Appendix C

Board-Event Encoding

This appendix provide a summary of the E-Chalk board event format and its
mapping to MPEG-4 BIFS.

C.1 The E-Chalk Board Format

The E-Chalk board-event format is thoroughly described in [Knipping, 2005],
Section 4.11. This section only provides a short overview. The events are
described by a simple line-based, human-editable ASCII format. After a few
header lines, that provide version information, specify the resolution of the
board, the lecture title, and the background color, every event is stored in a
separate line in the following syntax:

<timestamp>"$"<event>["$"<arguments>*]

The timestamp is the hexadecimal-coded amount of milliseconds that have gone
by since starting the lecture. The dollar character serves as token delimiter.
After the mandatory name of the event, a number of parameters can be passed
to the event, again delimited by the dollar sign. E-Chalk knows the following
events:

e Nop This event can be used to add comments. The event as well as any
string passed as argument is ignored.

e RemoveAll This event clears the entire board and sets the board position
back to the beginning. It takes no arguments.

e Undo This event triggers the undo manager to undo the last set of strokes.
The event is inserted when the user pushes the respective button in the
board toolbox.

e Redo This event is the inverse of undo.

e Terminate The command is only used in live transmissions to signal ter-
mination of the transmission.

e Scrollbar This event takes one integer parameter that specifies the new
vertical offset of the board’s top position.

165

166 APPENDIX C. BOARD-EVENT ENCODING

e Form This event marks that something is actually drawn on the board.
The next parameter specifies what exactly:

— Line This event takes the arguments $x¢$yo$x1$y;$r8c and triggers
the drawing of a line segment from point (zg,yo) to point (x1,y1)
with stroke radius r and color c.

— Image This event gets an id and two coordinates and inserts im-
age number id at the specified position. A forth argument specifies
whether the inserted image may be updated. Images are tagged as
updatable if they actually show screenshots from a Java Applet in-
serted into the board.

— Text This event takes a MIME-encoded [Freed and Borenstein, 1996a]
string, two coordinates, a color, and a font size. After this event, one
of several possible events can follow:

1. Text$End This event signals that the text can be put directly on
the board. The events follows directly after a Form$Text event if
the text was printed out automatically, for example the response
of a CGl-script.

2. Text$Char The event takes a character as first argument. A
set of these events is used between a Form$Text event and a
Text$End event if the text is typed by the user. When the user
presses a certain key on the keyboard the event is inserted. Spe-
cial characters, like backspace or delete have their own sub-
events.

3. Text$SetTxt and Text$Str Both events take strings as first ar-
guments and are used when the user sets an entire text line at
once using the text history (cursor up and down) or pastes text
at the current cursor position.

4. Text$Cursor Takes a position as first argument and is used for
cursor movement during string input.

e Image$Update This event can happen any time after Form$Image. It
takes two arguments: id; and ids. Applets that are inserted into the
board are played back as consecutive screenshots. The command triggers
a replacement of the image with id; with the image having idas.

C.2 Mapping E-Chalk Events to MPEG-4 BIFS

This section shows two examples of mapping the E-Chalk board format to the
BIFS text format as described in Section 5.4. A more detailed description can
be found in [Jankovic et al., 2006].

Scene Definition

After the obligatory InitialObjectDescriptor (not shown here), the initial
scene containing the board, audio, and video is defined as follows:
Root of the scene tree

DEF Root OrderedGroup {
children [

C.2. MAPPING E-CHALK EVENTS TO MPEG-4 BIFS 167

Background2D {
backColor 0.0 0.0 0.0
}
Define hook for audio node
Sound2D {
source AudioSource {
Object descriptor with ID 3 is defined below
url [od:3]
}
}
empty board
DEF BOARD Transform2D {
translation 0 O
children [
]
}
Define hook for video node (for overlaid replay)
Transform2D {
translation 0 20 # Video offset to better match instructor
children [
Shape {
appearance Appearance {
Transparency settings for the video
material DEF M1 MaterialKey {
keyColor 0 0 O
lowThreshold 0.1
transparency 0.1
}
texture MovieTexture {
Object descriptor with ID 4 is
defined below
url [od:4]
}
}
Video isn’t scaled now but could be.
geometry Bitmap{
scale 1.0 1.0
}

Stroke Encoding

The first line segment of a stroke (i.e., when a line segment’s starting point is
not connected to the ending point of the last line segment)

3e8f$Form$Line$17c$aa$17c$ab$f£00££00$3

is encoded as BIFS Text as follows (the coordinate systems of E-Chalk and
MPEG-4 differ, so the coordinates have to be translated):

AT 16015 {
at timestamp 16015 (after 16 seconds)
APPEND TO BOARD.children DEF STR1 OrderedGroup {
children [
Beginning circle
(optical correction to simulate pen down)
Transform2D {
translation -81 129
children [
Shape {
appearance DEF APP1 Appearance {
material Material2D {
emissiveColor 0.0 1.0 0.0
filled TRUE
}
}
geometry Circle {

168 APPENDIX C. BOARD-EVENT ENCODING

radius 1

]
}
Line segment
Beginning of stroke starts with first line segments
Shape {
appearance Appearance {
material Material2D {
lineProps LineProperties {
lineColor 0.0 1.0 0.0
width 3

}
}
geometry DEF STROKE1 IndexedLineSet2D {
coord DEF STROKEP1 Coordinate2D {
point [-81 129 -81 129]
Y
}
}
(provisional) ending circle (simulate pen up)
DEF ENDCIRCLE1l Transform2D {
translation -81 129

children [
Shape {
appearance USE APP1
geometry Circle {
radius 1
}
}

Further line segments that belong to the stroke are appended consecutively. For
example, the line segment

3e9f$Form$Line$17c$ab$17c$ad$f£00££00$3

is appended to the last line segment as follows
AT 16031 {

REPLACE ENDCIRCLEl.translation BY -81 127
APPEND TO STROKEP1.point -81 127

until the next line segment does not belong to the same stroke (i.e., it is not
connected).

Scroll events

Scroll events are easily implemented by translating the board scene. For example
the event:

2717f$Scrollbar$b

is encoded as:

AT 160127 {
REPLACE BOARD.translation BY 0 11
}

