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Summary

This dissertation explores the mechanisms underpinning the joint effects of multi-

ple global change factors (GCFs) on soil properties and functions incorporating the

rapid development of machine learning methods and AI tools.

In chapter 2, we addresses the complex interactions between multiple GCFs and

their joint effects on soil properties and functions. By developing a factor pool of 12

GCFs and calculating dissimilarity indices for factor combinations, the study shows

that higher factor number and more dissimilar factors result in more pronounced

deviations in soil properties and functions from null model predictions. These devi-

ations often manifest as synergistic interactions, particularly in critical soil functions

such as decomposition rates and enzyme activities. It highlights that not only the

number of GCFs but also their dissimilarity plays a key role in driving soil responses,

offering a new perspective for future research on the interactions of multiple global

change factors.

In chapter 3, in addition to the mechanistic insights, the dissertation introduces

a practical null model analysis workflow for evaluating interactions among multi-

ple stressors in soil ecology. The workflow not only facilitates the identification of

interactions among factors but also efficiently generates null model predictions for

a large number of randomly selected factor combinations. By incorporating it with

other modeling frameworks, this flexible model workflow can be adapted to various

hypothesis testing in GCF studies. Two case studies demonstrate the utility of this

approach, offering a robust framework for future research on impacts of multiple

GCFs on soil ecosystems.

In chapter 4, the dissertation delves into the rapid development and increasing

integration of artificial intelligence (AI), specifically generative models, into environ-

mental science and ecology. This chapter explores the dual-edged nature of these



xx

technologies. On the one hand, LLMs and generative AI offer significant advan-

tages, such as streamlining research workflows, enhancing environmental commu-

nication, and broadening public engagement with ecological issues. On the other

hand, we also emphasizes the potential risks associated with the unregulated use

of AI in environmental sciences, such as the spread of misinformation and biased

outputs. Moreover, the potential for AI-generated scientific data to be fabricated or

manipulated raises concerns about the integrity of research findings in the field of

ecology.

Overall, this dissertation contributes insights into two critical areas of environ-

mental research: the conbined effects of multiple GCFs on soil ecosystems, and the

transformative potential of AI technologies in ecological research and communica-

tion. By advancing our understanding of how these forces interact with and shape

the environment, it provides important frameworks for addressing the multifaceted

challenges posed by human activities and technological advancements.
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Zusammenfassung

Diese Dissertation untersucht die Mechanismen, die den kombinierten Effekten meh-

rerer globaler Umweltveränderungsfaktoren (GCFs) auf Bodenbeschaffenheit und

funktionen zugrunde liegen und berücksichtigt dabei die rasante Entwicklung von

maschinellen Lernmethoden und KI-Tools.

In Kapitel 2 werden die komplexen Wechselwirkungen zwischen mehreren GCFs

und deren gemeinsame Auswirkungen auf Bodenbeschaffenheit und -funktionen

behandelt. Durch die Entwicklung eines Faktorpools von 12 GCFs und die Berech-

nung von Ähnlichkeitsindizes für Faktorkombinationen zeigt die Studie, dass eine

höhere Anzahl und größere Unterschiedlichkeit der Faktoren zu stärkeren Abwei-

chungen von den Vorhersagen des Nullmodells führen. Diese Abweichungen mani-

festieren sich häufig als synergetische Wechselwirkungen, insbesondere bei kritis-

chen Bodenfunktionen wie Zersetzungsraten und Enzymaktivitäten. Die Studie

hebt hervor, dass nicht nur die Anzahl der GCFs, sondern auch ihre Unterschiedlichkeit

eine Schlüsselrolle bei der Beeinflussung von Bodenreaktionen spielt und bietet somit

eine neue Perspektive für zukünftige Forschungen zu den Interaktionen mehrerer

globaler Umweltveränderungsfaktoren.

In Kapitel 3 stellt die Dissertation zusätzlich zu den mechanistischen Erkennt-

nissen einen praktischen Workflow für die Analyse von Nullmodellen zur Bewer-

tung von Wechselwirkungen zwischen mehreren Stressoren in der Bodenkunde vor.

Der Workflow erleichtert nicht nur die Identifizierung von Wechselwirkungen zwis-

chen den Faktoren, sondern generiert auch effizient Nullmodellvorhersagen für eine

große Anzahl zufällig ausgewählter Faktorkombinationen. Durch die Integration in

andere Modellierungsrahmen kann dieser flexible Workflow an verschiedene Hy-

pothesentests in GCF-Studien angepasst werden. Zwei Fallstudien demonstrieren

die Nützlichkeit dieses Ansatzes und bieten ein solides Rahmenwerk für zukünftige

Forschungen zu den Auswirkungen mehrerer GCFs auf Ökosysteme.
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In Kapitel 4 befasst sich die Dissertation mit der rasanten Entwicklung und zunehmenden

Integration von Künstlicher Intelligenz (KI), insbesondere generativer Modelle, in

die Umweltwissenschaften und Ökologie. Dieses Kapitel untersucht die zwiespältige

Natur dieser Technologien. Einerseits bieten große Sprachmodelle (LLMs) und gen-

erative KI erhebliche Vorteile, wie die Optimierung von Forschungsabläufen, die

Verbesserung der Umweltkommunikation und die Erweiterung des öffentlichen En-

gagements für ökologische Themen. Andererseits werden auch die potenziellen

Risiken einer unregulierten Nutzung von KI in den Umweltwissenschaften betont,

wie die Verbreitung von Fehlinformationen und voreingenommene Ergebnisse. Zu-

dem wirft die Möglichkeit, dass KI-generierte wissenschaftliche Daten fabriziert

oder manipuliert werden könnten, Bedenken hinsichtlich der Integrität von Forschungsergeb-

nissen im Bereich der Ökologie auf.

Insgesamt liefert diese Dissertation Einblicke in zwei zentrale Bereiche der Umwelt-

forschung: die kombinierten Effekte mehrerer GCFs auf Bodensysteme und das

transformative Potenzial von KI-Technologien in der ökologischen Forschung und

Kommunikation. Durch die Erweiterung unseres Verständnisses darüber, wie diese

Kräfte auf die Umwelt wirken und sie formen, bietet sie wichtige Rahmenwerke

zur Bewältigung der vielfältigen Herausforderungen, die durch menschliche Aktivi-

täten und technologische Fortschritte entstehen.



1

Chapter 1

General Introduction

Global change factors (GCFs) induced by human activities, such as climate change,

pollution, and land-use changes, significantly impact the Earth’s ecosystems, partic-

ularly soil ecosystems(Richardson et al.; 2023; Díaz et al.; 2019). These factors alter

soil physicochemical properties, microbial communities, and ecosystem functions,

with salinity, pesticides, and drought being notable examples of stressors that nega-

tively affect soil health(Haj-Amor et al.; 2022; Tudi et al.; 2021; Schimel; 2018). While

individual GCFs have been extensively studied, there is a growing recognition of

the need to explore their combined effects, as multiple stressors often co-occur in

real-world ecosystems(Zhou et al.; 2020). Yet, fewer than 2% of studies have ad-

dressed the concurrent impacts of three or more factors, largely due to the combi-

natorial explosion problem that makes traditional factorial designs impractical for

high-dimensional ecological research(Rillig et al.; 2019). Innovative experimental

designs that randomly select factors from predefined pools are emerging to tackle

these challenges and enhance our understanding of complex GCF interactions(Rillig

et al.; 2019; Speißer et al.; 2022; Yang et al.; 2022).

The profound and often unpredictable effects of multiple GCFs on soil ecosys-

tems are further complicated by factor interactions. These interactions can be syn-

ergistic or antagonistic, meaning the combined effect of multiple factors can differ

substantially from the sum of individual effects(Crain et al.; 2008; Dieleman; 2012;

Holmstrup et al.; 2010). Understanding these complex dynamics is crucial for devel-

oping effective soil and ecosystem management strategies, particularly as ecosystem



2 Chapter 1. General Introduction

biodiversity and functions face increasing threats from anthropogenic stressors. Fur-

thermore, the classification of GCFs based on their traits and mechanisms is help-

ing to uncover patterns and predictions related to how multiple stressors impact

ecosystem processes(Rillig et al.; 2021; Orr et al.; 2022; Simmons et al.; 2021). How-

ever, despite progress, significant gaps remain in identifying net interactions and the

mechanisms driving the joint effects of multiple co-acting GCFs .

In parallel, the rapid advancement of artificial intelligence (AI) is opening new

frontiers in environmental sciences, particularly with the rise of generative mod-

els such as large language models and generative AI(Future of Life Institute.; 2023).

These models, which can generate long text and transform textual prompts into de-

tailed images, audio or videos, present both opportunities and challenges for eco-

logical research. AI has the potential to streamline scientific workflows and enhance

research communication, yet it also raises ethical concerns, such as the risk of gener-

ating misleading content with false authority(Birhane et al.; 2023; Samuelson; 2023).

Moreover, these tools could revolutionize how ecological phenomena are visualized,

communicated, and analyzed, particularly in studies involving complex GCF inter-

actions. However, as AI becomes increasingly integrated into environmental science,

a critical evaluation of its implications is essential.

This dissertation aims to explore the joint effects of multiple global change fac-

tors on soil properties and ecosystem functions, leveraging both advanced experi-

mental designs and machine learning methods to address the complexities of high-

dimensional factor interactions. Through a microcosm experiment, we investigated

the role of factor dissimilarity and the number of co-acting GCFs in driving soil re-

sponses. By developing a Null model workflow, we provided a practical method to

estimate null model predictions for GCF studies with complex experimental design.

Additionally, this work assessed the potential of AI to enhance ecological research,

providing new insights into the intersection of technology and environmental sci-

ence.
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Chapter 2

Factor number and dissimilarity

drive effects of multiple global

change factors on soil properties

and functions

2.1 Abstract

Soil biota and functions are impacted by various anthropogenic stressors, including

climate change, chemical pollution or microplastics. These stressors do not occur

in isolation, and soil properties and functions appear to be directionally driven by

the number of global change factors (GCFs) acting simultaneously. Building on this

insight, we here hypothesize that co-acting GCFs with more diverse effect mech-

anisms, or higher dissimilarity, have greater impacts on soil properties and func-

tions. We created a factor pool of 12 GCFs and calculated dissimilarity indices of

randomly-chosen co-acting factors at high-GCF levels (2, 5 and 8 factors) based on

the measured responses of soil properties and functions to the single factors. Results

show that not only was the number of factors important, but factor dissimilarity was

also key for predicting joint GCF effects. By analyzing deviations of soil properties

and functions from three null model predictions, we demonstrate that higher factor

dissimilarity and a larger number of factors could drive larger deviations from null

models and trigger more frequent occurrence of synergistic factor net interactions

on soil functions (decomposition rate, cellulase and β-glucosidase activity), which
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provides new mechanistic insights for understanding high-dimensional effects of

factors. Our work highlights the importance of considering factor similarity in fu-

ture research on interacting GCFs.

2.2 Introduction

Global change factors (GCFs) induced by human activities have a significant impact

on soil physicochemical properties, process rates and microbial communities in di-

verse terrestrial ecosystems(Rillig et al.; 2019). The effect of individual GCFs on soil

properties and functions have been the focus of many prior studies. For example,

salinity reduces the availability of soil nutrients and has negative impacts on soil mi-

crobial activities(Haj-Amor et al.; 2022), pesticides can pose adverse effects on non-

target soil organisms(Tudi et al.; 2021), and drought affects soil processes by directly

stressing soil organisms and indirectly by hindering substrate (Schimel; 2018). The

multitude of GCFs collectively gives rise to concerns about soil ecosystem health.

Only a few studies have addressed the effects at a high-dimensional factor level

with concurrent effects of a larger number of factors. A systematic mapping showed

that fewer than 2% of experimental studies have explored the combined effects of

three or more factors in the context of soils(Rillig et al.; 2019). One of the main

obstacles for studying joint effects of multiple factors at a time is the combinato-

rial explosion problem(Katzir et al.; 2019). For traditional factorial designs, when

the number of factors increases, the number of possible factor combinations will in-

crease rapidly, meaning that such designs including a large number of factors are

not feasible in ecology. To overcome this experimental challenge, recent studies in-

vestigating the effects of multiple factors followed an approach involving randomly

selecting factors from a predefined factor pool; such a design avoids factor combina-

tion problems without losing generalizability(Rillig et al.; 2019; Speißer et al.; 2022;

Yang et al.; 2022). Using this experimental approach addressed a general feature of

multiple GCFs — the number of co-acting factors — which has been shown to di-

rectionally drive the effects of co-acting multiple factors on plants(Zandalinas et al.;

2021), soil ecosystems(Rillig et al.; 2019) and the plant community(Speißer et al.;
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2022; Komatsu et al.; 2019). Another study also indicated that the increasing num-

ber of factors diminished the functions of soil microbial diversity(Yang et al.; 2022).

However, in general, our knowledge about mechanisms underpinning the effects of

multiple co-acting GCFs is still limited.

To gain more insights into this high-dimensionality problem, studies have high-

lighted the importance of ordering and classifying GCFs from trait-based perspec-

tives(Rillig et al.; 2021a; Orr et al.; 2022b; Simmons et al.; 2021). In previous stud-

ies, factors are usually grouped by their sources instead of considering their effect

mechanisms and ecological-scale dependency(Simmons et al.; 2021). Recently, an a

priori factor classification system has been introduced, using inherent traits (physi-

cal, chemical and biological agents) and theoretical effects (effect mechanism, targets

and key properties) of 30 different anthropogenic factors(Rillig et al.; 2021a). Build-

ing more comprehensive factor classification systems may enable extracting new

features from factor traits to predict general patterns of multiple GCF effects. In this

context, factor dissimilarity is a plausible feature that can be generated from multi-

ple available factor traits and may capture patterns of high-dimensional effects(Orr

et al.; 2022b). However, the role of factor dissimilarity in driving the effects of mul-

tiple GCFs has never been investigated experimentally.

Another important feature of the multiple co-acting GCF effects is the nature of

factor interactions. Across marine and terrestrial ecosystems, many studies found

that when two or more factors are present, the combined effects often differ from

what is expected based on the single factor effects(Crain et al.; 2008; Dieleman; 2012;

Holmstrup et al.; 2010). The interactions between factors are defined as antagonistic

when combined effects are less than expected, while synergistic interactions cause

combined effects larger than expected effects. Although understanding interactions

among factors is crucial for prioritizing ecosystem stressor management, when more

than three factors are acting simultaneously, testing every pairwise factor interaction

or high-order interaction is extremely challenging unless every factor combination

has been separately replicated(Smith et al.; 2024). In this case, revealing the overall

net interactive effects of multiple GCFs is a more practical solution and can also indi-

cate potential interactions among multiple GCFs. Nevertheless, there is still a lack of

established methods for identifying the net interactions for multiple co-acting GCFs
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and insufficient knowledge about the potential mechanisms underpinning such ef-

fects.

We here aim to investigate the joint effects of multiple GCFs on soil properties

and functions, examining the effects of number of factors and dissimilarity of GCF

combinations. We present a microcosm experiment (Fig. 1) with 2, 5 and 8 factor

levels to test the following hypotheses:

• (i) Factor dissimilarity can help predict soil biological and ecological responses

to multiple co-acting GCFs in addition to the number of factors;

• (ii) a larger dissimilarity among factors or larger number of factors will cause

greater deviation of joint effects on soil properties and functions from expected

effects;

• (iii) Factor dissimilarity or number of factors may drive the emergence of factor

interactions (synergistic or antagonistic).

2.3 Methods

2.3.1 Experimental design

The experiment was set up with a GCF pool that includes 12 factors: salinity, drought,

microplastic, fungicide, herbicide, antibiotic, insecticide, surfactant, nitrogen depo-

sition, heavy metal pollution, perfluoroalkyl and polyfluoroalkyl substances (PFAS)

and lithium. The selected factors were chosen from the most frequently occurring

anthropogenic factors in soil ecosystems subject to intense human influence(Riedo

et al.; 2021; Zhou et al.; 2020), and differ in intrinsic features (physical, chemical etc.)

and effect mechanisms (mode of action, effect targets etc.) in affecting soil proper-

ties and functions(Rillig et al.; 2021a; Orr et al.; 2022b; Schäfer and Piggott; 2018).

