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Abstract
Background: Impaired decision making, a key characteristic of alcohol dependence 
(AD), manifests in continuous alcohol consumption despite severe negative conse-
quences. The neural basis of this impairment in individuals with AD and differences 
with known neural decision mechanisms among healthy subjects are not fully under-
stood. In particular, it is unclear whether the choice behavior among individuals with 
AD is based on a general impairment of decision mechanisms or is mainly explained by 
altered value attribution, with an overly high subjective value attributed to alcohol-
related stimuli.
Methods: Here, we use a functional magnetic resonance imaging (fMRI) monetary re-
ward task to compare the neural processes of model-based decision making and value 
computation between AD individuals (n = 32) and healthy controls (n = 32). During 
fMRI, participants evaluated monetary offers with respect to dynamically changing 
constraints and different levels of uncertainty.
Results: Individuals with AD showed lower activation associated with model-based 
decision processes in the caudate nucleus than controls, but there were no group dif-
ferences in value-related neural activity or task performance.
Conclusions: Our findings highlight the role of the caudate nucleus in impaired model-
based decisions of alcohol-dependent individuals.

K E Y W O R D S
alcohol, computational modeling, decision making, fMRI, value

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Alcoholism: Clinical & Experimental Research published by Wiley Periodicals LLC on behalf of Research Society on Alcoholism.

www.wileyonlinelibrary.com/journal/acer
mailto:﻿
https://orcid.org/0000-0002-1229-7708
mailto:amadeus.magrabi@gmail.com
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Facer.14812&domain=pdf&date_stamp=2022-03-28


750  |    MAGRABI et al.

INTRODUC TION

Alcohol dependence (AD) is a highly prevalent psychiatric disorder, 
accounting for about 3  million deaths per year worldwide (World 
Health Organization, 2018). It is characterized by a loss of control 
over the consumption of alcohol, a negative emotional state (such as 
anxiety) during withdrawal, and continued drinking despite repeated 
harmful consequences (Everitt & Robbins, 2005; Koob & Volkow, 
2010).

Regarding the neurobiological basis of addiction, multiple stud-
ies have investigated the neural response of AD patients to alcoholic 
stimuli and related conditioning processes (Beck et al., 2012; Chase 
et al., 2011; Kühn & Gallinat, 2011; Schad et al., 2019) indicating 
an increased incentive salience and value attribution to those cues 
(Wrase et al., 2007) as well as aberrant processing of nonalcoholic 
stimuli, in terms of diminished responsiveness toward nonalcoholic 
reinforcements (Goldstein & Volkow, 2011; Luijten et al., 2017; 
Schacht et al., 2013; Sebold et al., 2017). However, it was also ob-
served that substance use disorders were associated with increased 
limbic system sensitivity to reward and loss delivery (Bjork et al., 
2008).

A further important and putatively related aspect of addic-
tive disorders are maladaptive choices that oppose the explicitly 
stated desires of the patients, such as continuing consumption 
despite the desire to abstain. Here, two extensively explored 
components of decision making are of importance that have been 
characterized using computational modeling methods: (1) a flex-
ible planning system integrating all available information to find 
the most appropriate decision and considering the consequences 
of actions: the goal-directed or model-based system and (2) a rigid 
habitual system that simply repeats actions that were rewarded in 
the past without taking a model of the environment into account: 
the habitual or model-free system (e.g., see Sebold et al., 2014). 
In addictive behaviors, it was observed that there is a shift from 
goal-directed (i.e., model-based) toward habitual (model-free) de-
cision making (e.g., Voon et al., 2017). On the neuronal level, it has 
been suggested that AD develops through a systematic shift in the 
neural systems that regulate behavior, with increased involvement 
of the dorsolateral striatum/putamen (in rodents/humans) con-
trolling habitual behavior, and decreased involvement of the dor-
somedial striatum/caudate controlling flexible and goal-directed 
behavior (Corbit et al., 2012; DePoy et al., 2013; Everitt & Wolf, 
2002; Furlong et al., 2014; Gahnstrom & Spiers, 2020; Geerts 
et al., 2020; Sharpe et al., 2019; Vollstädt-Klein et al., 2010). In 
rodent studies, it has been shown that lesions of the dorsome-
dial striatum (comparable to human's caudate) block goal-directed 
behavior (Yin et al., 2005), while in contrast, lesions of the dor-
solateral striatum (comparable to human's putamen) disrupt habit 
formation (Yin et al., 2004). Thus, the capacity for decision making 
in terms of goal-directed behavior seems to be a core function 
affected in AD (Mollick & Kober, 2020; Sebold et al., 2014). In par-
ticular, AD patients continuously choose to consume alcohol and 
neglect the long-term consequences of sustained consumption on 

their physical and psychological health (Amlung et al., 2017; Phung 
et al., 2019).

