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Abstract

We use the results of Quigley and Shah to give a formula for the geometric fixed points of real
topological cyclic homology of a bounded below ring spectrum with anti-involution. The anti-
involution on a ring spectrum A gives rise to a spectrum with canonical left and right A-module
structures, whose tensor product over A can be equipped with an action by the cyclic group of
order 2. Our formula is then given by the homotopy equalizer of two maps from the homotopy
fixed points to the Tate construction. Furthermore, we show that this homotopy equalizer is
equivalent to the one given in the computation by Dotto, Moi and Patchkoria, thereby proving
their result with different methods.

As an application of our result we calculate the real topological cyclic homology of group
ring spectra for abelian groups and certain classes of dihedral groups. We do this for arbitrary
ground ring spectra, whose underlying spectra are bounded below. This is accomplished via a

decomposition formula for the dihedral bar construction of a group.
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Chapter 1

Introduction

1.1 Statement of results
Let A be a ring with anti-involution, that is a map of rings
w: A% —» A

such that w°? ow = id4. Then one can form its real algebraic K-theory spectrum KR(A),
which was originally introduced by Hesselholt and Madsen [HM15] (see [DO19] and [Cal+20a,
Section 4.5] for modern references). This is the algebraic analogue to Atiyah’s real topological
K-theory spectrum KR™P [Ati66], which classifies complex vector bundles carrying an anti-linear
involution that is compatible with an involution on the base space. The spectrum KR(A) is a
Ys-equivariant spectrum?, where X, is the symmetric group on 2 elements. Its underlying non-
equivariant spectrum is its connective K-theory spectrum K(A), just as KR*P is a ¥s-equivariant
refinement of complex topological K-theory KU.

For any (left) A-module M let DM := Hom4 (M, A) be its dual. Then DM is a left A-module
via the assignment

Ax DM — DM, (a, f) — [m — f(m)w(a)].

If P is a finitely generated A-module, then D?P is isomorphic to P?, thus we obtain a duality
functor
D: Proj(A)°® — Proj(A)

on the category of finitely generated projective right A-modules, which induces a ¥s-action on
K(A). By [Cal+20b, Theorem 1] the isotropy separation sequence® of KR(A) then takes the

1By this we mean what other authors often call a genuine equivariant spectrum.
is isomorphism is given P — x =w(f(z)).
>This i phism is given by ¢: P — D?P,¢(z)(f) = w(f(z))
3Recall that for any Ma-spectrum X there is a fiber sequence Xpsy — X¥2 — ®¥2 X connecting homotopy

orbits, (categorical) fixed points and geometric fixed points.



form
K(A)ps, = GW5(A4) = L (A),

where the middle term is the Grothendieck-Witt-spectrum of unimodular forms and the right
hand term is a connective spectrum whose homotopy groups are Ranicki’s (non-periodic) sym-
metric L-theory groups defined in [Rang0].

One important method for computing algebraic K-theory is the use of trace maps into other

theories. A particularly useful one is the cyclotomic trace map
tr: K(4) — TC(A)

into topological cyclic homology, which was first constructed by Bokstedt, Hsiang and Mad-
sen in [BHMO93]. Its main usefulness comes from the theorem of Dundas-Goodwillie-McCarthy
[DGM13], which states that if A — B is a map of connective (E;-)ring spectra such that the

induced map mgA — mB is surjective with nilpotent kernel, then the square

K(A) —%— TC(A)

|

K(B) —%— TC(B)

is a homotopy pullback. Just as for algebraic K-theory there is a real version of topological cyclic
homology, which was originally introduced by Hggenhaven in [[¢g16] in analogy to the classical
definition of [BHM93] and later refined by Quigley-Shah in [()S21a]. It is expected that a real
cyclotomic trace

trg : KR(A) — TCR(A)

exists and that a real version of the Dundas-Goodwille-McCarthy theorem is true.

The first main result of this thesis computes the geometric fixed points of the p-typical version
®>2TCR(A; p) for any orthogonal ring spectrum A with anti-involution and any prime p under
the assumption that A is bounded below as a spectrum. Before we state the result we need to give
some preliminary explanations. Note that the anti-involution of A amounts to a Ys-action on the
underlying orthogonal spectrum, thus it gives rise to a Yo-equivariant orthogonal spectrum. If A
is discrete, then the resulting 3s-spectrum is the Eilenberg-MacLane spectrum of the ¥o-Mackey

functor with underlying abelian group A, fixed points A>2 and the algebraic transfer
A— A% 4 a+ wla).

In both the discrete and non-discrete case we can form the geometric fixed point spectrum ®>2 A.
It has a natural structure as both a left and right A-module. Recall that the Hill-Hopkins-Ravenel
norm NIEZA is the ¥g-equivariant orthogonal ring spectrum with underlying spectrum A ® A,

coordinatewise multiplication, and ¥s-action given by switching the smash factors. Furthermore,



there is a natural diagonal equivalence of ring spectra A: A =» <I)22N122A. The left and right
actions described in elements by
ARNTA - Az®@a®b— wla) z-b,
NP2A®A = Aa@b@z v a-z-wb),
are Yo-equivariant and since ®>2 is monoidal this yields the claimed A-module structures on
®*2 A. The computation of ®*2TCR(A; p) involves the (derived) tensor product ®*2 A® 4 ®*2 A,

which comes equipped with a canonical Cy-action given in the commutative case by swapping

the factors, as well as a canonical map
PARY P2A - (DA @4 DT2A)IC2, (1.1)

For more details we refer to Remark 3.5.11.

We can now state our main result.

Theorem A. Let A be a (orthogonal) ring spectrum with anti-involution such that the underlying

spectrum of A is bounded below.

(i) For any odd prime p there is an equivalence

P2 TCR(A; p) ~ D2 A ® 4 D2 A.

(ii) The spectrum ®>2TCR(A;2) is equivalent to the homotopy fiber of
(@A @4 @2 A2 TN (V2 A 0y 92 )12,

where can is the canonical map of the homotopy fixed points to the Tate construction and ¢ 4
is (1.1) composed with the inclusion of fized points (P2 A® 4 ®¥2 A)C2 — X2 AR, P2 A.

Suppose A is a discrete ring with % € A. Then the ¥s-spectrum obtained from A is a module
over Z [%], where the latter has the trivial anti-involution. By the isotropy separation sequence

o>z (Z [%]) is trivial, thus we immediately obtain the following result from Theorem A.

Theorem B. If A is a discrete ring with anti-involution such that % € A, then ®*2TCR(4;p)

vanishes for all primes p.

An equivalent version of Theorem A has already appeared in [DMP21, Theorem A], which is
proven by different methods. The proof given in loc. cit. relies on genuine real cyclotomic methods
and a description of EF'asa pushout for a certain family of subgroups F of the dihedral group

Dgpn of order 2p™. For odd p we can completely rely on the theory of real cyclotomic spectra

4If F is a family of subgroups of a group G, then EF is the associated universal space and EF is the (pointed)
cofiber of the map EF; — S that collapses EF to the non-basepoint.



developed by Quigley and Shah in [S21a] and [QS21b]. In the case p = 2 we do need to use
genuine real cyclotomic spectra to prove boundedness results on TCR(A;2). We refer to the next
section for more details. The rest of the proof however, again only uses results from [()S21a] and
[S21Db]. Additionally, Dotto, Moi and Patchkoria assume that ®*2 A is bounded below, but we
will explain in Section 3.5.3 that [DMP21, Theorem A] without this assumption is still true and
in this version equivalent to Theorem A. In contrast to [DMP21, Theorem A] the terms in the
fiber sequence of Theorem A only involve the homotopy fixed points and the Tate construction
of ®¥2 A ® 4 ®¥2 A, whereas one term in the fiber sequence of [DMP21, Theorem A] is given by
the genuine fixed points of ®¥2 A® 4 ®¥2 A°. In particular, one can immediately derive Theorem
B in the case of p = 2, whereas it is not apparent how this follows from [DMP21, Theorem A].
In Chapter 4 we apply Theorem A to compute the geometric fixed points of TCR in the case
of group rings. In the context of group rings we consider discrete (but possibly infinite) groups

G equipped with the anti-involution given by inversion

1g: GP - G,g— g L
If A is a ring spectrum with anti-involution we smash the anti-involutions, that is we equip the

ring spectrum A[G] = A ® G+ with the anti-involution

wag: (AJG])P = (A® G4 ) = A% @ GP 2294 Ao Gy = A[G).

In particular we do not consider the geometrically relevant situation where the involution is
twisted by an orientation character. However, we emphasize that our results apply to arbitrary
ground rings (provided their underlying spectra are bounded below). Our results on group rings
are complementary to those in [DMP21], where only spherical coefficients are considered, but
more general groups and involutions than in this thesis.

We shall consider two classes of groups. For any group G we denote by G (the set of) its
2-torsion and let o act on Gy x Gy via (g,h) — (g,gh). The first class of groups is that of

groups G such that (G5 is contained in the center. We prove the following result in Theorem 4.2.

Theorem C. Let G be a discrete group such that G, the elements of order 2, are contained
in the center of G. For any ring spectrum A with anti-involution whose underlying spectrum is

bounded below, there is a fiber sequence

P ™ TCR(4;2) ® BG, — @ TCR(A[G];2) — &P (B2 A @, 92 A) @ BG,.
Ga (G2\{1}xG2)/%2
In particular, if G is 2-torsion-free the assembly map is an equivalence
®*2TCR(A4;2) ® BG; ~ ®*TCR(A[G];2).

5This is advantageous for the following reason. If f: X — Y is a map of Ca-spectra which is an equivalence

on the underlying spectra, then it induces equivalences X"C2 ~ YhC2 and X?C2 ~ Y*C2 but in general not on

the genuine fixed points. The same remark applies if we replace Co with any finite group G.



The second class of groups is that of dihedral groups. We denote by Ds,, the dihedral group
with 2n elements, D, the infinite dihedral group and Dy~ = colim,, Dy»+1, where the colimit
is taken along the inclusions Dgynt1 — Dont2. Again all results hold for arbitrary ground rings.

The following table indicates which result holds for which group.

Group Result
Dy, with n =2 mod 4 and n # 2 Theorem 4.3
Dy, with n =0 mod 4 Theorem 4.5 (i)
Do Theorem 4.5 (ii)
D Theorem 4.6

Some of the results are fairly technical. We describe those results (or special cases of them) which
are easy to state to give an idea. We start with Dy, in the case that n =2 mod 4 and n # 2.
Theorem C applies in particular to abelian groups, hence also to G = D,4. The assumption on n

implies that the inclusion D4y — D5, has a retraction, hence also
TCR(A[D4];2) = TCR(A[D2,];2)

has a retraction. We describe the geometric fixed points of the cofiber. The cleanest statement
is for coefficients in a discrete ring. We shall index over (subsets of) the orbit set (C, \ C2)/%4
and we write ®>2A®42 as a shorthand for ®*2A4 ®4 ®>2 for typographical reasons. Here ¥
acts as usual on C,, by sending an element to its inverse and C,, \ Cy denotes the set theoretic

difference. For discrete A the statement specializes as follows.

Theorem D. Let A be a discrete ring with anti-involution and assume that n =2 mod 4 and
n # 2. Denote by TCR(A[D(D2,)/D(D4)];2) the cofiber of the map

TCR(A[D4];2) — TCR(A[D2y,];2)
induced by the inclusion Dy — Da,,. There is a pullback

(I)Z2TCR(A[D(D27L)/D(D4)]72) — ‘ @ ((((I)EQA®A2) ® 302+)h02)@2
[]1€(Cr\C2)/%2
lcanf¢

jeven

@ (@A) BC 5 @ ((®Z2A242) @ BCy, )102) 2.
[C]]E(Qnsgz)/Zz [?]1€(Cr\C2) /%2
Jo jeven

where in the right hand terms BCy carries the trivial Cy-action.

In the case n = 0 mod 4 we can only describe ®*2TCR(A[D2,];2) up to a filtration. The

graded pieces have a particularly nice description for Don+1 and Daso.



Theorem E. Let A be a ring spectrum with anti-involution whose underlying spectrum is bounded

below.

(i) There is a finite filtration of length n on ®*2TCR(A[Dan+1];2) such that the kth graded
piece gr*®*2TCR(A[Dyn+1];2) is equivalent to

(®*2TCR(A;2) ® BDgn+1, & ®**TCR(A;2) ® BDyy )2, if k=0,
(@2 A®4 72 A) ® BDyni1 @ E=1
) =1,
(0" (@™ A®4 2% A))ap,) ™ & (9% A @4 ™2 4) ® BD4, )™,
D (B2 A @4 D72 A)pe, ® BCyy )™, if2<k<n,
(Czk\czkfl)/EQ
&y (®¥2A®, D72 A) @ BCoy, if k =n,

(Can\Cyn—1)/B2

where a: Dg — Dg/Dy = Cy is the projection.

(ii) There is a filtration of infinite length on ®*2TCR(A[Da=];2) with the kth graded piece
gr*®*2 TCR(A[Da];2) being equivalent to

(®*2TCR(A;2) ® BDy )®? @ ®*2TCR(A;2) ® BDyy, if k=0,
(@2 A®4 2 A) @ BDosoyp @ (a* (P A®4 D2 A)) 1D, ® o
(A @, ®2A) ® BDy,)®?, ’

(@2 A®4 &2 A)pe, ® BCay, ifk>2,

(Cok\Cor—1)/%2

where a: Dg — Dg/ Dy = Cy is the projection.

This concludes our discussion on group rings and we turn our attention back to Theorem A.
We will derive it as a special case of a statement for the real topological cyclic homology of a real
cyclotomic spectrum. Recall from [NS18] that a p-cyclotomic spectrum is a spectrum X with

Cpee-action® together with a Cpe-equivariant map
ox: X — XtCr

into the Tate construction called the Frobenius. The most prominent examples of a (p-)cyclotomic
spectrum are the topological Hochschild homology spectrum THH(A) of a ring (spectrum) A,
which is constructed as the realization of a cyclic bar construction, and X"V, which is obtained
by equipping a spectrum X with the trivial Cpe-action. Then there is a natural Cpe-equivariant
map X — X"» and the Frobenius of X"V is obtained by composing this map with the map

from homotopy fixed points into the Tate construction.

6By this we mean an object of Fun(BCpeo, Sp).



The p-typical topological cyclic homology TC(X;p) of X is defined to be the fiber of the map

C._ oo
hC e CN— Py tCy\hC
XhCpe SO T (xtCy)nCyee

and for a ring (spectrum) A one defines TC(A4; p) = TC(THH(A); p). Here can,, is the composite

thpoo ~ (thp)h(CPOO/Cp) ~ (thp)hcpoo N (Xth)thoc

)

where the arrow is the canonical map from homotopy fixed points into the Tate construction.

The real version of a p-cyclotomic spectrum has been introduced Quigley and Shah in [()S21a].
First, they replace a spectrum with Cpe-action by a ¥g-spectrum X with twisted Cpe action
(see Definition 3.4.1). Next, for such a ¥s-spectrum X Quigley and Shah construct parametrized
versions of homotopy orbits Xp ¢, , homotopy fixed points X b2, Cm and the Tate construction
X220 which are Yj-spectra by construction and whose underlying spectra are the usual
homotopy orbits, fixed points and Tate construction.

A real p-cyclotomic spectrum X is then a ¥g-spectrum with twisted Cpe-action together

with a Cpe-equivariant map of ¥s-spectra
ox: X — X2

into the parametrized Tate construction, which we also call the Frobenius. The prime examples
are the real version of topological Hochschild homology THR(A) of a ring (spectrum) with anti-
involution A, which is now obtained as the geometric realization of a dihedral bar construction,
and the real version of X"V, If X is a Yy-spectrum, we equip it with the trivial twisted Cpoo-
action and then there is again a natural Cpe-equivariant map X — X h=2C and we compose it
with the natural map X"2¢» — X*22C» to obtain the Frobenius.

For a real p-cyclotomic spectrum X one then defines TCR(X;p) in analogy to TC as the
fiber of

I, Cpoo

can, —p

XhEQCpoo (thch)hzchoo ,

and for a ring spectrum A with anti-involution one defines TCR(A; p) = TCR(THR(A);p). The
main technical result of this thesis computes ®*2TCR(X;p). For any Ys-spectrum X with
twisted Chee-action (or even a Cy-action) the geometric fixed points of X*®2¢2 carry a residual

Cs-action and there is a projection map
pry: @F2 X202 (T2 X)102,
If X is a real 2-cyclotomic spectrum its Frobenius thus gives rise to a map
fx: (BT2X)1C2 5 P2 x TN, ¥ xtn,Ca PIty (g2 x)iC2

where the undecorated arrow is the inclusion of fixed points. In Section 3.5.3 we prove the

following result.



Theorem F. Let X a real p-cyclotomic spectrum such that its underlying spectrum is bounded

below.

(i) If p is odd, there is an equivalence

P2 TCR(X;p) ~ &2 X. (1.2)

(ii) The spectrum ®*2TCR(X;2) is equivalent to
fib((@¥2 X )hC2 ODTOX, (s x)tCa) (1.3)
where can is the canonical map from homotopy fized points into the Tate construction.

We obtain Theorem A from Theorem F by plugging in X = THR(A), applying [DMPR21,
Theorem 2.26] and carefully examining the residual Co-action as well as the map ¢rpg(a)-

Finally, we point out that an integral version of Theorem F for real cyclotomic spectra has
been announced in [)S21a] (but at the time of of writing this thesis a proof has not been
published). Roughly, a real cyclotomic spectrum is a Xo-spectrum X with twisted T-action,
where T denotes the circle group, together with a real p-cyclotomic structure for all p and
TCR(X) is defined as the fiber of

xhs, T (Pr=cany)per H(X% Cp)he, T
p€EP

Then [()S21a, Theorem A.2] states that ®*2TCR(X) is equivalent to (1.3), in other words there
is an equivalence

P2 TCR(X) ~ ®*2TCR(X;2).

We do not know how to derive this result from Theorem F, nor the other way around, not
even after p-completion. For odd p it is unclear whether there is an equivalence TCR(X) ~
TCR(X; p)z/,\ and in general it is not true that the p-completion of (1.3) is equivalent to ®Z2XI/,\ ~
®*2(X/). We believe that TCR(X )3 ~ TCR(X;2)3, but in general 2-completion only commutes
with ®>2 if the underlying spectrum is bounded below. We do not know how to prove that the
underlying spectrum of TCR(X) is bounded below if the underlying spectrum of X is bounded

below.

1.2 Outline and strategy of the proofs

We start by giving an overview of the proof of Theorem F. It is contained entirely in Chapter 3,
which is independent from the other chapters. For p = 2 the main idea is to reduce the proof
of Theorem F to the case where the underlying spectrum of X is contractible. The proof of this

special case is relatively easy, but the reduction to this case is non-trivial. We first sketch the



argument for this special case. By definition X"®2C2 = lim,, X"22C2" and if the underlying

spectrum of X is contractible, it turns out that we can directly calculate

lim ®™2 X"=2C2"  and  lim ®%2 (X 22C2)h= Cor
n n

to be equivalent to

(@2 X)"> and (>2)"2.
We perform this calculation in Section 3.3. To derive Theorem F we now apply the following
result, which should be well known to experts and goes back to Adams. Its proof uses the isotropy
separation sequence and the fact that £y has a X5-CW-structure with a finite n—skeleton for
all n. Note that the assumptions of the lemma are fulfilled if the underlying spectrum of X is
contractible, since then the underlying spectra of X"=:¢2" and (X*2¢2)h=:C2" are contractible

as well.

Lemma G. Consider a tower
"'—>X3—)X2—)X1
of ¥o-spectra and suppose there is an integer k such that for all n the underlying spectrum of X,

is at least k-connected. Then the natural map of spectra
>2lim X,, — lim ™2 X,
n n
is an equivalence.

To reduce the general case to the special case above, note that the cofiber sequence of pointed
Yo-spaces
EYs, — 8% = EY,

gives rise to the cofiber sequence
P TCR(X ® (EX24)™;2) — & > TCR(X;2) — &> TCR(X ® (EX)™Y;2).
Since the underlying spectrum of X ® (E\E/g)“iv is contractible and the equivalence
T2 X = %2 (X @ EX,)

is Cs-equivariant if we equip EE with the trivial Cy-action, we need to show that ®*2TCR(X ®
(EX51)t1V; 2) vanishes.

Showing that ®*2TCR(X ® (EXy, )V;2) vanishes is more involved. The key step here is to
define TCR"(X;p) as the fiber of

n
PX,n—can,

Xhzchn (Xt):ch)hEZCpn—l

)

where ¢x ,, is induced by the Frobenius of X and can; is defined analogously to the map can,
used in the fiber sequence defining TCR(X;p). Then TCR(X;p) ~ lim, TCR"(X;p) and we
prove the following boundedness result using genuine cyclotomic methods in order to exchange

the limit with the geometric fixed points.



Proposition H. Let X be a real p-cyclotomic spectrum.

(i) If the underlying spectrum of X is k-connected, then the underlying spectrum of TCR™(X; p)
is (k — 1)-connected and the underlying spectrum of TCR(X;p) is (k — 2)-connected.

(i) If the underlying Yo-spectrum of X is k-connected, then TCR"(X;p) is (k — 1)-connected
and TCR(X;p) is (k — 2)-connected.

We stress that this is the only part of the argument which uses genuine real cyclotomic
methods. Also, for odd p one can prove this result without resorting to genuine real cyclotomic
spectra, see Remark 3.5.3.

Showing the vanishing of ®*2TCR(X ® (EX,)"1;2) is now done in two steps. First, if
we equip EXy with its standard Yo-CW-structure with one free Ys-cell in each dimension, then
we use Proposition H to reduce the claim to showing that ®**TCR(X ® (33/14)%V;2) van-
ishes. Using Proposition H a second time, it suffices to show that ®*2TCR" (X @ (32/1,)%1V; 2)
vanishes. This is easy. The underlying Dyn+1-spectrum of X ® (¥5/14)"" is induced up from
Con and we show in Section 3.2 that both ®¥2(—)m=2C2" and ®%2((—)*2¢2)"=C2" vanish on
Dynt1-spectra of this form.

Showing Theorem F for odd p is much easier than for p = 2. The results of [)S21b] and
Section 3.3 imply that ®¥2(X*22C)h=2Cen vanishes for all n and if the underlying spectrum of X
is bounded below it follows essentially from the dihedral Tate orbit lemma [()S21a, Lemma 3.20]
that

P TCR™(X;p) ~ ™2 X)) -
Finally, in Lemma 3.3.1 we prove that

) )
P Qth2Cpn ~ o2 X

and that under this equivalence the maps in the limit system are constant, hence Theorem F
follows from Proposition H and Lemma G.

Our results on group rings rest on the observation that there is an equivalence of real cyclo-
tomic spectra

THR(A[G]) ~ THR(A) ® DN(G),
where DN (G) is the dihedral nerve (also called dihedral bar construction by other authors) of G
2.1.10. The geometric fixed points have the property that
$*2(THR(A) ® DN(G)+) ~ ®*2THR(A) ® DN(G)>}?

The main idea here is to prove a decomposition formula for DN (G)*2 in terms of classifying
spaces (Proposition 2.3.2) and study the parts of this decomposition separately. This decompo-
sition does not seem to be new, but to the best of our knowledge the residual Cs-action on the

involved classifying spaces has not been studied before ”.

7Again, Theorem A allows for easier computations. If one wants to use [DMP21, Theorem A] then one

10



1.3 Notation and conventions

1.3.1 Group-theoretic notation

Throughout this thesis G denotes a discrete group unless otherwise stated. The only topological
groups we consider are the circle group T and the orthogonal group O(2). We denote by Yo
the symmetric group on 2 elements and by ¢ € Y5 the non-trivial element. It is often useful to
identify Yo with the multiplicative group {£1}. For n = 1,2,...,00 we write C,, for the cyclic
group of order n and denote its generator by c. If p is a prime we let Cpe = colim,,Cy,» denote
the Priifer group. Here, the colimit is taken along the inclusions Cpn — Cpn+1. The group 3o
acts on Cp, and Cp~ by sending an element to its inverse. We denote the resulting semi-direct
products by Da,, and Dajec. We refer to Dy, as the dihedral group of order 2n. In the case p = 2
we write Dy to avoid awkward notation. Similarly, we write Dox+1 if n = 2% and D, instead
of Ds. for the infinite dihedral group.

There are preferred embeddings of Y3 into Doy, Do and Dape. We also denote the image

of these embeddings by ¥5. We also specify a section of the determinant det: O(2) — X3 by

0 1
(1 0) € 0(2).

Similarly, for finite n we specify a preferred embedding C,, — T by sending ¢ to exp(2%) ¢ T.

n

sending o € ¥y to the matrix

Combining the previous two embeddings then yields a preferred embedding D, — O(2) for
finite n.
All actions of G (including T and O(2)) on a set, space or spectrum are left actions. Recall

that any group G acts on itself via conjugation:
G x G —G,(g,h)— ghg™'.

We denote the set of orbits by conj(G) and refer to its elements as the conjugacy classes of G.
We use the notation [g] for the conjugacy class of g € G. For any g € G its isotropy group under
the conjugation action is its centralizer, which we denote by Zg(g).

Similarly, there is a G x Ys-action on G:
G x ¥y xG—G,(g,7,h)— ghTg™t. (1.4)

We denote the set of orbits by conjgp(G) and refer to its elements as the real conjugacy classes
of G. To distinguish them from the conjugacy classes, we use the notation [[g]] for the real
conjugacy class of g € G. We denote the isotropy group of g under this action by SZq(g) and

refer to it as the semi-centralizer. We will be mostly interested in the (real) conjugacy classes of

has to determine the homotopy type of DN(G) as a Dy4-space, whereas in our situation it suffices to know the

Y.a-equivariant homotopy type and the residual Ca-action.
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Ch, Doy, and Dypeo. In the dihedral groups the conjugacy classes coincide with the real conjugacy
classes, since conjugation with ¢ sends every element to its inverse.