On the basis of previous experimental designs1, three multi-factor levels (2, 5 and 8

factors, 50 replicates) were created by a random factor-selection method(Rillig et al.;

2019; Huang et al.; 2018; Tilman et al.; 1996). To achieve this, first, complete sets of

factor combinations for each factor level were generated (e.g., for the 5 factor level,

there were in total 792 different factor combinations for choosing 5 factors from a

12 factor pool). Then we randomly selected 50 factor combinations from all the
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possible combinations at each factor level without replacement to avoid selecting

repeated factor combinations. Furthermore, we set up single factor treatments with

8 replicates for each factor and the control group including 20 replicates. Finally,

to test for the effects of organic solvents (dimethyl sulfoxide (DMSO) and acetone)

used to apply chemical GCFs (fungicide and herbicide) on soil properties and func-

tions, we included 10 additional replicates (water control) that received the same

rate of water instead of organic solvent in the experiment. Collectively, we had

(50 × 3) + (12 × 8) + 20 + 10 = 276 units in our experiment (FIGURE 2.1).

FIGURE 2.1: Experimental design and analysis workflow.

(a) The design of the multiple factor experiment. There were 20 replicates for the control; 10
replicates for water control (without adding organic solvents); 8 replicates for single GCFs;

50 replicates for each factor level in the multiple factor group; the total number of
experimental units = 20+10+812+350=276. Factor combinations in 2, 5 and 8 levels are

randomly selected from the full combinations by drawing 2, 5 and 8 factors from the 12
factors pool without repetition. (b) Analysis workflow. The normalized dissimilarity index
for each multi-factor treatment is calculated based on the Euclidean distances among single

factors and the randomly selected factor combinations.
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2.3.2 Soil preparation and incubation system

The soil used in the experiment was collected in February 2022 from a local grass-

land at an experimental site of Freie Universität Berlin (52° 28’ N, 13°18’ E, Berlin,

Germany) with a sandy loamy texture. Before the start of the experiment, the soil

was air dried and passed through a 2 mm sieve to remove large stones and big grass

roots. To prepare the “loading soil” for the factor implementation, one eighth of the

air-dried sieved soil was sterilized under 121°C for 20 mins. Loading soil was used

to more effectively mix small amounts of chemicals into the experimental units; it

was sterilized to avoid large local effects on soil microbes.

The experimental unit was a 50 mL mini-bioreactor (Product Nr: 431720, Corn-

ing®, USA) with a vented film, which allows gas exchange but prevents microbial

contamination (FIGURE 2.2 ). Inside the bioreactor we added 40.0 g (dry weight,

d.w.) soil with the respective GCF treatments.

2.3.3 Implementation of GCFs and harvest

This study focuses on 12 frequently occurring GCFs in soil ecosystems that dif-

fer in their nature (physical, chemical, biological) and effect mechanisms: salinity,

drought, microplastic, fungicide, herbicide, antibiotics, insecticide, surfactant, nitro-

gen deposition, heavy metals, PFAS and lithium. Detailed information about the

selected GCFs is presented in the supplementary information.

To homogeneously mix GCFs with the testing soil, we added chemical factors

to 5.0 g (d.w.) loading soil first then mixed the loading soil with the other 35.0 g

(d.w.) soil. Concentrated solutions were prepared for every chemical factor except

for salinity and microplastic. Most of the chemicals we used were dissolved in dis-

tilled water, except for fungicide (carbendazim, dissolved in DMSO) and herbicide

(Diflufenican, dissolved in acetone). According to the designed factor combination

for each treatment, 100 µL solution (water, DMSO or acetone) carrying appropriate

chemical dose for 40.0 g (d.w.) soil was added to 5.0 g (d.w.) loading soil inside

a 150 mL cup. To standardize the amount of solvents we added into every treat-

ment, treatments which had fewer factors, for instance, single factor treatments and

control treatments, additionally received solvents (water, DMSO or acetone) to the



2.3. Methods 11

same amount of solvents added in the eight factor treatments. To further test the

effects of the solvents (DMSO and acetone) on soil properties and functions, another

10 control treatments only received the same amount of distilled water. The effects

of organic solvents on soil properties and functions are shown in Appendix FIGURE

1. For the experimental units that include microplastic or salinity treatments, 40.0

mg tire particles (1-2 mm diameter) or 200.0 mg sodium chloride were added into

the 150 mL cup accordingly. Then an additional 35.0 g of air-dried soil was added

to every 150 mL cup. After covering with a cap, all the soil treatments were mixed

for 30 mins with a shaking machine (Product Nr: 541-21009-00, Reax2, Heidolph In-

strument GmbH & Co. KG, Schwabach, Germany) at a speed of 80 rpm to achieve a

homogeneous distribution. After the mixing process, the soil-chemical mixture was

transferred to the 50 mL mini bioreactors. For tracking the litter decomposition rate

during the experiment, a sterilized tea bag was placed vertically in the center of the

soil. Finally, distilled water was added to bring the soil water content to 60% of the

soil water-holding capacity (30% of water-holding capacity for drought treatments).

All 50 mL mini-bioreactors were incubated at 25 °C in a dark environment for 42

days. As there was on average 0.5 g weight loss every week for each mini-bioreactor,

we added 0.5 mL distilled water to each treatment every week to keep the water

content constant. After 42 days, all units were harvested. Soil cores were taken from

the bioreactors, the tea bags (see below) were removed and the soil of each treatment

was homogeneously mixed by a spoon in a sterilized Petri dish for 2 min. 5.0 g fresh

soil was collected and stored at 4 °C for enzymatic activity measurement, and the

remaining soil was air dried at room temperature for soil property measurements.

Tea bags from all units were collected and oven dried (60 °C) before measuring litter

decomposition rate.

2.3.4 Soil response variables

The soil response variables we measured in this experiment are: litter decomposi-

tion rate, soil pH, water-stable aggregates and the activity of four extracellular soil

enzymes. Here we present the methods of each response variable measurement.



12
Chapter 2. Factor number and dissimilarity drive effects of multiple global change

factors on soil properties and functions

FIGURE 2.2: Microcosm experimental system

pH measurement

We collected 5 g air dried soil from each unit to a 50 mL centrifuge tube (Product

Nr: 62.547.255, Sarstedt AG & Co., Germany) after harvest and mixed with 25 mL

distilled water. The tubes were shaken vertically for 30 mins with a speed of 200

rpm and centrifuged at 3000 rpm for 5 mins. The pH of each unit was determined

with a pH meter (Hanna Instrument, Smithfield, USA) by placing the pH probe in

the supernatant for 2 mins.

Water-stable soil aggregate measurement

The proportion of water-stable soil aggregates (WSA) was measured following a

modified previous protocol(Klute; 1986). 4.0 g air dried soil was weighed and recorded

as the sample weight. Then it was placed in a small 250 µm sieve above a weighing

boat, rewetted by distilled water for 5 mins and inserted into a sieving machine (Ei-

jkelkamp, Netherlands) for 3 mins running. Afterwards the remaining matter was

washed into a plastic plate and dried at 60 °C overnight, then weighed and recorded

as dry matter. Then we rewetted the dry matter and gently crushed the aggregates

with fingers and flushed it on a 250 µm sieve.The remaining material was dried at 60

°C overnight and it was recorded as coarse matter. The WSA is calculated by using

the following formula:

WSA(%) =
dry matter − coarse matter

sample weight − coarse matter
× 100 (2.1)
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Decomposition rate

The decomposition rate was measured and calculated using a modified protocol(Keuskamp

et al.; 2013). A sealed tiny bag (with 38 µm mesh size) containing 300.0 mg (d.w.) tea

biomass was placed into the soil. We autoclaved the tea bags and dried them in the

oven at 60°C to sterilize before using. After the harvest, we dried all tea bags at 60°C

for two days and removed the soil particles attached to the tea bags using a brush.

Then the proportional weight loss was calculated based on the tea biomass (d.w.)

inside the bag before and after the incubation.

Enzyme acticities measurement

The measurements of N-acetyl-glucosaminidase (chitin degradation), cellulase (cel-

lulose degradation), β-glucosidase (cellulose degradation) and phosphatase (organic

phosphorus mineralization) activity followed a high throughput microplate proto-

col(Jackson et al.; 2013). The enzyme substrate solution was prepared using ρNP-β-

glucopyranoside (Sigma no. N7006), ρNP-β-D-cellobioside (Sigma no. N5759), ρNP-

β-N-acetylglucosaminide (Sigma no. N9376) and ρNPphosphate(Sigma no. 71768)

accordingly. We collected 5 g fresh soil from each unit during the harvest and stored

it in 50 mL centrifuge tubes (Product Nr: 62.547.255, Sarstedt AG & Co., Germany) at

4 °C. The enzyme activity measurement was conducted 2 days after the completion

of the harvest. We mixed 8 mL 50 mM acetate buffer with the 5.0 g fresh soil to form

a soil slurry, vortexed for 30 seconds and pipetted 150 µL slurry into four wells of

each 96-well plate. The process was repeated in four plates because of four types of

measured enzyme activity. After all wells were filled with soil slurry in a plate, 150

µL enzyme substrate solution was added to the four wells with soil slurry using a 8-

channel pipettor and 150 µL acetate buffer was added to the following two wells as

control. Then the plate was incubated at 20 °C in the dark for 2 hours (phosphatase

and β-glucosidase) or 4 hours (β-D-cellobiosidase and β-N-acetylglucosaminidase).

After the incubation, the plates were centrifuged at a speed of 3000 rpm for 5 mins.

We used a 8-channel pipettor to transfer 100 µL of the upper suspension to a new

96-well plate, where 200 µL of 0.05 M NaOH solution was also added into each well.

The final measurement was conducted by a microplate reader (BioRad, Benchmark
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Plus, Japan) to measure the absorbance at a wavelength of 410 nm. The final enzy-

matic activity was calculated with the standard curve with the unit of ρNP (µmoles)

per hour per gram of dry soil.

2.3.5 Effect size calculation and significance test of single and multiple

factor groups

Data were analyzed with R Version 4.1.1(R Core Team; 2021). For single factor and

multiple factor groups, the effect size and 95% confidence intervals (CIs) of each

group were estimated with a nonparametric bootstrap method with 10,000 permu-

tations(Efron and Tibshirani; 1986). Considering the multiple testing problem, the

statistical significance of single and multiple factor effects was evaluated by using

adjusted P-values based on the Benjamini-Hochberg method.

2.3.6 Calculating factor dissimilarity

We used the “vegan”(Oksanen J; 2018) R package to calculate the Euclidean dis-

tances between all pairwise factor combinations based on the corresponding stan-

dardized effect sizes of singly applied factors on the seven soil properties (including

four soil enzyme activity, WSA, soil decomposition rate and soil pH). Clustering

of single factors was conducted based on Euclidean distance by using hierarchi-

cal clustering analysis (“ggdendro”(de Vries and Ripley; 2024) and “dendextend”

R packages were used)(FIGURE 2.3). Then, we used principal coordinate analysis

to visualize the distances among factors, resulting in the PCoA1 and PCoA2 axes

explaining 55.43% and 23.38% of the variation respectively (FIGURE 2.4).

For the multiple-factor treatments, we calculated a dissimilarity index (DI) for

each unique factor combination by adding up the Euclidean distances between every

two component factors in the multiple-factor treatments:

DIi = ∑
j∈Ni

dj (2.2)

, where (i = 1, 2, . . . , 50) is the dissimilarity index of multiple-factor treatment’s ith

combination in a specific level of number of factors (2, 5, and 8), dj is the Euclidean
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FIGURE 2.3: Clustering factors by seven soil responses.

FIGURE 2.4: Principal coordinates analysis (PCoA) of the Euclidean
distances between single factors.
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distance between the jth two factor pair estimated based on the single factor exper-

iment, and Ni is the set of all unique factor pairs of the treatment i. To compare

dissimilarity indices between different numbers of factor levels, we normalized the

dissimilarity indices of each factor level to a range between 0 and 1 by using the

“range” method of the preProcess function from the “caret” R package(Kuhn M;

2015). To do this, we subtract the minimum value from each dissimilarity index and

divide it by the range of the dissimilarity indices of each number of factor level. The

distributions of normalized factor dissimilarity indices in three factor levels and the

reasons for choosing the normalization method are shown in Appendix FIGURE2.

2.3.7 Correlations between soil responses and factor dissimilarity within

factor levels

To show the changing trend of soil property and function responses across the range

of factor dissimilarity within factor levels, we applied Spearman correlation analy-

ses to the normalized dissimilarity index and soil properties and functions in each

factor level. Estimated P-value and coefficient are provided respectively for each

correlation.

2.3.8 Predicting effects of multiple co-acting factors by null models

In ecological studies, null models are used for predicting the joint effect of multiple

factors without considering interactions(Schäfer and Piggott; 2018). For commonly-

used null models, the additive model assumes that the joint effect of multiple factors

will be the sum of the effects of the single factors, indicating that the sensitivities of

the target to factors are negatively correlated. The multiplicative model assumes that

the effects of single factors are combined by proportional change, meaning that the

factor sensitivities are non-correlated. In the dominative model, the factor with the

largest absolute effect overrides other factors, implying the factor sensitivities are

positively correlated. To make plausible predictions of multiple-factor effects on soil

responses, we imposed three null model assumptions (i.e., additive, multiplicative

and dominative assumption) for generating predictions for the multiple factor treat-

ments instead of arbitrarily selecting one(Schäfer and Piggott; 2018). For each null
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FIGURE 2.5: Calculating soil response deviation from null model
prediction and net interaction type classification for 150 multi-

factor treatments.

(a) Treatments in the experimental design. Single factor treatments are shown in blue ovals.
Each multi-factor treatment is shown by a red oval. The subscript of a multi-factor

treatment indicates the component factors. (b) Interaction type classification workflow for
multi-factor treatments. The workflow includes two parts: (1) estimating the joint response

distributions of component factors of multi-factor treatments; (2) identifying the net
interaction type for multi-factor treatments. For illustration purposes, one two-factor

treatment (includes factor A and B) is taken as an example. In Step 1, we resampled from
each control, single factor A and B treatment with replacement to generate Ci, TAi and TBi.
Then, in Step 2, mean values of each resampled treatment (ci, tai and tbi) are calculated. In
step 3, absolute effect sizes from control (Zai and Zbi) for A and B single factor treatments
are calculated. In step 4, combined effect size of A and B (Zi) are calculated depending on

different null model assumptions (additive, multiplicative or dominative). Then the control
mean is added to zi to generate predicted joint response (Ti). Steps 1-4 are repeated K times
to generate the distribution of the predicted joint response of factor A and B. Then in Step 5,

we compared the actual joint response of factor A and B (TMab) to the predicted response
distribution. If the actual observation fitted within the 95% confidence intervals (CIs) of

prediction distribution, then it was regarded as no net interaction. If it did not fit, then we
calculated the rescaled Deviation from Null model prediction (DN). Then we classified the
net interaction type based on the rescaled DN. (c) Visualization of the rescaled DN and net
interaction types of 150 multi-factor treatments. (d) Statistical analsysis of rescaled DN of

soil response across factor dissimilarity index and in three different number of factor
groups.
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model assumption, we applied the calculation methods from a previous study(Rillig

et al.; 2019). For each number of factors level, the unique subset of factor combina-

tions randomly chosen from the 12 factor pool is denoted as An (n = 2, 5, 8). For

each multiple-factor combination Km ∈ An (e.g. K1 = [Microplastic, Drought], K2 =

[Antibiotic, Fungicide] ..., K50 = [Salinity, PFAS]; K1, K2, ..., K50 ∈ A2), Km includes

N component factors, denoted as (Fm1 , Fm2 , ..., FmN ) (N = 2 for A2, N = 5 for A5, N

= 8 for A8). ESmi is the mean of estimated effect size of the factor Fmi observed from

the single factor treatment. In additive assumption, the predicted effect size of factor

combination Km:

Padditivem =
N

∑
i=1

ESmi (2.3)

Considering each set of An has 50 elements (Km), we applied a bootstrapping method

(with 1,000 iterations; see FIGURE 2.5) for each Km. Each Km has 1,000 iterated effect

size predictions, in total 50,000 effect size predictions were made for all treatments

for each number of factor level, which should be sufficient for generating reliable

estimates. Afterwards, the mean value and 95% CI were calculated form the distri-

bution of each factor combination. The same bootstrapping procedures were used

in multiplicative and dominative assuptions. For multiplicaitve addumption, based

on a previous method(Schäfer and Piggott; 2018), the predicted effect size of factor

combination Km is shown as:

Pmultiplicativem = CT
N

∏
i=1

(
1 +

ESmi

CT

)
− CT (2.4)

CT is the estimated response of the control group. For the dominative null models,

the predicted effect size is:

Pdominativem = ESmi(|ESmi | = max(|ESm1 |, |ESm2 |, ..., |ESmN |)) (2.5)

2.3.9 Hierarchical modeling framework for hypothesis testing

To disentangle the contribution of possible drivers (number of factor effect and factor

dissimilarity effect) on the variability of soil properties and functions in response to

multiple GCFs, a hierarchical modeling framework was implemented (FIGURE 2.6,

Appendix TABLE 1).
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FIGURE 2.6: Structure of hierarchical modeling framework for hy-
pothesis testing.

