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Abstract

Aims Telemedical interventions in heart failure patients intend to avoid unfavourable, indication-related events by an early,
individualized care, which reacts to the current patients need. However, telemedical support is an expensive intervention, and
usually only patients with high risk for unfavourable follow-up events will be able to profit from it. Mdckel et al. therefore
adapted a new design which we call ‘prognostic-efficacy-combination design’. This design allows to define a biomarker
cut-off and to perform a randomized controlled trial (RCT) in a biomarker-selected population within a single study. However,
so far, it has not been evaluated if this double use of the control group for biomarker cut-off definition and efficacy assessment
within the RCT leads to a bias in treatment effect estimation. In this methodological research work, we therefore want to eval-
uate whether the ‘prognostic-efficacy-combination design’ leads to biased treatment effect estimates and also compare it to
alternative designs. If there is a bias, we further want to analyse its magnitude under different parameter settings.
Methods We perform a systematic Monte Carlo simulation study to investigate among others potential bias, root mean
square error and sensitivity, and specificity as well as the total treatment effect estimate in various realistic trial scenarios that
mimic and vary the true data characteristics of the published TIM-HF2 Trial. In particular, we vary the event proportion, the
sample size, the biomarker distribution, and the lower bound for the sensitivity.

Results The results show that indeed the proposed design leads to some bias in the effect estimators, indicating an overes-
timation of the effect. However, this bias is relatively small in most scenarios.

Conclusions The ‘prognostic-efficacy-combination design’ can generally be recommended for clinical applications due to its
efficiency compared to two separate trials. We recommend a sufficiently large sample size depending on the trial scenario.
Our simulation code can be adapted to explore suitable sample sizes for other settings.
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Introduction

Telemedical interventions provide a wide field of treatment
support options, which has the potential to better address
the patients’ individual needs and thereby improve long-term
outcomes. For example, a telemedical intervention can in-
volve technological devices that allow closer supervision by

the physician while the patient is at home. Due to this, early
signs of upcoming medical events are easier detected and ap-
propriate care can be immediately provided.

Heart failure is a chronic disorder, for which an additional
telemedical support was generally shown to be beneficial.'?
However, telemedical support is an expensive intervention,
and heart failure is one of the most prevalent chronic
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diseases.® Therefore, an efficient allocation is desirable. It is
evident that a telemedical intervention intends to avoid
unfavourable, indication-related events by an early, individu-
alized care. Patients that have a sufficiently stable state of
disease will most likely not profit from telemedical interven-
tion. The estimated effect of the telemedical intervention in
a population that includes such low-risk patients could ac-
cordingly misrepresent the true effect in a more targeted,
high-risk population. Therefore, it would be ideal if the sub-
group of potential telemedical profiters—the actual popula-
tion of interest—could be identified in advance by an appro-
priate biomarker. To follow this idea, Maéckel et al.’?
implemented a post hoc analysis for a clinical trial. During
the clinical trial TIM-HF2,* patients randomly drawn from
the full population including potential profiters and non-
profiters were randomly assigned to control (without
telemedical support) or intervention (with telemedical sup-
port). At the time of inclusion, it was unknown which patients
might profit from telemedical support and which not. At the
time of post hoc analysis, however, information on bio-
markers could be used to determine the subgroup of poten-
tial profiters at baseline retrospectively. The population of in-
terest was thus retrospectively redefined as the
sub-population of the potential profiters from telemedical
care. This was possible because, at the studies’ baseline as-
sessment, several biomarkers were measured, which were
known to be associated with the probability of an
unfavourable event. However, at baseline, there were no es-
tablished cut-off values for these biomarkers, allowing a pro-
spective definition of the population of interest. Thus, in prin-
ciple, a prognostic biomarker trial in the full population
would have been necessary before being able to use bio-
marker cut-offs as inclusion criteria, defining the population
of interest. As a separate biomarker study was not feasible
due to time and financial restrictions, Méckel et al.* deter-
mined the cut-off values for the biomarkers based on the ob-
served biomarker values and the outcome event status of the
patients in the control arm to identify a high-risk group that
ideally comprises all potential profiters of telemedical care.
These cut-offs were subsequently applied as post hoc inclu-
sion criteria in both study arms, intervention and control, to
filter for high-risk patients, that is, to retrospectively ap-
proach the study population of interest.