Finally, if H is a subgroup of G, we write NgH for its normalizer. The Weyl group of H in
G is WgH := N¢H/H.

1.3.2 Homotopy and category theory

We freely make use of the framework of co-categories except in Chapter 2. The standard reference
is [Lur09]. This is primarily for convenience and is in no way essential. The so inclined reader
can translate everything in the language of model categories. In that case, all functors in sight
should be replaced by their derived functors and (co)limits have to be interpreted as homotopy
(co)limits.

Any stable oco-category, in particular the oco-category Sp of spectra and the oo-category
SpG of G-spectra, comes equipped with a biproduct, which we denote by @&. We denote the
tensor of a monoidal co-category by ®, in particular we use this notation for the smash product

of(G-)spectra and (G-)spaces. By G-spectra we mean what are also called genuine equivariant

Dapos Dayn

spectra. The theory is well developed for a compact Lie group G. We put Sp = lim,, Sp

and SpCP°° = lim,, SpCP”, where the limit is taken along the restrictions SpD%"+1 — SpPzn
induced by the inclusion Dgpn C Dgyn+1. We refer to the appendix for more details.

Next, we need to specify some conventions for classifying spaces. If G is a (well-pointed
topological) group, then we use for EG the simplicial model EG, = G**! with G acting on the
first coordinate from the left. The face and degeneracy maps are given by

(90, -+ Gi—1,GiGi+1: Jit1,-- -, gn) ifi <n,
di(QOa v 7gn) =

(905 -+ Gn—1) ifi=n
and
8i(90s-+++9n) = (Gos -+ Gis 1, Git1, - - Gn)-
For a category C we define its classifying space as the simplicial set

B,C = Fun([n],C).

We also need to fix some conventions on action groupoids. Let G be a discrete group and S is
a G-set. Then let G//S be its action groupoid, i.e. the groupoid with objects elements of S,

morphisms given by the set
Homg,/s(s,t) = {g € G: gs =t}

and composition given by the multiplication in G. We define G [ S = (G//S)°P. This notation

is non-standard, but it ensures that in G [ .S the composite of

h
sty
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is gh: s + u and hence that B¢G = B,(G [ %). Furthermore, if we let G act on G [ G by left

multiplication on the objects, there is a G-equivariant isomorphism

E.G =5 Bo(G [ G),

go(gog1) ™" 9091(gog1g2) " go - gn—1(go-gn) "
gogi ce

(90,915, 9n) — (90 9091 Gn)-

1.3.3 Rings and ring spectra with anti-involution

Let A be a ring or orthogonal ring spectrum. Recall that its opposite A°P has the same underlying

abelian group or spectrum, but multiplication given by
ARA2ARAL A,

where the isomorphism is given by swapping the factors and p is the multiplication of A. A ring
(spectrum) with anti-involution is a ring or orthogonal ring spectrum A together with a map
of rings or orthogonal ring spectra w: A°? — A such that w°P o w = id4. The anti-involution
amounts to a Xs-action on the underlying orthogonal spectrum or abelian group, hence gives
rise to an orthogonal 3s-spectrum by [HHR16, Proposition A.19]. It thus makes sense to talk
about the (geometric) ¥o-fixed points of a ring spectrum with anti-involution. Note that if
A is a ring with anti-involution, its Eilenberg-MacLane spectrum H A is a ring spectrum with
anti-involution, since HA°? = H(A°P). The resulting orthogonal ¥s-equivariant spectrum is
equivalent to the Eilenberg-MacLane spectrum of the ¥o-Mackey functor with underlying abelian

group A, fixed points group A*2?, and transfer the norm map
A= A a a+ w(a),

see [DMPR21, Example 2.4]. If A is an orthogonal ring spectrum and G a (topological) group,
then we let A[G] = A® G4. This is again a ring spectrum and for a discrete ring A and discrete
group G we have H(A[G]) = HAI[G], so this definition generalizes the discrete case. If A is
commutative we will always equip A[G] with the anti-involution that is the identity on A and

sends elements of G to their inverses.
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Chapter 2

Real, cyclic and dihedral objects

In this chapter we review the theory of real, cyclic and dihedral objects. Just as topological
Hochschild homology can be constructed as the geometric realization of a cyclic spectrum its
real version is constructed as the realization of a dihedral object in spectra. Moreover, from the
construction of real topological Hochschild homology it will be immediate that for any (topolog-

ical) group G and ring spectrum A there is an equivalence of real p-cyclotomic spectra
THR(A[G]) ~ THR(A) ® DN(G),

where DN (G) is the dihedral nerve of G (Example 2.1.10). We shall study the dihedral nerve and
its Yo-fixed points with their residual C-action in Section 2.3 by means of subdivision functors

described in Section 2.2.

2.1 Crossed simplicial groups

In this section we review the definitions and main properties of real, cyclic, or dihedral objects.
To treat all three simultaneously it is convenient to do this in the framework of crossed simplicial
groups. We will see that real, cyclic and dihedral objects can all be interpreted as a kind of
module over a certain crossed simplicial group. The main reference for the material in this

section is [FLI1].

Definition 2.1.1 ([FL91] Definition 1.1). A crossed simplicial group is a sequence of groups
{Gp}nen, together with the following data. There is a (small) category AG such that:

(i) The category AG contains the simplex category A as a wide subcategory.
(ii) Autag(n]) = GOP.
(iii) Any morphism [m] — [n] in AG can be uniquely written as a composite ¢ o g, where

¢ € Homa ([m], [n]) and g € GPP = Autac([m]).
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As one expects, G, forms a simplicial set [F1.91, Lemma 1.3] and simplicial groups are special

instances of crossed simplicial groups [F1.91, Proposition 1.4].

Example 2.1.2. The following are the main examples of crossed simplicial groups of interest to

us.

(i)

(if)

(iii)

Let G, = X5 for all n. We give it the structure of a crossed simplicial group as follows. We
let AR be the category obtained from A by adding an automorphism w,,: [n] — [n] and
impose the relations w? = idp), wn 005 = 0p—j own—1, and wy, 0 7y = 0y o wpp1. We refer
to AR as the real simplex category. The imposed relations ensure that G, is a constant

simplicial set, hence |Go| = 2s.

The cyclic category AC first described by Connes [Con&3] (but see also [Lod98, Chapter 6])
is an example of a crossed simplicial group. It is obtained by adding an extra automorphism

Tn: [n] = [n] subject to the relations

Tnéi = 51’*17_71717 for 1 << n, Tn60 = 671;
TpO; = 0j_1Tpt1, for 1l <i<mn, ThOo = 0n75+1,
n+1l _ .

Tn = ld[n]

One checks this gives rise to a crossed simplicial group C, and by [Lod98, p. 7.1.2] we have

IC.| =T.

Let G, = Dopy1 = Cpy1 X Xo. We construct the dihedral category AD by adding to A the
automorphisms 7,,w, : [n] — [n] satisfying the relations from the previous two examples
and impose the additional relations w? = id},; and wy, o7, = 7} owy,. It follows from [F1.91,
Proposition 3.4] that this indeed yields the structure of a crossed simplicial group, which
we denote by Do. We remark that there are natural inclusions AC — AD and AR — AD.
Finally, | De| = O(2) by [Lod87, Proposition 3.10].

Definition 2.1.3. Let C be a category or an oco-category.

(i
(i)
(iii)

A real simplicial object in C is a functor X : (AR)°? — C.
A cyclic object in C is a functor X : (AC)°P — C.

A dihedral object in C is a functor X : (AD)°P — C.

These are special cases of the following definition.

Definition 2.1.4. Let G, be a crossed simplicial group with corresponding category AG. A

Gl-object in a category of oco-category C is a functor X: (AG)°? — C. We will often use the

notation X, or X, just as in the case of simplicial objects.
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Remark 2.1.5. If C is tensored over Set', then by [F1.O1, Lemma 4.2] a G4-object is equivalently

given by a simplicial object X, with the following structure:
(i) Left group actions G,, ® X,, — X,,.
(ii) Face relations d;(gz) = d;(g) - dg—1;(z)”.

(ili) Degeneracy relations s;(gx) = s;(g) - 54-1;(x).

In fact, it suffices that the face and degeneracy conditions hold for generators of G,,. In particular,
a real simplicial (resp. cyclic) object in X, is the same as a cyclic object together with a map
wp: X, = X, (vesp. t,: X, — X,,) satisfying the dual relations of Example 2.1.2. Similarly,
one sees that a dihedral object is an object which is simultaneously a real simplicial object
and a cyclic object such that the two structures satisfy the dual compatibility relations from
Example 2.1.2 (iii). Finally, a map f: X, — Y, is the same as a map of simplicial objects that

is Ge-equivariant.
We now list the examples which will be of interest to us throughout this thesis.

Example 2.1.6. Let G be a topological group. Then we let Br G be the real simplicial space

with underlying simplicial space B,G and anti-involution given on n-simplices by

wn(glv"wg’n) = (g;17~~~79;1)~

We call its realization BrG the real classifying space of G.

It is useful to generalize this construction to the situation of a category with anti-involution,
Le. a category C with a functor we: C°? — C such that wg” owe = ide. The real classifying space
BrC is the geometric realization of the real simplicial set Br C with underlying simplicial set

B,C and anti-involution given on n-simplices by

fn we (fn)

wn(zo 5 oy B I ) = wean) 22 we () 22, L 2

we (xo).

Note that if S is a (G x X3)-set, then G [ S? can be equipped with the anti-involution that sends
an element s € S to os and elements of G to their inverse. We point out that BgG = Br(G [ *).

Example 2.1.7. Let z € G be a central element. The twisted classifying space Be(G, z) is the

cyclic set with underlying simplicial set B,G and cyclic operator

tn(glv cee 7gn) = (Z(gl T 'gn)_17glv oo 7,gn71)'

n particular, this is the case for Top, Top, and OSp.
2Recall that Gl is itself a simplicial set and that Autag([n]) = G to make sense of this expression.
3For this we assume that G is discrete. In principle one can assume that G is a topological group, give G [ S

the structure of a topological groupoid and define Br(G [ S) as the realization of a real simplicial space, but we

have no need for this generality.
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To generalize the previous example to the dihedral case, we recall from (1.4) that G x 35 acts
on G via
G x ¥ x G — G, (g,7,h) — ghTg™ ",

and that for € G the isotropy group is denoted by SZg(z). We equip X5 with an action of
SZG<JI> X 22 by
SZG<$> X 22 X 2:2 — 227 (g7T7 P ﬂ-) = TpT,

so that we can form the real classifying space of SZ¢(z) [ 3s.
Example 2.1.8. Let G be a discrete group.

(i) Let z € G be a central element of order 2. Then we let B o(G, z) be the dihedral set with
underlying real simplicial set the real classifying space and underlying cyclic set the twisted
classifying space. One checks that the real and cyclic structures are compatible. We denote

its realization by Br(G, z).

(i) Let z € G be an element with 2% # 1. We let Bg o(SZ¢(z) [ X2,z) be the dihedral set
with underlying real simplicial set the real classifying space of SZg(z) [ 39 and equip it

with the cyclic structure given by

g g g z7" (gr1egn) " g Gn—1
th(0g - 01 ¢ - o) =0y e g A e Oy

We denote the realization by Br(SZg(x) [ L2, z).
The next two examples are the main objects of interest for studying (real) TC of group rings.
Example 2.1.9. Let G be a (topological) group. Then we let CN,(G) = G**! be the cyclic

space with face maps

(gOa-~-agi—lvgigi+l7gi+2,~--,gn) if i <n,
di(907gl7--~7gn): o
(9190, 915+ -+ Gn-1) if i =n,

degeneracy maps
5i(90s---59n) = (90, -+, 9is 1, Git15- - - Gn)
and cyclic operator

tn(g()agla v agn) = (gn7907 e 7gn,—1)~

We denote its realization by CN(G) and refer to it as the cyclic nerve of G.

Example 2.1.10. Let G be a (topological) group. Then DN,(G) is the dihedral space with
underlying cyclic space C'No(G) and anti-involution given by

W (90,91, ---9n) = (95 - gn s 91 ).

We denote the realization of DN(G) by DN(G) and refer to it as the dihedral nerve of G.
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Our main reason for treating the theory of crossed simplicial groups is the following statement.

Theorem 2.1.11 ([FLI1] Theorem 5.3). (i) If G is a crossed simplicial group, then |G| is

a topological group.
(i) If Xo is a Ge-space or Ge-spectrum, then there is a natural |Ge|-action on | X,]|.
Corollary 2.1.12. Let C = Top or C = OSp.
(i) The realization of a real simplicial object in C has a natural Xo-action.
(i) The realization of a cyclic object in C has a natural T-action.
(iii) The realization of a dihedral object in C has a natural O(2)-action.

Remark 2.1.13. If X, is a real simplicial or dihedral space, then we can explicitly describe
the Xo-action on |X,|. Namely, if z € X,, and (to,...,t,) € A", then it follows from [FLII,
Lemma 5.6] that the action is given by o - [(z, %0, ...,tn)] = [(Wn(X), tn, ..., t0)]

Remark 2.1.14. By [MMO02, Theorem V.1.5], the realization of a real simplicial orthogonal
spectrum gives rise to an orthogonal Ys-spectrum. Similarly, from the realization of a cyclic
(respectively dihedral) orthogonal spectrum we obtain a orthogonal T-spectrum (respectively
O(2)-spectrum).

2.2 Subdivision of dihedral objects.

Given a real simplicial object or a dihedral object, we would like to understand the fixed points
of the realizations for (finite) cyclic and dihedral groups. The main tools for this purpose are the
edgewise and Segal subdivision functors. The edgewise subdivision gives us access to C,-fixed
points and the Segal subdivision allows us to study the Ys-action. In the situation of cyclic
objects the edgewise subdivision was first introduced by [BHM93] and later cast into a different
light by [Dri04]. We largely follow [Spa00, Section 2], which generalizes the results in [BHM93]
to the dihedral situation, and [Sail3], which expands on [Dri04], in this section. Note for the
following definition that the simplex category has a monoidal structure given by concatenation,

ie. [n]II[m] =[n+m+1].

Definition 2.2.1. Let a be a natural number. Then the a-fold edgewise subdivision functor
sdy: A — A is given by

a

sda([n]) = [[In] = [a(n + 1) = 1],8de(a) = @11+ T a.
i=1

If X, is a simplicial object in a category or co-category C, its a-fold subdivision sd, X, is given
by the composition
Acr 22 gor X ¢
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If X, is a cyclic or dihedral object, its a-fold edgewise subdivision is the a-fold edgewise subdi-

vision of its underlying simplicial object.
To access the Yo-fixed points of a real object we need a second subdivision functor.

Definition 2.2.2. The Segal subdivision functor sdg: A — A is given by
sds([n]) = [n] I [n]°P = [2n + 1],sds(@) = a IT a°P.

If X, is a simplicial object in a category or co-category C, its Segal subdivision sdgX, is given
by the composition
sdg? X
AP — AP = C.
If X, is a real or dihedral object, its Segal subdivision is the Segal subdivision of its underlying

simplicial object.
We can equip the Segal subdivision sdg X with a simplicial ¥s-action via
(sds X )k = Xops1 —2 Xopp1 = (sdgX)k. (2.1)

If X, is a dihedral object, then we can equip its a-fold edgewise subdivision with a simplicial
Cy-action via

(k+1)
a(k+1)—1

(sda X )k = Xa(ht1)—1 Xakg1)—1 = (5da X ), (2.2)

and the subdivision sdgsd, X, with a simplicial Dy,-action via

2(k+1)
(SdssdaX)k = X2a(k+1)—1 m X2a(k+1)—1 = (SdSSdaX)ka (2 3)
W2qa(k4+1)—1

(sdssda X )k = Xaa(ht1)—1 Xoa(k+1)—1 = (sdssdq X ).
Proposition 2.2.3.

(i) Let Xq be a real simplicial space or spectrum. Then the map

1
ds: AL, = AT (to, -+ tn) = 5(to,...,tn,tn,...,to)

induces a natural 3o-equivariant homeomorphism |sdgXe| — | Xo|.

(ii) Let Xo be a dihedral set. Then there is a canonical O(2)-action on |sd,Xe| extending the
simplicial Cy-action (2.2) and the map

1)-1 1
do: AL — AT (2o, ) (b0, tns -t t)

induces a natural O(2)-equivariant homeomorphism |sd,X| = | X]|.
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(iii) Let Xo be a dihedral set. Then there is a canonical O(2)-action on |sdgsd,Xe| extending
the simplicial Dog-action (2.3) and the map

_ 1
2 +1)—1
dso: AL — AZITL (10t 5ttty o)

o

induces a natural O(2)-equivariant homeomorphism |sdgsd, X| — | X]|.

Proof. The map induced by dg is Ys-equivariant by Remark 2.1.13, therefore the first state-
ment follows from [Spa00, Lemma 2.4]. The second and third statement follow from [Sail3,
Theorem 1.5], but we need to check that our maps agree with the homeomorphisms constructed
there. We do this for sdgsd,X,e. The argument for the a-fold edgewise subdivision is similar.

We denote by F (resp. Fa,) the poset (with respect to inclusion) of finite subsets of [0, 1]
(resp. [0,2a]) and by G (resp. Gaq) the poset (also with respect to inclusion) of finite subsets of
R/Z (resp. R/2aZ). For F € F we put

Fo ={2k+x,2(k+1)—2: 0< k <a,zx € FU{0,1}} C [0,2a].
Let p: [0,1] = R/Z and pa,: [0,2a] — R/2aZ be the projections. If F' € G, then we put
Foo = {2k + 2 +20Z,2(k+1) —x +2aZ: 0 < k < a,z € p" (F)U{0,1}} C R/2aZ.

This yields a commutative square of posets

lp lp% (2.4)

Fr—Fs5,
G — Gaq

such that the horizontal arrows are cofinal inclusions and F and F», contain cofinal subsets that
are mapped isomorphically to G resp. Ga, by p resp. ps, (namely all sets F' € F respectively
F € Fy, that contain both 0 and 1 respectively both 0 and 2a or neither). We need some
additional notation. For t = (to,...,t,) € Af,,, let F'(t) = {to + - +t;: 0 <i <n} and define
74 mo([0,1]\ F () — [n] by

0 ifﬁl’<t0,
ft(l“): i iftg+--tig<x<tg+---+t; for somei < n,

n iftg+---t,_1 <.

For any simplicial set X, there is a homeomorphism

[Xe| = colim X [mo ([0, 1] \ F) (2.5)
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by [Sail3, Theorem 1.1]. It is induced by the map determined by the requirement that for any

n-simplex z: A" — X, the following diagram commutes:

A <=5 colim A" [mo([0, 1] \ F)

l""” lm (2.6)

2.5 .
1Xa| 22 colim X[ro([0, 1]\ F))

For a dihedral set X, the isomorphism |sdgsd,X| = |X| is then given by the lower row of the

following diagram

|SdSSdaX‘ i} COlimX['ITO([O’Qa] \FQG)} i COth[’]T0([072a] \F)] (i |X|
FeF FEFs,

- - P

sdgsd, X| —— colim X [o(R/20Z \ Fpq)] = colim X[ro(R/2aZ \ F)] —— |X|.
€ €Gaq

where the inner square is induced by (2.4), the upper right horizontal arrow is (2.5) together with
the rescaling isomorphism F 2 Fa,, and the upper left vertical arrow is also defined by (2.5) and
the following observation to identify the target. If F' € F and the cardinality of mo([0, 1] \ F) is
n, then X[m([0,1] \ F)] = X,, and the cardinality of mo([0,2a] \ Fa,) is 2a(n + 1), therefore

sdssda X[mo([0, 1]\ F)] = (sdssda X )n = Xoame1)—1 = X[mo([0,2a] \ Faq)]
and similarly
sdgsd, X [mo(R/Z\ F)] = (sdssda X)n = Xogni1)—1 = X[m0(R/20Z \ Faq)]

for any F' € G.
The fact that our maps agree with those constructed in [Sail3, Theorem 1.5] now follows by
using the diagram (2.6) once for X, and once for sdgsd,Xe and from the following two assertions,

which are easily checked:
(a) F(t)2a = F(ds.a(t)).

(b) There are isomorphisms my([0,2a] \ Faq) = []7_, m0([0,1] \ F(t)) I mo([0,1] \ F(t))°P and

[T, [n] 11 [n]°P = [2a(n + 1) — 1] and under these isomorphisms the map f@s.(*) is equal to

TT et eryer: TTmo((0, 1\ F(£) Lo([0, 1 \ F(£))°P — []ln] 1L [n)°P.
i=1 i=1 i=1
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2.3 The homotopy type of the dihedral nerve and its -
fixed points.

In this section we apply the subdivision functors to prove an additive decomposition formula for
the dihedral nerve. We use this formula to determine the ¥s-fixed points of DN (G), as well as
the residual Ca-action on the -fixed points, which is necessary to calculate ®*2 TCR(A[G]; 2).

Let C and D be categories with anti-involution. A functor F': C — D is a functor of cate-
gories with anti-involution if it satisfies wpF°P = Fwe. Such a functor induces a map on the
real classifying spaces. We will need the following lemma, which is well-known and states a
condition under which F' induces an equivalence BrC ~ BrD of ¥s-spaces. We give the proof

for completeness.

Lemma 2.3.1. Let C and D be categories with anti-involution and F: C — D a functor of
categories with anti-involution which is an equivalence on the underlying categories. Then the

map BrF': BrC — BrD is an equivalence of Yo-spaces.

Proof. For any category with anti-involution C define the category C“ as follows. Its objects are
maps a: ¢ — we(z) such that we(a) = o and a morphism from a: ¢ — we(x) to B: y — we(y)
is a morphism f: x — y in C such that the diagram

commutes®. We have an isomorphism of simplicial sets

BoC¥ =5 (sdgBg..C)™? (2.7)
by mapping an n-simplex
f1 f2 I
ly) 1 e Ty
b 2
(,UC([L'()) Wc(fl) wC(xl) WC(fl) . wC(fn) wC(xn)

of the source to the n-simplex

Zo EN Z1 Ly Iy Tn = we (@) wells), .., zetha) we (1) eth), we (o).

Now, any functor F': C — D of categories with anti-involution induces a functor F*: C¥ — D¥

and one checks that F“ is an equivalence of categories if F' is an equivalence of the underlying

4 Another way to describe this is by noting that we induces a Yo-action on (the opposite of) the twisted arrow

category of C and C¥ is the resulting fixed point category.
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categories. By assumption BrF' is an equivalence on the underlying spaces and we see that

(BrF)*? is an equivalence by observing that the following diagram commutes

Bcw —BF" |, ppw

I ¢

=
(BaC)™ —2 s (B2D)™,
where the vertical arrows are the geometric realizations of (2.7). O

We can now formulate the decomposition formula for DN(G). It involves the twisted real
classifying spaces from Example 2.1.8. We denote by Fo(2)[S ! the family of subgroups H < O(2)
such that H NS = 1. Recall from (1.4) that G x X5 acts on G via

G x ¥y xG—G,(g,7,h)— ghTg™t.

For any = € G the real conjugacy class [[z]] is an orbit of this action, hence itself is acted upon
by G x 3o, which means that we can form the real classifying space Br(G [[[z]]). We shall use
this fact in the proof.

Proposition 2.3.2. Let G be a discrete group. There is a Fo(2) [S1]-equivalence’

II BeZe@) oy J[  Be(SZa(z)[¥2.2) ~ DN(G), (2.8)
[[e]] €conjz (), [[e]] €conjz (),
z?=1 z?#£1

which depends on a choice of representatives for the real conjugacy classes.

Proof. Tt suffices to show that there is an O(2)-equivariant map which induces an equivalence
on the underlying ¥,-spaces, since any subgroup in Fp(9)[S 11" is subconjugate to ¥p. For any
element 2 € G let DN (G),) denote the sub-dihedral set consisting of k-simplices (go, - .., gx)
such that go - - - g € [[x]]. Now choose a set of representatives for the set of real conjugacy classes.

We obtain a decomposition

DN(G) = H DN (G I ]_[ DN (G){(a]
[[z]]€conjy (G), ([z]] €conj (G),
z2=1 z2#£1

of dihedral sets. For any representative x there is an isomorphism
Bz (G [[[]]) = DN(G)fap, (w0 <= -+ < 2p) > (g 96) " g1, k).
If 22 = 1, then the map

BrZg(z) = Br(G [[[z]]), (g1, - g1) = (< - &5 a)

5See Definition A.2.4 for this notion. Note that the definition given there also makes sense for spaces and the

group O(2).
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is an equivalence of Y3-spaces by Lemma 2.3.1, since it is induced by the functor of categories

with anti-involution

Za(x) [+ — G [[[z],

which sends the point to x and this functor is an equivalence of the underlying categories. One

checks that the resulting map
Br(Za(x),x) = DN(G)(a)

is compatible with the dihedral structure. Similarly, if 2 # 1, the functor of categories with
anti-involution SZq(z) [ ¥o — G [[[z]] that sends the object 7 to 27 and is the restriction of the

projection SZg(x) — G on morphisms induces a map
Br(SZc(x) [ $2) — Br(G [[[z])),

which is an equivalence of ¥s-spaces by Lemma 2.3.1 and again one checks the resulting map
Br(SZa(x) [ X2,2) = DN(G)a))

is one of dihedral sets. The coproduct of all these maps is the desired equivalence. O

Using the subdivision functors from the previous section it is easy to determine the ¥o-fixed
points of the left hand side of (2.8).