Structure of hierarchical modeling framework. Different compositions of predictors are
included in Model 1 to 7. Model complexity increases when more predictors are included.

TABLE 2.1: Model formulas for Hierarchical modeling analysis.

Model Model formula
Model 1 Response variables ∼ P1 + P2 + P3
Model 2 Response variables ∼ Number of factors
Model 3 Response variables ∼ Dissimilarity index
Model 4 Response variables ∼ P1 + P2 + P3 + Number of factors
Model 5 Response variables ∼ P1 + P2 + P3 + Dissimilarity index

Model 6
Response variables ∼ P1 + P2 + P3 + Number of factors +
Dissimilarity index

Model 7

Response variables ∼ P1 + P2 + P3 + Number of factors +
Dissimilarity index + salinity + drought + microplastic +
fungicide + herbicide + antibiotics + insecticide +surfactant
+ nitrogen deposition + heavy metals + PFAS + lithium
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To generate robust results, we compared the modeling results generated by both

machine learning and generalized linear model (GLM). In the modeling, data from

all the treatments except for the controls were used. In both algorithms, to sepa-

rate the factor identity effects, the null model predictions (from additive, multiplica-

tive and dominative models) were first included as predictors in the baseline model

(Model 1), which is regarded as the soil response variability explained by the contri-

butions of factor identity. Number of factors was solely included as the predictor in

Model 2, and in Model 3 factor dissimilarity indices were included instead. Then, on

the basis of the baseline model, each soil response was modeled by adding the num-

ber of factors or factor dissimilarity indices as an additional predictor in Model 4

and Model 5 respectively. Furthermore, in Model 6, both factor dissimilarity indices

and number of factors were added on the basis of the baseline model. Lastly, factor

composition (i.e., a binary matrix coding the features for each treatment, where 1 or

0 represent the presence or absence of each stressor.) was included as the last pre-

dictor for the final model (Model 7). The formula describing each model is shown

in Appendix TABLE 2.1. In Model 7, due to different model algorithms, factor com-

position has a different meaning. For the Random Forest algorithm(Breiman; 2001),

the factor composition stands for all the information from the experimental design

(also includes the information of other predictors, e.g., number of factors), and theo-

retically it can provide the best model fits. Thus, in the hierarchical modeling frame-

work, the factor composition is only being added at the end to show the variability

that can be explained by the experimental treatments (the randomly-drawn factors).

In the GLM, including factor composition does not stand for the factor identity ef-

fects and also does not have a specific statistical meaning in this case. But for com-

parison to the Random Forest model, we still provide the modeling results of Model

7.

We evaluated the variability of soil responses explained by all seven models

with model R2 values (%). To evaluate the contribution of each model predictor,

for the GLM, we compared models by their AIC (Akaike information criterion) val-

ues based on the ANOVA tests (Supplementary Table 7 and 8) and evaluated the

increase in model R-squared values. For the Random Forest models, the contribu-

tion of each model predictor was evaluated by the increase in the model R-squared
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values. To address the statistical inference of predictor contributions in the Random

Forest models, we used a permutation-based random forest model approach with

1,000 permutations to calculate the relative importance of each predictor. Adjusted

P-values of relative importance for each model predictor are shown in Appendix

TABLE 2.

2.4 Results

2.4.1 Effects of individual factors on soil functions and properties

The 12 single factors, our factor pool, produced a variety of responses on soil proper-

ties and functions, including positive, neutral and negative trends (FIGURE 2.7 and

FIGURE 2.8). However, according to the significance tests based on adjusted P val-

ues (n = 8), none of the 12 single factors had significant effects on soil decomposition

rate and four soil enzyme activity. Salinity and drought caused soil pH to increase

(P = 0.019 and < 0.001, respectively, TABLE 2.2), while decreasing the proportion of

water-stable soil aggregates (P = 0.021 and 0.042, respectively, TABLE 2.2).



22
Chapter 2. Factor number and dissimilarity drive effects of multiple global change

factors on soil properties and functions

TABLE 2.2: Significance test for the effects of single GCFs on soil responses.

Factor N-acetyl-gluc- Cellulase β-glucosid- Phosphatase Decompo- Soil pH Water stable soil

osaminidase activity ase activity activity sition rate aggregate

PFAS 0.833 0.603 0.879 0.819 0.768 0.168 0.181

Copper 0.833 0.603 0.755 0.819 0.813 0.588 0.736

Lithium 0.862 0.603 0.879 0.819 0.768 0.574 0.972

N deposition 0.8362 0.603 0.755 0.819 0.813 0.168 0.816

Antibiotic 0.833 0.603 0.755 0.819 0.813 0.739 0.706

Insecticide 0.833 0.603 0.755 0.819 0.768 0.776 0.335

Surfactant 0.862 0.603 0.755 0.819 0.433 0.805 0.245

Fungicide 0.833 0.603 0.755 0.819 0.071 0.168 0.816

Herbicide 0.833 0.603 0.755 0.819 0.768 0.168 0.971

Microplastic 0.833 0.603 0.755 0.819 0.572 0.168 0.749

Salinity 0.833 0.603 0.755 0.609 0.271 0.001* 0.021

Drought 0.862 0.603 0.755 0.819 0.768 <0.001* 0.042

Adjusted P values based on Benjamini-Hochberg method obtained from two sided t-tests between each treat-

ment group and controls. (Significant differences with 0.01 < P 0.05 are shown in bold, and P < 0.01 are marked

by * additionally.)

2.4.2 Effects of multiple co-acting GCFs on soil functions and properties

The simultaneous effects of multiple factors on soil functions and properties changed

directionally with an increase in the number of factors. When multiple factors were

applied, water-stable soil aggregates (P < 0.001 for all of 2, 5 and 8 factor groups)

decreased, while soil pH (P < 0.001 for all of 2, 5 and 8 factor groups) increased

compared to control. Soil decomposition rate decreased only in the eight-factor

group (FIGURE 2.7, TABLE 2.3). Activity of β-glucosidase increased in all three

factor groups (P = 0.015 for 2 factor group, P < 0.001 for 5 and 8 factor groups).

Phosphatase activity did not change in any factor group, while activity of N-acetyl-

glucosaminidase and cellulase increased in 5, 8 factors groups and 8 factors group,
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FIGURE 2.7: Effect sizes of soil property responses to single and
multiple factor groups

For each soil property, effect sizes of single factors (n =8) and multiple factor groups (2, 5
and 8 factors, 50 treatments included in each factor group) were estimated [a(1), a(2) and

a(3)]

respectively (P = 0.017, 0.002 and 0.008, respectively) (FIGURE 2.8, TABLE 2.3).

TABLE 2.3: Significance test for the effects of groups in different number of factors on soil re-
sponses.

Number of N-acetyl-gluc- Cellulase β-glucosid- Phosphatase Decompo- Soil pH Water stable soil

factor group osaminidase activity ase activity activity sition rate aggregate

1 (n = 93) 0.843 0.578 0.472 0.933 0.769 <0.001* 0.012

2 (n = 47) 0.068 0.575 0.015 0.869 0.271 <0.001* <0.001*

5 (n = 50) 0.017 0.058 <0.001* 0.191 0.271 <0.001* <0.001*

8 (n = 50) 0.002* 0.008* <0.001* 0.191 <0.001* <0.001* <0.001*

Adjusted P values based on Benjamini-Hochberg method obtained from two sided t-tests between each treat-

ment group and controls. (Significant differences with 0.01 < P 0.05 are shown in bold, and P < 0.01 are marked

by * additionally.)
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FIGURE 2.8: Effect sizes of soil enzymatic acticity responses to sin-
gle and multiple factor groups

For each soil enzymatic activity, effect sizes of single factors (n =8) and multiple factor
groups (2, 5 and 8 factors,50 treatments included in each factor group) were estimated [a(1),

a(2), a(3) and a(4)].

2.4.3 Correlations of soil property and function responses to co-acting

GCFs with factor dissimilarity

We used Spearman correlation analyzes to show the changing trend of soil prop-

erty and function responses along factor dissimilarity index range within each fac-

tor level. Factor dissimilarity was positively associated with soil pH, but negatively

associated with water-stable soil aggregates and soil decomposition rate (FIGURE

2.9). Soil enzymatic activity was positively correlated with the factor dissimilarity

index (FIGURE 2.10). However, the correlation of soil responses with the factor dis-

similarity index could be caused by the artefact that factor combinations with larger

dissimilarity indices also have a higher chance of including the factors with extreme

effect size. Therefore, only the correlation analysis by itself is insufficient for evalu-

ating the real effect of factor dissimilarity.
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FIGURE 2.9: Spearman correlations of soil property responses to the
normalized factor dissimilarity index

the correlations of soil property responses to the normalized factor dissimilarity index are
shown in scatter plots [a(1) to c(1), a(2) to c(2) and a(3) to c(3)], Spearman correlation

coefficients and significance of correlations are indicated by r and p, respectively.

2.4.4 Hypothesis testing by hierarchical modeling framework

To test the possible drivers (number of factors and factor dissimilarity) of the vari-

ability of soil responses to simultaneously acting multiple factors and to separate the

factor identity contribution, a hierarchical modeling framework was implemented
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FIGURE 2.10: Spearman correlations of soil enzymatic activity re-
sponses to the normalized factor dissimilarity index

the correlations of soil enzymatic activity responses to the normalized factor dissimilarity
index are shown in scatter plots [a(1) to c(1), a(2) to c(2), a(3) to c(3) and a(4) to c(4)],

Spearman correlation coefficients and significance of correlations are indicated by r and p,
respectively.
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FIGURE 2.11: Explained variance of soil properties and functions
by seven models from the hierarchical modeling framework.

based on machine learning and generalized linear model (GLM) algorithms (FIG-

URE 2.6). To separate the contribution of factor identity, we first built the baseline

model by predicting the soil functions and properties using the three null model pre-

dictions (i.e. predicted responses calculated by the responses of single factor treat-

ments based on additive, multiplicative and dominative null model algorithms).

Then, we tested the effect of factor dissimilarity and number of factors by adding

additional predictors on the basis of the baseline model. The contribution of each

predictor was evaluated by the increment of an R-squared value for Random Forest

(RF) models and by comparing the changes of model AIC for the GLM.

The hierarchical modeling results based on the random forest algorithm showed

that adding the number of factors improved the model R2 for soil decomposition rate

and three types of soil enzymatic activity (cellulase, β-glucosidase and phosphatase)

(FIGURE 2.11, Appendix TABLE 3 and 4). Adding the dissimilarity indices further

improved the model R2 largely for soil decomposition rate and four types of soil en-

zymatic activity (FIGURE 2.11, Appendix TABLE 3 and 4). The permutation-based

random forest approach also indicates that the importance of number of factors is

significant for predicting soil decomposition rate and three types of soil enzymatic

activity (cellulase, β-glucosidase and phosphatase), and factor dissimilarity index is
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significant for predicting all the soil responses except for water-stable soil aggregates

(Appendix TABLE 2). The hierarchical modeling based on the GLM algorithm also

showed similar results as the RF models (TABLE 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 and 2.10).

Collectively, both machine learning and GLM algorithms indicate that the number

of factors and factor dissimilarity are important predictors for the variability of soil

responses to multiple GCFs.

TABLE 2.4: Contributions of model predictors on soil decomposition
rate based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 -433.8994 221.9497 - 0.024

Model 2 3 -443.0140 224.507 - 0.0001

Model 3 3 -457.2668 231.6334 - 0.1734

Model 4 (Model 1) 6 -439.3643 225.6822 0.007* 0.0847

Model 5 (Model 1) 6 -457.5266 234.7633 <0.001* 0.1911(+)

Model 6 (Model 4) 7 -456.9633 235.4817 <0.001* 0.1933(+)

Model 6 (Model 5) 7 -456.9633 235.4817 0.241 0.1933

Model 7 (Model 6) 18 -479.9469 257.9734 <0.001* 0.3557(+)

TABLE 2.5: Contributions of model predictors on soil pH based on
general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 -35.84877 22.92439 - 0.8098

Model 2 3 172.84632 -83.42316 - 0.2028

Model 3 3 53.81937 -23.90968 - 0.6453

Model 4 (Model 1) 6 -35.71041 23.8552 0.181 0.8109

Model 5 (Model 1) 6 -39.45372 25.72686 0.020 0.8156(+)

Model 6 (Model 4) 7 -37.62369 25.81185 0.053 0.8145

Model 6 (Model 5) 7 -37.62369 25.81185 0.687 0.8145

Model 7 (Model 6) 18 -57.58191 46.79096 <0.001* 0.8488(+)
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TABLE 2.6: Contributions of model predictors on water-stable soil
aggregate based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 -221.9365 115.9683 - 0.1267

Model 2 3 -204.6608 105.3304 - 0.1975

Model 3 3 -224.0199 115.0099 - 0.1274

Model 4 (Model 1) 6 -227.3576 119.6788 0.007* 0.1448(+)

Model 5 (Model 1) 6 -221.55372 116.7769 0.212 0.1302

Model 6 (Model 4) 7 -225.4000 119.7 0.841 0.1582

Model 6 (Model 5) 7 -225.4000 119.7 0.687 0.1582

Model 7 (Model 6) 18 -222.4485 129.2243 0.096 0.1979

TABLE 2.7: Contributions of model predictors on N-acetyl-
glucosaminidase activity based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 218.6840 -104.342 - -0.0217

Model 2 3 288.4251 -141.2125 - 0.0216

Model 3 3 282.2736 -138.1368 - 0.0617

Model 4 (Model 1) 6 213.7671 -100.8836 0.010 0.0329(+)

Model 5 (Model 1) 6 198.7713 -93.38566 <0.001* 0.1594(+)

Model 6 (Model 4) 7 198.9904 -92.4952 <0.001* 0.1650(+)

Model 6 (Model 5) 7 198.9904 -92.4952 0.196 0.1650

Model 7 (Model 6) 18 193.1288 -78.5644 0.011 0.2778(+)

TABLE 2.8: Contributions of model predictors on cellulase activity
based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 71.33657 -30.6682 - -0.0227

Model 2 3 84.18846 -39.09423 - 0.0301

Model 3 3 74.15474 -34.07737 - 0.0941

Model 4 (Model 1) 6 68.12162 -28.06081 0.027 0.0230(+)

Model 5 (Model 1) 6 59.88618 -23.94309 <0.001* 0.1075(+)

Model 6 (Model 4) 7 61.69514 -23.84757 0.005* 0.0989(+)

Model 6 (Model 5) 7 61.69514 -23.84757 0.674 0.0989

Model 7 (Model 6) 18 61.16782 -12.58391 0.054 0.1929(+)
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TABLE 2.9: Contributions of model predictors on β-glucosidase ac-
tivity based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 385.9900 -187.995 - 0.2690

Model 2 3 460.6354 -227.3177 - 0.1113

Model 3 3 429.0648 -211.5324 - 0.2831

Model 4 (Model 1) 6 382.6148 -185.3074 0.023 0.2918(+)

Model 5 (Model 1) 6 371.9674 -179.9837 <0.001* 0.3447(+)

Model 6 (Model 4) 7 371.3913 -178.6956 <0.001* 0.3520(+)

Model 6 (Model 5) 7 371.3913 -178.6956 0.117 0.3520

Model 7 (Model 6) 18 356.5627 -160.2814 <0.001* 0.4594

TABLE 2.10: Contributions of model predictors on phosphatase ac-
tivity based on general linear models.