Other studies suggest that the choice behavior of AD patients 
(Kamarajan et al., 2020; Rubio et al., 2008; Virkkunen, 1994) is based 
on an overactive neural value system (Arcurio et al., 2015; Goldstein 
& Volkow, 2011; Seo et al., 2013), which has been associated with 
ventromedial prefrontal cortex (vmPFC; Bartra et al., 2013; Clithero 
& Rangel, 2014; Lee et al., 2021). However, it is not well understood 
how exactly and under what conditions these shifts in neural infor-
mation processing can occur.

Here, we developed a sequential decision-making task to inves-
tigate this process in AD patients and healthy control subjects via 
functional magnetic resonance imaging (fMRI). To detect behavioral 
and neural differences between AD patients and controls, we de-
signed a task that specifically relies on the ability to flexibly adapt 
choices to multiple factors and their associated consequences. To 
further contribute to the core question of whether AD affects deci-
sion networks in general, beyond choices that are specifically related 
to alcohol, we used a task that relies on monetary incentives instead 
of alcoholic stimuli.

In this decision task, participants had to decide whether to ac-
cept or reject various monetary offers that were presented to them. 
Crucially, for each experimental block of 20 offers, participants 
were only allowed to accept a maximum of 5 offers. To make optimal 
choices and maximize the probability of accepting only the highest 
offers in a block, participants thus had to consider three factors: (1) 
the value of the current offer, (2) the number of offers that can still 
be accepted before reaching the limit, and (3) the number of offers 
that are remaining in the current block. These parameters were in-
cluded in a decision model (Economides et al., 2014) and computed 
for the choice data. Parameter estimates of the model were then 
used as parametric modulators in the analysis of the functional MRI 
data to identify brain regions that compute model-based decision 
processes, and to test for putative differences between AD patients 
and controls.

Based on previous studies, we defined regions of interest 
(ROIs) and hypothesized that AD patients would show (1) a de-
creased representation of model-based decision processes in cau-
date nucleus and (2) an increased representation of decision value 
in vmPFC.

MATERIAL S AND METHODS

Participants

The experimental sample consisted of 32 detoxified AD patients 
and 32 healthy control subjects (Table 1). The sample was ac-
quired as part of the National Genome Research Network (Spanagel 
et al., 2010) at Charité—Universitätsmedizin Berlin. All subjects 
were right-handed, had a normal or corrected-to-normal vision, 
and provided informed consent before participation. AD pa-
tients were diagnosed with AD according to DSM-IV and ICD-10 
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(Diagnostic and Statistical Manual of Mental Disorders, Fourth 
Edition (DSM-IV), Structured Clinical Interview for DSM-IV Axis I 
Disorders (SCID-I); First et al., 2001) and completed medically su-
pervised detoxification (mean detoxification days when data was 
acquired: 12.71 ± 4.93 SD). Exclusion criteria for all participants 
were DSM-IV Axis-I disorders (excluding alcohol and nicotine 
dependence in AD patients, and excluding only nicotine depend-
ence in control subjects), use of cannabinoids, benzodiazepines, 
barbiturates, cocaine, amphetamines, opiates (tested by urine 
screening) or psychotropic medication, claustrophobia, epilepsy, 
other neurological or psychiatric illnesses, and pregnancy. Data 
sets of subjects that showed excessive head motion in the scan-
ner or failed to follow task instructions (i.e., subjects that con-
tinuously tried to accept offers even though the acceptance limit 

was already reached) were excluded from further analyses. The 
amount of lifetime alcohol consumption was assessed using the 
Lifetime Drinking History (Skinner & Sheu, 1982) and the experi-
ment was approved by the local ethics committee.