Proposition 2.3.3. Let S be a G x Xa-set. Then the Yo-fized points of the real classifying space
of G [ S are given by

Br(G [ 9)*? = H SUE=D) iy EG, (2.9)

where the right hand side depends on a choice of representative x for each conjugacy class.

Proof. We use the subdivision functors® to determine the fixed points of the real classifying
space. We will define mutually inverse maps between the simplicial sets (sdgsdeBg(G [ 9))*2
and [T,1cconj(c) 0221 sdg(S{@ =1 x 1,y EG). The k-simplices of (sdssd2Bgr(G [ S))*2 have
the form

1 1
92k+1 y Y241 g _
50&51<g—2---<—52k+1<—52k+1<—~-<1—80 (210)

with y2 = 1. Now if z = gy 'ygo is the chosen representative of [y], then we map (2.10) to the
k-simplex [(go_lszkﬂ,go_l(gl e 'g2k+1)_17917 s g2ky1)] € SdS(S«I’_l)> X Zg () EG).

6Strictly speaking we only need to use the Segal subdivision of the real classifying space, but subdividing

further is convenient to determine the residual C2-action on our examples of interest.
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The inverse map is defined as follows: If [(s, go, - - . , gart1)] € sds(S{®=D) x 7,y EG)y, then
we map this k-simplex to the k-simplex

go's <2 (gog1)'s «Z— - &L (go .. gopin) s

T(QU"'92k+1)_1190"‘g2k+1

1 ot i 95" Gon 1
90 s~ (9091) I3 2. 22 (90" - 92k+1) s

of (sdgsdeBg(G [ S))*=2. O
Remark 2.3.4. If x € GG is central and of order 2, then the residual Cs-action on

Be(G,2)™ = [ BZal)

[y]Econg(G),
y?=1

sends the component indexed by [y] to the component indexed by [zy]. Similarly, if € G with

22 # 1, then the residual Cs-action on

1

Br(SZa(z) [ $9,2)™ 11 S8 S ey ESZa)

[y]€conj(SZg(z)),
y?=1

also maps the component indexed by [y] to the component indexed by [zy] = [z~'y]. Both
assertions are easily checked by tracing through the maps constructed in the proof of Proposition
2.3.3.

Remark 2.3.5. If one is not interested in the residual Cs-action, one can also define a homeo-

morphism
[T S xp EG S (sdsBa(G [ 5)™,

[x]Econj(G),
z2=1

via the simplicial map

g515<g—1(gogl)_1$<g—2~--<g—"(go... 1

gn)"'s
[(SagOagla-“agn)] — T(QO"'gn)_lfL’go“'gn (211)

1 gt - 93! 9," 1=

go 18 % (gogl) 15 L} P 4) (go.gn) 187
where the left hand n-simplex is in the component indexed by [z]. One checks that under the
homeomorphisms of Proposition 2.2.3 this map coincides with the map in the proof of Proposition

2.3.3

We also want to determine the residual Cs-action on the Yo-fixed points of the left hand side
of (2.8) in certain cases of interest to us. Here we need to distinguish between the summands
indexed by elements of order 2 and the remaining summands. We first treat the elements of order
2, where we again need to distinguish between two cases. The first case is that of the summand

indexed by the trivial element.
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Proposition 2.3.6. As a Xy-space with Cy-action, Br(G, 1) is equivalent to BgG with the trivial

Cs-action.

Proof. Consider the map of real simplicial sets

BrG — sdaBr(G, 1), (g1, -, 9k) = (91, -+, gk, (g1 - - ~gk)_1,gl, ces Ok)s (2.12)

which factors through the Cs-fixed points of the target, hence is Cy-equivariant if we equip the
source with the trivial Cs-action. We need to show it is an equivalence of Ys-spaces. On the
underlying spaces it is an equivalence, since it is induced from a G-equivariant map EG — sdo EG.
Thus, we need to check that the induced map on Yo-fixed points is an equivalence. We check this

by using the Segal subdivision. Let € G be an element of order 2 and consider the diagram

EG/Z(;<:L‘> *********** > SdsEG/Zg<QS>

Jers |

(sdsBrG)®> — 212 (sdgsdaBr(G, 1)),

where the right vertical arrow is the map constructed in the proof of Proposition 2.3.3. The

dashed horizontal arrow is then induced by the simplicial map

[(90791a e 79]@)] — [(gO7gla <5 9k, (g() o 'gk)_ll’go o 'gkag];17 e 79;1)] (213)

Consider the maps

BZg{x) = EG/Zg{x),(91,---,9k) = [(1, 01, -, 9x)]
BZG<J:> — SdSEG/ZG<Z’>,(91, v 7gk) — [(17917' .. agk‘vxagk_la s agl_l)]a

which are both equivalences and fit into the triangle

BZG<J}>

EG/Zg(x) ————— sdsEG/Zg(x),
therefore also (2.13) is an equivalence. O
In Chapter 4 we will want to show that
P TCR(X ® Br(G,1)1;2) ~ &2 TCR(X @ (BgG1)™Y;2)

(see Example 3.4.2, Example 3.4.5 and Lemma 3.4.8 for the definition of the 2-cyclotomic spectra
involved), since we can explicitly describe the right hand side, and the map implementing this
equivalence will be that of the previous proposition. The next lemma will ensure that it indeed

induces a map after applying ®*2TCR(X ® —;2).
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Lemma 2.3.7. For any discrete group G and central element z € G the map on geometric

realizations induced by
BG. — SdSBGOu (gla T 7gn) = (917 <y 9n, 2,97:1, s 79;1)7 (214)

is homotopic to the identity after composing with the homeomorphism |sds BGe| = BG of Propo-

sition 2.2.5.
Proof. 1t is straightforward to check that the induced map on m; is the identity. We spell out
the details. The element g € G = 71 (BG) is represented by the loop

[0,1] = BG,t+ [(g,1 — t,1)] (2.15)

and the composition of (2.14) with the homeomorphism |sdgBG,| = BG maps this loop to the
loop
1 1.1 1

0,1 = BG, = (9,597, 5 (1~ 1), 3t 5, 5 (1= )] (2.16)

We lift this to the path
1 1. 1.1
1] —E 1 Lo —t), =t =t, (1 —
[07 ]% G7tH[( ’g’z7g ’2( t)7 Qt? 2t’2( t))]?

which starts at

4 1 1 1
[(1793279 a530707§)] *[(1327775)]
and ends at
11 11 1
-1 L1 _ Ly L1
[(1797279 707272a0)] [(9,2,2,2)] g [(1727 ) )}7
so that (2.16) also represents g € G = w1 (BG). O

Next, we consider the components of DN (G)*? indexed by the non-trivial elements of order
2.

Example 2.3.8. Let z € G be a central element of order 2. Then we obtain the isomomorphism

Ba(G,2) = [ BZs(a),
[z]€conj(G@)
z?=1

where BZg(z) is modeled by EG/Z¢g(x). Recall from Remark 2.3.4 that the residual Cs-action

maps the component indexed by [z] to the component indexed by [zx].

(i) Suppose G = X5 and z = 0. Then we see that Bg(3a,0)>2 = BY, 11 BYy and the residual

Cs-action switches the components, hence is induced after untwisting.

(ii) Suppose G = Dy and z # 1. Since Dy is abelian we obtain Bg(Dy, 2)™* = [[,cp, BDa,

and again after untwisting the residual Cs-action this is induced.

28



(i)

(iv)

Suppose n = 2 mod 4. We consider G = Ds,, and z = ¢Z. Up to conjugacy the elements
of order 2 are 1,¢2, 0, and oc?, since 5 is odd. The first two elements are central and

in

Zp, (oc) = (0%, c3) = D, for i = 0,1. Thus,

By(Dan,c?)™ = BDy, 11 BD,,, 11 BD, 11 BD,.

n

2
switches the components and is therefore induced after untwisting, that is

Furthermore, [c3 ocf] = [oci+(=D"] for i = 0,1, since Z is odd, so that the residual Cy-action

Bg(Da,, %) = ind$? (BD,, 11 BD,).

Next, we assume n = 0 mod 4. We again consider G = Dy, and z = ¢%. The same

considerations as before show that
Bg(Day, c%)22 ~ BD,, 1 BDs,, 1 BZp,, (o) 1 BZp,, {oc),

and the residual Cs-action switches both copies of BDs,,. The other two summands how-
ever, are invariant under the action, since [cZoc!] = [¢!] for i = 0,1. We describe the
Co-action. Recall that for i = 0,1 the space BZp,, (oc') is modeled by the Segal subdivi-
sion of EDa,/Zp,, (0c'). Tracing through the maps in the proof of Proposition 2.3.3 we
see that the Cs-action is given on k-simplices as
[(do, dy,- . dogy1)] = [(cTdo- - doprr, dy g, doyl - di )]
Note that Np,, Zp,, (oct) = (oc’,c1). If we equip the left hand side with the residual
action by Wp, Zp,, (oc') =2 Cy, the map of simplicial sets
ENDQTL ZDQn <00i>/ZD2n <0ci> - SdSED?n/ZDzn <Jci>7
[(do,di,...,dk)] = [(dosdi, ... dg, L, di . dy )]

is Co-equivariant, and it is an equivalence, since it is induced by a Zp, (oc')-equivariant

map ENp,, Zp,, {(oc¢') — sdsEDs,. Putting this all together we obtain an equivalence of

spaces with Cs-action

Bg(Dap,¢?)™ ~ ind{*BDy, 11 [[ ENDp,,Zp,, (0¢")/Zp,,(0c").
i=0,1

Finally, we consider Br (D2, c1), where ¢; denotes the generator of Cy. We have that
Bg(Dae,¢1)”? 2 BDye 1 BDyeo 11 BZp,.. (7).

As in the previous example, the residual Cs-action switches both copies of BDss, hence is
induced on these summands, and BZp,.. (o) = BDy is invariant under the Cs-action. In

fact, BD, is modeled by sdgFE Dgs /D4 with the Co-action given on k-simplices by

[(dOa d17 oo ad2k+1)] = [(CQdO T d2k+1a d;k1+17 d;k17 e >d;1)]7
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where ¢y denotes a chosen generator of Dg. Just as before one then shows that there is a
Cs-equivariant equivalence
EDg/D4 >~ SdsEDQoo/D4,

where the left hand side carries the residual action by Dg/Dy = Cs, so that all in all there

is a Cy-equivariant equivalence

Bg(Daw,¢1)”? ~ ind$? BDy 11 EDg/ D,.

Example 2.3.9. We now describe the residual Cs-action on the ¥,-fixed points of the com-

ponents of DN (Ds,,) corresponding to the elements not of order 2, where we include the cases

n = oo and n = 2°. Any element x with 2 # 1 must be contained in C, and we have an

isomorphism Dy, & SZp,, (z) by mapping ¢ € C), to (¢,1) € SZp,, (x) and o to (¢, —1). Under

this isomorphism the action of Ds,, on ¥ is given by restriction of the action of Y5 on itself via
the projection Da,, — Da, /C,, = 39. We see that Eé(y’_l» is non-empty iff y € C),, and in that

case it is equal to ¥o. Now we need to treat the different cases separately.

(i)

(iii)

Assume that n < oo is odd. Then
Br(Dap [ £2,2)™> 2 59 Xy EDsy, = 55/ (0) = *

since in this case o¢’ is conjugate to o for all j, Zp, (o) = (o) and (o) acts freely on .

Thus, the residual Cs-action is trivial.
Similarly, we have

Ba(Doo [ £2,7) ~ [] B2 X (oety EDoo ~ %1%,
i=0,1
since Zp,, (oc') = (oc') acts freely on ¥y. One checks that if 2 = ¢/ with j odd, the the
residual Cy-action switches the components indexed by [o] and [o¢], that is the action is
induced after untwisting. If z = ¢/ with j even, then both components are invariant under

the Cs-action, hence the Cs-action is trivial.

Suppose that n < oo is even. Then

Bz(Dzn [ S2,2) = [ 2%z, . EDan.
i=0,1

If z = ¢/ with j odd, then the residual Cs-action switches the components indexed by [o]
and [oc], therefore the action is induced after untwisting. If on the other hand z = ¢/ with
j even, then both components are invariant under the Cs-action. A careful check shows

that on k-simplices the Cs-action is given by
(7, do, di, - .. doks1)] = [(—7, (¢2) dody -+ dojr1, dogty 1, oyt s - d7 )]
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(iv)

We consider for ¢ = 0,1 the map
Yo XZD% (oct) EDy, — Sds(ZQ XDy EDQn),
(1,do,dy, ... dg)] = [(T,do,dy, - di, 1,dy Yo d Y],

which is an equivalence and Cs-equivariant if we give the source the action defined by

(7, do,dy,. ... dp)] = (=7, (c2)"do,dy, . .., dy)].
We claim that there is a Cs-equivariant equivalence ¥ X Zp,, (oct) EDy, ~ BWp, (oct),
where the right hand side carries the trivial Co-action. The Cs-action on g X Zpy, (oci) EDs,
can clearly be lifted to a (Cy x Zp,, (oc))-action on ¥y x ED,,. Denote by a: Cy x
Zp,, (oc) — Wp,, (oc?) the composite
Cy x Zp,, (0c') = Cy x Np, (oc') = Np,, (oc) LR Wp,, (oc'),

where both arrows are the projection. Then the projection

(B2 X (gcty EDan) Xwp, (acty B EWD,, (0¢") = B2 Xz, (gcty EDan
is a Cy-equivariant homotopy equivalence, since it is induced by the projection

Yo X EDy, x &* EWp,, {oc') — Sg x EDy,
and Zp,, (oc') acts freely on both source and target. Similarly, the projection
(B2 X (gcty EDan) Xwp, (octy B EWp,, (0¢') = B*EWp, (0¢')/Wp,, (oc')
is also a Cs-equivariant homotopy equivalence, since it is induced by the projection
(32 X (peiy ED2y) x B*EWp,, (oc*') = B*EWp,, (oc").

The latter is a homotopy equivalence since (oc') acts freely on Xy and Wp,, (oc?) acts
freely on both source and target, therefore the induced map on orbits is also a homotopy
equivalence. Finally, note that the residual Cy-action on (8*EWp,, (0¢"))/Zp,, (sciy =
BWp,, (oct) is trivial. This yields the claim and all in all we obtain an equivalence of
spaces with Cs-action
Bg(Dap,c?)™ ~ [ BWp,, (oc').
i=0,1
Finally, we consider Dy~ and fix generators {c,}nen of Can such that ¢2 = ¢, ;. Note

that ocl, is conjugate to o for all n and j and Zp,.. (o) = (0, c1) = D4. Thus,
Bg(Dae [ %,6)) ~ ¥y Xp, EDae,
and the residual Cs-action is given by
[(r,do,di, ..., dogy)] = [(—7, (chyy)dods - - dopr1, dogy 1 dogt - di ).

The same argument as for Dy, with n < oo even now shows that X4 X p, F Do is equivalent
to BCy with the trivial Cs-action.
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Chapter 3

Real Topological Cyclic Homology

In this chapter we introduce real p-cyclotomic spectra and real topological cyclic homology
following [()S21a]. Recall from [NS18] that a p-cyclotomic spectrum is a spectrum X with Cpeo-

1

action! and a Cpe-equivariant map @y : X — X7 called the Frobenius. Its topological cyclic

homology can then be computed via the fiber sequence
hCpoo _ o0
TC(X,p) N thpoo p P cal (Xth)thoo ;

where
can: thpsc ~ (thp)h(cpoo/cp) ~ (Xth)thoo — (Xtcp)hcpoc .

To define the real versions we need to define so called parametrized versions of homotopy orbits,
homotopy fixed points and the Tate construction. This is done in section 3.2. In Section 3.3
we specialize our discussion of parametrized homotopy orbits, homotopy fixed points and the
Tate construction to the case of dihedral groups. Section 3.4 treats the theory of real cyclotomic
spectra and additionally we give the definition of real topological cyclic homology there. Finally,
in section 3.5 we will calculate ®*2 TCR(X; p) for all primes p, reproving [DMP21, Corollary 2.5]
and [DMP21, Theorem 2.13] by different methods.

3.1 Group-theoretic preliminaries

In this section we lay down some conventions and review some facts regarding group theory
which we will need in the sequel. Recall from the introduction that except from T and O(2)
all groups are discrete, and although we will encounter infinite groups, an abstract group G will
always be finite in this chapter. We denote the orbit category by Og. Up to isomorphism its
objects consist of G-sets of the form G/K for K any subgroup. For g € G and K any subgroup

1By this we mean an object of Fun(BCjpe, Sp).

32



put K9 = gKg~'. For any h € G we have hgK = gK iff h € K9, thus
Home, (G/H,G/K) = (G/K)" = {¢yK : HC K9} = {¢K : o9 ¢ K}, (3.1)

where the bijection is given by evaluating a map at the coset 1H. It is easy to see that there is an
isomorphism f: G/H =a /K iff H is conjugate to K. The only if direction is immediate from
(3.1) and if K = HY, then the maps f: G/H — G/K determined by g"'K and f': G/K — G/H
determined by gH are mutually inverse.

If we restrict the action on G/K to a subgroup H, then the above implies that the isotropy
of the H-action at gK is H N K9, thus we obtain (a special case of) the double coset formula:

res$ G /K = 11 H/HNK. (3.2)

HgKeH\G/K
We now state some facts about conjugacy classes of subgroups of order 2 in dihedral groups,
and also about their normalizers, centralizers and Weyl groups. In general, if z € G is an element
= (z) iff gzg™"
this is the case iff g € Zg(x), hence Zg(z) = Ng(x). In the case of dihedral groups one can now

-1

of order 2, then by injectivity of the conjugation map we have g{x)g =z and

check directly for finite n and j = 1,...,n that we have

. (oc?) for odd n,
Np,, (oc) = 4 (3.3)

(oc?,c%) for evenn,

but Np, o (o¢/) = (o¢?) for any prime p and Np_(oc?) = (o¢?). Thus, Wp,, (oc?) = Cs for
even n and Wp, (oc?) is trivial for odd n,n = oo, and n = p*.

We will use the notion of a G-family F and particular examples of G-families. We refer to
section A.2 for the definition of a G-family and the G-spaces EF and EF. We also recall from

section A.2 the particular G-families of interest to us:

(1) If N is a normal subgroup, then we denote by F[N] the N-free family, that is the subgroups
H such that HNN =1.

(2) Let N again be a normal subgroup. Then Fg »n denotes the family of subgroups H that

do not contain N.

(3) If H is any subgroup, then we let F¢ <p be the family of all subgroups that are conjugate
to a subgroup of H.

If the group is clear from context, then we often drop the subscript G in the notation.

Remark 3.1.1. We specialize to the case G = Dg,n and N = Cpn, where we allow n = oo.

Then one easily checks that the following statements hold.

(i) For 1 <k <n we have Fp, . [Cpr] = Fp,,n[Cpn].
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(ii) If p is odd then up to conjugacy Fp,,. [Cpn] consists of the trivial group and (o). The same

is true for p =2 if n =0, 1, co.

(iii) If 1 <n < oo, then up to conjugacy Fp,, ., [Can] consists of the trivial group, (o) and {(oc).

The subgroups (oc?/) are conjugate to (o) and (oc?*1) is conjugate to (oc) for all j.
(iv) We always have FDopn [Cpn] = FDoyn 5Cp-

Finally, we introduce some notation and state some facts for sections of group extensions.
These will appear in the computation of the geometric fixed points of the parametrized homotopy

orbits. We consider a group extension

1—— N G L% 1.

We denote by Sec, the set of (group theoretic) sections of p. The group N acts on Sec, via

conjugation, that is if s € Sec,, then gsg~—*

is also a section of p for any g € N. Sending a section
to its image yields an inclusion

Sec, — Fg[N].

The image of this inclusion consists exactly of all H € F¢[N] such that the restriction of p to H
induces an isomorphism H = ¥.. For this reason we shall also refer to such subgroups as sections
of p. Finally, for two orbits [H], [K] € Sec,/N we have that [H]| = [K] iff H and K are conjugate
in G. To see why, we observe that the fact that H is the image of a section s implies G = HN,
therefore for any g € G we obtain from g = hn that

HY = H"™ = H",

and hence HY is the image of nsn™!.

3.2 The parametrized Tate construction

In this section we introduce parametrized versions of the homotopy orbits, homotopy fixed
points and the Tate construction. Our presentation differs from that of [()S21b], which uses
parametrized oo-categories. By [()S21b, Remark 4.31] the constructions given in loc. cit. are a
special case of the constructions given in [GM95, Part IV], which is written in the language of
equivariant stable homotopy theory and it is their language we adopt. We give the definitions
for a general group G with normal subgroup N and specialize to the case of dihedral groups in
the next section. At the end of this section we will compute ®* X}, .y, the geometric fixed points

of the parametrized homotopy orbits (see Lemma 3.2.6).
Definition 3.2.1. Let X be a G-spectrum and N a normal subgroup.

(i) The parametrized homotopy orbits are X, v := (X ® EFg[N]{)N.
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(i)
(iii)

The parametrized homotopy fixed points are X"e¢/~N .= F(EFg[N],, X)V.
The parametrized Tate construction X*¢/~V is defined to be the cofiber of
Nm: (X @ EF[N)N = (F(EFGIN)+, X) & EFGIN].)Y — F(BFa[N]+, X)Y,

the map that collapses EF¢[N] to a point, which we also refer to as the (parametrized)

norm map.

Remark 3.2.2. The parametrized homotopy orbits, fixed points and Tate construction have

the following properties:

(i)

(i)

(iii)

By construction, the parametrized homotopy orbits, fixed points and Tate construction are
G/N-spectra.

Since X ® EF, is F-torsion and F(EF,;,X) is F-complete, Lemma A.2.5 implies that
parametrized homotopy orbits, parametrized homotopy fixed points and the parametrized

Tate construction send Fg[N]-equivalences to equivalences of G/N-spectra.

If X is Fg[N]-torsion, then

XN ~ XhG/NN
and similarly if X is Fg[N]-complete,

XN ~ xhe/nN,

By using the cofiber sequence EF, — S° — E\.JF, we see that

Xte/nN — (F(EFg[N]4, X) ® EFg[N)N.

In particular, (—)'é/~ is lax monoidal, since fixed points are lax monoidal and F'(EF,, —)

and — ® EF are lax monoidal for any G-family F.

If N = G, this recovers the classical definition of homotopy orbits, fixed points and the Tate
construction. More generally, the underlying non-equivariant spectra of Xp N, X ha/nN

and X*te/NN are equivalent to Xy, XN and X*V.

If H is a subgroup containing N, then the underlying H/N-spectrum of Xhe N 18 equiv-
alent to XhH/NN- Therefore, whenever we consider XhH/NN as a G/N-spectrum, we will
actually mean X}, ~ and the analogous remark holds for X hu/nN - Note that for any

normal subgroup N’ containing N there are equivalences

’ ’
(XhH/NN)h(G/N)/(N’/N)N//N ~ XhG/N’N/7 (X}LH/NN)h(G/N)/(N//N)N /N ~ XhG/N/N )
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The first equivalence follows from the projection formula (A.23) and (A.28). For the second

equivalence one additionally uses Lemma A.1.9 and the equivalence of G-spectra
FX,F(Y,Z))~F(XQ®Y,2),

which is a consequence of the oo-categorical Yoneda lemma.

The main example to have in mind is that of a Dgyn-spectrum X (where we allow n = c0).
We usually want to consider Xhzchk,Xhzchk and X200k as Dy,n—r-spectra. In this

case the equivalences above become

~ hsyC k\hsyC ok ~, Yhs,Cpn
(Xhsy € sy € ™ Xhgy € and - (X72508 )2 Tpn ol o X0 T0n,

(vii) After choosing a G-CW-model for EFg[N], its skeletal filtration gives rise to spectral

sequences

B2, = HE(EFGIN);mi 7 X) = n0l Xy v

Ey' = HY(EFG[N];mi ) X) = nl/N xhamN,

where HS (EFg[N]; Wt(_)X) and HE(EFg[NJ; Wt(_)X) denote Bredon homology and coho-
mology (see [VINN19, Chapters 2 and 3]). As a consequence, if res% X is n-connected for
all H € Fg[N], then X, ,wN 18 n-connected. Similarly, if if res& X is n-coconnected for all
H € Fg[N], then Xhe/~N is n-coconnected.

The previous definition only applies to finite G, but we also need a version of the parametrized

homotopy fixed points in the case of G = Dypee and N = Cpeo.
Definition 3.2.3. Let X be a Dape-spectrum. Then we define

X"2:Cp _ fim XM= Com
n

where the limit is taken along the inclusion of fixed points.

In the special case G = Dyn+1 the following definition will play a part in the computation of
P¥2 X222 (see Lemma 3.3.3).

Definition 3.2.4. Let X be a G-spectrum and H a subgroup. The generalized Tate spectrum
of X is defined to be the spectrum given by

X™ =" F(EG,,X),
the geometric fixed points of its Borel completion.

We point out that the generalized Tate construction only depends on the underlying homotopy

type of X. To be precise, if f: X — Y is a map of G-spectra which is an equivalence on the
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underlying spectra, then f induces for any subgroup H an equivalence X7 ~ Y7H  This follows
from Lemma A.2.5.

In Section 3.5 we will prove that ®*2TCR(X; 2) vanishes in a special case. The key ingredient
for this is the following vanishing result. It is probably known to experts and the proof is purely

formal.

Proposition 3.2.5. If N is a normal subgroup of G, then for any N-spectrum X the spectra

@G/N(ind%X)hG/NN, SCG/N (ind§ X )he/nN | and G/N (ind§ X))t~ N are contractible.