The final efficacy analysis was performed by comparing
control and intervention within this high-risk subgroup identi-
fied post hoc via biomarker criteria. Such a post hoc inclusion
criteria can also be seen as an adaptive design element. This
new study design thus covers (i) the derivation of a cut-off
for a biomarker and (ii) a randomized controlled trial (RCT)
for a biomarker-selected population within a single study. In
what follows, we will call this approach by Mackel et al.*
‘prognostic-efficacy-combination design’. The design is ap-
pealing due to its efficiency and could potentially be applied
in future trials. However, the study design can be interpreted

as an adaptive design, where the inclusion criteria are
adapted after completed recruitment and observation of pa-
tients. Biomarker cut-off definition and efficacy analysis are
both based on the same sample of patients from the control
arm. Therefore, it is generally possible that the treatment ef-
fect is biased, as an adaptive conditional study design element
often vyields biased effect estimators.>® Analogously, data
analysis strategies that engage in ‘double dipping’, that is, in
the re-utilization of information from the same data set at dif-
ferent analytical steps, are also prone to bias.”

In this methodological research work, we therefore evalu-
ate whether the study design of Méckel et al.? leads to biased
treatment effect estimates. If there is a bias, we further want
to analyse its size and the parameters influencing the size of
the bias for deriving recommendations and warnings for fu-
ture applications. To evaluate the performance of the design,
we set up a simulation study that mimics and varies the true
data characteristics of the TIM-HF2 Trial.?

Methods
The new prognostic-efficacy-combination design

In a classical efficacy study designed as a two-armed RCT, ev-
ery patient with an index condition is randomized to a control
group or an intervention group. The efficacy is assessed by
comparing the primary efficacy endpoint between these
two groups. In a classical prognostic biomarker study, a bio-
marker (most often continuous) is tested for its ability to sep-
arate patients with a prognostic index condition from those
without this index condition, and an optimal cut-off for the
biomarker is deduced.

In our new design, these two elements are combined: the
new prognostic-efficacy-combination design is based on two
randomized patient groups, of which one receives the inter-
vention (/) and the other serves as a control (C). For the sake
of simplicity, we assume balanced group allocation with sam-
ple sizes per group given by n. The primary endpoint X is a bi-
nary event indicator, where an event has a negative impact
for the patient. In our application, the event of interest could,
for example, be ‘hospitalization due to cardiovascular
causes’. The composite event defined in the reanalysis of
TIM-HF2 by Mackel et al.,* which we use to justify our simu-
lation setting was defined as >30 days lost per year follow-up
time due to unplanned cardiovascular hospital admission or
all-cause death’. As this event endpoint is rather complicated
to assess, we used a simpler definition within this paper. We
assume that the primary endpoint is Bernoulli-distributed:

Xf~Bernoulli(p’)7 X,.C~Bernoul/i(pc), i=1,..,n,

where p/, p¢ define the underlying event probabilities under
intervention and control condition. We assume that there is a
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continuous biomarker B, which is intended to separate the
patients that would experience an event in the future in
the control arm (X¢ =1) from those that would not
(Xf = 0). The general idea of our design is that only certain
patients that actually will experience an unfavourable event
in the future can potentially profit from a new intervention
that might help to reduce the risk of an event. We will there-
fore denote the group of patients that will experience an
event in the control arm in the future (X¢ = 1) as the poten-
tial profiters (PP), whereas the group of patients without an
event (X,C = 0) are denoted as the non-profiters (NP). Due
to randomization, the control arm C and the intervention
arm | both are samples of mixed populations of potential
profiters and non-profiters. Note that the definition of poten-
tial profiters and non-profiters takes the perspective of the
planning stage of the trial, that is, one does not know yet if
a patient will truly profit or not. Evaluating the efficacy of
the intervention in this mixed (or full) population will dilute
the treatment effect, as the actual population of interest is
constituted only of the potential profiters. The aim of our
new prognostic-efficacy-combination design is thus to assess
the efficacy of the new intervention by comparing the inter-
vention and the control only in the sub-population of the po-
tential profiters. If an optimal biomarker would be available
(sensitivity and specificity of 1), these sub-populations could
be perfectly specified. In applications however, a biomarker
will have imperfect sensitivity and specificity below 1. The
prognostic part of the new design is conducted exclusively
in the control arm C. Based on the data of the control arm,
an optimal cut-off for the continuous biomarker is deter-
mined, where optimality refers to predefined sensitivity
and/or specificity boundaries regarding the relevant end-