Model(Reference model) Df AIC logLik P value Adjusted R2

Model 1 5 226.4944 -108.2472 - 0.0415

Model 2 3 228.0747 -111.0373 - 0.0564

Model 3 3 207.4480 -100.724 - 0.1467

Model 4 (Model 1) 6 223.7225 -105.8612 0.032 0.0656(+)

Model 5 (Model 1) 6 210.2900 -99.14499 <0.001* 0.1472(+)

Model 6 (Model 4) 7 212.2295 -99.11475 <0.001* 0.1415(+)

Model 6 (Model 5) 7 212.2295 -99.11475 0.81 0.1415

Model 7 (Model 6) 18 214.7683 -89.38413 0.086 0.1843

2.4.5 Emrgence of factor net interactions in multiple-factor treatments

We developed a methodology to assess the emergence of GCF interactions based on

the deviation of soil responses from null model predictions (see methods). Based

on this approach, we identified the net interaction type of 150 multiple-factor treat-

ments for each soil response. At the two-factor level, net interaction represents pair-

wise interaction. When the number of component factors is more than two, net inter-

action represents the overall effect of all pairwise interactions and higher-order inter-

actions among factors. For soil decomposition rate, soil cellulase and β-glucosidase

activity, based on three null model predictions, more synergistic net interactions

emerged when the factor dissimilarity index increased (FIGURE 2.12 and FIGURE
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FIGURE 2.12: Correlation between rescaled deviation of soil re-
sponses (decomposition rate, soil pH and water-stable soil aggre-
gates) from three null model predictions and normalized dissimi-

larity index.

[a (1) to c (3)] Scatter plots show the standardized deviation of soil responses from null
model predictions for multiple-factor treatments. Net interaction type of each

multiple-factor treatment is marked as different colored points (antagonistic, blue;
synergistic, red; no interaction, gray). The betterst-fitting null model for each soil response

has been selected based on the smallest model sum of squared deviation (SSD), and it is
indicated by the bold frame [a (1), b (3) and c (3)]. The correlations between standardized

deviation of soil responses from null model predictions and normalized dissimilarity index
are shown in linear correlation with 95% confidence intervals. Spearman correlation
coefficients and significance of correlations are indicated by R and p, respectively.

2.13). Across three number of factor levels, no obvious change of the emergence of

factor net interactions was observed (Appendix FIGURE 2.14 and 2.15).

To evaluate the drivers of factor interactions, we assessed the standardized de-

viations of soil responses from three null model predictions across the dissimilarity

range and three factor levels, respectively. From the three null models, the model
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FIGURE 2.13: Correlation between rescaled deviation of soil enzy-
matic activity from three null model predictions and normalized

dissimilarity index.

[a(1) to d(3)] Scatter plots show the standardized deviation of soil enzymatic activity from
null model predictions for multiple-factor treatments. Net interaction type of each
multiple-factor treatment is marked as different colored points (antagonistic, blue;

synergistic, red; no interaction, gray). The betterst-fitting null model for each soil enzymatic
activity has been selected based on the smallest model sum of squared deviation (SSD), and

is indicated by the bold frame [a (2), b (3), c (2) and d (2)]. The correlations between
standardized deviation of soil enzymatic activity from null model predictions and

normalized dissimilarity index are shown in linear correlation with 95% confidence
intervals. Spearman correlation coefficients and significance of correlations are indicated by

R and p, respectively.
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FIGURE 2.14: Rescaled deviation of soil responses (soil decomposi-
tion rate, soil pH and water-stable soil aggregates) from three null

model predictions with different numbers of factors.

[a (1) to c (3)] Scatter points represent the standardized deviation of soil responses from null
model predictions for multiple-factor treatments. Net interaction type of each

multiple-factor treatment is marked as different colored points (antagonistic, blue;
synergistic, red; no interaction, gray). The best-fitting null model for each soil response has

been selected based on the smallest model sum of squared deviation (SSD), and it is
indicated by the bold frame [a (1), b (3) and c (3)]. The overall deviances of soil responses

from null models in three number of factor groups (factor = 2, 5 and 8) are shown by
boxplot. The significant deviations from zero were evaluated by two sided t-tests ( * 0.01 <

P 0.05; ** 0.001 < P 0.01; *** P 0.001).
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FIGURE 2.15: Rescaled deviation of soil enzymatic activity from
three null model predictions for different numbers of factors.

[a (1) to c (3)] Scatter points represent the standardized deviation of soil enzymatic activity
from null model predictions for multiple-factor treatments. Net interaction type of each

multiple-factor treatment is marked as different colored points (antagonistic, blue;
synergistic, red; no interaction, gray). The best-fitting null model for each soil enzymatic

activity has been selected based on the smallest model sum of squared deviation (SSD), and
it is indicated by the bold frame [a (2), b (3), c (2) and d (2)]. The overall deviances of soil
enzymatic activity from null models in three number of factor groups (factor = 2, 5 and 8)
are shown by boxplot. The significant deviations from zero were evaluated by two sided

t-tests ( *0.01 < P 0.05; ** 0.001 < P 0.01; *** P 0.001)
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with the smallest sum of squared deviations (SSD) is used for estimating the devia-

tion for each soil response. For soil decomposition rate, the additive model has the

smallest SSD, while the dominative models have the smallest SSD for soil pH and

water-stable soil aggregates. For soil enzymatic activity, the multiplicative models

have the smallest SSD, except for cellulase activity (dominative model) (Appendix

TABLE 5). The standardized deviation of soil decomposition rate from additive

model predictions is correlated with the factor dissimilarity index, with synergistic

interactions becoming more frequent with higher dissimilarity (FIGURE 2.12). The

standardized deviation of cellulase and β-glucosidase activity from the null models

with the smallest SSD also show correlations with factor dissimilarity index, with

more frequent synergistic interactions appearing with higher dissimilarity (FIGURE

2.13). The soil decomposition rate responses to eight-factor treatments deviate sig-

nificantly from the additive model (Appendix FIGURE 2.14), and also the soil enzy-

matic activity responses to higher number of factor treatments show significant de-

viation from the null models with the smallest SSD(Appendix FIGURE 2.15). These

results suggest that the joint GCF effects on soil properties and functions deviate

from null model predictions, and the number of factors and factor dissimilarity may

drive the occurrence of more synergistic factor interactions.

2.5 Discussion

By assessing soil ecological responses to a large set of factor combinations (150 dif-

ferent factor combinations) at three different factor levels (2, 5 and 8), our study

suggests that, in addition to the number of factors, factor dissimilarity also drives

the effects of multiple GCFs. Our study supports previous findings that the num-

ber of co-acting factors affects soil responses to GCFs(Rillig et al.; 2019; Yang et al.;

2022). As hypothesized, (i) the effects of factor dissimilarity played an important

role in predicting the variability of soil responses to multiple GCFs; (ii) a larger dis-

similarity among factors or larger number of factors will cause greater deviation of

joint effects on soil properties and fucntions from null models; (iii) co-acting factors

with higher dissimilarity tend to have more synergistic interactions. This provides

a new mechanistic perspective for predicting the joint effects of multiple GCFs on
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soil properties and functions and highlights the importance of systematically un-

derstanding the properties and mode of action of single GCFs. Our findings also

open new opportunities towards improving management approaches; management

should prioritize local GCFs not just in terms of the most severe factor(s), but should

also take into account factor dissimilarity building on known factor traits (FIGURE

2.16).

2.5.1 Separating factor identity effects in multiple GCFs studies

A simultaneous manipulation of a large number of factors (usually more than six)

is needed in multiple factor research to test general rules for multiple factor effects.

However, the contribution of the factor identity effect is an important point that can-

not be ignored, otherwise this may result in contradictory results. The concept of

“species identity effect” has been first raised in biodiversity studies for separating it

from the diversity effect(Loreau; 1998; Loreau and Hector; 2001). Similarly, in mul-

tiple factor studies, factors following the design we use here are randomly chosen

from a factor pool. When the number of selected factors increases, there is also an

increasing probability of including single factors with extremely strong effects in

high-level factor combinations. This higher chance of including extreme factors in

the higher number of factors group results in a “GCF-number effect” but this effect

is not due to the number of factor effects, but an increased rate of selecting extreme

single factors. When testing the effect of factor dissimilarity, similarly, because the

factor dissimilarity index is calculated based on the single factor effects, a GCF with

more extreme effect on soil properties and functions will also have larger effect ‘dis-

tances’ to other GCFs. Therefore, a factor combination that includes the extreme

factor is likely to have stronger combined effect and at the same time has a relatively

larger dissimilarity index. In this case, the correlations between factor dissimilar-

ity indices and soil properties and functions could be only caused by the higher

selecting rate of extreme factors, and are insufficient to support the effect of factor

dissimilarity. Thus, an appropriate statistical method is needed for disentangling

the effect of factor number and dissimilarity from the factor identity effects.

Although only a few studies on multiple GCFs have assessed factor identity ef-

fects(Komatsu et al.; 2019; Zandalinas et al.; 2021), attempsts have been made in
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FIGURE 2.16: A comparison of dendrograms of clustered 12 GCFs

Dendrograms of 12 GCFs clustered based on their effects on soil properties and functions
(measured in this experiment) (a) and based on a priori trait-based classification from

expert opinions (b). Cophenetic correlation between two trees was calculated based on a
bootstrapping method developed by a previous study(Rillig et al.; 2021a). The Cophenetic
correlation test calculates the correlation between two cophenetic distance matrices of the

two trees. The value of the cophenetic correlation coefficient can range between -1 to 1.
With near 0 values meaning that the two trees are not statistically similar. After applying
1,000 times of permutation, the results show that the two dendrograms have structures
more similar to each other than expected by chance (cophenetic correlation coefficient:

mean = 0.2869 [95%CI: 0.073-0.475] > 0), indicating a priori trait-based ordering of factors
having similar traits affecting soil properties and functions. It may provide advantages for

future GCF management evaluating factor dissimilarity based on the priori trait-based
factor classification systems.
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some studies to use both parametric and nonparametric methods(Rillig et al.; 2019;

Speißer et al.; 2022). Inspired by identifying contributions of species identities, pre-

vious work has employed a hierarchical diversity-interaction modeling framework

based on linear mixed-effects models to assess the contribution of GCF identities by

ANOVA tests(Speißer et al.; 2022). But the limitation of traditional statistical models

is that they lack the power to capture unknown nonlinear patterns of the hypothesis

in higher dimensionality(Ryo and Rillig; 2017). Another way to identify the individ-

ual factor contribution is comparing observed effects with effects predicted by null

models. Null models assume that there are no interactions among factors(Schäfer

and Piggott; 2018), thus the predictions of null models can be viewed as the combi-

nations of single factor effects. To better deal with potential nonlinear relationships,

a previous study explored the potential to combine machine learning algorithms

with null model predictions to address the effects of factor number and to differ-

entiate the factor identity contribution1. In our study, since null model prediction

results have been integrated as the baseline models in the hierarchical modeling

framework, the increase of the model predictability from baseline models can be

interpreted as the contribution of factor number effect or factor dissimilarity effect

other than the factor identity effect. Additionally, we further analyzed the change of

standardized deviation of factor joint effect from the best-fitting null model across

the dissimilarity index range, and indicated the direction of deviations (the types of

the emergent interactions). In this way, the effect of factor dissimilarity can be de-

picted by both the explained variability increased from the baseline model and the

changes of standardized deviation of soil responses from null models , but not di-

rectly from the correlation of factor dissimilarity with soil responses. For example, in

our study, soil pH is strongly associated with factor dissimilarity, but the correlation

is mostly caused by the contribution of extreme factors, because the baseline model

can explain 85.4% of the response variability and adding other predictors hardly in-

crease model R squared (FIGURE 2.9 and TABLE 2.5). And also, water-stable soil

aggregation is negatively correlated with the dissimilarity index. However, from the

standardized deviation analysis of WSA from the dominative null model prediction,

we find the WSA responses are mostly subjected to the dominative model and there

is no correlation between factor dissimilarity and standardized deviation from the
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dominative model (FIGURE 2.12 and Appendix TABLE 5). As we saw contradic-

tory results by analyzing data with or without considering the factor identity effect,

to avoid misinterpreting results, we here suggest separating factor identity effects

from other effects driven by multiple GCFs. Our study also provides a practical

method to evaluate the contribution of factor identity effects and it should be used

as the baseline for testing other hypotheses in future multiple GCFs studies based

on randomly-drawn factors.

2.5.2 The role of the factor dissimilarity in driving the emergence of GCF

interactive effects on soil properties and functions

Our study has found there is more emergence of synergistic factor interaction on soil

decomposition rate, soil cellulase and β-glucosidase enzymatic activity when factor

dissimilarity increases. By analyzing the deviation of factor joint effects from the

best-fitting null model predictions across the dissimilarity index range, we found

that factor dissimilarity drives the interactions of multiple GCFs towards a more

synergistic direction (FIGURE 2.12 and FIGURE 2.15). Our finding indicates that

factor dissimilarity underpins the interactive mechanisms of GCFs on soil properties

and functions.

The role of factor dissimilarity in driving the interactive effects of multiple GCFs

could be due to three distinct mechanisms. Firstly, factors that differ in their physic-

ochemical nature may be more likely to have direct interactions compared to fac-

tors with the same physicochemical nature. These direct factor interactions are only

related to the physical or chemical properties of the factor itself, without consid-

ering how they affect soil organisms and processes(Rillig et al.; 2021b). For ex-

ample, drought can interact with other chemical factors as a concentration ampli-

fier(De Vries et al.; 2020), and surfactants can increase the solubility or movement of

organic pollutants(Dollinger et al.; 2018). Factor direct interactions usually amplify

the intensity of single factors. Thus, the emergence of synergistic effects of high-

dissimilarity multiple factors may be derived from the occurrences of direct factor

interactions.

Secondly, factor dissimilarity may play a role in affecting species adaptation to
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a multiple-GCF environment. Performance trade-offs are common when popula-

tions are exposed to multiple-factor environments(Langley et al.; 2022; Orr et al.;

2022a). Based on the pareto optimality theory, species cannot optimize adaptation

to multiple factors at the same time(Shoval et al.; 2012; Tikhonov et al.; 2020). When

factors are more dissimilar, these trade-offs would be larger, leading to a lower over-

all adaptation performance to the multiple-factor environments. By contrast, when

the effects of factors are similar, the adaptation strategy of a population to one factor

could also allow its adaptation to another factor by applying the same genetic or

metabolic responses (e.g., cross-protection)(Bubliy and Loeschcke; 2005; MacMillan

et al.; 2009).

Thirdly, factor dissimilarity could reshape the co-tolerance space of species to

multiple factors. In the co-tolerance theory framework, the resistance of a com-

munity to multiple-stressor environments is affected by the relatedness of species’

tolerances to different stressors(D. Vinebrooke et al.; 2004). If species tolerances to

stressors are positively correlated, the overall species loss will be less than if the

tolerances are unrelated, but if species tolerances to stressors are negatively cor-

related, more species (and the functions they drive) will be lost in multi-stressors

environments. When multiple factors are quite different, their mode of action or tar-

get species range might also be different. From the perspective of the community,

species tolerances to factors would be more negatively correlated. In this scenario,

more species from the community are likely to be lost when more dissimilar GCFs

are applied simultaneously. Biodiversity loss likely leads to reduced ecosystem func-

tions (e.g., litter decomposition rate) based on biodiversity insurance theory(Loreau

et al.; 2021); this may explain why there are more synergistically negative effects on

soil decomposition rate when factor dissimilarity indices are higher (FIGURE 2.12

and 2.13).

