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Abstract

Search trees on graphs (STGs) are a far-reaching generalization of binary search trees
(BSTs), where the key space is a graph instead of a totally ordered set. Intuitively, instead
of comparing keys, we “compare” vertices, which tells us their relative position in the
graph.

STGs can alternatively be seen as (1) a data structure for vertex searching that can be
built on top of certain graphs that support vertex comparisons (e.g., quadtrees) or (2) as a
hierarchical decomposition of the underlying graph. For the latter purpose, search trees
have appeared in the literature under different names (e.g., elimination trees and spines),
and there are strong connections to the ubiquitous notions of tree-depth and tree-width.

Many computational and combinatorial questions about BSTs naturally generalize to
the STG setting. In this thesis, we concentrate on the following three.

• Suppose we are given a query distribution and want to compute the search tree
that minimizes the expected search time. This is the optimal static search tree
problem. Computing optimal static BSTs is possible in quadratic time, but for
STGs no polynomial-time algorithm is known, even when the underlying graph is a
tree. We discuss multiple approximation algorithms for trees and graphs of bounded
tree-width, as well as NP-hardness of the problem in the general case.

• In contrast to static search trees, which cannot be modified after construction,
dynamic search trees may be restructured after each search using the rotation
operation. We generalize the well-known Splay algorithm from BSTs to STGs in the
special case where the underlying graph is a tree. We also use that algorithm for
a dynamic forest data structure, including an implementation and its experimental
evaluation.

• Finally, the rotation distance between two STGs is the minimum number of rotations
needed to transform one into the other. We are interested in the maximum rotation
distance for a given underlying graph, which is exactly the diameter of the so-called
graph associahedron of the underlying graph. Somewhat surprisingly, there is a
tight connection between this combinatorial problem and the static and dynamic
search tree problems. We present several new results, including a simple algorithm
to compute the diameter of a graph associahedron when the underlying graph is a
tree of bounded path-width.
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1. Introduction

A dictionary data structure (also called associative array or map) stores a set of keys and
potentially some associated data. Given a key, the dictionary reports whether the key is
in the set and provides the associated data, if any. Usually, keys may also be added and
deleted, and their associated data may be changed.

Dictionaries are everywhere; most programming languages provide one or more highly
optimized implementations in their standard libraries.1 When the key space is unstructured
and keys are small, then usually hash tables are the best choice [Knu73].

However, to store keys from a totally ordered domain, binary search trees (BSTs) are a
standard approach.2 They do not require keys to be efficiently hashable (just efficiently
comparable), and support certain additional operations like finding the predecessor of a
given key.

In this work, we consider search trees on graphs (STGs), a generalization of BSTs that
support key domains with a more general structure than total orders; namely, the domain
is modeled as a graph. Aside from the direct use as data structure for searching in graphs
(this will be made precise in the next section), search trees on graphs are also useful as
hierarchical decompositions of the underlying graphs.

1.1. Searching in trees and graphs

We start by briefly describing the underlying model and motivation for binary search trees.
Then, we present notions of searching in a tree and, more generally, searching in a graph.
This allows us to derive an analogue of BSTs, the aforementioned search trees on graphs.
For, now we focus on the basic search operation that finds a key in the stored set; in
particular, we omit operations that change the underlying set by adding or deleting keys,
and we do not associate values to keys.

Searching in total orders. Suppose we have a finite totally ordered set V of known values
and want to identify a given unknown element x, i.e., find an element v ∈ V with x = v.
We are allowed to compare x to any element v ∈ V , which reports whether x < v, x = v,
or x > v. This rules out all values greater than x, or all values smaller than v, or both.
Repeated comparison narrows down the remaining set of candidates, until we find the
element v ∈ V with x = v or we determine that V does not contain x.

1For example, map and unordered map in the C++ standard library [ISO23]; HashMap and BTreeMap

in Rust [Rus]; HashMap, TreeMap, ConcurrentSkipListMap, and others in Java [Ora24]; and dict in
Python [Pyt24].

2For example, Java’s TreeMap [Ora24] and the map implementation of gcc’s libstc++ [GCC] are binary
search trees.
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1. Introduction

The standard approach is to use binary search, i.e., always compare to the median of
the remaining elements. This requires O(log |V |) comparisons in the worst case, which is
optimal [Knu73].

However, in certain situations, a different strategy may be preferable. Here, by strategy
we mean a function that decides which comparison to perform based on previous compar-
isons and their results. Strategies correspond to decision trees, and decision trees in turn
correspond to binary search trees (as long as no redundant comparisons are made). See
figure 1.1 for an example.

Let us assume that x ∈ V . The number of comparisons required to find x in a binary
search tree is the depth of the corresponding node in the BST.3 Thus, if we know that a
certain element is frequently searched, we may want to put that element close to the root
of the BST.

Searching in trees. Suppose we have a tree4 G and want to “find” an unknown vertex x.
Instead of performing comparisons, we may query a vertex v, which either reveals that
v = x, or reports the first edge on the path from v to x. Our goal is to eventually query a
vertex v that reports v = x. Note that x is guaranteed to be contained in G, so unsuccessful
searches like for BSTs are not possible.

Observe that each query narrows down the remaining candidates to a connected subgraph
of G. By continuing to query vertices that are not ruled out yet, we will find x eventually.
In particular, if G is a path, then we essentially recover searching in total orders: Fix a
left-to-right direction on the path, and interpret the outcome of a query (left edge, right
edge, or equality) as “smaller”, “greater”, or “equal”.

As before, different strategies (i.e., decision trees) are possible. We represent a non-
redundant strategy as a rooted tree called search tree on a tree (STT). More precisely,
we define a search tree T on a tree G as a rooted tree constructed as follows. Pick some
vertex r of G as the root of T . Then, for each component C of G− r, recursively construct

3Throughout the thesis, the depth of a node in a rooted tree is the number of non-strict ancestors,
including the node itself. In particular, the depth of the root is one.

4Here, a tree is an acyclic and connected undirected graph; trees in the data structure sense (like BSTs)
are always called rooted trees or search trees in this thesis.

“First, compare x to b. If x < b, then compare x to a. Otherwise, compare x to c.”

x?b

x?a x = b x?c

< = >

x /∈ V x = a x /∈ V

< = >

x /∈ V x = c x /∈ V

< = >

b

a c

Figure 1.1.: A search strategy to find a value x in a totally ordered set V = {a, b, c}, with
a < b < c. As simplified informal text (top), as a decision tree (bottom left),
and as a binary search tree (bottom right).

2



1.2. Search tree problems

a search tree on C and attach it as a child of r. See figure 1.2 (top) for an example. If G
is a path, then we essentially recover BSTs.

We can use T as a search strategy as follows. The first query is always at r. Depending
on the answer, we narrow down our search to some component of G− r, and descend into
the respective subtree. As for BSTs, the number of queries required to find a node is its
depth in the search tree.

To the author’s knowledge, this search model has first been explicitly defined by Onak
and Parys [OP06]. However, as we will see later in this chapter, related concepts have
been studied already in the 19th century.

Searching in connected graphs. In this thesis, we mostly deal with search trees on trees.
However, our definition of search trees on G also works when G is not a tree; it only
requires G to be connected (see figure 1.2, bottom for an example). Search trees on graphs
(STGs) are also known as elimination trees and are connected to important concepts
such as tree-depth and tree-width [BGHK95, BCI+20]. In these settings, search trees are
seen as hierarchical decompositions of the underlying graph instead of data structures for
searching. This interpretation is our main motivation to study search trees in the general
setting.

While search trees easily generalize as a graph decomposition, it is not quite obvious how
search queries in graphs should be defined. The crucial difference is that vertex-to-vertex
paths may not be unique in general graphs. For example, if we query a vertex v in a cycle,
both incident edges may “point toward” the target. We briefly describe two approaches to
interpret vertex search in graphs that are compatible with our definition of search trees:

• A query to v ̸= x yields (some description of) the component C of G′ − v that
contains x, where G′ is the subgraph induced by the currently remaining candidates.
This has the disadvantage of making a query non-local, as the result depends on
previous queries.

• A query to v ̸= x yields all edges incident to v that are on a path between v and
the target x. This is cleaner, as it does not depend on previous queries, just v, x,
and the input graph G. Still, the result can be a large list of edges, so we cannot
reasonably expect the query to require only constant time.

Despite these caveats, many BST questions naturally generalize to our graph search
setting. We will see in this thesis that some results originally motivated by searching have
surprisingly wide-ranging applications in seemingly disjoint areas. We apply such results
to obtain dynamic graph data structures (chapter 10) and combinatorial results on graph
associahedra (chapter 12).

Another motivation for studying searching in general graphs is that it generalizes not
just searching in trees, but also edge-query searching and the list-update model (both will
be defined later).

1.2. Search tree problems

In this section, we discuss various BST problems and lift them into the STT (search trees
on trees) and STG (search trees on graphs) settings.

3
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Figure 1.2.: A search tree (top left) on a tree (top right) and a search tree (bottom left) on a
non-tree graph (bottom right). The blue boxes indicate remaining components
after removing a vertex in the construction of the search tree.

1.2.1. Minimizing worst-case search time

The most obvious question for any data structure is to optimize the worst-case running
time of its operations. We take the running time of a search to be the number of performed
queries for simplicity. For a search tree, the worst-case search time is its height (i.e., the
maximum depth of a node). Thus, we want to find a search tree of minimum height on a
given connected graph G.

We start with the case when G is a path (so search trees on G are BSTs). We can use
the search tree analogue of binary search, i.e., construct a search tree by always choosing
the middle vertex of the remaining piece of the path. This is the complete BST, with
height roughly log n.5 [Knu68]

Moving on to the case where G is a tree, it turns out that the concept of middle vertices
generalizes. A centroid of a tree is a vertex that partitions the tree into components
of size at most 1

2n. Centroids have been known to exist for arbitrary trees since the
19th century [Jor69]. Building a search tree by repeatedly choosing the centroid yields a
so-called centroid tree, again with height roughly log n.

It is worth mentioning that, while logarithmic height is optimal for paths, the same is not
necessarily true for trees in general. Consider, for example, a star:6 By taking its center as
the root, we always have a search tree of height at most two, regardless of how many leaves
the star has. Centroid trees are not necessarily optimal (see section 4.5), even though they
may have have height much less than log n (in the star case, for example). We can thus
see a certain jump in complexity when going from paths to general trees. Still, computing
the minimum-height search tree on a given tree is possible in linear time [Sch89b, OP06].

The general case, where G is an arbitrary graph, has been extensively studied before
under the names minimum elimination tree height, vertex/node ranking, ordered colorings,

5Throughout this section, we write n = |V (G)|.
6A tree with a single non-leaf node (the center) that is adjacent to all leaves.
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1.2. Search tree problems

and tree-depth.7 In this thesis, we adopt the latter term, i.e., we say the tree-depth of G is
the minimum height of a search tree on G.

Computing the tree-depth of a general graph is NP-hard [Pot88], but fixed-parameter
tractable [BDJ+98, RRVS14]. In this thesis, we do not present any new results for
computing the tree-depth, but the concept will be useful.

1.2.2. Minimizing expected search time

Above, we discussed optimizing search trees for worst-case search time. While this is the
most common benchmark for data structures in theoretical studies, in practice, data often
has some inherent structure. (See, e.g., Roughgarden [Rou21].)

Assume the input (i.e., the element or vertex to search for) is randomly drawn from
a known probability distribution p. We now want to minimize the expected search time.
This is clearly the same as the expected depth of the target node. An important special
case is when p is the uniform distribution; then, the problem is equivalent to minimizing
the sum of node depths.

In the BST case, this problem is mostly solved. For the uniform distribution, the
complete BST again is clearly optimal. For arbitrary distributions, a dynamic programming
algorithm due to Knuth [Knu71] computes the optimal BST in quadratic time. It essentially
computes an optimal BST on each contiguous subsequence of the input elements. Further,
a weighted analogue of the complete BST provides a (1 + o(1))-approximation and can be
computed in linear time [Meh75, Fre75, Meh77].

Contributions of this thesis. Part I is dedicated to the problem of computing optimal
STGs for a given input distribution. We mainly focus on the case where the underlying
graph is a tree. In this setting, we present multiple approximation algorithms, among
them a fast 2-approximation using weighted centroid trees (chapter 4), a PTAS8 using
dynamic programming (chapter 5), as well as an FPTAS9 and a pseudo-polynomial exact
algorithm based on work on a related problem (chapter 6). The question whether the
problem is polynomially tractable or NP-hard is left open.

We also study more general cases, where the underlying graph is not necessarily a tree.
Our PTAS nicely generalizes to graphs with bounded tree-width (section 5.4.2). Finally,
we show that the problem is NP-hard for graphs of tree-width at least 15 (section 7.1). It
was observed before that for dense graphs, the problem is hard even when p is the uniform
distribution [HBB+21] (see section 7.2).

1.2.3. Adaptive searching with rotations

A simple and well-known local operation to change a BST is the rotation, which essentially
swaps a child node with its parent, along with transferring a child to maintain a valid BST.

7We refer to the textbook by Nešetřil and Ossona de Mendez [NOdM12] and the thesis of Sánchez
Villaamil [SV17] for a more comprehensive treatment of the long history of tree-depth and equivalent
concepts.

8Polynomial-time approximation scheme; i.e., an algorithm with parameter ε > 0 that computes a
(1 + ε)-approximation in time nf(ε), for some f .

9Fully-polynomial-time approximation scheme; i.e., an algorithm with parameter ε > 0 that computes
a (1 + ε)-approximation in time poly(n) · poly(1/ε).
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1. Introduction

The reader may be familiar with rotations from BST-based data structures such as AVL
trees and red-black trees [CLRS01]. These data structures allow adding or removing new
elements, and use rotations to restructure themselves into an (approximately) balanced
state afterwards. Rotations nicely generalize to STGs. Figure 1.3 shows a rotation in a
BST and a rotation in an STG; for precise definitions, consult section 2.2.2.

For now, we will not bother with additions and deletions of elements (it is not quite
obvious what exactly that means for STTs and STGs). Instead, we focus on a different
use of rotations: Making a search tree adapt to certain properties of the input, such as
the distribution of its elements.

Our dynamic search tree model is roughly the following. We start with a search tree of
our choice (on a given graph), and receive a sequence of elements to search for. Before
every search, we are allowed to execute arbitrary rotations; then, we search for the element
as usual. An algorithm determining the initial search tree and the rotations in each search
is called a dynamic search tree algorithm. The time the algorithm takes for each element is
measured as the number of rotations it executes plus the number of queries in the search
(i.e., the current depth of the searched node).10

In the online model, the algorithm receives the input element-by-element, whereas in
the offline model, the whole sequence of inputs is known from the start. In contrast, we
call an unchanging search tree (as discussed above) a static search tree.

An intuitive and useful online heuristic is MoveToRoot, which simply rotates the
found element to the root after every search. Elements that are searched often are usually
found more quickly. In fact, for BSTs, it can be shown that this heuristic is as good as any
static search tree, as long as the input is drawn independently from some fixed distribution
(up to a constant factor, and as long as the number of searches is large enough) [AM78].

Note that MoveToRoot is online, it does not know the distribution, and the performed
rotations do not take into account the global structure of the tree at all. However, the
independence assumption on the input is necessary, since there exist input sequences where
MoveToRoot requires linear time per search. MoveToRoot easily generalizes to STTs,
but then may perform badly even for independently distributed searches (see section 8.2).

Perhaps the best-known adaptive BST algorithm is Splay [ST85b]. It matches the
optimal static BST on any (long enough) input sequence (up to a constant factor), without
the restriction that the searches need to be independent of each other. This property is
called static optimality and also implies a worst-case running time of O(m log n) for m
searches among n elements, since Splay in particular matches the balanced BST. Splay
has many more interesting adaptive properties (see section 8.1 for a brief overview, and
Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak [CGK+16] for more details).

Perhaps the most important question in dynamic BST research is the dynamic optimality
conjecture. It states that there exists some dynamic BST algorithm that is constant-
competitive with the offline optimum, i.e., its running time is at most a constant factor
above the minimum time needed by an offline algorithm to serve an input sequence. [ST85b]

Besides Splay, the Greedy algorithm [DHI+09] is another prime candidate for dynamic
optimality. However, for both algorithms, no better competitive ratios than the trivial
O(log n) are known. The best known competitive ratio of O(log log n) is achieved by
Tango trees [DHIP07].

10This is a simplification; we make the model precise in chapter 8.
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1.2. Search tree problems
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Figure 1.3.: Examples of a BST rotation (left) and an STG rotation (right). In both cases,
the node x is rotated with its parent y. The respective underlying graph is
sketched at the bottom.

In the general STG setting, work on the dynamic search tree problem has been scarce
so far. The model was first defined by Bose, Cardinal, Iacono, Koumoutsos, and Langer-
man [BCI+20], who generalized Tango trees to the STT setting (i.e., the underlying graph
is a tree). The very specific case where the underlying graph is a clique has been studied
as the list-update problem [ST85a] (see section 8.3).

Contributions of this thesis. In part II , we investigate the dynamic search tree model, in
particular the STT case. Our main result is a generalization of Splay to STTs (chapter 8),
for which we prove static optimality, along with further adaptivity properties. We use
and expand the framework of Steiner-closed search trees (or 2-cut search trees) of Bose,
Cardinal, Iacono, Koumoutsos, and Langerman [BCI+20].

We also extensively discuss an application of dynamic search tree algorithms to dynamic
graph problems (chapter 10). Essentially, a dynamic graph data structure maintains a
graph under edge insertion/deletion, and additionally allows some query, such as computing
the distance between two given vertices. We build a dynamic forest data structure where
each tree in the underlying forest is represented as a search tree on that tree. While our
algorithms only work if the underlying graph is a forest, we discuss some ideas to expand
them to bounded-tree-width graphs (section 10.10).

Remark. Dynamic forests can also be seen as the “truly” dynamic STT model. So far,
we have ignored possible modifications of the underlying graph. However, BST-based
data structures usually allow adding and removing elements, and sometimes even the
strictly stronger operations of merging and splitting whole BSTs. Observe that adding
and removing edges from a dynamic forest, where each underlying tree is represented by
an STT, amounts to merging and splitting STTs in the same way.

1.2.4. Minimizing worst-case search time with non-uniform cost

A different static search tree model assigns each vertex a cost required to query it; the
time/cost for a search is taken as the total cost of all queries. We refer to this model as the
weighted-cost model. Optimizing worst-case search time (in a static tree) leads to a very

7



1. Introduction

different problem, where reducing the height by placing “central” vertices at the root is still
advantageous, but, at the same time, high-cost vertices should be far from the root. This
problem is also called weighted vertex ranking and known to be strongly NP-hard [DN06]
but not APX-hard under standard complexity theory assumptions [DKUZ17]. We do not
investigate the weighted-cost model in this thesis.

1.2.5. The diameter of graph associahedra.

We now turn to a combinatorial problem related to STGs. The rotation distance between
two search trees (on a common graph) is the minimum number of rotations needed to
transform one into the other. We are interested in the maximum rotation distance between
any two search trees on a given graph.

This question is related to graph associahedra, a family of polytopes whose graphs
(1-skeleta) are exactly the rotation graphs of STGs. The rotation graph R(G) of a graph G
is defined as follows: The vertices of R(G) are the search trees on G, and two search trees
are adjacent in R(G) if they differ by a single rotation. Clearly, the maximum rotation
distance is the diameter of the rotation graph, which is the diameter of the polytope by
definition. Graph associahedra have been studied before in several different settings; we
refer to chapter 11 for more information.

In the special case where the underlying graph is a path, we obtain the classical
associahedra or Stasheff polytopes. The 1-skeleton of an associahedron is, of course, the
rotation graph of BSTs, but it also represents the so-called flip graphs of parenthesizations11

and convex triangulations [Tam54, Pou14b]. Both combinatorial and geometric aspects of
associahedra have been extensively studied (see, e.g., Ceballos, Santos, and Ziegler [CSZ15]).
The diameter is known to be linear in the number of nodes of the BSTs.

For some restricted graph classes, such as cycles and trivially perfect graphs, the
approximate diameters of the respective graph associahedra are known (see chapter 11).

Contributions of this thesis. In part III, we study the diameter of graph associahedra.
We again focus on the case where the underlying graph is a tree. It is known that tree
associahedra have diameter between Ω(n) and O(n log n), where n is the number of vertices
in the underlying tree. We attempt a more precise classification of trees that lie between
these two extremes.

Our main result is an algorithm that approximates the diameter of the rotation graph
of a given tree with bounded path-width. The class of trees with bounded path-width
includes graph classes such as caterpillars, spiders (star-like trees), and lobsters; we give a
simple method to determine the diameter of the rotation graph of any such graph, up to a
constant factor. The problem is left open for trees of unbounded path-width, in particular
subdivisions of binary trees (see chapter 12 for definitions and more details).

The algorithm itself is neither complicated nor particularly interesting, instead, the
main result is the bound on its approximation ratio. The proof is quite involved, and uses
techniques related to both static optima and dynamic search trees. We also give a similar
approximation for all trees with no vertices of degree two.

11The flips are applications of the associativity rule.
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1.3. Related search models

For non-tree graphs, we prove a generic upper bound related to optimal static search
trees, but our lower bound techniques largely fail in this general setting.

1.2.6. Computing rotation distance

A related problem is computing the rotation distance between two given search trees on
a common graph G. It is known that this problem is NP-hard in general [IKK+23], but
polynomially tractable if G is a complete split graph [CPVP24]. The special case where G
is a path, i.e., computing the rotation distance between two BSTs, is still wide open, as
neither NP-hardness nor subexponential algorithms are known.

1.3. Related search models

A different model for vertex search uses edge queries. Let the underlying graph G be
a tree. Querying an edge e reveals on which side of e the target vertex lies, i.e., which
component of G − e contains it. See figure 1.4 (b). In analogy to our search trees, we
can define edge-query trees, and the definition can also be extended to general underlying
graphs. We give a formal definition later in section 7.1.

The three static search tree problems discussed above (worst-case, expected-case and
weighted-query) are all easily adapted to edge-query trees, and, in fact, are quite well
studied. The worst-case problem is also known as edge ranking [Der08], in analogy to
vertex ranking. Like the tree-depth/vertex ranking problem, it is known to be NP-hard
in general graphs [LY98]. The special case of trees has inspired a series of works [IRV88,
dlTGS95, BFN99] culminating in linear-time algorithms [LY01, MOW08].

The expected-case edge-query tree problem is known to be NP-hard even when the un-
derlying graph is a tree [JCLM10, CJLM11], but constant-factor approximation algorithms
are known [LM11, CJLM10, CJLM14]. The special case where the input distribution is
uniform has been studied in the context of hierarchical clustering [Das16, HBB+21].

The weighted-cost edge-query tree problem is also NP-hard for trees [Der06, CJLV12,
CKL+16].

In another more general model, the underlying search space is a partially ordered set,
and querying a vertex reveals whether the target element is smaller or equal to the query
element. Observe that if the poset is tree-like, i.e., its Hasse diagram is a tree, then we

v

(a)

v

p

(b)

v

(c)

Figure 1.4.: Different types of queries in a tree. (a) Vertex-query at v: Indicates whether
v is the searched vertex, or otherwise on which side of v the searched vertex
is. (b) Edge-query at {v, p}: Indicates on which side of the edge the searched
vertex is. (c) Tree-like-poset query at v: Indicates whether the searched vertex
is smaller or equal to v (red), or not (blue).
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1. Introduction

again have the edge-query model: A poset-query at element v corresponds to a query to the
edge between v and its parent in the Hasse diagram. See figure 1.4 (c). The poset-query
model in general is also well-studied [LS85, CDKL04, Der08, CJLM10, CDL24].

Finally, in a certain variant of the vertex-query model, queries indicate the first edge
of a shortest path to the target. In a tree, this model equivalent to ours (since paths are
unique), but in general graphs, the shortest-path model is significantly stronger: O(log n)
queries suffice in the worst case for any graph. [EKS16]

To the author’s knowledge, dynamic variants of any of these models have not been
studied.

Edge queries vs. vertex queries. It is easy to see that an edge query in a graph G is
essentially the same as a vertex query in the line graph L(G) of G.12 However, searching
for a vertex is subtly different. In the edge-query model, a vertex is identified by querying
all incident edges. This corresponds to finding all vertices of a certain clique in L(G); a
normal vertex search with vertex queries would only find a single vertex.

For the worst-case problem (i.e., edge ranking), this does not matter; we simply want to
minimize the height in both cases. Thus, the linear-time edge ranking algorithm mentioned
above [LY01, MOW08] translates to a linear-time vertex ranking/tree-depth algorithm for
line graphs of trees.

Results for the expected-case problem, on the other hand, do not always transfer directly.
Still, as we show in section 7.1, the edge-query version of the problem does reduce to the
vertex-query version on the line graph if we only ever search for leaves of the original
graph. This allows us to transfer the NP-hardness result of Cicalese, Jacobs, Laber, and
Molinaro [CJLM11] to the vertex query setting.

Moreover, observe that an edge query can be simulated by a vertex query (at one of
the endpoints of the edge). Conversely, a vertex query at v can be simulated by querying
all incident edges. Thus, if the underlying tree has bounded maximum degree, the two
models are equivalent up to a constant factor.

Finally, in the weighted-cost model, the edge-query version easily reduces to the vertex-
query version by simply subdividing each edge with a single vertex. [Der06]

1.4. Applications

We end this chapter by briefly discussing a few examples of direct applications for our
search model. We omit the previously discussed dynamic graphs (see chapter 10) and the
many applications of tree-depth (i.e., worst-case-optimal search trees; see, e.g., the thesis
of Sánchez Villaamil [SV17]).

File system comparison. Suppose we have an older and a newer copy of a file system
on different computers in a network, and we want to find changed files with a minimum
amount of network traffic. The file system is a rooted tree, with directories as inner nodes
and files as leaves.13

12The vertex set of L(G) is the set of edges of G, and two vertices of L(G) are adjacent if the
corresponding edges in G share an endpoint.

13We ignore special cases such as symbolic links.
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For simplicity, assume only one file has changed. A simple approach is to compute
a checksum for each file and each directory. To determine whether the changed file
is in a given directory, we only have to compare the two checksums.14 Observe that
this is exactly a query in the tree-like poset search model, which is equivalent to edge
queries [BFN99, MOW08]. Since we only search for leaves (files), this is equivalent to
searching with vertex queries in the line graph of the underlying tree (see section 1.3).

Minimizing the worst-case network traffic with this method thus means finding a
minimum-height edge-query tree on the file system tree, or, equivalently, a minimum-
height (vertex-query) search tree on the line graph of the file system tree.

If we are given probabilities for the files to change (e.g., based on past experience), then
minimizing the expected network traffic is precisely the optimal static search tree problem.

Quadtrees. A quadtree is a data structure for point location, which is essentially a
hierarchical partition of a square into smaller squares. It is a rooted tree where each node
v represents a square Rv. If p is the parent of v, then Rv must be fully contained in Rp.
Each node v has at most four children, which usually represent the quadrants of Rv.15

A standard task for quadtrees is to find the leaf whose square contains a given point.
Observe that we can use the quadtree itself like a search tree: First, determine which
of the four children of the root contains the point, then recurse in the determined node.
However, this takes time proportional to the height of the quadtree, which may be linear
in the number of nodes.

Checking whether the input point is contained in Rv for a node v amounts to checking
whether the target leaf is a descendant of v. Hence, we again have the tree-like poset-query,
i.e., the edge-query model. Since we are only searching for leaves, this is again equivalent
to the vertex-query model on line graphs. Additionally, our underlying tree has bounded
degree, so we can simulate vertex queries with a constant number of edge queries (see
section 1.3). Thus, this is an application of search trees on trees. In particular, we can use
the aforementioned centroid tree to obtain logarithmic search time. This is a well-known
technique, and a centroid tree on a quadtree is also called a finger tree [HP11].

Water surveillance. Let us model the sewer system of a city as a directed graph, with
the edge directions indicating the flow of water. Usually, this is a tree where all edges point
towards the root; the leaves are households and the root is a sewage treatment plant. If
sufficient amounts of some interesting or unwanted substance is introduced by a household,
then all water on the path between the household and the root is contaminated. We want
to find the offending household. [CDV24]

Suppose we have a reliable test that detects whether the substance is contained in the
water or not. A single test at some point in the system is an edge query: The affected
household is upstream from the test point if and only if the test is positive. On the other
hand, testing all incoming and outgoing pipes of a junction is a vertex query. We can thus
apply our algorithms in an attempt to minimize the number of necessary tests.

14Assume there are no collisions.
15We refer to the textbook of Har-Peled [HP11] for a proper definition.

11





2. Preliminaries

In this chapter, we review some basic definitions and notation, and define search trees and
related concepts.

We start with notation related to graphs and other basic structures, and then proceed
to rooted trees in section 2.1. Most of this should be familiar to the reader. We then define
search trees on graphs in section 2.2. Sections 2.2.3 to 2.2.6 are mainly needed in part III
(though they are also used heavily in sections 2.3 and 2.4), so the reader may skip them
first and refer to them later as needed.

Finally, sections 2.3 and 2.4 relate search trees to the concepts trivially perfect graphs,
tree-depth, chordal graphs and tree-width. While most of these connections have been
implicit in previous work, we present them in an explicit and systematic manner. The
definitions and results in these sections only appear sparsely in the rest of the thesis and
can be referred to as needed.

All definitions in this and later chapters are found in the index and symbol reference
(pages 213 to 215).

Basic notation. We denote by N+ the set of positive integers, and by N0 or N the set of
nonnegative integers. For k ∈ N+, we write [k] = {1, 2, . . . , k}.

If f : A→ B is a function, then the restriction of f to a subset X ⊆ A, written f |X , is f |X
the function g : X → B such that g(x) = f(x) for each x ∈ X.

Graphs. All graphs in this thesis are simple and undirected, unless specified otherwise.
We denote the set of vertices of a graph G by V (G) and the set of edges by E(G). For a V (G), E(G)

vertex set U ⊆ V (G), we write G[U ] for the subgraph induced by A. We further write
G[U ], C(G)C(G) for the set of connected components of G.

For convenience, if v ∈ V (G), we write G− v = G[V (G) \ {v}]. Similarly, for A ⊆ V (G), G− v, G−A,
G− ewe write G−A = G[V (G) \A], and for e ∈ E(G), we let G− e be the graph obtained by

removing e from G.

The degree of a vertex v ∈ V (G) is denoted by degG(v). If G is a tree and U ⊆ V (G), degG(v)

the convex hull chG(U) is the set of vertices that lie on the path between two vertices in U .
convex hull
chG(U)

Contractions and subdivisions. If G is a graph and u, v are adjacent vertices in G, then
the contraction of u and v into s produces a graph H with V (H) = V (G) \ {u, v} ∪ {s} contraction

and E(G) consists of E(G) \ {{u, v}} and an edge between s and x for each x that is
adjacent to u or v in G.

On the other hand, a subdivision of an edge {u, v} in G adds a new vertex “on” that subdivision

edge. More formally, it produces a graph H with V (H) = V (G) ∪ {x} and E(H) =
E(G)\{{u, v}}∪{{u, x}, {x, v}}, where x is a new vertex not contained in V (G). Observe
that a subdivision can be reverted by a contraction, but the opposite is not always true.
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2. Preliminaries

Separators. Let G be a connected graph. We say a set A ⊆ V (G) separates two verticesseparate

u, v ∈ V (G) in G if u and v are in different components of G−A. We say a single vertex
a separates u and v in G if {a} separates u and v. The following fact will be useful later.

Observation 2.1. Let G be a graph and H be a connected subgraph of G. Suppose
A ⊆ V (G) separates two vertices u, v ∈ V (H) from each other in G. Then A ∩ V (H) is
nonempty and separates u from v in H.

Special graphs. The reader will be familiar with complete graphs and complete bipartite
graphs. We also call the former cliques and the latter bicliques.

Figure 2.1 shows examples of graph classes defined in the following. For all m,n ∈ N0,
the complete split graph SPKm,n is the graph G whose vertex set can be partitioned

complete split
graph

into two sets A and B of size m and n, respectively, such that E(G) = {{a, a′} | a, a′ ∈
A} ∪ {{a, b} | a ∈ A, b ∈ B}. In other words, the set A forms a clique, and A,B form the
two parts of a biclique.

A star is a tree where one vertex, the center, is adjacent to all other vertices. A spiderstar

spider
or star-like tree is a tree that consists of a designated center vertex, and a collection of
paths (the legs), such that for each leg, the center is connected to one of the endpoints of
the leg. Observe that a star is a spider where each leg has one vertex.

A caterpillar is a tree with a designated path (the spine), whose removal splits the treecaterpillar

into isolated vertices (the legs).

A lobster is a graph with a designated path, such that all vertices have distance at mostlobster

two to the path. Observe that every caterpillar is also a lobster.

Graph invariants. We write ω(G) for the clique number of a graph G (the number ofω(G)

vertices in a maximum clique of G), and χ(G) for the chromatic number of a graph G.
χ(G)

We refer to standard textbooks [Har69] for more details.

Sequences and permutations. In this thesis, sequences are always finite. For a sequence σ,
let V (σ) denote the set of elements occurring in σ. Given a set X, we define the restrictionV (σ)

σ|X as the unique subsequence of σ obtained by removing all elements in V (σ) \X.
σ|X

A permutation of a finite set A is a sequence π with V (π) = A that contains each
permutation element of A precisely once. For a, b ∈ A, we write a <π b if a precedes b in π, and we

<π
write a ≤π b if a <π b or a = b. We say a directly precedes b if a <π b and there are no
elements between a and b in π. For two sets B,C ⊆ A, we say B precedes C if b <π c for
all b ∈ B, c ∈ C. A partial permutation of a set A is a permutation of some subset B ⊆ A.partial

permutation

(a) Complete split
graph SPK3,2

(b) Star (c) Spider (d) Caterpillar (e) Lobster

Figure 2.1.: Examples of special graphs classes.
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2.1. Rooted trees

2.1. Rooted trees

We follow Cormen, Leiserson, Rivest, and Stein’s terminology [CLRS01, Appendix B.5.2],
with some additions that are useful for us.

A rooted tree T is a tree where one vertex is designated as the root, denoted by root(T ). rooted tree

root(T )
We also refer to T as a rooting of the underlying (unrooted) tree G, and, conversely, call

(un)rooting

G the unrooting of T . To avoid confusion between normal trees and rooted trees, we call
the vertices of a rooted tree nodes. A rooted forest is a collection of disjoint rooted trees.

rooted forest

Ancestors and descendants. A node u is an ancestor of another node v if u lies on the
ancestor,
descendant

path from v to root(T ). In that case, we also call v a descendant of u. If u is an ancestor
(descendant) of v and u ̸= v, then we call u a proper ancestor (descendant) of v. If v is a
descendant of u and there is an edge between u and v, then we call v a child of u and u a parent, child

parent of v, and write parentT (v) = u. The grandparent of a node v is the parent of the
grandparent

parent of v.

We write u ⪯T v if u is an ancestor of v in the rooted tree T . Here and in the other ⪯T

definitions in this section, we omit the subscript T if clear from context. We write u ≺ v
if u is a proper ancestor of v.

A common ancestor of a set of nodes U is a node v with v ⪯ u for all u ∈ U . A lowest
lowest
common
ancestorcommon ancestor (LCA) of U is a node v that is a common ancestor and that satisfies

a ⪯ v for every common ancestor a of U . It is easy to see that an LCA always exists and
is unique. We denote it by LCAT (U). LCAT (U)

Subtrees. Let T be a rooting of a tree G. A subtree P of T is a connected subgraph subtree

of G, rooted at LCAT (V (P )) (observe that indeed LCAT (V (H)) ∈ V (H)). A subforest of
subforest

T is a collection of disjoint subtrees.

We say a subtree is induced by its vertex set. Observe that each subset of vertices
induces at most one subtree. The subforest of T induced by a node set U , denoted
by T [U ], consists of the subtrees induced by the components of G[U ]. We also write
T −A = T [V (T ) \A] for a set A ⊆ V (T ), and T −F = T [V (T ) \ V (F )] if F is a subforest T −A, T − F

of T . See figure 2.2 for examples.

A subtree P of T is called a prefix if V (P ) is closed under taking ancestors in T . A prefix

rooted forest F of subtrees of T is called a suffix if V (F ) is closed under taking descendants
suffix

in T . Observe that T − P is a suffix if P is a prefix, and T − F is a prefix if F is a suffix.
Also observe that a subtree P is a prefix of T if and only if root(P ) = root(T ).

Subtree Subforest Rooted

subtree

Prefix Suffix Child subtrees

of the root

Figure 2.2.: Examples of the various subtree/subforest types.
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The subtree of T induced by a node v and all its descendants in T is called the subtree
rooted at v or just a rooted subtree, and is denoted by Tv. Observe that a subtree is arooted subtree

rooted subtree if and only if it is a suffix. A child subtree of a node v in T is the subtree
child subtree

of T rooted at some child of v.1

We extend the concept of rooted subtrees to rooted forests. If T is the rooted tree in
a rooted forest F that contains v, then we write Fv = Tv. (Obviously, most of the other
concepts can be extended similarly, but that is not necessary for our purposes.)

Leaves and special trees. A node v in T is a leaf if it has no children. Otherwise, it isleaf

called an inner node.
inner node

If T has only one leaf, it is called degenerate. Equivalently, T is degenerate if all nodes
degenerate have at most one child. If each node has at most two children, then T is called binary. A

binary tree binary tree is called perfect if all leaves have the same depth, and each inner node has

perfect
exactly two children.

Depth and height. The path from root(T ) to some node v is called the root path of v.root path

Let PathT (v) denote the set of nodes on the root path. Observe that PathT (v) is exactly
the set of non-strict ancestors of v. The number |PathT (v)| of ancestors is called the depth
of v in T and is denoted by depthT (v). Note that the depth of the root is always one. ThedepthT (v)

height of T , denoted height(T ) is the maximum depth of a node in T .
height(T )

2.2. Search trees on graphs

A search tree on a connected graph G is a rooted tree T with root r ∈ V (G). Letsearch tree

{C1, C2, . . . , Ck} = C(G− r). Then r has precisely k children c1, c2, . . . , ck such that Tci

is a search tree on Ci for i ∈ [k].
Since we only define search trees on connected graphs, henceforth, whenever we write

“search tree on a graph G”, it will be implied that G is connected.

Observation 2.2. Let T be a search tree on a graph G. Then V (T ) = V (G).

If S is subtree of T , we write G[S] = G[V (S)] for brevity. Observe that G[Tv] is
connected for every v ∈ V (T ). In fact, we can show the following equivalence.

Lemma 2.3 (Characterization of STGs). Let G be a connected graph. A rooted tree T
with V (T ) = V (G) is a search tree on G if and only if

(i) for each edge {u, v} ∈ E(G), we have u ≺T v or v ≺T u; and

(ii) for each node v ∈ V (T ), the subgraph G[Tv] is connected.

Proof. First suppose that T is a search tree. For property (ii), recall that, by definition,
each rooted subtree Tv of T is a search tree on some component C of some subgraph of G,
and V (Tv) = V (C) by observation 2.2.

To show property (i), take some edge {u, v} ∈ E(G). If u = root(T ), then u ≺T v, so
we are done, and similarly for the case v = root(T ). If u and v are in different components

1Rooted subtrees and child subtrees are often just called subtrees in the literature.
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2.2. Search trees on graphs

of G− root(T ), then there cannot be an edge between them. Finally, if u and v are in the
same component C of G − root(T ), then root(T ) has a child c such that Tc is a search
tree on C, so property (i) holds by induction.

We now show the other direction. Suppose properties (i) and (ii) hold. We show that for
each child subtree Tc of r = root(T ), the vertex set V (Tc) induces a connected component
of G− r. This implies that T is a search tree by induction.

Clearly, each V (Tc) induces a connected subgraph of G − r by property (ii). Now
suppose V (Tc) does not induce a connected component of G − r. Then there exists a
vertex v /∈ V (Tc) with v ≠ r that is adjacent to some u ∈ V (Tc). But then v must be an
ancestor or descendant of u by property (ii), which means that either v ∈ V (Tc) or v = r,
a contradiction.

Of course, connected subgraphs of G do not necessarily correspond to subtrees of a fixed
search tree T on G. However, the following weaker statement holds and will be useful
later.

Lemma 2.4. Let T be a search tree on a graph G, and let U ⊆ V (G) induce a connected
subgraph of G. Then LCAT (U) ∈ U .

Proof. Suppose, for the sake of contradiction, that a = LCAT (U) /∈ U . Note that G[U ] is
a subgraph of G[Ta]− a, since a is an ancestor of all u ∈ U . Further, more than one child
subtree of a in T must contain nodes in U (otherwise u would not be the lowest common
ancestor), so U is not contained in a single connected component of G[Ta]− a. Thus G[U ]
cannot be connected, a contradiction.

Finally, the following occasionally useful fact holds by definition.

Observation 2.5. Let T be a search tree on a graph G, let v ∈ V (T ), and let x, y be
descendants of v in T . Then x and y are in different child subtrees of v if and only if v
separates x from y in G[Tv].

Search trees on paths. A binary search tree (BST) is a binary rooted tree where each binary search
tree

non-root node is designated as either a left child or a right child, and each inner node has
at most one child of each type.

As mentioned before, binary search trees are essentially equivalent to search trees on
paths. Let T be a search tree on a path G. Clearly T is binary. Arbitrarily fix one of
the endpoints of G as the leftmost vertex. Then a child c of a parent p is a left child if
and only if c is closer to the leftmost vertex than p. This gives us a binary search tree.
Rotations within T , as defined in section 2.2.2, are precisely binary search tree rotations.

2.2.1. Boundaries

Let G be a graph and H be an induced subgraph of G. The outer boundary of H, denoted
outer
boundary

∂G(H), is the set of vertices in G−H that are adjacent to some vertex in H. We call H a
k-cut subgraph of G if |∂G(H)| ≤ k.2 k-cut

subgraph

2Observe that H can be split off G with a vertex cut of size k.
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2. Preliminaries

We write ∂G(A) = ∂G(G[A]) for a set A ⊆ V (G). If T is a search tree on G and
v ∈ V (T ), we write ∂(Tv) = ∂G(V (Tv)) for short. The node v ∈ V (T ) is called k-cut if
|∂(Tv)| ≤ k, i.e., if G[Tv] is k-cut. The search tree T itself is called k-cut if every node ofk-cut search

tree
T is k-cut. Observe that 1-cut search trees only exist when the underlying graph is a tree
and are then precisely the rootings of the underlying tree.

The following technical observations will be useful later.

Observation 2.6. Let G be a connected graph, and let A ⊆ B ⊆ V (G), and let H be a
component of G[B \A]. Then ∂G(H) ⊆ ∂G(B) ∪A.

Observation 2.7. Let p be a node in a search tree T on a graph G, and let v be a child
of p. Then p ∈ ∂(Tv) and ∂(Tv) ⊆ ∂(Tp) ∪ {p}.

Corollary 2.8. For each node v in a search tree T on G, the boundary ∂(Tv) consists
entirely of strict ancestors of v in T .

Remark. The concept of k-cut search trees is a generalization of so-called Steiner-closed
STTs [BCI+20], which correspond to the case when k = 2 and the underlying graph is a
tree [BK22].

2.2.2. Rotations

We now generalize BST rotations to STGs [MP15, CLPL18]. Rotations feature most
heavily in parts II and III, but are also used in part I to make certain algorithms or proofs
more intuitive.

Essentially, a rotation is a local operation that swaps a parent and child in a search tree,
and otherwise makes a minimal amount of changes in order to preserve the search tree
properties.3 These changes amount to moving some children of one of the rotated nodes
to the other. Figure 2.3 sketches a rotation in search tree on a tree. (Rotations in general
STGs are a little more difficult to sketch, since multiple children may change parents.)

We now formally define rotations. Let v be a node in a search tree T on a graph G, and
let p be the parent of v. A rotation of v with its parent (also called a rotation at v) isrotation

performed as follows. Make p a child of v and make v a child of the previous parent of p,
if it exists (otherwise, make v the root). Then, every child c of v with p ∈ ∂(Tc) is made a
child of p.

Lemma 2.9. Let G be a tree. When rotating a node v with its parent p in a search tree
T on G, at most one child is transferred from v to p.

Proof. Suppose two children c, c′ of v are transferred to p. Then p ∈ ∂(Tc) and p ∈ ∂(Tc′),
which implies that there must be at least two edges from p to V (Tv). But G[Tv] is
connected, so there is a cycle, contradicting the assumption that G is a tree.

Let rot(T, v, p) denote the search tree obtained by rotating a node v with its parent prot(T, v, p)

in T . If p is not the parent of v, then rot(T, v, p) is undefined.
At its core, a rotation of a node v with its parent p swaps p and v while changing the

rest of the search tree as little as possible. The following lemma shows this strong locality

3We will make this idea precise later; see lemma 2.14 in section 2.2.3.
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p

v

cA

B

C

v

p

c

A

B

C

v...A

c

B

p ... C

Figure 2.3.: A rotation of a node v with parent p in an STT. The underlying tree is shown
on the right. The node c the unique child of v with p ∈ ∂(Tc). If c does not
exist, then B = ∅ and v, p are neighbors in the underlying graph.

of the rotation operation, and further proves that a rotation indeed results in a valid
search tree.

Lemma 2.10. Let T be a search tree on a graph G, and let T ′ = rot(T, v, p). Then T ′ is
a search tree on G, and

(i) V (T ′
v) = V (Tp).

(ii) V (T ′
p) = V (C), where C is the component of G[Tp]− v that contains p.

(iii) V (T ′
x) = V (Tx) for all x ∈ V (G) \ {v, p}.

Proof. Let U = V (Tp). Property (i) holds since we only re-arrange the nodes in U ,
and v becomes their lowest common ancestor. This also shows property (iii) for nodes
x ∈ V (T ) \ U . For nodes in V (Tp) \ {v, p}, observe that they may change parents, but
cannot gain or lose descendants, so property (iii) holds.

For property (ii), let K = C(G[U ]−{p, v}). The component C of G[U ]−v that contains p
clearly consist of p and all K ∈ K such that p ∈ ∂(K). Observe that for each such K, there
is some child c of p or v in T such that K = G[Tc], and thus K = G[T ′

c] by property (iii).
These are precisely the children of p in T ′, by definition. Hence, we have V (T ′

p) = V (C).
To prove that T ′ is a search tree on G, we use lemma 2.3. Properties (i) to (iii) imply

that G[Tx] is connected for all x ∈ V (T ).
Now consider an edge {x, y} ∈ E(G). Without loss of generality, assume x ≺T y. If

x /∈ {v, p}, then x ≺T ′ y by property (iii). If x = v, then V (Tp) ⊇ V (Tv) with property (i)
implies x ≺T ′ y. If x = p and y ̸= v, then we have x ∈ V (Tp) and clearly y is in the same
connected component of G[V (Tp)]− v as x = p (there is an edge between them, after all).
Thus, we have x ⪯T ′ y by property (ii). Finally, if x = p and y = v, clearly y ≺T ′ x.

Observe that lemma 2.10 fully characterizes the search tree T ′ = rot(T, v, p).

2.2.3. Topological orderings

Constructing a search tree on a graph G can be seen as the following process, illustrated
in figure 2.4. Start with G in its entirety, as a single graph node. Pick some vertex r as
the root, thereby splitting the graph node G into a node r and the child graph nodes
C1, C2, . . . , Ck, corresponding to the components of G − r. Continue to expand graph
nodes in this way, until none are left.
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Figure 2.4.: Constructing an STG by repeated graph node expansion. Vertices picked next
are highlighted in red.

Clearly, every search tree on G can be constructed this way, and depends on the order
in which we pick vertices, although two different orders may give the same tree (e.g.,
in figure 2.4, we could swap expansion of e and a). We now formalize this concept.

Let T be a rooted tree and let π be a permutation of V (T ). We call π a topological
topological
ordering

ordering of T if for each u, v ∈ V (G) with u ≺T v, we have that u <π v.
Observe that this definition corresponds to the classical notion of topological orderings

(also called topological sorts [CLRS01]) of directed acyclic graphs, when we orient all edges
of the rooted tree away from the root. A topological ordering of a search tree intuitively
corresponds to an expansion process, as above.

Topological orderings will be a useful tool in formal proofs throughout the thesis. In
this section, we prove a few basic and necessary facts. We start with a formal proof that
search trees are uniquely determined by their topological orderings.

Lemma 2.11. For each permutation π of V (G), there is a unique search tree T π on G
such that π is a topological ordering of T π.

Proof. We first prove existence. Construct T π as follows. Make the first element r of π
the root of T π. Let C ∈ C(G − r), and let π′ = π|V (C) be the restriction of π to V (C).

Construct the child subtree of r on C recursively as T π′
.