point. The choice of the boundaries can be adapted according
to the disease-specific characteristics. By applying this bio-
marker cut-off in the intervention and in the control arm,
the potential profiters sub-population in the intervention
and in the control arm are approximated. As the biomarker
is generally imperfect, the biomarker positive patients will
not perfectly agree with the potential profiters. The efficacy
part of the new design is then given by calculating the treat-
ment effect comparing the biomarker positive patients in the
intervention and the control arm. The treatment effect is
expressed as an absolute proportion difference ¢ =
ps, — Py, , where the index b+ denotes the biomarker
positive patients.

Note that the potential profiters are those patients which
will experience an event in case it is not prevented by the
new intervention. Therefore, by definition, the event propor-
tion in the sub-population of potential profiters will equal 1 in
the control arm (p$, = 1) and might be lower in the interven-
tion arm in case the intervention is effective (pLP <1). As the
group of potential profiters is not perfectly identified by the
biomarker, the group of biomarker positive patients will have
lower event proportions (p§, <ps, =1, p,, <pp<1).
Figure 1 schematically illustrates the new prognostic-
efficacy-combination design, the involved (sub-)populations,
and the design-specific parameters.

Reference approaches
The reference approach would be an independent external

biomarker study to define the biomarker cut-off value and
to use this cut-off for identifying the biomarker positive as a

Figure 1 Schematic illustration of the prognostic-efficacy-combination design.
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prospective inclusion criteria within a subsequent, separate
clinical trial. An alternative reference would be to split the
control group into two parts: a training set for definition of
the biomarker cut-off and a test set to be compared with
the intervention group for the treatment estimation.

As a further theoretical comparator, it is also possible to
take the true biomarker cut-off of the whole population for
a given biomarker distribution. In practice, this exact distribu-
tion is unknown. The cut-off value of the reference design
will approach the cut-off value obtained from the theoretical
comparator with increasing study sample size.

Simulation and analysis

To evaluate if the prognostic-efficacy-combination design
leads to biased treatment effect estimates, a simulation
study® was conducted using the statistical software R Version
4.1.1.° Our simulation study can be subdivided into three
steps. The first step is the data simulation step. In the second
step, the analysis of the simulated study data was conducted
using the prognostic-efficacy-combination design. In Step 3,
the performance of the design was evaluated using different
performance measures. These three steps are described in
more detail in the following.

Step 1: Data simulation

We generated data for different scenarios, which are listed in
the following. Each simulation scenario consists of ng, =
20 000 simulation runs. For illustration, we will describe the
data generation process in detail for one simulation scenario,
which closely resembles the estimated parameters and data
of the TIM-HF2 trial. The sample size per arm in the basic sce-
nario isn = 750. For the binary outcome, an event proportion
of p¢ = 0.15 was defined for the control arm, which implies
that 15% of the population are potential profiters with an
event proportion of 1 (p,fp = 1) and 85% are non-profiters
with an event proportion of 0 (p§, = 0). Further, we defined
an event proportion of p/ = 0.1 for the intervention arm.
Note that patients in the subgroup of potential profiters in
the intervention arm will not all experience an event, as
some events might be avoided by the intervention
(p’PP < 1). The event proportion for this subgroup of potential

. S ; : ; : I
profiters within the intervention arm is thus given by p,, =

5—; = g and for the non-profiters by p, = 0.