2.6 Conclusion

Our study investigated the effects of factor dissimilarity on soil properties and eco-

logical functions, suggesting that factor dissimilarity can drive more frequent occur-

rence of synergistic effects on several soil functions. Future work should address the
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effects of factor dissimilarity at different levels of the ecological hierarchy (organ-

ism, population and community levels), or the temporal variation in effects of factor

dissimilarity. Incorporating the effect of factor dissimilarity in future multiple GCFs

studies will be helpful for estimating effects of co-acting GCFs and may be useful in

informing protocols for ecosystem management and restoration.
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Chapter 3

A null model workflow developed

for multiple GCF studies

3.1 Abstract

Human activities are driving significant changes in Earth’s ecosystems, with soil

functioning increasingly threatened by multiple anthropogenic factors. While many

studies have focused on the effects of individual factors, recent research underscores

the importance of evaluating the combined effects of multiple factors. Null model

approaches, widely used in toxicology and ecotoxicology to assess the combined

impacts of multiple stressors, have been recently adopted in soil ecology studies for

evaluating factor interactions. However, there are still obstacles for applying null

model approaches in GCF studies when more factors are considered simultaneously.

Here we present a practical null model analysis workflow that generates predictions

based on three null model assumptions for specified factor combinations. This work-

flow not only identifies net interactions within replicated factor combinations but

also efficiently generates predictions for a large number of randomly selected factor

combinations. This flexible modeling workflow can also be used with other model-

ing frameworks for hypotheses testing in multiple GCF studies, such as evaluating

the contribution of selection effect and factor identity. Here, we detail the workflow

and demonstrate its utility through two case studies involving global change factor

research.
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3.2 Introduction

Human activities are inducing significant alterations to the Earth’s ecosystems in

various ways(Richardson et al.; 2023). Soil ecosystem biodiversity and functionality

are increasingly threatened by a range of human-induced factors(Díaz et al.; 2019),

including climate change, pollutants, microplastics, nitrogen deposition etc(Rillig

et al.; 2021). Beyond examining the isolated effects of each factor on soil ecosystem

functioning, recent studies highlight the importance of understanding how these

factors interact(Rillig et al.; 2019; Speißer et al.; 2022). The combined impacts of

multiple co-acting factors on soil ecosystems are often profound and unpredictable

due to complex factor interactions(Rillig et al.; 2019; Larsen et al.; 2011). Developing

a practical method for quantifying the factor interactions is crucial for studying the

combined effects of multiple factors on soil ecosystems.

The investigation of multiple stressors is well-developed in fields such as toxi-

cology and ecotoxicology, where studies commonly assess the combined effects of

multiple chemical stressors on individual organisms or populations using null mod-

els(Schäfer et al.; 2023; Schäfer and Piggott; 2018). In soil ecology, studies on multi-

ple factors have similarly integrated null models to evaluate factor interactions and

test hypotheses(Rillig et al.; 2019). However, as the number of factors increases, it

becomes impractical for controlled experiments to test every possible combination

with sufficient replication(Katzir et al.; 2019). Thus, many studies employ a random

selection experimental design, in which factors are randomly chosen from a prede-

fined pool, to address the "curse of dimensionality"(Speißer et al.; 2022; Rillig et al.;

2019). Despite the advantages of this approach, the random selection of factors also

poses challenges for applying null model approaches for further understanding the

underlying mechanisms of multiple factor interactions.

To address these challenges, we developed a null model analysis workflow ca-

pable of generating model predictions based on three null model assumptions for

specified factor combinations. This workflow not only identifies factor interactions

within replicated factor combinations but also efficiently generates predictions for a

large number of randomly selected factor combinations using one-hot encoded fac-

tor identity features (where the presence or absence of factor is represented by "1"
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and "0", respectively). Here we provide a step-by-step introduction to the workflow

and present two case studies demonstrating its application in multiple global change

factor (GCF) studies. The first case study investigated the combined effects of mul-

tiple COVID-19 pharmaceutical drugs and microplastics on soil microbial activity

and enzymatic activity. The second case study evaluated the effects of 250 different

combinations of GCF from a pool of 14 factor on soil pH, decomposition rate and

water-stable soil aggregates, across eight levels of factor inclusion (0, 1, 5, 6, 7, 8, 9

and 10 factors).

3.3 Null model analysis workflow for multiple GCF studies

We created a null model analysis workflow that can be easily applied to multiple

GCF studies with various data structure. The whole analysis workflow was per-

formed with R (4.1.1) (R Core Team; 2021).

3.3.1 Step 1. Calculating effect sizes for individual factors

.

To make this workflow easily applied to any kind of dataset from multiple factor

studies, we make this workflow compatible to a well-known package "dabestr"(Ho

et al.; 2019). "Dabestr" is a R package that use Bootstrap-coupled methods to gen-

erate estimates of effect sizes for different treatments. First we calculate the single

factor effect sizes using the function dabest() and mean_diff(). By using ’dabestr’

package, the effect sizes of all single factors can be estimated by a bootstrapping

method with defult 500 permutations. The output of mean_diff() function will be

used in the following steps for generating null model predictions of any specified

combination of single factors.

1 Response_ES<-data%>%
2 dabest(Treatment, Response,
3 idx = c("Control","factor_A","factor_B","factor_C","factor_D","factor_E","factor_F","factor_G","factor_H"),
4 paired = FALSE)
5
6 Response_meandiff<-mean_diff(Response_ES,reps = 1000)
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3.3.2 Step 2. Calculating null model prediction of specific factor combi-

nations by NullModel function

The "NullModel" function was developed for generating bootstrapped estimates of

three null model predictions (additive, multiplicative and dominative null models)

based on specified factor combinations. The rationale of the three null model calcu-

lation is provided in Chapter 2 Methods.

1 NullModel = function(object, selected_factors=vector(), n_perm = 500){
2
3 output = list()
4 CT = object[["summary"]][["mean"]][[1]]
5 input=object[["data"]]
6 population_CT= input[input[,as.character(object[["x"]][[2]])] == object[["result"]][["control_group"]][1], object[["result"]][["variable"]][1]]
7 size_CT=length(population_CT)
8
9 for (type in c("additive","multiplicative", "dominative")) {

10 bs = numeric(0)
11 for (id in c(1:n_perm)) {
12 each_effect = numeric(0)
13 k_CT = mean(sample(population_CT, size_CT, replace = T))
14 for (treatment in selected_factors) {
15 population_TR = input[input[,as.character(object[["x"]][[2]])] == object[["result"]]
16 [["test_group"]][which(object[["result"]][["test_group"]]==treatment)], object[["result"]][["variable"]][1]]
17 size_TR = length(population_TR)
18 k_TR = mean(sample(population_TR,size_TR,replace = T))
19
20 # ES estimate depending on the type of null hypothesis
21 if(type == "additive") each_effect = append(each_effect,(k_TR - k_CT))
22 if(type == "multiplicative") each_effect = append(each_effect, (k_TR-k_CT)/k_CT)
23 if(type == "dominative") each_effect = append(each_effect,(k_TR - k_CT))
24 }
25
26 if(type == "additive") {
27 joint_effect = sum(each_effect)
28 pre_response = joint_effect+CT
29 }
30
31 if(type=="multiplicative"){
32 z = 1
33 for(m in c(1:length(selected_factors))) {
34 z = z * (1 + each_effect[m])
35 joint_effect = (z - 1)*k_CT
36 }
37 pre_response =joint_effect+CT
38 }
39
40 if(type=="dominative") {
41 joint_effect = each_effect[which(max(abs(each_effect))==abs(each_effect))]
42 pre_response =joint_effect+CT
43 }
44
45 bs = append(bs, pre_response)
46 }
47 output[[type]] = bs
48 }
49 return(output)
50 }

In "NullModel" function, input object is the output of "mean_diff" function of

"dabestr" package. The specified factor combination is required by the input pa-

rameter: selected_factors = c(). The times of permutation can be defined by:

n_per = 500.
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1 Null_modle = NullModel(Response_meandiff, selected_factors = c("factor_A","factor_C","factor_G"))

3.3.3 Step 3. Significance testing between null model predictions and ac-

tual data

FIGURE 3.1: Significant testing between three null model predic-
tion and actual data

The "NullModel_summary" function was developed for calculating the 95% con-

fidence interval of each null model prediction and applying significance testing be-

tween actual multi-factor treatment data and null model predictions.

1 NullModel_summary = function(null_data, actual_data = vector()){
2 output = list()
3
4 if(length(actual_data)<=2){
5 output[["actual"]] = c(mean(actual_data),mean(actual_data),mean(actual_data),1)
6 for (type in c("additive","multiplicative", "dominative")) {
7 bs = rep(mean(actual_data),length(null_data[[type]])) - null_data[[type]]
8 p = length(which(bs>0))/length(bs)
9 p = min(p, 1-p)

10 output[[type]] = c(quantile(null_data[[type]], .025), mean(null_data[[type]]), quantile(null_data[[type]], .975), p)
11 }
12 }
13
14 if(length(actual_data)>=3){
15 #re-sampling of actual data
16 size_actul=length(actual_data)
17 bs_actual = numeric(0)
18 for (i in c(1:length(null_data[[1]]))) {
19 k_actual = mean(sample(actual_data, size_actul, replace = T))
20 bs_actual = append(bs_actual, k_actual)
21 }
22
23 output[["actual"]] = c(quantile(bs_actual, .025), mean(bs_actual), quantile(bs_actual, .975), 1)
24
25 for (type in c("additive","multiplicative", "dominative")) {
26 bs = bs_actual - null_data[[type]]
27 p = length(which(bs>0))/length(bs)
28 p = min(p, 1-p)
29 output[[type]] = c(quantile(null_data[[type]], .025), mean(null_data[[type]]), quantile(null_data[[type]], .975), p)
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30 }
31 }
32
33 output = t(data.frame(output))
34 colnames(output) = c("X2.5%", "mean", "X97.5%", "p_value")
35 output = data.frame(ES = c("actual", "additive","multiplicative","dominative"), output)
36 row.names(output) = c()
37
38 return(output)
39 }

The significant difference between actual data and null model prediction indi-

cates the null model failed to predict the results (There is factor net interaction).

1 Null_modle_summary = NullModel_summary(Null_modle, actual_data = actual_data)
2 #Ploting
3 p_null = ggplot()+
4 coord_flip() +
5 geom_estci(data=Null_modle_summary, aes(x = mean, y = ES, xmin=X2.5., xmax=X97.5.,
6 xintercept=pH.plot.meandiff[["summary"]][["mean"]][1]), center.linecolour = "black",
7 size=0.6, ci.linesize = 0.5, position=position_nudge(y = -0.15))
8
9 p_null

3.4 Application case 1

3.4.1 Experimental design and measurements

During the worldwide COVID-19 pandemic, an increasing amount of different phar-

maceutical drugs have been consumed, as well as plastic face masks. Here we de-

signed an experiment to investigate the potential impacts of combined COVID-19

drugs and microplastic(MP) generated by facial masks on soil microbial activity and

enzymatic activity.

In this study, we chose three drugs commonly used during COVID-19 pandemic:

remdesivir (antiviral), azithromycin (antibacterial) and ivermectin (antiparasitic) and

microplastics from FFP2 face mask. We tested individual effects and combined ef-

fects of those three drugs on soil microbial activity and enzymatic activity with low

and high concentration. The working concentrations of drugs with high and low

concentration are shown in Appendix TABLE 6. The name of each treatment and

number of replicates are shown in TABLE 3.1.
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TABLE 3.1: Experimental design.

Treatment Applied factor(s) Replicates

Control None 8

R_low Remdesivir (low concentration) 8

R_high Remdesivir (high concentration) 8

A_low Azithromycin (low concentration) 8

A_high Azithromycin (high concentration) 8

I_low Ivermectin (low concentration) 8

I_high Ivermectin (high concentration) 8

MP Microplastic 8

AIMP_low Azithromycin, Ivermectin (low concentration), Microplastic 8

AIMP_high Azithromycin, Ivermectin (High concentration), Microplastic 8

RIMP_low Remdesivir, Ivermectin (low concentration), Microplastic 8

RIMP_high Remdesivir, Ivermectin (high concentration), Microplastic 8

ARMP_low Azithromycin, Remdesivir (low concentration), Microplastic 8

ARMP_high Azithromycin, Remdesivir (high concentration), Microplastic 8

RAIMP_low Azithromycin, Remdesivir, Ivermectin (low concentration), Microplastic 8

RAIMP_high Azithromycin, Remdesivir, Ivermectin (high concentration), Microplastic 8

Every experimental unites has been conducted in a microcosm system, by putting

40.0 g (d.w.) soil in a 50.0 mL falcon tube. The pharmaceutical drugs and 0.4% mi-

croplastics have been applied to the corresponding soil treatments at the beginning

at one time. After 42 days incubation, 5.0 g fresh soil has been harvested from each

treatment for further soil enzymatic activity (N-acetyl-glucosaminidase, cellulase,

β-glucosidase and phosphatase) and microbial activity (FDA hydrolysis) measure-

ments.

3.4.2 Statistical analysis

Data analysis and visualization were conducted using R (R Core Team; 2021). Effect

sizes and 95% confidence intervals (CIs) for both single and multiple factor treat-

ments were estimated employing a bootstrap method with 10,000 permutations.

Visualizations depicting effect sizes and raw data distributions for each treatment

group were created. A positive effect indicates that the measured response variable
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was higher in the treatment group compared to the control, while a negative effect

signifies the opposite.

To assess the interactive potential of multifactorial treatments on soil enzymatic

activity and FDA hydrolysis, this study employed three null model assumptions —

additive, multiplicative, and dominative — following the null model workflow we

developed. Under the additive model, the joint effects of factors are estimated by

summing the effect sizes of individual components. The dominative model assumes

the joint effect equals the largest absolute effect size of any single factor. The multi-

plicative model estimates combined effects by multiplying the proportional changes

induced by each single-factor treatment against a control. These models presup-

pose no interactions among factors, serving as baseline predictions. Interactions are

identified through significant deviations of observed data from these null model pre-

dictions, indicating either synergistic or antagonistic interactions among the factors

involved. Data visualization was conducted using the ggplot2 package (Wickham;

2016).

3.4.3 Results

Effects of drugs and microplastics on soil enzymatic and microbial activity

For evaluating the effects of COVID-19 drugs and microplastics from masks on soil

microbial activity and enzymatic activity, We measured overall microbial activity by

FDA hydrolysis and four excellular soil enzyme activity (Appendix FIGURE 3 and

4). Adding microplastic had negative effects on β-glucosidase, phosphatase activity

and FDA hydrolysis activity. We found an general decrease in FDA activity for drug

treatments applied singly and in combination. Low-concentration of pharmaceutical

drugs had negative effects on N-acetyl-glucosaminidase and cellulase activity, while

high-concentration of drugs showed positive effects (Appendix FIGURE 3 and 4).

Net interactions between drugs and microplastics on soil enzymatic and micro-

bial activity
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FIGURE 3.2: The null model predictions for soil enzymatic re-
sponse to different combinations of low concentration pharmaceu-

tical drugs and mask MP.

For each soil enzymatic activity response, the figure shows the predictions of three null
models (additive, multiplicative and dominative) for each low-concentration

pharmaceutical drups combination (with or without MP. The 95% Confidential intervals are
generated by a bootstrapping method with 1,000 time permutations. The significant

difference of actual data from null model predictions were evaluated by two sided t-tests
(*0.01 < P 0.05; **0.001 < P 0.01;***P 0.001). (remdesivir, R; azithromycin, A; ivermectin, I;

mask microplastic, MP)

To investigate the potential net interactions among COVID-19 drugs and mask mi-

croplastics, we used the null model workflow to compare the actual soil responses

to different combinations of drugs and microplastics to the null model predictions

generated from the same factor combination based on the actual soil responses to

factors applied individually (FIGURE 3.2, 3.3, 3.4 and 3.5).