To see that π is a topological ordering of T , consider u, v ∈ V (T ) with u ≺T v. By
construction, T π

u = T π′
with π′ = π|V (Tπ

u ), and thus, u is the first element of π′, implying
u precedes v in π.

Second, we prove uniqueness by induction on n = |V (G)|. If n = 1, there is only
one possible permutation and one possible search tree. Now let n ≥ 2, and let π be a
topological ordering of two trees T 1 and T 2. We show that T 1 = T 2.

Let r be the first element in π. Clearly, we have root(T 1) = root(T 2) = r. Thus, if
C1, C2, . . . , Ck are the components of G− r, then r has k child subtrees T 1,1, T 1,2, . . . , T 1,k

in T 1 and k child subtrees T 2,1, T 2,2, . . . , T 2,k in T 2, such that T 1,i and T 2,i are search
trees on Ci for each i ∈ [k].

Take some i ∈ [k] and let πi = π|V (Ci). Clearly, πi is a topological ordering of both T 1,i

and T 2,i, so T 1,i = T 2,i by induction. Applying this argument to every i ∈ [k] implies
T 1 = T 2.

Lemma 2.11 implies that the number of search trees on G is bounded by |V (G)|!, the
number of permutations of V (G). Further observe that a search tree is degenerate if and
only if it has exactly one topological ordering.

The following lemma characterizes the search tree determined by a given topological
ordering and will be very useful later on.
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2.2. Search trees on graphs

Lemma 2.12. Let T be a search tree on a graph G, let π be a topological ordering of T ,
and let u, v ∈ V (T ). Then u ≺T v if and only if u <π v and there does not exist a vertex
set A ⊆ V (G) that separates u from v and precedes u in π.

Proof. Clearly, if u ̸<π v, then u ̸≺T v, so the statement holds. From now on, suppose
u <π v.

If u is the root, then u ≺T v, and no vertex precedes u in π, hence the statement is true.
Now suppose r := root(T ) /∈ {u, v}. It is clear that r is the first element in π.

Suppose u and v lie in different child subtrees of r. Then u ̸≺T v, and r separates them
by observation 2.5, so the statement holds.

Now suppose some child subtree Tc of r contains both u and v. If u ̸≺T v, then u ̸≺Tc v,
so, by induction, there exists a set A ⊆ V (Tc) ⊆ V (G) \ {r} that separates them in G[Tc]
and precedes them in π|V (Tc). Clearly, the set A ∪ {r} separates them in G and precedes
them in π.

On the other hand, if there is a set A ⊆ V (G) that separates u from v in G and precedes
them in π, then A∩V (Tc) separates them in G[Tc] (by observation 2.1) and precedes them
in π|V (Tc). Thus, we have u ̸≺Tc v and therefore u ̸≺T v.

Corollary 2.13. Let T be a search tree on a graph G, let π be a topological ordering of T ,
and let u, v ∈ V (T ). If u ̸≺T v and v ̸≺T u, then there exists a vertex set A ⊆ V (G) that
separates u from v and precedes u and v in π.

We now show that rotations basically correspond to adjacent swaps in topological
orderings. This makes precise the previous remark that rotations make a minimal amount
of changes besides swapping the two rotated nodes.

Lemma 2.14. Let T be a search tree on a graph G, and let p be a parent of v in T . Let
π be a topological ordering of T where p directly precedes v, and let π′ be the permutation
obtained by swapping p and v in π. Then π′ is a topological ordering of rot(T, v, p).

Proof. Let T ′ be the search tree with topological ordering π′. We need to prove that
T ′ = rot(T, v, p). We show that T ′ has the properties in lemma 2.10; recall that those
fully characterize rot(T, v, p).

First, take some x ∈ V (G) \ {v, p}. Since the sets of predecessors and successors of
x is the same in both π and π′, we have V (Tx) = V (T ′

x) by lemma 2.12. This proves
property (iii).

We now show property (i), starting with V (T ′
v) ⊇ V (Tp). First, since v is a descendant of

p in T , we know that p is a descendant of v in T ′, by lemma 2.12. Since v and p are adjacent
in π′, we have that p is a child of v in T ′ in particular. Now take x ∈ V (Tp) \ {v, p}, and
suppose x /∈ V (T ′

v). Again using lemma 2.12, there must be a set A ⊆ V (G) that precedes
v in π′ and separates v from x in G. But then A also precedes p in T , so V (Tp) and A
are disjoint. Since x, v ∈ V (Tp), that means G[Tp] cannot be connected, contradicting
lemma 2.3. The proof of V (T ′

v) ⊆ V (Tp) is similar.

Finally, we show property (ii). Let C be the component of G[Tp]− v that contains p.
We need to show that V (T ′

p) = V (C). First, observe that V (T ′
p) ⊆ V (T ′

v) \ {v}, since p is
a child of v in T ′. Since also trivially V (C) ⊆ V (Tp) \ {v} = V (T ′

v) \ {v}, we can restrict
ourselves to the set V (T ′

v) \ {v} in the following discussion.

21



2. Preliminaries

Accordingly, take some x ∈ V (T ′
v) \ {v}. We consider two cases. First, if x and p are

in different child subtrees of v in T ′, then clearly x /∈ V (T ′
p). Moreover, observation 2.5

implies that v separates x from p in G[T ′
v] = G[Tp], so x /∈ V (C) by definition of C.

Second, if x and are in the same child subtree of v in T ′, then x ∈ V (T ′
p), since p is a

child of v in T ′. Moreover, observation 2.5 implies that v does not separate x from p in
G[T ′

v] = G[Tp], so x ∈ V (C). Thus, we have V (T ′
p) = V (C), as desired.

Finally, we observe that taking a prefix of a topological ordering amounts to taking a
prefix of the search tree.

Lemma 2.15. Let T be a rooted tree and let π be a topological ordering on T . Then, for
each prefix π′ of π, there is a prefix P of T such that V (P ) = V (π′), and π′ is a topological
ordering of P .

Proof. Let π′ be a prefix of π. Since π is a topological ordering of T , the set V (π′) is
closed under taking ancestors in T , hence it induces a prefix of T .

Remark. A concept related to topological orderings of search trees are elimination
orderings; we briefly discuss them in section 2.4.

2.2.4. Projections

Projections are a way to “reduce” a search tree T on a graph G to a connected subgraph
H of G. Note that V (H) may be disconnected in T , so just taking a subtree may not
work. However, there is a natural graph-minor-like approach to this, which turns out to
be quite useful.

Projections were first defined for connected subgraphs of trees [CLPL18], and later
extended to convex subgraphs (defined below) of chordal graphs [CPVP22]. The original
definition involves a process of repeatedly removing leaves (resp. simplicial vertices) from
the underlying graph and modifying the search tree accordingly.4

The concept of topological orderings allows us to give a simpler equivalent definition
that extends to arbitrary connected graphs, and allows taking arbitrary (even non-induced)
connected subgraphs, although it is still most useful with convex subgraphs.

Let T be a search tree on a graph G and let H be a connected subgraph of G. The
projection of T to H, written T |H , is the search tree S on H such that for each topological

projection
T |H

ordering π of T , the restriction π|V (H) is a topological ordering of S. If A ⊆ V (G) induces
a connected subgraph of G, we also write T |A = T |G[A] for short.

Observe that the projection T |H is unique by definition. We now show existence.

Proposition 2.16. For each search tree T on G and connected subgraph H of G, the
projection T |H exists.

Proof. For each topological ordering π of T , there exists a unique search tree Sπ on H
with topological ordering π|V (H), by lemma 2.11. We need to prove that all these search
trees are equal, by showing that each Sπ depends only on T , not on π.

4A different, but closely related notion was used by Cicalese, Jacobs, Laber and Molinaro [CJLM14] in
the edge-query setting.
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Take some Sπ. Since V (H) is connected in G, lemma 2.4 implies that r = LCAT (V (H))
is contained in V (H). Thus, the first element of π|V (H), and hence the root of Sπ, must
be r. Now consider the child subtrees Sπ

c of r in Sπ. Each Sπ
c is a search tree on some

component C of H − r, and admits the topological ordering π|V (C). Thus, by induction,
we have Sπ

c = T |C . It follows that Sπ does not depend on π.

Two examples of projections are shown in figures 2.5 and 2.6. For the next lemma, we
need the following definition. A subgraph H of a graph G is convex if the following holds convex

for each pair u, v ∈ V (H): If there is a path between u and v in G with all inner vertices
outside of H, then {u, v} ∈ E(H).5

Observe that if G is a tree, then convex subgraphs are precisely connected subgraphs. In
general connected graphs, every convex subgraph is connected and induced, but not every
connected induced subgraph is necessarily convex. The following fact is crucial for us.

Observation 2.17. Let H be a convex subgraph of G, and let u, v ∈ V (H) and A ⊆ V (H).
If A separates u from v in H, then A separates u from v in G.

We are now ready to prove the following lemma, which underscores the usefulness of
the projections, in particular in the convex case.

Lemma 2.18. Let T be a search tree on G, let H be a connected subgraph of G, and let
S = T |H . Then, for all u, v ∈ V (H), we have u ≺S v =⇒ u ≺T v.

If H is a convex subgraph, we even have u ≺S v ⇐⇒ u ≺T v.

Proof. Let π be a topological ordering of T . Then σ = π|V (H) is a topological ordering of
S by definition. If u ̸<σ v, then neither u ≺S v nor u ≺T v, and we are done. Suppose
u <σ v from now on. This implies v ̸≺S u and v ̸≺T u.

Suppose u ≺S v and u ̸≺T v for the sake of contradiction. Since also v ̸≺T u, by
corollary 2.13, there is a vertex set A that precedes u and v in π, and A separates u from v
in G. By observation 2.1, A′ = A∩V (H) separates u from v in H, and A′ clearly precedes
u and v in σ. So, by lemma 2.12, we have u ̸≺S v, a contradiction.

5Our definition of convexity coincides with Farber and Jamison’s [FJ86] when restricted to chordal
graphs. For non-chordal graphs, our definition does not always induce a convex geometry in their sense.
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Figure 2.5.: A projection of a search tree to (the subgraph induced by) {c, d, f}. The
underlying graph is shown to the right.
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Now let H be a convex subgraph of G and suppose u ≺T v and u ̸≺S v for the sake of
contradiction. Recall that also v ̸≺S u. Again, by corollary 2.13, there is a set A ⊆ V (H)
that precedes u and v in σ and separates u from v in H. Note that A also separates u
from v in G (by convexity and observation 2.17), and clearly also precedes u and v in π,
so u ̸≺T v, a contradiction.

Corollary 2.19. Let T be search tree on G, let H be a convex subgraph of G, and let
v, p ∈ V (H) such that v is a child of p in T . Then v is still a child of p in T |H .

Observe that corollary 2.19 does not necessarily hold when H is non-convex. Consider,
for example, the nodes b and c in figure 2.6.

We finish with a discussion of the relation between rotations and projected search trees.

Lemma 2.20. Let T be a search tree on a graph G, let u be a node with parent v in T ,
and let T ′ = rot(T, u, v). Let U ⊆ V (G) be convex. Then T ′|U = rot(T |U , u, v) if u, v ∈ U ,
and T ′|U = T |U otherwise.

Proof. Observe that there exists a topological ordering π of T where v directly precedes u.
Let π′ be the permutation obtained by swapping u and v in π. Then π′ is a topological
ordering of T ′ by lemma 2.14. By definition, we have that ρ = π|U and ρ′ = π′|U are
topological orderings of T |U and T ′|U . If u /∈ U or v /∈ U , then ρ = ρ′ and thus T ′|U = T |U ,
as desired.

Suppose now u, v ∈ U , then ρ′ is obtained from ρ by swapping u and v. Observe that
u is a parent of v in T |U by corollary 2.19 (using convexity of U). This means that
rot(T |U , u, v) exists and admits ρ′ as a topological ordering, by lemma 2.14. Thus, we
have rot(T |U , u, v) = T ′|U , as desired.

Remark. It is not hard to show that our definition of projections is equivalent to
the one used by Cardinal, Pournin, and Valencia-Pabon [CPVP22], though theirs was
restricted to chordal graphs. Notably, they already observed that lemma 2.20 holds for
chordal graphs [CPVP22, observation 2]. One of the papers partially included in this
thesis [BGKK23] contains yet another equivalent definition that is similar to ours, but is
restricted to trees.

2.2.5. Search trees on stars and cliques

We already observed that search trees on paths are BSTs. It turns out that search
trees on stars and cliques correspond to much simpler combinatorial structures: partial

a

b

c

d

a

b c
a

b d

c

Figure 2.6.: A projection to an induced (but non-convex) subgraph.
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2.2. Search trees on graphs

permutations and permutations, respectively. We now briefly explain this correspondence
and make some simple observations. Later on, these special cases will serve as useful
examples.

We start with cliques. Let T be a search tree on a clique G with n vertices. Clearly,
removing one or more vertices cannot split up G into multiple components; thus, every
inner node in T has exactly one child. This means that every search tree on G is degenerate,
and thus has a unique topological ordering. A rotation in a search tree on a clique simply
swaps the two vertices in the topological ordering (by lemma 2.14). Thus, we can identify
search trees on n-vertex cliques with n-element permutations and rotations with adjacent
swaps.

Observe that there are are precisely n! search trees on G, one for each topological
ordering. This property is unique to cliques. Indeed, suppose a connected graph G has two
nonadjacent vertices u, v. Take two permutations π, ρ of V (G) where u and v come last,
such that π and ρ only differ in the order of u and v. Since the vertex set V (G) \ {u, v}
separates u from v, both π and ρ are topological orderings of the same tree, in which u
and v are both leaves (lemma 2.12). Thus, there are strictly less than n! search trees on G.

We now turn to stars. Let G be a star with n vertices, and denote by c its center vertex.
Suppose we construct a search tree on G by successive vertex removal. As long as we only
remove leaves, the graph is not split, i.e., a single component remains. However, as soon
as we remove c, the graph splits into isolated vertices, and we are done. Thus, a search
tree on G looks as follows. The strict ancestors of c (if any) form a degenerate prefix of
the search tree, and the strict descendants of c are all children of c. See figure 2.7 for
examples.

Observe that each search tree is uniquely determined by the degenerate prefix (specifically,
the maximal prefix that does not contain c), which corresponds to a partial permutation
of V (G) \ {c}. Denote this prefix by P in the following.

Consider now a rotation (see figure 2.7). If the rotation does not involve c, then it must
involve two nodes of P (all other nodes are leaves and cannot be rotated with each other).
The two nodes are then simply swapped. This corresponds to an adjacent swap in the
corresponding partial permutation.

If we rotate c with one of its children v, then v becomes the parent of c, so v is added at
the end of P . If we rotate c with its parent v, the opposite happens, namely v is removed
from P . This corresponds to adding an element at the end of the partial permutation, or
removing its last element.

In conclusion, search trees on an n-vertex star can be identified with partial permutations
of an (n−1)-element set, and each rotation corresponds to an adjacent swap, appending an
element, or removing the last element. Clearly, the number of search trees on an n-vertex
star is

n−1∑
k=0

(
n−1
k

)
· k! = (n− 1)! ·

n−1∑
k=0

1
k! ∈ Θ((n− 1)!).

2.2.6. Search tree prefixes and torsos

Observe that a prefix P of a search tree on G may not be a valid search tree on G[P ];
indeed, G[P ] may not even be connected. In this section, we discuss torsos, which are
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Figure 2.7.: A star on five vertices (left) and a search tree on the star with all possible
rotations (right).

essentially supergraphs of G[P ] that admit P as a search tree. Torsos will make brief
appearances in all three parts of the thesis.

Let G be a graph and A ⊆ V (G). Let EA be the set of pairs of vertices {u, v} ⊆ A
where there exists a path between u and v in G with all inner vertices outside of A. In
particular, E(G[A]) ⊆ EA. The torso of A in G, denoted by torsoG(A), is the graph Htorso

with V (H) = A and E(H) = EA.

Observe that a subgraph H of G is convex if and only if torsoG(V (H)) = H. The
following is the main result of this section.

Theorem 2.21. Let T be a search tree on G and let P be a prefix of T . Then P is a
search tree on H = torsoG(V (P )).

On the other hand, each search tree on H is a prefix of some search tree T on G.

We prove a few technical facts about torsos first.

Lemma 2.22. Let G be a graph, let A ⊆ V (G), and let H = torsoG(A). Then, for each
path P in G, restricting P to A (removing all vertices in V (G) \A from P ) yields a path
in H.

Proof. Let P ′ be the restriction of P to A, and let u, v be two consecutive vertices on P ′.
If u, v are also consecutive on P , then u, v are adjacent in G, and thus adjacent in H.
Otherwise, let v1, v2, . . . , vk be the sequence of vertices strictly between u and v in P .
Then u, v1, v2, . . . , vk, v is a path in G with all inner vertices in V (G) \A, hence u, v are
adjacent in H by definition. This implies that P ′ is indeed a path in H.

Lemma 2.23. Let G be a connected graph and let A ⊆ V (G). Let x, y ∈ A and B ⊆ A.
Then B separates x from y in G if and only if B separates x from y in H = torsoG(A).

Proof. Suppose B separates x from y in G. This means that each path between x and
y in G intersects B. Clearly, each path P between x and y in H can be extended into a
path P ′ in H with V (P ) = V (P ′) ∩A, so P must also intersect B.
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2.3. Tree closures, trivially perfect graphs, and tree-depth

On the other hand, suppose B does not separate x from y in G. Then there exists a path
P between x and y in G that does not intersect B. Lemma 2.22 implies that V (P ) ∩A
induces a path in H that also does not intersect B.

Proof of theorem 2.21. We start with the first statement. It is easy to see that T has a
topological ordering π such that V (P ) induces a prefix σ of π. Let S be the search tree
on H with topological ordering σ.

We show that x ≺P y ⇐⇒ x ≺S y, implying P = S. Consider x, y ∈ V (P ) with
x <σ y. By lemma 2.12, we have x ≺P y (resp., x ≺S y) if and only if there exists no set
A ⊆ V (P ) that precedes x in σ and separates x from y in G (resp., in H). By lemma 2.23,
we have that A separates x from y in G if and only if it separates them in H.

We now prove the second statement in a similar way. Let S be a search tree on H with
topological ordering σ, and let T be some search tree on G with a topological ordering
that starts with σ. Clearly V (S) induces a prefix P of T . Applying lemma 2.12 as above,
we get P = S.

Remark. Torsos are useful in the context of tree-width (see, for example, Korhonen
and Lokshtanov [KL23]). Theorem 2.21 is implicit in the literature if one considers the
equivalence between search trees and tree decompositions (see section 2.4).

2.3. Tree closures, trivially perfect graphs, and tree-depth

In this section, we introduce the concept of the closure of a rooted tree, which allows
us to connect search trees with trivially perfect graphs and the original definition of
tree-depth. While these connections have been made before, we show a self-contained
explicit characterization of the two concepts with STGs. Apart from that, these results
will be used in chapter 7 (until then, this section can be safely skipped).

Let T be a rooted tree. The closure of T , denoted cl(T ), is the graph G with V (G) = V (T ) closure

and E(G) = {{u, v} | u ⪯T v}. See figure 2.8 (b) for an example.
Observe that for each search tree T on G, we have E(G) ⊆ E(cl(G)). In fact, it is easy

to see that lemma 2.3 can be written equivalently as follows.

Lemma 2.24. Let T be a rooted tree and G be a connected graph with V (T ) = V (G).
Then T is a search tree on G if and only if

a

b

c d

e

a

e

c

b d

(a) Search tree T on G

=

a

b

c d

e

(b) Closure cl(T )

=

a

b

c d

e

(c) Boundary closure bcl(T )

Figure 2.8.: Examples of closure and boundary closure. In (a), the dashed edges are the
graph edges, superimposed over the search tree.
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(i) E(G) ⊆ E(cl(T )); and

(ii) for each v ∈ V (T ), the subgraph G[Tv] is connected.

The following technical lemma will be useful later.

Lemma 2.25. Each rooted tree T is a search tree on cl(T ).

Proof. By lemma 2.24, it suffices to show that each rooted subtree Tv of T induces a
connected subgraph of cl(T ). This is clearly the case, since every edge of T is also an edge
of cl(T ).

Trivially perfect graphs. A connected graph is trivially perfect if it is the closure of
trivially
perfect

some rooted tree T . A disconnected graph is trivially perfect if each of its components is
trivially perfect.

This graph class was first described by Wolk [Wol62, Wol65] as comparability graphs
of trees. There are many alternative characterizations; the most well-known one, due to
Golumbic [Gol78], is that trivially perfect graphs are precisely those graphs where, in each
induced subgraph, the number of maximal cliques is precisely the size of the maximum
independent set. This property makes it trivial to show that these graphs are perfect,
hence the name. (A graph is perfect if, for each induced subgraph, the chromatic number
and the clique number are equal.)

We now relate chromatic number and clique number of a connected trivially perfect
graph to the tree that generates it.

Lemma 2.26. Let T be a rooted tree, and let G = cl(T ). Then the clique number ω(G)
and the chromatic number χ(G) of G are both precisely height(T ).

Proof. Clearly, we have ω(G) ≤ χ(G). Since the root path of any vertex forms a clique
in G, taking a maximum-depth vertex gives us ω(G) ≥ height(T ). On the other hand, a
proper coloring of G can be found by coloring each vertex according to its depth in T , so
χ(G) ≤ height(T ).

A well-known problem, of particular interest to us, is the trivially perfect completion
problem, in which we need to determine the minimum number of additional edges needed
to make a given graph G trivially perfect. In other words, given G, we need to find a
rooted tree T with V (T ) = V (G) such that G is a subgraph of cl(T ) and the number of
edges in cl(T ) is minimal. Denote that number of edges by TPC(G). The trivially perfectTPC(G)

completion problem is NP-hard [Yan81].6

It has been observed before [HBB+21] that the trivially perfect completion problem is
equivalent to the unweighted static optimum problem, i.e., finding a search tree minimizes
expected search cost when the input distribution is uniform. Hence, the latter problem is
also NP-hard. We will give a simple proof of the equivalence in section 3.1.

Tree-depth. In the introduction, we characterized the tree-depth of a graph G as the
minimum height of a search tree on G. The original definition was slightly different,
as follows. Let G be a connected graph. The tree-depth of G, denoted td(G), is thetree-depth

6Yannakakis [Yan81] showed that the related chordal completion problem is NP-hard, and it is easy to
adapt the proof.
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minimum height of a rooted tree T with V (T ) = V (G) such that G is a subgraph of
cl(T ) [NOdM06]. By lemma 2.26, the minimum clique number of a trivially perfect
supergraph of G is precisely td(G). As mentioned in the introduction, computing the
tree-depth is NP-hard [Pot88].

Characterization via STGs. Observe that the definitions of TPC(G) and td(G) both
involve rooted trees whose closure is a supergraph of G (i.e., trivially perfect supergraphs
of G). We now show that we can actually restrict ourselves to search trees on G.

Theorem 2.27. Let T be a rooted tree and let G be a connected subgraph of cl(T ). Then
there exists a search tree T ∗ on G with E(cl(T ∗)) ⊆ E(cl(T )).

Proof. Observe that T is a search tree on H = cl(T ) by lemma 2.25, and let T ∗ = T |G.
Now lemma 2.18 directly implies the statement.

Theorem 2.27 implies that all edge-minimal trivially perfect supergraphs of G are
generated by search trees on G. Since td(G) and TPC(G) are both defined via edge-
monotone properties on trivially perfect supergraphs (clique number and edge number,
respectively), we have

Corollary 2.28. Let G be a connected graph. Then,

• td(G) is the minimum height of a search tree on G; and

• TPC(G) is the minimum number of edges in cl(T ) among search trees T on G.

Remark. Corollary 2.28 is not a new result. The equivalence of tree-depth and mini-
mum elimination tree height is well-known, and elimination trees are the same as search
trees on graphs [DKKM94]. The characterization of TPC seems lesser known, but has
essentially been observed by Høgemo, Bergougnoux, Brandes, Paul, and Telle [HBB+21].
Theorem 2.27, however, has not been stated before, as far as the author is aware.

2.4. Boundary closures, chordal graphs, and tree-width

In the following, we introduce the concept of boundary closures, and connect it to chordal
graphs and tree-width. Again, these results are mostly implicit in earlier work (e.g.,
Bodlaender, Gilbert, Hafsteinsson and Kloks [BGHK95]), but, to the author’s knowledge,
have not been stated before in this particular manner. Our main result, used in chapter 5,
is the following.

Theorem 2.29. Let G be a connected graph. Then the tree-width of G is the minimum k
such that G admits a k-cut search tree.

We start with definitions. Let T be a search tree on a connected graph G. The boundary boundary
closure

closure of T is the graph H = bclG(T ) with V (H) = V (G) and E(H) = {{v, u} | v ∈
V (G), u ∈ ∂G(Tv)}. Observe that G is a subgraph of H, and that H is a subgraph of cl(T ).
See figure 2.8 (c) for an example.
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The usual definition of chordal graphs is that a graph is chordal if and only if all induced
cycles are triangles. In other words, each cycle of length four or more has a chord, i.e., an
extra edge between two vertices of the cycle.

We use a different characterization due to Rose [Ros70]. Let G be a graph and π be a
permutation of V (G). We say π is a perfect elimination ordering if for each v ∈ V (G), the

perfect
elimination
ordering set of vertices that are adjacent to v and precede v in π induce a clique in G.7 A graph is

chordal if and only if it admits a perfect elimination ordering.chordal graph

A chordal completion of a graph G is a chordal graph H with V (H) = V (G) and
chordal
completion E(H) ⊆ E(G), i.e., a chordal graph obtained by adding edges to G. Observe that every

graph has at least one chordal completion: the complete graph. Chordal completions are
also called triangulations and are a well-studied concept with many applications, e.g. in
matrix factorization [Ros72].

Characterization via STGs. Our first goal is to obtain an analogue of theorem 2.27, i.e.,
edge-minimal chordal completions can be characterized by STGs. We start with some
technical lemmas.

Lemma 2.30. Let T be a search tree on a graph G. For each v ∈ V (G), the set ∂G(Tv)∪{v}
induces a clique of bclG(T ).

Proof. All vertices of ∂G(Tv) are adjacent to v in bclG(T ) by definition. Now take
a, b ∈ ∂G(Tv) with a ≺T b. Since a ∈ ∂G(Tv), some node x ∈ V (Tv) ⊆ V (Tb) is adjacent to
a, implying a ∈ ∂G(Tb). This means that a and b are adjacent in bclG(T ), as desired.

Lemma 2.31. Let T be a search tree on a chordal graph G, and let π be a topological
ordering of T that is a perfect elimination ordering of G. Then, for each v ∈ V (T ) and
u ∈ ∂G(Tv), we have {u, v} ∈ E(G).

Proof. We proceed by induction on k = height(Tv). If k = 1, then Tv consists only of v,
and thus v is adjacent to ∂(Tv) by definition.

Now let k ≥ 2. Suppose u ∈ ∂(Tv). Then there is some x ∈ V (Tv) that is adjacent to u.
If x = v, then we are done. Otherwise, let c be the child of v such that x ∈ V (Tc).

We have {u, v} ⊆ ∂(Tc) by observation 2.7, so c is adjacent to u and v by induction.
Since π is a topological ordering of T , we have u <π v <π c. Combining that with the fact
that π is a perfect elimination ordering of G yields {u, v} ∈ E(G), as desired.

Lemma 2.32. Let T be a search tree on a chordal graph G. Then G = bclG(T ) if and
only if each topological ordering of T is a perfect elimination ordering of G.

Proof. We start with the “only if” direction. Suppose G = bclG(T ), and let π be a
topological ordering of T . We show that π is a perfect elimination ordering.

Let v ∈ V (G), and let A be the set of neighbors of v in G that precede v in π. Since π
is a topological ordering, and by lemma 2.3, all vertices of A are ancestor nodes of v in T ,
implying that A ⊆ ∂(Tv). Lemma 2.30 implies that G[A] is a clique.

We now continue with the “if” direction. Let π be a topological ordering of T , and
suppose that π is also a perfect elimination ordering of G. Then lemma 2.31 implies that

7Perfect elimination orderings are usually defined in reverse order; our definition is more convenient
here.
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E(G) ⊇ bclG(T ). But we also have E(G) ⊆ bclG(T ) by definition, so G = bclG(T ), as
desired.

Lemma 2.33. Let T be a search tree on a graph G, and let H be a subgraph of G. Then
E(bclH(T |H)) ⊆ E(bclG(T )).

Proof. Write S = T |H . By lemma 2.18, we have V (Sv) ⊆ V (Tv) for each v ∈ V (H). Thus
∂H(Sv) ⊆ ∂H(Tv) ⊆ ∂G(Tv), and the statement follows.

We are now ready to show the characterization.

Theorem 2.34. Let G be a connected graph and let H be a chordal completion of G.
Then there exists a search tree T on G such that E(bclG(T )) ⊆ E(H).

Proof. Let π be a perfect elimination ordering of H. By lemma 2.32, the search tree T ′

on H with topological ordering π satisfies bclH(T ′) = H. Let T = T ′|G, i.e., let T be
the search tree on G with topological ordering π. By lemma 2.33, we have E(bclG(T )) ⊆
E(bclG(T ′)) ⊆ E(bclH(T ′)) = E(H).

Like in section 2.3, there are two graph invariants that we can now state in terms of
search trees on trees. First, the chordal completion problem consists of finding a chordal
completion H of a given graph G such that the number of edges in H is minimized. Let
CC(G) denote this minimum number of edges. From theorem 2.34, we immediately get: CC(G)

Corollary 2.35. Let G be a connected graph. Then CC(G) is precisely the minimum
number of edges in bclG(T ) among search trees T on G; or, equivalently, the minimum
value

∑
v∈V (T ) |∂(Tv)| among search trees T on G.

Second, the tree-width of a graph G, written tw(G), is the minimum clique number of tree-width

a chordal completion of G, minus one. Again, theorem 2.34 implies that we can restrict
our attention to boundary closures of search trees on G, instead of considering all chordal
completions. Moreover, the clique number of boundary closures can be nicely characterized
as follows.

Lemma 2.36. Let G be a chordal graph with a search tree T such that bclG(T ) = G.
Then the clique number ω(G) of G is the minimum k such that T is (k − 1)-cut.

Proof. We show that ω(G) > k if and only if T is not (k − 1)-cut.

Suppose ω(G) > k, and let K be a clique of size k+1 in G. Then, by lemma 2.3, there is
some permutation c1, c2, . . . , ck+1 of K such that c1 ≺T c2 ≺T . . . ≺T ck+1. By definition,
V (K) \ {ck+1} ⊆ ∂(Tck+1

), so |∂(Tck+1
)| ≥ k, implying that T is not (k − 1)-cut.

Now suppose T is not (k − 1)-cut. Then there exists a v ∈ V (T ) with |∂G(T )| ≥ k. By
lemma 2.30, the set ∂G(T ) ∪ {v} induces a clique of G = bclG(T ), so ω(G) > k.

We can now prove our main theorem.

Theorem 2.29. Let G be a connected graph. Then the tree-width of G is the minimum k
such that G admits a k-cut search tree.
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Proof. Let G be a graph. By theorem 2.34, the tree-width of G is the minimum value
of ω(bclG(T )) − 1 among all search trees T on G. By lemma 2.36, this is precisely the
minimum k such that T is k-cut.

The following well-known fact can be easily proved with our characterization, and will
be useful in chapter 5.

Lemma 2.37 (Bodlaender [Bod96]). For each graph G, we have |E(G)| ≤ tw(G) · |V (G)|.

Proof. Let k = tw(G) and let T be a k-cut search tree on G. For each v ∈ V (G), the
number of ancestors of v in T that are adjacent to v is at most |∂(Tv)| ≤ k. Summing
over all vertices covers all edges, and yields k · |V (G)|.

Tree decompositions. Tree-width is frequently defined differently, via so-called treetree decompo-
sition

decompositions [RS86]. A tree decomposition of a graph G consists of an unrooted tree D
and function X : V (D) → 2V (G) that maps vertices of D to so-called bags. A valid tree
decomposition must have the following properties:

(i) The bags cover all vertices, i.e., we have
⋃

v∈V (D)X(v) = V (G).

(ii) For each edge {x, y}, there is some v ∈ V (D) with x, y ∈ X(v).

(iii) For all u, v1, v2 ∈ V (D), if u lies on the path between v1 and v2 in D, then X(v1) ∩
X(v2) ⊆ X(u).

The width of the decomposition is maxv∈V (D) |X(v)| − 1, and the tree-width is the
minimum width of a decomposition.

If D is a path, then we have a path decomposition, and the path-width pw(G) of a graph
path-width
pw(G)

is the minimum width of a path decomposition [RS83]. Path-width will be important in
chapter 12.

Observe that search trees on a graph G can be seen as tree decompositions, as follows.
Take the search tree T itself (or its unrooting) as the decomposition tree D, and let the
bag of each vertex v be ∂G(Tv) ∪ {v}. It can be seen that properties (i) to (iii) indeed
hold. Clearly, the width of the decomposition is at most k if the search tree is k-cut. On
the other hand, every tree decomposition of width k can be transformed into one that
resembles a k-cut search tree, with a series of local modifications. We omit the rather
inelegant proof of the last statement.

Elimination trees. We have remarked before that search trees on graphs are also called
elimination trees. Elimination trees can be defined using the so-called elimination game,
which works as follows. Take a connected graph G, and delete the vertices one-by-one in
some given order. Whenever a vertex is deleted, its neighborhood is made a clique. The
edges introduced in this way form a chordal completion H of G (the elimination graph),
and the order of deletion is a reverse perfect elimination ordering of H. Elimination trees
are then defined as the “tree structure” of the elimination game [BGHK95]. Table 2.1
compares elimination trees and related vocabulary with search trees on graphs.

It should be noted that elimination trees are sometimes defined slightly differently (see
definition 4 in Sanchez Villaamil [SV17] and the references there). We use the name perfect
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Elimination tree STG

Elimination ordering Topological ordering

Edge-minimal trivially perfect completion Closure (theorem 2.27)

Tree-depth Minimum-height STG (corollary 2.28)

Elimination graph
Edge-minimal chordal completion

Boundary closure (theorem 2.34)

Tree-width
Tree decomposition

k-cut STG (theorem 2.29)

Table 2.1.: Informal list of some concepts and their equivalents in STG language.

elimination tree here to maintain the distinction from our definition. A perfect elimination
tree is a search tree on a chordal graph G such that G = bcl(T,G). By lemma 2.32, we can
equivalently say that all topological orderings of T must be perfect elimination orderings
of G.

It is easy to see that there exist search trees on chordal graphs that are not perfect
elimination trees; for example, trees are chordal, and elimination trees on trees are perfect
only if they are 1-cut. The difference of the two definitions is further emphasized by
the fact that computing minimum-height perfect elimination trees on chordal graphs is
possible in polynomial time [Liu89], but computing the minimum height elimination tree
(i.e., determining the tree-depth) of a chordal graph is NP-hard [DN06].
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Static search trees
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3. Expected-case optimal search trees

In the first part of this thesis, we study the following problem. Given is a graph G and
a probability distribution p on its vertices. We want to build a search tree T on G that
minimizes the expected search time with respect to p.

More formally, we say a tuple (G,w) is a weighted graph when G is a graph and
weighted
graph

w : V (G) → R≥0 is a weight function that assigns a nonnegative weight to each vertex.
weight
function

We sometimes do not distinguish between G and (G,w), e.g., “(G,w) is a tree” means
that G is a tree. The cost of a search tree T on (G,w) is defined as

cost

cost(T,w) =
∑

v∈V (T )

depthT (v) · w(v).

Observe that if w is a probability distribution, then cost(T,w) is precisely the expected
search time in T if the input is distributed according to w. On the other hand, if w is
integral, then cost(T,w) is the total time of searching each vertex v exactly w(v) times.

A search tree T which minimizes cost(T,w) is an optimal search tree on (G,w), also optimal search
tree

called the static optimum, and we denote its cost as StOPT(G,w). We call the problem
StOPT(G,w)of computing an optimal search tree the optimal static search tree problem.

Overview. In this chapter, we summarize our results on the optimal static search tree
problem along with known result for the BST case, deferring the details to chapters 4
to 7. We group the results by technique. First, we use a weighted variant of centroid
trees (introduced in chapter 1) to obtain a fast 2-approximation algorithm for trees. This
algorithm can be seen as a generalization of a BST heuristic due to Mehlhorn [Meh75,
Fre75, Meh77].

Second, we discuss a dynamic programming approach based on Knuth’s well-known
optimal static BST algorithm [Knu71]. From this, we obtain polynomial-time approx-
imation algorithms for trees and graphs with bounded tree-width, and an exact (but
exponential-time) algorithm for arbitrary graphs.

Third, we use the connection between STGs and edge-query trees (see section 1.3)
to transfer some results in the edge-query tree model to our STG model. We obtain a
pseudo-polynomial exact algorithm, a fast approximation algorithm, and NP-hardness of
the problem when restricted to bounded-tree-width graphs.

Fourth, we discuss the unweighted case (all weights are equal). The unweighted static
search tree problem is equivalent to the trivially perfect completion problem (see section 2.3),
which implies NP-hardness.

Finally, we briefly discuss the issue of handling zero-weight vertices, for which we give a
general technique. Then, we summarize the main takeaways and pose some open questions.

Table 3.1 shows all these results, ordered by generality, approximation quality, and
performance. In the following, we let n denote the number of vertices in the underlying
graph.
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3. Expected-case optimal search trees

Description Graphs Weights Approx. Time

Complete BST path uniform exact O(n)
Centroid trees [Meh77] path arbitrary 1 + o(1) O(n)
Basic DP [Knu71] path arbitrary exact O(n2)

Centroid trees (thm. 3.2) tree 0 ∪ [1,W ] 2 O(n log log(n + W ))
EQT-based DP (thm. 3.7) tree 0 ∪ [1,W ] exact O(W 3.42 · n4.42)
Centroid trees (thm. 3.1) tree arbitrary 2 O(n log n)
k-cut DP (thm. 3.4) tree arbitrary 1 + ε O(n⌈2/ε⌉+1)
EQT-based DP (thm. 3.8) tree arbitrary 1 + ε O(( 1

ε )3.42 · n7.84)

k-cut DP (thm. 3.5) tw = t arbitrary 1 + ε nO(t/ε)

Basic DP (thm. 3.3) arbitrary arbitrary exact O(n3 ·N logN)

EQT reduction (thm. 3.6) tw ≥ 15 arbitrary exact NP-hard
Triv. perf. compl. (thm. 3.9) arbitrary uniform exact NP-hard

Table 3.1.: Overview of the most important algorithms and hardness results for the optimal
static STG problem. We denote by n the number of vertices in the underlying
graph G, and by N the number of connected subgraphs of G.

Weighted centroid trees. Mehlhorn [Meh75] gave the following heuristic for the optimal
static BST problem (described here in the search-trees-on-paths setting). As the root,
select the vertex that splits the path into two parts such that the weight difference between
the two parts is minimized. Then, recurse on the two parts. The resulting search tree is a
(1 + o(1))-approximation [Meh77] and can be computed in linear time [Fre75].

This idea can be generalized to trees using a weighted variant of centroid vertices
(discussed in section 1.1). A centroid of a weighted tree is a vertex that splits the tree into
parts with weight at most half of the total weight. It can be shown that every weighted
tree has a centroid, so we can build a search tree by recursively choosing centroids as
subtree roots, just like in Mehlhorn’s heuristic. We call such a search tree a centroid tree.
Chapter 4 is dedicated to the study of centroid trees.

It is not hard to see that a centroid can be found in O(n) time. Thus, the naive
algorithm to compute centroid trees runs in time O(n2). We give an improved O(n log n)-
time algorithm using techniques from dynamic graph algorithms, and show its optimality
in a decision tree model. Recall that a centroid tree on a path can be constructed in only
O(n) time, implying a jump in complexity when going from paths to trees.

We also show a tight approximation ratio of 2; again, this is worse than the ratio
1 + o(1) for the BST algorithm. Mehlhorn’s analysis uses the key fact that the cost of the
optimal static BST is asymptotically equal to the so-called Shannon entropy of the input
distribution (defined in section 4.4). This is not true in the STT setting: the entropy is
not a lower bound for optimal static search trees. (It is, however, an upper bound, as we
show in section 4.4).

Our proof instead directly compares the cost of centroid STTs and optimal STTs. We
now state the first result.

Theorem 3.1. Given a weighted tree (G,w) with n vertices, we can compute a search
tree T on G such that cost(T,w) ≤ 2 · StOPT(G,w), in time O(n log n).
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We prove theorem 3.1 in chapter 4, along with tightness and hardness results. In
section 4.6, we also give a much simpler centroid-based 4-approximation algorithm with
the same running time.

When the spread of the input weights is bounded, we obtain the following improvement
(section 4.7).

Theorem 3.2. Let (G,w) be a given weighted tree with n vertices such that w : V (G)→
{0} ∪ [1,W ] for some W ∈ R. We can compute a search tree T on (G,w) such that
cost(T,w) ≤ 2 · StOPT(G,w) in time O(n log log(n + W )).

Note that, in particular, the algorithm runs in time O(n log log n) if all weights are
polynomial in n.

The algorithm in theorem 3.2 is actually output-sensitive: If the height of the output
tree is h, then it runs in time O(n log h).

Dynamic programming on subgraphs. Knuth’s dynamic programming algorithm [Knu71]
for optimal static BST computes the optimum on each sub-path (i.e., each interval of keys),
by trying all possible roots and using the already computed optimum for the left and right
subtrees. The algorithm is correct because a rooted subtree Tv of an optimal static BST
is also optimal on V (Tv). Since there are O(n2) subproblems, and we need to try at most
n possible roots for each of them, the naive implementation runs in O(n3) time. This can
be reduced to O(n2) using a certain monotonicity property [Knu71, Yao80].

The optimal-subtree property clearly also holds for STGs, and the above algorithm is
easily generalized by considering connected induced subgraphs as subproblems (instead of
sub-paths). However, the number of subproblems can be exponential even if G is a tree:
For example, in a star, each subset of leaves plus the center induces a connected subgraph.
Still, observe that the number of search trees can be super-exponential (see section 2.2.5).
Thus, we still obtain an improvement over the brute-force approach of simply trying every
search tree.

Theorem 3.3. Given a weighted graph (G,w) with n vertices, we can find an optimal
static STG on (G,w) in time O(n3 ·N logN), where N ≤ 2n is the number of connected
induced subgraphs of G.

More importantly, we can modify the algorithm to obtain a polynomial-time approxima-
tion scheme (PTAS) when G is a tree. The idea is to restrict the dynamic programming to
a subset of search trees – specifically, k-cut trees (as defined in section 2.2.1). This makes
the running time polynomial, but we cannot guarantee that the optimum is a k-cut search
tree, only that some k-cut search tree approximates the optimum.

Theorem 3.4. Given a weighted tree (G,w) and an integer k ≥ 2, we can compute a
search tree T on G in time O(k · nk+1) such that

cost(T,w) ≤
(

1 + 1
⌊k/2⌋

)
· StOPT(G,w).

This idea generalizes to graphs with bounded tree-width, since they admit k-cut search
trees if k ≥ tw(G) (see section 2.4). The approximation factor scales less well as the
tree-width grows: To get a (1 + ε)-approximation, we need to set k ≈ 2t

ε .
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3. Expected-case optimal search trees

Theorem 3.5. Given a weighted graph (G,w) with tree-width t and an integer k ≥ 3t + 1,
we can compute a search tree T on G in time O(k3 · nk+3) such that

cost(T,w) ≤
(

1 + 2t+2
k−3t

)
· StOPT(G,w).

Note in particular the restriction k ≥ 3t + 1, so the running time bound is always at
least n3t+4.

Results from edge-query trees. We now discuss how some results from edge-query trees
(EQTs, see section 1.3) can be transferred to the STG setting. First, Cicalese, Jacobs,
Laber, and Molinaro [CJLM11] show that computing optimal static EQTs is NP-hard
even on a tree with maximum degree 16. Using the connection between EQTs and search
trees on line graphs, in section 7.1 we show that computing optimal static search trees is
hard even if the underlying graph has bounded tree-width.

Theorem 3.6. Computing the optimal static search tree on a given weighted graph is
NP-hard, even if the graph has tree-width at most 15.

The proof of theorem 3.6 is a direct reduction to the optimal static EQT problem. The
constant 15 arises as follows: The hardness construction of Cicalese et al. [CJLM11] gives
an underlying tree of maximum degree 16. Its line graph thus has clique number 16. Since
line graphs of trees are chordal, the tree-width is exactly one less.

Second, the same authors [CJLM14] give a fully-polynomial-time approximation scheme
(FPTAS) for finding optimal EQTs on bounded-degree trees, which in turn is based on
a pseudo-polynomial exact algorithm. Both algorithms can be adapted to STGs if the
underlying graph is a tree. We remark that the degree restriction is not necessary for our
results.

Theorem 3.7. Let (G,w) be a given weighted tree with n vertices such that w : V (G)→
0 ∪ [1,W ] for some W ∈ R. We can compute an optimal search tree on (G,w) in time

O(W 2/ log(3/2) · n1+2/ log(3/2) · log2(Wn)) ⊆ O(W 3.42 · n4.42).

Theorem 3.8. For each ε > 0, there exists an algorithm that computes a search tree T
on a given weighted tree (G,w) such that cost(T,w) ≤ (1 + ε) · StOPT(G,w), in time

O
(

(1ε )2/ log(2/3) · n1+4/ log(2/3) · log2 n
ε

)
⊆ O

(
(1ε )3.42 · n7.84

)
.

Theorem 3.7 implies that computing an optimal STT is not strongly NP-hard, in
contrast to computing the optimum in the weighted-cost model (see section 1.2). We prove
both theorems in chapter 6. Theorem 3.7 is a dynamic programming algorithm, just like
our PTAS (theorem 3.4), though the subproblems are very different. Theorem 3.8 follows
from theorem 3.7 with a standard reduction.

Observe that the centroid tree algorithm (theorem 3.1) computes 2-approximations
much faster than the PTAS (theorem 3.4) and FPTAS (theorem 3.8). The PTAS is
best for approximation ratios between in [43 , 2), and the FPTAS is best for all smaller
approximation ratios.
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Unweighted static optima. An interesting special case is when the weight of every
vertex is one. We denote the corresponding unit weight function by 1 (the domain is 1

always implicit), and call StOPT(G,1) the unweighted static optimum of G. Observe that
StOPT(G, 1) minimizes the average depth of a node in a search tree on G.

unw. static
optimum

Høgemo, Bergougnoux, Brandes, Paul and Telle [HBB+21] observed that StOPT(G,1)
is essentially equivalent to the trivially perfect completion problem (see section 2.3). We
give a formal proof of this equivalence in section 7.2. Since the trivially perfect completion
problem is NP-hard [Yan81], we have:

Theorem 3.9 ([HBB+21]). Computing StOPT(G, 1) for a given graph G is NP-hard.

On the positive side, if the underlying graph is a tree, our previously stated results
imply that we can compute a 2-approximation in O(n log logn) time (theorem 3.2) and
an exact optimal search tree in O(n4.42) time (theorem 3.7).

Zero-weight vertices. All our algorithms can handle arbitrary nonnegative weights,
including vertices of weight zero. Unsurprisingly, zero-weight vertices tend to be easier to
handle, as their depth does not affect the overall cost. Still, their placement may affect
the overall structure of the tree. For example, the center of a star is almost always forced
to be the root of the optimal search tree, even if it has weight zero.

In section 3.2, we give a general preprocessing algorithm that allows removing most
zero-weight vertices. It can be applied to all algorithms given above, leading to speedups
when the number of positive-weight vertices is sublinear.

Theorem 3.10. Let (G,w) be a given weighted tree with n vertices, and let m be the
number of vertices with positive weight. In O(n) time, we can transform G into a tree G′

with V (G′) ⊆ V (G) and StOPT(G,w) = StOPT(G′, w), such that |V (G′)| ≤ 2m and G′

has no zero-weight vertices of degree two or lower.

Summary and open questions. We start with the tree case. With the FPTAS (theo-
rem 3.8), the theoretical question of approximability can be considered settled. However,
the algorithm is far from practical, especially compared with the centroid tree algorithm.
Perhaps a faster algorithm exists for approximation ratios smaller than two.

Open question 3.1. Is there an algorithm for StOPT(G,w) with approximation factor
less than 2 that runs in time O(n polylog n)?

However, the most interesting question is whether the problem is polynomially tractable
(if the underlying graph is a tree). Recall that the problem is polynomially tractable for
paths, but NP-hard for graphs with tree-width 15 (theorem 3.6).

Open question 3.2. Can StOPT(G,w) be computed exactly in polynomial time when
G is a tree?

Turning to more general graphs, in the bounded-tree-width case, we have a PTAS
(theorem 3.5), and a generalization of our FPTAS to this setting seems possible to the
author. Together with the NP-hardness result, this would settle the bounded tree-width
case.
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3. Expected-case optimal search trees

Conjecture 3.3. Theorem 3.8 can be generalized to graphs with bounded tree-width.