Proof. Tt suffices to show that the spectra <I>G/N(coind%X)hG/NN, ®CG/N (coind§ X ) e/~ N | and
BG/N (coind§ X )te/~n N are contractible by the Wirthmiiller isomorphism, and it suffices to prove
this for the first two by exactness of geometric fixed points. Consider the following diagram of
groups

N ——1

I

G —— G/N,

where the vertical arrows are inclusions and the horizontal arrows projections. Since right ad-
joints compose, we obtain a natural equivalence (coinng W~ coindf/ NXNof G /N-spectra.

Combined with the projection formula (A.22) this equivalence implies

(coind§ X )y v = (coind§X @ EFG[N])Y
~ (coind§(X @ ENL )Y
~ coind{"N (X @ EN,)V,

where we used that res§ EFg[N] ~ EN. Using Lemma A.1.9 we similarly obtain
(coind§ X)"e/nN = F(EFq[N]y, coind§ X)N
~ (coind§ F(EN,, X))V
~ coind{"N F(EN,, X)V,
and we conclude with the observation that geometric fixed points of coinduced spectra vanish. [

We end this section by computing the geometric fixed points of the parametrized homotopy
orbits. This computation will involve equivalences between (geometric) fixed points of conjugate
subgroups. Before we state the result we review the definition of these equivalences. First we fix
notation. If G is a finite group and g € G, then we denote by c¢,: G — G the conjugation map.
The restriction to any subgroup H induces an isomorphism H = H 9. which we also denote by

cq. After passing to the quotients we obtain an isomorphism of the Weyl groups
Wl WoH = W HY
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and for any G-spectrum X there is a natural equivalence of W H-spectra
* 9 *
(wip) X" = ((eg)* X))

We refer to Section A.3 of the appendix for the construction of this equivalence and its general
properties.
Left multiplication by g also induces an equivalence of G-spectra [,: X = (cg)*X and

composing this with the previous equivalence we obtain an equivalence of W H-spectra
X~ (W) X H°.

If g € H, then wy, is the identity and so is the previous equivalence.

For the geometric fixed points we note that there is an equivalence of NgH-spaces
EFNgupn = (¢g) " EF NgHo 19,
therefore a natural equivalence of W H-spectra

— — l,@id)H N —
O X = (X @ EF i) ~ (X ® (¢g) EF prr0)™ 2V () (X ® EF 510))7
(Wi)* (X ®@ EF )" = (W) @™’ X, (3.4)

where we used that (¢g)* is monoidal. In a similar vein, if a: I' — G is an isomorphism, we have

that ET' ~ o* EG and since o* is a monoidal equivalences,
(Oé*X)hF ~ XhG~

Since «a is an isomorphism, the unit map 7/, : id — a*ay and counit map €., : aya* — id are equiv-
alence, therefore the projection formula (A.21) also holds in this case and the (co-categorical)

Yoneda Lemma yields
FET ,a"X)~ F(a"EGy,a"X) ~ a*F(EG4, X).

Thus, (after combining this with the equivalence o*EG ~ EVF) we also obtain conjugation

equivalences for homotopy fixed points and the Tate construction:
(@ X)) ~ X" and (X)) ~ XUC

Combining this with the conjugation equivalences for geometric fixed points we obtain equiva-

lences of spectra:



It is easily checked that if ® X is Borel torsion, then so is 7’ X and (3.5) and (3.6) agree under
the equivalences (®7X)Vell ~ (8YX)weop and (O X)W’ ~ (OH° X))y, po. Similarly,
if ®X is Borel complete, then so is @7’ X and (3.5) and (3.7) agree under the equivalences
(@HX)Well ~ (QH X)hWell and (@H* X)Well” ~ (9H X)hWell?,

Lemma 3.2.6. Let

1 N [EQEEA y 1

be a group extension and let X be a G-spectrum.

(i) There is a natural equivalence

(I)ZXhEN = @ ((I)HX)thHa (39)
[H]€eSec, /N
which only depends on a choice of representatives in the following sense. If [H] = [K], then

the following diagram commutes

> Xy, N

— T

(O X)) nwon (KX ) nwek,

1

where the diagonal arrows are (3.9) composed with the projection to the summand indezed
by [H] = [K] for the different choices of representatives and the horizontal arrow is the

conjugation equivalence (3.6).

(i) Consider the following diagram

™

l1—s N— G225 % 1
T 1
l1— s N—G—22sy—51

where the rows are group extensions and the vertical arrows are inclusions of subgroups.
The inclusion G — G induces a map f: Sec,/N — Secﬁ/N and under the equivalence of
(i) the restriction of the inclusion of fized points @EXhEN — ®* X, N to the summand

indexed by [H)] € Secs/N factors through ®[H]€f71([f{])((I)HX)hWGH and the composite

((bHX)hWGFI - P @ X)wwen = (@ X)wwon,
[H]ef~([H])

where the second arrow is the projection, is homotopic to the conjugation equivalence fol-

lowed by inclusion of fixed points

(@ X) i — (@7 X)nwan = (7 X)nworn
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Proof. We start by constructing a natural transformation

Xy = P (@ X)wwon (3.10)
[H]€eSec, /N

Let F = Fg[N]. Note that if H € Sec,, then EF ~ EWgH as a W H-space, therefore
(@7(X @ BEF )V ~ (" X)pwen-

Indeed, EF is (non-equivariantly) contractible since H € F, and if K/H is a non-trivial
subgroup of W H, then it must be the case that K NN # 1, therefore (EFH)K/H = EFK — .

We shall construct a natural transformation

b oXN - P (@ x)Wer
[H]€Sec, /N

and then define (3.10) as the composite

P Xpon = OS(X W EF)Y L P @ X eBEF)T >~ P (@ X)wen
[H]€eSec, /N [H]€eSec, /N

For the construction of ¢ let H € Sec,. We use the projection formula (A.23) to rewrite the

source
"XV = (XN @ EPg)” ~ (X @ p" EPy)C,

and the target is by definition

(@TX)VH = (X © EFpu)™)" ! = (X @ EF y)Ne™.
Our assumption on H implies res% ~uP"Ps C Fpu, therefore there is a map of NgH-spaces

p"EPs, — EFsn (3.11)
(see (A.30) for the construction of this map) and using the equivalences above we define
Y @EXN — (@ X)Wl

as the composite

(X @ p*EPe)C — (X @ p*EPs) Vel 5 (X @ EFy)Nel,

where the first map is the inclusion of fixed points and the second map is obtained by smashing
(3.11) with X. After a choice of representatives of the elements in Secy,, the map 1 is then
obtained from the various ¥ .

Before we show that ¢ is an equivalence, we want to show that for any ¢ € G and any
H € Sec, the maps ¥y and ¥ g+ agree up to the conjugation equivalence. First note that left

multiplication by ¢ induces an equivalence of G-spaces

ly: p"EPs = (¢)*p* EPx, (3.12)
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and as explained before there is an equivalence of NgH-spaces
(Cg>*E\./7:z§Hg ZE\./szH. (313)

It follows from the explanation surrounding (A.30) that the following diagram of Ng H-spaces
commutes
p*EPs, ——— EF4p
llg lﬁ (3.14)
(cg)* p*EPs; — (cg)*EF 514,

where the right vertical arrow is (3.13) and the horizontal arrows are (3.11) and (¢q)* applied to
(3.11).

Now we consider the following diagram

(3.11)

(X ©@p*EPs)¢ ———— (X @ p*EPy)NeH (X ® BEF 5z1)Ne !l
l(@@p*ﬁéf’ J(lgeap*ﬁvpz)NGH (14®EF pp)NcH
((cg)* X @ p*EP2)S — ((cg)* X @ p* EPg)Nell U1 ((0))* X @ EFy) Vel
:l«cg)*X@zg)G zl«cg)*X@zg)NGH (3.13) |~

((cg)*(X @ p"EPw))E — ((cg)*(X @ p* BPg))Netl L2 ((c,)*(X @ EF 5510)) Vel

5 R :

(X ®p*E_\/fPE)G (X@p*E:\ﬁ;)NGHg (.13) (X@EJFZHQ)NGHQ,

where the horizontal arrows on the left are the inclusion of fixed points and the lower vertical ar-
rows are the natural equivalences of spectra ((c,)*(—))% =~ (=)¢ and ((¢g)*(—)) Ve ~ (—)NeH?,
We also used the fact that (¢4)* is a monoidal functor. The upper two squares on the left com-
mute by naturality of the inclusion of fixed points and the lower left square is (A.45). The upper
square on the right is obtained by applying (—)V¢# to a commutative square of NgH-spectra,
hence is itself commutative, the middle square on the right is obtained from (3.14), and the lower
right square commutes by naturality of the equivalence ((cy)*(—))Ne# ~ (—=)NeH? We conclude
by observing that the upper row is ¥y, the lower row is ¥ g, the right column is the conjuga-
tion equivalence (3.5) and the left column is the identity by our discussion of the conjugation
equivalences and the fact that G operates diagonally on X ® p*ﬁ?g.

To show that (3.10) is an equivalence, it suffices to show that ¢ x is an equivalence for any
F-torsion spectrum X, since X ® EFy is F-torsion and by a localizing subcategory argument
(see Remark A.1.2) it suffices to do so for X = G/K with K € F. We first consider the case
where K is not the image of a section s: ¥ — G and claim that in this case both the source and

target of ¢ are contractible. For the source we use the projection formula (A.21):

G/Ky® p*EPy ~ ind%res?(p*ﬁvpg ~ 0,
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since K € p*Ps; by our assumption on K. For the target we have for any H € Sec,
" (G/K;) ~2>*(G/K) ~o0,

by (3.1), since our assumption on K implies that H cannot be subconjugate to K.

Next, we consider the case where K is the image of a section of p. We have seen in the
previous section that [K| = [H] € Sec,/N iff K and H are conjugate in G, thus ®(G/K,) ~ 0
as Wg H-spectrum if [K] # [H|. Furthermore, we can assume that K is our chosen representative
of [K], since G/K | ~ G/H as a G-spectrum if [K] = [H] by (3.1) and the surrounding remarks.
Putting this together, we need to show that

Vi OF(G/K )N = (G KL )Yk,
is an equivalence. By (3.2) there is an isomorphism of NgK-sets

res§_ G/ K = 11 NeK/(NgK N K9)
NoKgKeNGK\G/K
and we let
pr: res%GKG/K+ — NgK/K

be the map of pointed NgK-sets which under the above isomorphism is the identity on the
summand indexed by NgK1K and sends all other orbits to the basepoint. We consider the

diagram of spectra

(G/Ky @ p*EPs)®

|

(G/K+ ®p*ﬁ32)NcK N (G/K+ ® EFZK)NGK
l(pr@p*ﬁz)NcK l(pﬂ@ﬁzu()lvck

(NaK/K, ® p*EPs)NoX — 5 (NgK/Ky © EF 55)No ¥,

where the top left vertical arrow is given by the inclusion of fixed points and the horizontal arrows
are obtained by smashing G/ K ; respectively NoK /K with (3.11) and taking fixed points. One
checks on fixed points that (3.11) becomes an equivalence of NgK-spaces after smashing with
NgK /K, therefore the lower horizontal map is an equivalence. Similarly pr ® EF $K is an
equivalence of NgK-spaces, therefore the right vertical arrow is an equivalence as well. The
composition of the two left vertical arrows is an equivalence by [Sch18, Theorem 3.2.15] (see
Equation 3.2.6 in loc. cit. for an explanation that the map constructed there agrees with pr).
Since ¥ is the composition of the upper left vertical arrow and upper right horizontal arrow, it
is an equivalence as well, as desired, concluding the proof of (i).

We now turn to (ii) and first prove that the restriction of the inclusion of fixed points

P¥X, 5 — ®*Xjyn to the summand indexed by [H] € Secs/N factors as claimed. For any
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representative H, recall that .7-'@7< g is the G'—family of subgroups that are subconjugate to H.
Then for K € Sec, we have that ®¥(X ® EF¢ i) is non-trivial iff K is conjugate to H in
G, that is iff [K] € f~*([H]), and in that case it is equivalent to ®* X. Consider the following
diagram

X QEFs cqIney — P X5

| |

@E(X®Efé7<g+)h21v e @ZX}LEN,

where the vertical arrows are the inclusion of fixed points and the horizontal arrows are given
by collapsing EF & < to a point. Under the equivalence of (i) this diagram is equivalent to the
diagram

(‘bHX)thH—> D N(‘I)KX)hWéf(
[K]€Secs /N

J |

& @"Xwwer — B (@ X)wwex,
[H]ef~1([H]) [K]€Secy, /N

with the horizontal arrows being the inclusion of summands. This shows the claimed factoriza-
tion.

Finally, we identify

(q)HX)hWéI:I - B @ X)wen = (@ X)wwon.
[H]ef~1([H])

It suffices to show that the following diagram commutes

PEXN  , pExN

e o

(@AXYWel =, (HX)WaH __, (§H X)W

where the lower left horizontal arrow is the conjugation equivalence (3.5) and the horizontal
arrows in the square are the inclusions of fixed points. The triangle commutes by (the proof of)

(i) and the square consists of the outer arrows of the following diagram

(X ®ﬁ*ﬁjz)é _— (X ®p*E\732)G

| |

(X ®ﬁ*ﬁ72)NéH R (X ®p*ﬁ)2)NcH

J{(:s.n) J{(:s;l 1)

(X ®E\«/7:NC~;H,25H)N@H — (X ®E\]?NGH,2§H)NGH7
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where all undecorated arrows are inclusions of fixed points. The upper square obviously com-

mutes and the lower square commutes by naturality since resg p* ~ p* and

N~H
G —
resnG yFNgH,2H = FNgH, pH-

3.3 Parametrized homotopy orbits and Tate construction

in the special case of dihedral groups

We specialize the results of the previous section to the case of G = Dg,n and N = Cpn. Addi-
tionally, we shall compute ®>2 X222 and ¥2(X*22¢2)"=;Cn-1 in an important special case.
We will use these results in section 3.5 to compute ®*2TCR"(X;p) (see Definition 3.4.10). We

start with the computation of ®*2 Xhs, O for odd p. It follows directly from Lemma 3.2.6.
Lemma 3.3.1. Let p be odd and X be a Dayn -spectrum.
(i) There is a natural equivalence ®E2Xhzchn ~ P2 X,

(ii) The inclusion of fized points induces a map Xy, cn — Xng,C

pn—1

and after passing to

geometric fived points this is the identity id: ®*2X — ®*2X under the equivalence of (i).

To state the analogous result to Lemma 3.3.1 for p = 2 we fix a generator ¢, of Cy» for each
n € N such that under the inclusion Don C Dgn+1 we have ¢, 1 = 0,21. Again the next result is a

special case of Lemma 3.2.6.
Lemma 3.3.2. Let X be a Dont1-spectrum.

(i) There is a natural equivalence > X ¢, ~ (@ X)hwp . (o) EB(<I><"C">X)hWD2n+1 (en)-

on+t1

(i) The inclusion of fized points induces a map Xhs,Con = Xng, 0 which on geometric

n—17

fixed points corresponds to
1 0 . (aci) (Uc,i 1)
1 0o/ @ ((I) " ‘Xv)hWDQT,,_'_1 (ociy =7 @ ((I) " X)hWD2n (oCn_1)s
i=0,1 i=0,1
where
s ((I)<U>X)hWD2n+1 (o) — ((I’<UC"71>X)hWD2n (0en—1)

is the conjugation equivalence (3.6)°.

2Note that (<I><"C"—1>X),LWD 1 (oen_1) ~
on

WDQn,+1 <O’Cn_1> 2 WDgn (O’Cn_1>.

(<I><”n—1>X)hWD2n ( via the inclusion of fixed points, since

oCp_1)
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The following result computes ®*2 X*=2%» and follows basically from [()S21h, Example 2.53].
It plays a key role in the proof of the dihedral Tate orbit lemma [()S21a, Lemma 3.20]. We
will use it in section 3.5 in our computation of ®*2TCR(X;p) and later in this section to
compute ®¥2 X222 and $¥2 (X122 C2)"=Con-1 For the statement we make some preliminary
remarks. Recall from the previous section that for any Dgn+1-spectrum X we defined X7P+ =
®P+F(EDgni1,, X). Now let ¢; € Cy be the generator. Then the Borel completion map induces

canonical maps
X7Ds ~ ¢W<UC§)¢(UC§>F(ED2H17)() N (q><<fci>F(ED2n+1X))tW<UC§) - (Xt<UC§)>tW(UC’i>
for ¢+ = 0, 1. Similarly, the Borel completion map induces for ¢ = 0,1 canonical maps
(@(UCDX)tWWCD . (Xt<06i>)tW<cm§>_
Lemma 3.3.3. Let X be a Dypn-spectrum.
(i) If p is odd, then ®>2 X*t52Cr ~ (.

(i) For p =2 there is a natural equivalence of spectra

(PZQXtEZCQ ~ fib XTD4 @ @ (@(JC§>X)tW(UC§) N @ (Xt(aci))tW(oci)
i=0,1 i=0,1

Proof. This follows from [()S21b, Example 2.51 and Example 2.53] after observing that the

FDy,n [Cpn]-completion map induces an equivalence
Xt):z Cp ~ F(E'FDQP” [Cpn]+7 X)tZQ Cyp

of ¥p-spectra by Remark 3.2.2 (ii) and that for any Fp, , [Cpn]-complete spectrum X we have
X229 ~ @ X, since Fp,,.[Cpr| = Fp,,n, 50, (see Remark 3.1.1). O

For future reference we explain the definition of the map
@22Xt2202 — ((I)<UC§>X)75W<UC§> (315)

for i =0,1. Let F = Fp_, ., [Can]. Then we have

2n+1
X'=2C = @2 F(EF,, X)

and (3.15) is defined as the composite

%22 F(EF,, X) ~ @V e ploc) F(EF,, X)
N ((I)(JCDF(E]:_HX))tW(aci) ~ (@(UCQ)X)tW(acb’
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where the arrow is the Borel completion map and the final equivalence follows from the fact that
(oct) € F. This map will play a role in the computation of ®*2TCR(X;2).

The rest of this section will deal with the case p = 2. In general it is difficult to compute
®>2 Xh=:C2n but in the special case that the underlying spectrum of X is contractible it is
possible to give an answer that is similar to Lemma 3.3.2. This special case will play a key
role in the computation of ®*2>TCR(X;2). Our computation of ®>2X"=:2C>" will proceed by

induction on n and we will need the following statement in the induction step.

Lemma 3.3.4. Let X be a Dg-spectrum whose underlying spectrum is trivial. Then

$T2 X102 ~ @ (<I)<Gci>X>tW<Uci>
i=0,1

and the residual Ca-action is given by
0 071 i i i i
(c_l 20 ) : ®(¢.<061>X)tw<061> - @(@(UCI)X)tW(aq},
2 i=0,1 i=0,1
where
62_12 (q)(oc’i)X)tWQrci) a (q)(aclf(*l)i}X)tW(oclf(fl)”
is the conjugation equivalence (3.8).
Proof. We assume for simplicity that X is Fp,[C4]-complete, so that

72 X152C2 P22 X ~ PP1 X

by Remark 3.1.1 (iv) and Remark 3.2.2 (iv). The stated equivalence follows from Lemma 3.3.3
and our assumptions on X, therefore we only need to identify the residual Cy-action. Recall

from (3.15) that the equivalence from the statement is induced by the map

(I)D4X ~ @W@J’Ci)@(JCi)X N (@(UC?)X)tW@JC’i)

)

where the arrow is given by the Borel completion. Note that the residual Ca-action on the source

is given by the conjugation equivalence

P4y
pPax — 2 pPs (co1)" X = o1 x

for both i = 0 and i = 1. The claim now follows from the commutativity of the following diagram

by observing that the right column is ¢y ! and the composition of the upper and lower horizontal
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arrows is the projection onto one of the summands:

ED'E = Q)WWC%)(I)(UCDX (@(Uci)X)tWQrci)
®P4L Wi gloel)y l(qwc%n L ytWleeh)
2 €2 cg
BPi(c 1) X —F— @V X (@), X)tWloeD)
¢y c5
i -1 * it (—1)¢ —1 * it (1) tW(oc)
- aWieed) (w2 ) el x ((w< o) e X)
oct oct
q)D4X ;) q)W<O.C§+(—1)i>@(Uci+(—1)i)X . ((I)(O'Ci*—(_l)i)X)tW(UCi-H_l)i).

The upper squares commute by naturality of Borel completion and the commutativity of the right
middle square follows from our discussion of the conjugation equivalences. The lower left square
is (A.47). To see the commutativity of the lower right square we observe that for any group G
if Bg: X — F(EG4,X) is the Borel completion map and «: I' — G is an isomorphism, then
o*F(EG4, X) ~ F(ET4,a*X) and the composite a*X o Be, o*F(EG4,X) ~ F(ET,,a*X)
is the Borel completion of a*X. O

Lemma 3.3.5. Let X be a Don+1-spectrum whose underlying spectrum is trivial. Then there is

a natural equivalence

(I)Zz Xhz? Coan @ ((D<UciL>X)hW<UC:L>.
i=0,1

Under this equivalence the inclusion of fired points ®¥2 Xh=2C2n —y d¥2 X122Con—1 s given by

1 0 oct hW oct oct ve
<cl O) : @ (@( n>X) Dynia (7€) EB(@( n—1>X)hWD2n< n71>,
n i=0,1 i=0,1

where

L. (@(a)X)hW&r) o (@(acn_ﬁX)hW(acn_l)

n

is the conjugation equivalence (3.7). Consequently, there are natural equivalences

@Eg X}LE2 Cooo ~ ((I)Z‘g X)hCZ,
@22 (th2 CQ)hZQ Caoo ~ (@22 X)th )

Proof. For notational simplicity we assume that X is Fp, Can]-complete, so that X207 ~

n+1 [
X We also drop the subscripts for the normalizer and Weyl group, since they do not depend

on n. We start by constructing the map

P2 X e Can @ ((I)(Ucil>X)hW(‘7Cil>. (3.16)
1=0,1
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Let a: Dant1 — Dgnt1/Con = Yo denote the projection and note that a*EVZQ o~ E\-/Fcczn- By

the projection formula (A.23) we have
P2 X = (X @ ES,)™2 ~ (X @ EF e, )22t

We define (3.16) as the composition of the inclusion of fixed points

(X ® EFccyn)P = (X ® EFcy, )N o)
with the map
X ®E./7':;gn N(oc,) s (X ®E.7/:_\_g/ci N(oen) ~ (ploen) xYWioen) s (ploen) x hW(UCiJ,
2 Bloch,)

where the first arrow is induced by (A.30) (note that res NZZJ;I FcCyn C Fp(ociy) and the final
arrow is induced by the Borel completion of ®(7¢ WX,
We show that (3.16) is an equivalence by induction on n. For n = 1 this follows from Lemma

3.3.2 and Lemma 3.3.3. For the induction step we consider the diagram of cofiber sequences

(I)Ez(XhE CQ)hzch*l ®¥2Nm s X2 X heyCon N (I)Ez(XtEZC2)h>:2CQn71
2

| | |

P ((I)<GC;>X)hW<gci> _Nm&Nm P (dlocw) X)hWloe) o @y (flocn) X)W (oen),
i=0,1 " i=0,1 i=0,1
The left vertical arrow is an equivalence by Lemma 3.3.2 and the dihedral Tate orbit lemma
[QS21a, Lemma 3.20] and the right vertical arrow is an equivalence by induction. By hypothesis

we have
P2 (X122 C2)hm; Cant @ ((I)wc;,l)Xt22c2)hw<ac;,1>,
i=0,1
and Lemma 3.3.4 implies that
hW (oc],_1)
((I)<oc:'l,1>th,zcz)hvv(ac;,l) ~ ((b(ac cl)X)tW<Uc ol ~ ((I)(ach)tW(ac;).

§=0,1
Therefore the right vertical arrow in the diagram is an equivalence, thus also the middle vertical
arrow, as desired. The identification of the map
@ (dloe >X)hWD2n+1 oen) @ X)"Wpan (oen—1)
i=0,1 i=0,1
is done analogously to the proof of Lemma 3.2.6.
The equivalence ®>2 X"=2C2> ~ (®¥2 X )2 follows from Proposition 3.5.1 and the observa-

tion that the tower

1 0 1 0
651 0 (ock) y\hW (ock) 02_1 0 (oct) Y \hW (oct)
L T @ ((I) 2 X) 2) 7 7 @ ((I) 1 X) 1
i=0,1 i=0,1
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hC>

is pro-equivalent to the constant tower with value (®*2 X)"“2. Finally, we have

(I)EQ (thzcz)hEQCQm ~ (q)EQXtEZCQ)hCQ ~ (@ZQX)tCQ,

where the first equivalence follows from what we have shown before and the second equivalence

from Lemma 3.3.4. O

3.4 Real p-cyclotomic spectra.

In this section we define real p-cyclotomic and genuine p-cyclotomic spectra following [()S21a],
discuss their main properties we need and treat the examples which are relevant to us. We give
a slightly different definition from the one given in loc cit. and we will explain afterwards why

both are equivalent.

Definition 3.4.1. A real p-cyclotomic spectrum is a Fp, [Cpee ]-complete Dgyoo-spectrum to-

gether with a map ¢x: X — X2 of Dgype-spectra. We refer to the map ¢x as the Frobenius.