Group comparisons revealed a difference with respect to age 
(Table 1), which was controlled for by including age as a covariate 
in statistical analyses of group differences. Further, as is commonly 
found in studies on AD patients (Batel et al., 2006), patients showed 
increased smoking behavior (Table 1) as indicated by pack years of 
cigarette consumption (definition of pack years: (number of con-
sumed cigarettes per day/18) × number of years smoked; with 18 
as the standard amount of cigarettes in one pack). Since cigarette 
consumption was significantly correlated with lifetime alcohol intake 
in AD patients (r = 0.52, p = 0.003), and can therefore interfere with 

TA B L E  1  Descriptive statistics of alcohol-dependent patients and healthy control subjects

AD patients (22 male, 10 female)
Control subjects (23 male, nine 
female) Group difference

Mean SD Missing data Mean SD Missing data p T

Lifetime drinking history (consumption 
in kg)

909.9 885.6 2 83.8 99 0 <0.01a −5.2

Education levela Median:
2

IQR:
1

0 Median:
3

IQR:
1

0 M-W
U-test:
0.137

Z-value:
−1.49

Age 46.5 8.9 0 38.9 10.5 0 <0.01a −3.13

Pack years of cigarette consumptionb 21.6 18.1 0 9.6 14.7 0 <0.01a −2.9

Number of smokers 25 – 0 10 – 0 – –

Duration of dependence (years) 6.6 5.6 4 – – – – –

Age of dependence onset 40.8 7.8 4 – – – – –

Percentage of invalid trialsc 24.27 9.40 0 25.12 6.91 0 0.68 0.41

Abbreviations: AD, alcohol dependence; IQR, interquartile range; M-W U-test, Mann–Whitney U-test; SD, standard deviation.
aOrdinal variable corresponding to education levels in the German school system (from lowest to highest): 0 = no graduation, 1 = Hauptschule, 
2 = Realschule, 3 = Abitur.
bDefinition of pack years: ((number of consumed cigarettes per day/18) × c number of years smoked), with 18 as the standard amount of cigarettes in 
one pack.
cDefinition of invalid trials: maximum number of offers were already accepted or no response was given in time.

F I G U R E  1  Trial structure of the decision task. In the decision phase, participants were presented with offer values (in cents) as well 
as indicators for the remaining number of trials (maximum of 20 for each of the nine blocks) and for the number of offers that can still be 
accepted (maximum of five in each block). In the response phase, participants specified their choice to accept or reject an offer with their left 
or right index finger. ITI, inter-trial interval
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variance related to AD in statistical analyses, pack years of cigarette 
consumption were not included as a covariate in our analyses.

Task

The decision task was implemented in Presentation software 
(Neurobehavioral Systems) and consisted of nine blocks including 
20 trials each. During each trial, participants had to decide whether 
to accept or reject a monetary offer between 1 and 99 cents (€). 
However, they were only allowed to accept a maximum of five out 
of 20 offers in each block. The main challenge of the task was thus 
to evaluate whether one should accept offers in early trials or one 
should wait instead for potentially higher offers in later trials. To 
allow for strategic decision making and rough estimates of upcoming 
monetary offers, consecutive offers never exceeded a value differ-
ence of more than 11 cents, with possible value changes being taken 
from the set [−11, −7, −3, 3, 7, 11]. Unknown to participants, the se-
quences of monetary offers followed a predefined pattern for each 
block (Figure S1), but the order in which participants were presented 
with block-specific patterns was randomized between participants.

Participants could base their decision whether to accept or reject 
a given offer on primarily three factors: (1) offer value, indicating the 
monetary amount of the current offer, (2) offer index, indicating how 
many offers were already presented in a block, and (3) the number 
of accepts, indicating how many offers were already accepted in a 
block. Information about the current state of these three factors was 
presented to participants in each trial for 5 s (Figure 1). After that, 
in a separate response phase (2 s), participants had to indicate their 
choice to accept or reject the offer via button presses with their left 
or right index finger. When the choice was not indicated within the 
time limit of 2 s, the offer was counted as rejected. The inter-trial 
interval consisted of a simple fixation cross and lasted for 2 s. Every 
block ended with a feedback screen (5 s), indicating the monetary 
earnings of the respective block, and an empty pause screen (10 s), 
in which participants could prepare for the next block.