It could be interesting to consider other graph classes, in particular ones not based on
sparsity like tree-width. For example, observe that the optimal static search tree problem
is easy on cliques: the optimum is always the degenerate search tree that orders nodes by
weights, with the heaviest nodes at the top.

Open question 3.4. Are there other natural graph classes that admit constant-factor
approximations for the optimal static search tree problem?

Finally, let us consider the unweighted case. For general graphs, the problem is again NP-
hard (theorem 3.9), and for trees, it is polynomially tractable via the pseudo-polynomial
algorithm (theorem 3.7), though the running time is high (roughly n4.42). Recall that the
related problem of computing the tree-depth of a tree (i.e., minimizing the worst-case
search time) is solvable in linear time [Sch89b]. Is the same true for the unweighted static
search tree problem?

Open question 3.5. Can StOPT(G, 1), i.e., the minimal trivially perfect completion, be
computed in linear time if G is a tree?

3.1. Preliminaries

In this section, we first introduce some more technical definitions related to cost and
weight functions, and then provide a few useful tools for the following chapters.

In our algorithms we always assume that the given weight function can be computed
in O(1) time, and arithmetic operations involving weights and depths likewise can be
evaluated in O(1) time. We frequently use the sum w + w′ of two weight functions w,w′,w + w′

which is the weight function w′′ defined as w′′(v) = w(v)+w′(v), as well as the product α·wα · w
of a real α and a weight function w, defined in the obvious way. For a subset S ⊆ V (G),
we write w(S) =

∑
v∈S w(v), and for a rooted (sub)tree T , we write w(T ) = w(V (T )).

Sometimes it is convenient to use a weight function w with a larger domain (e.g., when
G is a subgraph of a larger graph). In that case, we still write cost(T,w) = cost(T,w′),
where w′ is w restricted to V (G).

We sometimes use the notation cost(T,w) when T is an arbitrary rooted tree and w is
a weight function on V (T ). The definition generalizes in the obvious way.

The following observation is immediate from double counting and provides a useful
alternative characterization of the cost of a search tree.

Observation 3.11. For each rooted tree T and weight function w, we have

cost(T,w) =
∑

v∈V (T )

w(Tv).

Lifting. We now define a certain search tree operation that will be useful in chapters 4
and 5. Let T be a search tree on G and let v ∈ V (G). Let T v the search tree on G that
is obtained as follows. Set root(T v) = v, and for each component C in G − v, add T |C
as a child subtree to v. We say that T v is obtained from T by lifting the vertex v. Thislifting

transformation can also be defined via rotations [BCI+20]. T v is obtained by repeatedly
rotating v with its parent until v becomes the root.
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Observation 3.12. Let T be a search tree on a tree G and let T v be obtained by lifting v
in T . Then, for each component C of G− v, and each u ∈ V (C), we have

PathT v(u) = {v} ∪ (PathT (u) ∩ V (C)) ,

and, consequently,

depthT v(u) ≤

{
depthT (u), if root(T ) /∈ V (C)

depthT (u) + 1, if root(T ) ∈ V (C).

We can also lift a set of vertices. Let T be a search tree on a graph G, and let U ⊆ V (G). lifting (set)

Lifting U in T means constructing a search tree T ′ where U induces an arbitrary prefix P ,
and for each component C of G − U , attach the tree T |C to the respective node in P .
Equivalently, if π is a topological ordering of T , then T ′ is a the search tree with topological
ordering π′, where π′ is obtained from π by moving all nodes of U to the start.

Adding weight functions. We now show that StOPT(G,w) is superadditive and approx-
imately subadditive in w. This will be useful when dealing with certain error terms of the
form StOPT(G,w) that come up in chapter 9.

Lemma 3.13. For each connected graph G and each pair of weight functions w,w′ on G,
we have

StOPT(G,w) + StOPT(G,w′) ≤ StOPT(G,w+w′) ≤ 2 · (StOPT(G,w) + StOPT(G,w′))

Proof. For the first inequality (superadditivity), let T be an optimal search tree on
(G,w + w′). Clearly, we have

cost(T,w + w′) = cost(T,w) + cost(T,w′) ≥ StOPT(G,w) + StOPT(G,w′).

For the second inequality (approximate subadditivity), the idea is to construct a search
tree T ∗ by choosing subtree roots in a top-down manner, alternating between T and T ′.
See figure 3.1 for an example.

Formally, let Alt(T, T ′, G) be the search tree with root r = root(T ), and a child subtree
Alt(T ′|C , T |C , C) for each component C of G− v (note the swapped T and T ′). If G has
only one vertex, then Alt(T, T ′, G) consists of that single node.

Let T ∗ = Alt(T, T ′, G). We show that

depthT ∗(v) ≤ min(2 depthT (v)− 1, 2 depthT ′(v))

for each vertex v ∈ V (G). If v is the root of T , then depthT ∗(v) = 1 and we are done.
Otherwise, let r = root(T ∗) = root(T ) and let C be the component of G−r that contains v.
Let S = T |C and let S′ = T ′|C . By lemma 2.18, we have depthS′(v) ≤ depthT ′(v), and,
because r is an ancestor of v in T , but not in S, we have depthS(v) ≤ depthT (v)− 1.

Now let S∗ = Alt(S′, S, C). We have

depthT ∗(v) = 1 + depthS∗(v)

≤ 1 + min(2 depthS′(v)− 1, 2 depthS(v)) by induction

≤ min(2 depthT ′(v), 2 depthT (v)− 1)
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Figure 3.1.: Two search trees T and T ′ on a graph G, and the “merged” search tree T ∗ in
the proof of lemma 3.13. In T ∗, the blue color and the ′ symbol indicate a
node is chosen from T ′ instead of T .

3.2. Handling zero-weight vertices

In this section, we prove:

Theorem 3.10. Let (G,w) be a given weighted tree with n vertices, and let m be the
number of vertices with positive weight. In O(n) time, we can transform G into a tree G′

with V (G′) ⊆ V (G) and StOPT(G,w) = StOPT(G′, w), such that |V (G′)| ≤ 2m and G′

has no zero-weight vertices of degree two or lower.

We first need two technical lemmas.

Lemma 3.14. Let (G,w) be a weighted tree, let v be a vertex in G with degree at most
two and weight zero, and let u be some neighbor of v. For each search tree T on G with
root v, there is a search tree S with root u such that cost(S,w) ≤ cost(T,w).

Proof. We construct S as follows. Let π be a topological ordering of T , and let σ be
obtained from π by moving u to the start and v to the end. Let S be the search tree with
topological ordering σ.

We show that depthS(x) ≤ depthT (x) for each x ∈ V (G) \ {v}. Since w(v) = 0, this
implies cost(S,w) ≤ cost(T,w), as desired.

We clearly have depthS(u) = 1 ≤ depthT (u). Now let x ∈ V (G) \ {v, u}. It is clear that
x loses v as an ancestor and may gain u as an ancestor when transforming T to S. We
claim that x gains no other ancestors, which implies depthS(x) ≤ depthT (x), as desired.

To prove our claim, we show that for each y ∈ V (G) \ {u} with y ≺S x, we also have
y ≺T x.

We have y <σ x by assumption, and thus also y <π x. Suppose for the sake of
contradiction that y ̸≺T x. Then, by lemma 2.12, there is a set A that precedes y in π and
separates x, y in G. If v /∈ A, then A also precedes y in σ, so y ̸≺S x, a contradiction. If
v ∈ A, then observe that B = A\{v}∪{u} precedes y in σ and separates x, y in G, since v
has degree at most two and u is a neighbor of v. Thus, again y ̸≺S x, a contradiction.

Lemma 3.15. Let (G,w) be a weighted tree, and let U ⊆ V (G) be the set of vertices
with degree larger than two, or positive weight (or both). Then U induces a prefix of some
optimal search tree on (G,w).
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Proof. Suppose U ̸= ∅; otherwise the statement is vacuous.
Consider the following recursive procedure on an optimal search tree T on (G,w). Let

r = root(T ). If r /∈ U , then repeatedly apply lemma 3.14 until the root of the search tree
is in U , and call the resulting search tree T ′. If r ∈ U , then simply let T ′ = T .

Afterwards, recurse on the child subtrees of root(T ′). To see that we can indeed apply
lemma 3.14 properly in recursive calls, observe that in every subgraph of (G,w), each
vertex v /∈ U still has weight zero and degree at most two.

By induction, the final result has a prefix induced by U .

Proof of theorem 3.10. We transform (G,w) by progressively removing zero-weight leaves,
and replacing zero-weight degree-two vertices with an edge. (Equivalently, we progressively
contract edges between zero-weight vertices of degree at most two and an arbitrary
neighbor.) This can be done with a single traversal in O(n) time.

In the resulting tree G′, each zero-weight vertex has degree at least three, implying that
there are no more than m − 2 zero-weight vertices, and no more than 2m − 2 vertices
in total, as desired. Let U = V (G′) denote the remaining vertices and observe that
G′ = torsoG(U). We now show that StOPT(G′, w) = StOPT(G,w).

Let T be an optimal search tree on (G,w). By lemma 3.15, we can assume w.l.o.g. that
U induces a prefix P of T . Clearly, we have cost(P,w) = cost(T,w), since all vertices
outside of U have weight zero. Since P is a search tree on G′ by theorem 2.21, we have
StOPT(G′, w) ≤ StOPT(G,w).

Now let P be an optimal search tree on (G′, w). By theorem 2.21, there is a search tree
T on G with prefix P , implying StOPT(G,w) ≤ StOPT(G′, w).
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4. Centroid trees

In this chapter, we study efficient approximation algorithms for the optimal static search
tree problem based on centroid trees.

We start with giving the definitions and history of (weighted) centroids in some more
detail. A vertex v is a centroid of a tree G if every component of G − v has at most centroid
1
2 |V (G)| vertices. The fact that a centroid always exists was already shown in the 19th
century by Jordan [Jor69]. The argument is constructive and goes as follows: Start at an
arbitrary vertex of G and, as long as the current vertex is not a centroid, move one edge
in the direction of the component with largest number of vertices. It is not hard to see
that the procedure succeeds, visiting each vertex at most once. There is always either a
unique centroid, or exactly two centroids, which must be adjacent [Kőn90].

Clearly, a search strategy that repeatedly selects the centroid of the remaining subgraph
of G requires only ⌈log(n + 1)⌉ queries (see section 1.1). A centroid tree T is the search tree centroid tree

corresponding to this strategy, where every node v is the centroid of G[Tv]. Centroid trees
have a wide range of applications outside of searching [FJ83, GHL+87, GT98, BFCK06,
Fer13, KPR+14, GHLW15, FV16].

The existence of centroid trees implies the following well-known result. Recall that the
tree-depth td(G) is the minimum height of a search tree on G.

Theorem 4.1. If G is a tree with n vertices, then td(G) ≤ ⌈log(n + 1)⌉.

We now discuss a weighted variant of centroids and centroid trees.

Weighted centroids. Let (G,w) be a weighted tree. A vertex v ∈ V (G) is a centroid of weighted
centroid

(G,w) if every component C of G− v satisfies w(C) ≤ 1
2w(G). A centroid tree on (G,w)

weighted
centroid tree

is constructed by choosing a weighted centroid as the root of every subtree.

To find a weighted centroid, we can use essentially the same procedure as for unweighted
centroids, just replacing “number of vertices” with “weight”. Hence, a weighted centroid
tree always exists.

In contrast to the unweighted case, there can be more than two weighted centroids. For
example, if all weights are zero, every vertex is a centroid. However, there can be at most
two centroids with positive weight, and all other centroids must lie on a path between
them (see section 4.2, theorem 4.12).

To the author’s knowledge, weighted centroids have been first studied by Kariv and
Hakimi [KH79], who proved equivalence with so-called (1-)medians. Results on computing
medians include a simple linear-time algorithm [Gol71] (essentially the algorithm discussed
above) and a dynamic forest algorithm that maintains medians with logarithmic update
time [AHLT05]. Both algorithms will be useful to efficiently compute weighted centroid
trees. We refer to Rosenthal and Pino [RP89] for applications and related concepts.
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4.1. Overview

We now present the new results proved in this chapter. The proofs are deferred to the
following sections.

Approximation ratio. We observed above that (even unweighted) centroids are not
necessarily unique. This means there may be multiple centroid trees, even with different
costs.1 We denote by Cent(G,w) the maximum cost of a centroid tree of (G,w). Our firstCent(G,w)

result is an upper bound on the approximation ratio of centroid trees.

Theorem 4.2. Let (G,w) be a weighted tree. Then

Cent(G,w) ≤ 2 · StOPT(G,w)− w(G).

We show that this result is optimal, including in the additive term. Moreover, the
constant factor 2 cannot be improved even for unweighted instances.

Theorem 4.3. For every ε > 0 there is a sequence of weighted trees (Gn, wn) such that,
for every centroid tree Cn of (Gn, wn),

cost(Cn, wn) ≥ 2 · StOPT(Gn, wn)− wn(Gn)− ε,

and lim
n→∞

StOPT(Gn, wn)/wn(Gn) =∞.

Theorem 4.4. There is a sequence of trees Gn, where for every unweighted centroid tree
Cn of Gn,

cost(Cn, 1) ≥ 2 · StOPT(Gn,1)− 2|V (Gn)|.

and lim
n→∞

StOPT(Gn, wn)/|V (Gn)| =∞.

Note that the fact that StOPT tends to infinity in theorems 4.3 and 4.4 establishes that
the asymptotic approximation ratio is 2. By this we mean that every bound of the form
Cent(G) ≤ c · StOPT(G) + o(StOPT(G)) must have c ≥ 2.

When the underlying tree G has maximum degree ∆, the approximation ratio can be
improved to 2− 2−∆; we refer to the paper this chapter is based on [BGKK23] for details.

All results on the approximation ratio are proved in section 4.3. We further show in
section 4.4 that the cost of the centroid tree is bounded by the Shannon entropy of the
weight function, extending a result for BSTs [Meh75]. This does not give us any good
approximation guarantee, but will be useful in later chapters.

We make another related observation in section 4.5: As mentioned in the introduction,
the height of a centroid tree can be far from optimal (i.e., far from the tree-depth).

1Consider, for instance, the two different centroid trees of a path on four vertices, with weights
(2, 3, 2, 3).
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4.1. Overview

Computing centroid trees. The procedure mentioned above for finding centroids can be
implemented in O(n) time, where n = |V (G)|, using some straight-forward bookkeeping.
Using this to compute an unweighted centroid tree yields a running time of O(n log n);
this is because computing a node v in the centroid tree T is done in time O(|V (Tv)|), for
a total running time of O(cost(T, 1)) ⊆ O(n log n) by observation 3.11.

This running time has been improved to O(n) by carefully using certain data struc-
tures [BFPÖ01, DGPV19]. These guarantees, however, do not readily generalize from the
unweighted to the weighted setting. Intuitively, the difficulty lies in the fact that in the
weighted case, the removal of a centroid vertex may split the tree in a very unbalanced
way, leaving up to n− 1 vertices in one component. Thus, a naive recursive approach will
take Θ(n2) time in the worst case. Recall that a weighted centroid BST can be computed
in O(n) time [Fre75, Meh77]; this is essentially because “unbalanced” centroids themselves
can be found quickly in paths.

One solution, if a worse approximation ratio is acceptable, is to construct a search tree
by alternating between choosing a weighted and an unweighted centroid tree. We call such
a search tree a semi-weighted centroid tree. Computing it again only requires O(n log n)
time, since it has height O(log n). In section 4.6, we precisely define semi-centroid trees
and prove:

Theorem 4.5. Let (G,w) be a weighted tree with n vertices. A semi-centroid tree T on
G satisfies cost(T,w) ≤ 4 · StOPT(G,w) and can be computed in O(n log n) time.

With the help of some heavy machinery we can also compute an actual weighted centroid
tree in O(n log n) time. The main step of our algorithm, finding the weighted centroid of a
tree, is achievable in O(log n) time, assuming that the underlying tree is stored in a top tree
data structure [AHLT05]. Iterating this procedure in combination with known algorithms
for constructing and splitting top trees yields the algorithm that runs in O(n log n) time.
Together with our result on the approximation ratio (theorem 4.2), this essentially implies
theorem 3.1; the only caveat is that top trees only support positive weights.

In section 4.7.1, we develop an improved, output-sensitive algorithm, with running time
O(n log h), where h is the height of the resulting centroid tree.

Theorem 4.6. Let (G,w) be a weighted tree with n vertices and only positive weights.
We can compute a centroid tree of (G,w) in time O(n log h), where h is the height of the
computed centroid tree.

It is not hard to see that the height of a centroid tree is at most log(W ·n) if all weights
are between 1 and W , since each node v of depth k satisfies w(v) ≤ 2−k · (W · n). The
output-sensitive algorithm therefore has running time O(n log log(Wn)) in this case, which
is O(n log log n) if all weights are polynomial.

In section 4.7.2, we address the handling of zero-weight vertices, partially with the help
of theorem 3.10, culminating in the main result of this chapter:

Theorem 4.7. Let (G,w) be a given weighted tree with n vertices such that all weights
are in {0} ∪ [1,W ] for some W ∈ R≥0. Let m be the number of vertices with positive
weight. We can compute a centroid tree on (G,w) in time O(n + m log log(m + W )) or
O(n + m logm), whichever is lower.

Together with the approximation ratio proved in theorem 4.2, this implies theorems 3.1
and 3.2.

49



4. Centroid trees

Hardness. One may ask whether the weighted centroid tree can be computed in linear
time, like the unweighted centroid tree [BFPÖ01, DGPV19], or the weighted centroid
BST [Fre75]. In section 4.8 show that, assuming a general decision tree model of compu-
tation, this is not possible: The algorithm of theorem 4.6 is optimal for all n and h (up
to a constant factor). Informally, our lower bound on the running time applies to any
deterministic algorithm in which the input weights affect program flow only in the form of
binary decisions. The model thus excludes using the weights for addressing memory, e.g.,
via hashing.

More precisely, fix a tree G with n vertices. We say that a binary decision tree DGdecision tree

solves G for a class of weight functions W mapping V (G) to R≥0 if:

• The leaves of DG are search trees on G.

• Every inner node of DG is of the form “f(w) = 1?” for some function f :W → {0, 1}.
• For every weight function w ∈ W, starting from the root of DG and following

branchings down the tree, we reach a leaf T of DG that is a centroid tree of (G,w).

The height of DG is then a lower bound on the worst-case running time.

Theorem 4.8. Let h ≥ 3 and n ≥ h + 1 be integers. Then there exists a tree G with at
most n vertices and a class W of weight functions on V (G) such that for every w ∈ W,
every centroid tree of (G,w) has height at most h, and every binary decision tree that
solves G for W has height Ω(n log h).

This implies that theorem 4.6 is indeed optimal for all h and n. We obtain a similar,
but not quite tight lower bound for theorem 4.7.

Theorem 4.9. Let n ∈ N and W ∈ R with 2 ≤W ≤ 2n−2. Then there exists a tree G on
at most n vertices and a class W of weight functions on V (G) with codomain [1,W ], such
that every binary decision tree that solves G for W has height Ω(n log logW ).

We now discuss for which range of the parameter W the bounds in theorems 4.7 and 4.9
are tight. First note that any reasonable model of computation will require Ω(n) time to
read the input. Since we can pad the tree in the lower bound construction of Theorem 4.8
with zero-weight leaves, we can get a lower bound of Ω(n + m log logW ) for all m ≤ n,
where m is a prescribed number of positive-weight vertices.

Recall that the upper bounds in theorem 4.7 are O(n + m log log(m + W )) and O(n +
m logm). If W ≥ 2m, then the complexity of the problem is Θ(n + m logm). If otherwise
log logW ∈ Ω(log logm), i.e., if W ≥ 2log

ε m for some ε > 0, then the complexity is
Θ(n + m log logW ). There only is a gap between the upper and lower bounds when W
grows very slowly; we leave the complexity in that case open.

Open question 4.1. What is the complexity of computing a centroid tree on a tree with

n vertices, when all weights are in [1,W ] for W ∈ ω(1) and W ≤ 2log
o(1) n?

Approximate centroid trees. Our final result is somewhat separate from the others. We
show that optimal static search trees have a certain relaxed centroid tree property. This
will be useful in chapter 6.
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4.2. Some centroid facts

Let us call a vertex v of a tree G an α-centroid, for 0 ≤ α ≤ 1, if w(H) ≤ α · w(G) for α-centroid

each component H of G− v. An α-centroid tree is a search tree in which every vertex x is
α-centroid
treean α-centroid of its rooted subtree G[V (Tx)].

Observe that the standard centroid tree is a 1
2 -centroid tree, and all search trees are

1-centroid trees. Also note that an α-centroid is a β-centroid for all β ≥ α and that the
existence of an α-centroid is not guaranteed for α < 1

2 (consider a single edge with the two
endpoints having the same weight). In the paper on which this chapter is based, we show
guarantees for the maximum cost of α-centroid trees [BGKK23]. Here, we focus only on
the following result (proof in section 4.9).

Theorem 4.10. Let T be an optimal search tree on a weighted tree (G,w). Then T is a
2
3 -centroid tree of (G,w).

A special case of this result (for BSTs) was shown by Hirschberg, Larmore, and
Molodowitch [HLM86], who also showed that the ratio 2

3 is tight (in the special case of
BSTs, and thus, also for STTs).

An important consequence is that the height of an optimal tree is limited by the spread
of the weights.

Corollary 4.11. Let T be an optimal search tree on a weighted tree (G,w), with weights
in [1,W ]. Then height(T ) ≤ log3/2(n ·W ).

In section 4.9, we show a generalization of corollary 4.11 that allows zero-weight vertices
in a limited capacity.

Corollary 4.11 has an interesting algorithmic consequence: In chapter 6, we give an exact
algorithm for the optimal static STT problem whose running time is polynomial in the
size of the underlying tree, but exponential in the height of the output search tree. With
the help of corollary 4.11, this algorithm can be transformed into a pseudo-polynomial
algorithm (see section 6.2 for details).

4.2. Some centroid facts

Before proceeding with the proofs of our main results, we show a few useful facts about
centroids. First, we characterize the shapes that the set of all centroids of a weighted tree
can take. Recall that in the unweighted case, there can be at most two centroids, which
must be adjacent [Kőn90]. The following theorem is a strict generalization.

Theorem 4.12. Let (G,w) be a weighted tree where at least one vertex has positive weight.
The set of centroids of (G,w) induces a path, and every centroid that is not an endpoint
of that path has weight zero.

Proof. Without loss of generality, assume w(G) = 1. If there is only one centroid, we are
done. Otherwise, assume a and b are two centroids of (G,w).

Let H be the unique connected component of G − {a, b} that is adjacent to both a
and b, or let H be the empty graph if no such component exists. Let A (resp. B) be the
connected component of G−H that contains a (resp. b). See below for an illustration.

A
a

H
b

B
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4. Centroid trees

Since a is a centroid, we have w(B) + w(H) ≤ 1
2 , and likewise w(A) + w(H) ≤ 1

2 ,
because b is a centroid. Further, we have w(A) = 1 − w(B) − w(H) ≥ 1

2 and similarly
w(B) = 1− w(A)− w(H) ≥ 1

2 , so ultimately w(A) = w(B) = 1
2 and w(H) = 0.

Now take some vertex v on the path between a and b. Clearly, each connected component
C ∈ C(G − v) fully contains A, or fully contains B, or is disjoint from both. Thus, we
have w(C) ≤ 1

2 and v is a centroid. Moreover, we have w(v) = 0 since v ∈ V (H).
On the other hand, if v ∈ V (H) is not on the path between a and b, then some component

of C(G− v) contains both A and B, implying that v is not a centroid.
Taking a and b as the centroids with maximum distance concludes the proof.

We proceed with showing that contractions essentially preserve centroids. We first need
to properly define contractions in weighted trees.

Let (G,w) be a weighted tree, and let {u, v} be an edge of G. Then contracting
{u, v} produces a weighted tree (G′, w′), defined as follows. The tree G′ is obtained
from G by contracting {u, v} into a new vertex s. The weight function w′ is defined as
w′(s) = w(u) + w(v) and w′(x) = w(x) for each x ∈ V (G′) \ {s}.

Lemma 4.13. Let (G,w) be a weighted tree, and let (G′, w′) be obtained from (G,w) by
contracting the edge {u, v} into a new vertex s. Then s is a centroid of (G′, w′) if and
only if u or v is a centroid of (G,w). Further, a vertex x ∈ V (G′) \ {s} is a centroid of
(G′, w′) if and only if x is a centroid of (G,w).

Proof. Assume w.l.o.g. that w(G) = 1. Consider first a vertex x ∈ V (G) \ {u, v}. The
contraction {u, v} does not change the weight of any component C ∈ C(G− x). Thus, x
is a centroid of (G,w) if and only if x is a centroid of (G′, w′).

Consider now the vertices u, v, and s. Observe that C(G − {u, v}) = C(G′ − s), and
the contraction does not affect the weights of these components. If u or v is a centroid of
(G,w), then no component of C(G−{u, v}) has weight more than 1

2 . Thus, s is a centroid
of (G′, w′).

On the other hand, suppose that s is a centroid of (G′, w′). Consider a component
C ∈ C(G−u). If C does not contain v, then C ∈ C(G−{u, v}) = C(G′− s), so w(C) ≤ 1

2
by assumption. In the same way, for each C ∈ C(G− v), if C does not contain u, then
w(C) ≤ 1

2 . Now let Cv be the component of G − u that contains v, and let Cu be the
component of G− v that contains u. Since u and v are adjacent, we know that Cv and
Cu are disjoint. Thus, we have w(Cv) + w(Cu) ≤ 1, so either w(Cv) ≤ 1

2 or w(Cu) ≤ 1
2 .

Therefore, one of u and v is a centroid of (G′, w′).

4.3. Approximation ratio

In this section, we prove our upper and lower bounds on the approximation quality of
centroid trees.

4.3.1. Upper bound

Theorem 4.2. Let (G,w) be a weighted tree. Then

Cent(G,w) ≤ 2 · StOPT(G,w)− w(G).
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4.3. Approximation ratio

We need the following lemma. (See section 3.1 for the definition of lifting.)

Lemma 4.14. Let (G,w) be a weighted tree and c be a centroid of (G,w). Let T be a
search tree on G, and let T c be obtained by lifting c in T . Then,

cost(T c, w) ≤ cost(T,w) + 1
2(w(G)− w(c)).

Proof. Let r be the root of T . If c = r, we have T c = T , so the lemma is true (observe
that w(c) ≤ w(G)). Otherwise, by observation 3.12, the depth of a vertex v can only
increase due to the lifting if v is in the same component C of G− c as r. Moreover, the
depth of c clearly decreases by at least one.

Since w(C) ≤ 1
2w(G) because c is a centroid, we have

cost(T c, w) ≤ cost(T,w) + 1
2w(G)− w(c) ≤ cost(T,w) + 1

2(w(G)− w(c)).

Lemma 4.15. Let (G,w) be a weighted tree and c be a centroid of (G,w). Then,∑
C∈G−c

StOPT(C,w) ≤ StOPT(G,w)− 1
2(w(G) + w(c)).

Proof. Let T be an optimal search tree on (G,w), and let T c be obtained by lifting c in
T . Clearly, the left-hand side of the statement is at most cost(T c, w)− w(G), so applying
lemma 4.14 yields the claim.

Proof of theorem 4.2. The proof is by induction on the number of vertices. When |V (G)| =
1 we have

2 · StOPT(G,w)− w(G) = 2w(G)− w(G) = w(G) = Cent(G,w),

as required.

Assume |V (G)| > 1. Let T be a centroid tree on G and c = root(T ). We have

cost(T,w) = w(G) +
∑

C∈C(G−c)

Cent(C,w)

≤ w(G) +
∑

C∈C(G−c)

(2 · StOPT(C,w)− w(C)) by induction

= w(c) + 2 ·
∑

C∈C(G−c)

StOPT(C,w),

therefore it is enough to show that

w(c) + 2 ·
∑

C∈C(G−c)

StOPT(C,w) ≤ 2 · StOPT(G,w)− w(G),

which easily follows from lemma 4.15. This concludes the proof.

Note that in the edge-query model, a 2-approximation can be shown using similar
techniques [CJLM10], but that result is not best possible [CJLM14].
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4. Centroid trees

4.3.2. Lower bounds

In this section, we show that theorem 4.2 is tight, even for unweighted trees.

Weighted lower bound. We start with:

Theorem 4.16. There is a sequence of weighted trees (Gn, wn) such that

Cent(Gn, wn) ≥ 2 · StOPT(Gn, wn)− wn(Gn).

and lim
n→∞

StOPT(Gn, wn)/wn(Gn) =∞.

Observe that this is slightly different than the promised theorem 4.3: In theorem 4.16,
we bound Cent(G,w), which is the maximum cost of a centroid tree, so the bound does
not necessarily hold for all centroid trees. At the end of this section, we will introduce a
tie-breaking procedure that makes the centroid tree unique, a the cost of a small error
term, which implies theorem 4.3.

We now construct the sequence (Gn, wn). For the sake of the construction, we view Gn

as a rooted tree. The base case G0 is a tree with a single vertex v and w0(v) = 1. For
n > 0, take two copies (A,wA) and (B,wB) of (Gn−1, wn−1). Connect the roots of A and
B to a new vertex c. Finally, set root(Gn) = root(A). See figure 4.1 (a). We define wn as
follows.

wn(v) =


0, v = c
1
2wA(v), v ∈ V (A)
1
2wB(v), v ∈ V (B).

Let Cn denote the search tree on Gn obtained by setting c as the root and recursing;
see figure 4.1 (b). Observe that Cn is a centroid tree of (Gn, wn).

Lemma 4.17. The following statements hold:

(i) cost(Cn, wn) = n + 1.

(ii) wn(Gn) = 1.

(iii) limn→∞ StOPT(Gn, wn)/wn(Gn) =∞.

r

c

Gn−1

Gn−1

(a) Underlying tree Gn

c

Cn−1Cn−1

(b) Centroid tree Cn

r

c

Tn−1

Tn−1

(c) Better search tree Tn

Figure 4.1.: Illustration of the proof of Theorem 4.16. The vertex r is the root of Gn.
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Proof. For part (i), let cn = cost(Cn, wn). Clearly, c0 = 1. Assume n > 0. Let CA and
CB be search trees on A and B respectively, each a copy of Cn−1. By construction of Cn

we have

cn = 1 + 1
2 cost(CA, wA) + 1

2 cost(CB, wB) = 1 + cn−1,

and (i) follows by induction.
Part (ii) is easily shown by induction. Finally, using (i), (ii) and theorem 4.2, we have

StOPT(Gn, wn) ≥ n
2 + 1, which implies part (iii).

Next, in order to bound StOPT(Gn, wn) from above, we construct a sequence of search
trees Tn on Gn. See figure 4.1 (c). The search tree T0 is a single vertex. Now assume
n > 0. Let A, B, and c be defined as in the definition of Gn. Let TA and TB be search trees
on A and B, respectively, each a copy of Tn−1. Denote rA = root(A) and rB = root(B).
The search tree Tn is obtained by setting root(Tn) = rA, making rB a child of rA, and
making c a child of rB.

Lemma 4.18. cost(Tn, wn) = n
2 + 1.

Proof. Denote tn = cost(Tn, wn). Clearly t0 = 1. Assume n > 0. The contribution of
vertices of A to tn is exactly 1

2 cost(TA, wA) = 1
2 tn−1. Since r is an ancestor of all vertices

in B, the contribution of these vertices to tn is exactly 1
2(1 + cost(TB, wB)) = 1

2(1 + tn−1).
Summing the contribution of all vertices, we get tn = tn−1 + 1

2 and the claim follows.

Lemmas 4.17 and 4.18 together imply theorem 4.16.

Unweighted lower bound. We now show:

Theorem 4.4. There is a sequence of trees Gn, where for every unweighted centroid tree
Cn of Gn,

cost(Cn, 1) ≥ 2 · StOPT(Gn, 1)− 2|V (Gn)|.

and lim
n→∞

StOPT(Gn, wn)/|V (Gn)| =∞.

It turns out that the construction above also works in the unweighted case. Let Gn, c, A,
B, Cn, and Tn be as defined above. Observe that c is also the unique unweighted centroid
of Gn. Indeed, observe |V (A)| = |V (B)| = 1

2(|V (G)| − 1). For any vertex v ̸= c, the
subgraph G− v contains one component of that contains either V (A)∪{v} or V (B)∪{v},
and thus has weight at least 1

2 |V (G)|+ 1
2 . This means that v cannot be a centroid.

Consequentially Cn is the unique centroid tree of Gn, and no tie-breaking is necessary.
The lemma below implies theorem 4.4.

Lemma 4.19. The following statements hold:

(i) |V (Gn)| = 2n+1 − 1.

(ii) cost(Cn,1) = 2n+1n + 1.

(iii) cost(Tn,1) = 2n · n + 2n+1 − 1.

(iv) limn→∞ StOPT(Gn, 1)/|V (Gn)| =∞.
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4. Centroid trees

Proof. Part (i) follows directly by induction.

Denote cn = cost(Cn,1) and tn = cost(Tn, 1). Observe that cn satisfies the recurrence

c0 = 1

cn = |V (Gn)|+ 2cn−1 = 2n+1 − 1 + 2cn−1,

and that cn = 2n+1n + 1 is the solution for this formula. Repeating the analysis from
lemma 4.18, we get the recurrence

t0 = 1

tn = tn−1 + (|V (Gn−1)|+ tn−1) + 2 = 2n + 1 + 2tn−1.

Observe that tn = 2n · n + 2n+1 − 1 is the solution. Finally, part (iv) follows directly from
(i), (ii), and theorem 4.2.

Breaking ties. We now show how to derive theorem 4.3 from theorem 4.16, as outlined
above, using the following lemma.

Lemma 4.20. Let G be a tree, w : V (G)→ R≥0 a weight function and let S be a centroid
tree of (G,w). For every ε > 0 there exists a weight function w′ : V (G)→ R≥0 such that
S is the unique centroid tree of (G,w′) and w(v) ≤ w′(v) < w(v) + ε for all v ∈ V (G).

Before proving lemma 4.20, we show how to apply it. Let (Gn, wn) be the sequence of
trees from theorem 4.16. For each n, obtain a weight function w′

n using lemma 4.20 with
the centroid tree S = Cn defined above, and some ε to be determined later. Let Tn be an
optimal search tree on the original sequence (Gn, wn). By theorem 4.16, we have

Cent(Gn, wn) ≥ 2 · StOPT(Gn, wn)− wn(Gn).

Clearly, we have cost(Cn, w′
n) = Cent(Gn, w

′
n) ≥ Cent(Gn, wn). Moreover, we have

w′
n(v) ≤ wn(v) + ε for all v ∈ V (Gn), so

StOPT(Gn, w
′
n) ≤ cost(Tn, w′

n) ≤ cost(Tn, wn + ε · 1)

= StOPT(Gn, wn) + ε · cost(Tn, 1) ≤ StOPT(Gn, wn) + ε|V (Gn)|2.

The last inequality follows from the fact that cost(T, 1) ≤ |V (T )|2 for every rooted tree.
Overall we have cost(Cn, w′

n) ≥ 2 StOPT(Gn, w
′
n)− 2ε|V (Gn)|2 − wn(Gn). Since we can

choose ε arbitrarily, even depending on n, this implies theorem 4.3

We now prove lemma 4.20 with a series of simple observations. If (G,w) is a weighted
tree and v ∈ V (G), let

M(v, w) = max
C∈C(G−v)

w(C).

The following is a well-known alternative characterization of centroids (also called
median in this context).

Lemma 4.21 (Kariv and Hakimi [KH79]). Let (G,w) be a weighted tree. Each v ∈ V (G)
is a centroid of (G,w) if and only if it minimizes M(v, w).
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Lemma 4.22. Let w,w′ be two weight functions on a tree G. Assume that a vertex
c ∈ V (G) is a centroid of (G,w) and the unique centroid of (G,w′). Then c is the unique
centroid of (G,w + w′).

Proof. For each v ∈ V (G)\{c}, we have have M(c, w) ≤M(v, w) and M(c, w) < M(v, w),
implying M(c, w + w′) < M(v, w + w′), so c is the unique centroid of (G,w + w′).

Lemma 4.23. Let T be a search tree on G. There exists a weight function w : V (G)→ R≥0

such that T is the unique centroid tree of (G,w).

Proof. We proceed by induction on n. When n = 1, every w has the desired property.
Assume n > 1. Let r = root(T ) and let T 1, . . . , T k be the child subtrees of r in T . Let
Gi = G[V (T i)] for i ∈ [k]. By the induction hypothesis, there are weight functions wi for
i ∈ [k] such that T i is the unique centroid tree of (Gi, wi). Let w be defined by

w(u) =

{
wi(u), u ∈ V (Gi)

1 +
∑k

i=1wi(Gi), u = r.

Observe that w(r) > 1
2w(G). This means that no other vertex can be a centroid of G, so

r is the unique centroid of (G,w). Clearly, the components of G− r are G1, G2, . . . , Gk,
and restricting w to Gi yields wi, so T is the unique centroid tree on (G,w).

Proof of lemma 4.20. Using lemma 4.23, let w̃ : V (G)→ R≥0 be such that S is the unique
centroid tree of (G, w̃). We can scale w̃ so that w̃(v) < ε for all v ∈ V (G). Let w′ = w+ w̃.
Using lemma 4.22, by induction on the height of T , it follows that T is the unique centroid
tree of (G,w′).

4.4. Centroid trees and entropy

In this section, we discuss the relation between the static optimum and the Shannon
entropy of the weight function.

First, we show that the entropy bound for binary search trees holds for optimal static
search trees on arbitrary trees (though not arbitrary graphs). We do this by bounding
the cost of centroid trees. Let p : X → [0, 1] be a probability distribution. The Shannon

Shannon
entropy

entropy of p, written H(p), is defined as

H(p) =
∑
x∈X

p(x)>0

p(x) · log 1
p(x) .

Proposition 4.24. Let T be a centroid tree on a weighted tree (G, p), where p is a
probability distribution on V (G). Then

cost(T, p) ≤ 1 + H(p)

Proof. Let U be the set of vertices with positive weight/probability, let u ∈ U , and let
d = depthT (u). By definition, we have p(u) ≤ 21−d · p(G) = 21−d. Thus, d ≤ 1− log p(u).
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4. Centroid trees

Overall, we have

cost(T, p) ≤
∑
v∈V (G)

p(v) · depthT (v) =
∑
u∈U

p(u) · depthT (u)

≤
∑
u∈U

p(u) · (1− log p(u)) = 1 + H(p).

Second, we consider a recently proven related lower bound. Recall that StOPT(G, p)
can be constant, e.g., when G is a star. On the other hand, if G is a path, then H(p) is
an asymptotic lower bound of StOPT(G, p) [Knu71]. Voderholzer proved the following
interpolation between these two extremes.

Theorem 4.25 (Voderholzer [Vod23, §3.2]). Let G be a tree with maximum degree ∆,
and let p be a probability distribution on V (G). Then

StOPT(G, p) ≥ H(p)

log(∆ + 1)
.

4.5. Height of centroid trees.

We now show that centroid trees do not approximate optimal-height search trees, even in
the unweighted case.

Proposition 4.26. There is a sequence of graphs Gn, such that the height of each centroid
tree of Gn is exponential in td(Gn), and lim

n→∞
td(Gn) =∞.

Proof. Let the graph Gn be defined as follows: Start with a path on vertices v1, v2, . . . , vn,
in that order. For each i ∈ [n], attach 3i−1 − 1 leaves to vi.

Observe that |V (Gn)| =
∑n−1

i=0 3n = 1
2(3n − 1). Further observe that vn is the unique

centroid of Gn. Indeed, the subgraph consisting of vn and its attached leaves contains
3n−1 > 1

2 |V (Gn)| vertices, so no centroid can be outside it. Clearly, none of the leaves is a
centroid.

Removing vn from Gn yields some isolated vertices and a copy of Gn−1. By induction,
the centroid tree on Gn thus has height n.

On the other hand, the tree-depth of Gn is at most ⌈log(n + 1)⌉ + 1: The path
v1, v2, . . . , vn has tree-depth ⌈log(n + 1)⌉, and the attached leaves increase it by at most
one. Thus, the height of the centroid tree is exponential in the tree-depth.

4.6. Semi-weighted centroid trees

Let (G,w) be a weighted tree. A search tree T is a semi-weighted centroid tree on (G,w)semi-weighted
centroid tree

if, for each v ∈ V (T ), we have:

(a) If depthT (v) is even, then v is an (unweighted) centroid of G[Tv].

(b) If depthT (v) is odd, then v is a (weighted) centroid of (G[Tv], w).

Clearly, a semi-weighted centroid tree can be constructed in a top-down manner for
each weighted tree.
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Lemma 4.27. Let T be a semi-weighted centroid tree on a weighted graph (G,w) with n
vertices. Then height(T ) ≤ 2 log n + 1.

Proof. We proceed by induction. Let hn denote the maximum height of a semi-weighted
centroid tree on (G,w). Observe that h1 = 1 = 2 · log 1 + 1, solving the case n = 1.

Now suppose n > 1, let T be a semi-weighted centroid tree on (G,w), and let r = root(T ).
Since r is an unweighted centroid, we have |V (Tc)| ≤ 1

2n for every child c of r, and thus,
we also have |V (Tg)| ≤ 1

2n for every grandchild g of r. If Γ is the set of grandchildren of r,
we have

height(T ) ≤ 2 + max
g∈Γ

height(Tg)

≤ 2 + h⌊n/2⌋ ≤ 2 + 2 log⌊n2 ⌋+ 1 ≤ 2 log n + 1.

Recall that we can compute a centroid or weighted centroid in linear time [Gol71, KH79].
Computing a semi-centroid tree T thus takes O(

∑
v∈V (T ) |V (Tv)|) = O(cost(T, 1)) ⊆

O(n log n) time by lemma 4.27.

We next prove the approximation ratio, starting with a simple technical lemma.

Lemma 4.28. Let (G,w) be a weighted graph, and let v ∈ V (G). Then∑
C∈C(G−v)

StOPT(C,w) ≤ StOPT(G,w).

Proof. Let T be an optimal search tree on (G,w). We have∑
C∈C(G−v)

StOPT(C,w) ≤
∑
C∈C(G−v)

cost(T |C , w) ≤ cost(T,w) = StOPT(G,w).

The second inequality follows from the fact that depthT |C (v) ≤ depthT (v) for all
v ∈ V (C), by lemma 2.18.

Lemma 4.29. Let T be a semi-weighted centroid tree on a weighted tree (G,w). Then,

cost(T,w) ≤ 4 · StOPT(G,w).

Proof. We proceed by induction on height(T ). First, assume that height(T ) ≤ 2. Then,
we have cost(T,w) ≤ 2 · w(G) ≤ 2 · StOPT(G,w).

Now suppose height(T ) > 2. Let r = root(T ) and let K be the set of children of r. First
observe that for c ∈ K, if Γc is the set of children of c, then

cost(Tc, w) = w(Tc) +
∑
g∈Γc

cost(Tg, w)

≤ w(Tc) +
∑
g∈Γc

4 StOPT(G[Tg], w) by induction

≤ w(Tc) + 4 StOPT(G[Tc], w). by lemma 4.28
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With this, we have

cost(T,w) ≤ w(Tv) +
∑
c∈K

cost(Tc, w)

≤ w(Tv) +
∑
c∈K

w(Tc) + 4 StOPT(G[Tc], w)

≤ 2 · w(G) +
∑
C∈C(G−r)

4 · StOPT(C,w)

≤ 4 · StOPT(G,w) by lemma 4.15

Lemmas 4.27 and 4.29 together imply

Theorem 4.5. Let (G,w) be a weighted tree with n vertices. A semi-centroid tree T on
G satisfies cost(T,w) ≤ 4 · StOPT(G,w) and can be computed in O(n log n) time.

4.7. Computing centroid trees

In this section, we show how to compute weighted centroid trees using the top tree
framework of Alstrup, Holm, de Lichtenberg, and Thorup [AHLT05]. Top trees are a data
structure used to maintain dynamic forests under insertion and deletion of edges (see also
chapter 10). They expose a simple interface that allows the user to maintain information
in the trees of the forest. For this, the user only needs to implement a small number of
internal operations.

Alstrup et al. in particular show how to maintain the median of trees in O(log n) per
operation. As mentioned above, median and centroid are equivalent [KH79].

Theorem 4.30 ([AHLT05, Theorem 3.6]). We can maintain a forest with positive vertex
weights on n vertices under the following operations:

• Add an edge between two given vertices u, v that are not in the same tree;

• Remove an existing edge;

• Change the weight of a vertex;

• Retrieve a pointer to the tree containing a given vertex;

• Find the centroid of a given tree in the forest.

Each operation requires O(log n) time. A forest without edges and with n arbitrarily
weighted vertices can be initialized in O(n) time.

Note that theorem 4.30 only admits positive vertex weights, whereas we usually allow
zero-weight vertices. We show how to handle this problem in section 4.7.2.

We now show how to use theorem 4.30 to construct a centroid tree in O(n log n) time.

Theorem 4.31. Given a tree G on n vertices and a positive weight function w, we can
compute a centroid tree of (G,w) in O(n log n) time.

Proof. First build a top tree on G by adding the edges one-by-one, in O(n log n) time.
Find the centroid c, and remove each incident edge. Then, recurse on each newly created
tree (except for the one containing only c). The algorithm finds each vertex precisely once
and removes each edge precisely once, for a total running time of O(n log n).
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4.7. Computing centroid trees

4.7.1. Output-sensitive algorithm

We now improve the algorithm given above to run in time O(n log h), where n is the
number of vertices in G and h is the height of the computed centroid tree.

The main idea of the algorithm is inspired by the linear-time algorithm for unweighted
centroids by Della Giustina, Prezza, and Venturini [DGPV19]. Instead of building a top
tree on the whole tree G, we first partition G into connected subgraphs of size roughly h,
and build a top tree on each component. Contracting each component into a single vertex
yields super-vertices in a super-tree. Each search for a centroid consists of a global search
and a local search: We first find the super-vertex containing the centroid, then we find
the centroid within that super-vertex. After finding the centroid, we remove it, which
may split up the super-vertex into multiple super-vertices with a top tree each, and also
may split the super-tree into a super-forest. Finally, we recurse on each component of the
super-forest.

It can be seen that the total number of top tree operations needed is O(n). Since the
top trees each contain only h vertices, a top tree operation takes O(log h) time, for a total
of O(n log h). We now proceed with a more detailed description of the algorithm.

Ternarization. If the degree of a vertex of G is unbounded, then a partition into similarly
sized connected subgraphs may not be possible. To fix this, we ternarize G by replacing
each vertex v of degree degG(v) > 3 by a path Pv of degG(v)−2 vertices with degree three.
Call the new vertices virtual and let G′ denote the resulting tree. Each virtual vertex of
Pv is adjacent in G′ to an (arbitrary) neighbor of v in G except for the two endpoints of
Pv, which are adjacent to two neighbors each. See figure 4.2 for an example.

We maintain a link between each vertex in G and every associated virtual vertex in G′

(if any). Observe that |V (G′)| ≤ 2n.

Let w′ be a weight function on G′ obtained from w by arbitrarily distributing weight
from each deleted vertex to its associated virtual vertices. Note that (G,w) can be
obtained from (G′, w′) by contracting every path Pv of associated virtual vertices. Thus,
by lemma 4.13, a vertex of G is a centroid of (G,w) if and only if one of the associated
virtual vertices is a centroid of (G′, w).

Partition. Fix a parameter k. We now compute a partition intoO(nk ) connected subgraphs
of size at most 3k as follows. Arbitrarily root G′. Iteratively remove minimal rooted
subtrees of size at least k, using a simple linear-time bottom-up traversal. Since each node
has at most three children, this produces connected subgraphs of size between k and 3k−2.
The only exception are the nodes remaining at the end, which we put into a possibly
smaller subgraph. The total number of subgraphs is at most 1

k |V (G′)|+ 1 = 2n
k + 1.

Figure 4.2.: Ternarization of a tree.
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Building the super-tree. By contracting each connected subgraph of the partition into
a single vertex, we obtain a weighted tree (S,W ), the super-tree. We call each vertex
A ∈ V (S) a super-vertex, and write G′[A] for the subgraph of G′ contracted into A.
We write V (A) = V (G′[A]) for short. By definition of W via the contraction, we have
W (A) = w′(V (A)).

Note that each super-edge in E(S) is associated with precisely one normal edge in G′;
we maintain an explicit link between the super-edge and the normal edge. For each
super-vertex A, we build a top tree on G′[A], and store the weight W (A). We call a vertex
v ∈ V (A) that is adjacent to some vertex u ∈ V (G′) \ V (A) an inner boundary vertex of

inner
boundary

A, and maintain a list of inner boundary vertices for each super-vertex.