The reason to insist that X is Fp, o [Cpe]-complete is the following. In the classical setting a
p-cyclotomic spectrum has an underlying spectrum with Cpe-action, by which we mean an object
of Fun(BCpe, Sp). It is well known that Fun(BCp«, Sp) embeds fully faithfully into Sp»™ with
essential image given by the Borel complete spectra (see for example [MNN17, Proposition 6.17]).
For the real analogon one wants to replace Cpe with Dg,ec, but the Xs-part should be genuine
and the Cp~-part should be Borel. Quigley and Shah construct an oco-category Spgjfom_B orel 111
[QS21b] using parametrized oo-categories and they show this category embeds fully faithfully into
SpP2r> with the F [Cpee ]-complete spectra as essential image [()S21b, Theorem A, therefore our
definition is equivalent to [()S21a, Definition 2.5]. To avoid the use of parametrized co-categories,
we have opted to give the above definition in the language of equivariant stable homotopy theory.

From the definition and the discussion above one immediately sees that any real p-cyclotomic
spectrum has an underlying p-cyclotomic spectrum. Just as in the non-real case, one can de-
fine the (stable) oo-category of real p-cyclotomic spectra RCycSp,, as a lax equalizer. We
refer to [()S21a, Section 2.1] for more details. The crucial part for us is that [NS18, Proposi-

tion II.1.5 and Construction IV.2.1] imply the following:

Dypoo

(i) There is a canonical forgetful functor RCycSp, — Sp , which preserves colimits. We

refer to the image of a real p-cyclotomic spectrum under this functor as its underlying Dajeo-

spectrum. Similarly, any real p-cyclotomic spectrum has an underlying (2,-)spectrum.
(ii) A map of real cyclotomic spectra f: (X,px) — (Y, ¢y) is given by a map f: X — Y of
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Dy --spectra such that the diagram

x—— 1 Ly

J{SDX i‘PY
ts, Cp

b
Xt=2Cp f;} Yts:0

commutes. Furthermore, f is an equivalence of real p-cyclotomic spectra iff it is an equiv-

alence on the underlying Ys-spectra.

(iii) There is a symmetric monoidal structure on RCycSp,, with the property that the under-
lying Dapeo-spectrum of X ® Y is the smash product of Dyp-spectra and the Frobenius is

given as the composition
X®Y CxQpy XtEQCp ®Ytz;20p N (A)('(gy')tzsz7
where the second arrow is the lax monoidal structure of the parametrized Tate construction.

Example 3.4.2. Let X be a ¥s-spectrum, denote by

Tp - D2poc /Cp i} Dgpoo and Pp: Dgpoo i> Dgpoo /Cp
the pth power and root map respectively, and let a: Dgpoe — Eg and B: Dapec — Dapee /C), be
the projections. Note that ) and p;, are inverse equivalences, therefore (Tp) s py- We consider

the counit map

o X = (mpB)u(mpB) X =~ piB.a* X = pi(a* X)%r, (3.17)

where we used that amp8 = a. If we compose this with the Fp, . [Cpoe]-completion map we
obtain a map of Dyp~-spectra a*X — p;(a*X)hzz C». We can further compose this map with

C

the canonical map (=)= — (=)!=2C% to obtain a real p-cyclotomic structure on a*X. We

denote the resulting real p-cyclotomic spectrum by X iV,

We will also need the notion of genuine real p-cyclotomic spectra. The reason is twofold.
Firstly, the construction of real topological Hochschild homology we present is an instance of a
genuine real p-cyclotomic spectrum. Secondly, we will use the genuine version of real topological

cyclic homology to prove boundedness results, see Remark 3.5.3.

Definition 3.4.3. A genuine real p-cyclotomic spectrum is a Dyp-spectrum together with an

equivalence

X 2 ofrx

of Dapeo-spectra, where we use the identification Dapec /C), =2 Dapeo to view the right hand side

as a Dopoeo-spectrum.
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Remark 3.4.4. One can also define the (stable) co-category of genuine real p-cyclotomic spectra
RCycSp5™ as a lax equalizer. Again by [NS18, Construction IV.2.1] we see that RCycSp5™
has a symmetric monoidal structure such that the underlying Dg,e-spectrum of X ® Y is the
smash product of the underlying Dj,e-spectra. For any Dajec-spectrum X the Fp, o [Cpec]-
completion induces a map ®»X — X220 of Dypeo-spectra. Thus, if X is a genuine real
p-cyclotomic spectrum we can give it the structure of a real p-cyclotomic spectrum by defining
its Frobenius as the composite

X ~ dCr X — X152Cp,

This extends to a monoidal functor RCycSp;™ — RCycSp,,, which by [()521a, Theorem 3.3] is

an equivalence on the full subcategories of objects whose underlying spectra are bounded below.

Example 3.4.5. Let A be a ring spectrum with anti-involution. Let DN&(A) = A®**1. The
dihedral structure is defined similarly to the dihedral structure of DN (G). Its realization gives
rise to an O(2)-spectrum, which we call the real topological Hochschild homology spectrum of A
and denote by THR(A).

This is a genuine real p-cyclotomic spectrum for all p. We describe the equivalence THR(A) ~
®Y THR(A). If we equip A®P with the Cp-action given by cyclic permutation, then there is an
equivalence

AT 9 A®P, (3.18)

(see [HHR16, Proposition B.209] after noting that the right hand side are the geometric fixed
points of the Hill-Hopkins-Ravenel norm construction), which is induced by the diagonal map.
Therefore, if we take the (n+1)-fold smash product of (3.18) and use that geometric fixed points

are monoidal we get an equivalence of dihedral objects
DNE(A) = @ (sd, DN (A)),
and since geometric fixed points also commute with colimits we obtain the equivalence
THR(A) ~ ®“»THR(A). (3.19)

We refer to [DPM22, Section 3.3] for details on the fact that this is an equivalence of Dypee-spectra
(in fact it is one of O(2)-spectra).

An important special case is the following. Let G be a discrete group with anti-involution
given by sending an element to its inverse. Then the spherical group ring S[G] = G, is a

ring spectrum with anti-involution and we have an isomorphism of dihedral objects
Y DN (G); = DNE(S[G)).

The genuine real p-cyclotomic structure can be described as follows. By Proposition 2.2.3 the

map of dihedral sets

DN, (G) = (sdpy DN(G)", (g0 -1 9n) = (901 Gns G0 -+ Gns 105+ -+ > Gn)- (3.20)
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induces an O(2)-equivariant homeomorphism DN (G) = DN (G)®» and we observe that by gen-

eral properties of the Hill-Hopkins-Ravenel norm the following triangle commutes

EOOG+ — q)cp (EOOG+)®Z)
k /
Z((GXP) ),
where the horizontal arrow is (3.18) and A, is the diagonal map of spaces. From this we see that
in the case at hand (3.19) is equal to (3.20).

Remark 3.4.6. For two ring spectra A and B with anti-involution, the shuffle isomorphism
induces an isomorphism of dihedral orthogonal spectra DNE(A ® B) & DN&(A) @ DN2(B),

and therefore after realization an equivalence
THR(A ® B) ~ THR(A) ® THR(B),

which clearly is compatible with the genuine (p-)cyclotomic structure. In particular we obtain

an equivalence of genuine (p-)cyclotomic spectra
THR(A[G]) ~ THR(A) ® DN(G)+
The following example will also be useful in the context of group rings.

Example 3.4.7. Let X be a Yg-spectrum. We can also realize X'V as a genuine real p-
cyclotomic spectrum. Denote by pp,: Dapee — Dapeo /C), the pth root map and by a: Dapes — 3

the projection. Then the composite
* * [ % C * FCp L *
"X = pp(a" X)™? = pp@~ra” X,

where the first map is (3.17) and the second map is the canonical map from fixed points to
geometric fixed points, is an equivalence of Dape-spectra’ and we denote the resulting genuine

real p-cyclotomic spectrum by X'V-gen Consider the diagram

X —— pi(a*X)% ——— prdTrar X

\ | |
pi(a* X)h=aCo — pr (@ X)t=2Co

where the undecorated vertical arrows are induced by Fp, . [Cpe]-completion. We see that the

real p-cyclotomic spectrum obtained from Xtiv.gen jg Xtriv,

In chapter 4 we will construct a finite filtration Fj(X ® DN (Da,)+) on X @ DN(Ds,,)+ such
that the Frobenius maps Fj (X ® DN (Day,)4) into Fi_1(X ® DN(D2,)+). The existence and

desired properties of this filtration will follow from the next lemma.

3Use that both sides commute with colimits and Lemma A.2.7 in conjunction with the localizing subcategory

argument from Remark A.1.2.
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Lemma 3.4.8. Under the equivalence

S¥DN(G)y~ P  I¥BeZela)r® @ T*Br(SZa(z) [ T2)+
([=]] €conjz (G) [[=]] €conjz (G)
z?=1 z2#1

of Proposition 2.5.2, the Frobenius
Y®DN(G); — (Z°DN(G),)==Cr
sends the summand indexed by [[x]] to the summand indexed by [[zP]].

Proof. Recall from the proof of Proposition 2.3.2 that there is a decomposition of dihedral sets

DN.(G)= [  DNayup(G),
([#]] €conix (G)

where DN, (,7](G) consists of the n-simplices (go, . . ., gn) such that gog; - - - g € [[2]]. We denote

its geometric realization by DN, (G). Consider the commutative diagram
EB EOODNHQE]](G)JF _ EOODN(G)+
[[z]]€conjz (&)

o] @ (G)(I)C‘”EOOD]V[[QU]](G)Jr —= (I>C1"EOO.D]\7(G)Jr
x|jeconjyp

D (SFDN(G)4)m O —Z (SXDN(G))=Cr
[[z]]€conjr(G)

and note that the equivalence from Proposition 2.3.2 maps the summand indexed by [[z]] into
DN(4)(G). The claim then follows by observing that the lower left vertical arrow in the diagram
preserves the summands and that the map induced by (3.20) maps DNjj,))(G) into D Njep(G).

O

Now that we have treated the relevant material on real cyclotomic spectra we can define real
topological cyclic homology. The definition we give is not the original definition given in [)S21a],

but it is equivalent by [()S21a, Proposition 2.23].

Definition 3.4.9. Let (X, px) be a real p-cyclotomic spectrum. Then its (p-typical) real topo-

logical cyclic homology is the Yo-spectrum defined via the fiber sequence
L,th? “poe —can
TCR(X;p) — X"2Cre X0y (X "92Cp) Cpoe (3.21)
where can,, denotes the composition

X}L)jchoo ~ (Xhz2cp)h22(cpoc/cp) ~ (X}Lzch)hzchoo - (Xt):2cp)h):20poo
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with the arrow induced by the canonical map into the cofiber and the second equivalence by the
isomorphism of groups Cpee /C), = Cpee. If A is a ring spectrum with anti-involution we define
TCR(A4;p) = TCR(THR(A); p).

It is also convenient to define a finitary version of TCR.

Definition 3.4.10. Let (X, ¢x) be a real p-cyclotomic spectrum. Denote by ¢x ,: X2 Cpn

(X220 )22 Cpn-1 the composite

hsyCpn—1
Xhz;2cpn - Xhzchn,l Px (XtZQCp)hEQCp”*I,

where the first arrow is the inclusion of fixed points. We define TCR"(X;p) as the fiber of

Xh):chn Yx,n—Cany (thch)hz],‘,cpnfl’
where can,, is defined analogously as above. Again, if A is a ring spectrum with anti-involution

we write TCR™(A4; p) for TCR"(THR(A);p).

3.5 Geometric fixed points of TCR(X;p).

In this section we calculate the geometric fixed points of TCR(X;p). We distinguish between
odd primes p and the case p = 2. For odd primes it is easy to show that ®>2(X?22Cp)hs,Cpn
vanishes and the identification of ®*2TCR(X; p) follows almost immediately. At the prime p = 2
a similar vanishing result does not hold and consequently the calculation is more involved. We

start with some preliminaries.

3.5.1 Preliminaries

The goal of this subsection is twofold. First, we want to show that under certain boundedness
conditions one can exchange the limit of ¥5-spectra with geometric fixed points. Second, in order
to apply this result we want to show that if X satisfies certain boundedness conditions then also
®*TCR(X;p) and ®*2TCR™(X;p) do. In the next result we say that a family {X;},cr of
spectra is uniformly bounded below if there is an integer k such that all the X; are at least

k-connected.

Proposition 3.5.1. Let --- f—2> X5 f—1> X, f—0> Xo be a tower of Yo-spectra such that the

underlying tower of spectra is uniformly bounded below. Then ®>2lim,, X,, ~ lim,, ®>2X,,.

Proof. We let X = lim,, X,,. By the isotropy separation sequence the proposition is equivalent
to the statement that X5, ~ lim, (X, )ns,. Let k be an integer such that all the X, are at least
k-connected. By the Milnor exact sequence the underlying spectrum of X is at least (k — 1)-

connected. We use the geometric realization of the bar construction ¥5**! as a model for EY,

54



and denote the m-skeleton of E¥s by sk,, E¥s. Then E¥s/sk,, E¥s is an m-connected pointed
39-CW complex with free Ys-action away from the basepoint. This implies that

EZQ/SkmEEQ >~ (EZQ/SkmEEQ) AN E22+,

so that
(X (24 EEQ/SkmEZQ)ZQ ~ (X X EEQ/SkmEEQ)hEQ.

Since homotopy orbits preserve connectivity of the underlying spectra we obtain that (X ®
EY, /sk,,EXp)*2 is at least (k — 1 + m)-connected and similarly (X, ® EXy/sk,,EY¥2)*? is
(k +m)-connected for all n. Again by the Milnor exact sequence lim,, (X,, ® EXy/sk,, EX¥9)*? is

then also (k — 1 4+ m)-connected. We consider the diagram

(X @ sk ES04)%2 — = lim,, (X,, @ sk, E¥o4 )2

| l

(X ® ESp )™ — 5 lim, (X, ® EXyy )™

| |

(X @ ES /skp EX2)T2 —— limy, (X, ® ESs /sky, ES)52

)

where the columns are cofiber sequences. The upper horizontal arrow is an equivalence, since
sk, E¥5 is a finite Yo-CW complex. After passing to colimits the lower left and lower right
corners vanish, because their connectivity goes to infinity with m, thus we see that also the

middle horizontal arrow is an equivalence, which is the statement. O

To show boundedness conditions on TCR(X;p) we need to use the genuine variant of real
topological cyclic homology. We recall the necessary details. If X is a real genuine p-cyclotomic
spectrum it comes equipped with the restriction map R: X" — X Cpn=1 for all n given by the
composite

X o (XO)Gnmt o (@Cr X) Dot o X ot

where the arrow is the canonical map from fixed points to geometric fixed points and the final
equivalence comes from the genuine cyclotomic structure. There is also a map F: X" —
X %1 called the Frobenius given by inclusion of fixed points. These maps have the property

that the following diagram commutes:

X Com R chnfl

|7 |7
chn—l R chn—Q.
Therefore, if we define

TCR™#(X;p) = fib (X% 25, x Gt )

95



we get induced maps TCR™8"(X;p) — TCR" "#"(X;p) and we define
TCR®"(X;p) = lim TCR™&"(X; p).

By [QS21a, Corollary 3.30] we have TCR®*"(X; p) ~ TCR(X;p). In fact, the proof there shows
that TCR™®"(X; p) ~ TCR"(X;p) and then passes to the limit. We now leverage this to prove

the following connectivity estimate, which will form a key part of our calculations.
Lemma 3.5.2. Let X be a real p-cyclotomic spectrum.

(i) If the underlying spectrum of X is k-connected, then the underlying spectrum of TCR" (X;p)
is (k — 1)-connected and the underlying spectrum of TCR(X;p) is (k — 2)-connected.

(i) If the underlying Yo-spectrum of X is k-connected, then TCR"(X;p) is (k — 1)-connected
and TCR(X;p) is (k — 2)-connected.

Proof. The claim for TCR(X;p) follows from the claim for TCR"(X;p) by application of the
Milnor exact sequence. By Remark 3.4.4 we can assume that X is a genuine real p-cyclotomic
spectrum and by the discussion above we can show the claim for TCR™#°"(X; p) instead. Since
the fiber of a map between k-connected spectra is (k — 1)-connected, it suffices to show that

XC is k-connected for all n. This follows by induction on n and the fiber sequence
Xng,yCpn — X" — (B X) %t X Gt

where the existence of this fiber sequence follows from the fact that Fp, . [Cpn] = Fzc,- O

Remark 3.5.3. For odd p one can prove this without resorting to genuine real p-cyclotomic
spectra. In fact, by Lemma 3.5.5 it suffices to show that the underlying spectrum of TCR" (X; p)
(i.e. TC™(X;p)) is (k — 1)-connected. For this it is relatively straightforward to adapt the
argument given in [CMM21, Remark 2.14]. However, in the case p = 2 one has to additionally
show that ®*2TCR™(X;2) is (k — 1)-connected, but here the problem is that ®*2 X"=:C" and

¥ (X192 ) =2%n=1 (o not have to be bounded below.
We will also repeatedly use the following easy corollary in our calculations.

Corollary 3.5.4. If X is a real p-cyclotomic spectrum whose underlying spectrum is bounded

below, then

®¥2TCR(X;p) ~ lim ®**TCR™(X; p).
n
Proof. This follows immediately from the previous lemma and Proposition 3.5.1. O
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3.5.2 Calculation for odd primes

We now have all the necessary ingredients to calculate ®*2TCR(X;p) for odd primes p. This
recovers the result [DMP21, Corollary 2.5], which was proven in loc. cit. by using genuine cyclo-
tomic methods, whereas we only need the methods of [()S21a] (see also Remark 3.5.3). We start

by proving the vanishing result we mentioned at the start of this section.
Lemma 3.5.5. Let p be an odd prime and X a Dayn-spectrum. Then ®¥2(X =2 Cp)hz2 Cpn—1 ~ (),

Proof. We prove the claim by induction on n. The case n = 1 follows from Lemma 3.3.3. Now

assume that ®>2(X!=2 Cp)h22 ©m=1 ~ (). Then we have the fiber sequence
(Xt52Ce)maCnt), oy (X192Cn)hmaCon (X P52Cryhma Oyt )G

where we want to show that the geometric fixed points of the middle term vanish. Again by
Lemma 3.3.3 we see that &2 ((Xt22Cp)"2Cn-1)t2,Cs ~ () and for the left hand term we apply

Lemma 3.3.1 and the induction hypothesis to obtain

¢Z2((Xt220p)h220pn71 )hzch ~ P2 (XtZQCp)h>:2Cpnfl ~ 0.

It is now easy to compute ®*2TCR(X;p).

Theorem 3.5.6. Let p be an odd prime and X a real p-cyclotomic spectrum whose underlying
spectrum is bounded below. Then ®*2TCR(X;p) ~ ®¥2X.

Proof. By Corollary 3.5.4 we have ®*2TCR(X;p) ~ lim, ®**TCR"(X;p). By Lemma 3.5.5,
Lemma 3.3.1 and [)S21a, Lemma 3.25] we have

P TCR"(X;p) ~ 2 X}y ¢, ~ P2X,
and the maps in the limit system are constant, yielding the claim. O
Remark 3.5.7. In the special case X = THR(A) we have the additional identification
PP2THR(A) ~ ™2 A ®,4 &2 A

by [DMPR21, Theorem 2.6]. We recall the left and right A-module structure on ®*2 4 in Remark
3.5.11. Note that for any discrete group G we have ®*2 A[G] ~ D, P2 A.
On the other hand Proposition 2.3.2 and Proposition 2.3.3 imply that

™ THR(A[G]) ~ P P ®*>THR(A) ® BZ 7,2y (y)+ &
([e]]€conjz (G), [yl €conj(Zc (@),
z2=1 y?=1
@ @ @E2THR(A) ® (X X Zszg ey (4,0)) ESZg(x))+,
[[e]]€conjz (G), [(y.0)] €conj(SZe (@),
z2#£1 y?=1

so that we can identify ®*2TCR(A[G];p) in two different ways.
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3.5.3 The case p =2

Now that we have dealt with the case of odd p we will treat the case p = 2. In this case
the formula for ®*2TCR(X;2) becomes more interesting and depends also on the residual Cy-
action on ®>2X as well as the Frobenius. We have remarked before that in general we can-
not directly compute ®>2 X227 and ¢¥2(Xt2202)h=Con-1 consequently we cannot directly
compute ®*2TCR"(X;2). Instead, we will use an isotropy separation argument to reduce the
computation to the case where the underlying spectrum of X is contractible. For this case we
have already proven all the necessary ingredients in Section 3.2. For the reduction itself we need
the connectivity results from the previous section. We stress that these connectivity results are
the only part of our computation for which we use genuine real cyclotomic methods.
We will now state the main result of this thesis. Recall that for a Dys-spectrum X there is a
projection map
PP X2y (2 X)I02, (3.22)

Its definition was explained in (3.15). If X is a real 2-cyclotomic spectrum with Frobenius ¢x,
denote by ¢x: (®¥2X)"2 — (®*2 X)!2 the composite
(@%2X)hC2 _y T2y TEX, Byt Ca Ly (P2 X)IC

where the first arrow is the inclusion of fixed points and the final map is (3.22).

Theorem 3.5.8. Let X be a real 2-cyclotomic spectrum whose underlying spectrum is bounded

below. Then there is an equivalence
OPTCR(X;2) = fib (0¥ X)hC2 L2, (@2 )12 )

where can: (®¥2X)"C2 — (®%2 X )*C2 s the canonical map from the homotopy fived points to the

Tate construction.

As stated above, we start with the following special case and will reduce the statement to

this case.
Lemma 3.5.9. Theorem 3.5.8 is true if the underlying spectrum of X is trivial.

Proof. Consider the commutative square

hx, Ca00

P2 Xhs,Cace _¥X A L pYe (X tm2 Oz )hn, Cao
((I)Zz X)h02 $x —can ((bsz)th_

By Lemma 3.3.5 the vertical arrows are equivalences, therefore the square is a pullback and the

claim follows by observing that the fiber of the upper horizontal arrow is ®*2TCR(X;2). O
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Proof of Theorem 3.5.5. We consider the cofiber sequence
X ® (EIE2+)triv S X X ® (m)triv

of real 2-cyclotomic spectra. Recall that the underlying Ds-spectrum of (EAJEQ)““’ is a*EJEQ ~
-/E‘\-/Fcczoou where a: Do — Daw /C = 35 is the projection. By the previous lemma the
statement is true for the right hand term and since we have a Cy-equivariant equivalence ®>2 X ~
%2 (X ® EFcc,. ), we need to show that @2 TCR(X ® (EX,,)™Y;2) is trivial.

The argument is similar to the proof of Proposition 3.5.1 and we use the same »3-CW
structure on EYs we used there. Denote by skiE¥s the k-skeleton of E¥5. The Ys-action
on EYs/skiEY is free away from the basepoint, therefore the connectivity of the underlying
Yo-spectra of X ® (EX,/skyEY)"Y tends to infinity with &, thus we obtain

colim; TCR(X ® (skpEXa4)™";2) ~ TCR(X ® EXY)Y;2)

from Lemma 3.5.2. Since geometric fixed points commute with colimits and ski E¥o, is a finite
¥5-CW complex we can reduce the claim to showing that ®*2TCR(X ® (25/1,)tV;2) is trivial
and by Corollary 3.5.4 it is enough to show that ®*2TCR"(X ® (25/1,)%"V;2) is trivial for
all n. We observe that the underlying Dynt1-spectrum of X ® (39/14)"Y is X ® Doynt1/Cany,

on+1 Dynt1

which is equivalent to indg resg2 X by the projection formula (A.21). As a consequence

on

of Proposition 3.2.5 and [()S21a, Lemma 3.25] both
®¥2(X @ Dons1/Cony )" and  ®¥2((X ® Dantr /Con)122C2)hm2Can

vanish, therefore > TCR"™(X @ (X2/14)%"1;2) is the fiber of a map between two trivial spectra,

hence itself trivial. O

We immediately obtain the following corollary from Theorem 3.5.8 and [DMPR21, Corol-
lary 2.28].

Corollary 3.5.10. Let A be a discrete ring with anti-involution such that % € A. Then
®>¥2TCR(A;2) ~ 0.

Remark 3.5.11. Suppose X is a genuine real 2-cyclotomic spectrum. We want to describe ¢ x

in this case and give a more detailed description in the case X = THR(A).

(a) Recall that (on the underlying D4-spectra) the Frobenius of X is given by the composite
X~ %X = 0 F(EFp,[Co)1, X) = X122,

where the equivalence comes from the genuine real cyclotomic structure and the arrow is the
Fp,[Cs]-completion map. Let f': (#*2X)"“2 — ®>2 X be the inclusion of fixed points and
By ®¥2X — (®¥2X)"C2 the composite

P2 X ~ ¥ P2 X ~ 2T X — (@V2X)HC2
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with the first equivalence being induced by the genuine real 2-cyclotomic structure of X and

the arrow the Borel completion map. We consider the following diagram

D
ézzéfzx —— %202 F(EFp,[Ca)+, X)

PC20%2 X — 5 $C2%2 F(EFp,[Cal4, X)

! !

~

(@2 X)'% —=— (0¥ F(EFp,[Co]+, X)),
where the lower vertical arrows are the Borel completion maps and the horizontal maps are
the Fp,[Ca]-completion maps. By definition the left column is ¢’y and ¢x: (@2 X)"2 —
(®>2 X)*C2 is given by going from ®>2 X to the lower left corner in the diagram through the

right column and precomposing with f’, hence ¢x is homotopic to ¢’y o f’.