For low-concentration pharmaceutical drugs, most of the soil enzymatic activity

responses fit to at least one model from the three null model predictions (additive,

multiplicative and dominative model), except for phosphatase activity to AIMP_low

treatment and FDA hydrolysis activity to ARMP_low treatment. The actual response
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FIGURE 3.3: The null model predictions for soil enzymatic re-
sponse to different combinations of high concentration pharmaceu-

tical drugs and mask MP.

For each soil enzymatic activity response, the figure shows the predictions of three null
models (additive, multiplicative and dominative) for each high-concentration

pharmaceutical drups combination (with or without MP. The 95% Confidential intervals are
generated by a bootstrapping method with 1,000 time permutations. The significant

difference of actual data from null model predictions were evaluated by two sided t-tests
(*0.01 < P 0.05; **0.001 < P 0.01;***P 0.001). (remdesivir, R; azithromycin, A; ivermectin, I;

mask microplastic, MP)

of soil phosphatase activity to co-occurence of low concentration azithromycin, iver-

mectin and microplastics is positive, while the null model predictions are all nega-

tive (FIGURE 3.2). The actual joint effect of low concentration azithromycin, remde-

sivir and microplastics on soil FDA hydrolysis activity is smaller than the negative

effects predicted by three null models (FIGURE 3.4).

For the combined effects of high-concentration drugs on soil microbial and en-

zymatic activity, most of the null models predictions are significantly different from

the responses of N-acetyl-glucosaminidase and cellulase activity and FDA hydroly-

sis activity. The predicted effect sizes of combined factors are smaller than the actual

responses, indicating that there are potential antagonistic interactions among the

high-concentration drug and microplastics (FIGURE 3.3 and 3.5).
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FIGURE 3.4: The null model predictions for soil enzymatic re-
sponse to different combinations of low concentration pharmaceu-

tical drugs and mask MP.

For each soil enzymatic activity response, the figure shows the predictions of three null
models (additive, multiplicative and dominative) for each low-concentration

pharmaceutical drups combination (with or without MP. The 95% Confidential intervals are
generated by a bootstrapping method with 1,000 time permutations. The significant

difference of actual data from null model predictions were evaluated by two sided t-tests
(*0.01 < P 0.05; **0.001 < P 0.01;***P 0.001). (remdesivir, R; azithromycin, A; ivermectin, I;

mask microplastic, MP)

FIGURE 3.5: The null model predictions for soil enzymatic re-
sponse to different combinations of high concentration pharmaceu-

tical drugs and mask MP.

For each soil enzymatic activity response, the figure shows the predictions of three null
models (additive, multiplicative and dominative) for each high-concentration

pharmaceutical drups combination (with or without MP. The 95% Confidential intervals are
generated by a bootstrapping method with 1,000 time permutations. The significant

difference of actual data from null model predictions were evaluated by two sided t-tests
(*0.01 < P 0.05; **0.001 < P 0.01;***P 0.001). (remdesivir, R; azithromycin, A; ivermectin, I;

mask microplastic, MP)
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3.5 Application case 2

3.5.1 Experimental design and soil measurements

When soil ecosystems are exposed to an increasing number of anthropogenic stres-

sors, the potential high-order interactions among these factors remains largely un-

known. To investigate the effect of such interactions, we designed an experiment us-

ing a pool of 14 global change factors (GCFs): tire particles, antibiotic, fungicide, her-

bicide, insecticide, surfactants, nitrogen deposition, salinity, copper, lithium, drought,

PFAS, microfibers and soil compaction. The working concentration of each factor is

provided in the TABLE 3.2. To create factor combinations that could have potential

high-order interactions, we choose five multi-factor levels (6, 7, 8, 9 and 10 factors;

50 replicates each factor level). Similar to a previous experimental design Rillig et al.

(2019), factors were randomly selected for each combination from the GCF pool. Ad-

ditionaly, single-factor treatments (with six replicates per factor) and a control group

(10 replicates) were included. In total, the experiment consisted of 344 experimental

units.

a: Water holding capacity

TABLE 3.2: Working concentration and applications of 14 factors.

Factors Abbreviations Applied factor Concentration

Microplastics M Tire particles 1 g kg−1

Antibiotic A oxytetracycline 3.00 mg kg−1

Fungicide FU carbendazim 6.00 mg kg−1

Herbicide H diflufenican 1.00 mg kg−1

Insecticide I imidacloprid 0.05 mg kg−1

Surfactant SU sodium dodecylbenzenesulfonate 16.0 mg kg−1

N deposition N NH4 NO3 439.6 mg kg−1

Salinity S NaCl 4.00 g kg−1

Heavy Metals C CuSO4 ∗ 5H2O 100 mg Cu kg−1

Lithium L LiCl 11.40 mg kg−1

Drought D water content 30% WHCa

PFAS P PFOA perfluorooctanoic acid 1.00 mg kg−1

Microfiber MF polyester fibers 1 g kg−1

Soil compaction CP soil density 1.7 g cm−3
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The soil used for this experiment was collected from a local grassland at an ex-

perimental site of Free university Berlin. The soil was a sandy loam texture. prior to

the experiment, the soil was air-dried and sieved through a 2 mm mesh to remove

large stones and coarse grass roots. Each experimental unit consisted of a 50 mL

mini-bioreactor equipped with a vented film to allow gas exchange while prevent-

ing microbial contamination. Inside each bioreactor, 40.0g (dry weight) of soil was

added. Loading soil (5.0 g ) was used to ensure even distribution of small amounts

of chemicals in the experimental units, with sterilization performed to prevent local-

ized (FIGURE 3.6 and 3.7).

FIGURE 3.6: Adding multiple GCF treatments to the loading soils.

The soil response variables measured in this experiment included litter decom-

position rate, soil pH, and water-stable aggregates (WSA). The litter decomposition

rate was assessed using the tea bag index method(Keuskamp et al.; 2013). In brief, a

sealed mesh bag (38 µm mesh size) containing 300.0 mg (dry weight) of tea biomass

was placed into the soil. The proportional weight loss of the tea biomass before and

after incubation was used to calculate the decomposition rate. Soil pH was deter-

mined by mixing 5.0 g of air-dried soil with 25 mL of distilled water in a 50 mL

centrifuge tube, followed by measurement with a pH meter (Hanna Instruments,

Smithfield, USA). The proportion of WSA was measured using a modified protocol

based on a previously established method(Klute; 1986).
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FIGURE 3.7: Loading soils for the treatments of multiple factor ex-
periment

3.5.2 Statistical analysis

Data analysis and visualization were performed using R(R Core Team; 2021). Ef-

fect sizes and 95% confidence intervals (CIs) for single and multi-factor treatments

were estimated using a bootstrap approach with 10,000 permutations. Visualiza-

tions, including effect sizes and raw data distributions for each treatment group,

were generated to facilitate interpretation of the results.

To investigate the potential interactions among factors, we used the Null model

workflow to identify the factor net interaction for 250 factor combinations. First, we

calculated the null model predictions for each factor combination depending on the

component single factor effects. Secondly, we compared the actual effect of a certain

multi-factor treatment to the Null model-predicted effect. Actual effects that fit into

the 95% of the null model confidence intervals (generated by 1,000 bootstrapping

permutations) were classified as no interaction, others were categorized as antago-

nistic or synergistic net interaction. Then we calculated the rescaled deviations of

actual effects from the null model predictions and assessed the overall deviation of

all multi-factor treatments from three null model assumptions, indicating by the sum

of squared deviation (SSD). Rescaled deviation of actual effects from collective null

model predictions were also calculated for comparing the methods. Collective null

model predictions were generated by non-specified factor combinations. For each
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factor level, the null model predictions were generated by the single factor effects of

randomly chosen n-factors (n = 6, 7, 8, 9 or 10).

3.5.3 Results

3.5.3.1 Effects of single and multiple factors on soil decomposition rate, soil pH

and WSA

FIGURE 3.8: Response of soil decomposition rate, soil pH and WSA
to multiple GCF treatments applied singly or simultaneously.

On the left panel, for each soil function and property, effect sizes of single factor treatments
and multiple factor treatments (6, 7, 8, 9, 10 factors, 50 treatments included in each factor
group) were estimated by bootstrapping method with 1,000 permutations. On the right
panel, single-factor effect sizes were used to predict multi-factor effects based on three

different assumptions (additive, multiplicative and dominative) in each number of factor
group.
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The 14 different GCFs have different effects on soil decomposition rate, soil pH

and water-stable soil aggregate. Fungicide has positive effects on soil decomposition

rate. Salinity increased soil pH. Single GCF does not have significant effect on water

stable soil aggregates (TABLE 3.3). For the multiple factor treatments, soil decom-

position decreased while soil pH increased when there are multiple GCFs applied to

the soils (FIGURE 3.8).

TABLE 3.3: Significance test for the effects of single
GCFs on soil responses.

Factor Decompo- Soil pH Water stable soil

PFAS 0.9029 0.8981 0.9657

Copper 0.9029 0.8981 0.9657

Lithium 0.9029 0.8981 0.9657

N deposition 0.9029 0.8981 0.9657

Antibiotic 0.9029 0.1654 0.9657

Insecticide 0.9029 0.8981 0.0961

Surfactant 0.9029 0.8981 0.9657

Fungicide 0.0475 0.8981 0.9657

Herbicide 0.9029 0.1536 0.9657

Microplastic 0.9029 0.8981 0.9657

Salinity 0.0643 0.006* 0.9657

Drought 0.0643 0.8981 0.9657

Microfibers 0.9029 0.1675 0.9657

Soil compaction 0.9029 0.1675 0.9657

Adjusted P values based on Benjamini-Hochberg method

obtained from two sided t-tests between each treatment

group and controls. (Significant differences with 0.01 < P

0.05 are shown in bold, and P < 0.01 are marked by * addi-

tionally.)
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TABLE 3.4: Significance test for the effects of
multiple GCFs on soil responses.

Factor level Decompo- Soil pH Water stable soil

6 0.0016* 0.0073* 0.2742

7 0.0016* 0.0015* 0.3831

8 0.0003* 0.0015* 0.3831

9 0.0001* 0.0015* 0.3831

10 <0.0001* 0.0009* 0.2742

Adjusted P values based on Benjamini-Hochberg

method obtained from two sided t-tests between each

treatment group and controls. (Significant differences

with 0.01 < P 0.05 are shown in bold, and P < 0.01 are

marked by * additionally.)

For the multiple factor treatments, soil decomposition rate decreased signifi-

cantly for all 6, 7, 8, 9 and 10 factor groups. Soil pH increased significantly for all 6,

7, 8, 9 and 10 factor groups. However, multiple factor treatment do not have signifi-

cant effects on water-stable soil aggregation (FIGURE 3.8 and TABLE 3.4).

3.5.3.2 Deviations of multi-factor treatment effects from the null model predic-

tions

By analysing the rescaled deviations of soil decomposition rate from the null

model predictions for multi-factor treatments, we found that no interactions emerged

from the 5 factor levels (FIGURE 3.9). The sum of squared deviation (SSD) from the

specified null model predictions are smaller than the SSD from the collective null

model predictions.

The rescaled deviations of soil pH responses from the specified null model pre-

dictions indicate that there is emergence of net synergistic interactions among co-

acting multi-factors. The SSD from the specified null model predictions are larger

than the SSD from the collective null model predictions, indicating factor interacting

effects might be underestimated by using collective null model prediction (FIGURE
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3.10).

The rescaled deviations of water-stable soil aggregate from null model predic-

tions show that there are also potential synergistic interactions among co-acting fac-

tors. The SSD from the specified null model predictions are not very different from

FIGURE 3.9: Rescaled deviation of soil decomposition rate from
three null model predictions.

Scatter points represent the standardized deviation of soil decomposition rate responses
from collective null model predictions (on the left panel) and from specified null model
predictions (on the right panel) for multiple-factor treatments. For the deviations form

specifed null model prediction, the net interaction type of each multiple-factor treatment is
marked as different colored points (antagonistic, blue; synergistic, red; no interaction,
gray). The smallest model sum of squared deviation (SSD) is shown for each figure.
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FIGURE 3.10: Rescaled deviation of soil pH from three null model
predictions.

Scatter points represent the standardized deviation of soil pH responses from collective
null model predictions (on the left panel) and from specified null model predictions (on the

right panel) for multiple-factor treatments. For the deviations form specifed null model
prediction, the net interaction type of each multiple-factor treatment is marked as different

colored points (antagonistic, blue; synergistic, red; no interaction, gray). The smallest
model sum of squared deviation (SSD) is shown for each figure.

the SSD from the collective null model predictions (FIGURE 3.11).
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FIGURE 3.11: Rescaled deviation of water-stable soil aggregate
from three null model predictions.

Scatter points represent the standardized deviation of WSA responses from collective null
model predictions (on the left panel) and from specified null model predictions (on the
right panel) for multiple-factor treatments. For the deviations form specifed null model

prediction, the net interaction type of each multiple-factor treatment is marked as different
colored points (antagonistic, blue; synergistic, red; no interaction, gray). The smallest

model sum of squared deviation (SSD) is shown for each figure.

3.6 Discussion

The Null model workflow provided here can be applied to easily estimate the com-

bined effects of factors, based on three different null model assumptions (additive,

multiplicative and dominative). For replicated factor combinations, this workflow
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is very practical for generating null model predictions by specifying co-acting fac-

tors, and it can also indicate the statistical inference for factor net interactions. For

randomly-drawn factor designs in multiple factor studies, although no statistical

inference for factor interaction can be drawn from each multi-factor treatment, the

strength of this approach is that it can be used for batch processing a large num-

ber of different factor combinations. By analysing the deviation of observed effects

from the null model predictions, it can reveal patterns in how co-acting factor in-

teractions contribute to the variations of ecosystem functioning. Compared to the

collective null model prediction, the benefit of estimating the null model predictions

by specified factor identity is especially important when there are extreme single

factor effects.

Although this workflow has advantages in estimating combined factor effects

and indicating interactions among multiple factors, it does not fully address the

common limitations associated with the use of null models in ecological studies. Pre-

vious studies have emphasized that studies incorporating null models often focus-

ing on identifying statistically significant interactions rather than providing mecha-

nistic insights (Schäfer and Piggott; 2018; Orr et al.; 2020). Further research should

focus on selecting appropriate null models that are underpinned by a mechanistic

understanding of single and multiple factor effects.

3.7 Conclusion

In conclusion, this study presents a practical and flexible null model analysis work-

flow designed to evaluate the combined effects of multiple global change factors on

soil ecosystems. By using three distinct null model assumptions (additive, multi-

plicative and dominative), the workflow efficiently generates predictions for both

replicated and randomly selected factors. This approach proves particularly useful

in assessing the contribution of factor interactions to ecosystem variability, provid-

ing critical insights into the role of co-acting factors in shaping soil functions. The

ability to batch-process large numbers of factor combinations and incorporate spe-

cific factor identities further enhances the utility of this method, particularly in cases
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where extreme single-factor effects dominate. Overall, the workflow offers a ro-

bust framework for future GCF studies, facilitating the exploration of high-order

interactions and advancing our understanding of complex ecological responses to

anthropogenic stressors.
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Chapter 4

How artificial intelligence models

affect the environment and the

science of ecology

4.1 Abstract

The rapid development of artificial intelligence (AI), particularly generative models

like large language models (LLMs) and generative AI, is transforming many fields,

including environmental sciences and ecology. Since the release of OpenAI’s Chat-

GPT in November 2022, the integration of these technologies into research, commu-

nication, and education has grown exponentially. While LLMs and generative AI

present opportunities for streamlining research workflows, improving environmen-

tal communication, and enhancing public engagement, they also pose substantial

risks. These include potential misinformation, biased outputs, energy consumption,

and even the fabrication of scientific data. This chapter examines the implications

of LLMs and generative AI on environmental sciences, focusing on the potential en-

vironmental impacts, the spread of misinformation, and the benefits of enhanced

communication. It also discusses how AI tools could revolutionize ecological re-

search and education while highlighting the urgent need for policies to regulate AI

use and mitigate risks, advocating for responsible AI integration to safeguard the

integrity of environmental science.
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4.2 Introduction

These are turbulent times in the field of artificial intelligence (AI), with a flurry of

new AI tools for productivity, research and creation becoming available to the gen-

eral public on a daily basis, in part accelerating since the release of the chatbot Chat-

GPT by OpenAI in November 2022. Amid the tech enthusiasm, there are also voices

that warn about the potential dangers of the unchecked development and deploy-

ment of advanced generative AI models. In March 2023, for example, there was an

Open Letter (the motivation behind which is still subject to debate) calling for a tem-

porary pause on the development of models more powerful than GPT-4 (Future of

Life Institute.; 2023).