As the treatment effect to be estimated is 0=
plf+ — pﬁ, +» the biomarker positive group needs to be iden-
tified to define the treatment effect. For a perfect biomarker,
the biomarker positives correspond to the group of potential
profiters, so in this case 6 = pgp - pLP. Therefore, for a per-

2 1
fect biomarker, the true treatment effect is 6 =1 — 3 = 3

This can serve as a reference value even if the biomarker is
not perfect.

To simulate the biomarker distribution B for the
potential profiters and the non-profiters, we assumed a log-
normal distribution with the following means and standard
deviations:

Bpp~Lognormal(pipp = 4.0,0pp = 0.5)

Bnp~Lognormal(uy, = 3.0,0pp = 0.5)

This implies that on average, the non-profiters have a smaller
biomarker value than the potential profiters; the standard de-
viation is assumed to be the same for both sub-populations.
This results in a mixed biomarker distribution in the whole
population B:

B~0.15 - Bpp + 0.85 - Byp

To determine the optimal biomarker cut-off from the simu-
lated study data, we used a receiver operating characteris-
tic (ROC) curve. In our application, we fix a lower bound
for the empirical sensitivity as sen = 0.95 < sen. We then
choose the biomarker cut-off that maximizes the empirical
specificity under this condition. In doing so, we accept that
the resulting specificity can be rather small, which is
acceptable when the emphasis is on safety, that
is, if false positives (e.g. non-profiters receiving
telemedical care) are less clinically relevant than false neg-
atives (e.g. potential profiters not receiving telemedical
care).

To study the effect of varying data-generating processes
and sensitivity requirements, we investigated different
simulation scenarios where several parameters where
varied from the basic scenario. The scenario with the pa-
rameters given above defines the basic scenario
(underlined).

i Scenarios Biol-Bio9: Different biomarker distributions
tpp = {3.3,3.5,3.8,4.0,4.3,4.5,4.8,50, 6.0}
ii Scenarios Epl-Ep7: Different event proportions for the
control arm

p¢ ={0.15,02,025,03,04,0.5, 0.6}

iii Scenarios Sam1-Sam8: Different sample sizes

n = {150, 200, 250, 300, 400, 750, 1500, 5000 }

iv Scenarios Senl-Sen6: Different lower sensitivity bounds
to determine biomarker cut-off
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sen = {0.95, 0.9, 0.8, 0.7, 0.5, 0.3}

Step 2: Analysis using the prognostic-efficacy-combination
design

The estimation of this biomarker cut-off was done in three
different ways: (i) in the control group of the current study,
which refers to the new prognostic-efficacy-combination de-
sign (new design), (ii) in a separate sample from the popula-
tion serving as external biomarker study (reference design)
with the same sample size as the control group n = 750,
and (iii) single random splitting of the control group of the
current study into a training set for estimation of the bio-
marker cut-off and a test set to be compared with the inter-
vention group for treatment estimation (splitting design). For
the splitting design, the control group is divided into two

groups of equal size, resulting in sample sizes Nyqining =

n
Niest = 7 As an additional theoretical comparator, the true

biomarker cut-off (True) was analytically calculated as the
(1-0.95) quantile of the biomarker distribution of the poten-
tial profiters.

The treatment effect (estimand) 6 = pj . — pj, . is then
given using the true biomarker cut-off, and the corresponding
estimator is of = Ps. — Py, using method k, which is ei-
ther the estimated biomarker cut-off from the prognostic-
efficacy-combination design, the external biomarker study
or the splitting design.

Step 3: Performance evaluation

To evaluate the performance of the prognostic-efficacy-com-
bination design, we calculated the bias of the treatment ef-
fect o as follows:

biast = ! nim (5" - (3,-)

Nsim j=1 /

The bias is the difference between the estimated treatment
effect and the true treatment effect using the analytically de-
rived true cut-off, averaged over the ngj,, simulation runs.

In addition, we calculated the root mean squared error
(RMSE) of the treatment effect J as follows:

1 Nsim /~ 2
RMSEX —  |— % (& _ @).
Nsim j=1

The smaller the RMSE, the less variable is the estimation of
the treatment effect.