(b) In the case X = THR(A) we shall give an additional description in terms of the Hill-Hopkins-
Ravenel norm [HHR 16, Section A.4]. In the case of finite groups G and H and an orthogonal
G-spectrum Y it is easily checked that the Hill-Hopkins-Ravenel norm Ng *Hy is obtained
by equipping Y ® with the (G x H)-action given by the diagonal G-action and H-action by
permuting the smash factors. Here we view G = G x 1 as a subgroup of G x H. By [BDS16,

Theorem 5.3.5] there is a natural diagonal equivalence of G-spectra
Ay = oH NGy,

The map AgXH has the property that the composite

G ANGXH
BEAE

q)GX q)Gq)HNgXHXZCI)GXHNgXHX

is homotopic to the diagonal equivalence of [HITR 16, Proposition B.209]. We shall apply this
to the case at hand. Recall that THR(A) is the geometric realization of the dihedral nerve.
As a Ys-spectrum A is both a left and right module over the Hill-Hopkins-Ravenel norm of

(the underlying spectrum of) A, with the module structures given by

NPZ2A®A = A,a®b® x— azw(b),
A@NTA 5 Aa®b® x> w(a)zh.

Since geometric fixed points are monoidal, these descend to left and right A-module structures

on ®>2 A. There is a Yo-equivariant simplicial isomorphism
sdsDNE(A) = By(A; N2 A; A),

AR ® A2n+1 — Qo X a1 X w(a2n+1) KRy @ W(an-i-Q) ® Ap+41,
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between the Segal subdivision of the dihedral nerve and the two-sided bar construction and

similarly a D4-equivariant simplicial isomorphism
sdgsda DNE(A) =5 sdgBe(A; N2 A; A),
g @ - -+ Qapt3 > g @ a1 @ W(Aan13) @ - - - Azpt1 Q@ w(aznts) @ A2(n+1);
where we equip the target with the Cs-action given by
T®(a1®az2) @ (Aant1@aant2) @Y = Y@ (W(A4nt2) @w(Aan+1)) @ @ (w(az) ®w(ar)) @ .
Finally, there is a D4-equivariant simplicial isomorphism
sdsBa(A; N2 A; A) =5 Bo(NEPA; NN A; 0 NE* A) (3.23)

given by sending

TR Vb Q- ®azmi1 ®bag1 @Y
to
TRYRar @b @w(azmt1) Qw(bznt1) @+ ® ap ® by, @W(ant2) @ W(bnt2) @ ant1 @w(bpt),
where a: Dy =N Dy is defined by a(c) = ¢,a(0) = gc. Under these isomorphisms pryr(a)
is given by the composite

Bo(ASHATHAL

Bo(A; Ny? A; A) Be(® NI A; @2 NEENT? A; 02 NS A)
~ By (P NG A; @ NLINT? A; @20 NS A)
D Dy 1S * ArD
~ OB (NS A; NN A; o NS A)
>~ d%25dg B, (A; N2 A; A),
where the first equivalence is the conjugation equivalence ®“2 ~ ®“2q* and the second
equivalence is the monoidal structure of geometric fixed points. After applying ®>2 and

postcomposing with the natural transformation
U202 (=) = BBV () (972 (—))'C3

we see that ¢Tpr(4) is given by applying geometric realization to the composite

B (952 A; A; 952 4) PB28zcan),

Bo((P7A® &2 A)'>; (AR A)C2; A™2)

~ Bu((972 A4 © B2 A)'C5; (A A)C (57 4)'C2)

— By (P2 A® ®¥2A; A® A; BFA)C:

~sdgB, (P2 A; A; D¥2 A)1C2
and commuting geometric realization with the Tate construction. Here the undecorated
arrow is the monoidal structure of the Tate construction, the isomorphism is ®¢2 applied to
(3.23) and B: Cy = 5. We used the following facts:
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(1) The natural transformation ®“2 — (—)*“2 is lax monoidal.

C2
(2) The composite X ﬁl—% <I>C2N102X — (X ® X)¥“2 is the Tate diagonal by [NS18, Re-
mark ITI.1.5].

(3) For any G-spectrum X we have that
NI®CX ~ @9 NG*H X

and the following diagram commutes:

G A G H N GXH
pOox L6, gUgHNGXH x

lA{’ l:

PINIOCX —=— OHPCNG*H X,

(4) The composite
PP A§4
24 — 2 ¢22¢C2N§;A ~ <I>22<I>Cza*N524A ~ q>02q>22a*N§;A

(I)CQB*Agz X (oc)

~ QOB PUINDIA 2 PC2pr A
is homotopic to the conjugation equivalence ®>2 A ~ ®“23* A, Here we used that Dy =
Y5 % (oc) and the fact that the diagonal map commutes with the conjugation equivalence

in a suitable way (see [Wim19, Proposition 2.23] for a precise statement).

Finally, we point out that under suitable point set conditions the realization of the two sided
bar construction Be(®¥2A; A; ®*2 A) models the (derived) tensor product ®*24 @4 ®*2 4
(see for example [DMPR21, Lemma 2.13]).

We now deduce [DMP21, Theorem 2.13] from Theorem 3.5.8, which in loc. cit. was proven
using genuine real cyclotomic methods *. The proof will show that both statements are essentially
equivalent and is similar to that of [NS18, Theorem I1.4.10]. In the statement and the proof we
will use the fact that for n > 1 and any Dsn+1-spectrum X there are natural equivalences
PP X ~ P1X ~ 202 X

Theorem 3.5.12. Let X be a genuine real 2-cyclotomic spectrum whose underlying spectrum
is bounded below. Denote by f: (®¥2X)C2 — ®¥2X the inclusion of fized points and define
r: (@2 X)) — ®¥2 X to be the composite

(@™ X)%2 — 2™ X ~ 292X ~ P2 X,

4In fact our statement is slightly more general. In [DMP21, Theorem 2.13] it is assumed that the underlying
Yo-spectrum of X is bounded below, whereas we only assume boundedness for the underlying non-equivariant
spectrum. This can however also be shown using the methods in loc. cit. if one uses Proposition 3.5.1 in the proof
given there instead of [DMP21, Lemma 2.4].
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where the arrow is the canonical map from fixed points to geometric fized points and the third
equivalence is induced by the genuine real 2-cyclotomic structure of X. Then there is an equiva-

lence

2 TCR(X;2) ~ fib ((@22)()02 i, @sz) .
Proof. Recall that the Frobenius px: X — X*92C2 is given by the composite
X = @) — X222

where the equivalence comes from the genuine real cyclotomic structure and the arrow is the
FDyoo [Casc]-completion map. Let f/: (®¥2X)"C2 — &2 X be the inclusion of fixed points and
P P2 X — (®¥2X)"C2 the composite

P K > 2P ~ 2P Y — (P2 X) 12

with the first equivalence being induced by the genuine real 2-cyclotomic structure of X and
the arrow being the Borel completion map. By Remark 3.5.11 the map ¢x: (®¥2X)"C2 —
(®¥2 X)!C2 of Theorem 3.5.8 is given by the composition of f’ and ¢ .

The isotropy separation sequence and the equivalence ®*2X ~ ®C2®>2X imply that the

following diagram is a pullback:

(@2 X)C2 — 5 T X

l de

(@EzX)h@ % ((I)EZX)tCQ.

To compute the fiber of r — f: (®¥2X)%2 — ®>2 X we consider the following square

’
r

o X @ (9% X)C: S g x

lqb/x —can l

(P¥2X)1 ———— 0,

where 7/ is the projection onto the first factor. The vertical fibers are (®*2X)¢2 and ®>2X
with the induced map being r» — f. The upper horizontal fiber is (®¥2X)"“2 via the map
(f,id): (@¥2X)hC2 — ¥2X @ (®¥2X)"“2 and the lower horizontal fiber is (®¥2X)!“2. The
induced map between the horizontal fibers is then ¢x — can so the claim follows from Theorem
3.5.8 after taking the total fiber of the square. O

The next corollary follows immediately from Theorem 3.5.12, [()S21a, Proposition], and the
fact that fixed points and geometric fixed points preserve colimits (Lemma A.1.4 and Lemma
A.2.7)5.

Daoo

5Here we also use that by definition the restriction functor Sp — SpP4 preserves colimits, see Section

A.1 for a discussion of this fact.
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Corollary 3.5.13. Let k be an integer and denote by RCycSp, -, C RCycSp, the full subcat-

egory of real 2-cyclotomic spectra whose underlying spectra are k-connective. Then the functor
P¥2TCR(—;2): RCycSpy >\, — Sp
preserves all colimits.

We use this corollary to prove the following statement. We will use it in the next chapter to
identify parts of ®*2>TCR(X ® DN(G)4;2).

Proposition 3.5.14. Let A be a Ya-space and let X be a real 2-cyclotomic spectrum whose

underlying spectrum is bounded below. Then the assembly map©
P¥2TCR(X;2) @ AY? — ™2 TCR(X @ (A4)""1;2) (3.24)
18 an equivalence.
Proof. By Corollary 3.5.13 the functor
d¥2TCR(X ® (—)";2): Spc>? — Sp

commutes with colimits, therefore it suffices to prove the claim for A = ¥5/1 and A = *". For
the former the source of (3.24) is contractible and we have seen in the proof of Theorem 3.5.8

that the target of (3.24) is contractible as well. For the latter the statement is obvious. O

In chapter 4 we will define for various n a filtration on X ® DN (Ds,,)+ such that the Frobenius
of Fi.(X ® DN(Da3,,)+) factors through Fi_1(X ® DN(Ds,,)+). The next proposition describes

the geometric fixed points of real topological cyclic homology at the prime 2 in this situation.

Proposition 3.5.15. Let X be a real 2-cyclotomic spectrum whose underlying spectrum is

bounded below, and suppose there is a splitting of the underlying Daoo -spectrum
X 2y, (Co) Y O 2

such that the Frobenius X — X222 factors through Y'=2%2. ThenY inherits the structure of a

real 2-cyclotomic spectrum and there is a cofiber sequence

®*2TCR(Y;2) — ®*2TCR(X;2) — (92 2)10,. (3.25)

6Let * be a final object of Spc>¥2. If T': Spc>2 — Sp is a functor, then colimy , AT (%) ~ T(%) ® AZQ, where
the colimit is taken over all maps * — A in Spc>2, and the universal property of the colimit yields the assembly
map colim,_, AT (x) — T(A).

"This is a version of the localizing subcategory argument (Remark A.1.2) in the unstable case: The smallest

subcategory of Spc>2 that is closed under colimits and contains ¥2/1 and * is Spc>2 itself.
8See Definition A.2.4 for this notation. Note that the definition given there also makes sense for Dacs .
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Proof. 1t is clear that Y inherits a real 2-cyclotomic structure such that the inclusion ¥ — X is
a map of real 2-cyclotomic spectra. The assumption implies that the following diagram, where

the vertical sequences are the standard split cofiber sequences, is a diagram of cofiber sequences

(@D )hs oy (@27 )

l l

(q)zzy)hcg @ (q,EQZ)hCQ can—¢x (q,&y)t@ @ (q,ZQZ)tCQ

| |

(@2 Z)hCa can (@%27)tC2,

By Theorem 3.5.8 the fibers of the upper and middle horizontal arrow are ®*2TCR(Y’;2) and
®*2TCR(X;2) respectively, and the fiber of the lower horizontal arrow is (®*2Z),c, . O
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Chapter 4

Real Topological Cyclic
Homology of group rings for

cyclic and dihedral groups

In this chapter we use Theorem 3.5.8 and our results on the dihedral nerve from Section 2.3 to
calculate ®*2 TCR/(A[G]; 2) for cyclic and dihedral groups. Here and throughout this chapter A is
a bounded below ring spectrum with anti-involution and A[G] the group ring spectrum, where the
involution on G is given by sending an element to its inverse. Recall that there is an equivalence
of real 2-cyclotomic spectra THR(A[G]) ~ THR(A) ® DN(G)4 and that if A is bounded below
then the underlying spectrum of THR(A) is as well. We will actually consider X ® DN(G). for
an arbitrary real 2-cyclotomic spectrum X whose underlying spectrum is bounded below instead
of THR(A).

Instead of G being cyclic we can in fact be somewhat more general and give a calculation for
the situation where the 2-torsion of G is contained in the center, which also includes the case
that G is abelian. This result is given in Theorem 4.2. For dihedral groups we give results in
the following cases: Ds, with n =2 mod 4 (Theorem 4.3), Ds, with n =0 mod 4 (Theorem
4.5), Do and Dy (Theorem 4.6). All our computations will use the additive decomposition
of DN(G) given in Proposition 2.3.6. We will analyze the summands directly and start by

computing the summand indexed by the neutral element.

Proposition 4.1. Let X be a real 2-cyclotomic spectrum whose underlying spectrum is bounded

below and G a discrete (possibly infinite) group. Then there is an equivalence

®TCR(X ® Be(G,1)4;2) ~ P @PTCR(X;2) ® BZa(z)4,

[z]Econj(G)
z?=1
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which depends on a choice of representatives for each conjugacy class.

Proof. By Proposition 2.3.6 there is a Cs-equivariant equivalence of Yo-spaces
f: BRG ~ BR(G7 1)

induced by (2.12), where the left hand side has the trivial Cs-action and the right hand side
the Cs-action by restricting the T-action coming from the cyclic structure. We claim that this

induces an equivalence
P2 TCR(X @ (BrG4)™;2) ~ &2 TCR(X ® Br(G,1)1;2).

The proposition will then follow from Proposition 3.5.14 and Proposition 2.3.3.

Let a: Dy — X5 be the projection. Consider the following diagram of spectra

T2 f

V25 BrG., ®¥23°° Bp (G, 1) 4

| |

D
PPIN=0* BpGy — T @PN® B (G, 1),

| l

= tC,
(@%25%a* Bz G4 )10 T2 @y By (1), )10,

where the lower vertical arrows are the Borel completion maps, the upper right vertical arrow is

induced by (3.20) and the upper left vertical arrow is obtained by applying ®*2 to the composite
Y®BrG, — (X°a*BrG 1) — d928®0* BrG (4.1)

with the first map being the unit and the second map the natural map from fixed points to geo-
metric fixed points. By Example 3.4.7 the composition of the left vertical arrows is ¢ s g, g yuriv
and by the proof of Proposition 4.1 the composition of the right vertical arrows is ¢xep,(G,1),
therefore by Theorem 3.5.8 we must show that the outer square in the diagram commutes. By
naturality of the Borel completion it suffices to show that the upper square commutes.

Note that the the composition of (4.1) with the equivalences
PN BrG, ~ N (a*BrG 1) ~ ¥ BrG
is the identity. After taking Yo-fixed points f fits into the square of spaces

)
BRGZ2 L BR(G, 1)22

| |

5, ST D
BrG*? —— BR(G,l) 4

where the right vertical arrow is induced by (3.20) and the left vertical arrow is on each component
of BRG®2 given by (2.14), which is homotopic to the identity. O
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We will now compute ®*2TCR(X ® DN(G);2) for the case that all 2-torsion is contained
in the center of G. In the statement we denote by G5 the set of 2-torsion elements and we let

Yo act on G4 X GG via the map
G2 X G2 — GQ X G27 (g’h) — (gvgh)

We shall use this in our indexing notation. Note that the above X5 action restricts to a free
action on Go \ {1} x Gs.

Theorem 4.2. Let G be a discrete group such that Go, the elements of order 2, are contained
in the center of G. For any real 2-cyclotomic spectrum X whose underlying spectrum is bounded
below there is a natural pullback

P*TCR(X ® DN(G)4;2) —— @ P2 X ® BG
J (G2\{1}xG2)/%2

|#
can—¢

(02X 1 BaGlP™))1 O =0 (@%(X & BaGY™)

and the horizontal fiber is P, O TCR(X;2)® BGy. Consequently, if G is 2-torsion-free there

is a natural equivalence
P2 TCR(X ® DN(G);2) ~ &> TCR(X;2) ® BG,.
Proof. By Proposition 2.3.2 we have a decomposition

X@DN(@G)y~ P X®Br(G2)1& P X ©Ba(SZa(x)[Ts,1)4,
z€G2 [z]€conjr(G),
w2751

and by Proposition 2.3.3 and the assumption on G the inclusion induces a Cs-equivariant equiv-
alence

P2 ( EB X ® Br(G, x)+> ~ ®>2(X @ DN(G),). (4.2)

z€G2
Note that €@
inclusion into X ® DN (G)4 is a map of real 2-cyclotomic spectra. The left hand side of (4.2) is

vca, X ® Br(G, )4 is a real 2-cyclotomic spectrum by Lemma 3.4.8 such that the
equivalent to

(X @Bp(G, 1)) e P X eBG,
GQ\{l}XG2

and by Example 2.3.8 the residual Cs-action sends the summand indexed by (z,y) € Ga x Ga
to the summand indexed by (x,zy), therefore the Cs-action on @G2\{1}XG2 ®¥2 X ® BG, is
induced after untwisting. Combining the above with Theorem 3.5.8 and [NS18, Lemma 1.3.8] we

obtain that ®*2TCR(X ® DN (G)4;2) is equivalent to the fiber of

can—

% (X ® Bg(G,1)1)" @ P %X ©BG. % 6%(X © Br(G,1),)
(G2\{1}xG2)/%2
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Since the restriction of can to ®(G2\{1}XG2)/22 ®*2 X ® BG, is zero, this is equivalent to the
fact that the following diagram is a pullback

@ZQTCR(X ® DN(G)4+;2) —— ) P32 X ® BG4
J (G2\{1}xG2)/%2

&
can—a¢

(P¥2(X @ Br(G,1)4)"? —— (2%(X @ Br(G, 1)4))">,

and by (the proof of) Proposition 4.1 the lower row is equivalent to

can—¢

(&% (X @ BaG™))"C: 0 (%X 0 BaGY™))' >

with fiber @, ®™2TCR(X;2) ® BG.. O

We now turn to dihedral groups. For Dy, with n finite we restrict ourselves to even n and
we need to distinguish between the cases n = 2 mod 4 and n = 0 mod 4. We start with the
former. Note that the previous result also applies to Dy, since it is abelian. Therefore, we assume
that n =2 mod 4 but n # 2. The condition on n implies that the inclusion Dy — Do, is a split

injection of groups, hence it induces a split injection of spectra
P2 TCR(X ® DN(Dy);2) — ®**TCR(X ® DN(Dy,)+;2). (4.3)

We shall describe the cofiber of (4.3), which is equivalent to ®*2>TCR(X ® D(Da,)/D(Dy);2),

where

DN(Ds,)/DN(Dy) = cofib( DN (Dy) — DN (D).

The inclusion Co — €, induces an isomorphism in group homology H.(Cy;Fs) = H,(C,;Fs),
hence an application of the Lyndon-Hochschild-Serre spectral sequence shows that also the in-
clusion Dy — Dy, induces an isomorphism on group homology H,(D4;F3) = H,(Dsy;Fs). In
particular, the map of suspension spectra BDy, — BDo, is a 2-adic equivalence, that is the
suspension spectrum of BDs,,/BD, vanishes after 2-completion. We will exploit this fact in the
proof of the next result. In it we will use sums indexed over (certain subsets of) the orbit set
(Cn,\ C2)/%2. Here, as usual s acts on C,, by sending an element to its inverse. This ¥s-action

clearly restricts to C,, \ Cy'.

Theorem 4.3. Let X be a real 2-cyclotomic spectrum whose underlying spectrum is bounded

below.

IHere by Cy, \ C2 we mean the set theoretic difference, not the right orbits.
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(i) After 2-completion there is a pullback

@2 TCR(X ® D(Ds,)/D(Dy);2) —— > (@™ X ® BCQ+)hcz)@2
[V]€(Cn\C2)/S2
J{can—qﬁ

jeven

| D %2 X @ BCy, _ 9% . &) (((I>22X ® BC2+)t02)€92 )
(1€ \Ca)/s [¢/]€(Cn\C2) /2
Jo jeven

where in the right hand terms BCy carries the trivial Cy-action.

(ii) If the underlying Xo-spectrum of X is bounded below, then there is a pullback

69 (((I)EzX ® BC2+)hC2)@2
[Cj]e(cn\c2)/22

®*:TCR(X ® D(Dsy,)/D(Dy);2) — Jeven
(X © D(Dzn)/D(Ds);2) 2" e emxenc.
[cf]e(cn§§2>/22

Jo
lcanfcj)

(((@E2X)h02)@2 @ @22X) ® BDs,/BDy -2 & (@72 X © BCy,)') ™2,

[9]€(Cn\C2) /5
jeven

where in the right hand terms BCy carries the trivial Cy-action.

Remark 4.4. Before we give the proof we point out the following two remarks on the pullback

in (ii).

(a) Denote by F the vertical fiber of the pullback square in (ii). Then one can see from the form

of the given pullback square that
O TCR(X & D(D30)/D(D4);2) = F & (9% X)ncy) ™ ® @™2X ) @ BDzo/BD,

since the lower left corner is a direct summand of the horizontal fiber. Since the restriction

of can to é ®>2 X ® BCo, is zero, F also fits into a pullback
[¢]€(Cn\C2) /52
jodd
F o) (52X @ BCyy )hC2)®”
['1€(Ca\C2)/ 22
jeven
lcanfq&
@ =X ®BC,, —2 P (52X @ BCyy)tC2)®?.
[¢]€(Cn\C2)/52 [¢7]€(Cn\C2) /52
jodd jeven
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(b) As remarked before, for an orthogonal ring spectrum A with anti-involution the underly-
ing spectrum of THR(A) is bounded below if A is bounded below as a spectrum so that
X = THR(A) fulfills the condition in (i). If the (geometric) fixed points of the orthogonal
Yo-spectrum associated to A are additionally bounded below, then the underlying Y5 spec-
trum of THR(A) is bounded below by [DMPR21, Theorem 2.26] and the condition in (ii)
applies to X = THR(A). This is in particular the case if A is a discrete ring with anti-
involution by [DMPR21, Example 2.4]. Furthermore, in this case ®*2THR(A) is a module
over ®*2THR(Z) by [DMPR21, Section 4.1]. Now ®*2THR(Z) is itself an HFs-algebra by
[DMPR21, Theorem 5.23], therefore the lower left corner in the pullback of (ii) vanishes for
X = THR(A) in this case and ®*2 TCR(THR(A) ® D(Ds,)/D(D,);2) is equivalent to the
vertical fiber, hence by (a) fits into the pullback

P2 TCR(THR(A) ® D(Day,)/D(Dy);2) - é ((¢EQTHR(A) ® 302+)h02)€92
[€7]€(Cu\C2)/T2
lcanfzb

jeven

@  I:THR(A) ® BCyy —% @  ((@%=THR(A) ® BC,)!%) .
[¢]€(Cp\C2)/ 52 [¢7]€(Cn\C2) /%2
jodd jeven

Proof of Theorem 4.5. By Proposition 2.3.2 there is an equivalence
DN(Ds) ~ [] Br(Da, ),
r€Dy
and DN(Dy,,) is equivalent to

Bg(D2, 1) I Bp(Day, ) I [ Ba(Zp,, (0c%),0c®) 10 1T Bg(Day, [ Sa,¢7).
1=0,1 [CJ‘]G(CW\CQ)/EQ

Note that Zp, (o0¢%) = (o¢%,c¥) = Dy. One checks that under the above equivalences the
map DN(D4) — DN(Ds,) maps the summands indexed by [[1]], [[cc?]] and [[c]] respectively to
the summands indexed by [[1]],[[c¢®]] and [[¢Z]] respectively and on these summands the map
is given by either the identity Br(D4) — Bgr(D4) or the map Bgr(Ds) — Bgr(D2,). We obtain

that DN (Ds,,)/DN(Dy) is equivalent to

Bg(Dan,1)/Be(D4, 1) V Br(Day, %) /Bg(Da, ¢) V \/ Bg(Day [ $,¢7) 4.
[c7]€(Cr\C2)/%2

We take suspension spectra and smash with X. We want to apply Theorem 3.5.8 and start by

analyzing (®¥2(—))*“2 and (®*2(—))"“2 of each summand separately.

(1) By Proposition 2.3.3 we have

(@2 (X @ Ba(Dan,1)/B(Da,1))' " ~ (952X @ BDa,/BD,)!*)
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where Cy acts trivially on BDs,/BDy. As the mod 2 Moore spectrum is a finite spec-
trum, smashing with it commutes with the Tate construction and the discussion above
shows that ®>2X ® BD, /BDy vanishes after smashing with the mod 2 Moore spectrum.
Therefore, (®¥2X ® BDs,,/BD4)*“? vanishes after 2-completion and it vanishes uncondi-
tionally if ®*2X is bounded below by [NSI8, Lemma 1.2.9]. The same argument shows
that (®¥2(X ® Bg(Dan,1)/Br(Da4,1)))"C? vanishes after 2-completion. If ®*2 X is bounded
below, the vanishing of the Tate construction together with Proposition 2.3.6 implies that

there is an equivalence
(@ (X @ Br(D2p,1)/Br(D4,1)))"?* = (X ® BD2y,/BDy)nc,)®?
~ (2™ X)ne, ® BDan/BDy4)®2.
(2) By Proposition 2.3.3 and Example 2.3.8
%2 (X @ Br(Day, c?)/Br(Dy,c)) ~ ind{? (02X ® BDs, /BD,),
which vanishes after applying the Tate construction and we obtain
(%2 (X ® By(Dan, ¥)/Bz (D, )" ~ 82X @ BDa,/BDs.
Note that also this spectrum vanishes after 2-completion.
(3) If j is odd, then Proposition 2.3.3 and Example 2.3.9 imply that
%2 (X @ Br(Day [ $2,¢7)4) ~ ind{? (&™2X @ BCy. ),
which again vanishes after applying the Tate construction and

)th

(@72 (X ® Br(Dap [ £2,¢7)4) ~ 0¥ X @ BCOy,.