Computational model

The decisions in the task allowed for strategic use of the variables 
offer value, offer index, and the number of accepts. To estimate 
to what extent participants took these variables into account, in-
stead of basing their choices solely on the offer value, a decision 
model that has been validated for a similar sequential decision task 
(Economides et al., 2014) was computed for the choice data. The 
model estimates the expected value of accepting an offer VA by com-
paring the monetary offer value R with a model threshold M:

Accordingly, a high model threshold indicates that accepting an 
offer has a low expected value.

The model threshold is computed in the following way:

with c1 being a constant threshold, a the number of offers accepted 
previously, o the offer index, and c2 and c3 as weight parameters for a 
and o, respectively. In this formulation, the model threshold increases 
linearly when a increases (since accept choices should be more conser-
vative when many offers have already been accepted), and the model 
threshold decreases linearly when o increases (since accept choices 
should be more liberal when the end of a block is near).

Finally, the expected value of accepting VA is used to compute 
the probability of accepting PA via a sigmoid function:

with τ governing the slope of the probability distribution. Thus, the 
computational model has four free parameters: a constant value 
threshold (c1), weight parameters for the number of accepts (c2) and 
the number of offers (c3), and a parameter for the slope of the sigmoid 
function (τ).

Invalid trials (i.e., in which the maximum number of offers were 
already accepted or no response was given in time) were not included 
in the model. To test for differences in task performance between 
the patient and control group, the following behavioral variables 
were analyzed: profit, mean reaction time, mean index of accepted 
offers (indicating how long subjects were willing to wait), parameter 
estimates of the computational decision model (c1, c2, and c3), and 
mean model threshold (M). Group differences were tested via a gen-
eral linear model (GLM) including a fixed factor for group member-
ship (1 = controls, 2 = patients) and age as a covariate of no interest.

In addition to the analysis of behavioral data, the formula for the 
model threshold M and the decision value R were also used in fMRI 
analyses (as parametric modulators P2 and P1, see below). To iden-
tify neural correlates of these processes, the formula was applied for 
each trial based on the participant's extant behavior to that point 
in the block, to create an idealized value that was entered into the 
hemodynamic model as an idealized BOLD signal waveform.

MRI data acquisition and preprocessing

Functional data

Functional imaging was conducted in a 3 Tesla Siemens Tim Trio MRI 
scanner (Siemens, Erlangen, Germany) with a 12-channel head coil. 
32 contiguous slices were acquired in ascending order using a T2*-
weighted gradient-echo sequence. For each participant, 940 volumes 
were recorded with the following imaging parameters: repetition 
time (TR): 1.9 s; echo time (TE): 30 ms; matrix size: 64 × 64; field of 
view (FOV): 192 mm; flip angle: 80°; voxel size: 3.1 × 3.1 × 2.8 mm3; 
inter-slice gap: 0.7 mm.

VA = R −M.

M = c1 + a × c2 − o × c3,

PA =
1

1 + exp
(

− � × VA

)
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Structural data

For registration purposes, a high-resolution, T1-weighted structural 
scan was acquired from every subject with a three-dimensional mag-
netization prepared rapid gradient-echo sequence (192  slices; TR: 
2.3 s; TE 3.03 ms, matrix size: 256 × 256; FOV: 256 mm; flip angle: 
9°; voxel size: 1 × 1 × 1 mm3).

Preprocessing

The data were analyzed in Matlab (MathWorks) using SPM12 
(Wellcome Department of Imaging Neuroscience, Institute of 
Neurology). Functional images were realigned to the first volume, 
slice-time corrected, coregistered to the structural data, spatially 
normalized to the template of the Montreal Neurological Institute 
(MNI), resampled to a voxel size of 3 × 3 × 3 mm3, and smoothed 
using a Gaussian kernel of 8 mm full-width at half-maximum.

fMRI data analysis

GLM analysis

The fMRI data were analyzed via a GLM for each participant. 
Different event regressors were constructed as box-car functions 
with onsets and durations of the respective choice periods:

