulation gegeben (Kapitel 1). Im zweiten Kapitel werden genomweite Datensätze von
DNA-Bindestellen von Transkriptionsfaktoren in embryonalen Stammzellen integriert
um den Einfluss der Kombination von DNA-bindenden Proteinen auf die Transkrip-
tion und auf die Evolution von regulatorischen Sequenzen zu analysieren. Anschließend
(Kapitel 3) wird eine neue, nicht-alignment-basierende Methode (N2) vorgestellt, welche
die paarweise Ähnlichkeit von regulatorischen Sequenzen messen kann, analog zu Align-
ments von Protein-kodierenden Genen. N2 wird auf gewebespezifische regulatorische
Sequenzen angewendet und es wird gezeigt, dass Enhancer-Sequenzen die in demsel-
ben Gewebe aktiv sind eine höhere N2-Ähnlichkeit aufweisen. Kapitel 4 verwendet die
Wort-Statistiken auf denen N2 basiert um große Datensätze regulatorischer Sequenzen
zu analysieren. Die vielfältigen Möglichkeiten die, N2 bietet, werden anhand von ak-
tuellen Forschungsfragen (Sequenzmotif-Identifizierung, Klassifizierung, Clusteranalyse)
aufgezeigt. Abschließend (Kapitel 5) werden die Ergebnisse in einem gemeinsamen Kon-
text zusammengefasst.

Die Ergebnisse aus Kapitel 2 wurden im Dezember 2011 veröffentlicht (Göke et al.,
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2011), die Ergebnisse aus Kapitel 3 wurden im Januar 2012 veröffentlicht (Göke et al.,
2012).

Zusammengefasst verschafft diese Arbeit neue Erkenntnisse in die kombinatorische Reg-
ulation der Genexpression und präsentiert eine neue Methode für den paarweisen Ver-
gleich von Enhancern, die abschließend auf die Analyse großer Datensätze angewendet
wird.
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