Constructing (S,W ) can be done in linear time. Setting up the top trees requires
O(nk · k log k) = O(n log k) time.

Main procedure and recursion. Below, we describe how to find a centroid and remove it,
along with associated virtual vertices. Doing so may split up S (and implicitly G and G′)
into multiple connected components, on which we recurse. Hence, a recursive step operates
on a tree Gr (a subgraph of G), a ternarization G′

r of Gr, and a super-tree Sr of G′
r. Note

that only Sr is explicitly given, whereas Gr and G′
r are implicit in the super-tree data

structure. Our task is to find a centroid c of Gr and remove it from Gr, i.e., for each
component H of Gr − c, we return a super-tree on a ternarization of H.

Finding centroids. We now describe how to find a centroid of G′
r with help of the

super-tree Sr. Note that, by lemma 4.13, this is enough to find a centroid of Gr.

First, we find the centroid A∗ of Sr with the simple linear-time algorithm [Gol71, KH79].
By lemma 4.13, a centroid of G′

r must be contained in G′
r[A

∗].

We now construct a suitable weight function w∗ on V (A∗) so that we can find a
centroid of G′

r within G′
r[A

∗]. For each v ∈ V (A∗), let Cv be the connected component of
G′

r− (A∗ \ {v}) that contains v. Let w∗(v) = w′(Cv). Note that G′
r[A

∗] and w∗ correspond
to the tree and weight function obtained by contracting each Cv into a single vertex. If
V (Cv) = {v}, i.e., v is not an inner boundary vertex, then there are no contractions and
w∗(v) = w′(v).

We compute w′(Cv) for each inner boundary vertex v, and temporarily modify the
weight of each v in the top tree on V (A∗) to match w∗(v). Then, we find a centroid c of
G′

r[A
∗] w.r.t. w∗, and undo the weight change.2

By lemma 4.13, a centroid of G′
r must be contained in Cv. We also know a centroid must

be contained in A∗. Thus, by theorem 4.12, a centroid must be contained in Cc∩A∗ = {c},
so c is a centroid of (G′

r, w
′). If c is not virtual, it also is a centroid of (Gr, w). If it is

virtual, the linked non-virtual vertex in Gr is a centroid of (Gr, w).

The running time to find A∗ is O(|V (Sr)|). Computing w(Cv) for each inner boundary
vertex v can be done while traversing Sr, also in O(|V (Sr)|) time. There are at most
degSr

(A∗) ≤ |V (Sr)| inner boundary vertices, so changing the weights in the top tree takes
O(|V (Sr)| log k) time.

2Undoing the weight change is necessary, since we re-use the top tree data structures in later steps.
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Figure 4.3.: A splitting step. Left: The super-tree before splitting. The large black circles
are super-vertices. The small dots are is the set of vertices R to be removed.
The gray circles and ellipses are components obtained after removing R. Right:
The ten super-vertices within eight super-trees obtained after splitting.

Splitting the data structure. We now remove c and its virtual vertices from G′
r and Sr.

Let R be the set of vertices to be removed. First, we remove each v ∈ R from its associated
top tree by deleting all of its incident edges. This may split up each of the top trees into
multiple new top trees. Each new top tree corresponds to a new super-vertex.

The creation of new super-vertices may change the super-tree and split it up into a
super-forest (see figure 4.3 for an example). Let A be a super-vertex from which we
removed a vertex. For each inner boundary vertex u of A, we find the new top tree
to which u belongs. Using this, we can compute all super-edges incident to the new
super-vertices (recall that each super-edge corresponds to a normal edge between two
inner boundary vertices in different super-vertices). Finally, we compute the connected
components of the new super-forest Fr using a simple traversal.

Removing a vertex v from the top trees requires O(log k) time, because degG′
r
(v) ≤ 3.

Since each inner boundary vertex is the endpoint of an edge in Sr, there are at most
O(|E(Sr)|) = O(|V (Sr)|) inner boundary vertices. The running time of splitting the
super-forest is thus O(|R| log k + |V (Sr)| log k + |V (Fr)|).

Recursion. After splitting, we recurse on each component of the super-forest that contains
more than one super-vertex or a super-vertex A with |V (A)| ≥ 2. Components consisting
of a single normal vertex do not have to be considered further.

Total running time. The preprocessing time is O(n log k), as desired.

Consider one search-and-split step. Let G′
r be the input tree, let Sr be the input

super-tree, let R be the set of vertices removed in the splitting step, and let Fr be the
super-forest produced after splitting. The time required to execute the step is

O

(
|V (Sr)| log k + |V (Fr)|+

∑
v∈R

log k

)
.
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Since each vertex is removed only once, the third term adds up to O(n log k) over all
recursive calls. We charge the second term to the recursive calls made by the current call;
observe that the first term in those calls dominates it. The only exception are components
of Fr that consist of a single super-vertex with a single normal vertex, since those are not
covered by recursive call. In that case, we charge the cost to that normal vertex, for a
total cost of O(n).

It remains to bound the first term. If Sr consists of only one isolated super-vertex A,
then we charge the O(log k) cost to the centroid of G′

r[A], for a total of O(n log k) over
the course of the algorithm.

We analyze the other recursive calls in rounds. Assume that in each round, we execute
one step on each remaining super-tree, thereby finding all centroids on a certain level of the
centroid tree. Let F0 be the initial super-tree, and let Fi be the forest of super-trees after
round i. Note that the number of edges cannot grow by splitting, so each Fi contains at
most O(nk ) edges, and therefore at most O(nk ) non-isolated vertices, so the round requires
O(nk log k) time in total.

If the height of the tree is h, then we have precisely h rounds. Thus, the running time
of the algorithm is O((hk + 1)n log k).

In particular, if we know h and set k = h, then the running time is O(n log h). If we
do not know h, we start with k = 2 and run the algorithm for k rounds. If it stops, then
h ≤ k and we are done. Otherwise, try again with k ← k2. The last run of the algorithm,
where h ≤ k ≤ h2, dominates the running time with O(n log h). Thus, we have:

Theorem 4.32. Let G be a tree on n vertices and w be a positive weight function. We can
compute a centroid tree of (G,w) in time O(n log h), where h is the height of the computed
centroid tree.

4.7.2. Spread and zero-weight vertices

Define the spread of a weight function as the ratio between the maximum and minimum
positive weight. In this section, we bound the cost of our output-sensitive algorithm in
terms of the spread, obtaining an improvement when the spread is less than exponential
in the number of vertices (which is very much expected in practice). Observe that we can
arbitrarily scale the weight function without affecting the computed centroid tree; hence
we can assume that all non-zero weights fall within the interval [1,W ], where W is the
maximum weight (and also the spread).

With some adjustments to our algorithm to properly handle zero-weight vertices, we
will obtain:

Theorem 4.7. Let (G,w) be a given weighted tree with n vertices such that all weights
are in {0} ∪ [1,W ] for some W ∈ R≥0. Let m be the number of vertices with positive
weight. We can compute a centroid tree on (G,w) in time O(n + m log log(m + W )) or
O(n + m logm), whichever is lower.

We start with the easy case where all weights are positive and within [1,W ]. Let T
be a centroid tree of (G,w). By definition, if u is a parent of v, then w(Tv) ≤ 1

2w(Tu).
More generally, if v has depth d in T , then w(Tv) ≤ 21−dw(G). Thus, the depth of a

vertex v cannot be more than 1 + log w(G)
w(v) ≤ 1 + log(nW ). This implies that the running
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time of the algorithm of theorem 4.32 is O(n log log(nW )) = O(n log log(n + W )). The
positive-weight case of theorem 4.7 follows.

If we allow zero-weight vertices, however, then the depth bound does not necessarily
hold, since there could be a large unbalanced zero-weight subtree. Also, the top-tree
component of our algorithm does not allow zero weights for technical reasons. It seems that
the top tree implementation of Alstrup et al. [AHLT05] can be adapted to this changed
requirement, but for a simpler presentation, we prefer to use the standard interface.

A solution to both problems is to change the zero weights by a very small amount,
as follows. Let (G,w) be a weighted tree, and let ε > 0. We define the positive weight
function wε : V (G)→ R+ on G as follows: wε

wε(v) =

{
w(v), if w(v) ̸= 0

ε, otherwise.

We now prove that a centroid tree of (G,wε) is also a centroid tree of (G,w) if ε is
small enough. For this, it is enough to show that for every subgraph, no new centroids are
introduced.

Lemma 4.33. Let (G,w) be a weighted tree on n with at least one positive-weight vertex.
For some small enough ε > 0, each centroid of (G,wε) is a centroid of (G,w).

Proof. Let k < n be the number of zero-weight vertices in (G,w). Let c be a centroid of
(G,wε) and let C ∈ C(G− c). We have

w(C) ≤ wε(C) ≤ 1

2
wε(G) =

1

2
(w(G) + εk) <

1

2
w(G) +

1

2
εn.

If ε is small enough (e.g., the minimum positive absolute difference between the weights of
any two disjoint vertex sets), this implies that w(C) ≤ 1

2w(G). Repeating the argument
for each C ∈ C(G− c) shows that c is a centroid of (G,w).

Note that if all weights are integers, we can simply set ε = 1/n (or set ε = 1 and multiply
each other weight by n). We could also instead treat ε symbolically as an infinitesimally
small value, without explicitly computing a value for it.

We now show that the height of the centroid tree w.r.t. wε is essentially bounded by
the spread of w; in other words, replacing w with wε ensures that the computed centroid
tree is “reasonable”. Note that we can ignore the spread of wε here (which may be very
large, if ε is very small).

Lemma 4.34. Let (G,w) be a weighted tree with n vertices such that all weights are in
{0} ∪ [1,W ] for some W ∈ R≥0, and let ε > 0 be defined as in lemma 4.33. Each centroid
tree of (G,wε) has height O(log n + logW ).

Proof. Let T be a centroid tree of (G,wε). By lemma 4.33, T is also a centroid tree of
(G,w). Thus, the depth of each node v with positive weight is at most 1 + log(n ·W ) =
1+log n+logW . This also covers all zero-weight vertices with positive-weight descendants.

Now consider a zero-weight leaf v. Let Tu be the maximal rooted subtree containing v
with w(Tu) = 0. All nodes in Tu have weight ε w.r.t. Wε, so the spread of wε restricted to
V (Tu) is 1. This means that the depth of v in Tu is at most (1 + log n). By maximality
of Tu and the bound for positive-weight vertices, we have depthT (u) ≤ 2 + log n + logW .
This implies depthT (v) ∈ O(log n + logW ), as desired.
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Lemmas 4.33 and 4.34 imply that we can replace w with wε before running the algorithm.
We now have:

Lemma 4.35. Let (G,w) be a weighted tree on n vertices such that all weights are in
{0} ∪ [1,W ] for some W ∈ R. Then we can compute a centroid tree on (G,w) in time
O(n log log(n + W )).

When the number of positive-weight vertices is sublinear, we can speed up the algorithm
by first applying the reduction of theorem 3.10. If m is the number of positive-weight
vertices, then theorem 3.10 reduces the number of overall vertices to 2m (without chang-
ing the weights of remaining vertices), so the running time of lemma 4.35 becomes
O(m log log(m + W )). If W ≥ 2m, we can just use theorem 4.31 for a running time of
O(m logm). This concludes the proof of theorem 4.7.

4.8. Hardness of computing centroid trees

In this section, we show that theorem 4.32 is tight for essentially all n and h (theorem 4.8),
and theorem 4.7 is tight for some range of parameters (theorem 4.9). We start with a
generic lower bound construction.

Lemma 4.36. Let k ≥ 1 and ℓ ≥ 1 be integers. There is a tree Gk,ℓ on k · (ℓ + 1) + 1
vertices and a class Wk,ℓ of weight functions on V (Gk,ℓ) such that:

(i) |Wk,ℓ| = (ℓ!)k.

(ii) Each w ∈ Wk,ℓ has codomain [1, 2ℓ].

(iii) For each w ∈ Wk,ℓ, the weighted tree (Gk,ℓ, w) has a unique centroid tree Cw, and
Cw has height either ℓ + 1 or ℓ + 2.

(iv) For each pair of distinct w,w′ ∈ Wk,ℓ, we have Cw ̸= Cw′
.

Proof. Suppose first that k ≥ 2. Let Gk,ℓ consist of a vertex c, and k stars of size
ℓ + 1, with centers v1, . . . , vk adjacent to c. The remaining ℓ vertices in the star with
center vi are denoted vi,1, . . . , vi,ℓ, for all 1 ≤ i ≤ k. See figure 4.4. Observe that indeed
|V (Gk,ℓ)| = k · (ℓ + 1) + 1.

Let Sℓ denote the family of permutations of {1, . . . , ℓ}. For permutations π1, . . . , πk ∈ Sℓ,
let w = wπ1,...,πk

denote the weight function defined as w(vi,j) = 2πi(j), for all 1 ≤ i ≤ k
and 1 ≤ j ≤ ℓ. In words, wπ1,...,πk

assigns the weights 21, . . . , 2ℓ to the non-central
vertices of the i-th star, permuted according to πi, for all i. For the remaining vertices,

. . . . . .

. . .

. . .

c

v1 v2 vk

v1,1 v1,2 v1,ℓ v2,1 v2,2 v2,ℓ vk,1vk,2 vk,ℓ

Figure 4.4.: Tree Gk,ℓ in the proof of Lemma 4.36.
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w(v1) = · · · = w(vk) = 0, and w(c) = 1. LetWk,ℓ be the family of all such weight functions.
Observe that |Wk,ℓ| = (ℓ!)k and the maximum weight is 2ℓ, so (i) and (ii) hold.

We claim that for any weight function w ∈ W, the centroid tree of (Gk,ℓ, w) is unique,
i.e., (iv) holds. Indeed, let w = wπ1,...,πk

, and observe that the unique centroid of (Gk,ℓ, w)
is c (recall that k ≥ 2). The removal of c splits Gk,ℓ into the k stars with centers v1, . . . , vk.
For all 1 ≤ i ≤ k, the centroid tree of the star with center vi is uniquely determined by
the weight assignment by the permutation πi, and it is easily seen to be the degenerate
tree with nodes vi,1, . . . , vi,ℓ in decreasing order of weights, followed by the star center vi.
The entire search tree has height ℓ + 2, thereby (iii) holds.

In the case k = 1, we omit the vertex c and directly build a single star. Claims (i) to (iv)
are easy to verify if we build Wk,ℓ as above.

We are now ready to show our lower bounds.

Theorem 4.8. Let h ≥ 3 and n ≥ h + 1 be integers. Then there exists a tree G with at
most n vertices and a class W of weight functions on V (G) such that for every w ∈ W,
every centroid tree of (G,w) has height at most h, and every binary decision tree that
solves G for W has height Ω(n log h).

Proof. We use lemma 4.36 with k = ⌊n−1
h−1⌋ and ℓ = h − 2. The number of vertices in

the obtained graph is k · (ℓ + 1) + 1 ≤ n, and the height of each centroid tree is at most
ℓ + 2 = h.

The number of leaves in the decision tree is |Wk,ℓ|, so its height is at least log |Wk,ℓ| =
log((ℓ!)k) ∈ Ω(nh log(h!)) = Ω(n log h).

Theorem 4.8 implies that theorem 4.6 is tight (up to a constant factor) for all n and h.
A slight adaptation of the argument yields:

Theorem 4.9. Let n ∈ N and W ∈ R with 2 ≤W ≤ 2n−2. Then there exists a tree G on
at most n vertices and a class W of weight functions on V (G) with codomain [1,W ], such
that every binary decision tree that solves G for W has height Ω(n log logW ).

Proof. We use lemma 4.36 with ℓ = ⌊logW ⌋ ≥ 2 and k = ⌊n−1
ℓ+1 ⌋ ≥ 1. The number

of vertices in the obtained graph is k · (ℓ + 1) + 1 ≤ n, and the maximum weight of
each w ∈ Wk,ℓ is 2ℓ ≤ W , as desired. The height of each decision tree is log |Wk,ℓ| ∈
Ω(kℓ log ℓ) = Ω(n log logW ).

4.9. Optimal search trees are approximate centroid trees

In this section we prove the characterization of optimal STTs as α-centroid trees. We will
make heavy use of the concept of lifting introduced in section 3.1.

Theorem 4.10. Let T be an optimal search tree on a weighted tree (G,w). Then T is a
2
3 -centroid tree of (G,w).

Proof. Let T be an optimal STT on G, and suppose towards contradiction that T is not
a 2

3 -centroid. Assume w.l.o.g. that w(G) = 1. By taking T to be a minimum height
counterexample, we can assume that the root x of T has a child y with w(Ty) > 2

3 . Let Bx

67



4. Centroid trees

denote the set of vertices not in the same component of G− x as y, and let By denote the
set of vertices not in the same component of G−y as x. Finally, let Bx,y = V (T )−Bx−By.
See figure 4.5 (top left) for an illustration.

By our assumption, w(By ∪Bx,y) = w(Ty) > 2
3 , and thus, w(Bx) < 1

3 . We distinguish
three cases (see figure 4.5 top, middle, bottom).

Case 1. If w(By) > 1
3 , then let T y = rot(T, y, x). The depths of vertices in By decrease

by one and the depths of vertices in Bx increase by one. The depths of vertices in Bx,y

are unchanged. We have

costw(T y)− cost(T,w) = w(Bx)− w(By) <
1

3
− 1

3
= 0,

contradicting the optimality of T .

If Case 1 did not occur, we have w(Bx,y) > 1
3 , and in particular, Bx,y ̸= ∅. Denote by z

the unique child of y in Bx,y.

Case 2. Assume z is on the path in G between x and y. Let T z be the search tree
obtained by lifting z in T . The depths of vertices in Bx increase by one, since each of
these vertices gains z as ancestor. The depths of vertices in By are unchanged, since these
vertices gain z and lose x as ancestors. The depths of vertices in Bx,y are decreased by at
least one, since each loses at least one ancestor from {x, y}. We then have

costw(T z)− cost(T,w) ≤ w(Bx)− w(Bx,y) <
1

3
− 1

3
= 0,

again, a contradiction.

Case 3. Finally, assume that z is not on the path between x and y. Let t ∈ Bx,y be the
unique vertex in G that separates x, y and z. Let T t be the search tree obtained by lifting
t in T .

As in the previous case, depths of vertices in Bx increase by one, depths of vertices in
By stay the same and depths of vertices Bx,y decrease by at least one. To see this, observe
that each vertex in Bx,y gains t as ancestor and loses at least two ancestors from {x, y, z}.
We again have costw(T t) < cost(T,w), a contradiction.

By a similar argument as previously in the chapter, theorem 4.10 implies that a vertex
of weight w(v) > 0 has depth at most log3/2(w(G)/w(v)). Thus, the height of an optimal
tree is at most log3/2(w(G)) if all weights are positive.

In the following, we expand this height guarantee to trees with zero-weight vertices.
Because of the reduction proved earlier (theorem 3.10), we may ignore zero-weight vertices
of degree at most two.

Theorem 4.37. Let (G,w) be a weighted tree on n vertices with weights in {0} ∪ [1,∞),
such that all zero-weight vertices have degree at least three. Then, all optimal search trees
on (G,w) have height at most 2 log3/2w(G)− 2, and there exists an optimal search tree
with height at most log3/2w(G) + log logw(G) +O(1).
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Figure 4.5.: Illustration of the proof of theorem 4.10. A sketch of the underlying graph is
shown to the left and the search tree transformation to the right.

69



4. Centroid trees

Proof. Let T be an optimal search tree on (G,w). As discussed above, all positive-weight
vertices have depth at most d = log3/2w(G). The same is obviously true for all zero-weight
vertices that have a positive-weight descendant. Now consider a maximal rooted subtree
Tv with only zero-weight vertices. Let k = |V (Tv)| and let p denote the parent of v.

Since all vertices in V (Tv) have degree at least three, we have |∂(Tv)| ≥ k + 2. Since
all boundary vertices are ancestors of v (corollary 2.8), we have depthT (p) ≥ k + 2. By
maximality of Tv, either p has positive weight, or p has a descendant with positive weight.
Hence, we have depthT (p) ≤ d, implying k ≤ d− 2.

In the worst case, the height of Tv is precisely k. Still, each node in Tv has depth at
most d+ k ≤ 2d− 2, yielding the general upper bound. On the other hand, we can replace
Tv by an unweighted centroid tree on G[Tv], with height at most log k + 1. This yields the
second upper bound.

Remark. A variant of theorem 4.37 can easily be shown for centroid trees instead of
optimal search trees (cf. lemma 4.34). This is another way of solving the issue of unbalanced
centroid trees in section 4.7.2. However, this does not solve the issue that the standard
top tree interface does not allow zero weights; hence, we use a different approach in
section 4.7.2.
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5. Dynamic programming on k-cut search
trees

In this chapter, we discuss a dynamic programming approach based on Knuth’s algorithm
for optimal static BSTs [Knu71]. Our main result is a polynomial-time approximation
scheme (PTAS) for optimal static search trees on graphs with bounded tree-width. In other
words, given a weighted graph (G,w) with bounded tree-width and an arbitrarily small
ε > 0, our algorithm finds a search tree T on G with cost(T,w) ≤ (1 + ε) · StOPT(G,w),
in time O(nf(ε)) for some function f .

Naive dynamic programming. As a warm-up, let us describe a simple extension of
Knuth’s algorithm to search trees on general graphs. For this, we essentially need two
observations.

First, by observation 3.11, the cost of a search tree can be recursively described as
follows.

Observation 5.1. Let (G,w) be a weighted graph and let T be a search tree on G. Let r
be the root of T and K be the set of children of r. Then

cost(T,w) = w(T ) +
∑
c∈K

cost(Tc, w).

Second, subtree-optimality holds, i.e., a subtree of an optimal STG is also optimal. This
is an immediate consequence of observation 5.1: Any non-optimal subtree can be swapped
with an optimal one to reduce the cost of the overall tree.

Let (G,w) be a connected weighted graph, and let C[G′] = StOPT(G′, w) for each
connected induced subgraph G′ of G. The following recursion holds by the observations
above:

C[G′] = min
r∈V (G′)

w(G′) +
∑
H∈C(G′−r)

C[H]. (5.1)

This suggests a dynamic programming approach, which we sketch now. First, compute
all connected induced subgraphs of G and store them in an array A. We then sort the
graphs in A by number of vertices, in increasing order. Additionally, to ensure we can
efficiently retrieve graphs from A, we fix an arbitrary order on the vertices of G, and sort
the subgraphs in A with the same number of vertices according to lexicographic order of
their sorted vertex sets.

Now, for each G′ in A in order, compute C[G′] and store it in A. Whenever we need
the value C[H] in the recursion (5.1), we do a binary search for H in A. Since H has less
vertices than G′, we know that C[H] has already been computed and stored in A.

This algorithm, which we call DP-Static, runs in time O(n3 · N logN), where n =
|V (G)|, and N is the number of connected induced subgraphs of G. It is not hard to
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5. Dynamic programming on k-cut search trees

compute the list of subgraphs in O(n ·N) time [Wer06b, KS21]. Comparing two subgraphs
according to our order can be done in O(n) time, so each binary search takes O(n logN)
time, and the sorting takes O(n ·N logN) time. Finally, the recursive formula 5.1 checks
up to n possible roots r, computes C(G− r) in time O(m), where m = |E(G)|, and does
up to O(n) searches in A for each r. Overall, the running time is

O(n ·N + n ·N logN + N · n · (m + n · n · logN)) = O(n3 ·N logN).

The algorithm can easily be modified to compute an actual optimal search tree (instead
of only its cost). We thus have:

Theorem 3.3. Given a weighted graph (G,w) with n vertices, we can find an optimal
static STG on (G,w) in time O(n3 ·N logN), where N ≤ 2n is the number of connected
induced subgraphs of G.

If G is a path, then N < n2, so DP-Static runs in time O(n5 log n). But since every
connected subgraph of G can be interpreted as an interval [i, j], we can index subgraphs in
constant time and likewise compute C(G′− r) in constant time, reducing the running time
to O(n3). Knuth [Knu71] improves this to O(n2) with a certain trick that, unfortunately,
seems to be specific to paths and certain very restricted trees [Vod23].

As mentioned in chapter 3, the number N may be exponential (even in the simple case
of a star). However, since N ≤ 2n, the running time is always O(2n · n4). This is already
much better than the brute-force approach of trying every possible search tree: There are
roughly 4n search trees on a path [Sta15], there are Θ((n− 1)!) search trees on a star, and
n! search trees on a clique (see section 2.2.5).

For trees with few leaves, the trivial bound on N can be improved considerably.

Proposition 5.2. Let G be a tree with n vertices and with d leaves. Then G has O(nd)
connected induced subgraphs.

We will prove proposition 5.2 in section 5.1. It follows that DP-Static runs in
O(d · nd+3 log n) time if the input graph is a tree with d leaves.

A slightly weaker version of proposition 5.2 was observed by Høgemo, Bergougnoux,
Brandes, Paul, and Telle [HBB+21]. They also gave a further improvement of DP-Static
if the weight function is uniform. It is based on the following observation: Each tree G
admits a search tree T that minimizes cost(T, 1) where all leaves of G are leaves in T .
Thus, to find an optimal unit-cost search tree on G, it suffices to compute an optimal
search tree T ′ on the search tree (G′, w′) obtained by contracting all leaves (transferring
their weight to their neighbor), and then attaching all leaves of G as leaves to T ′, at the
appropriate positions. We have:

Proposition 5.3. Let G be a tree. Then cost(G, 1) can be computed in time O(d ·
nd+3 log n), where d is the number of leaves in the graph that we obtain when removing all
leaves from G.

Approximation with k-cut search trees. In the following sections, we describe our PTAS.
The main idea is to compute the exact optimum only on a subset of search trees; namely,
on k-cut search trees (see section 2.2.1 for definitions). By definition, every rooted subtree
of a k-cut search tree induces a connected k-cut subgraph.
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It is not hard to adapt the dynamic programming algorithm described above to compute
an optimal k-cut search tree on each connected induced k-cut subgraph, although there
are some subtleties. The harder part is showing that k-cut trees are a good approximation
to the general case. We now summarize the results in this chapter. In the following, a
connected induced k-cut subgraph is called a k-admissible subgraph.

k-admissible
subgraph

In section 5.1, we study the number of k-admissible subgraphs (and thus, subproblems
to compute). We show:

Theorem 5.4. Let G be a graph with n vertices and m edges. For each k ∈ N+, the
number of k-admissible subgraphs of G is O(m · nk−1).

In particular, recall that graphs of tree-width t have O(t · n) edges (lemma 2.37), and
thus have at most O(t · nk) many k-admissible subgraphs.

In section 5.2 we describe a simple data structure that efficiently indexes subproblems,
without requiring binary search. This data structure is used in our algorithm, which we
describe in section 5.3.

Theorem 5.5. Let (G,w) be a connected weighted graph with n vertices, and let k ≥ 2 be
an integer. We can compute an optimal k-cut search tree on (G,w) in time O(k3 · nk+2),
using O(nk) space. If no k-cut search tree exists (i.e., tw(G) > k), then the algorithm
reports that instead.

If the underlying graph is a tree, we can improve the running time somewhat.

Theorem 5.6. Let (G,w) be a weighted tree with n vertices, and let k ≥ 2 be an integer.
We can compute an optimal k-cut search tree on (G,w) in time O(k · nk+1), using O(nk)
space.

Finally, in section 5.4, we bound the approximation factor. Again, the tree case allows
some improvement.

Theorem 5.7. Let (G,w) be a weighted tree, let T be a search tree on G, and let k ≥ 2.
Then, there exists a k-cut search tree T ′ on G such that

cost(T ′,W ) ≤
(

1 +
1

⌊k/2⌋

)
· cost(T,W ).

Theorem 5.8. Let (G,w) be a connected weighted graph of tree-width t, let T be a search
tree on G, and let k ≥ 3t + 1. Then, there exists a k-cut search tree T ′ on G such that

cost(T ′,W ) ≤
(

1 +
2t + 2

k − 3t

)
· cost(T,W ).

Combining these results, we obtain our two main theorems.

Theorem 3.4. Given a weighted tree (G,w) and an integer k ≥ 2, we can compute a
search tree T on G in time O(k · nk+1) such that

cost(T,w) ≤
(

1 + 1
⌊k/2⌋

)
· StOPT(G,w).
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Theorem 3.5. Given a weighted graph (G,w) with tree-width t and an integer k ≥ 3t + 1,
we can compute a search tree T on G in time O(k3 · nk+3) such that

cost(T,w) ≤
(

1 + 2t+2
k−3t

)
· StOPT(G,w).

In contrast to the algorithms in chapter 4, these algorithms have no particular problems
with handling zero-weight vertices. Lemma 3.14 can be directly applied to improve the
running times as follows: if there are m vertices with positive weight, then the running
times become O(k ·mk+1 + n) and O(k3 ·mk+3 + n).

Discussion. The approximation algorithms in this chapter underscore the usefulness of
k-cut search trees, and their connection to tree-width. Dynamic programming on k-cut
search trees has been used for related problems [LK23], and further applications are to be
expected.

The most direct avenue to improve our algorithms would be to improve the approximation
factor. Especially for non-trees, the bound seems rather loose.

Open question 5.1. Can theorem 5.8 be improved or extended to cases t ≤ k ≤ 3t?

Notation. If H is a k-admissible subgraph of a graph G, we also occasionally call the
vertex set V (H) k-admissible for brevity. For v ∈ V (H), if all components of H − v are
k-admissible, then we call v a k-admissible root for H (or V (H)).k-admissible

root

5.1. Counting k-cut subgraphs

In this section we show how to compactly store and efficiently access the list of k-admissible
subgraphs, i.e., the list of subproblems. We start with bounding the length of that list.

Theorem 5.4. Let G be a graph with n vertices and m edges. For each k ∈ N+, the
number of k-admissible subgraphs of G is O(m · nk−1).

Proof. We give an encoding of each k-admissible subgraph. Let (u, v) be a tuple of adjacent
vertices in G (like a directed edge) and let B ⊆ V (G) be a set of k − 1 vertices. Observe
that there is at most one k-admissible set A ⊆ V (G) such that v ∈ A and ∂(A) = B ∪ {u}.
On the other hand, each k-admissible set admits some encoding (u, v,B).

Observe that there are 2m choices for (u, v) and less than
(

n
k−1

)
choices for B. Thus,

the number of k-admissible subgraphs is at most 2 ·m ·
(

n
k−1

)
∈ O(m · nk−1).

Observe that theorem 5.4 is tight already for stars: Removing any k leaves yields a
k-admissible subgraph. Thus, the number of k-admissible subgraphs of a star with n
vertices is at least

(
n−1
k

)
.

We now make a slight detour and prove proposition 5.2, using theorem 5.4.

Proposition 5.2. Let G be a tree with n vertices and with d leaves. Then G has O(nd)
connected induced subgraphs.
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Proof. Let H be a connected subgraph of G. We show that |∂G(H)| ≤ d, which implies
the claim by theorem 5.4.

Each boundary vertex b ∈ ∂G(H) is contained in some connected component Gb of
G−H, and no two boundary vertices are contained in the same component (otherwise,
there would be a cycle). Further, each component Gb has at least two leaves (one of which
may be b). Hence, G has at least |∂G(H)| leaves, so |∂G(H)| ≤ d.

5.2. Indexing k-cut subgraphs

In this section, we show how to compactly store and access the list of k-admissible
subgraphs, i.e., the list of subproblems. We will use an encoding similar to the one in the
proof of theorem 5.4.

Fix a connected graph G and some total order on V (G). A representation of a connected representation

induced subgraph H of G a set R ∈ V (G)2 of tuples (u, v). For each (u, v) ∈ R, we have
u ∈ ∂G(H), v ∈ V (H), and {u, v} ∈ E(G), and each vertex u ∈ ∂G(H) occurs exactly
once as the first element of a tuple in R. Shown below is an example of a 2-cut subgraph
(red) with two possible representations R1 and R2.

a

b

c
d

e
R1 = {(a, b), (e, d)}
R2 = {(a, c), (e, d)}

In the following, a representation is always stored as a list that is sorted by the first
component of each tuple.

Recall that we fixed a total order on V (H). We call a representation R of H canonical
canonical
representation

if for each (u, v) ∈ R, the vertex v is the minimal neighbor of u that is contained in V (H).
Observe that every k-admissible subgraph has a unique canonical representation of size k.
Further observe that if G is a tree and k ≥ 2, then every representation of size at least k
is canonical, since each boundary vertex u has only one valid neighbor. This implies that
all k-admissible subgraphs of trees are identified already by their boundary.

We now proceed with describing our data structure. First, the following easy lemma
will be helpful.

Lemma 5.9. Let n, k ∈ N+. There is a data structure that stores some value xU for each
subset U ⊆ [n] of size at most k, using O(nk) space. The data structures requires O(nk)
time to set up, with xH = ⊥ for all H initially.

Given a set U ⊆ [n] of size at most k as a sorted list, we can access (read or write) xU
in time O(k).

Proof. Maintain arrays A0, A1, . . . , Ak. The array Ai has size precisely ni and is indexed
by tuples in [n]i. Interpreting a given set U as a tuple lets us access the associated
value.

We are now ready to prove the main lemma of this section.
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5. Dynamic programming on k-cut search trees

Lemma 5.10. Let G be a connected graph, and let k ∈ N, k ≥ 2.

There is a data structure that stores some value xH for each k-admissible subgraph H
of G, using O(nk) space. The data structures requires O(nk) time to set up, with xH = ⊥
for all H initially.

Given the canonical representation of a k-admissible subgraph H of G, we can access
(read or write) xH in time O(k) if G is a tree, or time O(k + log n) otherwise.

Proof. Fix some order on V (G). The basic idea is to group k-admissible graphs by
boundary. We use lemma 5.9 to maintain a data structure A that allows accessing values
associated with each set of at most k vertices of G. The values in A are initially empty
binary search trees. Keys in the BSTs will be vertices in G. The running time of the
initialization step is clearly O(nk).

Suppose we access xH with the canonical representation R of a k-admissible subgraph H.
Let i = |R| and suppose for now that i ̸= 1.

Let B = ∂G(H). We can easily compute B and store it as a sorted list in O(i) ⊆ O(k)
time, since B = {u | (u, v) ∈ R}. We first find the binary search tree T in A that is
associated to B.

Let u be the minimal vertex in B and let v ∈ V (H) such that (u, v) ∈ R. Observe that
v uniquely identifies H among induced subgraphs with boundary B.

We search for the key v in T . If the search is successful, we either return the attached
value or change it, as required. If not, the we either return ⊥ (read access) or insert u
with the given value attached (write access). This clearly takes O(log n′) time, where n′ is
the number of items in T . We clearly have n′ ≤ n, so the access time is O(k + log n).

If G is a tree, we can improve the access time somewhat. Recall that for each B ⊆ V (G),
since |B| ≠ 1, there is at most one connected subgraph with boundary exactly B. Thus,
every BST in the data structure has size at most one, so the overall access time is O(k).

It remains to consider the case i = 1. Let {(u, v)} = R. We simply maintain an array
A′ of size n2, indexed by tuples in [n]2. The value xH is stored at position (u, v) in A′.
The access time is clearly O(1).

5.3. Finding an optimal k-cut search tree

We now describe our main algorithm. Fix a weighted graph (G,w) and a positive integer k.
For each k-admissible subgraph H, we compute a search tree S[H] on H such that
|∂G(S[H]v)| ≤ k for each v ∈ V (S[H]), and cost(S[H], w) is minimal for such a search
tree. Write S[H] = ⊥ if no such search tree exists or H is not k-admissible.

Observe that S[H] is not necessarily an optimal k-cut search tree on H. This would
only require all rooted subtrees of S[H] to be k-cut in the subgraph H; instead, we require
them to be k-cut in the whole graph G.

Let A[H] = cost(S[H], w), or A[H] = ∞ if S[H] = ⊥. In the following, we focus on
computing A[H]; our algorithm can easily be modified to compute S[H]. If R is the
canonical representation of H, we write A[R] = A[H] in the following.

The recursion from the general case (eq. (5.1)) clearly also holds here:
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Observation 5.11. The following recursive formula holds.

A[H] = min
r∈V (H)

w(H) +
∑

C∈C(H−r)

A[C] if H is k-cut;

A[H] =∞ otherwise.

Algorithm 5.1 is a straight-forward implementation of the recursive formula. We store
A using the data structure of lemma 5.10 as a cache. Accessing A[R] works as follows.
If |R| > k, then clearly A[R] = ∞. If |R| ≤ k, we first check if R is stored in the data
structure. If yes, we return the cached result. Otherwise, we compute Opt-k-cut-STG(R)
and insert the result into the data structure.

The initial call, which computes the optimum cost of a k-cut search tree on G, is
Opt-k-cut-STG(∅). Observe that it returns ⊥ if there is no k-cut search tree on G, i.e.,
if the tree-width of G is strictly greater than k.

Line 3 of algorithm 5.1 deserves a more thorough explanation. We compute canonical
representations of the components of H − r as follows. Let B = ∂G(H) = {u | (u, v) ∈ R}.
For each neighbor u of r, perform a depth-first search starting at u that does not traverse
edges towards any of the vertices B ∪ {v}. This means we traverse the whole component
Cu of H − v that contains u. Computing the canonical representation of Cu is easily done
during the traversal.

To avoid traversing components twice, we simply keep a global set of already visited
vertices and ignore a neighbor u if it has been visited before.

This concludes the algorithm description. We proceed with the running time analysis.
Let n = |V (G)| and m = |E(G)|. By theorem 5.4, we solve a total of m ·nk−1 subproblems.

Line 3 is executed up to n times, and each execution runs in time O(m). The running
time of line 4 is dominated by the accesses to A[·, ·]. We claim that the total number of
such accesses over all iterations is at most 2m. Indeed, each component C represented by
Ri can be identified by the current root r and some neighbor v ∈ V (C) of r. Hence, each
edge corresponds to at most two accesses.

One access to A costs time O(k log n) by lemma 5.10. Overall, we get a running time
of O(n ·m + m · k log n) = O(m(n + k log n)) for a single call to Opt-k-cut-STG(R).
Using theorem 5.4 to bound the total number of calls, we have a total running time of
O(nk−1 ·m2 · (n + k log n)) ⊆ O(k ·m2 · nk).

Recall that if some k-cut search tree exists, then tw(G) ≤ k and thus m ≤ k · n by
lemma 2.37. If we modify the algorithm to first check whether m ≤ k · n and abort if not,
we can bound the running time by O(k3 · nk). Thus, we have:

Theorem 5.5. Let (G,w) be a connected weighted graph with n vertices, and let k ≥ 2 be
an integer. We can compute an optimal k-cut search tree on (G,w) in time O(k3 · nk+2),
using O(nk) space. If no k-cut search tree exists (i.e., tw(G) > k), then the algorithm
reports that instead.

Improvement for trees. If G is a tree, we can reduce the running time by computing
line 3 of algorithm 5.1 more efficiently, as follows.

Lemma 5.12. Let G be a graph, and let H be a k-admissible subgraph of G, given as its
canonical representation R. Then, for all r ∈ V (H), we can compute a list of canonical
representations of the subgraphs C(H − r) in total time O(k · n)
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5. Dynamic programming on k-cut search trees

Algorithm 5.1 Finding an optimal k-cut STG

Input: A weighted graph (G,w) and the canonical representation R of a connected
induced subgraph H of G.
Output: A[R] = A[H].

1: procedure Opt-k-cut-STG(R)
2: for r ∈ V (H) do
3: Compute canonical representations R1, R2, . . . , Rℓ of components C(H − r)
4: cr = w(H) +

∑ℓ
i=1A[Ri]

5: return minr cr

Proof. Start by constructing a rooting S of G at an arbitrary vertex. For each node
v ∈ V (S), compute Rv = {(u, v) ∈ R | v ∈ V (Sv)}. Store Rv as a sorted list. This can be
done in time O(k · n) in a bottom-up fashion (recall that R is sorted).

Now take some vertex v. The components of H − r are the following:

• For each child c of r in S, the subgraph H[Sc]. The canonical representation of
H[Sc] is Rc ∪ {(v, c)} and can be computed in O(k) time (since Rc is sorted).

• If v has a parent p, then there is one more component G− V (Sv), and its canonical
representation is R \Rv ∪ {(v, p)}, which again can be computed in O(k) time.

Hence, the running time for each v is O(k · (nv + 1)), where nv is the number of children
of v, adding up to O(k · n) overall.

In the modified algorithm, the running time of line 3 is thus O(k · n) over all iterations
in a single call of Opt-k-cut-STG. Further, by lemma 5.10 each access to A needs only
O(k) time. This works out to a total running time of O(1 + k · n + n · k) = O(n · k) per
subproblem. By theorem 5.4, we have O(m · nk−1) = O(nk) subproblems. Thus:

Theorem 5.6. Let (G,w) be a weighted tree with n vertices, and let k ≥ 2 be an integer.
We can compute an optimal k-cut search tree on (G,w) in time O(k · nk+1), using O(nk)
space.

5.4. k-cut search trees approximate depth

In this section, we show theorems 5.7 and 5.8. Our proof is algorithmic, i.e., we give an
algorithm that transforms an arbitrary search tree T on G into a k-cut search tree T ′,
such that the cost increases only by a small factor 1 + ε. It is enough to show that our
algorithm increases the depth of each node by no more than 1 + ε. Indeed, observe that
then cost(T ′, w) ≤ (1 + ε) · cost(T,w).

We now give an informal description of the special case where G is a tree. Our algorithm
performs a top-down traversal of the search tree T ′. Whenever we encounter a node x
that is not a k-admissible root of V (Tx), we choose a k-admissible root v ∈ V (Tx), and
replace x with v by rotating v to the top of Tx (i.e., we lift v in Tx, see section 3.1). We
then recurse on the children of x (or v, if we performed the replacement).
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5.4. k-cut search trees approximate depth

As we prove later, every k-admissible set of vertices in a tree has a k-admissible root.
Thus, our algorithm indeed produces a k-cut search tree. To bound the cost, we need
to ensure that the root replacement only happens every ≈ k/2 steps on any given root
path in the search tree. This means that the root path of every node v in T ′ has at most
≈ depthT (v)/(k/2) “new” nodes, implying that its depth increases by no more than a
factor of roughly 1 + 2/k.

The key to avoid frequent root replacements is to carefully choose the k-admissible
root v. Essentially, if V (Tx) has boundary size k, then there exists a node v that “splits”
the boundary into parts of size at most k/2 (see figure 5.1). This means that v is actually
a (k/2 + 1)-admissible root. Further observe that, with every step from parent to child,
the boundary size increases by at most one (by observation 2.7). Hence, only after k/2− 1
more steps can the boundary size be k again and we may need to do a replacement step.

The algorithm sketched above gives a slightly worse approximation factor then stated
in theorem 5.7, so some additional ideas are required. We give an improved version of the
algorithm in section 5.4.1.

To extend the algorithm to graphs with bounded tree-width, there may not be a single
suitable node v to replace x with. Instead, we may need multiple nodes to split the
boundary of V (Tx). That algorithm is presented in section 5.4.2.

5.4.1. Trees

In this section, we prove:

Theorem 5.7. Let (G,w) be a weighted tree, let T be a search tree on G, and let k ≥ 2.
Then, there exists a k-cut search tree T ′ on G such that

cost(T ′,W ) ≤
(

1 +
1

⌊k/2⌋

)
· cost(T,W ).

We first need some definitions and technical lemmas. Let G be a tree and let A ⊆ V (G)
induce a connected subgraph of G. A vertex v ∈ A is a boundary centroid of A (or G[A]) boundary

centroid
if for each component C of G− v, we have |∂(A) ∩ V (C)| ≤ |∂(A)|/2. See figure 5.1 for
an example.

A related, more general concept is that of α-separators [BGHK95, Bod98]. Let B be a
(not necessarily connected) subset of vertices of G. A vertex v ∈ V (G) is an α-separator α-separator

for B in G if each component C ∈ C(G− v) contains at most α · |B| many vertices of B.

Note that a 1
2 -separator v for B = V (G) in G is a classical centroid (see chapter 4).

Further, if B = ∂(A) for some connected subset A ⊆ V (G) and v ∈ A, then v is a boundary
centroid of A.

Lemma 5.13 ([BGHK95, Lemma 3.4]). Let G be a tree and B ⊆ V (G). Then there is a
1
2 -separator for B in G.1

Lemma 5.13 is not quite sufficient for our purposes, since for boundary centroids we
additionally require the property v ∈ A. We now show that it holds in all relevant cases.

1This also follows from the existence of weighted centroids: A 1
2
-separator for B is the same as a

centroid of (G,w), where w(v) = 1 if v ∈ B and w(v) = 0 otherwise.
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5. Dynamic programming on k-cut search trees

Figure 5.1.: A vertex (red) splits the k = 6 boundary vertices (blue) into parts of size at
most k/2 = 3.

Lemma 5.14. Let G be a tree and let A ⊆ V (G) induce a connected subgraph of G. If
|∂(A)| ≥ 3, then each 1

2 -separator for ∂(A) in G is contained in A.

Proof. Suppose v /∈ A is a 1
2 -separator for ∂(A) in G. Since G[A ∪ ∂(A)] is connected, all

vertices in ∂(A), except possibly v (if v ∈ ∂(A)) lie in a single component of G− v. Since
|∂(A)| − 1 > |∂(A)|/2 by assumption, this implies that v is not a 1

2 -separator for ∂(A)
in G.

If |∂(A)| = 2, this is not true; each of the two boundary vertices is also a 1
2 -separator.

However, every other vertex in the convex hull ch(∂(A)) is a boundary centroid. Hence,
we have

Corollary 5.15. Let G be a tree and let A ⊆ V (G) induce a connected subgraph of G. If
|∂(A)| ≥ 2, then A has a boundary centroid.

Algorithm 5.2 shows our procedure to make a search tree k-cut. The initial call is
Fix(T, k, x) with x = root(T ). We remark that in line 3, we find a boundary centroid of
V (Tc) instead of V (Tx). The latter would make the correctness proof easier, but would
yield a worse cost approximation factor in the end.

The following lemma is essential for proving correctness and the approximation guarantee.

Lemma 5.16. Let S be a tree, let k ≥ 2, let A ⊆ V (G) be k-admissible, and let x ∈ A.
Suppose that there is a component C of G[A]− x that is not k-admissible and let v be a

boundary centroid of C. Then,

(i) |∂(A)| = k.

(ii) v is a k-admissible root for A.

Algorithm 5.2 Transforming an arbitrary STT into a k-cut STT.

Input: search tree T on a tree G, constant k ≥ 2, node x ∈ V (T ).
1: procedure Fix(T, k, x)
2: if |∂(Tc)| > k for some child c of x then ▷ Check if x is a k-admissible root
3: v ← boundary separator of V (Tc)
4: Lift v in Tx

5: x← v
6: for each child c of x do
7: Fix(T, k, c)
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5.4. k-cut search trees approximate depth

(iii) The component of G[A]− v that contains x has boundary size at most ⌈k/2⌉.

Proof. Part (i) follows from observation 2.6 and the assumptions that |∂(A)| ≤ k and
|∂(C)| > k. More precisely, we have ∂(C) = ∂(A) ∪ {x}, which will be useful soon.

For parts (ii) and (iii), consider a component C ′ of G[A]− v. Figure 5.2 sketches the
situation. We need to show that |∂(C ′)| ≤ k, and |∂(C ′)| ≤ ⌈k/2⌉ if x ∈ V (C ′). By
observation 2.6, we have ∂(C ′) ⊆ ∂(A) ∪ {v}. We bound the size of U = ∂(C ′) \ {v}.

Observe that U ⊆ ∂(A) ⊆ ∂(C). Further, clearly V (C ′)∪U induces a connected subgraph
of G, and thus is contained in a single component C ′′ of G − v, so U ⊆ ∂(C) ∩ V (C ′′).
Now the fact that v is a boundary centroid of C implies that

|U | ≤ |∂(C) ∩ V (C ′′)| ≤ ⌊|∂(C)|/2⌋ = ⌊k+1
2 ⌋ = ⌈k2⌉ ≤ k − 1.

Since |∂(C ′)| = |U |+ 1, this implies (ii).
Now suppose x ∈ V (C ′). Then x ∈ V (C ′′) \ U . Since also x ∈ ∂(C) by definition, using

the same argument as before, we have |U ∪ {x}| ≤ ⌈k2⌉ and thus |U | ≤ ⌈k2⌉ − 1, implying

|∂(C ′)| ≤ ⌈k2⌉.

For the remainder of this section, consider a call Fix(T, k, root(T )) with input search
tree T . Let T ∗ denote the output, i.e., the search tree after the call.

Observe that each call Fix(T, k, x) only affects nodes within Tx, though it does depend
on nodes outside of Tx, namely ∂(Tx).