Regressor R1 corresponded to the decision phase (Figure 1) of 
all trials for which participants made valid choices, excluding tri-
als in which no response was given in the response phase, or tri-
als for which offers could not be accepted anymore because the 
limit was already reached. To identify neural correlates of specific 
decision variables, linear parametric modulators of regressor R1 
were included in the GLM for the offer value (P1) and the model 
threshold (P2). Thus, P1 comprises the raw monetary value of the 
offer, whereas P2 represents model-based decision processes that 

take the offer index and the number of accepts into account. Both 
parametric modulators were z-transformed before they were added 
to the model. In addition, to minimize the error term of the GLM, 
regressors of no interest were included for the decision phase of 
invalid trials (R2), the response phase (R3), the feedback (R4), and 
pause (R5) phase between blocks, as well as six movement regres-
sors R6 to R11 from the realignment procedure. R2 was included as 
a regressor of no interest because it is uncertain whether meaningful 
decision-making processes were present in invalid trials (since par-
ticipants either did not indicate their choice in time or did not need 
to make a decision at all when they already accepted the maximum 
of five offers per block). Likewise, regressors R3 to R5 were of no 
interest since they were not part of the decision phase.

All regressors were convolved with the canonical hemodynamic 
response function and regressed against the BOLD signal in each 
voxel. Parametric modulators were not orthogonalized to each other, 
allowing regressors to fully compete for explained variance. First-
level contrasts were constructed for offer values (P1) and model 
thresholds (P2) by weighting parametric modulators over baseline 
and submitted to second-level t-tests at the group level. One-sample 
t-tests were conducted separately for the patient and control group, 
and differential group effects were tested via two-sample t-tests 
that included age as a covariate of no interest. All statistical para-
metric maps from group analyses were thresholded at p  <  0.001 
(uncorrected) for voxel-level inference with a minimum cluster-
size criterion of 10 contiguous voxels, and subsequent cluster-level 
family-wise error rate -correction for multiple testing at p < 0.05.

ROI analysis

ROIs were defined via spheres centered on coordinates from 
Economides et al. (2014). In particular, caudate nucleus (x  =  −12, 
y = −6, z = 18, radius = 5 mm) was used as an ROI for model-based 
decision processes, and vmPFC (x = 4, y = 52, z = 14, radius = 10 mm) 
as an ROI for value representation. Mean beta values of modulator P1 

TA B L E  2  Behavioral data of alcohol-dependent patients and healthy control subjects

Control subjects (23 male, nine 
female) AD patients (22 male, 10 female) Group differencea

Mean SD Mean SD F p

Profit (cents; mean) 2725 134.6 2660.6 122.5 2.06 0.157

Index of accepted offers (mean) 10.5 1.2 10.2 1.5 0.47 0.498

Reaction time (ms; mean) 596.9 125.7 605.5 130.3 0.07 0.787

Model parameter c1: constant 
value threshold

66.8 6 67.7 7 0.35 0.556

Model parameters c2: number 
of accepts

3.1 1.4 3.1 1.2 0.01 0.908

Model parameter c3: offer index 1.3 0.1 1.3 0. 1 0.4 0.551

Model threshold M: (cents; 
mean)

59.3 3.8 60.2 4.9 1.25 0.268

aGroup differences of behavioral data were analyzed via a GLM including a fixed factor for group membership and age as a covariate of no interest.
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(offer value) and P2 (model threshold) were extracted from vmPFC and 
caudate nucleus, respectively. To analyze differences between groups, 
the beta values of each subject were entered into a GLM with a fixed 
factor for group membership and a covariate of no interest for age.

RESULTS

Behavioral results

Behavioral measures did not show significant group differences 
(Table 2), indicating that patients did not show impairments in task 
performance. In line with this result, summed accept responses for 
each trial in each block showed a similar distribution for both groups 
(Figure S1).

fMRI results

Whole-brain results

The first goal of the fMRI analysis was to identify regions that pro-
cess the monetary value of offers. In the control group, whole-
brain analyses revealed significant parametric modulation of offer 
values (P1) in a distributed set of regions including the dorsolateral 
prefrontal cortex (dlPFC), ventral striatum (vStr), and dorsomedial 
prefrontal cortex (dmPFC; Table 3; Figure 2A). The patient group 
showed activation in a largely overlapping set of regions (Table 3), 
and a whole-brain comparison of parametric group effects in a 
two-sample t-test did not reveal significant differences between 
the two groups.