(4) If j is even, then we obtain from Proposition 2.3.3 and Example 2.3.9 that
(X @ Bg(Dan [ $a,¢)4) ~ (82X @ BCy, )7,
where BC5 carries the trivial Cs-action.
Combining the above with Theorem 3.5.8 yields that after 2-completion there is a fiber sequence

&> TCR(X ® DN (Ds,)/DN(Dy);2)

l

o) (B%2X @ BCy)hC2)*? g @ %X ® B,
[¢]€(Cn\C2)/2 [¢7]€(Cn\C2) /%2
jeven jodd

lcanf¢

@ (((I)EZX ® B02+)t02)€82 ,

[9]€(Cn\C2) /2
jeven
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and by the vanishing of the Tate construction the restriction of can to the summand indexed by
[¢] with j odd is zero, thus we obtain the pullback in (i) by rewriting the above fiber sequence
as a pullback. Similarly, if ®*2X is bounded below, then ®*2TCR(X ® DN (D2,)/DN(Dy);?2)

is equivalent to the fiber of
(%2 X)pc,)®? @ ™2 X) @ BDy,,/BD4®

2
D (@7x e b e
[¢7]€(Cn\C2)/S2

jeven

@ (I)E2X ® BCQ+ ﬂ) @ ((¢E2X ® BC2+)th)G92 .
[¢11€(Cn\C2)/%2 [']€(Cn\C2)/L2

jodd jeven

If we apply Lemma 3.4.8 to Dy and Ds, and subsequently pass to the cofiber, then by the
vanishing of the Tate construction we see that the map can — ¢ is zero when restricted to
((®*2 X)pc,)®2 @ ®¥2 X) ® BDy,/BDy, thus we obtain the claimed pullback of (ii) by rewriting

the above fiber sequence as a pullback. O

Next, we want to treat the case of finite n with n = 0 mod 4. We denote by 5 the 2-adic
valuation, i.e. vo(n) = k if n = 2¥m with m being odd. In this case for k = 0,1,...v2(n) there
is an inclusion Cyk,, — C,,. As before we let X5 act on C), by sending an element to its inverse.

This restricts to an action on Cox,, \ Cor-1,,,. We will again use this fact in our indexing notation.

Theorem 4.5. Let X be a real 2-cyclotomic spectrum whose underlying spectrum is bounded

below.
(i) Suppose n = 0 mod 4. There is a finite filtration of length va(n) on ®*2TCR(X ®
DN (Dsyy,)4;2) such that for k > 1 the kth graded piece gr*®**TCR(X ® DN (D2,)4;2) is
equivalent to

™2 X © BDzoy © ((a;-“(I)EzX) ® (9™ X ® BZp,, <aci>+)®2)

h(o’ci,c%)
i=0,1 )
if k=1,

o @  ((@%X)ne, ® BC)™

(Cam\C2)/%2

(@™ X)pe, ® BCoy)** if2 <k < ws(n),

(6421"771\CV2}9*1m,)/22

P X BCy if k = va(n),

(Ca\Cy)/E
where a;: (oc',c¢%) = Np,, Zp,, (oc') = Wp,, Zp, (oc') = Cy is the projection. Finally,

there is a split injection

(P TCR(X;2) @ BD2yy)¥* @ @D ™ TCR(X;2) ® BZp,, (0c') +
i=0,1

— gr?®*2(TCR(X ® DN(D2,)+;2)),
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which is an equivalence of n is a power of 2.

(ii) There is a filtration of infinite length on ®*2TCR(X ® DN (Daw);2) with the kth graded
piece grf®@¥2 TCR(X ® DN (Da,)+;2) being equivalent to

(®*2TCR(X;2) ® BDa~ ) @ ™2 TCR(X;2) ® BDy, if k=0,
®*2X ® BDgey @ (02 X),p, @ (™2 X ® BDyy)? if k=1,
&y (®*2 X) e, ® BCay if k> 2,

(Cor\Cor—1)/%2
where a: Dg — Dg/ Dy = Cy is the projection.
Proof. We put a filtration on X ® DN (Da,,) 4 itself, which induces a filtration on ®*2TCR(X ®

DN(Ds,)4;2), since ®*2TCR(—;2) is exact. Just as before, Proposition 2.3.2 implies that
X ® DN (Day,)+ is equivalent to

P X @Bu(Zp,,(z),2)s @ T X ® Br(SZp,, () [ $a,¢7) 4,
2€{1,c? 0,0} [c7]€(Cn\C2)/22

and we let Fi(X ® DN(Dagy,)+) consist of the summands indexed by elements z such that
vo(ord(x)) < k. By Lemma 3.4.8 Fi(X ® DN(Da,)+) is a real 2-cyclotomic spectrum such
that for £ > 1 its Frobenius factors through Fj_1(X ® DN (Da,,)+ ), therefore Proposition 3.5.15
yields the identification

®¥2gr*TCR(X ® DN (Day,)452) ~ (9%2gr*(X ® DN(D2n)4))ncs
for k > 1. We treat the different cases k =1,...,1v5(n).

(i) Up to real conjugacy, the elements x € Dy, with vo(ord(z)) = 1 are 0,0¢,c¢? and ¢/ with
[¢7] € (Cam\Ca)/Xa. For the latter we must have that j is even. We determine (®*2(—))pc,
of these summands separately. Note that for i = 0,1 we have Zp, (oc') = Np,, (oc') =
(oct,c2) = Dy and Np,, Zp,, (0c') = (oc’,ct) = Dg. Furthermore, c? is central in Day,,.

By Example 2.3.8 we have
(©™2(X ® Br(Zp,, (0c"),0¢"){))ney ~ (272X ® BZp,, (oc') 4)?,
and

(®%2 (X ® Br(Dan,c?)y)),0, = ®72X @ BDany & ) (972X ® BZp,, (0¢') 4 )ncs»
i=0,1

where BZp,,(o¢') = ENp,, Zp,, (0¢")/Zp,,{0¢") = (¥)nzp, (sciy With the residual action
by Wp,, Zp,, {(oc') = Cy. Now we observe that

(®Z2X ® BZDzn <Jci>+)hcz = ((I)ZQX ® (SO)hZDgn <o’ci))hC2

= ((a?q)XbX)hZDQn (oc?) )hWD%L Zp,, {oct) = (O‘f‘bzg X)hND%’ Zpy, (oct)-
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For the final summand, it follows again from Example 2.3.9 that

(©**(X ® Br(SZp,, (') [ X2, )1))ne, = (272X @ BC21)?),

and since the Cs-action is on BCyy is trivial we have

(™2 X ® BCoy)no, =~ (972 X)no, © BCsy .

(ii) For 2 < k < v2(n) we have

gr*(X ® DN(Dzp)4) ~ . X ® Br(SZp,,(¢’) [ B2, )4
[¢7]€(Chk,, \Cor—1,,,) /22
The corresponding j are all even. Therefore, the same argument as above shows that

gr* @2 TCR(X @ DN(Day)4;2) ~ D (B2 X)ne, ® BCoy )2
(Cokyy, \Cok—1,,)/ %2

(iii) The remaining graded piece is gr’2( TCR(X @ DN (Dz,)+;2). One checks that

g2 (X ® DN(Dan)+) = D X ® Br(SZp,, () [ 2,4,
[c7]€(Cn\Cz)/%2
and the corresponding j are all odd. Thus, the same argument as in the proof of Theorem

4.3 shows that

(®¥2(X @ Br(SZp,, () [ $2,¢) ))ne, = P2 X @ BCy, .

Finally, we treat the zeroth graded piece. We have that
gr%(X ® DN (Dan)4) ~ X ® Bg(Dgn, 1)+ ® 4 X ® Be(SZp,, () [ 5o, )
[7]€(Cm\{1})/ 22
and by Lemma 3.4.8 the inclusion
X ® Br(Dan,1); — X ® Bg(Dap, 1), @ P X ® Br(SZp,, (¢7) [ $a,¢7) 4
[7]€(Cm\{1})/22

is a split injection of real 2-cyclotomic spectra. We conclude by applying ®*2TCR(—;2) and
using Proposition 4.1 to identify the source.
For Dy the proof is similar to the proof of Theorem 4.5. By Proposition 2.3.2 there is an

equivalence

X ® DN(Dgwe )4 ~

P X©Be(Zpa) )@ . X ® Br(SZp,e (c)) [ Ta, )+
ze{l,c1,0} [cz,]e(ozm \C2)/Zs
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Note that SZp,. (¢)) = Das, that ¢; is central and that Zp,.. (o0) = Ds. We put

Fo(X @ DN(D2=)4) = X ® Br(D2~,1)4,
Fl(X ®DN(D20@)+) =X ®BR(D200,1>+ @X ®BR(D20<:,Cl) @X ®BR(D4,0')+

and

Fe(X®@DN(Do=)s)= P X®Br(Zp,w (x),7)+ P X ®Bg(Daw [ Sa,¢)) 1
ze{l,c1,0} [ch]€(Cyr\C2) /2

for k > 2. By Lemma 3.4.8 Fi(X ® DN(Dy=)4) is a real 2-cyclotomic spectrum such that
for k > 1 its Frobenius factors through Fj_1(X ® DN (D3~).), and by exactness this filtration
induces a filtration on ®*2>TCR(X ® DN (Daw);2). Furthermore,

gr' (X ® DN (D)) =~ X ® Br(Dae,c1)s @ X ® Br(Dy,0)4,

and
X ODNDe) )~ D X©Be(Dex [Eadl)s
[Ci]e(C%\Cgk—l)/Zz

for k > 2. By Proposition 3.5.15
gr* @2 TCR(X ® DN (Do) 4;2) ~ ®¥2(gr* (X @ DN (D)4 ))nc,

for k > 1, so the identification of these graded pieces is now analogous to the proof of Theorem
4.5 using Example 2.3.8 and Example 2.3.9. The identification of the zeroth graded piece was

done in Proposition 4.1. O

Theorem 4.6. Let X be a real 2-cyclotomic spectrum whose underlying spectrum s bounded

below.
(i) There is a splitting

O TCR | X @ Br(Doo; 1)1 ® @) X @ Br((oc');0¢') 152 | @
i=0,1

d¥TCR D X @ Bp(Doo [ $2,2)4:2 | ~ 2 TCR(X ® DN (Doo)4;2).
[¢]€(Coc\{1})/52

The first summand fits into a pullback

¢Z2TCR( o) X®BR(ZD%<$>7:£)+;2> — @ X ® Bloc),

z€{l,0,0c} i=0,1

l s

(P22 (X @ (BpDaoy)™))hC2 —2222 4 ($%2(X @ (BpDaoy)™Y))!%2,
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and the horizontal fiber is equivalent to

™ TCR(X;2) ® BDoor & ) ®*TCR(X;2) ® B{oc').
i=0,1

For the second summand there is a filtration indezed on Z=<° such that

gr*®*2 TCR, &y X ® Be(Doo [ $2,2) 432 | = (2 X)nc,) ™
[z]€(Coo\{1})/32 No
for k<0 and
gr’®>2 TCR &P X @ Ba(Doo [ 52,2)4;2 | ~ P72 X.
[z]e(Co\{1})/ 22 No

Proof. For D, we also use Proposition 2.3.2 to see that X ® DN (Da )4 is equivalent to

P XeBuZp.,(z)2)r0 &y X @ Br(SZp_ () [ 2o, ).
ze{l,0,0c} [1]€(Coc\{1})/Z2
In this case the centralizer of Zp_(oct) = (oc?) for i = 0,1 and SZp_(c’) = D for all j
and by Lemma 3.4.8 the inclusions of @,¢ (1 5503 X ® Br(Zp. (), %)+ Doje(car (i) X @
Br(SZp__{?) [ X2,¢7) 4 into XQDN (Dy )+ are both split injections of real 2-cyclotomic spectra,
therefore we immediately obtain the desired splitting of ®*2TCR(X ® DN (Dy)+;2). The
pullback

i=0,1 i=0,1

| s

(@72 (X @ (BgDao)'1iV))hC2 cano (@22(X ® (BpDooy )V)) 2,

d*TCR (X ® Br(Doo; 1)1 ® P X ® BR(<UCi>;O'Ci)+;2> — P P¥2X ® Blod),

as well as the identification of the horizontal fiber, is obtained as in the proof of Theorem 4.2
using Example 2.3.8.
To define the filtration on TCR (®[x]€(0w\{l})/22 X @ BrR(Doo [ 2,7)4; 2) we first rewrite

the index set as

@ X ® Bp(Doo [ £2,¢7) 4 = @@X ® B]R(Doo[22,025(21’+1))Jr
[c7]€(Coc\{1}) /22 s=0 i=0

by choosing the representative with j > 0 for [¢/] and then sorting the summands according to

the 2-adic valuation of the index. Then, for £ < 0 we put

Fy <@@X®B]R(Doof22’025(2i+l))+> = D @ X @ Ba(Doe [ 5, ),

s=0 1=0 s=—k i=0
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and again using Lemma 3.4.8 we see that

Fy, (@ P X ® Ba(Deo [ 2o, c2‘*<2i+1>)+>

s=0 =0

is a real 2-cyclotomic spectrum such that the Frobenius factors through

Fry (@ P X ® Br(Doo [ L2, c2'*<2i+1>)+> .

5=0 i=0
By Proposition 3.5.15 we have

gr*®2TCR(X ® DN (Dwo)+:2) ~ D (®%2 (X ® Br(Doo [ B2,¢* @), ))ic,.
i=0
Finally, by Example 2.3.9 the right hand side is equivalent to @NO((q)Z?X Yhe,) P2 if k < 0 and
Dy, OZ2X if k=0, O
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Appendix A

Equivariant homotopy theory

A.1 G-spectra and change of groups.

In this appendix we fix notation and conventions and collect some facts from equivariant ho-
motopy theory. We will mostly deal with stable equivariant homotopy theory and use only
basic concepts concerning G-spaces. For former the classic references are [LMS86], [MMO02] and
[[THR16, Appendix A and B] (but see also the somewhat more accessible lecture notes [Sch20]),
for the latter [tom87] is an excellent reference. We denote the oo-category of G-spaces by SpcG
and pointed G-spaces by Spcf. As a model for G-equivariant spectra we use orthogonal G-
spectra as described in [MMO02] with the stable model structure. Here we allow G to be a
compact Lie group. We denote the category of orthogonal G-spectra by OSp® and the resulting
closed symmetric monoidal stable co-category by SpG. Just as in the non-equivariant setting

there is a suspension spectrum functor
pIp Spc? — Sp©

and a smash product, which we denote by ®. The internal hom is given by the function spectrum
F(—,—). For suspension spectra we often drop the subscript G if the group is clear from context.
For convenience we will almost always write G/Hy instead of ¥*°G/H..

If a: H — G is a homomorphism (of Lie groups), then there exists an associated restriction

functor
o*: Sp¥ — Sp’l. (A1)
Restriction functors are symmetric monoidal and have the property that if 5: G — K is another
group homomorphism, then
a* B ~ (Ba)*t. (A.2)

IThis follows from the fact that the restriction functors can be modeled by Quillen functors and on the level

of Quillen functors this is an equality.
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Furthermore, we have that the following diagrams commute:

Sped’ —— Spel! Sp —*— sp!
lzw lz‘” and lm" lmc (A.3)
Sp® — sp' Spc® — Spc”.

If H is a closed subgroup of G and a = i% is the inclusion we write res$; instead of a*. We

use (A.1) to define Sp”2* = lim,, Sp”>" | where the limit is taken in CAlg(Pr™*"), the oo-
category of symmetric monoidal presentable stable co-categories, and the structure maps are the

Dapn

restriction functors SpD 2pmtl — Sp along the inclusion Dg,n C Dypni1. Note that since in

Dgpoo Dgpn

Pri*t the morphisms are colimit preserving functors, the restriction functors Sp — Sp
preserve colimits for all n.
From now on we will assume that G is finite throughout this appendix. In this case the

restriction functor (A.1) preserves all limits and colimits and has a left adjoint
ar: Sp — SpG
called induction with unit and counit
nlaz id = a*ay and e;: ara™ —id
as well as a right adjoint
a,: Sp — SpG

called coinduction with unit and counit
Ne:1d = a,a™ and  e,: a*a, — id.

Note that as the right adjoint to a monoidal functor a is lax monoidal. If a = zg is the inclusion
of a subgroup, then we write ind% instead of a; and coind$ instead of . We can also define
fixed points using this formalism. For any subgroup H of G we denote by p%: NgH — WgH
the projection. We shall also write pg: G — 1 instead of pg to avoid cumbersome notation.

Now if N is a normal subgroup we let
()™ = (1) Sp° — Sp&/N
2

and call it the N-fixed point functor?. In the case of subgroup H which is not normal, we let
(—)": SpY — Sp"e denote the composite

G
G YeSNgm

NgH (PF) WeH
Sp Sp —— Sp .

2In the literature these are sometimes called categorical fixed points.
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The fixed point functor has the property that for a subgroup K containing N

resf(//%XN ~ (pK)«(res& X). (A4)

We will prove this in Lemma A.1.3. For a non-normal subgroup H we then obtain

WG H y H WeH/ G NgH

G
res e i = resy iy (PH )« (resR, g X) =~ (ply)sresyy

res%GHX ~ (pB),(resGX).  (A.5)

For this reason we use the notation X for both the W¢gH-spectrum and the non-equivariant
spectrum and it will be clear from the context which of both is meant.

The following lemma is useful for the proof of Lemma A.1.3 as well as other statements.
Lemma A.1.1. Consider a square of groups

G2 H

Pl

K —— L.
(i) Let
8 B = 1ea® (A.6)
be the right adjunct of
Y6 By =~ o B* B, —>a*eﬁ o
and
Oé!’}/* — 8% (A.?)
the left adjunct of
~y* 2, N6 = ¥ 376

Then (A.6) and (A.7) are dual to each other and hence that one is an equivalence iff the

other is an equivalence. Similarly,

B*0. — auy* (A.8)
15 dual to
nat — 6" B (A.9)
(ii) The map (A.G) is homotopic to
0% By m—""“) 8* o™ =~ 80yt = yat. (A.10)
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Proof. We start with (i). Going through the left column of the next diagram is by definition the
dual of (A.6):

* 1 * ok
ary”n; ary" 8 ng
ay* — Y 6* 6 ———— Y 6 B 86

la!’Y*nw i
AV YA O BB syt 8% B B0
= =

Y Yea* B B B7 6 ——s a5 BB

la!’Y*"/*a*ﬁfs laga*eﬁ
1

Q€

Y vt f* 6 ——— > ana* B*6 TN B*6r.

Going through the right column of the previous diagram fits in the following diagram

ay”
law*??is
a!’y*5*5! % aga*ﬂ*é!
la!’ym*ms la!a*ﬁ*ﬁfx id
|

WY BB~ awat B BB T war e — o B4,
and going through the upper right corner of the square is equal to (A.7). This shows the first
claim in (i) and the claim about (A.8) being dual to (A.9) follows by flipping the square of
groups.

Now we show (ii). First we show that

5 Braa ~ 55, vt =y af (A.11)
is homotopic to
* x Ty * o * * Q% * Treg * * Vx€a *
0" Baa™ = 4V 0" Bean”™ >~ v 0" B fraa ——= vt ot — v (A.12)

Note that the equivalence f.au >~ §,7. is given by the composite

ns 5*7’] 5*’7*04*65 (5*7*Ea
Baltye = 8,07 By, —3 0¥y 0" Brry = 8uy™ B Brcty ——5 Sy oy —2% §4Yx.

We consider the following diagram
0* By

lfs*ms
040" Vu€Ba

0*0,0™ By ™ % T 0V ¥ Prtya® —=— 66,y B Braea® ——5 §5*5,v,.a*

2 I I I

n ~ V«€Ba
5 By ot ——— VY O Pt ——————— v, fF et ——————— v, ok,
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The lower row is (A.12) and going through the upper row is (A.11), hence the claim follows from
the fact that by the rules for (co)unit maps the composition of the left two vertical arrows is the
identity.

Now (ii) follows from what we have shown before and the following diagram

n ~ YT eg
0" B ————— 1Y B ————— %" BBy Yt
. g g x id
lé BTa lv*'y 8% Buta l’v*a B BxTa J{’Y*@N
Y€ Vi €a

0* B o VY ¥ Byt —F— v, B Bt AN Yot ot ——— y,a’,
since the upper row is by definition (A.6) and the lower row is (A.12). O

The following argument involving localizing subcategories is standard. We will record it in

the following remark, since we will often use it.

Remark A.1.2 (The localizing subcategory argument). Recall that if C is a presentable stable
oo-category, a full subcategory is called localizing if it is a stable subcategory which is closed
under colimits. A set {X,}aca of objects is called a generating set if the smallest localizing
subcategory containing {X,}aca is C itself. This is useful for the following reason. Suppose
that D is an oco-category, F, F': C — D are two colimit preserving functors and ¢: F = F” is
a natural transformation. Then the full subcategory spanned by objects X such that ¢x is an
equivalence is localizing, therefore ¢ is an equivalence iff ¢ x_ is an equivalence for all a € A.
There is the following useful criterion to check if a set is generating: By [[{PS97, Theo-
rem 2.3.3] the set {X,}aca is generating iff map(X,,Y) ~ « for all & € A implies Y ~ 0 for
all objects Y?. In the case of Sp© we see that {G/H.}, where H ranges over all subgroups, is

generating®. In fact, the generators are all compact objects.

Now we have all the necessary ingredients to show (A.4). We shall also show a compatibility

between restriction along a surjective homomorphism and coinduction from a subgroup.

Lemma A.1.3. Let N be a normal subgroup of G and K a subgroup containing N. There are

natural equivalences

resg N (P9)« = (PR )ares, (A.13)

(pg)*coindf(//x ~ coind% (p&)*, (A.14)

which are both induced by (A.6).

3Strictly speaking the cited reference only shows one implication, but the converse is easy. For any object Y’
the functor map(—,Y’) preserves colimits, therefore the subcategory of objects X such that map(X,Y) ~ x is

localizing, hence by the assumption is C itself. It follows that map(Y,Y) ~ x.
4This is simply another way of saying that a G-spectrum X is contractible iff 7 X = 0 for all subgroups H.

Note that wf(X) = momapg,c (S? ® G/Hy, X) (in fact some authors take this as a definition of the homotopy
groups).
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Proof. By Lemma A.1.1 (i) it suffices to show that the following maps are equivalences:

: . (A7) .

ind (i) — (pF)*ind( . (A.15)
(A7)

(PR )wes —— res N (pF)1- (A.16)

By Remark A.1.2 and (A.3) it suffices to show that
ind§ (p)* (K/N)/(M/N)) 4 — (p%)*ind &3 (K/N)/(M/N)) ¢
is an equivalence of G-spaces and
(PN )mesGG/My — res! /N (p§ )G /My
is an equivalence of K /N-spaces, which is easily checked. O

We will make frequent use of the following lemma. It is well-known, but we include a proof

for completeness, since we did not find a proof in the literature.
Lemma A.1.4. The fized point functor (=) : SpY — SpVe commutes with colimits.

Proof. Since the restriction functor commutes with colimits, we can prove the statement for a
normal subgroup N. Suppose X = colim;X;. We use Remark A.1.2 and the oo-categorical

Yoneda Lemma [Lur09, Proposition 5.1.3.1] to reduce the claim to showing that
mapg,c/v ((G/N)/(K/N),colim;X,¥) ~ mapg /v ((G/N)/(K/N), XV).
Let a: G — G/N be the projection. Using that (G/N)/(K/N); is compact we compute

mapg /v ((G/N)/(K/N), colim;X,\) ~ colimmapg e/~ ((G/N)/(K/N) 4, X]V)
=~ colimymapg,c (a*(G/N)/(K/N), X;)
~ mapgpe (@ (G/N)/(K/N)+, X)
~ mapgyo/v (G/N)/(K/N) 1+, X V),
where we used for the third equivalence that o*(G/N)/(K/N)y+ ~ G/K is compact as well. [

The fixed point functors also have the property that they detect equivalences of G-spectra.

Lemma A.1.5. A map f: X — Y of G-spectra is an equivalence iff f is an equivalence of

spectra for all subgroups H.

Proof. By passing to the cofiber it suffices to show that X is a contractible G-spectrum iff
X is a contractible spectrum for all subgroups H. The collection of spectra Y such that

mapg,c (Y, X ) is contractible is a localizing subcategory by the oco-categorical Yoneda lemma
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[Lur09, Proposition 5.1.3.1], since the smash product commutes with colimits. Thus, by Remark
A.1.2 it suffices to show that mapg,c (G/H,, X) is contractible for any subgroup H. We have
mapg,c (G/Hy, X) =~ mapg,c (ind% S°, X)
~ mapg,nu (S°, res X)
~ mapgyn ((pr)"S°, res X)
o~ mapsp(SO, (res$ X)),

By Lemma A.1.3 (res%X ) is equivalent to the underlying spectrum of X hence contractible,

yielding the claim. O

Lemma A.1.6 (Wirthmiiller isomorphism). For any subgroup H there is a natural equivalence
indg ~ coindg,

Proof. See [Sch20, Theorem 4.9]. O
Corollary A.1.7. For any subgroup H and any H-spectrum X there are natural equivalences

(ind% X)¢ ~ XH and (coind$ X )¢ ~ XH

Proof. For coinduction this follows directly from (A.2) and the fact that adjoint functors compose.
The statement for induction is implied by the statement for coinduction via the Wirthmdiiller

isomorphism. O

For any group homomorphism « the adjunction between restriction and (co)induction gives

rise to so called projection morphisms
a(X®a'Y) = XY, (A.17)

X ®Y = a. (X ®a'Y), (A.18)

which are the left and right adjuncts of the map X ® a*Y — a*ay X ® a™Y obtained by smashing
n., with a*Y respectively of the map a*a, X ® a*Y — X ® a*Y obtained by smashing ¢, with

a™Y. We shall frequently use the following result in the main text.
Lemma A.1.8 (Projection formula). The projection morphisms have the following properties.