Correctness. The following proves that algorithm 5.2 produces a k-cut search tree.

Lemma 5.17. At the start of each recursive call Fix(T ′, k, x), the set V (T ′
x) is k-

admissible.

Proof. We proceed by induction. For the initial call, we have x = root(T ′), so T ′
x is

0-admissible.
Now take some recursive call Fix(T ′, k, x), and assume that V (T ′

x) is k-admissible. If
V (Tc) is k-admissible for each child c of x in T ′, then the claim holds for all recursive calls
in line 7.

Now suppose that x has some child c with |∂(Tc)| > k, and let v be the boundary
centroid of V (Tc). Then v is a k-admissible root for V (Tc) by lemma 5.16. Since we rotate
v to the top of Tx, all recursive calls in line 7 are valid.

v
xC ′

...
...

C ′

...U

C ′′

C

G[A]

...U
C ′′

Figure 5.2.: Illustration of the proof of lemma 5.16. The case x /∈ V (C ′) is labeled in red,
the case x ∈ V (C ′) is labeled in blue.
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5. Dynamic programming on k-cut search trees

Cost increase. We say a node x is marked if there is a recursive call Fix( · , x) where
lines 3 to 5 were executed. We also say that the call Fix( · , x) marks x. We next show
that, essentially, a node x is not touched again after being marked.

Lemma 5.18. Consider a call Fix(T ′, x) that marks x, and let T ′′ be the search tree
after executing line 5. Then x has a parent p in T ∗, and we have V (T ∗

p ) = V (T ′
x) and

V (T ∗
x ) = V (T ′′

x ).

Proof. Observe that Fix(T ′, x) makes the computed boundary centroid v a parent of x,
and that V (T ′′

v ) = V (T ′
x). By the recursive structure of the algorithm, there will be no

later calls Fix( · , v). This already implies that V (T ∗
v ) = V (T ′′

v ) = V (T ′
x).

Since x is a child of v in T ′′, there will be another call Fix( · , x). However, lemma 5.16
implies that |∂(T ′′

x )| < k, so x must be a k-admissible root of G[T ′′
x ] (by observation 2.7),

and therefore lines 3 to 5 are not executed. Thus, x stays a child of v, and will not be
involved in further recursive calls. We conclude V (T ∗

x ) = V (T ′′
x ) and p = v, the latter of

which implies V (T ∗
p ) = V (T ′

x).

With this in mind, we prove the following two technical lemmas. First, we show that a
root path cannot contain many marked nodes.

Lemma 5.19. Let x, y be distinct marked nodes such that x is an ancestor of y in T ∗.
Then, depthT ∗(x)− depthT ∗(y) ≥ ⌊k/2⌋+ 1.

Proof. Let p be the parent of y in T ∗. By lemma 5.18, we have V (T ∗
p ) = V (T ′

y), where T ′

is the tree at the beginning of the call Fix(T ′, y) that marks y. Lemma 5.16 implies that
|δ(T ∗

p )| = k.

Moreover, observe that |δ(T ∗
x )| ≤ ⌈|δ(T ∗

p )|/2⌉ = ⌈k/2⌉; this follows from lemmas 5.16
and 5.18. Finally, observation 2.7 implies that depthT ∗(p) − depthT ∗(x) ≥ |δ(T ∗

x )| −
|δ(T ∗

p )| ≥ ⌊k/2⌋. Since depthT ∗(y) = depthT ∗(p) + 1, this concludes the proof.

Now, we show how increasing depths are linked to marked nodes.

Lemma 5.20. Let u ∈ V (T ), and let m be the number of marked nodes that are ancestors
of u in T ∗. Then depthT ∗(u) ≤ depthT (u) + m.

Proof. The depth of a node can only increase when some recursive call Fix(T ′, x) executes
lines 3 to 5. Let T ′′ be the search tree at line 5.

Observe that T ′′
v is obtained by lifting v in Tx. Hence, by observation 3.12, lines 3 to 5

can only increase the depth of the nodes in the component C of G− v that contains x,
and only by one. Clearly, we have V (C) = V (T ′′

x ), since x is a child of v in T ′′
v . Observe

that x is a marked node and that V (T ′′
x ) = V (T ∗

x ) by lemma 5.18. Thus, the depth of a
node u ∈ V (T ∗) increases at most once for each marked ancestor of u.

By lemma 5.19, the root path of a node u in T ∗ contains at most

1

⌊k/2⌋+ 1
· depthT ∗(u)
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5.4. k-cut search trees approximate depth

marked nodes. By lemma 5.20, we thus have

depthT ∗(u) ≤ depthT (u) +
1

⌊k/2⌋+ 1
· depthT ∗(u)

=⇒ depthT ∗(u) ≤
(

1 +
1

⌊k/2⌋

)
· depthT (u).

This concludes the proof of theorem 5.7.

Remark. It is tempting to try extending the approximation algorithm (with some ratio
(1 + ε) > 2) to the the easiest k = 1 case, i.e., when the STT is a rooted version of G.
Unfortunately, 1-cut trees cannot give an o(n/ log n)-approximation of the STT optimum.
To see this, take G to be a path, and observe that every rooting of G has average depth
Ω(n), whereas a balanced BST on G (which is, in particular, a 2-cut tree) has maximum
depth O(log n).

5.4.2. Graphs with bounded tree-width

We now turn to graphs with bounded tree-width. Unfortunately, a boundary centroid is
no longer guaranteed to exist; in fact, there can even be k-admissible subsets without a
k-admissible root. For example, in the picture below, the circled subgraph is 2-admissible,
but has no 2-admissible root.

The solution is to use sets of vertices in place of a single boundary centroid. For this,
we introduce the following concept.

Let G be a graph and let A ⊆ V (G) induce a connected subgraph of G. A set S ⊆ A is
a t-boundary centroid set of A (or G[A]) if |S| ≤ t + 1 and each component of G[A \ S] t-boundary

centroid set
has boundary size at most 1

2 |∂(A)|+ t.

It is not hard to show that if G is a tree and c is a boundary centroid for A in G, then
{c} is a 1-boundary centroid set for A in G. We now show the existence of small boundary
centroid sets in graphs with bounded tree-width.

Lemma 5.21. Let G be a connected graph of tree-width t, and let A ⊆ V (G) induce a
connected subgraph of G. Then there exists a t-boundary centroid set for A in G.

Proof. Since tw(G) ≤ t, there exists a t-cut search tree T on G. By lemma 5.13, the
unrooting of T has a 1

2 -separator s for ∂(A). We claim that S = (∂(Ts) ∪ {s}) ∩ A is a
t-boundary centroid for A in G.

Clearly, |S| ≤ t + 1. Let H be a connected component of G[A]− S. We need to show
that ∂(H) ≤ 1

2 |∂(A)|+ t.

First, consider the case that V (H) ⊆ V (Ts). Since either s /∈ A or s ∈ S, we have
s /∈ V (H), and thus actually V (H) ⊆ V (Tc) for some child c of s in T . This implies
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5. Dynamic programming on k-cut search trees

∂(H) ⊆ V (Tc)∪ ∂(Tc). Since also ∂(H) ⊆ S ∪ ∂(A) by observation 2.6 and V (Tc)∩ S = ∅,
we have

|∂(H)| ≤ |V (Tc) ∩ ∂(A)|+ |∂(Tc)| ≤ 1
2 |∂(A)|+ t

where the second inequality holds because s is a 1
2 -separator of ∂(A) in the unrooting of T

and T is t-cut.

Second, consider the case that V (H) is disjoint from V (Ts). We claim that ∂(H) is then
also disjoint from V (Ts). Indeed, suppose that b ∈ ∂(H) ∩ V (Ts), and let v be a neighbor
of b in V (H). Then we have v ∈ ∂(Ts). Since v ∈ V (H) ⊆ A, this implies v ∈ S, which
contradicts the definition of H.

Using disjointness of ∂(H) and V (Ts) together with the previous observation ∂(H) ⊆
S ∪ ∂(A), we have

|∂(H)| ≤ |(S ∪ ∂(A)) \ V (Ts)| ≤ |S \ {s}|+ |∂(A) \ V (Ts)| ≤ t + 1
2 |∂(A)|.

The second inequality again holds because s is a 1
2 -separator of ∂(A) in the unrooting

of T .

Finally, suppose V (H) contains both a vertex u ∈ V (Ts) and a vertex v /∈ V (Ts). Since
H is connected, w.l.o.g., there is an edge between u and v. But then v ∈ ∂(Ts), and since
v ∈ A, this implies v ∈ S, contradicting the definition of H. Thus, this third case cannot
occur and we are done.

We are now ready to consider algorithm 5.3, which serves as an existence proof of
well-approximating k-cut trees. It is based on a simplified version of algorithm 5.2. The
initial call Fix(T, t, k, root(T )) transforms T into a k-cut search tree.

Fix k ≥ 3t + 1 and consider a call Fix(T, t, k, x) where lines 3 and 4 are executed. We
then say this call is a marking call and the vertices in S are marked by it. Note the
difference to section 5.4.1, where x was considered marked instead of S. Let T ′ be search
tree before the recursion (after line 4).

Since lines 3 and 4 are a bit more complicated then their equivalent in algorithm 5.2,
we study their effect in more detail. First, since Tx is replaced by a tree whose root is in
S, we have:

Observation 5.22. Let s∗ = LCAT ′(S). Then s∗ ∈ S and V (T ′
s∗) = V (Tx), and thus

|∂(T ′
s∗)| = k − t.

Algorithm 5.3 Transforming an STG into a k-cut STG.

Input: search tree T on a graph G, constant t ≥ tw(G), constant
k ≥ 3t + 1, node x ∈ V (T ).

1: procedure Fix(T, t, k, x)
2: if |∂(Tx)| = k − t then
3: S ← t-boundary centroid set of V (Tx)
4: Lift S in Tx ▷ See section 3.1.
5: for each child c /∈ S of some s ∈ S do
6: Fix(T, k, c)
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5.4. k-cut search trees approximate depth

Second, the boundary sizes of nodes in S and their children can be bounded as follows.

Lemma 5.23. We have

(i) |∂(T ′
s)| ≤ k for each s ∈ S; and

(ii) |∂(T ′
c)| ≤ k+t

2 for each child c /∈ S of some s ∈ S in T ′.

Proof. Let s∗ ∈ S such that V (T ′
s∗) = V (Tx), as established in observation 5.22. We

have |∂(T ′
s∗)| = |∂(Tx)| = k − t. Now take some s ∈ S \ {s∗}. We have s∗ ≺T ′ s and

the path from s∗ to s in T ′ contains only nodes in S, since S is a prefix of T ′
s∗ . Thus,

∂(T ′
s) ⊆ ∂(T ′

s∗) ∪ S \ {s} by observation 2.7, implying |∂(T ′
s)| ≤ k − t + t = k.

Now let c be a child of some s ∈ S. Clearly V (Tc) corresponds to a component of
G[V (T ′

s∗)] − S, and thus has boundary size at most 1
2 |∂(T ′

s∗)| + t = k+t
2 , since S is a

t-boundary centroid set.

From lemma 5.23 and observation 2.7, and the fact ∂(T ) = ∅, it follows:

Lemma 5.24. If t ≤ k, and if T is a search tree on a graph of tree-width at most t, then
Fix(T, t, k, root(T )) transforms T into a k-cut search tree.

It remains to show the cost-approximation ratio of algorithm 5.3. From now on, let T ∗

be the final tree produced by Fix(T, t, k, root(T )). Clearly, every node is marked at most
once, and not touched again afterwards; hence, the facts established in observation 5.22
and lemma 5.23 for marked nodes also hold in T ∗.

Lemma 5.25. Let s, s′ be nodes that both marked, but not by the same call, and let
s ≺T ∗ s′. Then depthT ∗(s′)− depthT ∗(s) ≥ 1 + 1

2(k − 3t).

Proof. Lemma 5.23 implies that there must be a node x on the path between s and s′

in T ∗ that is the child of some marked node and satisfies |∂(T ∗
x )| ≤ k+t

2 . Let s∗ be the
lowest-depth node in T ∗ that was marked by the same call as s′.

We have s ≺T ∗ x ⪯T ∗ s∗ ⪯T ∗ s′, and we have |∂(T ∗
s∗)| = k − t by observation 5.22. On

the other hand, we have |∂(T ∗
x )| ≤ k+t

2 < k − t by assumption (recall that k ≥ 3t + 1).
This means that x ̸= s∗ and thus x ≺T ∗ s∗. With this in mind, we get

depthT ∗(s′)− depthT ∗(s) ≥ depthT ∗(s∗) + 1− depthT ∗(x)

≥ (k − t) + 1− 1
2(k + t) = 1 + 1

2(k − 3t).

The following lemma finishes the proof of theorem 5.8.

Lemma 5.26. For each v ∈ V (G), we have

depthT ∗(v) ≤
(

1 +
2t + 2

k − 3t

)
· depthT (v).

Proof. Since only marked nodes are lifted, the difference d = depthT ∗(v)− depthT (v) is at
most the number of marked nodes on the root path P of v in T ∗. Suppose these marked
nodes are marked in p different calls. Then d ≤ p · (t + 1).

Lemma 5.25 implies that P has 1
2(k − 3t) unmarked nodes between any two nodes that

were marked in different calls. Since the topmost marked node in P has boundary size
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k − t by observation 5.22, it must have at least k − t− 1 ≥ k − 3t (unmarked) ancestors.
Thus, we have

depthT ∗(v) = |P | ≥ (k − t− 1) + (p− 1) · 12(k − 3t) + d

≥ p · 12(k − 3t) + d

=⇒ depthT (v) ≥ p · 12(k − 3t) by def. of d

≥ d
t+1 ·

1
2(k − 3t) since d ≤ p · (t + 1)

=⇒ d ≤ 2t + 2

k − 3t
depthT (v).
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6. An FPTAS for trees

In this section, we give a fully-polynomial-time approximation scheme (FPTAS) for the
optimal static STT problem (note that the underlying graph is always tree in this chapter).
That is, we give a (1 + ε)-approximation algorithm with running time poly(1/ε) · poly(n),
where n is the number of vertices in the input tree. The main ingredient is the following
algorithmic result (section 6.1).

Theorem 6.1. Given a weighted tree (G,w) on n vertices and h ∈ N+, the minimum-cost
search tree on G with height at most h can be computed in O(4h · n) time, if such a search
tree exists (i.e., td(G) ≤ h).

Theorem 6.1 implies that the problem is fixed-parameter tractable (FPT) for the param-
eter “height of the optimal search tree”.

To obtain an FPTAS, we need two more steps. First, we have shown earlier that the
height of the (unrestricted) optimal search tree is logarithmic in the spread of the non-zero
weights (section 4.9). This gives us a pseudo-polynomial algorithm (section 6.2).

Theorem 6.2. Let (G,w) be a given weighted tree with n vertices with weights in {0} ∪
[1,∞), and let m be the number of positive-weight vertices. We can compute an optimal
search tree on (G,w) in time

O(w(G)2/ log(3/2) ·m · log2w(G) + n) ⊆ O(w(G)3.42 ·m + n).

Observe that theorem 3.7 from chapter 3 is a special case of theorem 6.2, since w(G) ≤
W · n if all weights are at most W . Finally, standard techniques [IK75] allow transforming
the pseudo-polynomial algorithm into an FPTAS (section 6.3).

Theorem 3.8. For each ε > 0, there exists an algorithm that computes a search tree T
on a given weighted tree (G,w) such that cost(T,w) ≤ (1 + ε) · StOPT(G,w), in time

O
(

(1ε )2/ log(2/3) · n1+4/ log(2/3) · log2 n
ε

)
⊆ O

(
(1ε )3.42 · n7.84

)
.

The contents of this section are heavily based on the work of Cicalese, Jacobs, Laber, and
Molinaro [CJLM14]. They present an FPTAS for edge-query trees (EQTs; see section 1.3)
on trees with bounded degree with the three steps outlined above. Naturally, transferring
their result to STTs necessitates some changes. Perhaps the most notable difference is
that they require the underlying tree to have bounded degree; this is necessary to bound
the height of the optimal EQT. Our algorithm needs no such assumption, and we get the
height bound from our previous observations on centroid trees (see section 4.9).

Note that our algorithm is presented in a self-contained way; no knowledge of edge-query
trees is necessary.
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6. An FPTAS for trees

6.1. Computing bounded-height optimal search trees

In this section, we show:

Theorem 6.1. Given a weighted tree (G,w) on n vertices and h ∈ N+, the minimum-cost
search tree on G with height at most h can be computed in O(4h · n) time, if such a search
tree exists (i.e., td(G) ≤ h).

Recall that the straight-forward dynamic programming approach presented in chapter 5
builds an optimal STG by progressively building optimal search trees on k-admissible
subgraphs, which then serve as rooted subtrees of the overall solution.

Here, we again use dynamic programming, but the subproblems are quite different. We
only consider a small number of subgraphs. For each of those subgraphs, we build all
possible corresponding parts of a final STT, which may not even be a connected subtree.
To represent these parts, we use generalized STTs, defined below.

Generalized STTs. A generalized search tree (GSTT) T on a tree G is a rooted tree with
V (T ) = V (G) ∪N , where N is a set of so-called null nodes that is disjoint from V (G).
We denote by Ṽ (Tv) the set of non-null nodes in Tv, i.e., Ṽ (Tv) = V (Tv)∩V (G). A GSTT
has the following properties.

(i) For each v ∈ V (T ), we have Ṽ (Tv) ̸= ∅ and the subgraph of G induced by Ṽ (Tv) is
connected.

(ii) For each edge {u, v} ∈ E(G), either u is an ancestor of v in T , or v is an ancestor of
u in T .

Observe that every STT is a GSTT without any null nodes, by lemma 2.3. Intuitively,
it is clear that adding null nodes cannot improve the height or cost of a search tree. We
formalize this idea with the following lemma.

Lemma 6.3. Let T be a generalized search tree on at tree G. Then there is a (non-
generalized) search tree T ′ on G such that for each v ∈ V (G), we have depthT ′(v) ≤
depthT (v).

Proof. We describe a way to progressively remove all null nodes from T , while retaining
the GSTT properties and without increasing the depth of any node.

Let v be a null node in T . If v has no children, we can simply remove v. Otherwise, let
c1, c2, . . . , ck be the children of v. We modify the tree as follows. First, delete v, which
splits off the subtrees Tc1 , Tc2 , . . . , Tck . Put Tc1 at the place where v previously was, i.e.,
make c1 the root if v was the root, or otherwise make c1 a child of the previous parent
of v. Then make c2, c3, . . . , ck each a child of c1. Call the new tree T ′

Observe that (i) this operation does not increase the depth of any node, (ii) any ancestor-
descendant pair of non-null nodes in T is still present in T ′, and (iii) all rooted subtrees are
preserved except Tc1 , but we have Ṽ (T ′

c1) = Ṽ (Tv), which induces a connected subgraph of
G by definition. Hence, the result is a valid GSTT and we eventually obtain an STT.

If (G,w) is a weighted tree and T is a GSTT on G, we write cost(T,w) = cost(T,w′),GSTT cost

where w′(v) = w(v) for each v ∈ V (G), and w′(v) = 0 for each null node of T . Lemma 6.3
implies that for each GSTT T on G, there is a search tree T ′ with cost(T ′, w) ≤ cost(T,w)
and height(T ′) ≤ height(T ). This implies:
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6.1. Computing bounded-height optimal search trees

Corollary 6.4. Let (G,w) be a weighted tree and h ∈ N+. If G admits a search tree of
height at most h (i.e., td(G) ≤ h), then the minimum cost of a search tree on G with
height at most h is equal to the minimum cost of a GSTT on G with height at most h.

Combining GSTTs. Let v be a node in a GSTT T and let (u1, u2, . . . , uk = v) be root
path of v. Define P(T, v) = {i ∈ [k] | ui /∈ N}, i.e., P(T, v) is the set of depths of non-null
nodes on the root path of v. We now show how two “compatible” GSTTs can be combined
into a larger one.

Lemma 6.5. Let G be a tree, let e = {x, y} be an edge in G, and let Gx, Gy be the two
components in G− e, such that x ∈ V (Gx) and y ∈ V (Gy). Let T x be a generalized search
tree on Gx and let T y be a generalized search tree on Gy, such that P(T x, x) and P(T y, y)
are disjoint. Then, there exists a generalized search tree T on G such that

(i) For each v ∈ V (Gx), we have depthT (v) = depthTx(v).

(ii) For each v ∈ V (Gy), we have depthT (v) = depthT y(v).

(iii) P(T, x) = (P(T x, x) ∪ P(T y, y)) ∩ [depthT (x)].

Proof. The idea is to “merge” T x and T y along the root path of v. See figure 6.1 for an
example.

Let k = depthTx(x) and ℓ = depthT y(y), and let m = max(k, ℓ). Let (x1, x2, . . . , xk = x)
be the root path of x in T x, and let (y1, y2, . . . , yℓ = y) be the path from the root to y in
T y.

We build T as follows. Start with a degenerate tree z1, z2, . . . , zm of null nodes. Then,
for each i ∈ [m],

• if xi exists and is not a null node, replace zi with xi;

• if yi exists and is not a null node, replace zi with yi;

• for each child c of xi in T x, attach a copy of T x
c to zi; and

• for each child c of yi in T y, attach a copy of T y
c to zi.

Observe that for each i ∈ [m], either xi or yi must be a null node by assumption that
P(T x, x) and P(T y, y) are disjoint. Denote by z′i the node zi in T if it is still present, or
otherwise the node that replaced zi.

Parts (i) to (iii) of our claim are immediate from construction. It remains to show that
T is indeed a valid GSTT.

To prove GSTT property (ii), first observe that each ancestor-descendant relation
between non-null nodes in T x or T y is also present in T . It remains to handle the edge
{x, y}. Observe that when constructing T , we replaced zk with x and zℓ with y, hence
x ≺T y if k < ℓ and y ≺T x if ℓ < k. We cannot have k = ℓ since P (T x, x) and P (T y, y)
are disjoint. Thus, GSTT property (ii) holds.

For GSTT property (i), take any node v ∈ V (T ). If v /∈ {z′1, z′2, . . . , z′m}, then the whole
subtree Tv was copied from T x or T y, and thus Ṽ (Tv) induces a connected subgraph of
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Figure 6.1.: Illustration of lemma 6.5. Null nodes are represented as circles (◦). The
double lines in the search trees indicate the paths P(T x, x), P(T y, y), and
P(T, x).

either Gx or Gy by assumption. Similarly, if v = z′i for some i > ℓ or i > k, then Tv was
copied from T x or T y, respectively.

Otherwise, we have v = z′i for some i ≤ min(k, ℓ). Let p, q ≥ i be minimal such
that z′p ∈ V (Gx) and z′q ∈ V (Gy). Observe that x ∈ Ṽ (T x

z′p
), y ∈ Ṽ (T y

z′q
), and Ṽ (Tv) =

Ṽ (T x
z′p

) ∪ Ṽ (T y
z′q

). Since there is an edge between x and y, this implies that Ṽ (Tv) induces

a connected subgraph of G.

Dynamic Programming algorithm. We now present an algorithm that computes the
optimal GSTT with at most a given height.

Fix a weighted tree (G,w), and an arbitrary rooting S of G. For each connected
subgraph G′ of G, write LCA(G′) = LCAS(V (G′)). Recall that LCA(G′) ∈ V (G′) by
lemma 2.4.

Let G′ be a connected subgraph of G, let h ∈ N+, and let A ⊂ [h]. Then Ch[G′, A]
denotes the minimum cost of a GSTT T on (G′, w) such that

• height(T ) ≤ h.

• P(T,LCA(G′)) ⊆ A. In other words, each non-null node v on the root path of
LCA(G′) must satisfy depthT (v) ∈ A.

We now give a recursive formula for Ch[G′, A]. First, observe that if G′ consists of
precisely one node v, then an optimal GSTT can be constructed by taking a degenerate
tree of min(A)− 1 null nodes and leaf v, with cost min(A) · w(v). Otherwise, we use the
following recurrence.

Lemma 6.6. Let H1, H2 be disjoint connected subgraphs of G such that v1 = LCA(H1)
is the parent of v2 = LCA(H2) in S. Let H = G[V (H1) ∪ V (H2)]. Then

Ch[H,A] = min
B⊆A

Ch[H1, B] + Ch[H2, A \B].
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Proof. Observe that LCA(H) = v1. We start with the “≥” direction. Consider an optimal
GSTT T on H with height(T ) ≤ h and P (T, v1) ⊆ A. Obtain rooted trees T 1 (resp. T 2)
from T by replacing each node in H2 (resp., in H1) with a null node, and then repeatedly
removing all leaves that are null nodes, as long as there are any. Clearly T i is an GSTT
on Hi and height(T i) ≤ h, for i ∈ {1, 2}. Let B = P (T 1, v1). Since either v1 ≺T v2 or vice
versa, we have P (T 2, v2) ⊆ A \B. By definition of Ch[ · , · ], we have

Ch[H,A] = cost(T,w) = cost(T 1, w) + cost(T 2, w) ≥ Ch[H1, B] + Ch[H2, A \B].

We now prove the “≤” direction. Fix some B ⊆ A and let T 1, T 2 be optimal GSTTs on
H1, resp. H2, such that height(T 1), height(T 2) ≤ h and P (T 1, v1) ⊆ B, P (T 2, v2) ⊆ A\B.
By lemma 6.5, there exists a GSTT T on H such that cost(T,w) = cost(T 1, w)+cost(T 2, w),
height(T ) ≤ h, and P (T, v1) ⊆ B ∪A \B = A. Hence, we have

Ch[H,A] ≤ cost(T,w) = cost(T 1, w) + cost(T 2, w) = Ch[H1, B] + Ch[H2, A \B].

In order to limit the number of subproblems to solve, we fix an arbitrary order on the
children of each node in S. We only consider subgraphs of the following form. If v ∈ V (G)
and c1, c2, . . . , ck are the children of v in S (in order), then let Gv,i be the subgraph
induced by {v} ∪ V (Sc1) ∪ V (Sc2) ∪ · · · ∪ V (Sci), for i ∈ {0, 1, . . . , k}. Let Gv = Gv,k be
the subgraph induced by V (Sv). We compute Ch[Gv,i, A] for each A ⊆ [h] and each such
Gv,i. By lemma 6.6, we have

Ch[Gv,0, A] = min(A) · w(v), and

Ch[Gv,i, A] = min
B∈[h]\A

Ch[Gv,i−1, B] + Ch[Gci , [h] \A \B],

Note that G = Groot(S). By corollary 6.4, the minimum cost of an STT of height at most
h is thus Ch[Groot(S), ∅].

Overall, we solve 2h · (2n− 1) subproblems, and each needs O(2h) time. This concludes
the proof of theorem 6.1.

6.2. A pseudo-polynomial algorithm

The next step towards the FPTAS is using theorem 6.1 to obtain a pseudo-polynomial
algorithm, which we do now.

Theorem 6.2. Let (G,w) be a given weighted tree with n vertices with weights in {0} ∪
[1,∞), and let m be the number of positive-weight vertices. We can compute an optimal
search tree on (G,w) in time

O(w(G)2/ log(3/2) ·m · log2w(G) + n) ⊆ O(w(G)3.42 ·m + n).

Proof. First apply theorem 3.10 to remove all vertices with weight zero and degree at most
two, ending up with at most 2m vertices. By theorem 4.37, there exists an optimal search
tree with height at most h = log3/2w(G) + log logw(G) + O(1). Applying theorem 6.1
with this value for h computes an optimal search tree in the desired running time.
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If all weights are in {0} ∪ [1,W ], then w(G) ≤ m ·W . Thus, we get the following result,
which implies theorem 3.7 from chapter 3 as a special case.

Corollary 6.7. Let (G,w) be a given weighted tree with n vertices such that w : V (G)→
{0} ∪ [1,W ] for some W ∈ R, and let m be the number of positive-weight vertices. We
can compute an optimal search tree on (G,w) in time

O(W 2/ log(3/2) ·m1+2/ log(3/2) · log2(Wm) + n) ⊆ O(W 3.42 ·m4.42 + n).

6.3. Approximating optimal search trees

Let (G,w) be a weighted tree. To transform our pseudo-polynomial algorithm into an
FPTAS, we follow standard techniques [IK75, CJLM14] and modify the weight function
as follows.

Without loss of generality, we have w(v) ∈ {0} ∪ [1,∞) for all v ∈ V (G). Let m ≥ 1 be
the number of positive-weight vertices. Let K = ε · w(G)/m2 and let w′(v) = ⌈w(v)/K⌉
for all v ∈ V (G). We use theorem 6.2 to compute a minimum-cost search tree T ′ on
(G,w′).

We first bound the running time. Clearly, we have w′(G) ≤ w(G)/K + m ≤ m2

ε + m ≤
2 · m2

ε . Hence, the running time is

O((1/ε)α ·m2+α · log2(m/ε) + n)

for α = 2/ log(3/2) < 1.71.
We now show the approximation ratio. Let T be an optimal search tree on (G,w) and

let T ′ be the optimal search tree on (G,w′), which is computed by our algorithm. We
show that cost(T ′, w) ≤ (1 + ε) cost(T,w) = (1 + ε) StOPT(G,w).

We have cost(T ′, w) ≤ K ·cost(T ′, w′) ≤ K ·cost(T,w′) by definition of w′ and optimality
of T ′. Now define w̃(v) = 1 if w(v) > 0 and w̃(v) = 0 otherwise. Observe that w′(v) ≤
1
Kw(v) + w̃(v). Then

K · cost(T,w′) ≤ cost(T,w) + cost(T, w̃) ·K
≤ cost(T,w) + m2 ·K ≤ cost(T,w) + ε · w(G).

Since cost(T,w) ≥ w(G), we have cost(T,w) + ε · w(G) ≤ (1 + ε) · cost(T,w). Thus, we
conclude:

Theorem 6.8. For each ε > 0, there exists an algorithm that computes a search tree T
on a given weighted tree (G,w) with m positive-weight vertices such that cost(T,w) ≤
(1 + ε) · StOPT(G,w), in time

O
(

(1ε )2/ log(2/3) ·m1+4/ log(2/3) · log2 m
ε + n

)
⊆ O

(
(1ε )3.42 ·m7.84 + n

)
.

Theorem 3.8 follows as a special case.

92



7. Hardness

In this chapter, we prove the two hardness results: Theorem 3.6 in section 7.1, and
theorem 3.9 in section 7.2

7.1. Edge-query trees and line graphs

In this section, we show that exactly computing optimal search trees is NP-hard already
on graphs with bounded tree-width. The proof is a reduction to the problem of computing
optimal edge-query trees (EQTs; see section 1.3). We start with a formal definition.

An edge-query tree (EQT) on a tree G is a rooted tree T with V (T ) = V (G) ∪ E(G),
such that V (G) is precisely the set of leaves of T . For each node v, let Gv denote the Gv

subgraph of G induced by the set of leaves of Tv. The following holds:

• Each inner node v ∈ V (T ) has two children c and d, such that Gc and Gd are the
two components obtained by removing the edge v from Gv.

Observe that Gv is a connected subgraph for each node v.
The optimal static STG problem is easily adapted to the EQT case. If w : V (G)→ R≥0

is a weight function on the underlying tree, then for an EQT T , we write cost(T,w) =∑
v∈V (G) depthT (v) · w(v). An optimal static EQT on (G,w) is an EQT on G that

minimizes cost(T,w). We denote the cost of an optimal static EQT by StOPTEQT(G,w).

Theorem 7.1 (Cicalese, Jacobs, Laber, and Molinaro [CJLM11, §2.2]). Computing an
optimal static EQT on a given weighted tree (G,w) is NP-hard, even if G is a tree with
maximum degree 16 and all non-leaves in G have weight zero.

To transfer this result to STGs, we show a connection between EQT and STGs on line
graphs. The line graph L(G) of a graph G is the graph H with V (H) = E(G), where two line graph

x, y ∈ V (H) are adjacent in H if and only if the corresponding edges in G share a common
endpoint.

Lemma 7.2. Let G be a tree. Then, there exists a bijection between EQTs on G and
search trees on L(G), such that, for each EQT T and associated search tree S, the following
holds.

(i) For each x ∈ E(G) = V (L(G)), we have depthT (x) = depthS(x).

(ii) For each v ∈ V (G), we have depthT (v) = 1 + maxu∈Uv depthS(u), where Uv is the
set of edges incident to the vertex v in G.

Proof. Write H = L(G). We proceed by induction on |V (G)|. For convenience, let us say
there is an empty search tree on the empty graph, and that maxu∈U depthT (u) = 0 if U is
empty. With this, the case |V (G)| = 1 is immediate.
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Now suppose |V (G)| > 1. Let x ∈ E(G) = V (H). It is easy to see that G − x has
two components C1 and C2, and H − x has also two components C ′

1 and C ′
2, such that

C ′
1 = L(C1) and C ′

2 = L(C2).

Consider an EQT T on G with root x. By induction, there are EQTs T i on Ci and
search trees Si on C ′

i such that T i, Si satisfy the lemma, for i ∈ {1, 2}. Build a search tree
S on H by taking x as the root and S1 and S2 as child subtrees of x. Observe that we
can reverse this construction, hence we have a bijection. It remains to show that T and S
satisfy conditions (i) and (ii).

Clearly, condition (i) holds for T and S by induction. We proceed to show condition (ii).
Let v be a vertex of G. W.l.o.g., assume v ∈ V (C1). Let y ∈ E(G) be the edge incident to
v with largest depth in S.

If y ∈ E(C1), then y ∈ V (C ′
1) = V (S1), and thus

depthT (v) = 1 + depthT 1(v)
(ind.)

= 2 + depthS1(y) = 1 + depthS(y),

as desired.

If y /∈ E(C1), then y = x, and v is a leaf of G. This means that v is the only node in
V (C1) = V (T 1), so depthT (v) = 2 = 1 + depthS(y), as desired.

We now compare the cost of the associated EQT T and search tree S of lemma 7.2.
This is relatively straight-forward, except that the term maxu∈Uv depthS(u) cannot really
be expressed by our cost model. However, it works if we assume that Uv is a singleton for
all relevant v.

Lemma 7.3. Let G be a graph and w : V (G)→ R≥0 be a weight function, such that every
node v ∈ V (G) with degree larger than one has weight zero. Let w′ : E(G)→ R≥0 be given
by w′(x) = w(u) + w(v), where u, v are the two endpoints of the edge x in G.

Then StOPTEQT(G,w) = StOPT(L(G), w′) + w(G).

Proof. Let T be an EQT on G and let S be the associated search tree on L(G), as per
lemma 7.2. We show that cost(T,w) = cost(S,w) + w(G), which implies the claim.

Let U be the set of vertices of G with positive weight, and let u ∈ U . Then u is a leaf of G,
hence it has a unique incident edge xu. By lemma 7.2, we have depthT (u) = 1+depthS(xu).
Thus,

cost(T,w) =
∑
u∈U

w(u) · (1 + depthS(xu)) = w(G) +
∑
u∈U

w(u) · depthS(xu)

= w(G) +
∑

x∈E(G)

w′(x) · depthS(x) = w(G) + cost(S,w′).

Observe that the line graph of a tree with maximum degree d is a graph consisting
of cliques of size at most d which are linked in a tree-like fashion via single vertices.
The tree-width of the line graph is clearly at most d− 1. Thus, combining theorem 7.1
and lemma 7.3, we obtain:

Theorem 3.6. Computing the optimal static search tree on a given weighted graph is
NP-hard, even if the graph has tree-width at most 15.
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7.2. Unit-cost optima

In this section, we show that computing StOPT(G, 1) is equivalent to the trivially perfect
completion problem, as observed by [HBB+21]. This implies the former problem is
NP-hard [Yan81]. See section 2.3 for the relevant definitions.

We start with a general lemma.

Lemma 7.4. Let T be a rooted tree and let G = cl(T ). Then cost(T, 1) = |V (G)|+ |E(G)|.

Proof. The edges of G are precisely the ancestor-descendant pairs in T , so

|E(G)| =
∑

v∈V (T )

(depthT (v)− 1) = cost(T, 1)− |V (G)|.

We now show equivalence of the two problems. Recall that TPC(G) is the minimum
number of edges in a trivially perfect supergraph of G.

Theorem 7.5 ([HBB+21]). For each graph G with n vertices, we have TPC(G) =
StOPT(G, 1)− n.

Proof. By lemma 7.4, for each search tree T on G, we have |E(cl(T ))| = cost(T, 1)− n.
Since TPC(G) minimizes |E(cl(T ))| over all search trees on G (by corollary 2.28), and
StOPT(G, 1) minimizes cost(T, 1) over all search trees on G (by definition), our claim
follows.

The trivially perfect completion problem can be shown to be NP-hard via a simple
modification of a reduction by Yannakakis [Yan81]. We thus have:

Theorem 3.9 ([HBB+21]). Computing StOPT(G, 1) for a given graph G is NP-hard.

Before moving on to the next chapter, we take a brief detour to show the following fact
about trivially perfect graphs, which will be useful in chapter 11.

Lemma 7.6. Let G be a trivially perfect graph with n vertices and m edges. Then
StOPT(G, 1) = m + n.

Proof. We start with showing StOPT(G,1) ≤ m + n. By definition, there exists a rooted
tree T with V (T ) = V (G) such that G = cl(T ). By lemma 2.25, we have that T is a
search tree on G. Thus StOPT(G,1) ≤ cost(T, 1) ≤ m + n by lemma 7.4.

We now show StOPT(G, 1) ≥ m + n. Let T be a search tree on G. For each vertex v,
denote by av the number of ancestors of v (in T ) that are adjacent to v (in G). Observe
that av ≤ depthT (v)−1. Since m =

∑
v∈V (G) av, we have m ≤ cost(T, 1)−n. This implies

the statement.
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8. Adaptive searching in trees

In this chapter, we study the dynamic search tree model for STGs discussed in the
introduction (section 1.2). We start by formally describing our model, which is based on
previous BST and STT models [Wil89, DHIP07, BCI+20]. Then, we discuss some caveats
and alternate models.

In the rest of the chapter, we discuss various adaptivity properties of dynamic STG
algorithms (section 8.1) and then study some simple STG algorithms with respect to these
properties.

A problem instance consists of a connected graph G and a sequence X ∈ V (G)m of
accesses. Note that individual vertices may be accessed zero or multiple times. An access access

corresponds to what we called a search in the introduction.

We now define what it means to serve an access x ∈ V (G) in a search tree T on G. We
start with a pointer at the root and repeatedly perform one of the following steps:

• Move the pointer from the current node to one of its children.

• Move the pointer from the current node to its parent.

• Rotate the current node with its parent.

At some point during the sequence of steps, the accessed vertex x must be visited. We
call a valid sequence of steps S a serve sequence for x in T . The cost of S is the number serve sequence

cost
of steps, plus one.1 If T is the search tree at the start and T ′ is the search tree after
executing S, we write T ′ = apply(S, T ).

apply(S, T )As mentioned in section 1.3, there are two variants of the dynamic search tree model.
In the offline model, the whole access sequence X are known from the start. In the online
model, the (i+1)-th access is only revealed after the i-th access is served. We now formally
define the two variants.

Offline variant. An offline dynamic search tree algorithm is an algorithm that takes a
offline
algorithm

connected graph G and an access sequence X = (x1, x2, . . . , xm) ∈ V (G)m as input. It
outputs an initial search tree T 0 and serve sequences S1, S2, . . . , Sm, such that

(i) Each Si is a serve sequence for xi; and

(ii) There exist search trees T 1, T 2, . . . , Tm such that T i = apply(Si, T
i−1).

The cost of the algorithm for (G,X) is the sum of the costs of S1, S2, . . . , Sm. We define
DynOPT(G,X) as the minimum cost of an offline algorithm to serve X. DynOPT(. . . )
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8. Adaptive searching in trees

Online variant. An online dynamic search tree algorithm consists of two parts. The
online
algorithm

first part is an algorithm that computes an initial search tree T 0 on a given graph G.
The second part is an algorithm that, given a search tree T on a graph G and a vertex
x ∈ V (G), computes a serve sequence S(G,T, x) for x in T . Here x is given as a pointer
to the vertex x in G and as a pointer to the node x in T .

Consider a connected graph G and an access sequence X = (x1, x2, . . . , xm) ∈ V (G)m.
Intuitively, the algorithm starts with T 0, and whenever an access xi is revealed, it executes
S(G,T, xi), where T is the current search tree.

More formally, let T 1, T 2, . . . Tm be inductively defined as T i = apply(Si, T
i−1), with

Si = S(G,T i−1, xi). Then the cost of the algorithm for (G,X) is the sum of the costs of
S1, S2, . . . , Sm.

Discussion. We defined our models with a focus on simplicity; this comes with a number
of caveats.

First, note that the actual running time of the algorithm to compute the initial tree and
serve sequences is ignored, since we only consider the cost. However, each major algorithm
presented in this thesis can be implemented with running time that is linear in its cost.

Second, for each access x, the location of the node x in the current search tree T is
given. Hence, actually searching for x in T is not necessary. However, observe that serving
x in T always has cost at least depthT (x): The pointer must be moved from the root to x,
visiting all vertices in PathT (x) at some point. Thus, the cost dominates the number of
queries that would be necessary for finding x.

Third, an online algorithm may need to maintain some data at each node in the tree;
consider, for example, the AVL tree and red-black tree BST algorithms [CLRS01]. There
are no explicit provisions for this in our online model; however, amending it accordingly is
easy. The algorithms studied in this thesis work purely on the search tree structure and
do not require additional data.

Fourth, observe that BSTs are easily implemented in a way such that each step in a
serve sequence, rotations in particular, can be executed in constant time. It is not quite
obvious how to implement a general dynamic search tree data structure with this feature.
The main problem is each node may have an unbounded number of children, and a rotation
may transfer any number of them from one node to another. For trees, we observed in
section 2.2.2 that only one child can switch parents, but it is still not immediately clear
how to identify that child.

In chapter 10, we show how to implement k-cut search trees with constant-time rotations.
In particular, we give a compact and efficient implementation of 2-cut search trees on
trees.

The author does not know whether it is possible to implement rotations in general
search trees in constant time. Note that if the underlying graph has bounded degree, then
each node has a bounded number of children. This means a more brute-force approach
may be possible, but we still need to identify the correct children to transfer based on the
structure of the graph.

1This extra “virtual” step makes the cost of every access positive, which will be useful. It can be
interpreted as the time needed to output the found node.
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Fifth, if we implement a data structure for searching, it obviously needs to be searchable.
Let us focus on the tree case, and recall that a query to a vertex v with input x reveals
whether x = v, or otherwise returns the first edge on the path from v to x.2

In a static search tree T , for each vertex v, we can simply map edges incident to v in
G to children of v in T . Thus, we can find x in T with a sequence of depthT (x) queries,
moving down from the root, with only O(1) time overhead per query. In a dynamic search
tree, this approach means that the mapping has to be maintained under rotations. We
sketch a way to do this in section 10.10.

Note that an STG implementation does not need to be searchable if it is only used as a
decomposition of the underlying tree. This is the case for our main practical application
(see chapter 10). Here, it is actually an advantage of our model that it disregards the
details of vertex search.

The prefix model. Above we discussed some caveats of our models, in particular the
online model. Even for BSTs, there are several reasonable models with subtle differences;
we refer to Kozma [Koz16, section 2.2] for more details.

There is one offline model which is worth studying in more detail. In the BST setting,
it is equivalent to our model, but this equivalency may not hold for general graphs.

The prefix model is defined as our model above, except that serving a node x means prefix model

choosing a prefix P of T that contains x, and replacing P with an arbitrary rooted tree
on V (P ) such that the result is a valid search tree on G. The cost to serve x is taken as
the number of vertices in P . Define DynOPT′(G,T,X) to be the total cost of serving an
input sequence X with initial tree T in the prefix model.

Let us call the first model the pointer model. As mentioned above, it is known that the
two models are essentially equivalent for BSTs, i.e., when G is a path. To see this, observe
that when serving xi in the pointer model, the nodes touched by the pointer form a prefix
P of T . All rotations take place within P , and to visit xi, we must have xi ∈ V (P ). The
number of pointer moves is clearly at least |V (P )| − 1, so the cost of serving xi in the
pointer model is at least |V (P )|. Thus, we have DynOPT′(G,T,X) ≤ DynOPT(G,T,X).

The above argument actually holds for arbitrary underlying graphs. For the other
direction, we need the following fact.

Observation 8.1. Any BST on n elements can be transformed into any other BST in the
pointer model using O(n) pointer-moves and rotations at the pointer.

Observation 8.1 is well-known, and we will discuss it and generalizations to STGs
in part III. Now, say a prefix-model algorithm serves xi by touching a prefix P and
transforming it to P ′. In the pointer model, we can touch all elements of P with a simple
traversal with 2|V (P )| pointer moves. Further, observation 8.1 lets us transform P into
P ′ with O(|V (P )|) steps. Thus, DynOPT(G,T,X) ∈ O(DynOPT′(G,T,X)).

This argument unfortunately does not work in general, even for trees, for two reasons.
First, observation 8.1 does not hold for arbitrary trees [CLPL18]. Second, transforming
the prefix P into P ′ involves search trees on torsoG(V (P )) (see section 2.2.6), which may
be an even more general graph than a tree.

2Recall that vertex queries in general graphs are harder to define; see section 1.1.
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8. Adaptive searching in trees

We partially solve the first problem in chapter 13 by showing that observation 8.1 holds
for arbitrary trees when restricted to k-cut search trees. Note that most of the algorithms
presented in this thesis operate on k-cut search trees. Still, the question whether the two
models are equivalent even in this restricted case is left open.

Open question 8.1. Are the pointer model and the prefix model equivalent when
restricted to k-cut search trees on trees?

Dynamic vs. static search trees. Every algorithm that computes a static search tree
can be seen as a simple offline dynamic algorithm: Just output the computed search tree
as the initial tree, and then serve the each access without any rotations, by moving the
pointer down the root path. The cost of this algorithm for an access sequence X is clearly
cost(T,wX), where wX : V (G)→ N0 is the function counting the number of occurrences
of each node in X. Since we are free to compute the optimal static search tree, even if it
takes exponential time, we have:

Theorem 8.2. Let G be a graph and let X = (x1, x2, . . . , xm) ∈ V (G)m be an access
sequence. Then DynOPT(G,X) ≤ StOPT(G,wX), where wX(v) ∈ N0 is the number of
times v occurs in X.

8.1. Adaptive bounds for STGs

The holy grail of dynamic BSTs (and, by extension, dynamic STGs) is two find an online
algorithm that matches the running time of the offline optimum. This is known as the
dynamic optimality conjecture.

We start by discussing the BST case. The two online algorithms generally considered the
most likely candidates for dynamic optimality are Splay [ST85b] and Greedy [DHI+09].
Splay is among the oldest dynamic BST algorithms and is based on a relatively simple
procedure that moves the accessed node to the root for quick future access. We extensively
discuss generalizations of Splay to the STG setting in chapter 9. Greedy is an online
variant of the offline GreedyFuture algorithm [Luc88, Mun00], which transforms the
search path of the accessed node into a search tree that optimizes future searches.

While the dynamic optimality conjecture remains unsolved, some dynamic BST algo-
rithms (including Splay and Greedy) are known to adapt well to certain input sequences,
i.e., they efficiently serve sequences that are easy in some well-defined way. On the other
hand, there also exist hard sequences which are costly for any algorithm to serve [Wil89].

Adaptivity is expressed with a set of upper bounds on DynOPT(G,X), depending on G
and X. In the following, we list a few of these bounds (following the survey of Chalermsook,
Goswami, Kozma, Mehlhorn, and Saranurak [CGK+16]) and discuss ways of generalizing
them to STGs.

Formally, an STG bound is a function f(G,X) depending on a graph G and an accessSTG bound

sequence X ∈ V (G)m. In the following, we consider an STG bound to be achieved by an
algorithm if its cost for X is O(f(G,X) + g(G)) for any function g. The additive term is
necessary for online algorithms.

The BST variants of all bounds presented below are achieved by both Splay and
Greedy [CGK+16].
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8.1. Adaptive bounds for STGs

Static optimality. The static optimality bound is StOPT(G,wX), where wX is the static
optimality

function that counts the number of occurrences of each node in X. We already showed
that the dynamic optimum achieves static optimality (theorem 8.2). The main result of
chapter 9 is a Splay-based online algorithm for search trees on trees, called SplayTT,
that we show to achieve static optimality.

For BSTs, the static optimum cost StOPT(G,w) is asymptotically equal to the entropy
of the input sequence, defined as∑

v∈V (G)

w(v) · log(m/w(V )).

This quantity is known as the entropy bound [CGK+16]. In contrast to the BST setting, entropy bound

the entropy bound cannot be achieved in the general STG case, even for offline algorithms
(see section 8.3). However, if G is a tree, the entropy bound is strictly weaker than static
optimality (see section 4.4).