Second, we investigated brain areas that demonstrated activation 
related to model-based decision processes via the model threshold 
parameter of the GLM (P2). In the control group, we did not observe 
effects related to positive model thresholds, but activity in the cau-
date nucleus and inferior parietal lobe was significantly associated 
with negative model thresholds (Table 3; Figure 2B), indicating stron-
ger neural activity when the threshold was low and participants were 
more likely to accept offers. This is consistent with a previous study 
that found stronger effects for negative compared to positive model 
thresholds (Economides et al., 2014) and can be due to the BOLD 
signal being highest for go responses. The patient group, in contrast, 
did not show any activity related to negative model thresholds in the 
whole-brain analysis, but there was a significant cluster in the middle 
occipital gyrus associated with positive model thresholds (Table 3).

ROI results

ROI analyses were conducted to investigate group differences in 
vmPFC (associated with value representation) and caudate activa-
tion (associated with model-based decision processes). There were 
no group differences with respect to parametric effects of offer 
values in vmPFC, F (1, 60)  =  0.1, pFDR  =  0.834), but we observed 

a significant difference in parametric effects of model thresholds 
in caudate nucleus, F (1, 60) = 4.4, pFDR = 0.028 (Figure 2C), with 
stronger negative beta values for the control group.

DISCUSSION

This study was designed to compare neural processes of value 
computation and model-based decision making between alcohol-
dependent patients and healthy control subjects. Participants per-
formed an fMRI decision task, in which monetary offers had to be 
evaluated with respect to dynamically changing constraints. The re-
sults showed that patients had decreased functional representation 
of model-based decision processes in the caudate nucleus, whereas 
there were no group differences in terms of neural value representa-
tion or task performance.

Previous studies have found that the caudate is a crucial area 
for the computation of goal-directed choices that require the con-
sideration of multiple factors and long-term planning (Balleine 
& O’Doherty, 2010; Dolan & Dayan, 2013; Geerts et al., 2020; 
Sharpe et al., 2019; Wunderlich et al., 2012). Likewise, in rodents, 
model-based decision processes have been associated with signals 
in the dorsomedial striatum (Balleine, 2005; Corbit et al., 2012; 
Gahnstrom & Spiers, 2020), which corresponds to the caudate 
activation that human neuroscience studies have identified. Our 
finding that the neural representation of model-based decision 
processes in the caudate nucleus is decreased for patients only 
therefore suggests that AD impairs the neural computations in 
the medial dorsal striatum for goal-directed choices, and supports 
the hypothesis that the neural mechanism underlying the ability 
to flexibly adapt choices to long-term consequences is one of 
the core functions affected by the disorder (Bechara et al., 2001; 
Goudriaan et al., 2007; Reiter et al., 2016; Sebold et al., 2014, 
2017). Surprisingly, the occipital gyrus was associated with pos-
itive model thresholds in patients. Although this region clearly is 
affected by AD (e.g., Hermann et al., 2007), so far little is known 
about its role in decision-making processes, which makes it an in-
teresting research question for future studies.

Our data further revealed that offer value is represented in a 
distributed set of regions including vStr, dlPFC, and dmPFC for both 
the patient and the control group. However, we did not observe 
systematic differences with respect to neural value computations 
between the two groups. Previous studies have suggested that AD 
could be based on an overactive valuation system (Arcurio et al., 
2015; Goldstein & Volkow, 2011; Seo et al., 2013). Since we did not 
observe systematic group differences with respect to neural value 
representations, the results of the current experiment do not sup-
port these hypotheses, and speak for a uniform processing of nonal-
coholic stimulus values in patients and healthy controls. In line with 
that, Bjork et al. (2008) showed that reward and loss anticipation 
during a monetary incentive delay task elicited similar activation of 
vStr in patients and controls as well as similar mood responses. This 
finding underlines the notion that value representation might not be 
a characteristic marker of addiction.
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Interestingly, patients also did not show deviations in behavioral 
task performance. One explanation for this finding is that patients 
rely on different neural systems to achieve the same level of per-
formance. Compensatory effects like these could also be found in 
other studies investigating decision making in AD patients (Charlet 
et al., 2014; Claus et al., 2018; Sebold et al., 2017), but the literature 
still shows mixed results (Galandra et al., 2018). The inconsisten-
cies in the studies could result from the relatively large variance of 
decision-making tasks that were used since the tasks might recruit 
slightly different neural systems.