(i) Consider a diagram of groups
G —~—> H

b
K251,

let X be an H-spectrum and Y a K-spectrum. Consider the map

BiX ®0.Y = B.(X ® 8%0,Y) = 5.(X ® a.y*Y)
= B (X @7'Y) = 6,7 (" X @4"Y), (A.19)
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where the second arrow is obtained by smashing X with (A.8) and the first and third arrow

are (B« applied to) the projection morphisms (A.18). Consider also the map
BiX ®0.Y = 0,(0"B: X RY) = 04(1:0" X QYY) = J,uv:(a* X @ 4*Y), (A.20)

where the second arrow is obtained by smashing Y with (A.6) and the first and third ar-
row are (8. applied to) the projection morphisms (A.18). Then (A.19) and (A.20) are

homotopic.

(i1) If v is the inclusion of a subgroup, both projection morphisms are equivalences, that is
ind% (X @resGY) ~ ind$ X @V, (A.21)
coindG (X @ res§Y) ~ coindG X @ Y. (A.22)

The projection morphism (A.18) is an equivalence if o = p% 1s the projection, that is
XVeY ~ (X)) (A.23)

Proof. We start with (i). This follows from the fact that both (A.19) and (A.20) are the right

adjuncts of the composite

YO (B X ®0,Y) = 4" 6B X @ v 6% 0,Y ~

a“eg®@v es
—

a* B B X @ 4% 0%0,Y X @yY. (A.24)
Here we used the following facts:
(1) The equivalence a*8* ~ v*0* is monoidal.

(2) The smash product is functorial in both variables.

(3) If ¢: LiFX — X is the left adjunct of ¢: FX — R; X and ¢b: Ly X — X is the left adjunct
of : X — Ry X, then
Ll FX 25 1,x 5 X

is the left adjunct of
Rqv

FX % RiX —5 RiRoX.
One immediately verifies this using naturality of (co)unit maps and the fact that

id ™ RyLy 22"y RyR Ly Ly

is the unit of the adjunction LiLo - RoR;. Here 7; denotes the unit of the adjunction
L; 4 R;.
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Now we prove (ii). For the statement about induction and coinduction see [MNN17, Propo-
sition 5.14]. Alternatively, one uses that all functors in question can be modeled on the point-set
level by Quillen functors and that for these Quillen functors the projection morphisms are iso-
morphisms.

To show the equivalence XV @ Y ~ (X @ (p§)*Y)", note that both sides commute with

colimits in both variables. By Remark A.1.2 it suffices to show that (A.18) induces an equivalence
XN @ (G/N)(K/N) 4 = (X @ (05)"(G/N)/(K/N); ).
By (A.3) and Lemma A.1.6 we have
(G/N)/(K/N)y ~ indg//N.S° =~ coind(//\S°.

We consider the diagram

K/N K/N
(A.22)l: (A8) |~
coind 1 (resid)y (pf§). X @ 5) () (X @ comd§ ()" 5°)
(AAG)\LE
coindié%((pﬁ)*(resf{X) ® S9%) (A.22) |~

coind /% (pK)« (res% X ® (pK)*S%) —= (p§)«coind§ (resF X @ (p%)*S°),

where we want to show that the upper horizontal arrow is an equivalence, the lower horizontal
G/

arrow is the equivalence coind /]]\\[,(pﬁ)* ~ (p$).coind$ and the lower left vertical arrow is
coind%% applied to the projection morphism
(P )« (resFX) © S° = (piy)(resf X @ (p)*S7). (A.25)

The diagram above commutes by (i) applied to the square

K/N 5% G/N.

Additionally we used Lemma A.1.3 and the projection formula for coinduction (A.22) to see that
the four vertical arrows are equivalences. Thus, it suffices to show that (A.25) is an equivalence.

But by monoidality and the rules for (co)unit maps (A.25) is homotopic to the equivalence
(D)« (resFX) © S o= (pF)(resFX) = (PN )« (resFX © 5°) = () (resF X @ ()" S°),
where the first two equivalences are the fact that S° is the unit and the third equivalence is

monoidality of (p&)*. O
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Lemma A.1.9. Let a: H — G be a group homomorphism. For any H-spectrum Y and any

G-spectrum X there is a natural equivalence of G-spectra
F(X,a,Y) ~ a,F(a"X,Y).
If H is a subgroup of G then there is a natural equivalence of G-spectra
F(ind$Y, X) ~ coind$ F(Y, res§ X).

Proof. Let Z be any G-spectrum. Since o* is monoidal and F(—, —) denotes the internal hom

of G- and H-spectra, we obtain natural equivalences

mapg,c (2, F(X, a.Y)) ~ mapg,ce(Z @ X, a.Y)

~ mapg,u (o (Z ® X),Y)
p
~ mapg,u (o Z, F(a" X,Y))

&
(«
~ mapg,u(a*Z @ a*X,Y)
(
&

~ mapg,c (Z, . F(a*X,Y)).

The first equivalence of the lemma is thus a consequence of the co-categorical Yoneda Lemma
[Lur09, Proposition 5.1.3.1]. Similarly, using the various adjunctions in conjunction with the

projection formula (A.21), we obtain natural equivalences

mapg,c (Z, F(ind5Y, X)) ~ mapg,e (Z @ ind5Y, X)

~ mapg,c ind% (resG Z @ Y), X)

P
~ mapg,# (res$ Z, F(Y, res$ X))

(

(
~ mapg, = (reng RY, reng)

pi (

(

~ mapgc (Z, coind$ F(Y, res§ X)),

and the second equivalence of the lemma follows again from the oco-categorical Yoneda Lemma.
O

A.2 Families of subgroups

Recall that we assume G to be finite. A family of subgroups F of G is a non-empty collection
of subgroups such that if H is contained in F, so is any subgroup K that is subconjugate to H.

The most relevant examples for us are the following.

Example A.2.1. (i) Let N be a normal subgroup. Then we denote by Fg[N] the N-free
family, i.e. all subgroups H such that N N H = 1. We sometimes drop the subscript if the

ambient group G is clear from context.
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(ii) If N is again a normal subgroup, we let 5y be the family of subgroups H such that N is
not contained in H. For N = G this coincides with the family of proper subgroups P.

(i) Let H be any subgroup. We denote by F¢p the family of subgroups that are conjugate to
a subgroup of H.

(iv) Let a: H — G be a homomorphism and F a family of subgroups of G. Then we let o*F
be the H-family of subgroups K such that a(K) € F. As usual, if « is the inclusion of a

subgroup we write resg]: .
(v) The intersection of two families of subgroups is again a family of subgroups.

To any family F we can associate a universal G-space EF°, which is uniquely determined up

to equivalence by the property that

0 ifH ¢ F,
EFH ~ #
x ifH e F.
The uniqueness follows from the fact that by [Liic05, Section 1.2] EF can equivalently be char-

acterized by the following universal property: For any G-space X such that X7 = ( if H ¢ F
there is a unique (up to homotopy) map of G-spaces X — EF. In particular if 7 C G there is a
unique map

EF — EG. (A.26)

There are several ways to realize EF as a G-CW-complex, see for example [MNN19, Proposi-
tion 2.17] for a concrete model. In the case that F = {1} is the trivial family we write EG
instead of EF. Note that if a: H — G is a homomorphism, then by uniqueness

o*EF ~ Ea*F, (A.27)
since (o* EF)K = (EF)*5). Finally, again by uniqueness we have
EF x EG ~ E(FNG), (A.28)

which is easily checked on fixed points.

Next, we define a pointed G-space EF via the cofiber sequence
EF, —S° > EF

of pointed G-spaces, where the first map collapses EF to the non-basepoint of S°. We then have
that
—H SO ifH ¢ F,

EF =~
x ifH € F.

5Actually one usually requires that EF is a G-CW complex, but since we normally work directly in the

oo-category of G-spaces we just say G-space.
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Since a* preserves cofiber sequences, we also have

o«*EF ~ Ea*F, (A.29)
and if F C G, the map (A.26) induces a canonical map
EF - EG (A.30)

by passing to cofibers. We will frequently use this map in our study of the parametrized homotopy
orbits and fixed points.

Finally, we point out that

—_~—

EF ® EG ~ E(FUG). (A.31)
To see why, note that the total cofiber of the square

EF, ® EG, — EG,

| |

EF, — S°,

where all arrows are the collapse maps, is EF ® EG. Tt is easy to check on fixed points that the

square of G-spaces
EJ:+ ® Eg+ —_— Eg+

| |

is a pushout, therefore we obtain a cofiber sequence E(FUG); — S° — EF ® E@ thus the
claimed equivalence. In particular EF is an idempotent pointed G-space.
The following terminology is standard in the literature. We shall frequently refer to it in the

context of parametrized homotopy orbits and fixed points.
Definition A.2.2. Let X be a G-spectrum and F a family of subgroups.

(i) X is F-torsion if X ® EF, — X via the map that collapses EF to a point. If F is the

trivial family, then we use the terminology Borel torsion instead.

(ii) X is F-complete if X — F(EF,, X) via the map that collapses EF to a point. We use the

term Borel complete for G-spectra which are complete with respect to the trivial family.

Remark A.2.3. It follows from EF x EF ~ EF that X ® EF, is F-torsion. Similarly,
F(EF,,X) is F-complete and we refer to it as the F-completion of X.

The homotopy type of F-torsion and F-complete G-spectra depends only on the groups

contained in F. The following definition and Lemma A.2.5 make this precise.
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Definition A.2.4. Let f: X — Y be a map of G-spectra and F a family of subgroups of G.
We say f is an F-equivalence if res& f is an equivalence of H-spectra for all H € F. We write

X ~x Y if there is an F-equivalence between X and Y.

Note that for any G-spectrum X the maps X ® EF; — X and X — F(EF;,X) are F-
equivalences. Thus, if f: X — Y is an F-equivalence, so are the induced maps X @ EF, —
Y® EF; and F(EF,,X)— F(EF,Y). The following lemma shows why this is useful.

Lemma A.2.5. Let F be a family of subgroups.

(i) Suppose X andY are F-torsion spectra and f: X — Y is an F-equivalence. Then f is an

equivalence.

(i) Suppose X andY are F-complete spectra and f: X — Y is an F-equivalence. Then f is

an equivalence.
(iii) For any G-spectrum X we have an equivalence F(EF,, X))@ EF, ~ X @ EF,.

Proof. (i) Clearly the cofiber of a map between F-torsion spectra is itself F-torsion. Therefore,
it suffices to show that if X is F-torsion and F-equivalent to the trivial G-spectrum, it is
contractible as a G-spectrum. We choose a G-CW-structure on EF with n-skeleton sk, EF.
Then

X ~ X ® EF; ~ colim, (X ® sk, EFy).

Note that the n-cells of EF have the form D™ x G/H with H € F, therefore it suffices to
show that

X ®G/Hy ~ X ®ind%S° ~ ind§res§ X

is a contractible G-spectrum for all H € F, where we used the projection formula (A.21)

and (A.3). But by assumption restX is a contractible H-spectrum, so we are done.
(ii) We show that for any F-equivalence f: X — Y between G-spectra, the map
fu: F(EF:, X) = F(EF.,Y)

is an equivalence on fixed points. We first do this for the G-fixed points. Choose a G-CW-
structure on EF with n-skeleton sk, EF. Then

F(EF,, X)) ~lim F(sk, EF,,X)¢ and F(EF,,Y)% ~lim F(sk,EF.,Y)°.

Here we used that (—)¢ preserves limits as a right adjoint and by the co-categorical Yoneda
Lemma [Lur09, Proposition 5.1.3.1] F'(—, —) sends colimits in the first variable to limits,

since the smash product preserves colimits.
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Similarly to (i), using the above and exactness of function spectra in both variables it
suffices to show f.: F(G/H,,X)% — F(G/H,,Y)% is an equivalence. But

F(G/Hy, X)Y ~ X" and F(G/Hy,Y)® ~YH

by Lemma A.1.9 and Corollary A.1.7, hence the claim follows. Now, if H is a proper

subgroup, note that res% f is a res§ F-equivalence and
resGF(EF,, X) ~ F(res$ EF, ,res$ X) ~ F(Eres§Fy,ress X),

and similarly for Y, so the same argument as above shows that f induces an equivalence
F(EF. X)) ~F(EF,, V).

(iii) By (i) it suffices to show that X — F(EF,,X) is an F-equivalence, which is clear, since
resG F(EF,, X) ~ F(res§ EF,,res$ X) and resG EF ~ x if H € F.
O

We end this subsection with a discussion of the geometric fixed point functor.
Definition A.2.6. Let N be a normal subgroup of G. The geometric fixed point functor
oV . SpG — SpG/N
is defined by &V X = (X ® E\./Fz;N)N. If H is not normal we define ® as the composite

NGH Wc;H

res H
SpG el Sp AN Sp

Note that for K a subgroup of NgH containing H it follows from (A.5) and monoidality of

the restriction functor that

resgflfQHX = resg/cg((res%GHX) ® EFNGH,sz)H
~ ((res% X)) ® res%GHE\./FNGH’ZsH)H ~ ((res¥ X) ® E\_/FKJ;H)H = dMres X, (A.32)

Therefore, just as for fixed points we will use the notation ® X for both the WgH-spectrum
and the non-equivariant spectrum and it will be clear from the context which of both is meant.

We record the following standard properties of geometric fixed points.

Lemma A.2.7. For any subgroup H, the geometric fized point functor ®¥ has the following

properties:
(i) It preserves colimits.
(i) It is symmetric monoidal.

(iii) If A is a pointed G-space, then ®TLE A ~ E%GHAH.
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(iv) Suppose N is a normal subgroup of NogH contained in H. Then there is a natural equiva-
lence of W H -spectra
X ~ oH/NpN X,

(v) A map of G-spectra f: X — Y is an equivalence iff ®H f is an equivalence on the underlying
spectra for all subgroups H.

Proof. The first claim follows from Lemma A.1.4 and the fact that smashing with a G-space
and restricting to a subgroup both preserve colimits. We obtain (ii) and (iii) from [MMO02,
Corollary V.4.6 and Proposition V.4.7] and the fact that restricting to a subgroup is monoidal
and commutes with taking suspension spectra. Note that our definition of geometric fixed points
agrees with [MMO02, Definition V.4.3] by [MMO02, Proposition V.4.17].

Next, for (iv) we can assume that H is normal in G by replacing G with NgH if necessary.

Then the projection formula (A.23) yields

MNGNX = (X @ EFgsn)Y @ Ej:c/N,zH/N)H/N ~
(X ® EF e pn © (0%) EF aympnyn)™ )N = (X © EF3m)" = @7 X.

For the second equivalence we used (A.31) to see that
EFcsn ® (08) EF g mpm/Nn ~ EFa s,

since
Fasn U0 Faynsm/N = Fa,pH,
as well as the natural equivalence ((—)V)#/N ~ (=),

Finally, for (v) it suffices to show that X is a trivial G-spectrum iff the underlying spectrum
of ®7 X is contractible for all subgroups H by passing to the cofiber. The only if direction is
clear. We show the if direction by induction on the order of G. For G = 1 there is nothing to
show, therefore we can proceed with the induction step and assume that reng is a contractible

H-spectrum for any proper subgroup H of G. We consider the cofiber sequence
(X ® EPcy)% = X = (X ® EPg)C = 9°X.

By assumption the right hand term is contractible and it follows from Lemma A.2.5 (ii) and
Remark A.2.3 that the left hand term is contractible. Hence, also X€ is contractible and we

obtain that X is a contractible G-spectrum from Lemma A.1.5. O

A.3 Conjugation equivalences between fixed points

1

If G is a finite group, H is a subgroup, and g € G we let H9 = gHg™" and denote by ¢;: G — G

the conjugation map. Note that the restriction to H induces an isomorphism

g . = g
Ky H — HY.
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Furthermore, the conjugation map also induces an isomorphism of the Weyl groups
wi s WeH = WeHY.

We want to construct conjugation equivalences of Wg H-spectra.

We will explain below that there is a natural equivalence of Wg H-spectra
((cg)* X)™ == (i) X", (A.35)
D (cy)* X =~ (W) o’ X. (A.36)
Left multiplication with g induces an equivalence of G-spectra ly: X = (cg)*X. Then we take
H-fixed points and apply (A.35):

XH B ey X H o (w8 X (A.37)

If g € H, then H = H9,wy, = idy and (A.37) is homotopic to the identity of X*. This can be
checked directly on orthogonal G-spectra. Similarly, we can define (A.34) as the composite

(A.36)

H
o x T loy M (e ) x 200 (0 )9t x

Again one checks on orthogonal G-spectra that if g € H, then (A.34) is homotopic to the identity
of X,
Now we construct (A.35). Recall that p%: NoH — WgH and pg: H — 1 denote the

projections and i%: H — G the inclusion. Also, if « is any group homomorphism we denote by
Ne:id = a,a™ and €, @, — id

the unit and counit maps. For any G-spectrum X the (co)unit maps together with the equalities

G, 0 KNom = Wi o pu then induce a natural equivalence of W H-spectra

Tlpg * * g *A *
€ (W) (%0 )e —55 (05)e (05 @) (050)e LS 08, (k1) (A.38)

which by definition is the right adjunct of the composite

£ (G, 9 V¥ (G ~ (9 e G*(HNGH)EPEIQ g *
§: (Ph) (Wh) (D)« = (K1) (Pho)« (Phe)” ————— (K{om)™

If we apply this to (igGHg)*X and use that i%GHg okur = Cqg OigGH we obtain the equivalence
of Wg H-spectra
* 9 * . * 3 * [ - *
(wir) XM = (i) (0%0) e (R )" X = ()« (5 1) (R 10)™ X
~ (pi1) (i m) " (cg)" X = ((cg)" X)™. (A.39)

We still need to show that (A.38) is indeed an equivalence. This is the content of the next

lemma. We also show several other properties of (A.38).
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Lemma A.3.1. Let a: G — G be an isomorphism of groups, N a normal subgroup of G and
N = a(N). Denote by w: G/N — G/N the isomorphism induced by o.

(i) The composite of natural transformations
e - PPa’e,e

*( G P G * G G e N P
W (PR )« — (p]\”/)*(pﬂ/) W (PR )+ = (p]\})*o‘ (PN)* (PN )« =

is homotopic to the composite

W (P wana® ~ wrw, (P )t =5 (PG, (A.41)

G) w* (p%) < Na
RS ELLLN
* N N

w* (PN
In particular it is an equivalence.

(i) The equivalence above is compatible with the projection formula in the following sense. Let

X be a G-spectrum and 'Y a G /N -spectrum. Consider the map of G/N—spectm

G(XNRY) = (X0 @) Y)Y = (@ X@a*(p5) V)V = (@ X0 () W V)N, (A42)

where the first arrow is w* applied to the projection formula (A.23) and the second arrow

is (A.40) combined with monoidality of a*. Consider also the map
XV Y) 20 XN 9wY = (@ X))V 0wY = ("X @ (%) WY)Y,  (A43)
where the first arrow is (A.40) smashed with w*Y and the second arrow is the projection

formula (A.23). Then (A.42) and (A.43) are homotopic (as natural transformations).

(iii) The following diagram of spectra commutes:

~

X6 = (@ X)C

} l: (A.44)

(XN)G/N TN (w*XN)é/N =, ((a*X)N)é/N.

Here the vertical arrows are the equivalences

(Pa)« = (payn)«(PR)« and  (pg)s = (Pa/5)«(PF) +:
and the horizontal arrows are (A.40) for various (sub)groups.

(iv) The following diagram of spectra commutes
(A;zg)lg (A,BQ)J/z (A.45)

where the horizontal arrows are inclusions of fixed points.
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Proof. For (i) we first note that since w and « are isomorphisms the unit 7, and the counit e,
are equivalences, hence also (A.41) is an equivalence. That (A.40) and (A.41) are homotopic is

a special case of Lemma A.1.1 (ii) applied to the square

G —2—a

fe:
le Jpg

G/N —— G/N.

This shows (i). Applying Lemma A.1.8 (i) to the same square shows (ii).

We turn to (iii). For typographic reasons we denote the map G/N — 1 by ¢, the map
G/N — 1 by ¢, and put p = p$,p = p%. Then the vertical arrows of (A.44) are given by
(—)¢ ~ q.p« and (—)% ~ G.p.. Under this equivalence the upper horizontal arrow of (A.44) is
given by tracing through the upper right corners of the upper square and the right square in the

following diagram

qxPx
lna
Sk [i*n_ o~ S0k Sk
GQ* @GP ————— DD T QD
~ qxMp ~ ~ o~ J/ ~ ~ ~
G * P ———— @D W QP ———— PP QD
lq*w*eq lq*ﬁ*ﬁ*w*fq lq*ﬁ*a*p*fq
~ % GxMp S~ sk, ok = ~ = * oo % q*ﬁ*a*ep 5 vE
Qs Py ———7 QuPxPD W Py — 7 («PxO P Py qxP«Q,

and the lower horizontal arrows of (A.44) are given by passing through the lower left corner of
this diagram.

Finally, we show (iv). We consider the following diagram

. nigg -G .
id ——————— (i52)«(i%)"
n

G . .
(cg)slcg)” —= (cg)ulif)+ (i) " (cg)*,
where the undecorated equivalence is induced by the equality ¢, 0% = i%, o Y, and all other ar-
rows are unit maps of adjunctions. After applying (—)¢ the horizontal arrows become inclusions

of fixed points and the columns are homotopic to (A.39) by (i). This concludes the proof. O

The equivalence ®(c,)*X ~ (w?)*®"’X can be defined similarly to (A.35). We do this
in the slightly more general setting of Lemma A.3.1, that is we consider a group isomorphism

a: G — G, a normal subgroup N of G with image N = a(N ), and the induced isomorphism
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w: é/N — G/N. Note that we have an equality of G-families @ Fa N =Fasn therefore by
(A.29) an equivalence of pointed G-spaces a*E\j-"G,zN ~ Ej—"é’zﬁ. Using (A.42) we can then

define the equivalence w*®VN X ~ ®Na* X as the composite

W ONX = Wt (X ® EFgn) 2 (o (X © EF g pn))" =
("X ® EFg y0))¥ = 0Va X, (A.46)

This is indeed an equivalence by Lemma A.3.1 and we have additionally used that a* is monoidal

for the undecorated equivalence. We will need the following lemma in the main text.

Lemma A.3.2. Let a: G — G be an isomorphism of groups, N a normal subgroup of G and

N = a(N). Denote by w: G/N — G/N the isomorphism induced by o.. Then the following

diagram of spectra commutes:

X —=— ¢U/NPNX

(AAG)JE

(A.46) |~ HC/N +pN X (A.47)

(A.le)lz

oCarX = 09/NoNar X,
Proof. We obtain (A.47) as the outer square of the following diagram:

POX oo s PG/NPN X

~

(X @ EPG)Y —=— (X © EPg)N)9/N « = (X @ EFgsn)N @ EPgn)%/N

; -

~

~ (WX @ EP)M)G/N = (w*((X ® EFg.sn)N @ EPg/n))C/

- - I

(" (X ® EP@))¢ =5 ((o*(X @ EPa)V)C/N & ((a*(X @ EFan))N @ w*EPqn)¢/N

(A.29) |~ (A.QQ)J/z
("X @ EP§)C —mmmmmmmmmem e S » ("X @ EF g 55)Y ® EPg,5)¢/N
PEAFX o — » @C/NON o X

Note that by definition
(W((X® 7373(;)1\’ ® E\'73G/N))G/A7 ~ (WX ® E\VSG)N & E\V/DG/N)G/N = @é/Nw*CI)NX.

Here the dashed arrows are the unique maps making the squares commute, the undecorated

vertical arrows are given by (A.42) and the horizontal arrows pointing to the left by (A.23).
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Of the squares involving solid arrows the upper right square commutes by naturality and the
left square and lower right square commute by Lemma A.3.1 (iv) and (ii) respectively. We

additionally used (A.31) to see that
EFg sn ®p*ﬁ3G/N ~ EPg,

since Fg,zn Up*Pg/ny = Pa. O
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Zusammenfassung

Wir benutzen die Ergebnisse von Quigley und Shah um eine Formel fiir die geometrischen Fix-
punkte von reeller topologischer zyklischer Homologie eines nach unten beschriankten Ringspek-
trums mit Antiinvolution herzuleiten. Die Antiinvolution auf einem Ringspektrum A induziert
ein Spektrum mit sowohl der kanonischen Struktur eines A-Linksmoduls als der kanonischen
Struktur eines A-Rechtsmoduls, deren Tensorprodukt iiber A mit einer Wirkung der zyklischen
Gruppe der Ordnung 2 ausgestattet werden kann. Unsere Formel ist gegeben durch den homo-
topietheoretischen Differenzkern zweier Abbildungen von den Homotopiefixpunkten dieses Ten-
sorprodukts in die Tate-Konstruktion dieses Tensorprodukts. Wir zeigen auflerdem, dass dieser
Differenzkern dquivalent ist zu dem, der von Dotto, Moi und Patchkoria in ihrer Berechnung
der geometrischen Fixpunkte von reeller topologischer zyklischer Homologie hergeleitet wurde,
sodass wir ihr Ergebnis mit anderen Methoden beweisen kénnen.

Als Anwendung berechnen wir die reelle topologische zyklische Homologie von Gruppen-
ringspektren fiir abelsche Gruppen und gewisse Klassen von Diedergruppen. Wir machen dies
fiir beliebige Grundringspektren, unter der Voraussetzung, dass das zugrundeliegende Spektrum
nach unten beschrénkt ist. Fiir die Berechnung machen wir Gebrauch von einer Zerlegung der
,dihedral-bar“-Konstruktion.
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