Finally, we note that static optimality implies an optimal worst-case O(m log n) bound
in the BST case, and a worst-case O(m · td(G)) bound in general.

Working set. Consider an access sequence X = (x1, x2, . . . , xm). For each i ∈ [m], we
say the working set Wi of i is the set of distinct accesses since the last access to xi (or
since the beginning, if xi was not accessed before). More formally, the working set is the
set of elements contained in the maximal contiguous subsequence of X ending at index i
that contains xi no more than once. The working-set bound for X is

∑m
i=1 log |Wi|. working set

This definition is easily generalized to STGs, but cannot be achieved in general (see
section 8.3). If G is a tree, we show that our Splay-based algorithms do achieve this
bound (see section 9.3), by an extension of the respective argument for the Splay BST
algorithm.

We propose two variants of the working-set bound. The linear working-set bound is linear working
set∑m

i=1 |Wi|. This property is achieved by a simple algorithm (see section 8.2) and is tight
for cliques (see section 8.3).

Even the classical (logarithmic) working set bound seems very loose if the underlying
graph is a tree. It would be interesting if we can somehow use the “topology” of the
working set Wi in the graph to formulate a stronger property. We propose the following.

The torso-tree-depth working-set bound is
∑m

i=1 td(torsoG(Wi)).
3 Observe that the

torso-tree-
depth working
settorso-tree-depth working-set property is equivalent to the logarithmic working set bound

for paths, and can be stronger on trees (e.g., the bound is O(1) if torsoG(Wi) is a star).

We now sketch our main motivation for the torso-tree-depth working-set bound. Say we
access x, then a set U of vertices, and then x again. Let T be the search tree just before
the last access. Suppose U induces a prefix of T and x is a child of some u ∈ U (this holds
or “almost” holds for many online algorithms). Recall that such a prefix must be a search
tree on torsoG(U) (theorem 2.21). To achieve the torso-tree-depth working-set bound, this
prefix must have (approximately) optimal height.

Conjecture 8.2. The offline optimum achieves the torso-tree-depth working-set bound.

3See section 2.2.6 for the definition of torsoG(Wi).
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8. Adaptive searching in trees

The working-set bound and its variants are primarily concerned with locality in time,
i.e., repeating requests shortly after each other can be served quickly. The next two bounds
conversely are about locality in the search space.

Static finger. Fix a graph G and let d(u, v) denote the distance between u and v
in G. The fixed finger bound w.r.t. a finger vertex v ∈ V (G) for an access sequence
X = (x1, x2, . . . , xm) is

∑m
i=1 log d(xi, v). The static finger bound is the minimum fixed-static finger

finger bound over all possible finger vertices.
For BSTs, achieving the static finger bound follows from achieving static optimality in

relatively straight-forward way: It is not hard to construct a static search tree for each
v ∈ V (G) where the depth of each node u is O(log d(v, u)). An algorithm with static
optimality matches the cost of all these trees, and thus achieves the static-finger bound.

For STGs in general, the static-finger bound as stated is clearly unachievable. For
example, in a clique, all distances are one, so the static-finger bound is zero, while
DynOPT(G,X) can be as large as Θ(mn) (see section 8.3). Interestingly, the bound
is unachievable already for trees. Indeed, if G is a binary tree, then the static finger
bound is O(m log log n), since the diameter of G is O(log n). We will show in chapter 12
(proposition 12.38) that there exist sequences X with DynOPT(G,X) ∈ Ω(m log n), so no
algorithm can match the static-finger bound (even offline).

One intuitive way to understand the problem is that a binary tree G has asymptotically
equal tree-depth and diameter (both are Θ(log n)), whereas if G is a path, then the
tree-depth is logarithmic in the diameter. This suggests that the tree-depth should play a
role in an improved variant of the static finger bound.

But first, let us define the linear static-finger bound (analogously to the linear working-
linear static
finger

set bound), as minv
∑m

i=1 d(xi, v). If G is a clique, the linear static-finger bound is m and
again cannot be achieved. However, for trees, it trivially implied by static optimality: For
each v ∈ V (G), rooting G at v yields a tree T with cost(T,wX) ≤

∑m
i=1 d(xi, v).

We now define a tree-depth-based generalization for the case when G is a tree. For each
vertex pair u, v ∈ V (G), let Cu,v be the unique component of G−{u, v} that is adjacent to
both u and v (or the empty graph, if u and v are themselves adjacent). Let the tree-depth
fixed-finger bound w.r.t. a finger vertex v ∈ V (G) be

∑m
i=1(1 + td(Cxi,v)). (The tree-depth

of the empty graph is zero.) The tree-depth static-finger bound is the minimum tree-depth
tree-depth
static finger

fixed-finger bound over all possible finger vertices.
Observe that if G is a path, then the tree-depth static-finger bound is asymptotically

equal to the (logarithmic) static-finger bound. Perhaps the tree-depth static-finger bound
can be achieved in the same way as the static-finger bound, via a collection of static trees.

Conjecture 8.3. For each graph G, input sequence X, and finger vertex v, there exists a
static search tree T on G that achieves the tree-depth fixed-finger bound w.r.t. v.

If conjecture 8.3 is true, then every algorithm with static optimality (such as our
SplayTT) also achieves the tree-depth static-finger bound.

Dynamic finger. The dynamic-finger BST bound is a variant of fixed/static finger where
dynamic
finger

the “finger” always moves to the last accessed elements. Formally, the dynamic-finger
bound is

∑m
i=2 log d(xi−1, xi). It is perhaps a more appropriate measure of space locality

then the static-finger bound.
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8.2. Simple dynamic algorithms

The dynamic-finger bound, as stated, is unachievable for general STGs, or even STTs,
for the same reasons as the static finger bound. The linear dynamic-finger and tree-depth
dynamic-finger bounds can be derived analogously.

The linear dynamic-finger bound is achieved by a simple STT algorithm presented
in section 8.2. Since the BST dynamic-finger bound is already very hard to prove for
Splay [CMSS00, Col00], we do not attempt to prove the tree-depth dynamic-finger bound
for our algorithms.

Lower bounds. Besides the upper bounds described above, there are several known lower
bounds on DynOPT(G,X) [Wil89, DHI+09]. Here, by “lower bound” we mean a function
f(G,X) such that DynOPT(G,X) ∈ Ω(f(G,X)) for each connected graph G and each
access sequence X ∈ V (G)m.

We focus on a bound due to Wilber [Wil89] that is commonly called the interleave lower
bound [Koz16]. Denote it by Λ(G,X). The interleave bound has been prominently used
as an ingredient of the Tango algorithm, which has amortized running time O(Λ(G,X) ·
log log n), and thus is O(log log n) competitive with the dynamic optimum [DHIP07].
Tango was the first algorithm to achieve a competitive ratio better than the trivial
O(log n).

The interleave lower bound and Tango were generalized to STTs by Bose, Cardinal,
Iacono, Koumoutsos, and Langerman [BCI+20]. We define it in part III of the thesis
(section 12.2) and show that it holds in a much more general setting, where it serves as a
lower bound for the rotation distance between search trees.

Summary. It turns out that generalizing BST bounds to the STT and STG settings can
be quite subtle. Above, we suggested some possibilities. In the rest of this chapter, we
will study some of the simpler STG bounds and see whether they can be achieved or not.

In chapter 9, we present and analyze a generalization of Splay to the tree case, called
SplayTT. We will show that SplayTT achieves static optimality and the logarithmic
working set bound. Another promising approach to studying STG bounds would be a
generalization of the Greedy BST algorithm.

Open question 8.4. Is there a generalization of Greedy or GreedyFuture to the
STT or STG setting? Which bounds can be achieved by such a generalization?

8.2. Simple dynamic algorithms

The arguably simplest adaptive BST algorithm is MoveToRoot. After finding a node v,
this algorithm repeatedly rotates v with its parent until v is the root. Each such rotation
reduces the depth of v by one, so v indeed ends up at the root.

It is well-known that for MoveToRoot, there is a request sequence that forces a linear
number of rotations per request [Koz16]. However, Allen and Munro [AM78] showed
that MoveToRoot achieves a weaker form of static optimality: If requests are sampled
randomly from an arbitrary distribution, then the cost of MoveToRoot is at most the
cost of an optimal static search tree (up to a constant and after enough requests).
MoveToRoot easily generalizes to search trees on arbitrary graphs (observe that a

rotation at x always reduces the depth of x by one). Note that in our model, an algorithm
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8. Adaptive searching in trees

has to choose an initial tree; since there is no obvious choice for MoveToRoot, we prove
the following results for any initial tree.

We first show that MoveToRoot achieves the linear working-set bound described in
section 8.1.

Proposition 8.3. For each graph G with n vertices and each input sequence X =
(x1, x2, . . . , xm), MoveToRoot serves X with cost at most

O

(
cost(T 0,1) +

m∑
i=1

|Wi|

)
,

where T 0 is the initial tree and Wi is the working set at time i.

Proof. Let T be the search tree before some access to v ∈ V (G), and let Wv be the current
working set of v. The crucial observation is that a node u can only become an ancestor of
another node when u is accessed. From this, it is easy to see that

• If v has been accessed before, then all ancestors of v in T have been accessed since
the last access to v (i.e., are in Wv).

• Otherwise, all ancestors of v in T have been either accessed before, or are ancestors
of v in T 0.

This implies that the access cost for v is depthT 0(v) + |Wv|+ 1 on the first access, and
|Wv|+ 1 on each further access. Hence, the linear working-set bound is achieved up to an
additive term of

∑
v∈V (G) depthT 0(v) = cost(T 0,1).

Recall that MoveToRoot on paths achieves static optimality in a random set-
ting [AM78]. We now show that this does not hold for MoveToRoot on general STGs,
even when the underlying graph is a star. We use parts of Allen and Munro’s [AM78]
analysis.

Proposition 8.4. The expected cost of MoveToRoot on a star with n vertices, for
m ≥ n uniformly distributed requests, is Ω(m · n).

Proof. Let Sn be the star with central vertex c and n − 1 leaves. We consider a tree T
after k requests.

Let u, v be two leaves of Sn. We lower bound the probability pu,v that u is an ancestor
of v in T . Consider the last request made to u, v, or c. The probability that such a request
has occurred at all is

1−
(
n−3
n

)k
= 1−

(
1− 3

n

)k ≥ 1− e−3k/n.

Assume such a request has occurred, then u is an ancestor of v in T if and only if the
request was for u, which happens with probability 1

3 . (Recall the structure of search trees
on graphs as described in section 2.2.5.) Hence, we have

pu,v ≥ 1
3(1− e−3k/n).
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Clearly, the expected depth of a node v in T is
∑

u̸=v pu,v, and thus the expected cost
of request k + 1 is

1
n

∑
v

∑
u̸=v

pu,v = (n−1)(n−2)
3n (1− e−3k/n) ≥ n

12(1− e−3k/n),

if n ≥ 4. For all k ≥ 1
3n, this is at least n

12(1 − 1
e ) ≥ 1

24n, for a total cost of at least
(m− n

3 ) · 1
24n ≥

2
3m ·

1
24n ∈ Ω(m · n).

Finally, we discuss a different algorithm that achieves the linear dynamic-finger bound
(defined in section 8.1) when the underlying graph G is a tree. This algorithm starts with
am arbitrary 1-cut search tree (i.e., a rooting of G). When accessing v, if v is not the root,
we identify the unique child c of the root that is an ancestor of v, and rotate c with r.
Observe that the result is a rooting of G at c. Repeat this until v becomes the root.

The number of rotations to bring v to the root is clearly the distance between v and
the previous root r in G. In the online setting, the first access can take up to O(n) time.
Hence, we obtain:

Proposition 8.5. There exists an online dynamic STT algorithm that serves an access
sequence (x1, x2, . . . , xm) ∈ [n]m with cost

∑m
i=2 d(xi−1, xi) +O(n), where d( · , · ) denotes

the distance between two vertices in the underlying tree G.
In other words, the algorithm achieves the linear dynamic-finger bound.

8.3. List-update and dynamic search trees on cliques

We now consider dynamic search trees on cliques, which serve as a counterexample to
some of the bounds discussed above.

Recall that search trees on cliques are always degenerate (section 2.2.5), and a rotation
simply swaps two elements. These search trees can also be interpreted as linked lists.
Searching the list means performing a linear search from the start, and rotations swap
two adjacent elements in the list. This is essentially the list-update model of Sleator and
Tarjan [ST85a].4

MoveToRoot on cliques corresponds to Sleator and Tarjan’s MoveToFront list-
update algorithm, which is known to be dynamically optimal. Thus, the dynamic optimality
conjecture is true for cliques.

It is easy to see that the cost of MoveToFront is at least
(
n
2

)
if X is a permutation of

V (G), i.e., if every vertex is accessed precisely once. This means that also DynOPT(G,X) ∈
Θ(n2). Observe that the entropy bound, the logarithmic working-set bound, and the
various logarithmic finger bounds are all O(n log n) for a permutation. Thus, these bounds
cannot be achieved in the general STG setting.

4In the list-update model, certain rotations/swaps are free, but this does not affect the asymptotic
running time.
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9. Splay trees on trees

In this section, we discuss a generalization of Splay to search trees on trees. In fact, we
discuss multiple variants based on the same idea. Note that the underlying graph will
always be a tree in this chapter.

The algorithms in this chapter are restricted to 2-cut STTs. This has two advantages.
First, 2-cut STTs turn out to locally behave much like BSTs; we exploit this in our Splay
generalization. Second, 2-cut STTs can be efficiently implemented, and thus are well-suited
in practical applications (see chapter 10).

We start with some useful definitions and observations related to 2-cut STTs.

Separator nodes and partitions. Let T be a 2-cut search tree on a tree G, and let v
be a node in T . We call v a separator node if |∂(Tv)| = 2. Observe that |∂(Tv)| ≤ 2 by separator

node
definition, so if v is not a separator node, then Tv has boundary size zero or one.

Lemma 9.1. Let v be a separator node in a 2-cut search tree on a tree G. Then v separates
the two nodes {a, b} = ∂(Tv).

Proof. Consider the components C(G[Tv]− v). If every such component is adjacent to at
most one node of a and b, then v separates a and b. Otherwise, there is a component C
with ∂(C) = {a, b, v}. But there is a child c of v with V (Tc) = V (C), so T is not 2-cut.

We now present a simple tool that will be useful when dealing with separator nodes.
Fix a tree G and two distinct vertices x, y ∈ V (G), and let C = C(G − {x, y}). The
(x, y)-partition of G is the triple (Ux, U

′, Uy) of vertex sets where: (x, y)-
partition

• Ux consist of x and each component C ∈ C adjacent to x, but not y.

• U ′ consist the unique component C ∈ C adjacent to both x and y.

• Ux consist of y and each component C ∈ C adjacent to y, but not x.

Clearly, if (Ux, U
′, Uy) is the (x, y)-partition of G, then the reverse triple (Uy, U

′, Ux) is
the (y, x)-partition of G.

Lemma 9.2. Let T be 2-cut STT and let p be the parent of v. Let (Up, U
′, Uv) be the

(p, v)-partition of G[Tp]. Then no vertex in δ(Tp) is adjacent to U ′, and at most one vertex
in δ(Tp) is adjacent to Uv.

Proof. See figure 9.1 for an illustration. First, if U ′ is nonempty, then there exists a child
c of v with U ′ = V (Tc). Since {p, v} ⊆ ∂(Tc) and T is 2-cut, no further vertices are
contained in ∂(Tc), so only p and v are adjacent to U ′.

Second, observe that V (Tv) = U ′ ∪ Uv and p ∈ ∂(Tv) = ∂(U ′ ∪ Uv). By the same
argument as above, at most one vertex outside of V (Tp) can be adjacent to U ′ ∪ Uv, and
hence to Uv.
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Figure 9.1.: (p, v)-partition of G[Tp] (left) and the search tree (right) for lemma 9.2.

Allowed rotations. It is easy to see that some rotations can destroy the 2-cut property.
We now precisely characterize the allowed rotations.

Lemma 9.3. Let T be an STT and let v ∈ V (G) with parent p ∈ V (G). Rotating v with
p maintains the 2-cut property if and only if v is a separator node or p is not a separator
node.

Proof. Let (Up, U
′, Uv) be the (p, v)-partition of G[Tp]. By lemma 2.10, we have V (T ′

v) =
V (Tp) and V (T ′

p) = Up ∪ U ′. Clearly, this means that |∂(T ′
v)| ≤ 2. For all nodes

x ∈ V (T ) \ {v, p}, we have V (Tx) = V (T ′
x). Thus, the only node that may not be 2-cut in

T ′ is p.

Suppose first that p is not a separator node in T . Then |∂(T ′
p)| ≤ |∂(T ′

v)| + 1 =
|∂(Tp)|+ 1 ≤ 2 by observation 2.7, so the rotation produces a 2-cut search tree.

Now suppose that p is a separator node in T with {a, b} = ∂(Tp). We claim that then
T ′ is 2-cut if and only if v is a separator node, as required. By lemma 9.2, there are two
cases (up to symmetry):

• If a and b are both adjacent to Up, then we have ∂(Tv) = ∂(U ′ ∪ Uv) = {p}, so v is
not a separator. Further, we have ∂(T ′

p) = ∂(Up ∪ U ′) = {a, b, v}, so T ′ is not 2-cut.

• If a is adjacent to Up and b is adjacent to Uv, then ∂(Tv) = {p, b}. This means that
v is a separator in T , and ∂(T ′

p) = ∂(Up ∪ U ′) = {a, v}, so T ′ is 2-cut.

Direct and indirect separator nodes. Let T be a search tree on a tree G, and let v be
a separator node with parent p and grandparent g. We call v a direct separator node if

(in)direct
separator
node ∂(Tv) = {p, g}, or an indirect separator node otherwise.

Observe that if we rotate a node v with its parent p, by definition (see section 2.2.2),
precisely the direct separator children of v change parent from v to p. We already observed
that at most one such child can exist. We now prove uniqueness for both direct and
indirect separator children, starting with a technical lemma.

Lemma 9.4. Let p be a node in a search tree T on a tree G, and let u, v be children of p.
Then ∂(Tu) ∩ ∂(Tv) = {p}.

Proof. By observation 2.7, we have p ∈ ∂(Tu) ∩ ∂(Tv). Suppose a ∈ ∂(Tu) ∩ ∂(Tv), for
some vertex a ̸= p. Clearly, U = V (Tu) ∪ {p} ∪ V (Tv) induces a connected subgraph of G.
Moreover, a is adjacent to both V (Tu) and V (Tv), so there are two edges from a to U .
But then G is has a cycle, a contradiction.
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Lemma 9.5. Each node in a 2-cut STT has at most one child that is a direct separator
node, and at most one child that is an indirect separator node.

Proof. Suppose a node u has two direct separator children v, v′. Then u has a parent p
and ∂(Tv) = ∂(Tv′) = {u, p}. But ∂(Tv) ∩ ∂(Tv′) = {u} by lemma 9.4, a contradiction.

Now suppose u has two indirect separator children v, v′. Then u has a parent p, and
there are distinct ancestors a, b of p such that ∂(Tv) = {a, u} and ∂(Tv′) = {b, u} by
lemma 9.4. But then {p, a, b} ⊆ ∂(Tu) contradicting that T is 2-cut.

2-cut rotations vs. BST rotations. As mentioned above, intuitively, 2-cut STTs “locally”
behave like BSTs (i.e., search trees on paths), which allows applying familiar BST techniques.
The following two lemmas make this idea precise.

Lemma 9.6. Let v be a node in a 2-cut search tree T on a tree G. Let p be the parent of
v and let a ∈ ∂(Tp). Then v, p, a must lie on a common path in G (though not necessarily
in that order).

Proof. Let (Up, U
′, Uv) be the (p, v)-partition of G[Tp]. Lemma 9.2 implies that a is

adjacent to Up or Uv, which means that v, p, a are on a common path.

Lemma 9.7. Let v be a non-root node in a 2-cut search tree T on a tree, and assume
rotating v with its parent p yields a 2-cut search tree T ′. Let C be the set of separator
children of v and p in T . Then the nodes {v, p} ∪ ∂(Tp) ∪ C must lie on a common path
in G.

Proof. Let (Up, U
′, Uv) be the (p, v)-partition of G[Tp]. Using lemma 9.2 on (Up, U

′, Uv)
with T and on its reverse (Uv, U

′, Up) with T ′, we get that Up and Uv both are adjacent
to at most one vertex in ∂(Tp), and U ′ is adjacent to none. This implies that all vertices
in ∂(Tp) must be leaves of a path containing {v, p} ∪ ∂(Tp).

Now take some separator child c of v or p. Then ∂(Tc) ⊆ {v, p} ∪ ∂(Tp), so c separates
two vertices from this set (lemma 9.1), and hence lies on the path.

Using lemma 9.7 along with our earlier observations, we can characterize all allowed
rotations and their effect on direct/indirect separators. See figure 9.2. We will not use
this sketch in later proofs, but the reader may want to reference it for illustration.

Finally, we observe how a rotation changes node depths. The following is immediate
from lemma 2.10.

Observation 9.8. Let T be a 2-cut STT, let v ∈ V (T ), let p be the parent of v in T , and
let T ′ be the search tree obtained by rotating v with p.

Let D = V (Td) if v has a direct separator child d, and let D = ∅ otherwise. Then:

• depthT ′(u) = depthT ′(u) + 1 for all u ∈ V (Tp) \ V (Tv).

• depthT ′(u) = depthT ′(u)− 1 for all u ∈ V (Tv) \D.

• depthT ′(u) = depthT ′(u) for all remaining nodes.
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Figure 9.2.: All possible valid rotations in a 2-cut STT, up to symmetry. On the right, the
order of vertices in the underlying tree is shown. A small “s” (resp. “d”, “i”)
indicates an edge to a separator (resp. direct/indirect separator) child, and
“¬s” (resp. “¬d”, “¬i”) indicates the child cannot have the respective property.
Dotted edges represent an ancestor-descendant path of arbitrary length.
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9.1. 2-cut Move-to-root

9.1. 2-cut Move-to-root

As a warm-up, we describe a variant of the MoveToRoot algorithm of section 8.2. The
idea is very simple: To move v to the root, we keep trying to rotate v with its parent. If
that is not possible (without destroying the 2-cut property), we instead rotate its parent
with its grandparent. We call this algorithm MoveToRootTT; see algorithm 9.4 for
pseudocode.

It is easy to see that this algorithm only performs allowed rotations. If a rotation of v
with its parent p is not allowed, then v is not a separator and p is a separator by lemma 9.3.
This implies that p is not the root and, in particular, we may rotate p with its parent
(again by lemma 9.3). By observation 9.8, even when rotating at p, the depth of v is
reduced by one (since v is not a separator). Thus, eventually v becomes the root.

Observe that lower bound of proposition 8.4 does not apply to MoveToRootTT.
Indeed, if G is a star, then a 2-cut search tree T on G has height at most four. Otherwise,
the center c of G would have at least three ancestors (see section 2.2.5), all of which are in
∂(Tc). Thus, MoveToRootTT requires constant time per search on a star.

On the other hand, MoveToRootTT on a path is exactly the same as the BST
MoveToRoot algorithm, since then all rotations are allowed. Hence, MoveToRootTT
does require Θ(n) time per access in the worst case.

Experimental analysis indicates that MoveToRootTT performs well for uniformly
distributed searches (see section 10.9). It would be interesting to study whether the ran-
domized static optimality property of the original BST MoveToRoot algorithm [AM78]
holds for MoveToRootTT.

Open question 9.1. Let G be a tree, and let X ∈ V (G)m be a sequence of m ≥
|V (G)| searches that are sampled independently from a distribution p on V (G). Does
MoveToRootTT serve X in expected running time O(StOPT(G, p) + f(G)), for some
function f?

9.2. Splaying on 2-cut STTs

We now turn to our generalization of the Splay algorithm to 2-cut STTs.

We first describe Sleator and Tarjan’s [ST85b] original Splay algorithm for BSTs. It
can be seen as a slightly more sophisticated version of the MoveToRoot algorithm.
After finding a node v, it is brought to the root by a series of calls to the procedure

Algorithm 9.4 The 2-cut variant of the
MoveToRoot algorithm.

1: procedure MoveToRootTT(v)
2: while v has parent p do
3: if can rotate(v) then
4: rotate(v)
5: else
6: rotate(p)

113



9. Splay trees on trees

splay step(v) (see figure 9.3). If v has no grandparent, then splay step(v) simply rotates
v with its parent p (this is called a ZIG step). If the value of v is between the values of p
and its grandparent g, then splay step(v) rotates twice at v (ZIG-ZAG step). Finally, if
the value of v is smaller or larger than both values of p and g, then splay step(v) rotates
first at p and then at v (ZIG-ZIG step). Afterwards, v is an ancestor of both p and g, so v
is eventually brought to the root.

It is far from obvious that Splay performs well. We described many of its adaptivity
properties in section 8.1, and direct a reader interested in a more in-depth discussion
of Splay to the relevant literature [ST85b, CGK+15, Koz16, LT19]. For us, the most
important properties of Splay are static optimality and the working-set bound ; we will
show that both also hold for our generalization.

In 2-cut STTs, splay step(v) can be applied basically as-is, since lemma 9.6 implies
that v, p, and g are on a path. If v is between p and g, then we execute a ZIG-ZAG
step; otherwise, we execute a ZIG-ZIG step (see algorithm 9.5). However, simply applying
splay step repeatedly may destroy the 2-cut property, which may make it impossible
to apply splay step later. Thus, our algorithms need to be more careful. The following
lemma characterizes situations where splay step(v) is allowed; see figure 9.4 for a sketch
of allowed splay steps.

Lemma 9.9. Let v be a node in a 2-cut search tree T on a tree. If v is a child of the
root of T , then splay step(v) preserves the 2-cut property. If v has a parent p and a
grandparent g, then splay step(v) preserves the 2-cut property if and only if g is not a
separator or both v and p are separators.

Proof. If v is the child of the root r, then splay step(v) performs a single rotation, which
is allowed (i.e., preserves the 2-cut property) by lemma 9.3, since r trivially is not a
separator.

Suppose v is not the child of the root, and we apply splay step(v). Let T ′ be the
search tree after the first rotation, and T ′′ be the search tree after the second rotation.

If splay step(v) executes a ZIG-ZIG step, then it first rotates p with g, and then v
with p. The first rotation is disallowed iff |∂(Tp)| = 1 and |∂(Tg)| = 2. The second rotation
is disallowed iff |∂(T ′

v)| = |∂(Tv)| = 1 and |∂(T ′
p)| = |∂(Tg)| = 2. So the ZIG-ZIG step is

disallowed if g is a separator in T and at least one of v and p is not. This is precisely the
negation of the condition stated in the lemma.
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Figure 9.3.: splay step in binary search trees.
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9.2. Splaying on 2-cut STTs

Algorithm 9.5 The splay step procedure.

Input: Non-root node v
procedure splay step(v)

if v has no grandparent then ▷ ZIG
rotate(v)

else
if v is a direct separator then ▷ ZIG-ZAG

rotate(v)
rotate(v)

else ▷ ZIG-ZIG
rotate(parent(v))
rotate(v)
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Figure 9.4.: Sketches of the two cases in a splay step(v), including the behavior of all
possible types of children of v. Edge labels mean the same as in figure 9.2.
The relevant part of the underlying graph is shown at the top.
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9. Splay trees on trees

If splay step(v) executes a ZIG-ZAG step, then it rotates twice at v. The first rotation
is disallowed if and only if |∂(Tv)| = 1 and |∂(Tp)| = 2. This can never happen, since we
only execute a ZIG-ZAG step if v is a separator. The second rotation is disallowed if and
only if |∂(T ′

v)| = |∂(Tp)| = 1 and |∂(T ′
g)| = |∂(Tg)| = 2. Since v is a separator in T , this is

again the negation of the stated condition.

In the following, we present two different adaptations of the Splay algorithm to 2-cut
STTs. In both cases, we will show correctness of the algorithm immediately. The cost
analysis is similar for both variants and is deferred to section 9.3.

Greedy SplayTT. Our first algorithm is similar to MoveToRootTT and is inspired by
a dynamic forest data structure of Holm, Rotenberg, and Ryhl [HRR23] (see chapter 10 for
more information on the dynamic forest problem). GreedySplayTT brings a node v to
the root by repeatedly trying to execute splay step on v, its parent, and its grandparent,
in that order. See algorithm 9.6 for pseudocode. The function can splay step checks the
conditions of lemma 9.9.

The following lemma implies that GreedySplayTT is always allowed to execute at
least one of the three possible splay steps.

Lemma 9.10. Let v be a node in a 2-cut STT T with parent p and grandparent g.
Then one of splay step(v), splay step(p), and splay step(g) can be executed while
maintaining the 2-cut property.

Proof. Suppose the first two calls are disallowed. We use lemma 9.9 to show that then the
third call is allowed. Observe that g must have a parent h; otherwise, g is not a separator,
so splay step(v) is allowed. Since splay step(v) and splay step(p) are disallowed, the
nodes g and h must be separators, so splay step(g) is allowed.

It remains to show that GreedySplayTT actually brings the given node v to the root.
Observe that we only execute splay step(x) for ancestors x of v (including v itself). We
show that a ZIG-ZIG or ZIG-ZAG step at x decreases the depth of each descendant of x

Algorithm 9.6 GreedySplayTT

procedure GreedySplayTT(v)
while v has parent p do

if p has parent g then
if can splay step(v) then

splay step(v)
else if can splay step(p) then

splay step(p)
else

splay step(g) ▷ Must be possible
else ▷ p is the root

rotate(v)
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9.2. Splaying on 2-cut STTs

(including x itself) by at least one in the following. Note that observation 9.8 will be used
extensively.

Lemma 9.11. Let x be a node in a 2-cut search tree T on a tree, and let T ′ be the search
tree produced by executing splay step(x). Assume that depthT (x) ≥ 3 and T ′ is 2-cut.
Then, for each u ∈ V (Tx), we have depthT ′(u) < depthT (u).

Proof. Let p, g be the parent and grandparent of x. If x is not a direct separator, we
execute a ZIG-ZIG step. The first rotation at p reduces the depth of all nodes in V (Tx)
(since x is not a direct separator), and all those nodes stay descendants of x. The following
rotation at x cannot increase the depth of any descendant of x.

Now suppose x is a direct separator, so we do a ZIG-ZAG step. Let T ′′ be the search
tree after the first rotation at x. We claim that p is not a direct separator in T ′′. Indeed,
if it is, then p separates x and g in T . But x already separates p and g by assumption, a
contradiction.

Let D = V (Td) if x has a direct separator child d in T , or let D = ∅ otherwise. The first
rotation reduces the depth of each node in V (Tx) \D, and these nodes stay descendants
of x, so the second rotation does not increase their depth. On the other hand, all nodes in
D become descendants of p in T ′′. The second rotation at x decreases the depth of p and
all its descendants (since p is not a direct separator in T ′′). Thus, the ZIG-ZAG step also
reduces the depth of each node in D.

We now argue that GreedySplayTT(v) executes at most one ZIG step, which must
be the last splay step and brings v to the root. Suppose otherwise we execute a ZIG
step at the parent p or grandparent g of v. Then the grandparent of v is not a separator,
so GreedySplayTT would execute splay step(v) instead, a contradiction.

Combined with lemma 9.11, we have that every splay step(x) in GreedySplayTT(v)
decreases the depth of v by at least one, eventually bringing it to the root.

Two-pass SplayTT. We now turn to a different SplayTT variant. The algorithm itself
is more complicated, but will be easier to analyze. It has some similarities to another
dynamic forest data structure, namely link-cut trees [ST83, ST85b] (see also section 10.7),
but was developed independently [BK22].

The idea is to first “clean up” the root path of v and remove all nodes that might inhibit
rotations. Afterwards, all rotations on the root path are allowed, so we can simply repeat
splay step(v) until v is the root.

The algorithm uses the following “generalized splaying” procedure (see algorithm 9.7).
Let x be a descendant of a node y. The procedure splay to(x, y) executes splay step(x)
until y is the parent or grandparent of x. Then, if y is the grandparent of x, it executes a
final rotation (or ZIG step), so x becomes a child of y.

We also want our procedure to be able to bring a node to the root. For this, we define
the “parent of the root” to be ⊥. Calling splay to(x,⊥) brings x to the root.

We now describe the TwoPassSplayTT algorithm. Fix a search tree T and a node
v ∈ V (T ). Let x ∈ PathT (v) \ {v}, and let c be the unique child of x that lies on PathT (v).
We call x a branching node for v if |∂(Tx)| = 2 and |∂(Tc)| = 1.1 Clearly, if x is a branching branching

node for v
node for v, then it is a branching node for each descendant of v.

1The branching nodes are precisely the nodes on ch(PathT (v)) that have degree three, hence the name.
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9. Splay trees on trees

Observe that a rotation at some node x ∈ PathT (v) is allowed if and only if parent(x)
is not a branching node. Accordingly, our algorithm removes all branching nodes in
a first pass, which works as follows. We first find all branching nodes b1, b2, . . . , bk on
the path from v to the root, ordered such that bk ≺T bk−1 ≺T . . . ≺T b1. We then
call splay to(bi, bi+1) for each i ∈ [k − 1] in order. Finally, call splay to(bk,⊥). This
concludes the first pass. The second pass simply brings v to the root with splay to(v,⊥).
See algorithm 9.8 for pseudocode.

To show correctness, we mainly need to prove that no rotations that destroy the 2-cut
property are performed. The first pass is covered by the following lemma.

Lemma 9.12. Let T be a 2-cut STT, let v, x ∈ V (T ) and y ∈ V (T ) ∪ {⊥} with y ≺T

x ≺T v, and let U = {u | y ≺T u ≺T x} be the set of nodes strictly between x and y on the
root path of v.

Suppose that x is a branching node for v and U contains no branching nodes for v. Then
splay to(x, y) performs precisely |U | rotations, all of which are allowed. If T ′ is the search
tree produced by splay to(x, y), then parentT ′(x) = y and PathT ′(v) = PathT (v) \ U .

Proof. We perform induction on |U |. If U = ∅, then splay to(x, y) performs no rotations
and there is nothing to prove.

Suppose U ̸= ∅, and consider the first splay step(x) (or single rotation at x, if |U | = 1)
performed by splay to(x, y). We first argue that this operation is allowed. Indeed, we know
that |∂(Tx)| = 2, so a single rotation is always allowed (lemma 9.3) and splay step(x) is
allowed unless p = parent(x) is not a separator and g = parent(p) exists and is a separator
(lemma 9.9). But in that case, g is a branching node, so we have g = y and splay to only
performs a single rotation instead.

We now show that all nodes in U are removed from the root path of v. This implies
PathT ′(v) = PathT (v) \ U , since all rotations involve nodes in U , and we never add new
nodes to the root path of v.

Let T ′′ be the tree after the first splay step or rotation. Let c be the child of x in T
such that v ∈ V (Tc). Since x is a branching node, we know that c is not a direct separator
and therefore still is a child of x in T ′′. Thus, all nodes in U that remain on the root path
of v are still between x and y. Let U ′ = U ∩ PathT ′′(v). We now consider two cases.

Algorithm 9.7 Generalized splaying.

Input: Node x and ancestor y
1: procedure splay to(x, y)
2: while parent(x) ̸= y do
3: if parent(parent(x)) = y then
4: rotate at x ▷ Final ZIG
5: else
6: splay step(x)

Algorithm 9.8 TwoPassSplayTT

Input: Node v
1: procedure TwoPassSplayTT(v)
2: ▷ First pass
3: Identify branching nodes b1, . . . , bk

on the path from v to the root
4: for each i ∈ [k − 1] do
5: splay to(bi, bi+1)
6: splay to(bk,⊥)
7: ▷ Second pass
8: splay to(v,⊥)
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• If |∂(T ′′
x )| = 2, then x is a branching node for v in T ′′ and our claim follows by

induction.

• If|∂(T ′′
x )| = 1, then |∂(T ′′

u )| = |∂(Tu)| = 1 for each u ∈ U ′ (otherwise, there is a
branching node in U). Any rotation at x or some u ∈ U ′ will simply remove the
parent of the respective node from the root path of v, maintaining that x and all
nodes between x and y are 1-cut. Thus, all rotations performed subsequently are
allowed, and ultimately, all nodes in U are removed from the root path of v.

It remains to show that only |U | rotations are performed. For this, simply observe that
each rotation performed by splay to(x, y) is either a rotation at x, which reduces its
depth by one; or a splay step at x; which reduces its depth by two (see figure 9.4).

Lemma 9.12 shows that the first pass only performs allowed rotations, and that each
rotation removes a node from the root path of v.

We now show that the first pass indeed removes all branching nodes. The nodes between
v and b1 on the root path of v are clearly not touched and thus cannot become branching
nodes. Now consider a call splay to(bi, bi+1) for i ∈ [k − 1] (line 5). Let T, T ′ be the
search trees before and after that call, and let c be the child of bi+1 in T that lies on the
root path of v. We know that c is not a separator, since bi+1 is a branching node. Further,
we have V (T ′

bi
) = V (Tc), so bi is not a separator and thus not a branching node in T ′.

Similarly, the call splay to(bk,⊥) (line 6) makes bk the root, which cannot be a branching
node. Thus, the first pass makes b1, b2, . . . , bk non-branching nodes.

We now turn to the second pass. Let T be the tree produced by the first pass. We know
that the root path of v contains no branching nodes, thus splay to(v,⊥) only performs
allowed rotations (lemma 9.12) and makes v the root.

Finally, observe that TwoPassSplayTT(v) overall performs depthT (v)− 1 rotations
by lemma 9.12. We have:

Lemma 9.13. Let v be a node in a 2-cut search tree T . TwoPassSplayTT(v) brings v
to the root with depthT (v)− 1 rotations, all of which are allowed.

Remark. If the underlying tree is a path, then all rotations are allowed and there are no
branching nodes. Hence, both SplayTT variants are identical to classical Splay in that
case.

9.3. Adaptivity properties of SplayTT

In this section, we show that GreedySplayTT and TwoPassSplayTT achieve static
optimality and the (logarithmic) working-set bound.

Theorem 9.14. Let G be a tree and let X ∈ V (G)m be an access sequence. Let
wX : V (G) → N0 count the number of occurrences of each element in X. Then the
cost of GreedySplayTT and TwoPassSplayTT for serving X is O(StOPT(G,wX) +
StOPT(G, 1)).
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9. Splay trees on trees

Theorem 9.15. Let G be a tree and let (x1, x2, . . . , xm) ∈ V (G)m be an access sequence.
For each i ∈ [m], let Wi denote the set of distinct elements in xj+1, xj+2, . . . , xi, where j ∈
[m] is maximal such that j < i and xj = xi, or j = 0 if no such index exists. Then the cost
of GreedySplayTT and TwoPassSplayTT for serving X is O(n log n+

∑m
i=1 log |Wi|).

We use the potential method [Tar85] with two different potential functions, one for each
theorem. The core of the proof is an amortized analysis of the splay step procedure and
is common to both SplayTT variants and both potential functions.

In section 9.3.6, we improve the error term StOPT(G, 1) of theorem 9.14 in certain
cases. In particular, it vanishes if all vertices of degree two are accessed at least once.

9.3.1. Potential functions

Our first potential function, used to show static optimality, is inspired by a similar one
suggested by Thatchaphol Saranurak for the analysis of classical Splay [CGK+16, § 3.2].
Fix a search tree R on the underlying tree G. We will call R the reference tree.reference tree

For each nonempty subset U ⊆ V (R) = V (G), define

ϕR(U) = −min
u∈U

depthR(u).

Let T be a search tree on G. The node potential of a node x ∈ V (T ) is ϕR(Tx) =
ϕR(V (Tx)). In words, the negated node potential is the smallest depth (in R) of x or a
descendant of x (in T). The search tree potential of T is ΦR(T ) =

∑
x∈V (T ) ϕ(Tx).ΦR

Our second potential function is a simple generalization of one used by Sleator and
Tarjan for classical Splay [ST85b]. Let T be a search tree on a tree G. Let w : V (G)→ R+

be a positive weight function on V (G). Define ΦST
w (T ) =

∑
v∈V (T ) logw(Tv).ΦST

w

We now study some essential similarities of the two potential functions, which will
allow us to re-use most of the proofs. Observe that ΦST can be written in a similar way
as ΦR, as follows. For a nonempty subset U ⊆ V (G), define ϕST

w (U) = logw(U). Then
we can define a node potential ϕST

w (Tv) = ϕST
w (V (Tv)) and a the search tree potential

ΦST
w (T ) =

∑
v∈V (T ) ϕ

ST
w (Tv).

In general, a function Φ mapping search trees on G to a real is called an additive potentialadditive

function if there exists a function ϕ : 2V (G) → R≥0 such that Φ(T ) =
∑

v∈V (T ) ϕ(V (Tv)).
We call ϕ the node potential corresponding to Φ. We further call Φ monotone if ϕ(A) ≤ ϕ(B)node potential

monotone
for each A ⊆ B ⊆ V (G), and we call Φ strictly pseudo-concave if ϕ(A) +ϕ(B) ≤ 2ϕ(C)− 1

strictly
pseudo-
concave

for two disjoint nonempty subsets A,B ⊆ V (G) and each superset C ⊇ A∪B that induces
a connected subgraph of G.

Clearly, both ΦST
w and ΦR (for any R) are additive potential functions. We now show

that both are also monotone and strictly pseudo-concave.

Lemma 9.16. ΦR is monotone for each reference tree R.

Proof. Let A ⊆ B ⊆ V (G). The minimum in ϕ(B) is taken over a larger set, so it is
smaller. The negation in ϕ reverses the inequality, so we have ϕ(A) ≤ ϕ(B).

Lemma 9.17. ΦR is strictly pseudo-concave for each reference tree R.
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Proof. Let A,B ⊆ V (G) be disjoint and let C ⊇ A∪B induce a connected subgraph of G.
Let x = LCAR(C). Since G[C] is connected, we have x ∈ C (lemma 2.4). Observe that x
is the unique node minimizing depthR(x) in C.

We have ϕ(A), ϕ(B) ≤ ϕ(C) by monotonicity (lemma 9.16) and ϕ(C) = −depthR(x)
since x ∈ V (C) by lemma 2.4. If x /∈ A, then ϕ(A) < ϕ(C). If x /∈ B, then ϕ(B) < ϕ(C).
At least one of these cases hold and both imply the claim.

Lemma 9.18. ΦST
w is monotone for each positive weight function w.

Proof. This follows directly from monotonicity of the logarithm.

Lemma 9.19. ΦST
w is strictly pseudo-concave for each positive weight function w.

Proof. Let A,B ⊆ V (G) be disjoint and let C ⊇ A∪B. Observe that w(C) ≥ w(A∪B) =
w(A) + w(B). Thus, it suffices to show that for all x, y ∈ R+, we have log x + log y ≤
2 log(x + y)− 1. Assume x ≥ y. Indeed,

log x + log y = 2 log(x + y)− log x+y
y − log x+y

x

≤ 2 log(x + y)− log 2− log 1 = 2 log(x + y)− 1.

9.3.2. Proof outline

Let Φ be a potential function and let S be a sequence rotations that transform a search
tree T into a search tree T ′. The amortized number of rotations in S w.r.t. Φ is defined as amortized no.

of rotations
|S|+ Φ(T ′)− Φ(T ).

Our key result, proved in the following few sections, is:

Lemma 9.20. Let Φ be a monotone and strictly pseudo-concave potential function,
and let ϕ be the corresponding node potential. For both algorithms TwoPassSplayTT
and GreedySplayTT, there exist constants α, β, γ such that the amortized number of
rotations w.r.t. α · Φ performed by the respective algorithm for an access to a node v is at
most β(ϕ(T ′

v)− ϕ(Tv)) + γ, where T is a search tree before the access, and T ′ is the search
tree afterwards.

We now show that lemma 9.20 implies theorems 9.14 and 9.15. First, the number
of pointer moves is essentially dominated by the (actual) number of rotations in both
algorithms. Indeed, the number of pointer moves to find the accessed node v is depth(v),
and both algorithms bring v to the root, which needs at least depth(v) − 1 rotations.
Apart from the initial search, GreedySplayTT clearly performs O(1) pointer moves
for each rotation, and the two passes of TwoPassSplayTT can be implemented with
O(depth(v)) pointer moves each.

The only case where the cost is not dominated by the number of rotations is when
none are performed, because v is already the root. In that case, the cost is O(1) for both
algorithms. Thus, the total cost is O(r +m), where r is the number of rotations, and m is
the length of the input sequence.

We now proceed with the proof theorem 9.14. We first need a technical lemma.

Lemma 9.21. Let R and T be search trees on a tree G and let x ∈ V (T ). Then
−depthR(x) ≤ ϕR(Tx) ≤ −1.
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9. Splay trees on trees

Proof. Since x ∈ V (Tx), we have minu∈V (Tx) depthR(u) ≤ depthR(x). Thus, ϕR(Tx) ≥
−depthR(x). Further, depthR(u) ≥ 1 for all u ∈ V (G), so ϕR(Tx) ≤ −1.

Theorem 9.14. Let G be a tree and let X ∈ V (G)m be an access sequence. Let
wX : V (G) → N0 count the number of occurrences of each element in X. Then the
cost of GreedySplayTT and TwoPassSplayTT for serving X is O(StOPT(G,wX) +
StOPT(G, 1)).

Proof. Let R be a search tree, and let α, β, γ be the constants from lemma 9.20, depending
on the algorithm. W.l.o.g., assume β ≥ γ. We consider the amortized number of rotations
rA w.r.t. to the scaled potential function α · ΦR.

Consider an access to v, and let T be the tree before the access and T ′ be the tree
afterwards. Since v is the root of T ′, we have ϕR(T ′

v) = ϕR(T ′) = −1. Further, we have
−ϕR(Tv) ≤ depthR(x) by lemma 9.21. Hence, by lemma 9.20, the amortized number of
rotations of each access is at most −β + β · depthR(x) + γ ≤ β · depthR(x).

Now let X = (x1, x2, . . . , xm) ∈ V (G)m be a sequence of accesses, and let wX : V (G)→
N0 count the number of occurrences of each vertex in X, as in the statement of the theorem.
Summing up the amortized number of rotations of each access gives

rA ≤
m∑
i=1

β · depthR(xi) = β cost(R,wX).

Let ri denote the actual number of rotations in the i-th access, and let r denote the
total number of actual rotations. Let T 0 be the initial search tree and let T i be the search
tree after the i-th access. By definition, we have

rA =
∑
i=1

(
ri + α · ΦR(T i)− α · ΦR(T i−1)

)
= r + α · ΦR(Tm)− α · ΦR(T 0)

≥ r + α
∑
v∈V (G)

(−depthR(v))− α
∑
v∈V (G)

(−1) by lemma 9.21

= r − α cost(R,1) + α · n.

This implies that r ≤ rA + α cost(R,1) ≤ max(α, β) · cost(R,wX + 1). As mentioned
above, the total cost of the algorithm is dominated by the rotations, up to an additional
term of O(m) ⊆ O(cost(R,wX + 1)).

Now let R be an optimal search tree for the weight function wX +1, so cost(R,wX +1) =
StOPT(G,wX + 1). By lemma 3.13, this is upper bounded by 2 · (StOPT(G,wX) +
StOPT(G, 1)). This concludes the proof.

We now prove that both SplayTT variants achieve the working-set bound, using the
argument of Sleator and Tarjan from the analysis of Splay [ST85b]. We use the potential
function ΦST

w . Its node potential is easily bounded as follows.

Observation 9.22. Let T be a search tree on a tree G and let w be a positive weight
function on G. For each v ∈ V (G), we have minv∈V (G) logw(v) ≤ ϕST

w (Tv) ≤ logw(G).
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Theorem 9.15. Let G be a tree and let (x1, x2, . . . , xm) ∈ V (G)m be an access sequence.
For each i ∈ [m], let Wi denote the set of distinct elements in xj+1, xj+2, . . . , xi, where j ∈
[m] is maximal such that j < i and xj = xi, or j = 0 if no such index exists. Then the cost
of GreedySplayTT and TwoPassSplayTT for serving X is O(n log n+

∑m
i=1 log |Wi|).

Proof. Let α, β, γ be the constants from lemma 9.20, depending on the algorithm. We use
the potential function ΦST

w with a changing weight function w.

Throughout the execution, we maintain a permutation of the nodes.2 Let π0 be a
permutation of V (G) in order of first access, with never-accessed vertices at the end in
arbitrary order. For i ∈ [m], we inductively construct the permutation πi from πi−1 by
simply moving the i-th accessed element xi to the front.

The weight function wi is defined as wi(x) = 1
j2

, where j is the index of x in πi. By

lemma 9.20, the amortized number of rotations w.r.t. α · ΦST
wi−1

for accessing xi is at most

rAi := β · (ϕST
wi−1

(T ′
xi

)− ϕST
wi−1

(Txi)) + γ, where T is the search tree before the access, and
T ′ is the search tree afterwards.