Beyond the potential negative socio-political implications of generative mod-

els(Dai et al.; 2021; Weidinger et al.; 2022) and legal concerns such as copyright in-

fringement(Samuelson; 2023), the implications for environmental sciences and ecol-

ogy are significant. Generative AI involves the use of machine learning approaches

to generate new content (e.g., text, images, audio, or video) based on characteristics

of training data and user input. The impacts and challenges of the use of large lan-

guage models on scientific practice(Birhane et al.; 2023), and on environmental sci-

ences and ecology has already been explored(Rillig et al.; 2023), where advantages

include aspects of streamlining environmental scientists’ workflows or enhancing

teaching materials, and challenges related to producing fraudulent texts with an air

of simulated authority, among other points. However, an emerging trend that is cur-

rently unfolding, and that requires in-depth assessment, is the rise and refinement

of text-to-image generative models and their multimodal counterparts. These gen-

erative models can transform textual prompts into detailed images or videos(Zhang

et al.; 2023a), virtually indistinguishable from actual photos or other original work,

including images of environmental content. Such capabilities, accessible without

programming expertise, could affect all visual-related aspects of ecological research

and environmental advocacy. Such AI models are widely available (and often for

free), and include apps such as Dall-E-2, Stable Diffusion, Midjourney, Leondardo.ai,

Sora and many others.
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Given the prevalent belief that ‘a picture is worth a thousand words’— high-

lighting the ability of images to transcend linguistic barriers and convey emotions

swiftly — they raise concerns when produced by advanced models. What then are

the implications and opportunities of text-to-image generative models or their mul-

timodal counterparts for environmental and ecological research? We would like to

emphasize that the opportunities and risks we discuss below would more generally

also apply to other fields of science. However, for clarity, our specific focus will be

on the environment and the science of ecology.

4.3 Risks and Benefits of Large Language Models for the En-

vironment

FIGURE 4.1: Large language models come with risks and opportu-
nities for the environment.

Increased use of large language models could affect the environment positively or
negatively, with possible direct and indirect effects on the environment and on the way

environmental research is conducted.

Large language models (LLMs) are artificial intelligence (AI) models with com-

plex architecture and a large number of parameters that have been trained on very

large amounts of text (billions of words). These models, arising from the field of

natural language processing, can generate natural, human-like writing and have
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been designed to react to user input, enabling conversations and customized out-

put according to prompts. The release of the chatbot ChatGPT by OpenAI (OpenAI;

2023) in late 2022 has rapidly spread this technology to a wide range of users (GPT

means generative pretrained transformer and denotes the type of large language

model used in this chatbot). Other companies are offering their own apps featuring

different kinds of LLMs, and this technology is also being rapidly integrated into

existing apps and online tools. Because LLMs will likely become extremely com-

mon, the potentially transformative nature of these models has already sparked a

lively debate about their use. This discussion focuses on academic integrity and the

future of research and teaching, the meaning of authorship, potential consequences

for the general workforce, and unresolved copyright issues (Dis et al.; 2023). How-

ever, the debate has so far largely missed the potential implications of current and

future LLM tools for the environment (Bender et al.; 2021b). We see the possibility of

direct and indirect environmental impacts and effects, and opportunities and risks

for researchers in the environmental sciences (FIGURE 4.1).

The first point to consider is the positive or negative direct environmental impact

(Figure 1). Other potentially transformative technological innovations, such as the

metaverse (Rillig et al.; 2022), likely will have direct consequences on the environ-

ment via increased energy use and thus resource consumption and production of

carbon dioxide. This clearly is also a concern for LLMs (Strubell et al.; 2019), with

both the training of LLMs and inference having large energy demands, prompting

an early call for algorithmic efficiency (Bender et al.; 2021b). The carbon footprint

will depend on the energy use and the carbon intensity of the energy source being

used. In addition to carbon dioxide emissions, the computing facilities may also

have other environmental impacts such as water use and soil pollution or sealing,

which could have broader implications for environmental quality. Conversely, can

the use of text-based chats in the future partially replace video conferences or travel

to in-person meetings that might consume more resources by comparison? It is un-

clear if this will be the case, given that human verification and expertise will likely

remain indispensable (Dis et al.; 2023).
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There are likely also indirect consequences of increased LLM use, which are po-

tentially more important (FIGURE 4.1). The first issue is the level of artificial ex-

pertise. LLM output comes with a certain degree of simulated authority, given the

extensive amount of information with which LLMs have been trained and the pol-

ished language in which output is written. Therefore, such output can easily be

confused with expert opinions, even though LLMs will continue to have limited

ability to judge the reliability and relevance of information, in part because LLMs

have not achieved natural language understanding. Thus, false output is created,

as anybody who has played with these apps on topics of their own expertise will

have noticed. More worrying is the potential to inadvertently or purposefully in-

troduce bias at three points: the training data (the input to the model), the algo-

rithm (how sources are used), and the form of output (e.g., disclaimers, statements

of uncertainty, and references). At each of these points, special interest groups and

networks could exploit the ability of LLMs to generate text with unprecedented effi-

ciency, thus offering misinformation under the guise of “artificial intelligence”, and

flooding public spaces with it. We think this is the biggest concern of the more

widespread use of LLMs for environmentally relevant topics. But even without ill

intent, existing biases on complex environmental topics, including environmental

racism (Bender et al.; 2021b), climate change and global environmental change, bio-

diversity loss, or pollution, could be perpetuated and multiplied by the training data

the LLM uses. On the contrary, writing informative content about environmental is-

sues by actors interested in environmental education could be made more efficient

through LLMs. For example, materials for use in environmental education could be

more easily adapted for different target groups, such as different ages or educational

levels.

Differential access to LLM-based apps could worsen or improve digital divide

effects within and among societies. The availability of these tools could further favor

people with already excellent access to environmental information. On the positive

side, LLMs could broaden the participation of people in the environmental debate,

especially because the LLM services are being offered in various languages.

It is also possible that increasingly relying on technology-guided interactions
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could contribute to reduced nature experiences (Soga and Gaston; 2016), thus reduc-

ing value attributed to the environment. More screen time spent on fascinating tools

could translate to less time spent in nature, with potential consequences for how

people will appreciate biodiversity and ecosystems. Conversely, the public may also

benefit from unprecedented, up-to-date, accessible, and personalized information

and educational opportunities on environmental topics. This increasingly available

“information at your fingertips” could lead to greater curiosity about environmental

topics, thus enhancing environmental literacy.

There are certainly many benefits of LLMs for research in the environmental sci-

ences. The efficient use of these tools will likely streamline the workflow of envi-

ronmental scientists and potentially improve the quality of writing, thus freeing up

researchers’ time for other tasks, i.e., designing and analyzing experiments and de-

veloping innovative ideas. By offering a tool to sharpen their English language sci-

entific writing, LLMs might increase representation of researchers from non-English

speaking countries in the environmental sciences. This all could potentially accel-

erate scientific progress on important environmental topics. Conversely, these tools

might prove to be a distraction, and researcher time may increasingly be consumed

by dealing with adverse effects of LLM use, for example, in university education and

training (e.g., misuse and cheating) (Dis et al.; 2023). If LLMs are increasingly used

to summarize information and to support funding decisions in the future, this could

render human expertise and insight less important, potentially leading to adverse

effects on research prioritization in the environmental sciences.

Clearly, there are benefits and risks for the environment in the increased use of

LLMs, and it is important to start this discussion early to avert possible harm. To

harness the opportunities, we ought to protect such powerful tools from the undue

influence of individual groups. To ensure that LLMs are constructed to yield unbi-

ased information, governments, intergovernmental bodies, and large organizations

(such as OECD) need to devise policy tools that could include oversight commit-

tees, guidelines, or regulations that lead to disclosure of data sources (for training

of models) and funding. Another important goal is to increase literacy in the use

of these tools, and this is where environmental scientists can act now, by including

LLMs in their university courses and by clarifying in their laboratories how LLMs
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can and should be used in the environmental sciences.

4.4 How widespread use of generative AI for images and video

can affect the environment and the science of ecology

4.4.1 Opportunities

FIGURE 4.2: Opportunities and risks associated with the use
of generative AI for images and video in the field of ecol-
ogy/environmental science, and effects on the environment itself,
as well as possible routes for risk mitigation that are immediately

available to researchers and their labs.

Exploring the opportunities for environmental and ecological research, many are

related to enhancing our ability to communicate (FIGURE 4.2). First, ecologists use

images and videos to communicate with other scientists. For example, they develop

conceptual models that come to life in the form of visual representations. These

depictions are very important, because they help other researchers understand com-

plex relationships. Perhaps in the near future, the ecologist’s workflow could be

streamlined by creating such visuals using text prompts, saving time (and money)

for other work. This way, ecologists could communicate their thoughts and ideas

about ecological topics more effectively. Certainly, all of biology deals with com-

plex topics, but in ecology visuals could for example be created for future scenarios
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of climate change, to depict concepts in theory-heavy fields such as population or

community ecology, or to help explain experimental designs using tailor-made dia-

grams.

Second, ecologists also use images for communicating with the public, for ex-

ample, policy makers or journalists, and in environmental education (Schäfer; 2023).

Environmental scientists could likely use AI-generated images (or videos) to help

them better explain the often complex environmental issues (such as pollution) and

intricate ecological relationships, such as in biodiversity research. This could be

done more cheaply, and more effectively, thus potentially reaching more people with

visually appealing content. One powerful application could be the creation of visual

what-if scenarios, illustrating risks for the environment (Luccioni et al.; 2021). Imag-

ine creating an image or video of your city in the year 2050 given the presence of

certain global change factors, including climate change, invasive species, pollution,

land use change and other drivers. Perhaps reporting on ecological research find-

ings overall could benefit for exactly the same reasons, including reporting done by

journalists or institutional press offices. Given the command line-based image cre-

ation process, images and movies can be easily adapted to different target groups

with different backgrounds or different scopes. However, we should also be aware

of and prevent potential negative impacts on scientific communication profession-

als (illustrators, artists, storytellers); in the near future, generative AI is unlikely to

surpass their specific skill and professional input, which is essential for excellent

communication.

Direct benefits for the environment could occur by replacing energy-intensive

operations with AI-generated video. For example, traditional filmmaking has a high

carbon footprint and could be partially supplemented or replaced with AI-generated

content (careful carbon budgets would need to verify this assertion). This could

make certain industries, such as entertainment, more environmentally sustainable.

Could generative AI for images also be useful in the scientific process of ecology?

There are several opportunities that can be explored (TABLE 4.1): we identify image

data augmentation and gap filling (Kebaili et al.; 2023), biodiversity monitoring and

enhanced citizen science as potential areas where AI can be employed to enhance

research outcomes.
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TABLE 4.1: Ideas for how generative AI for images can be useful in
ecological research; three examples are discussed: data augmenta-
tion and gap filling, biodiversity monitoring and enhanced citizen

science.

Research
opportunity Explanation Example

Data aug-
mentation
and gap
filling

In environmental research, it is common
to encounter data gaps due to inaccessi-
ble regions, seasonal changes, or instru-
ment failures. Generative AI models can
potentially predict and fill these gaps,
providing a more complete dataset for
researchers

In remote sensing, where consistent
satellite imagery is important, AI could
generate images for days where data
might be missing due to cloud cover or
technical glitches. This continuous data
stream can be invaluable for real-time
monitoring of environmental changes

Biodiversity
monitoring

Generative AI can assist in creating a
library of images representing various
species in multiple poses (for animals) or
perspectives (for plants and macrofungi)
or environments

This can help in training more robust
identification models, vital for biodiver-
sity monitoring. It might help practi-
tioners with species identification

Enhanced
citizen sci-
ence

Engaging the public in data collection
has seen a rise with citizen science ini-
tiatives. Generative AI can assist by
providing participants with visual aids,
helping them correctly identify and re-
port findings

Explanatory materials can be of key im-
portance in citizen science, and illustra-
tions could be created more easily with
generative AI

4.4.2 Risks and dangers

There are direct environmental risks that are similar to those of text-based AI, in that

AI-generated image and video will consume computing-related resources, leading

to effects on energy and resource consumption and carbon emissions in addition to

those of text-based models (Bender et al.; 2021a; Bird et al.; 2023; Rillig et al.; 2023),

since they also make use of large language models as part of their model architecture.

Energy needs arise during model training, during inference (that is, queries made to

the model), and also for server infrastructure, and corresponding carbon emissions

depend on the carbon intensity of the energy source. One estimate per query is 0.5 g

CO2 for a large language model (Vanderbauwhede; 2024). Luccioni et al. (Luccioni

et al.; 2022) estimate the carbon cost of BLOOM (a 176-billion parameter language

model) to be 50.5 t CO2 over its life cycle.

However, we contend that indirect effects on the environment and the science of

ecology are likely going to be of greatest concern (FIGURE 4.2). First and foremost,

we see risks associated with spreading misinformation via deep fakes (Zhang et al.;

2023b). Imagine central figures, environmental activists, representatives of environ-

mental NGOs, politicians or ecology experts, for example, being depicted in compro-

mising settings that cast doubt on their integrity, defaming them; thus undermining
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the validity of the message they send. In addition, prominent communicators of sci-

ence, or simply well-recognized people in public life, could be instrumentalized in

spreading fake facts about the environment, and it will be very difficult to get these

under control once they have been spread via social media. For example, imagine

a politician, well-respected TV personalities and conservationists, or the president

of an ecological society in a deepfaked video declaring that all problems of envi-

ronmental pollution and climate change are well under control or that there is no

biodiversity crisis to worry about. The damage to the credibility of the science of

ecology caused by bad actors (governments, organizations, companies, individuals)

generating such materials would be immense.

A threat to the integrity of ecology from within looms large as well. Image or

video generation opens a door to rapidly and easily fabricating data; this is an al-

ready existing problem in science (Bik et al.; 2016) but could be exacerbated im-

mensely by the availability of advanced text-to-image tools (Gu et al.; 2022). Per-

haps images can also be manipulated to a point that it will be extremely difficult (or

impossible) to detect. This will affect all areas of environmental science in which

visual evidence plays a role: think of gel images, microscopic evidence, and really

anything that can be used as supporting visual evidence in a scientific study on an

environmental or ecological topic. Such deepfaked visual scientific data produced

by bad actors would not only be a nuisance but might also undermine some of the

trust in environmental science and ecology overall.

4.4.3 Risk mitigation

How could we effectively counteract some of these effects, for example protect re-

porting on ecological topics from fabricated, false information? How could we safe-

guard the integrity of our science? We will likely have an arms race between image

generating AI tools and those that can detect their products; but improved detec-

tion will only solve part of the problem, because once images are posted on social

media, effects will be very difficult to control. Banning these AI-tools will not be a

realistic option as they are already widely adopted, and it is unclear how effective

regulations would be when certain governments step in to regulate these products.

We here propose local solutions, at the lab or institutional level, that can be rapidly
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implemented; however, we stress that in the long-term regulatory action on both the

national and international level is needed.

To counter deepfaked visual information, we envision transitioning to radically

open science as one potential option to safeguard ecological research and reporting.