In addition to these performance measures, we report the
estimands and corresponding estimates as averages over the
Nsim = 20 000 simulation runs:

i estimands p§ . and p}, . and estimates p§ . and p} , of
the event proportions for biomarker positives in control

and intervention group and the corresponding standard
deviations;

i estimand J and estimates of of the treatment effect, for
both cut-off derivation methods;

iii estimands sen and sen’ and estimates sen® and sen’ of the
specificity resulting from the biomarker cut-off;

iv estimands spe€ and spe’ and estimates spe® and spe’ of the
sensitivity resulting from the biomarker cut-off;

v true biomarker cut-off and estimated biomarker cut-offs;

vi estimand n§ , and estimates i, . of the size of the iden-
tified biomarker positive subgroup within the control arm.

Results

Tables 1-4 show the results of the simulation study for the
different scenarios specified above: variations of biomarker
distribution (Table 1, scenarios Biol-Bio9), variations of
event proportion p¢ (Table 2, scenarios Epl-Ep7), variations
of sample size (Table 3, scenarios Sam1-Sam8), and varia-
tions of target sensitivity (Table 4, scenarios Sen1-Sen6). In
each table, the row ‘True’ contains the estimands, whereas
the rows ‘Reference’, ‘Split’, and ‘New’ contain resulting esti-
mates from the external biomarker study design, the sample-
splitting design, and the new prognostic-efficacy-combination
design, respectively.

In general, the results in Tables 7—4 show that there is little
bias for all examined parameter combinations. All three esti-
mation methods result in some bias, where the bias in the
new design is typically more pronounced than in the other
two designs. The bias in the new design is always positive, in-
dicating an overestimation of the treatment effect. For some
extreme scenarios, the reference design and the splitting de-
sign result in underestimation. Regarding the empirical sensi-
tivities in control and intervention, it can be observed that
with the new design, the estimated sensitivity in the control
is slightly higher than the theoretical value, whereas esti-
mates from the reference or splitting design are slightly
smaller than the theoretical value. For the intervention arm,
empirical sensitivities are more similar between the designs
than in the control arm. This can be explained with the fact
that only in the new design, the biomarker cut-off is defined
based on all outcomes in the control arm, and therefore, the
sensitivity in the control arm is always bounded from below
by 0.95. This also explains the fact that for the new design,
biomarker cut-offs tend to be smaller than for the reference
(Table 7). Comparing the new design with the splitting de-
sign, one can generally conclude that the new design leads
to more bias, whereas the splitting design leads to higher
RMSE and higher standard deviations of the event propor-
tions for the biomarker positive and the estimated cut-off.
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Table 1 shows the results for nine scenarios Bio1l-Bio9 for
varied biomarker distributions. The scenarios correspond to
biomarker distributions that are increasingly well separated
(see Figure 2). Intuitively, the more the biomarker distribu-
tions are separated, the higher are the specificities given a
fixed sensitivity, and the smaller are the biomarker positive
subgroups. Simultaneously, the treatment effect for the sub-
group of biomarker positive increases, indicating that the
group of potential profiters can be better identified. In addi-
tion to the results in Table 1, Figure 3A shows the distribution
of estimates resulting from the three cut-off estimation
methods relative to zero bias, which is indicated by the red
horizontal line. For the first scenario, most of the patients
are defined as biomarker positive; therefore, the bias is small.
The size of the bias and the RMSE increase for all three
methods (Reference, Split, and New) with better separation
between the biomarkers of PP and NP. This behaviour
changes from scenario Bio5 to Bio6, from which on the bias
decreases again. Scenario B9 has a perfect specificity of 1,
and the corresponding average event proportion is 1 in the
biomarker positive subgroup of the control group, whereas
the treatment effect is on average 0.334 and thus equal to
the treatment effect for the potential profiters.

Table 2 shows the results for seven scenarios Epl-Ep7
for varied event proportions. The group size of biomarker
positive and the treatment effect increase with increasing
event proportion under control condition, which is ex-
pected, as the group of potential profiters increases with
higher p®. At the same time, the bias of the treatment ef-
fect decreases for all three cut-off derivation methods. The
bias of the externally defined cut-off (Reference) and of the
cut-off definition via splitting design (Split) decreases faster
than the bias of the new design. The RMSE remains rela-
tively constant, but is slightly smaller for the more extreme
scenarios Epl and Ep7, which can also be seen in
Figure 3B.