Observe that the position of xi in πi−1 is precisely |Wi|. Thus,

ϕST
wi−1

(Txi) ≥ ϕST
wi−1

({xi}) = logwi−1(xi) = log 1/|Wi|2 = −2 log |Wi|.

Moreover, since xi is the root of T ′, we have ϕST
wi−1

(T ′
xi

) = ϕST
wi−1

(T ′) = log
∑n

i=1
1
i2
≤ π2

6 ,
implying that

rAi ≤ β · π2

6 + 2β log |Wi|+ γ ∈ O(log |Wi|).

We now bound the potential change caused by modifying the weight function. When
changing wi−1 to wi, the weight of every node decreases, except for xi. Since xi is the
root at this time, the weight of no proper rooted subtree can increase. Finally, the weight
of the whole tree T = Txi is unchanged, since we merely redistribute weights among the
nodes. Formally, we thus have ΦST

wi
(T i) ≤ ΦST

wi−1
(T i), where T i is the search tree after the

i-th access.

Now let ri be the actual number of rotations performed in the i-th access. We have

rAi = ri + α · ΦST
wi−1

(T i)− α · ΦST
wi−1

(T i−1) ≥ ri + α · ΦST
wi

(T i)− α · ΦST
wi−1

(T i−1). (9.1)

The total number of rotations r thus can be bounded as follows:

r =
m∑
i=1

ri ≤
m∑
i=1

rAi + α · ΦST
wi−1

(T i−1)− α · ΦST
wi

(T i) by eq. (9.1)

= α · ΦST
w0

(T 0)− α · ΦST
wm

(Tm) +
m∑
i=1

rAi

≤ α · n log n +

m∑
i=1

rAi by observation 9.22

Since rAi ∈ O(log |Wi|), we obtain the desired bound.

2This permutation is only used in the analysis, and not maintained explicitly by any of the algorithms.
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9. Splay trees on trees

Observe that the error term in theorem 9.15 is n log n, compared to the stronger
StOPT(G,1) in theorem 9.14. (By theorem 4.1, we always have StOPT(G,1) ∈ O(n log n).)

The potential function and overall analysis for theorem 9.15 are directly lifted from
Sleator and Tarjan’s Splay analysis for BSTs [ST85b], so it does not take into account
the structure of the underlying tree at all. It seems necessary for the proof to change the
potential function during operation, which makes a reference-tree based approach difficult.
Perhaps a variant of ΦR can be used where, whenever a node v is accessed, we rotate v to
the top of the reference tree R.

Open question 9.2. Does SplayTT achieve the working-set bound with additive error
O(StOPT(G,1)?

In the next few sections, we prove lemma 9.20.

9.3.3. Potential change of rotations and splay step

We now analyze the potential change caused by rotations and calls to splay step. Refer
to figures 9.2 and 9.4 for illustration. For the remainder of section 9.3, fix a monotone and
strictly pseudo-concave additive potential function Φ, and let ϕ be the associated node
potential.

Lemma 9.23. Let T be an STT, and let T ′ be produced from T by a single rotation at
v ∈ V (T ). Then

Φ(T ′)− Φ(T ) = ϕ(T ′
p)− ϕ(Tv) ≤ 3(ϕ(T ′

v)− ϕ(Tv)).

Proof. Let p = parent(v). Observe that the node potential only changes at v and p, since
all other nodes neither gain nor lose descendants. We thus have

Φ(T ′)− Φ(T ) = ϕ(T ′
p) + ϕ(T ′

v)− ϕ(Tp)− ϕ(Tv)

= ϕ(T ′
p)− ϕ(Tv) since V (T ′

v) = V (Tp)

≤ ϕ(T ′
v)− ϕ(Tv) by monotonicity, since V (T ′

p) ⊆ V (T ′
v)

≤ 3(ϕ(T ′
v)− ϕ(Tv)). by monotonicity, since V (Tv) ⊆ V (T ′

v)

Lemma 9.24. Let T be an STT, and let T ∗ be produced from T by a splay step at
v ∈ V (T ). Then

Φ(T ∗)− Φ(T ) ≤ 3(ϕ(T ∗
v )− ϕ(Tv))− 1.

Proof. Let p, g be parent and grandparent of v in the initial tree T . Let T ′ be the tree
after the first of the two rotations.

ZIG-ZAG. We rotate twice at v, first with p and then with g. By lemma 9.23, the total
potential change is

Φ(T ∗)− Φ(T ) = ϕ(T ′
p)− ϕ(Tv) + ϕ(T ∗

g )− ϕ(T ′
v).

Since p is not involved in the second rotation, we have ϕ(T ∗
p ) = ϕ(T ′

p). Moreover, we
know that V (T ∗

p ) and V (T ∗
g ) are disjoint subsets of V (T ∗

v ), since they are both child
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subtrees of v in T ∗. Concavity thus implies that ϕ(T ′
p) + ϕ(T ∗

g ) ≤ 2ϕ(T ∗
v ) − 1. Further

observe that ϕ(Tv) ≤ ϕ(Tp) = ϕ(T ′
v) by monotonicity, so

Φ(T ∗)− Φ(T ) ≤ 2(ϕ(T ∗
v )− ϕ(Tv))− 1 ≤ 3(ϕ(T ∗

v )− ϕ(Tv))− 1.

ZIG-ZIG. We first rotate p with g. Since we perform a ZIG-ZIG step, we know that v is
not a direct separator in T , so v and g are both children of p in T ′. The potential change
is

Φ(T ′)− Φ(T ) = ϕ(T ′
g)− ϕ(Tp) by lemma 9.23

= ϕ(T ′
g) + ϕ(T ′

v)− ϕ(Tp)− ϕ(Tv) since V (T ′
v) = V (Tv)

= 2ϕ(T ′
p)− 1− ϕ(Tp)− ϕ(Tv) by concavity

≤ 2ϕ(T ′
p)− 1− 2ϕ(Tv) by monotonicity, since p ≺T v

= 2ϕ(T ∗
v )− 1− 2ϕ(Tv) since V (T ∗

v ) = V (T ′
p)

The second rotation of v with p changes the potential by at most ϕ(T ∗
v ) − ϕ(T ′

v) =
ϕ(T ∗

v ) − ϕ(Tv) (lemma 9.23). Adding up the two potential changes yields the desired
bound.

9.3.4. Potential change of Two-Pass SplayTT

We now analyze TwoPassSplayTT, starting with the splay to procedure.

Lemma 9.25. Let T be an STT, and let T ∗ be produced from T by calling splay to(x, y)
for some x ∈ V (T ) and y ∈ V (T ) ∪ {⊥}, and let k = depthT (x) − depthT (y) ≥ 1, with
depthT (⊥) = 0. Then

Φ(T ∗)− Φ(T ) ≤ 3(ϕ(T ∗
x )− ϕ(Tx))− ⌊k−1

2 ⌋

Proof. Recall that splay to(x, y) performs ZIG-ZIG or ZIG-ZAG steps as long as the
depth difference of x and y is at least three, and each of those steps decreases this depth
difference by two. (If y = ⊥, the depth difference is simply the depth of x.) Hence,
splay to(x, y) performs ℓ := ⌊k−1

2 ⌋ ZIG-ZIG or ZIG-ZAG steps and then a final ZIG step
(single rotation) if k is even.

Let T i be the search tree after i such steps, with T 0 = T . By lemma 9.24, we have

Φ(T ℓ)− Φ(T ) =
ℓ∑

i=1

Φ(T i)− Φ(T i−1)

≤
ℓ∑

i=1

3(ϕ(T i
v)− ϕ(T i−1

v ))− 1 = 3(ϕ(T ℓ
v )− ϕ(Tv))− ℓ.

If k is odd, then T ∗ = T ℓ and we are done. Otherwise, we have

Φ(T ∗)− Φ(T ) = Φ(T ℓ)− Φ(T ) + Φ(T ∗)− Φ(T ℓ)

and Φ(T ∗)− Φ(T ℓ) ≤ 3(ϕ(T ∗
v )− ϕ(T ℓ

v )) by lemma 9.23, thus Φ(T ℓ)− Φ(T ) ≤ 3(ϕ(T ∗
v )−

ϕ(T ))− ℓ, as desired.
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If splay to performs more than one rotation (i.e., k > 2), then the term −⌊k−1
2 ⌋

“pays” for the rotations (when scaling the potential function appropriately). However,
TwoPassSplayTT may perform many single-rotation splay tos, e.g., if every other
node on the root path of the accessed node is a branching node. The trick is to scale the
potential function a little more, so that the second pass pays for the unaccounted rotations
of the first pass. We proceed with the formal proof.

Lemma 9.26. Let T be an STT, and let T ∗ be produced from T by accessing a node
v ∈ V (T ) with TwoPassSplayTT. Then

Φ(T ∗)− Φ(T ) ≤ 6(ϕ(T ∗
v )− ϕ(Tv))− 1

4 depthT (v) + 1.

Proof. We start with the first phase. Let b1, b2, . . . , bk be the branching nodes as in
algorithm 9.8 and set bk+1 = ⊥. Let T i be the search tree after performing the i-th
call splay to(bi, bi+1), and let T 0 = T . For convenience, in the following we write
ϕi(x) = ϕ(T i

x) for all i ∈ {0, 1, . . . , k + 1} and x ∈ V (T ).
By lemma 9.25, the potential change of the i-th call to splay to is

Φ(T i)− Φ(T i−1) ≤ 3(ϕi(bi)− ϕi−1(bi))−
⌊

depthT i−1(bi)− depthT i−1(bi+1)− 1

2

⌋
,

where depth(⊥) = 0 and ϕi(⊥) = ϕi(T ).
By lemma 9.12, we have depthT i(bj) = depthT (bj) for all i < j, since bj is not touched

until the j-th call. Moreover, we know that bi stays a descendant of bi+1 throughout the first
phase, so in particular ϕi(bi) ≤ ϕi(bi+1) for all i ∈ [k − 1]. In the same vain, observe that
ϕ0(v) ≤ ϕ0(b1) since v is a descendant of b1 in T , and ϕk(bk) ≤ ϕk(bk+1) = ϕk(⊥) = ϕ(T ).
This implies

Φ(T k)− Φ(T ) ≤
k∑

i=1

Φ(T i)− Φ(T i−1)

≤
k∑

i=1

3(ϕi(bi)− ϕi−1(bi))−
⌊

depthT i−1(bi)− depthT i−1(bi+1)− 1

2

⌋

≤
k∑

i=1

3(ϕi(bi+1)− ϕi−1(bi))−
⌊

depthT (bi)− depthT (bi+1)− 1

2

⌋
≤ 3(ϕk(bk+1)− ϕ0(b1))− 1

2(depthT (b1)− depthT (bk+1)) + k

≤ 3(ϕ(T )− ϕ0(v))− 1
2 depthT (b1) + k

By lemma 9.12, after the first phase, the root path of v consists of precisely v, the
nodes between v and b1 in T , and the branching nodes b1, b2, . . . , bk. Thus, depthTk(v) =
(depthT (v)− depthT (b1)) + k.

With this in mind, the search tree potential changes as follows in the second phase,
when we call splay to(v,⊥).

Φ(T ∗)− Φ(T k) ≤ 3(ϕ(T ∗
v )− ϕ(T k

v ))−
⌊

depthTk(v)− 1

2

⌋
≤ 3(ϕ(T ∗

v )− ϕ(T k
v ))− 1

2(depthT (v)− depthT (b1) + k) + 1.
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Observe that ϕ(T ∗
v ) = ϕ(T ∗) = ϕ(T ), since v = root(T ∗), and that Tv = T k

v , since v is
not touched by the first phase. Further observe that k ≤ 1

2 depthT (v), since two branching
nodes cannot be next to each other on the root path of v. The following calculation
finishes the proof.

Φ(T ∗)− Φ(T ) = Φ(T ∗)− Φ(T k) + Φ(T k)− Φ(T )

≤ 3(ϕ(T ) + ϕ(T ∗
v )− ϕ(Tv)− ϕ(T k

v ))− 1
2 depthT (v) + k

2 + 1.

≤ 6(ϕ(T ∗
v )− ϕ(Tv))− 1

4 depthT (v) + 1.

Since TwoPassSplayTT(v) performs depthT (v)− 1 rotations (lemma 9.13), scaling
the potential function by four lets us use the potential change to “pay” for the rotations.
We obtain:

Corollary 9.27. The amortized number of rotations w.r.t. 4 · Φ performed by TwoPass-
SplayTT when accessing a node v is at most 24(ϕ(T ∗

v )−ϕ(Tv)) + 3, where T is the search
tree before the access, and T ∗ is the search tree afterwards.

This concludes the proof of the first part of lemma 9.20.

9.3.5. Potential change of Greedy SplayTT

This algorithm does not use splay to. Its analysis is a bit more difficult and technical,
mainly due to the fact that some performed splay steps only remove one node from the
root path of v, instead of two.

Our analysis uses an additional potential function to amortize over calls to splay step

in GreedySplayTT. Let T be an STT and let v ∈ V (T ). We define Ψv(T ) = ϕ(Tv) +
ϕ(Tp) + ϕ(Tg), where p and g are the parent and grandparent of v in T ; either is ⊥ if that
node does not exist, and define ϕ(T⊥) = ϕ(T ) + 1.

Lemma 9.28. Consider a call GreedySplayTT(v). Let T be the STT before some
splay step. Let T ′ be the STT after that splay step, and let T ′′ be the STT after the
following splay step (if there is such a step). Then one of the following holds:

(a) Φ(T ′)− Φ(T ) ≤ 3(Ψv(T ′)−Ψv(T ))− 1.

(b) Φ(T ′′)− Φ(T ) ≤ 3(Ψv(T ′′)−Ψv(T ))− 2 (and T ′′ exists).

Proof. Let p, p′, p′′, g, g′, g′′ be the parent and grandparent of v in the respective tree.
(All non-existing nodes are ⊥.) In the following, we write Ψ = Ψv for short.

We have Ψ(T ′) = ϕ(T ′
v)+ϕ(T ′

p′)+ϕ(T ′
g′) and Ψ(T ′′) = ϕ(T ′′

v )+ϕ(T ′′
p′′)+ϕ(T ′′

g′′). Consider
the following cases.

(i) If p is the root of T , then splay step executes a single rotation. By lemma 9.23,
the potential change is Φ(T ′)− Φ(T ) ≤ 3(ϕ(T ′

v)− ϕ(Tv)).

Observe that g = g′ = ⊥, so ϕ(Tg) = ϕ(T ′
g′). Further, since p is the root of T and

p′ = ⊥, we have ϕ(T ′
p′) = ϕ(Tp) + 1, and thus

ϕ(T ′
v)−ϕ(Tv) = ϕ(T ′

v)−ϕ(Tv)+ϕ(T ′
p′)−ϕ(Tp)+ϕ(T ′

g′)−ϕ(Tg)−1 = Ψ(T ′)−Ψ(T )−1.

This proves the claim. From now on, assume p is not the root of T .
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9. Splay trees on trees

(ii) If we call splay step(v), then the nodes p and g are simply removed from the root
path of v, so p′ and g′ are ancestors of g in T (or nonexistent). This implies that
ϕ(Tp) ≤ ϕ(T ′

p′) and ϕ(Tg) ≤ ϕ(T ′
g′), so ϕ(T ′

v)− ϕ(Tv) ≤ Ψ(T ′)−Ψ(T ).

By lemma 9.24, we have Φ(T ′)− Φ(T ) ≤ 3(ϕ(T ′
v)− ϕ(Tv))− 1, implying the claim.

(iii) Suppose we call splay step(p). Since splay step(v) was disallowed, we know (by
lemma 9.9) that at least one of v and p is not a separator in T , and g is a separator
in T . In particular, this implies that depthT (v) = 2 + depthT (g) ≥ 5.

Suppose first that v is not a separator in T . Then v stays a child of p (by lemma 2.10),
so splay step(p) simply removes g and its parent h from the root path of v, and
essentially the same analysis as in (ii) applies.

Now suppose v is a separator, and thus p is not a separator. Then, we have
∂(v) ⊆ {p} ∪ ∂(p) = {p, g}, hence v is a direct separator. This is the case where we
need to look at two consecutive splay steps, since ϕ(T ′

v)− ϕ(Tv) ≤ Ψ(T ′)−Ψ(T )
does not necessarily hold.

Figure 9.5 illustrates the situation. The key insight is that g is a separator in T ′ (after
the current ZIG-ZIG step at p). To see this, observe that ∂(Tg) = {h, a} for some
node a that is a proper ancestor of h. On the other hand, we have a /∈ ∂(Tp) = {g},
since p is not a separator. Further observe that V (T ′

g) ⊇ V (Tg) \ V (Tp). Thus, we
have a ∈ ∂(T ′

g), so g is a separator in T ′.

Since v is still a direct separator in T ′ (note that ∂(T ′
v) = ∂(Tv) = {p, g}), the next

splay step will be a ZIG-ZAG at v. Call the resulting tree T ′′ (see figure 9.5).

We now bound the potential change of the two splay steps, which is

Φ(T ′′)− Φ(T ) = 3(ϕ(T ′
p)− ϕ(Tp) + ϕ(T ′′

v )− ϕ(T ′
v))− 2. (9.2)

by lemma 9.24.

We have V (Tv) = V (T ′
v), V (T ′

p) = V (T ′′
v ), implying

ϕ(T ′′
v )− ϕ(T ′

v) = ϕ(T ′′
v )− ϕ(Tv), and

ϕ(T ′
p)− ϕ(Tp) = ϕ(T ′′

v )− ϕ(Tp) ≤ ϕ(T ′′
p′′)− ϕ(Tp).

h
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(g) (p) (ZIG-ZAG at v)

Figure 9.5.: Illustration of the special case in lemma 9.29 (iii), where we first perform a
ZIG-ZIG at p, and then a ZIG-ZAG at v. “s”, “¬s”, and “d” have the same
meaning as in figure 9.2.
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9.3. Adaptivity properties of SplayTT

Moreover, since V (Th) = V (T ′′
v ), we have ϕ(Tg) ≤ ϕ(Th) = ϕ(T ′′

v ) ≤ ϕ(T ′′
g′′) by

monotonicity, so ϕ(T ′′
g′′)− ϕ(Tg) ≥ 0. Thus,

ϕ(T ′
p)− ϕ(Tp) + ϕ(T ′′

v )− ϕ(T ′
v)

≤ ϕ(T ′′
v )− ϕ(Tv) + ϕ(T ′′

p′′)− ϕ(Tp) + ϕ(T ′′
g′′)− ϕ(Tg)

= Ψ(T ′′)−Ψ(T ).

Together with eq. (9.2), this implies Φ(T ′′)− Φ(T ) = 3(Ψ(T ′′)−Ψ(T ))− 2.

(iv) Finally, suppose we call splay step(g). Then splay step at both v and p must be
disallowed. The former implies that g is a separator, and the latter implies that p
and g cannot both be separators, so p is not a separator (in T ). Thus, splay step(g)
does not modify the parent of p, and simply removes h and the parent of h from the
root path of v, so we have g = g′ and p = p′ and the potential of v and p does not
change. Hence, we have Ψ(T ′)−Ψ(T ) = ϕ(T ′

g)− ϕ(Tg), and the same analysis as in
(ii) applies.

We now analyze a full access.

Lemma 9.29. Let T be an STT, and let T ∗ be produced from T by accessing some node
v ∈ V (T ) with GreedySplayTT. Then

Φ(T ∗)− Φ(T ) ≤ 9(ϕ(T ∗
v )− ϕ(Tv))− 1

2 depthT (v)− 5

Proof. Say we execute splay step k times. Lemma 9.28 implies

Φ(T ∗)− Φ(T ) ≤ 3(Ψv(T ∗)−Ψv(T ))− k.

Since v is the root of T ∗, the parent of grandparent of v are both ⊥, which means
Ψv(T ∗) = ϕ(T ∗

v ) + 2 · ϕ(T ∗
⊥) = 3 · ϕ(T ∗

v ) + 2 by definition of ϕ(T⊥).
On the other hand, since the node-potential of a parent cannot be lower than the

node-potential of its child by monotonicity, we have Ψv(T ) ≥ 3 · ϕ(Tv). All in all, we have
Φ(T ∗)− Φ(T ) ≤ 9(ϕ(T ∗

v )− ϕ(Tv))− k − 6. Since each splay step reduces the depth of v
by at most two, we have depthT (v) ≤ 2k + 1. This implies the claim.

By lemma 9.11, each splay step performed in a call GreedySplayTT(v) decreases
the depth of v by at least one. Thus, it performs at most 2 · (depth(v) − 1) rotations,
which are paid for by scaling the potential function with four. We have:

Corollary 9.30. The amortized number of rotations w.r.t. 4 · Φ performed by Greedy-
SplayTT when accessing a node v is at most 36(ϕ(T ∗

v ) − ϕ(Tv)) − 21, where T is the
search tree before the access, and T ∗ is the search tree afterwards.

Together with corollary 9.27, this proves lemma 9.20.
We note that with a more careful analysis, the leading constant β = 32 in corollary 9.27

can be improved. This is because the bound of 2 ·(depth(v)−1) rotations is too pessimistic.
Indeed, it is implicit in the proof of lemma 9.28 that each splay step decreases the depth
of v be two, except for the situation illustrated in figure 9.5, where two splay steps
(with four rotations) decrease the depth by three. Hence, we have at most 4

3 · depth(v)
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9. Splay trees on trees

rotations, which means we can use the potential function 8
3 ·Φ and the leading constant in

corollary 9.27 becomes β = 24.
Further following this line of thinking, observe that the transformation of figure 9.5

can be implemented in just three rotations (at g, then twice v), so the algorithm can be
modified to use only depth(v)− 1 rotations, yielding β = 18.

9.3.6. Improved Static Optimality

In this section, we improve the additive StOPT(G, 1) term in theorem 9.14.

Theorem 9.31. Let G be a tree and let X ∈ V (G)m be an access sequence. Let
wX : V (G) → N0 count the number of occurrences of each element in X, and let w′

be the weight function on V (G) with

w′(v) =

{
1, if degG(v) = 2 and wX(v) = 0,

0, otherwise.

Then there is an initial search tree T only depending on G such that the cost of Greedy-
SplayTT and TwoPassSplayTT for serving X is O(StOPT(G,wX) + StOPT(G,w′)).

In particular, we obtain tight static optimality as long as each vertex of degree exactly
two is accessed at least once. Observe that this improvement is essentially useless if G is a
path (the BST case), since then almost every vertex has degree two, and if every vertex is
accessed at least once, then StOPT(G,wX) dominates StOPT(G,1) anyway.

The proof consists of two parts. First, we handle vertices of degree at least three with
an analysis of the quantity StOPT(G,wX) + StOPT(G,1).

Lemma 9.32. Let (G,w) be a connected weighted graph with integral weights. If G has no
vertex v with both degG(v) ≤ 2 and w(v) = 0, then StOPT(G,w + 1) ≤ 10 · StOPT(G,w).

Lemma 9.32 can be applied to arbitrary dynamic search tree algorithms with guarantees
similar to theorem 9.14. It also will be useful in part III of the thesis.

To prove lemma 9.32, we first need some technical lemmas. The concept of 2-cut search
trees is useful once again.

Lemma 9.33. Let T be a search tree on a tree G, and let v ∈ V (T ). Let Nv be the set of
neighbors of v in G. The number of children of v in T is precisely |Nv ∩ V (Tv)|.

Proof. First, for each child c of v, we have that G[Tc] is adjacent to v, so there is a node
u ∈ Nv ∩ V (Tc). Since the child subtrees are disjoint, the number of children of v is at
most |Nv ∩ V (Tv)|.

Now suppose two neighbors u, u′ ∈ Nv are in the same child subtree Tc. Then u
and u′ are not connected in G[Tc], since G is a tree and v /∈ V (Tc). This contradicts
lemma 2.3.

Lemma 9.34. Let T be a search tree on a tree G, and let c be a child of a node p in T .
Let kc, kp be the number of children of c, resp. p. Then

kc + kp + |∂(Tp)| ≥ degG(v) + degG(p)− 1.
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Proof. Let Nc be the set of neighbors of c and Np be the set of neighbors of p in G. By
lemma 9.33, we have kc ≥ |Nc ∩ V (Tc)| and kp ≥ |Np ∩ V (Tp)|. It thus remains to show
that |∂(Tp)| ≥ |Nc \ V (Tc)|+ |Np \ V (Tp)| − 1.

Every node in u ∈ Np that is not in Tp must be an ancestor of p, and thus u ∈ ∂(Tp).
Similarly, every node u ∈ Nc that is not in Tc must be a strict ancestor of c, and thus an
ancestor of p, so u ∈ ∂(Tp) unless u = p. We have

∂(Tp) ⊇ (Nc \ {p} \ V (Tc)) ∪ (Np \ V (Tp))

=⇒ |∂(Tp)| ≥ |Nc \ {p} \ V (Tc)|+ |Np \ V (Tp)| − |(Np ∩Nc) \ V (Tp)| (9.3)

If c and p are adjacent in G, then Nc and Np are disjoint but p ∈ Nc. Thus, eq. (9.3)
implies

|∂(Tp)| ≥ |Nc \ V (Tc)| − 1 + |Np \ V (Tp)|, (9.4)

as desired. Otherwise, we still have |Nc∩Np| ≤ 1 since G is a tree, and p /∈ Nc, so eq. (9.4)
again follows from eq. (9.3).

Lemma 9.35. Let T be a 2-cut search tree on a tree G and let S be a subtree of T
such that for each v ∈ V (S), we have degG(v) ≥ 3. Let ℓ(S) be the number of nodes in
V (T ) \ V (S) whose parents are in S. Then ℓ(S) ≥ 1

3 |S|+
2
3 .

Proof. We write |S| = |V (S)| in this proof, and proceed by induction on |S|. Let
r = root(S). If |S| = 1, then one of the at least three neighbors of r must be a descendant
of r; otherwise, |∂(Tr)| ≥ 3, a contradiction. Thus, ℓ(S) ≥ 1 = 1

3 |S|+
2
3 .

Let |S| ≥ 2. Let K be the set of children of r in S, and let K ′ be the set of children of
r in T that are not in S. Suppose |K|+ |K ′| ≥ 2. Then, by induction,

ℓ(S) ≥ |K ′|+
∑
c∈K

ℓ(Sc) ≥ |K ′|+
∑
c∈K

(13 |Sc|+ 2
3)

≥ 1
3(|S| − 1) + |K ′|+ 2

3 |K| ≥
1
3 |S|+ 1.

Now suppose |K|+ |K ′| ≤ 1. Since |S| ≥ 2, we have K ≠ ∅, so |K| = 1 and |K ′| = 0.
Let {c} = K, let Kc be the set of children of c in S, and let K ′

c be the set of children of c
in T that are not in S. By lemma 9.34, and since T is 2-cut and degG(r),degG(c) ≥ 3, we
have (|Kc|+ |K ′

c|) + 1 + 2 ≥ 5, implying |Kc|+ |K ′
c| ≥ 2. Again using induction, we have

ℓ(S) ≥ |K ′
c|+

∑
g∈Kc

(13 |Sg|+ 2
3) ≥ |K ′

c|+ 1
3(|S| − 2) + 2

3 |Kc|

≥ 1
3(|S| − 2) + 2

3(|K ′
c|+ |Kc|) ≥ 1

3 |S|+
2
3 .

We are now ready to prove lemma 9.32.

Lemma 9.32. Let (G,w) be a connected weighted graph with integral weights. If G has no
vertex v with both degG(v) ≤ 2 and w(v) = 0, then StOPT(G,w + 1) ≤ 10 · StOPT(G,w).

Proof. Let w′ = w + 1 and let T be an optimal 2-cut search tree on (G,w). We have
cost(T,w) ≤ 2 · StOPT(G,w) by theorem 5.7. We show that cost(T,w′) ≤ 5 · cost(T,w),
which implies our claim.
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9. Splay trees on trees

We construct the weight function w′′ from w′ as follows. Let P be a maximal subtree of
T where w(v) = 0 for each v ∈ V (P ). Let L be the set of nodes in T − P whose parents
are in P . Take the total weight of all nodes in P (which is precisely |P | by definition of
w′) and distribute it uniformly among the nodes in L. By lemma 9.35, this increases the
weight of each v ∈ L by at most 3.

Repeatedly apply this process for every such subtree P to obtain w′′. Note that there
is no overlap in the affected nodes. Since we only move weight from nodes with lower
depth to nodes with higher depth, we have cost(T,w′′) ≥ cost(T,w′). Moreover, for each
node v with w(v) = 0, we have w′′(v) = 0, and for each node v with w(v) ≥ 1, we have
w′′(v) ≤ w′(v) + 3 = w(v) + 4 ≤ 5 · w(v). All in all, we have

cost(T,w′) ≤ cost(T,w′′) ≤ 5 · cost(T,w).

To prove theorem 9.31, it remains to handle leaves that are not accessed, which we do
by choice of the initial search tree.

Theorem 9.31. Let G be a tree and let X ∈ V (G)m be an access sequence. Let
wX : V (G) → N0 count the number of occurrences of each element in X, and let w′

be the weight function on V (G) with

w′(v) =

{
1, if degG(v) = 2 and wX(v) = 0,

0, otherwise.

Then there is an initial search tree T only depending on G such that the cost of Greedy-
SplayTT and TwoPassSplayTT for serving X is O(StOPT(G,wX) + StOPT(G,w′)).

Proof. If |V (G)| ≤ 2, the theorem is trivially true. Otherwise, let the initial tree T be
a rooting of G at an arbitrary non-leaf vertex. Clearly T is 2-cut and therefore a valid
starting tree for SplayTT.

Let L be the set of leaves of G that are never accessed. Crucially, each leaf of G,
including each vertex in L, is also a leaf of T . Let T ′ be the final search tree. Since both
SplayTT variants only touch root paths of accessed nodes, no ℓ ∈ L is ever touched, and
each leaf in L must still be a leaf of T ′.

Let H = G − L and S = T − L. By the above discussion, running either SplayTT
variant to serve X on G with initial tree T is essentially the same, and has precisely the
same cost, as running it to serve X on H with initial tree S. By theorem 9.14, this cost is

StOPT(H,wX) + StOPT(H,1)

≤ StOPT(H,wX + 1) by lemma 3.13

≤ StOPT(H, (wX + w′) + 1)

≤ 10 StOPT(H,wX + w′) by lemma 9.32

≤ 20(StOPT(H,wX) + StOPT(H,w′)) by lemma 3.13

This concludes the proof.
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9.4. More variants of SplayTT

In this section, we discuss further variations of SplayTT. Our goal is not to obtain
improved theoretical guarantees of any sort, but rather to come up with an algorithm that
is easy to implement and fast in practice.

We consider multiple ideas to improve TwoPassSplayTT. Combining them, we end
up with an algorithm that, somewhat surprisingly, is very close to GreedySplayTT.

The first idea for improvement is to combine the two passes of TwoPassSplayTT
into a single one. See algorithm 9.9 for pseudocode. Essentially, in each step, we check
whether the parent or grandparent of the accessed node v is a branching node. If one
of them is, we move it up to the next branching node (or the root) with the procedure
SplayBranchingNode. Otherwise, we execute a splay step at v (which then is easily
seen to be valid by lemma 9.9).

Observe that this implementation performs exactly the same rotations as the original
TwoPassSplayTT, just in a different order. Also, all rotations are performed at v, its
parent, its grandparent, or its great-grandparent (the latter only happens if we perform a
ZIG-ZIG step within SplayBranchingNode(g)).

We now discuss two further ideas to improve this implementation. First, we could
first try to execute splay step(v), before checking for branching nodes. If that is not
valid, either the parent or grandparent must be a branching node (by lemma 9.9), and we
proceed as normal.

This change makes the algorithm “skip” some branching nodes that do not interfere with
the splaying of v. Reordering the rotations into two passes would give us an algorithm where
we skip some of the calls splay to(bi, bi+1) present in the original TwoPassSplayTT.
Clearly, the analysis transfers to the new variant.

Also observe that we only introduce new calls splay step(v), so every ZIG-ZAG or
ZIG-ZIG step still reduces the depth of v by two. In particular, we do not perform
unnecessary rotations like in GreedySplayTT.

The second idea is that the calls splay to(bi, bi+1) in the original TwoPassSplayTT
(which are implicit in the variant) are unnecessarily “greedy”. In the current tree, let x be
the nearest ancestor of bi that is 1-cut, and let y be the parent of x. Calling splay to(bi, y)
clearly makes bi 1-cut and thus not a separator node. Since this is the only reason we
call splay to(bi, bi+1) in the first place, we can replace it by splay to(bi, y). Again, the
analysis is not affected.

Algorithm 9.10 (LocalTwoPassSplayTT) combines the two ideas. Observe that
the “lookahead” is less than in algorithm 9.9: the latter sometimes needs to check if the
great-great-grandparent is a separator, while LocalTwoPassSplayTT only checks this
for the great-grandparent.

Remark. LocalTwoPassSplayTT looks very similar to GreedySplayTT. In fact, it
can be seen that the two algorithms differ in only one situation: When p is not a separator,
g is a separator, and g2 = parent(g) is not a separator. In this case, GreedySplayTT
calls splay step(p), while LocalTwoPassSplayTT calls rotate(g).

This was exactly the case in the proof of lemma 9.28 that caused problems and ne-
cessitated considering two splay steps at once (figure 9.5). As mentioned at the end
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Algorithm 9.9 A one-pass implementation of TwoPassSplayTT.

procedure TwoPassSplayTT(v)
while v has parent p do

if p has parent g then
if p is br. node for v then

SplayBranchingNode(p)
else if g is br. node for v then

SplayBranchingNode(g)
else

splay step(v)
else

rotate(v)

procedure SplayBranchingNode(v)
while v has parent p do

if p has parent g then
if p is br. node for v then

return
else if g is br. node for v then

rotate(v)
return

else
splay step(v)

else
rotate(v)

Algorithm 9.10 The LocalTwoPassSplayTT algorithm, combin-
ing our ideas to improve TwoPassSplayTT.

1: procedure LocalTwoPassSplayTT(v)
2: while v has parent p do
3: if p has parent g then
4: if can splay step(v) then
5: splay step(v)
6: else if p is separator then ▷ p is br. node
7: splay step(p) ▷ Valid, since p, g are sep.
8: else ▷ g is br. node
9: g2 ← parent(g)

10: if g2 is sep. then
11: splay step(g) ▷ Valid, since g, g2 are sep.
12: else
13: rotate(g) ▷ Makes g not a sep.
14: else
15: rotate(v)
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of section 9.3.5, only three out of the four rotations in the two splay steps are neces-
sary. It turns out that removing that unnecessary rotation is accomplished by replacing
splay step(p) with rotate(g). Thus, LocalTwoPassSplayTT is precisely to the
improvement of GreedySplayTT discussed before. We have

Proposition 9.36. The amortized number of rotations w.r.t. 2 · Φ performed by Local-
TwoPassSplayTT when accessing a node v is at most 18(ϕ(T ∗

v )− ϕ(Tv))− 11, where T
is the search tree before the access, and T ∗ is the search tree afterwards.
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In this chapter, we use the algorithms from chapter 9 to implement a dynamic forest data
structure. The goal is to maintain a forest (and associated data like edge weights) under
edge insertions and deletions.

This is a well-known problem with a forty-year history. Sleator and Tarjan [ST83] first
introduced a data structure (commonly called link-cut trees) for this task, with worst-case
running time O(log n) per operation, where n is the number of vertices in the forest. The
same authors proposed a simplified amortized variant of the data structure using their
Splay trees [ST85b] (see chapter 8). Several alternative data structures have since been
proposed, including topology trees [Fre85], ET-trees [HK99, Tar97], RC-trees [ABH+04]
and top trees [AHLT05, TW05, HRR23]. Top trees are more flexible and thus more widely
applicable than link-cut trees (see also section 4.7). However, an experimental evaluation
by Tarjan and Werneck [TW10] suggests that link-cut trees, while less flexible, are faster
then top trees by a factor of up to four, likely due to their relative simplicity.

Dynamic forest data structures have a large number of applications. Link-cut trees in
particular have been used as a key ingredient in algorithms and data structures including,
but not limited to: minimum cut [Kar00], maximum flow [ST83, GT88], minimum-cost
flow [KN13], online minimum spanning forests [Fre85, EIT+92, EGIN97, CFPI10], online
lowest common ancestors [ST83, HT84], online planarity testing [DBT96], and geometric
stabbing queries [AAK+12, KMT03].

Our STT-based data structures can serve as a drop-in replacement for link-cut trees. We
experimentally compare them with various link-cut tree implementations in section 10.9.

We focus on maintaining unrooted forests. More precisely, an unrooted dynamic for-
unrooted
dynamic
forestest data structure maintains an edge-weighted forest and supports the following three

operations:

• Link(u, v, w) – Adds an edge between the vertices u and v with weight w. Assumes
this edge did not exist beforehand.

• Cut(u, v) – Removes the edge between u and v. Assumes this edge existed before-
hand.

• PathWeight(u, v) – Returns the sum of weights of edges on the path between u
and v, or ⊥ if u and v are not in the same tree.

We assume that the vertex set is fixed, and initially the forest has no edges. As weights,
our implementation allows arbitrary commutative monoids. For example, when using edge
weights from (N,max), the PathWeight(u, v) method returns the maximum edge weight
on the path between u and v. Additional operations like increasing the weight of each edge
on a path, or maintaining vertex weights and certain related properties are also possible
to implement, but omitted for simplicity.
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Rooted vs. unrooted forests. Some applications, like the maximum flow algorithms
mentioned above, require maintaining rooted forests. In that case, adding arbitrary edges
is not allowed; the Link(u, v) operation requires that u is the root of its tree, and makes v
the parent of u. There are several useful queries specific to rooted trees; here, we consider
the following ones.

• FindRoot(v) – Returns the root of the underlying tree containing v.

• LCA(u, v) – Returns the lowest common ancestor of u and v, or ⊥ if u and v are
not in the same tree.

• Evert(v) – Makes v the root of its tree.

The basic variant of link-cut trees maintains rooted forests. The Evert(v) is mainly
useful to support unrooted forests, since it enables arbitrary Links. While asymptotic
performance is not affected, Evert does come with additional bookkeeping that may
impact performance in practice.

For our data structures, the opposite is true: they “natively” implement unrooted forests,
and maintaining rooted forests is possible only with some overhead. We discuss further
similarities and differences between link-cut trees and our data structures in section 10.7.

Dynamic forests using STTs. A common property of our dynamic STT algorithms
(MoveToRootTT and the three SplayTT variants) is that after finding a node, it is
brought to the root. This property is very useful to implement self-adjusting dynamic
forests. In fact, in this chapter, we describe a modular framework consisting of the following
three parts:

(i) a basic implementation of 2-cut STTs, including rotations;

(ii) a routine called Access that brings an STT node to the root via rotations; and

(iii) an implementation of the operations Link, Cut, and PathWeight, as well as
FindRoot, LCA, and Evert, based on Access.

The Access routine will be one of our four dynamic STT algorithms. We require
Access to satisfy a certain property called stability (essentially, it should not move the
previous root too much; see section 10.2 for more details). Nonetheless, we expect that
most future algorithms for the dynamic STT model can be adapted for our purposes.

Implementation and evaluation. We implemented our data structures in the Rust
programming language.1 The modularity described above is achieved using generics,
resulting in an easily extendable library. We will reference the Rust code throughout this
chapter.

For comparison, we also implemented the amortized variant of Tarjan and Sleator’s link-
cut trees [ST83, ST85b], and some very simple linear-time data structures. Furthermore, we
implemented a simplified version of our data structure in the C++ programming language,2

which is significantly faster. We experimentally compare all our implementations, and
some external ones, in section 10.9.

1Source code found at https://github.com/berendsohn/stt-rs, git tag thesis.
2Source code found at https://github.com/berendsohn/stt-cpp, git tag thesis.
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10.1. Implementing a 2-cut STT data structure

Organization of this chapter. In section 10.1, we present a basic data structure that
maintains a 2-cut search tree on a fixed tree under rotations. In sections 10.2 to 10.4, we
show how to implement the dynamic forest operations, using multiple 2-cut STTs and
assuming a black-box Access implementation. In section 10.5, we discuss the specifics of
the implementation of our four Access algorithms, and in section 10.6, we analyze the
overall running time of all operations. In section 10.7, we compare link-cut trees to our
algorithms. In section 10.8, we briefly discuss the Rust and C++ implementations, and in
section 10.9, we discuss their experimental evaluation.

10.1. Implementing a 2-cut STT data structure

A naive way of maintaining a search tree T (not necessarily 2-cut) is as a rooted tree,
where each node v has a pointer to its parent, a pointer to each of its children, and a list
of boundary nodes ∂(Tv). To implement a rotation of some node v with its parent p, we
need to identify the (possibly non-existent) child node of v that changes parents. Recall
that, by definition (section 2.2.2), this is precisely the child c with p ∈ ∂(Tc). Hence, the
information specified above suffices to execute rotations, but searching through the list of
child nodes may require up to linear time, just to execute a single rotation.

It turns out we can maintain a 2-cut STT under constant-time rotations with only the
following three pointers per node v.

• parent(v): The parent node of v, or ⊥ if v is the root.

• dsep child(v): The unique child of v that is a direct separator node, or ⊥ if v has
no such child.

• isep child(v): The unique child of v that is a indirect separator node, or ⊥ if v
has no such child.

Note that checking dsep child(parent(v)) = v allows us to test whether v is a direct
separator or not, and similarly for indirect separators. The data structure is found in
stt/src/twocut/basic.rs in the source code.

10.1.1. Unique representation of the underlying tree

We now show that the three pointers parent, dsep child, isep child are sufficient to
uniquely represent the underlying tree. The parent pointers tell us the structure of the
search tree, and the child pointers tell us which nodes are direct or indirect separators.
We first show that this uniquely determines the boundaries of subtrees.

Lemma 10.1. Given a 2-cut search tree T on a tree and the pointers parent, dsep child,
isep child for each node, we can determine ∂(Tv) for each node v.

Proof. For the root r, we always have ∂(Tr) = ∅. If v is not a separator and not the root,
then ∂(Tv) contains only the parent of v. If v is a direct separator, then ∂(Tv) consists of
the parent and grandparent of v.

Now consider an indirect separator node v with parent p and grandparent g. Obser-
vation 2.7 implies that ∂(Tv) = {p, x}, where x ∈ ∂(Tp). Since v is an indirect separator
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10. Dynamic forests with 2-cut STTs

node, x ̸= g. But g ∈ ∂(Tp), so x must be the remaining node in ∂(Tp) \ {g}. This
observation allows us to determine all subtree boundaries in a top-down fashion.

Once we have determined subtree boundaries, we can determine the edges of the
underlying tree using the following lemma.

Lemma 10.2. Let T be a search tree on a tree G. Let u, v ∈ V (T ) such that u is an
ancestor of v. Then {u, v} ∈ E(G) if and only if u ∈ ∂(Tv), but u /∈ ∂(Tc) for each child c
of v.

Proof. If u /∈ ∂(Tv), then there is no edge in G between u and V (Tv), so, in particular,
{u, v} /∈ E(G). Now suppose u ∈ ∂(Tv). Since G is a tree and G[Tv] is connected, there
must be exactly one edge {u, x} between u and V (Tv). If u ∈ ∂(Tc) for some child c of v,
then x ∈ V (Tc), so {u, v} /∈ E(G). Otherwise, we have x /∈ V (Tc) for each child c of v,
and hence x = v. Thus, in each case, the claimed equivalence holds.

By lemma 2.3, all edges of the underlying graph are between ancestor and descendant
in the search tree, so lemma 10.2 indeed determines all edges. Thus, our representation
indeed uniquely determines the underlying tree.

10.1.2. Rotations

We now show how to implement rotations in our data structure. See algorithm 10.11 for
pseudocode, or stt/src/twocut/basic.rs in the source code.

Lemma 10.3. Given a node v in an STT T , represented as described at the start of the
section, we can rotate v with its parent in O(1) time.

Proof. Let p = parent(v), let g = parent(p), and let c = dsep child(v) (g and/or c may
be ⊥). We denote by T ′ the tree after the rotation, and by parent′(·), dsep child′(·),
isep child′(·) the correct respective pointers in T ′. In the following, we frequently make
use of the fact that each node has at most one direct and at most one indirect separator
child (lemma 9.5).

For the parent pointers, we have parent′(v) = g, parent′(p) = v, and, if c ̸= ⊥,
additionally parent′(c) = p (see lines 5 to 8 in algorithm 10.11).

If g ̸= ⊥, we may need to adjust its child pointers. Observe that V (T ′
v) = V (Tp),

so ∂(T ′
v) = ∂(Tp). Thus, v is an (in)direct separator child in T ′ if and only if p was an

(in)direct separator child in T . One of dsep child′(g) and isep child′(g) may accordingly
change from p to v (lines 9 to 13).

We now consider the child pointers of p. Note that p gains a new parent (v) and
keeps all other ancestors, loses a child (v) and possibly gains a child (c). First, we have
dsep child′(p) = c, since c is the unique node with ∂(Tc) = {v, p} if such a node exists;
otherwise, dsep child′(p) = ⊥ = c (line 19).

If p has a (direct or indirect) separator child y ̸= v in T , then y clearly still is a separator
in T ′, and v /∈ ∂(Ty) = ∂(T ′

y), so isep child′(p) = y (lines 14 to 16). If y does not exist,
then p has no separator child in T . Since p does not gain any children in T ′ besides c, this
means that isep child′(p) = ⊥ (lines 17 to 18).

Now consider the child pointers of v. Note that v loses its parent and keeps all other
ancestors, gains a child (p) and possibly loses a child (c). If g = ⊥, then v is the root of
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10.1. Implementing a 2-cut STT data structure

Algorithm 10.11 Rotating a node with its parent.

1: procedure rotate(v)
2: p← parent(v)
3: g ← parent(p)
4: c← dsep child(v)
5: parent(p)← v
6: parent(v)← g
7: if c ̸= ⊥ then
8: parent(c)← p
9: if g ̸= ⊥ then

10: if dsep child(g) = p then
11: dsep child(g)← v
12: else if isep child(g) = p then
13: isep child(g)← v
14: x← dsep child(p)
15: if x ̸= ⊥ and x ̸= v then
16: isep child(p)← x
17: else if isep child(p) = v then
18: isep child(p)← ⊥
19: dsep child(p) = c
20: if g ̸= ⊥ then ▷ p was not the root
21: if x ̸= v then ▷ p separates v and g
22: dsep child(v) = p
23: else ▷ v separates p and g
24: dsep child(v) = isep child(v)
25: if p was a separator node before the rotation then
26: isep child(v)← p
27: else ▷ v separates all ancestors from p
28: isep child(v)← ⊥
29: else ▷ p was the root
30: dsep child(v) = ⊥
31: if c ̸= ⊥ then
32: Swap dsep child(c) and isep child(c)
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Figure 10.1.: Two special cases for a rotation at v: If v is a direct separator in T and has
a direct separator child x in T ′ (top); if v is a direct separator and its parent
p is a separator (bottom). The path in the underlying graph is shown to the
left.

T ′, and thus dsep child′(v) = isep child′(v) = isep child(v) = ⊥ (line 30). Suppose
g ̸= ⊥. Since T is 2-cut, v, p, g lie on a common path (using lemma 9.6). The vertex g
cannot lie between v and p on this path, otherwise v and p would be in different subtrees
of g in T .

• If v is not a direct separator in T , then p separates v from g. Thus, we have
dsep child′(v) = p. If y = isep child(v) ̸= ⊥, then y is still a separator child of v.
Further ∂(T ′

y) = ∂(Ty) ⊆ ∂(Tv)∪{v}. Since p separates v from g, we have g /∈ ∂(Tv),
and thus g /∈ ∂(Ty). This means that y is not a direct separator child, and thus
isep child′(v) = isep child(v) = y.

Since v only gains p as a child, no other nodes can become the indirect separator
child of v. Thus isep child′(v) = isep child(v), even if isep child(v) = ⊥.

• If v is a direct separator in T , then ∂(Tv) = {p, g} and v lies on the path between
p and g. We claim that dsep child′(v) = isep child(v) (line 24). Indeed, if
x = dsep child′(v) ̸= ⊥, then ∂(T ′

x) = {v, g}. Since v is on the path between
p and g, we have x ̸= p (see figure 10.1, top), so x must already have been a
child of v in T , and ∂(Tx) = ∂(T ′

x) = {v, g}, so x = isep child(v). Conversely, if
y = isep child(v) ̸= ⊥, then y is still a child of v in T ′. Further ∂(T ′

y) = ∂(Ty) ⊆
∂(Tv) ∪ {v} \ {p} = {v, g}, implying that dsep child′(v) = y.

To determine isep child′(v), consider the following two cases.