In the long term, multi-platform science communication in ecology has the poten-

tial to build public engagement and trust (Pavelle and Wilkinson; 2020) and might

be less prone to fabricated visuals. Since such social media open science activities

go beyond the open science policies already implemented in funding agencies (e.g.

the European Research Council), these would need to be included in future fund-

ing schemes, providing adequate support to ecologists. Transparent reporting of the

responsible use of AI-generated content in scientific work including detailed (and

ideally machine-actionable) provenance information must be part of such an open

science approach (Wahle et al.; 2023). This would also safeguard gap-filling tech-

niques (Table 1) from misuse via fabricated data.

Responsible use of generative AI also includes taking steps to protect others’

careers with connection to environmental science, such as those of science commu-

nication experts. This includes carefully weighing the options when working on

communication-related tasks, for example by asking how visualization could profit

from professional input.

Another important step that can be taken by institutions or individual research

groups is the development of policies on the fair use of generative AI (see here (Ril-

lig; 2023) for an example). Such policies provide a starting point for larger-scale

agreements in environmental science and they offer an opportunity to train scien-

tists, early career researchers and more experienced colleagues, in these issues and

involve them in the discussion during this critical time of transformation.
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Chapter 5

General discussion

We are living in a turbulent era where an increasing number of anthropogenic stres-

sors are threatening Earth’s ecosystems, while technologies like artificial intelligence

are rapidly advancing. Global environmental change involves the simultaneous ac-

tion of multiple factors, introducing substantial uncertainty in predicting their com-

bined effects. Soil ecosystems, which are subject to a range of these interacting fac-

tors, are particularly vulnerable; however, the outcomes of these factors acting in

concert are not well understood. In this PhD thesis, I investigated the potential

drivers of multiple global change factor influencing soil properties and functions,

focusing on the impact of factor number and dissimilarity. Additionally, I explored

how machine learning-based methods can be harnessed to analyze complex datasets

from multiple GCFs studies and also examined the impacts of development of AI

tools on the environment and the field of ecological science.

Chapter 2 underscores the significance of both the number of factors and the dis-

similarity among global change factors in shaping soil responses. By analyzing a

wide range of factor combinations, we demonstrate that higher factor dissimilarity

tends to result in more synergistic interactions, leading to greater deviations from

null model predictions and amplifying the effects on key soil functions, such as soil

decomposition rate, water-stable soil aggregate and enzymatic activities. Our find-

ings suggest that factor dissimilarity plays a crucial role in driving these interactions.

This highlights the importance of considering not only the number of co-acting fac-

tors but also their distinct properties and modes of actions in studies in multiple

GCFs.

Additionally, the study introduces practical approaches for disentangling the
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effects of factor number, dissimilarity, and factor identity contribution, helping to

avoid misinterpretation of results in future research. By accounting for factor dis-

similarity, researchers can better predict how multiple factors interact to impact soil

properties and ecosystem functions. We also discussed three mechanisms that may

explain how factor dissimilarity drives the impacts of multiple GCFs on soil ecosys-

tems: (i) direct interactions of physicochemically dissimilar factors: Factors with dis-

tinct physicochemical properties are more likely to interact directly, amplifying the

intensity of individual factors, as seen with drought amplifying chemical factors or

surfactants enhancing pollutant mobility; (ii) impact on species adaptation: Factor

dissimilarity increases performance trade-offs, as species cannot simultaneously op-

timize adaptation to multiple distinct stressors, resulting in lower overall adaptation

performance compared to environments with more similar stressors; (iii) reshap-

ing co-tolerance spaces: Dissimilar factors can negatively affect the co-tolerance of

species to multiple stressors, leading to higher species loss and diminished ecosys-

tem functions when factors are highly dissimilar. Moving forward, incorporating

factor dissimilarity into multiple GCF studies could enhance our understanding of

complex ecological interactions and support more informed decision-making for

ecosystem restoration and management.

In chapter 3, we introduce a practical null model analysis workflow for eval-

uating the combined effects of multiple global change factors on soil ecosytems.

By employing three distinct null model assumptions - additive, multiplicative and

dominative - the workflow efficiently generates predictions for both replicated and

randomly selected factor combinations. This approach is particularly effective in

evaluating the contribution of factor interaction to soil response variability, offering

insights into the influence of co-acting factors on soil functions. Its ability to batch-

process a large number of factor combinations and include specific factor identities

further increases its applicability, especially in scenarios where extreme single-factor

effects are prevalent. However, this appraach also does not fully overcome the in-

herent limitations of null models in ecological research. The chapter emphasizes the

need for future studies to focus on selecting null models grounded in mechanistic
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understanding. Despite these limitations, the workflow provides a robust frame-

work for advancing GCF studies, facilitating the exploration of multi-factor inter-

actions and deepening our understanding of ecological responses to anthropogenic

stressors.

Chapter 4 explores the rapid advancements in artificial intelligence (AI), specif-

ically focusing on generative models like large language models (LLMs) and their

impact on environmental sciences and ecology. AI technologies have been increas-

ingly integrated into research, communication, and education. While LLMs offer

significant opportunities, such as streamlining research workflows, enhancing envi-

ronmental communication, and increasing public engagement, they also pose con-

siderable risks. These risks include the potential spread of misinformation, biased

outputs, high energy consumption and even the fabrication of scientific data.

To harness the benefits while mitigating the risks, chapter 4 underscores the need

for early and responsible use of AI in environmental science. It advocates for the

development of policies and guidelines to ensure that LLMs provide unbiased in-

formation, including oversight by governments and organizations.
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Chapter 6

Conclusion

This dissertation addresses the complex challenges posed by the increasing number

of anthropogenic stressors and rapid technological advancements, particularly in the

context of global environmental change and soil ecosystems. The simultaneous ac-

tion of multiple global change factors (GCFs) introduces considerable uncertainty in

predicting their combined effects, with soil ecosystems being especially vulnerable.

By focusing on the impact of factor number and dissimilarity, as well as leveraging

machine learning methods, this research provides new insights into the mechanisms

driving soil responses to GCFs and examines the broader implications of artificial in-

telligence (AI) in ecological science. Overall, it advances our understanding of how

multiple GCFs interact to affect soil ecosystems and underscores the importance of

incorporating factor dissimilarity into future studies. It also provides a robust frame-

work for evaluating complex ecological interactions and emphasizes the need for

responsible integration of AI technologies in environmental research. By addressing

both the ecological and technological dimensions of global change, this work con-

tributes to more informed decision-making in ecosystem management and offers a

path forward for sustainable ecological practices in an era of rapid change.
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Appendix for chapter 2

FIGURE 1: Effects of organic solvents on soil properties and func-
tions.

Illustrated are effect sizes of organic solvents (DMSO and acetone), that are used

in experimental treatments for dissolving chemical factors (herbicide and fungicide),

on soil properties and functions. Tested groups are Control Treatment (CT, n=20,

applied by corresponding solvents including organic solvents) and Water Control
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Treatment (WC, n=10, organic solvents were replaced by the same amount of water).

CT and WC treatments are incubated together with other experimental treatments

in the same condition, and the soil properties and functions of those treatments are

measured also at the same time with other treatments.

FIGURE 2: Density distribution of factor dissimilarity indices of
multiple-factor treatments in different number of factor groups
normalized separately for each number of factor level (a) and nor-

malized globally (b).

P values obtained from pairwise t-tests are shown between every number of fac-

tor groups. In panel (a) and (b) we compared the difference of normalizing the dis-

similarity index in each factor level and normalizing it globally. When dissimilarity

indices are normalized in each number of factor level, their distributions are signif-

icantly different from each other (P < 0.05), which means the dissimilarity indices

co-vary with factor levels. We think this bias partially comes from the random selec-

tion method (for example we may select more 2-factor combinations with lower dis-

similarity by chance) and partially comes from the intrinsic unevenness of distances

among 12 single factors. Even though we can not fully disentangle the dissimilarity
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TABLE 1: Testing hypothesis by comparing models.

Model(s) Tested hypothesis

Model 1
Variability of soil response to multiple GCFs ex-
plained by three null model predictions, which is re-
garded as the factor identity effect.

Model 2
Variability of soil response to multiple GCFs ex-
plained by number of factor effect.

Model 3
Variability of soil response to multiple GCFs ex-
plained by factor dissimilarity indices.

Model 4→ Model 1
Variability of soil response to multiple GCFs ex-
plained by number of factor effect on the basis of in-
cluding factor identity effect.

Model 5→ Model 1
Variability of soil response to multiple GCFs ex-
plained by factor dissimilarity effect on the basis of
including factor identity effect.

Model 6→ Model 4

Variability of soil response to multiple GCFs ex-
plained by factor dissimilarity effect on the basis of
including factor identity effect and number of factor
effect.

Model 6→ Model 5

Variability of soil response to multiple GCFs ex-
plained by number of factor effect on the basis of in-
cluding factor identity effect and factor dissimilarity
effect.

Model 7→ Model 6

Variability of soil response to multiple GCFs ex-
plained by factor composition information on the ba-
sis of including all hypothetical predictors and factor
identity effect.

indices from co-varying with factor level, our further approaches enable us to dis-

entangle the effects of factor dissimilarity through hierarchical modeling methods.

These methods enable us to assess the unique contribution of factor dissimilarity to

the model predictability by comparing to a model taking into account the number

of factor effects. However, when dissimilarity indices are normalized globally, even

though their mean values are not different from each other (P > 0,05), their distribu-

tions are quite different for different factor groups, for example, the range for 2-factor

group is 1 but the range for 8-factor group is 0.259. These widely varying ranges will

interfere with our further analysis for assessing the effect of factor dissimilarity. Due

to the aforementioned reasons, we opted to utilize dissimilarity indices normalized

within each factor level for our analysis.
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TABLE 2: Significance tests for importance measures of predictors of random
forest models.

Predictors P1 P2 P3 Number of factor Dissimilarity index

Random forest model for N-acetyl-glucosaminidase activity

Relative importance 0.00339 -0.00042 0.02923 0.00311 0.11128
Adjusted P-values 0.214 0.499 0.008* 0.214 <0.001*

Random forest model for cellulase activity

Relative importance -0.00062 0.00033 -0.00076 0.00387 0.01403
Adjusted P-values 0.701 0.460 0.701 0.048 <0.001*

Random forest model for β-glucosidase activity

Relative importance 0.07323 0.02102 0.09116 0.02690 0.37618
Adjusted P-values 0.002* 0.016 <0.001* 0.014 <0.001*

Random forest model for phosphatase activity

Relative importance 0.01084 0.01777 0.01073 0.00675 0.04817
Adjusted P-values 0.020 0.003* 0.023 0.045 <0.001*

Random forest model for soil decomposition rate

Relative importance 0.00005 0.00004 0.00003 0.00029 0.00102
Adjusted P-values 0.042 0.070 0.077 <0.001* <0.001*

Random forest model for soil pH

Relative importance 0.07558 0.03572 0.19785 0.00028 0.00264
Adjusted P-values <0.001* <0.001* <0.001* 0.242 <0.005*

Random forest model for water-stable soil aggregates

Relative importance 0.00037 0.00121 0.00425 0.00025 0.00003
Adjusted P-values 0.023 <0.001* <0.001* 0.061 0.459

Adjusted P values for relative importance of model predictors calculated from a
permutation-based random forest model approach. (P1 indicates the predicted response
from the additive model; P2 indicates the predicted response from the multiplicative model;
P3 indicates the predicted response from the dominative model; Significant differences with
0.01 < P 0.05 are shown in bold, and P 0.01 are marked by * additionally.)
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TABLE 3: Mean value and 95% confidence interval of R2 (%) explained by seven ran-
dom forest models of soil decomposition rate, soil pH and water-stable soil aggrega-

tion.

Models Soil decomposition rate Soil pH Water stable soil aggregate

CI.2.5% Mean CI.97.5% CI.2.5% Mean CI.97.5% CI.2.5% Mean CI.97.5%

Model 1 10.68 25.86 43.89 81.19 85.41 88.62 15.26 27.55 55.91

Model 2 3.70 11.78 23.47 21.20 31.96 42.85 <0.01 4.17 16.78

Model 3 20.00 36.48 47.00 58.51 68.51 76.34 8.44 18.51 39.24

Model 4 16.77 29.70 43.40 82.01 86.17 89.08 17.43 34.53 59.97

Model 5 33.86 49.94 60.27 81.98 85.82 89.04 16.81 29.59 63.09

Model 6 39.41 54.12 66.40 82.37 86.05 89.63 21.91 38.47 63.60

Model 7 39.41 62.07 73.79 84.11 87.81 90.75 24.91 47.25 75.41

TABLE 4: Mean value and 95% confidence interval of R2 (%) ex-
plained by seven random forest models of four soil enzymatic

activities.

Models N-acetyl-glucosaminidase activity Cellulase activity

CI.2.5% Mean CI.97.5% CI.2.5% Mean CI.97.5%

Model 1 1.38 16.82 39.15 0.16 11.21 36.41

Model 2 0.82 4.38 10.58 0.91 4.89 11.85

Model 3 6.53 16.79 33.30 7.27 17.26 36.50

Model 4 8.50 21.73 41.00 6.40 18.01 39.10

Model 5 20.21 39.67 57.51 13.82 32.94 54.70

Model 6 24.21 42.10 58.43 15.94 33.65 53.70

Model 7 26.96 47.30 62.42 17.84 40.93 61.55

Models β-glucosidase activity Phosphatase activity

CI.2.5% Mean CI.97.5% CI.2.5% Mean CI.97.5%

Model 1 29.15 45.22 62.70 10.08 19.93 37.69

Model 2 10.10 17.43 26.65 0.07 2.78 9.46

Model 3 23.17 38.46 58.08 6.55 19.83 32.83

Model 4 35.29 51.19 67.57 14.62 29.63 47.91

Model 5 39.37 55.12 73.15 20.98 37.35 53.81

Model 6 39.37 57.82 73.57 20.92 38.90 53.79

Model 7 44.83 61.03 77.76 22.33 38.68 53.81
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TABLE 5: Statistical assessment of rescaled multi-factor treatment response
deviations from three null model predictions.

Null models

Additive Multiplicative Dominative

Factors Mean SSD Mean SSD Mean SSD

Soil decomposition rate -0.0199 1.118 -0.0206 1.124 -0.0349 1.233

Soil pH -0.0431 0.6591 -0.0540 0.9549 0.0218 0.2759

WSA 0.6598 193.7 0.2713 24.51 0.0029 3.538

N-acetyl-glucosaminidase activity 1.844 4424 0.3381 674.7 1.195 1486

Cellulase activity 2.047 3349 1.025 788.3 0.8159 489.3

β-glucosidase activity 0.4295 117.4 0.2837 80.26 0.5941 174.5

Phosphatase activity 0.2506 43.67 0.1389 27.07 0.2477 35.56
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TABLE 6: Basic information of the pharmaceutical compounds used.

Compound Manufacturer Class Working concentration (mg/kg)

Low High

Remdesivir Cayman Chemical Antiviral 0.011 1.1

Azithromycin Sigma-Aldrich Macrolide antibiotic 0.014 1.4

Ivermectin Sigma-Aldrich Antiparasitic 0.05 5
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FIGURE 3: Response of soil enzymatic activities to pharmaceutical
drugs and MP treatments applied singly or simultaneously.

For each soil enzymatic activity, effect sizes of single factor treatments
(low/high-concentration of pharmaceutical drugs and MP) and multiple factor treatments
(combinations of 2 and 3 pharmaceutical drugs with and without MP) were estimated by

bootstrapping method with 1,000 permutations. (remdesivir, R; azithromycin, A;
ivermectin, I; mask microplastic, MP)
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FIGURE 4: Response of cellulase activity and FDA activity to phar-
maceutical drugs and MP treatments applied singly or simultane-

ously.

For each soil cellulase and FDA hydrolysis activity, effect sizes of single factor treatments
(low/high-concentration of pharmaceutical drugs and MP) and multiple factor treatments
(combinations of 2 and 3 pharmaceutical drugs with and without MP) were estimated by

bootstrapping method with 1,000 permutations. (remdesivir, R; azithromycin, A;
ivermectin, I; mask microplastic, MP)
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