The absence of group differences in behavior and caudate re-
sponding could also be interpreted in the light of a finding by Gilman 
et al. (2015). They also observed that alcohol-dependent patients 

and controls showed few differences in behavior or in mesolimbic 
activation by choice for and receipt of (risky) gains. Interestingly, a 
history of rewarded instrumental responses boosted the activation 
of motivational neurocircuitry for additional reward in terms that pa-
tients exhibited heightened striatal activation that correlated with 
total earnings during the task.

The lack of behavioral group differences in our data could be re-
lated to the novel decision-making paradigm that we used, which 
might not have been optimal to detect differences on the behavioral 
level. One could speculate that even though the neural differences in 
the caudate were not associated with behavioral group differences 
in our task, they could have been revealed with a decision task that 
includes more uncertainty and requires more complex long-term 

TA B L E  3  Brain regions showing task-related activation

Region Side

MNI coordinates

Tmax

pFWE 
(cluster-level)x Y Z

Controls

Offer value

Middle frontal gyrus L −24 −6 54 7.24 <0.001

Middle frontal gyrus R 48 14 40 7.12 <0.001

Dorsolateral prefrontal cortex R 44 40 24

Dorsomedial prefrontal 
cortex

M −2 30 42

Ventral striatum R 14 6 −6

Inferior parietal lobe R 40 −44 48 6.85 <0.001

Dorsolateral prefrontal cortex L −40 52 6 6.54 <0.001

Inferior parietal lobe L −44 −46 46 6.32 <0.001

Middle occipital gyrus R 20 −94 10 5.26 <0.001

Cerebellum L −38 −66 −38 4.98 <0.001

Cerebellum L −12 −78 −34 4.96 <0.001

Middle occipital gyrus L −38 −92 0 4.95 <0.001

Substantia nigra M 8 −18 −16 4.89 0.031

Negative model threshold

Caudate R 10 8 18 4.36 0.032

Inferior parietal lobe L 42 −54 48 4.1 0.039

AD patients

Offer value

Dorsolateral prefrontal cortex R 26 48 −8 6.51 <0.001

Dorsomedial prefrontal 
cortex

M −2 32 38

Ventral striatum R −10 10 −4

Inferior parietal lobe L 58 −44 50 5.65 <0.001

Cerebellum L −40 −72 −32 4.69 <0.001

Cerebellum R 34 −56 −38 4.63 <0.001

Posterior cingulate cortex M 4 −26 32 3.99 0.02

Model threshold

Middle occipital gyrus −30 −80 10 4.06 0.022

Note: Height threshold, T24 = 3.23; extent threshold, kE = 10 voxels. All clusters survive whole-brain correction for multiple comparisons based on 
cluster-level FWE-control.
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planning. In the framework of our task, this could for example be 
tested in a future study by making trial-to-trial changes in monetary 
values more erratic, by increasing the number of trials per block, or 
by adding uncertainty to the number of offers that can be accepted 
(e.g., an unknown randomized number between 5 and 10 instead of 
the fixed number of 5).

Another limitation that has to be acknowledged in the interpreta-
tion of our study is that we did not control for nicotine dependence, 

because it is significantly correlated with AD and would have inter-
fered with the analysis of alcohol-related effects. Even though this is 
a common issue in the study of AD (Batel et al., 2006), it is a source 
of uncertainty that limits the strength of the conclusions that can 
be drawn.

To conclude, this study highlights the role of the caudate nucleus 
in computing goal-directed choices and integrating multiple factors 
into adaptive choices. AD patients showed a decreased functional 

F I G U R E  2  Brain regions showing parametric effects in the control group for (A) offer value and (B) negative model threshold. For 
illustration purposes, t-maps are thresholded at p < 0.001 (uncorrected), kE = 10. Labelled clusters survive cluster-level FWE-correction at 
p < 0.05. The patient group showed largely overlapping clusters for offer values (Table 3), and no significant clusters for negative model 
thresholds. Abbreviations: dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; vStr, ventral striatum. (C) Functional 
ROI results. Mean beta values in caudate nucleus were extracted from parametric modulators of model thresholds, and beta values in 
vmPFC from modulators of offer values, respectively. ROIs were defined as 5 mm spheres centered on coordinates from Economides et al. 
(2014). Asterisks denote significant FDR-corrected p-values < 0.05
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representation of model-based decision processes in this region, 
which could be a key factor that characterizes decision-making dys-
functions related to AD.
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