Table 3 shows the results for eight scenarios Sam1-Sam8
for varied sample sizes. As expected, increasing the sample
size results in a smaller bias and RMSE. The distribution of es-
timates from all approaches is visualized in Figure 3C. The
specificity remains constant, as the biomarker distribution
does not change. Though, for sample sizes of 750 and smaller
(Sam1-Sam6), the estimated specificity differs slightly from
the true value, and this difference increases with decreasing
sample size. This additionally shows the loss of accuracy in es-
timation using small sample sizes.

Figure 2 Examples for biomarker distribution in the population for scenarios Biol (upp = 3.3), Bio4 (upp = 4.0), Bio8 (upp = 5.0), and Bio9 (upp = 6.0)

with corresponding biomarker cut-off representing 95% sensitivity.
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Figure 3 Boxplots for different scenarios; red line indicates targeted value.
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Table 4 and Figure 3D show the results for six scenarios
Senl-Sen6 for varying the lower bound for the sensitivity.
As expected, specificity increases with decreasing sensitivity.
At the same time, the size of the selected subgroup of bio-
marker positive decreases because the proportion of PP in
this subgroup increases, and therefore, the treatment effect
for this subgroup increases. The bias of the estimated treat-
ment effect decreases, and the RMSE of the bias increases
with smaller sensitivity for all the estimation methods.

Discussion

To estimate the treatment effect of a telemedical interven-
tion for a biomarker-selected population likely to profit from
the intervention, one would traditionally first conduct a sep-
arate biomarker study to define an optimal biomarker cut-off.

In a second step, an RCT for the biomarker-identified target
population can then be realized. This process including two
separate studies is time consuming and costly. Therefore,
the new prognostic-efficacy-combination design that com-
bines the two studies in one single study is appealing. With
the simulation study presented in here, we showed that the
new design, however, causes some, albeit limited, upward
bias in treatment effect estimation. To reduce bias, we rec-
ommend a sufficiently large sample size depending on the
specific trial scenario. For the various settings investigated
here, a sample size of n = 750 per group works quite well.
Strikingly, our simulations show that a random
sample-splitting approach with the sample size of n = 750,
which entails the same cost and effort for the clinical investi-
gators as the new design, would only minimally reduce bias,
but substantially increase RMSE. As every simulation study
can only provide a limited number of scenarios and settings,
we recommend testing a desired configuration of parameters
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before using the design. To do so, we provide the code of our
simulation.® Besides bias, simulations can also help to assess
the reliability of inference (e.g. coverage of confidence inter-
vals) under different settings.

It is important to keep in mind that throughout we as-
sumed that a suitable biomarker and a desired sensitivity
for the detection of the target population were specified
in advance to data analysis, with only the optimal cut-off be-
ing unknown. As in any design, flexibly exploring multiple
subgroup definitions by different biomarkers and cut-offs
post hoc can result in substantial additional bias and is
discouraged.’® In terms of further adaptive design elements,
one could also think of including an interim analysis for de-
fining the biomarker cut-off. If the biomarker cut-off is only
applied to the patients recruited after interim analysis, this
would drastically reduce the sample size and is basically a
variation of the reference approach. If the cut-off is applied
to all patients, including those enrolled before interim anal-
ysis, the approach would constitute a mixture of the refer-
ence design (for the patients recruited after interim analysis)
and the new design (for the patients recruited before in-
terim analysis).

Note that in our work, we focus on one predefined bio-
marker. Combining or selecting several biomarkers is in prin-
ciple possible, but not part of our simulation study. The con-
sequence of incorporating multiple biomarkers should,
among other factors, depend on the additive value of their
information (i.e. their correlation) and the specific algorithm
to combine them for patient selection. Using two instead of
one biomarker could make it more sensitive to find the sub-
group of interest. As we investigated our design for different
sensitivity scenarios, we would conclude that higher sensitiv-
ity leads to slightly higher biases. This is in line with the con-
sideration that the inclusion of more variables into a predic-
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