– If p is a separator node in T , then ∂(Tp) = {g, a}, where a is some ancestor of g.
Lemma 9.1 implies that p separates g from a. Since v separates g from p, the
underlying tree has a path containing a, p, v, g, in that order (see figure 10.1,
bottom). Hence, p lies on the path between a and v, so ∂(T ′

p) = {v, a} and
thus isep child′(v) = p (line 26).

– If p was a 1-cut node in T , then we claim that isep child′(v) = ⊥ (line 28).
Suppose otherwise that x = isep child′(v) ̸= ⊥. Then ∂(T ′

x) = {v, a}, where a
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is some ancestor of g. This implies a ∈ ∂(T ′
v) = ∂(Tp). But then ∂(Tp) = {g, a},

contradicting the assumption.

Finally, consider a separator child x of c. Since c swapped parent (v) and grandparent (p),
if x was a direct separator in T , it is an indirect separator in T ′, and vice versa. Hence,
we have isep child′(c) = dsep child(c) and dsep child′(c) = isep child(c) (line 32).

All nodes other than v, p, g, c do not gain or lose children and do not change parent,
hence all remaining pointers are the same in T and T ′.

10.2. Linking and cutting

In this section, we show how to implement the operations Link and Cut to add and
remove edges.3 The underlying forest G is maintained as a collection of 2-cut STTs, which
we call a search forest. Since we do not allow adding and removing nodes, we can maintain
all nodes in a fixed-size array. The structure of each STT is represented by the node
pointers described in section 10.1.

We assume that we have a black-box procedure Access(v) that, given a node v, brings
it to the top of its tree with some sequence of rotations. For now, let us assume another
procedure SubAccess(v) that (i) makes v the child of the root via a sequence of rotations
and (ii) leaves the previous root in place.

See algorithms 10.12 and 10.13 for pseudocode of Link and Cut. Note that we ignore
the supplied weight w in Link for now.

We now argue the correctness of the two procedures. Below, G and G′ denote the
underlying forest before and after the operation.

• Consider a call Link(u, v, w). Let F be the search forest after the two calls to
Access, and let F ′ the search forest after Link. If we only consider parent pointers,
then F ′ is clearly a valid search forest on G′. It remains to show that child pointers
are still valid. For this, observe that for every node x ∈ V (F ) \ {u}, we have
∂(Fx) = ∂(F ′

x), and we have ∂(Fu) = ∅, ∂(F ′
u) = {v}. Thus, no node becomes a

separator child or stops being one, and no direct separator node becomes an indirect
one or vice versa. Thus, all child pointers stay valid.

Observe that the call Access(v) (line 4) is not necessary for correctness. However,
it is important for the complexity analysis in section 10.6.

3See stt/src/twocut/mod.rs

Algorithm 10.12 The Link operation.

1: procedure Link(u, v, w)
2: ▷ Assume {u, v} /∈ E(G)
3: Access(u)
4: Access(v)
5: parent(u)← v

Algorithm 10.13 The Cut operation.

1: procedure Cut(u, v)
2: ▷ Assume {u, v} ∈ E(G)
3: Access(v)
4: SubAccess(u)
5: parent(u)← ⊥
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10. Dynamic forests with 2-cut STTs

• Now consider a call Cut(u, v). Again, let F be the search forest after the calls to
Access and SubAccess, and let F ′ be the search forest after Cut. It is clear that
v is the parent of u in F . Thus, setting parent(u)← ⊥ correctly removes the edge
{u, v} from the underlying forest. Again, the boundaries of rooted subtrees other
than Tv do not change between F and F ′, implying that no further pointer changes
are necessary to make F ′ valid.

The running time of both operations is clearly dominated by the calls to Access and
SubAccess.

10.2.1. Stable Access implementations.

It is possible to avoid implementing the SubAccess procedure if Access satisfies the
following property. An Access implementation is called stable if, in a search tree producedstable

by Access(v), the depth of the previous root r is bounded by some constant, and all
nodes on the root path of r are 1-cut.

Algorithm 10.14 gives an alternative implementation of Cut using stable Access. We
only need to show that v is the parent of u in the forest F after the two calls to Access,
then the analysis above works. Indeed, stability implies that u is 1-cut in F . Since v is an
ancestor of u and {u, v} ∈ E(G), we have ∂(Fu) = {v}, implying that v is the parent of u.

Since Link does not use SubAccess, it need not be modified.

10.3. Maintaining edge weights

In this section, we show how to maintain edge weights in 2-cut STTs under rotations and
implement the PathWeight operation.4 We start with a simpler variant that requires
the edge weights to form a commutative group instead of a monoid.

10.3.1. Group weights

Let (W,+) be a commutative group with identity element 0. We use the subtraction
operator − in the usual way. Let W ′ = W ∪ {∞}, and define w +∞ =∞+w =∞ for all
w ∈W . (We do not define an inverse for ∞, so we cannot subtract ∞).

Let F be a 2-cut search forest on a forest G with edge weights from (W,+). The weight
of a path in F is defined as the sum of the weights of its edges. For two vertices u, v ∈ V (G)
that belong to the same tree, let the distance d(u, v) ∈W ′ denote the weight of the uniquedistance

path between u and v. Define d(⊥, u) = d(u,⊥) =∞ for u ∈ V (G) ∪ {⊥}.
For each node v, we store a field pdist(v) indicating the distance between v and the

parent of v in F . Consistently with the definition of d(·, ·), we let pdist(v) =∞ if v is
the root of its tree.

Since we start with a forest with no edges, we can initially set pdist(v)←∞ for each
node v. We now show how to update pdist when the forest is modified.

4In the source code, the weight update procedures are found in stt/src/twocut/node_data.rs;
implementations of PathWeight (for stable and non-stable Access) are found in stt/src/twocut/mod.rs
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Algorithm 10.14 Cut with stable Access.

procedure Cut(u, v)
▷ Assume {u, v} ∈ E(G)
Access(u)
Access(v)
parent(u)← ⊥

Rotations. Consider a rotation of v with its parent p in a search tree T , resulting in
a search tree T ′ = rot(T, v, p). We only need to update pdist(v) for nodes that change
parents. That includes v and p as well as the direct separator child c of v, if it exists.
The parents of these nodes are all from the set {v, p, g}, where g is the parent of p in
T (possibly g = ⊥). We now show that from the field pdist in T , we can compute all
(relevant) mutual distances between the nodes c, v, p, g.

Lemma 10.4. Let v be a node in a 2-cut search tree T with edge weights from a commutative
group (W,+), equipped with the field pdist. Then, in constant time, we can compute the
distance from v to the parent p and grandparent g of v, if either exists.

Proof. If p exists, then clearly d(v, p) = pdist(v). Now suppose g exists. If v is a separator
child, then v is on the path between v and g. Hence, we have d(v, g) = d(p, g)− d(v, p) =
pdist(p)− pdist(v). If v is not a separator child, then p is on the path between v and g,
and thus d(v, g) = d(v, p) + d(p, g) = pdist(v) + pdist(g).

We now first compute all mutual distances between c, v, p, g using lemma 10.4, except
for d(c, g). Then, we execute the rotation, and then update the pdist fields of c, v, p using
the new parent field and the previously computed distances (observe that the new parent
of c is p).

Algorithm 10.15 shows an improved implementation that avoids unnecessary calculations.
We omit the formal line-by-line correctness proof.

Linking and cutting. At the end of Link(u, v, w), we make v the parent of u. We can
simply set pdist(u)← w here. Similarly, at the end of Cut(u, v), the node u is removed
from its parent, and we set pdist(u)←∞.

Computing path weight. We now turn to the implementations of PathWeight(u, v).
If SubAccess is available, the implementation is straight-forward: Simply make u a child
of v and return pdist(u), if u and v are indeed in the same tree.

Now assume Access is stable. We then can implement PathWeight(u, v) without
using SubAccess (see algorithm 10.16). First, we call Access(u), and then Access(v).
Afterwards, we follow parent pointers to check whether v is the root of the search tree
containing u. If no, we return ⊥. If yes, we return the sum

∑
x∈Path(u)\{v} pdist(x).

We now argue that this procedure is correct. Let F be the search forest after the two
calls to Access. Clearly, v is the root of its search tree in F . If u is in a different search
tree, the algorithm correctly returns ⊥.
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Algorithm 10.15 Updating pdist fields
directly before a rotation (group weights).

procedure UpdateWeights(v)
p← parent(v)
g ← parent(p)
c← dsep child(v)
pdist′(p)← pdist(v)
if v is a direct separator then

pdist′(v)← pdist(p)− pdist(v)
else

pdist′(v)← pdist(v) + pdist(p)
if c ̸= ⊥ then

pdist′(c)← pdist(v)− pdist(c)
Update pdist with pdist′

Algorithm 10.16 Implementing
PathWeight with stable Access

procedure PathWeight(u, v)
Access(u)
Access(v)
x← u
w ← 0
while parent(x) ̸= ⊥ do

w ← w + pdist(x)
x← parent(x)

if x = v then
return w

else
return ⊥

Otherwise, u is a descendant of v. Let u = u1, u2, . . . , uk = v be the path from u to v in
the search forest F . Stability of Access implies that u1, u2, . . . , uk−1 are all 1-cut. This
means that for each i ∈ [k − 2], the path from any node in V (Tui) to any node outside of
V (Tui) must contain ui+1. In particular, the path from u to ui+2 contains ui+1. Thus, by
induction, the path in the underlying forest from u = u1 to v = uk contains u1, u2, . . . , uk,
in that order, and the total weight of this path is

∑k−1
i=1 d(ui, ui+1) =

∑k−1
i=1 pdist(ui).

Observe that both implementations need constant time outside of calls to Access and
SubAccess. In particular, in algorithm 10.16, the depth of u is bounded after the Access
calls, by stability.

10.3.2. Monoid weights

Now suppose the edge weights form a commutative monoid (W,+). Recall that there is no
inverse in a monoid, so subtraction is not possible, which breaks the proof of lemma 10.4.

As before, let F be a 2-cut search forest on a forest G with edge weights from (W,+),
and let d(u, v) ∈W ∪ {∞} denote the distance between two vertices u, v ∈ V (G) ∪ {⊥}.
We now store two fields for every node.

• pdist(v) is the distance between v and its parent, as before.

• adist(v) is ∞ if v is not a separator. If v is a separator, then adist(v) is the
distance between v and the node x ∈ ∂(Tv) that is not the parent of v.

Together, pdist(v) and adist(v) store the distance from v to each node x ∈ ∂(Tv).

Rotations. We use the following analogue of lemma 10.4.

Lemma 10.5. Let v be a node in a 2-cut search tree T with edge weights from a commutative
monoid (W,+), equipped with the fields pdist and adist. Suppose a rotation at some
node v is allowed. Let p be the parent of v, let g be the grandparent of v, and let a be the
ancestor of p such that a ∈ ∂(Tp) and a ̸= g. Non-existing nodes are ⊥.
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Then we can compute all mutual distances between v, p, g, a in constant time.

Proof. First observe that for al x ∈ V (T ) and y ∈ ∂(Tx), we can compute d(x, y) using
either pdist(x) or adist(x), depending whether y = parent(x) or not. This only leaves
us with two distances to compute.

First, we need to compute d(v, g) if g /∈ ∂(Tv), i.e., if v is not a separator. In that
case, we know that p is on the path between v and g, so d(v, g) = d(v, p) + d(p, g) =
pdist(v) + pdist(p).

Second, we need to compute d(v, a), assuming that a ̸= ⊥. Observe that v must be a
separator, since p is a separator and the rotation is allowed (lemma 9.3). If v is an indirect
separator, then a ∈ ∂(Tv), so d(v, a) = adist(v). If v is a direct separator, then g, v, p, a
must lie on a common path in G, in that order (recall that p separates g from a). Thus
d(v, a) = d(v, p) + d(p, a) = pdist(v) + adist(p).

Consider now a rotation between v and p in a search tree T , resulting in the search tree
T ′ = rot(T, v, p). Let c be the direct separator child of v, and let p, g, a be defined as in
lemma 10.5.

We start by computing all mutual distances between v, p, g, a with lemma 10.5, and
then execute the rotation. Observe that only c, v, p change boundaries and/or parents and
thus need to be updated.

First observe that ∂(T ′
c) = ∂(Tc) = {v, p}, and c switches parents from v to p. Thus,

we can simply swap pdist(c) and adist(c). Further observe that we can compute the
boundaries of v and p as follows:

• Since V (T ′
v) = V (Tp), we have ∂(T ′

v) = ∂(Tp) ⊆ {g, a}. We can distinguish between
the cases {g, a} and {g} by checking whether v is a separator or not.

• We have ∂(T ′
p) ⊆ {v, g, a} and v ∈ ∂(T ′

p). We can distinguish between the cases
{v, g}, {v, a}, and {v} by checking if p is a direct separator, an indirect separator,
or not a separator.

Now that we have the boundaries of v and p, we can use the parent pointer to distinguish
between parent and other boundary node. Thus, we can update the fields pdist and adist

based on the distances computed before the rotation. See stt/src/twocut/node_data.rs
in the source code for an optimized version of the procedure.

Linking and cutting. The pdist field is updated as described in section 10.3.1. We now
argue that adist does not need to be updated for either operation. Indeed, an update
is only necessary when some node gains or loses a boundary vertex besides the parent.
Link(u, v, w) makes v the parent of u. Let T be the resulting search tree. Since the only
edge between V (Tu) and V (T − Tu) is {u, v}, we have ∂(Tu) = {v} and no node other
than u changes boundary. For Cut, a symmetric argument holds.

Computing path weight. This can be implemented exactly as in the group case, since
weights are only added, never subtracted (see algorithm 10.16).
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Remark. We require the weights to form a commutative monoid, since we use commuta-
tivity of d( · , · ). It should be easy to support non-commutative monoids, by using two
fields pdist1 and pdist2, one for d(v, p) and one for d(p, v), and similarly duplicating
adist. In the above procedures, we then have to carefully choose the right direction. To
keep the implementation simple, and since the author is not aware of any applications
that require non-commutative groups or monoids, we restrict ourselves to commutative
monoids.

10.4. Rooted forests

In contrast to link-cut trees, our implementation of STTs cannot represent rooted trees
without modification. Consider a call to FindRoot(v) when v is the root of its STT.
Since v has no separator children, both its child pointers are ⊥, thus we cannot navigate
to the root of the underlying tree (or any node other than v, for that matter). In this
section, we show how we can implement FindRoot(v) and other rooted-tree operations
using extra data.5

Let G be a tree with a designated root r. Let T be a search tree on G. We store (a
pointer to) the root r in each node on the root path of r in T . Formally, we maintain the
following property for each node v ∈ V (T ):

droot(v) =

{
r, if r ∈ V (Tv)

⊥, otherwise

Implementing FindRoot(v) is now trivial: Call Access(v), and then return droot(v).
We now describe how to update droot(v) under rotations. Consider a rotation of v

with its parent p. Let T , T ′ denote the search tree before and after the rotation and let
droot, droot′ denote the respective values before and after the rotation.

Observe that only droot(v) and droot(p) may change. Since V (T ′
v) = V (Tp), we have

droot′(v) = droot(p). For droot′(p), consider the following cases.

• If droot(p) = ⊥, then droot′(p) = ⊥, since p gains no new descendants with the
rotation.

• If droot(p) ̸= ⊥ and droot(v) = ⊥, then r is in V (Tc) for some child c ̸= v of p.
Observe that c is still a child of p in T ′, hence droot′(p) = droot(p).

• Finally, suppose droot(p) ̸= ⊥ and droot(v) ̸= ⊥. Let c be the direct separator child
of v, and recall that the rotation makes c a child of p. If c does exist and droot(c) ̸= ⊥,
then r is in V (Tc) = V (T ′

c) and hence in V (T ′
p), so droot′(p) = droot(p). Otherwise,

r = v or r ∈ V (Tc′) for some child c′ ̸= c of v in T , hence r /∈ V (T ′
p) and thus

droot′(p) = ⊥.

We now sketch the implementations of the remaining operations. We refer to the code
in stt/src/twocut/rooted.rs for more details.
Link(u, v) works as described in section 10.2, except that afterwards we set droot(u)←
⊥. Note that, by assumption, u was the root of its underlying tree before the operation.

5See stt/src/twocut/rooted.rs
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After bringing u to the root, each proper descendant x of u has droot(x) = ⊥. Then, u
becomes the child of v, so it is no longer the underlying tree root.

Cut(v) now only takes one parameter. If the parent u of v (in the underlying tree)
is known, we can simply call Access(v) and SubAccess(u), then detach u from v and
set droot(v)← v. However, we do not assume that u is known. To find u, after calling
Access(v), we first call SubAccess(r) (note that r = droot(v)). Then, we can find u by
first moving to the direct separator child of r, and then following indirect separator child
pointers as long as possible. This moves along the underlying path from r to v (possibly
skipping nodes), stopping at u. If r has no direct separator child, then u = r.

For LCA(u, v), we first call Access(v) and SubAccess(u). Some simple checks deter-
mine whether u is an ancestor of v or vice versa. Otherwise, the LCA has to be in the
direct separator child x of u. Now, we check if droot(d) ̸= ⊥ or droot(i) ̸= ⊥, where
d and i are the direct and indirect separator children of x. If either is true, we repeat
with x← i, resp., x← d. Otherwise, it can be seen that x must be the LCA of u and v.
Calling Access(x) at the end pays for following the root path of x via amortization.

Finally, Evert(v) is implemented as follows. First, call Access(v). We then need to
set droot(v) ← v and droot(x) ← ⊥ for each node x ≠ v. Observe that every node x
with droot(x) ̸= ⊥ must be on the root path of r = droot(v), hence we can make the
necessary changes by following parent pointers from r. To pay for this, we call Access(r)
afterwards.

Remark. We used SubAccess above for simplicity. It is possible to implement all
operations with only stable Access; see the Rust implementation for more details.6 As
usual, the running time of each operation is dominated by calls to Access.

10.5. Implementing Access

Our dynamic STT algorithms (MoveToRootTT and the three SplayTT variants) all
readily work as implementations of Access. This is obviously not the case for arbitrary
dynamic STT algorithms, since the dynamic STG model does not require bringing an
accessed node to the root. A more subtle problem is that the dynamic STG model allows
pointer moves to arbitrary children, but our STT implementation does not store 1-cut
children of nodes.

For our algorithms, we make the following observations about an access to node v.

• The algorithm first finds v by moving the pointer along the root path of v. In
our data structure, we directly receive a pointer to the node v, so this part is not
necessary.

• Afterwards, only nodes on the root path of v are touched. While, technically, pointer-
moves to non-separator children are sometimes performed (e.g., going back to v
after the first pass in TwoPassSplayTT), we can instead jump directly to a node
already stored in memory (usually v itself), and continue from there.

6StableRootedDynamicForest in stt/src/twocut/rooted.rs
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• Rotations have running time O(1) in our STT implementation, and the cost of each
algorithm is dominated by the number of rotations (plus one).

These observations together imply

Lemma 10.6. Each of MoveToRootTT, GreedySplayTT, TwoPassSplayTT,
and LocalTwoPassSplayTT can be used to implement Access. The running time of
the respective implementation is proportional to the cost of the algorithm.

As mentioned before, just using a black-box Access implementation is not quite
sufficient for our purposes. SubAccess is not hard to implement using any one of our
three algorithms: MoveToRootTT simply stops when the accessed node v is directly
below the root, and the SplayTT algorithms likewise stop or perform a single final
rotation at the end.7

However, SubAccess is not strictly necessary, since all our algorithms are stable, which
we show now.

10.5.1. Stability

Given an STT T and nodes v, x ∈ V (T ), we define the property P (T, v, x) as satisfied if

(a) all ancestors of x are 1-cut; and

(b) the root paths of v and x only intersect at the root of T .

We will show that throughout a call Access(v) with any one of our four algorithms,
the invariant P (T, v, r) holds, where r is the root of the tree at the start of the call. We
need the following technical lemma.

Lemma 10.7. Let T be a 2-cut STT and let u, v, x ∈ V (T ), such that

(i) u ≺T v; and

(ii) if u is a child of the root and u ̸= v, then the child of u on the root path of v is 1-cut.

Then P (T, v, x) implies P (T ′, v, x), where T ′ = rot(T, u).

Proof. Let p be the parent of u in T . First, suppose that p is not the root. Then P (T, v, x)
implies that p is not on the root path of x. Hence, rotating at u may remove p from the
root path of v, but does not change the root path of x. Thus, P (T ′, v, x) holds.

Now suppose that p is the root of T . Then rotating at u adds u to the root path of x.
We have |∂(T ′

u)| = 0, |∂(T ′
p)| = 1, and |∂(T ′

y)| = |∂(Ty)| = 1 for every other node y on the
root path of x. This proves part (a) of P (T ′, v, x). In order to prove part (b), let v′ be the
child of u on the root path of v in T . Assumption (ii) implies that v′ is 1-cut, so rotating
at u does not change the parent of v′ (lemma 2.10), and thus v′ and p are both children of
u in T ′. Since v is a descendant of v′ and x is a descendant of p, part (b) of P (T ′, v, x)
holds.

Lemma 10.8. MoveToRootTT and all three SplayTT variants are stable.

7See stt/src/twocut/splaytt.rs for all implementations of Access and SubAccess.

150



10.6. Running time analysis

Proof. Let T be an STT with root r, and let T ′ be the result of calling Access(v) (using
any of the four algorithms). Observe that P (T, v, r) trivially holds.

We now argue that our implementations of Access(v) only perform rotations satisfying
lemma 10.7 with x = r. Clearly, all rotations are performed on the root path of v. To see
that (ii) holds, we need to consider the algorithms in more detail. We are only interested
in rotations at a node u ̸= v that is the child of the root. Such a rotation only happens in
the following circumstances.

• A ZIG-ZIG step at a grandchild u′ of the root r, in any of the SplayTT variants.
A ZIG-ZIG step only happens if u′, u, r are on a path in G in that order, implying
that u′ is 1-cut before the rotation.

• A final ZIG step in the first pass of TwoPassSplayTT, when bringing the final
branching node to the root. In that case, u was a branching node before rotating it
to the root, so by definition, the child of u on the root path of v is 1-cut.

• The single rotation in MoveToRootTT (algorithm 9.4, line 6) or LocalTwo-
PassSplayTT (algorithm 9.10, line 13). This rotation is only applied to branching
nodes; but u is the child of the root, so it is 1-cut and cannot be a branching node.
Thus, this cannot actually happen.

By induction, lemma 10.7 implies that P (T ′, v, r) also holds. It remains to show that
the depth of r in T ′ is bounded. Since P (T ′′, v, r) holds for every intermediate tree T ′′,
the depth of r can only increase when a rotation involving the (current) root is performed.
It is easy to see that each variant performs at most three rotations or splay step calls
that involve the root, so the final depth of r is at most six. We thus conclude that
MoveToRootTT and all three SplayTT variants are stable.

10.6. Running time analysis

In section 9.3, we showed static optimality of SplayTT. The proof does not work in
the dynamic forest setting, and indeed the concept of static optimality makes no sense
here, since there is no “static” reference STT. However, we can show that the working-set
bound, and thus an O(log n) amortized worst-case bound, holds.

For this, we extend the potential function ΦST
w (see section 9.3.1) to search forests:

Given a search forest F and a weight function w on F , let ΦST
w (F ) be the sum of ΦST

w (T )
over all search trees T that constitute F .

Consider a SplayTT implementation of Access. By lemma 10.6, the asymptotic
running time of Access is its cost in the dynamic search tree model. Thus, when we
maintain a single STT under only Access, the working-set bound holds by theorem 9.15.

Recall that all dynamic forest operations can be implemented using only Access, and
their running time is dominated by calls to Access. However, we need to also consider
the potential change of the dynamic forest operations outside of Access.

Observe that PathWeight, FindRoot, LCA, Evert do not affect the potential
outside of calls to Access, and Cut can only decrease it. Thus, we only need to consider
Link.
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10. Dynamic forests with 2-cut STTs

Before proving the working-set bound, let us briefly show the easier O(log n) worst-case
bound.

Theorem 10.9. Starting with a (rooted or unrooted) forest with n vertices and without
edges, every SplayTT variant of our dynamic forest data structure performs m dynamic
forest operations in time O((m + n) log n).

Proof. Use the potential function ΦST
w with w = 1. The amortized running time of each

operation is at most O(ϕST
w (V (G))) ⊆ O(log n) by lemma 9.20. Each Link can only

increase the potential of a single node, and thus increases the total potential by no more
than log n. This gives us an overall O(m log n) amortized running time.

It remains to consider the potential at the start and end. Clearly, the potential of any
search forest is between zero and n log n, thus the overall potential change is at most
n log n. Adding the potential change to the amortized running time yields the desired
bound on the actual running time.

We now proceed with the proof of the working-set bound. We need a slightly more
detailed analysis of the Link operation.

Link(u, v) increases the node potential of v when attaching the search tree containing
u to it (see algorithm 10.12). If F is the search forest directly before this (after calling
Access(u) and Access(v)), and F ′ is the search forest after, then the potential increase is
trivially ϕST(F ′

v)−ϕST(Fv). Hence, this final part of Link(u, v) satisfies lemma 9.20 in the
same way Access(v) does. Adapting the proof of theorem 9.15 is now straight-forward.

Theorem 10.10. Consider a sequence X = (x1, x2, . . . , xm) of dynamic forest operations,
starting with a (rooted or unrooted) forest with n vertices and without edges. Let Ui be the
up to two vertices that are parameters of xi. For each i ∈ [m], let Wi = Uj∪Uj+1∪· · ·∪Ui−1,
where j ∈ [m] is maximal such that Ui ⊆Wi, or j = 0 if there is no such j.

Every SplayTT variant of our dynamic forest data structure performs X in time
O(n log n +

∑m
i=1 log |Wi|).

Proof. By the discussion above, we need to only consider the calls to Access made by
the dynamic forest operations, and the final modification in Link, which we can treat as
another Access for the purpose of this analysis.

It is easy to see that theorem 9.15 still holds in a search forest (the weight change in the
proof does not increase the overall potential). Thus, if Y = (y1, y2, . . . ) is the sequence of
accessed nodes, the amortized cost of yi is O(log |W ′

i |), where W ′
i is the set of elements

accessed since the last time yi was accessed (including yi).

Now consider the i-th access, occurring in the j-th dynamic forest operation. Since
every dynamic forest operation accesses all its parameter vertices, we have W ′

i ⊆ Wj .
Moreover, each dynamic forest operation performs a constant number of accesses, so the
j-th operation’s amortized running time is O(log |Wj |). The desired bound follows.

10.7. SplayTT vs. link-cut trees

Sleator and Tarjan’s link-cut trees [ST83, ST85b] maintain a decomposition of the under-
lying rooted tree into paths, directed away from the root. There is a BST for each such
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Figure 10.2.: A rooted tree G, decomposed into paths (left) and a link-cut tree T on G
(right). The decomposition of G into directed paths is indicated by red edges.
In the link-cut tree, BST edges are red, and non-BST edges are dashed.

path, and these BSTs are hierarchically arranged and connected via edges that are not
covered by paths. Figure 10.2 shows an example. It is not hard to see that link-cut trees
are essentially 2-cut STTs [BCI+20], if we disregard the different edge types and order of
children.

Moving a node v to the root in a link-cut tree is performed roughly as follows, utilizing
the classical BST Splay algorithm. First, for each BST B between v and the root, splay
the node vB to the root of B, where vB is the lowest node in B that is an ancestor of v in
the overall link-cut tree. This shortens the path from v to the root, such that every node
on that path comes from a different BST. Then, an operation called splice is performed,
which splits and merges BSTs until the path from v to the root is contained in a single
BST. Finally, v is splayed to the root.

TwoPassSplayTT, in a way, works very similar. Disregarding the left-right order of
BST nodes in the link-cut tree, TwoPassSplayTT performs almost the same rotations as
link-cut trees. The main difference is that no path-decomposition is maintained; instead,
SplayTT “automatically” detects a decomposition of the search path.

As discussed at the beginning of the chapter, link-cut trees “natively” maintain rooted
forests. Each path in the decomposition can be seen as oriented towards the root, and
this orientation is preserved by the left-right order in the corresponding BST. To support
Evert (and hence arbitrary Links in unrooted forests), it must be possible to reverse
paths and the corresponding BSTs. To preserve the O(log n) amortized cost this has to
be done lazily using a reverse bit, which complicates the implementation somewhat.

All in all, for maintaining unrooted forests, our STT-based framework is arguably
conceptually simpler than link-cut trees, since no reverse bit is required an there is no
need to explicitly maintain a (directed) path decomposition of the underlying forest. The
main complexity lies in the implementation of the STT rotation primitive, which is easily
separated and reused, simplifying the engineering of new variants. In contrast, variants
of link-cut trees are somewhat restricted by the explicit decomposition into BSTs; for
example, no equivalent of our GreedySplayTT algorithm for link-cut trees exists.
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10.8. Practical implementation

The author implemented dynamic forest data structures in the Rust and C++ programming
languages. We first consider the fully-fledged Rust implementation, which is available at
https://github.com/berendsohn/stt-rs.

Edge-weighted unrooted forests in Rust. We combine our basic 2-cut STT data
structure (section 10.1) with one variant (stable/non-stable) of the Link, Cut, and
PathWeight procedures described in sections 10.2 and 10.3 and one of the Access
algorithms (GreedySplayTT, TwoPassSplayTT, LocalTwoPassSplayTT, and
MoveToRootTT). Overall, we obtain eight different implementations, denoted by
(Stable) Greedy Splay, (Stable) 2P Splay, (Stable) L2P Splay, and (Stable) MTR.

Further, we have Link-cut,8 an implementation of the amortized variant of Sleator and
Tarjan’s link-cut trees [ST85b], where the handling of edge weights is similar to the way
described in section 10.3.9

Finally, we have two linear-time data structures. 1-cut10 is a naive dynamic forest
implementation that maintains a rooting of each tree (i.e., a 1-cut search tree on each tree).
The dynamic forest operations are implemented as described above, where Access(v)
repeatedly rotates the root with one of its children until v is the root (see also proposition 8.5
in section 8.2). Petgraph11 is a naive dynamic forest implementation using the Petgraph12

library, which appears to be the most popular graph library for Rust at the time of writing.
The other implementations were tested for correctness using Petgraph as a reference.

Rooted forests in Rust. The author also implemented data structures maintaining rooted
forests without edge weights. We support Link, Cut, FindRoot and (depending on
the experiment) Evert. An extension of our STT-based data structures is sketched in
section 10.4 and again yields eight STT-based variants.

Link-cut is the same link-cut tree implementation as above. If Evert is not needed, we
disable any checks and modifications of the reverse bit (though the slight space overhead
remains). Finally, Simple13 is a naive implementation that maintains the rooted forest
explicitly via parent pointers.

Rust implementation notes. All unrooted (resp. rooted) implementations share a com-
mon interface (the Rust traits DynamicForest, resp. RootedDynamicForest) that is used
by the experiments. Code is reused whenever possible through heavy use of generics. In
particular, new weight types can be easily added, and weights can also be omitted entirely.

There are some differences between the pseudocode presented here and the actual
Rust implementation. This is due to the fact that procedures like can rotate(v) and

8Found in stt/src/link_cut.rs in the source code.
9Sleator and Tarjan only describe how to maintain vertex weights. Tarjan and Werneck [Wer06a]

simulate edge weights by adding a vertex on each edge and maintaining vertex weights. We did not test
this approach.

10Found in stt/src/onecut.rs
11Found in stt/src/pg.rs
12https://crates.io/crates/petgraph
13Found in stt/src/rooted.rs
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10.9. Experimental evaluation

can splay step(v) contain multiple is separator(·) checks, which can cause an unnec-
essarily large number of calls to the parent(·) function, even though the parent and
possibly further ancestors of v may be already known (consider, e.g., algorithms 9.4
and 9.6). Hence, we eliminated some of the additional calls by, e.g., introducing a function
is separator hint(v, p), which is more efficient, but requires p = parent(v) to be given.

We applied this principle liberally in all STT-based variants and our Link-cut imple-
mentation. The performance gains were relatively small, and we did not attempt any
fine-tuning beyond this.

Unweighted unrooted forests in C++. For comparison, a C++ implementation is
available at https://github.com/berendsohn/stt-cpp. This implementation does not
support weights and rooted forests, only connectivity queries. We also omit the more
complicated TwoPassSplayTT algorithm; only the stable variants of the remaining
algorithms (GreedySplayTT, LocalTwoPassSplayTT, and MoveToRootTT) are
available. We denote these implementations by Greedy Splay C++, L2P Splay C++, and
MTR C++.

The author made several attempts at optimization, yielding multiple variants of each
of the three algorithms. These variants can be chosen via compile-time flags; see the
source code for more details. It turned out that the most impactful improvement was to
replace calls to is separator hint and similar functions by a function that returns the
separator type of a node, which can be “direct separator”, “indirect separator”, or “no
separator”. The splay step procedure needs this information to choose between ZIG-ZIG
and ZIG-ZAG steps, so retaining it once computed is advantageous.

We compare the STT-based implementation with two external dynamic forest libraries.
First, the dtree C++ library14 is a fully-fledged dynamic forest library, supporting vertex
weights under a variety of different queries and updates. Due to its generic architecture, it
is also possible to omit vertex values (like with our Rust library). It is further possible to
choose between various implementations, including link-cut trees and top trees. We use
dtree’s link-cut trees without weights and call it dtree.

Second, Tarjan and Werneck implemented link-cut trees and several top tree vari-
ants [TW10]. All implementations include vertex or edge weights and it is not pos-
sible to remove them without significant edits to the source code. We use their link-
cut tree implementations with vertex weights (tarjan-werneck-v) and edge weights
(tarjan-werneck-e), ignoring the weights in both cases. Note that maintaining weights
give these implementations an unfair disadvantage.

10.9. Experimental evaluation

We now describe our experiments and discuss their results. To reduce variance, every
(sub)experiment was repeated ten times (for randomized experiments, the input is newly
generated each time). All experiments can be reproduced by scripts in the source code;
see the included README.md files for more details.

14Found at https://www.davideisenstat.com/dtree/
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Running time (µs/query)

Algorithm n = 1000 5000 10 000 50 000 100 000 500 000

Link-cut 0.45 0.50 0.55 0.69 0.74 1.36
Greedy Splay 0.40 0.47 0.53 0.66 0.71 1.24
Stable Greedy Splay 0.38 0.45 0.50 0.63 0.68 1.21
2P Splay 0.45 0.52 0.57 0.70 0.75 1.27
Stable 2P Splay 0.40 0.48 0.54 0.66 0.71 1.23
L2P Splay 0.38 0.48 0.54 0.67 0.72 1.24
Stable L2P Splay 0.36 0.47 0.52 0.65 0.70 1.23
MTR 0.34 0.42 0.47 0.57 0.61 1.08
Stable MTR 0.36 0.44 0.48 0.59 0.63 1.10
1-cut 0.15 0.49 0.86 3.38 – –
Petgraph 7.35 – – – – –

Table 10.1.: Results for the uniformly random connectivity queries experiment.

Uniformly random connectivity queries. In our first experiment, weights are empty,
so the updating logic from section 10.3 is not required and PathWeight(u, v) simply
indicates whether u and v are connected or not. This allows us to directly compare the
dynamic forest implementations without edge weight handling.

A list of queries is pre-generated, starting with an empty forest. For each query, we draw
two vertices u, v uniformly at random; if u and v are not connected, we call Link(u, v);
otherwise, we either call PathWeight(u, v) or call Cut on some edge on the path between
u and v, with probability 1

2 each. This gives us roughly 40% Link, 30% Cut, and 30%
PathWeight queries. We then execute the list of queries once for each implementation.

We start with the Rust implementations. We always set m = 10n, and let n range from
1000 to 500 000.15 See table 10.1 for the result. The Petgraph and 1-cut implementations
became very slow after a certain threshold and were therefore excluded for larger n.
Petgraph in particular performed very badly (worse than the second-worst implementation
by a factor of over 15 at n = 1000), so we exclude it from all further experiments.

Among our SplayTT variants, the stable ones are always slightly faster than the non-
stable ones. The fastest overall is Stable Greedy Splay, which is somewhat surprising,
since the discussion in section 9.4 indicates that Stable L2P Splay should be faster. The
difference is small, however. Both algorithms outperform Link-cut by roughly 10% for
large n.

The much simpler MTR and Stable MTR are faster than all Splay-based data structures,
perhaps because of the uniformity of the input (as discussed in section 9.1). The simple
linear-time 1-cut data structure is faster for smaller values of n, but is the worse by some
margin already at n = 10 000.

The same experiment was conducted for the various C++ implementations, with values
1000 ≤ n ≤ 1 000 000, and again m = 10n. The results are shown in table 10.2. This
time, Greedy Splay C++ and L2P Splay C++ are roughly on par. They outperform the
well-optimized dtree library by roughly 20%. The Tarjan-Werneck implementations are

15The maximum value for n is chosen such that the overall experiment still takes a reasonable amount
of time. This also applies to the other experiments.
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Running time (µs/query)

Algorithm n = 5000 10 000 50 000 100 000 500 000 1 000 000

Greedy Splay C++ 0.26 0.22 0.31 0.34 0.57 0.85
L2P Splay C++ 0.25 0.22 0.31 0.34 0.56 0.84
MTR C++ 0.29 0.20 0.26 0.29 0.48 0.75
dtree 0.29 0.28 0.37 0.39 0.74 1.04
tarjan-werneck-v 0.49 0.53 0.65 – – –
tarjan-werneck-e 0.58 0.56 0.66 – – –

Table 10.2.: Results for the C++ connectivity queries experiment.

slower, although, as mentioned above, they are at an unfair disadvantage. Interestingly,
even when implementing the same algorithm, the C++ implementations are much faster
than the respective Rust implementations (by a factor of more than two).

The following advanced experiments only concern the Rust implementations, since
the C++ implementations do not support edge weights and rooted forests. We omit
the non-stable variants for the remaining experiments, since they so far performed very
similarly to the stable variants (just slightly worse, usually).

Incremental MSF. Our second, more practical experiment consists of solving the incre-
mental minimum spanning forest (MSF) problem. We are given the edges of a weighted
graph one-by-one and have to maintain an MSF, i.e., a minimum spanning tree on every
component. Edges are never removed.

A simple solution using dynamic forests works as follows. Whenever an edge {u, v}
with weight w arrives, if u and v are in different components, add the edge to the forest.
Otherwise, find the heaviest edge on the path from u to v, and if its weight is larger
than w, replace it with the new edge.

To find the actual heaviest edge instead of just its weight, we extend our edge weight
monoid (N,max) to also contain a heaviest edge. When two weights are added, the heavier
of the two edges is used, with ties being broken arbitrarily. The result is still essentially a
commutative monoid, hence our algorithms can be used without change.16

As a first experiment, we randomly generate inputs on n ≤ 500 000 vertices with m = 8n
edges (following Tarjan and Werneck [TW10]).

Second, we use the ogbl-collab data set17 [HFZ+20] to generate input that might be
closer to real-world applications. The data set consists of a set of authors and collaborations
between authors, annotated with a year. We interpret this as a dynamically changing
graph where the first collaboration creates an edge with weight 1, and each subsequent
collaboration increases the weight of the edge. Inverting the edge weights yields a natural
dynamic MSF problem, with the additional allowed operation of decreasing an edge weight,
which can be easily implemented by first removing the edge (if it exists in the current

16The monoid is not technically commutative, since there might be ties between edge weights and these
ties might be broken differently depending on the order of summands. However, we can treat it as a
commutative monoid, since we do not care how ties are broken.

17Available under the ODC Attribution License at
https://ogb.stanford.edu/docs/linkprop/#ogbl-collab
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MSF), and then adding it again with the new weight. The resulting input consists of
235 868 vertices and 1 179 052 queries.

We also compare the online algorithms with the Petgraph library’s implementation of
Kruskal’s offline algorithm. Results are shown in table 10.3.

Kruskal’s algorithm outperforms the online algorithms by a large factor (this is expected,
since it is offline and less general). Otherwise, the results of this experiment are similar
to the uniformly random query experiments; the only difference is that the advantage of
Stable Greedy Splay against Stable L2P Splay has vanished.

Random queries with variable probability of PathWeight. Informal experiments lead
the author to believe that Link-Cut performs better compared to our approaches when
PathWeight queries are common (and thus the reverse bit is rarely changed). Hence, the
first experiment was repeated with n = 50 000, except that the probability p of generating
a PathWeight query (instead of a Cut) is variable. Figure 10.3 shows that link-cut

outperforms our SplayTT algorithms when p is close to 1, thus confirming the suspicion.

Degenerate queries. MTR and Stable MTR are faster than the other algorithms on uniform
queries, despite having asymptotic worst-case performance of Θ(n) per operation. To
experimentally confirm the worst-case behavior, we create a path G of n ≤ 10 000 nodes
v1, v2, . . . , vn, and then call PathWeight(vi, vn) for all i ∈ [n] in order. While the queries
have strong locality, the two vertices vi, vn are very far from each other on average. All
Splay-based approaches are able to exploit the locality and outperform the linear-time
data structures (MTR, Stable MTR, and 1-cut) by a factor of over 100 when n = 10 000.

To check how “robust” our degenerate example is, we performed the following “noisy”
experiment. Fixing n = 5000, for each i ∈ [n], we call PathWeight(vj , vn), where
j = i+ ⌊x⌋ and x is drawn from a normal distribution with mean 0 and standard deviation
σ, for some values σ ≤ 300. (See figure 10.4.) As expected, 1-cut still performs very
badly, since the added noise does not change the expected distance between vi and vn.
MTR and Stable MTR, on the other hand, do adapt, though even with σ = 300 both are
still slower than the Splay-based variants by at least 50%.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

µs
/q

u
er

y

Link-cut

Stable Greedy Splay

Stable MTR

0 100 200 300
0

10

20

σ

µs
/q

u
er

y

Stable MTR

1-cut

Link-cut

Figure 10.3.: Random queries with in-
creasing probability p of
PathWeight.

Figure 10.4.: Noisy degenerate input.
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10.9. Experimental evaluation

Running time (µs/edge)

Algorithm n = 5000 10 000 50 000 100 000 500 000 ogbl

Kruskal (petgraph) 0.09 0.09 0.14 0.20 0.48 0.18
Link-cut 1.01 1.12 1.38 1.71 2.82 0.51
Stable Greedy Splay 0.90 1.00 1.24 1.51 2.48 0.38
Stable 2P Splay 0.95 1.05 1.29 1.55 2.55 0.41
Stable L2P Splay 0.89 0.99 1.23 1.50 2.48 0.39
Stable MTR 0.77 0.85 1.05 1.31 2.20 0.39
1-cut 0.40 0.60 1.46 1.96 – 0.17

Table 10.3.: Results for the uniformly random incremental MSF experiment.

Lowest common ancestors. In our final two experiments, we maintain a rooted forest on
n vertices and execute 10n queries among Link(u, v), Cut(v), and LCA(u, v). The query
distribution is as follows. A random non-root node is Cut with probability 1

2 ·
m

n−1 , where
m is the current number of non-root nodes. Otherwise, a pair of nodes {u, v} is generated
uniformly at random, and Link(u, v) or LCA(u, v) is chosen depending on whether u
and v are in the same tree (the Link is performed at the root of the tree containing u).
Overall, we have roughly 46% Links, 38% Cuts, and 16% LCAs.

In the second experiment, we additionally allow Evert(v), i.e., changing the root of
a tree. Each Cut is replaced with Evert with probability 1

2 , resulting in roughly 30%
Links, 20% Cuts, 30% LCAs and 20% Everts.

As expected, Link-cut outperforms our data structures considerably in the first experi-
ment, where only our data structures have to maintain extra data (to represent rooted
trees). When Evert is allowed, the difference is much less pronounced, and Stable

Greedy Splay is actually slightly faster for n = 500 000. The Simple data structure
performed much worse than all others and was excluded from experiments with large n.
See tables 10.4 and 10.5 for more details.

Discussion. In our experiments, the SplayTT-based data structures outperform link-cut
trees by 10-20% if the dynamic forest is unrooted. This holds for both our own Rust
implementations, and when comparing our C++ implementation with third-party libraries.
Link-cut trees in turn are faster by similar margins for rooted dynamic forests (in particular
without the root-changing Evert operation).

Among the tested SplayTT-based variants, Greedy Splay and L2P Splay performed
best overall, which matches the theoretical analysis (see section 9.4). However, the even
simpler MTR algorithm outperformed our more sophisticated algorithms by 10-15%, except
for specifically constructed inputs. It would be interesting to investigate whether there
exist practical applications where the adaptivity of Splay-based data structures makes up
for their increased complexity.

Finally, we note the large discrepancy between the Rust and C++ implementation of
the same data structure. There are multiple possible reasons. First, the Rust library
consists entirely of safe Rust code.18 This makes it impossible to work with raw node

18There is an unsafe optimization that can be enabled via a compiler flag, though it makes no noticeable
difference in performance.
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10. Dynamic forests with 2-cut STTs

Running time (µs/query)

Algorithm n = 10 000 20 000 50 000 100 000 500 000

Link-cut 0.28 0.30 0.34 0.36 0.67
Stable Greedy Splay 0.37 0.40 0.43 0.46 0.78
Stable 2P Splay 0.40 0.44 0.47 0.49 0.91
Stable L2P Splay 0.37 0.41 0.44 0.47 0.90
Stable MTR 0.31 0.34 0.37 0.39 0.81
Simple 1.40 2.26 4.17 – –

Table 10.4.: Results for the LCA experiment.

Running time (µs/query)

Algorithm n = 10 000 20 000 50 000 100 000 500 000

Link-cut 0.42 0.45 0.50 0.53 0.97
Stable Greedy Splay 0.45 0.48 0.52 0.55 0.93
Stable 2P Splay 0.49 0.53 0.57 0.60 1.11
Stable L2P Splay 0.45 0.49 0.53 0.57 1.09
Stable MTR 0.36 0.39 0.43 0.46 0.94
Simple 1.30 1.91 3.08 – –

Table 10.5.: Results for the LCA experiment with Evert.

pointers, as in the C++ implementation; the author opted to instead store node indices
instead of pointers. To access a node, the index must be passed to a vector storing all
nodes. This slightly increases the number of necessary memory accesses.

Second, the Rust library is much more powerful than the C++ implementation and
makes heavy use of generics. There is no direct reason known to the author why this
would hurt performance, but perhaps this inhibits compile-time optimization in some way.
Finally, some parts of the library might simply be poorly written, since the author is not
an experienced Rust programmer and the language is quite complex.

10.10. STGs for graphs of bounded tree-width

In this section, we discuss a data structure that maintains a k-cut search tree on a graph
(with tree-width at most k) and can execute rotations in time O(2k). At the end of the
section, we name a possible application.

Theorem 10.11. Let G be a connected graph. We can maintain a search tree on G
under rotations, such that the running time a rotation between u and v is O(2k), where
k = max(|∂(Tu)|, |∂(Tv)|) and T is the search tree before the rotation.

Proof sketch. Recall the naive data structure sketched at the beginning of section 10.1.
Each node maintains v the parent(v) field as usual. Additionally, it maintains ∂(Tv) as
a list bd(v), a list anc adj(v) of ancestors of v that are adjacent to v, and a list of its
children children(v).
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10.10. STGs for graphs of bounded tree-width

To rotate a node v with its parent p, we need to identify the children of v that switch
parents to p. By definition, these are exactly the children c with p ∈ ∂(Tc) = bd(c), so
they can be identified by going through the list children(v).

After executing a rotation, the fields anc adj( · ) and bd( · ) can only change for v
and p. The former only changes if v and p are adjacent; then the edge {v, p} is moved
from anc adj(v) to anc adj(p). The latter field bd(x) is always easily computed from
anc adj(x) and the fields bd of the children of x.

Finding the children to switch parents and recomputing the boundaries both takes Θ(n)
time in the worst case. We now show how to improve that to O(2k).

The idea is to group the children by boundary. Let v be a node in a search tree T . For
each child c of v, we have v ∈ ∂(Tc) and ∂(Tc) ⊆ ∂(Tv) ∪ {v} (by observation 2.7). Hence,
if |∂(Tv)| ≤ k, then there are at most 2k possible boundaries for children of v. Instead
of an explicit list of children, we store a list of child groups, each of which specifies the
boundary and the parent of the contained nodes. It is not hard to adapt the rotation
algorithm given above so that it uses child groups instead of children. We omit the details
here. Theorem 10.11 follows.

Remark. The field anc adj is necessary in the non-tree case, since the underlying graph
can not be computed just from boundary sizes (i.e., lemma 10.2 does not generalize
to arbitrary graphs). Indeed, take any search tree T on G with some nodes u, v with
u ∈ ∂(Tv), but {u, v} /∈ E(G). Then adding the edge {u, v} does not change the subtree
boundaries, but obviously changes the graph.

Dynamic tree decompositions. Our main motivation for theorem 10.11 is an application
to the dynamic tree-width problem. Recall that k-cut a search tree on a graph is essentially
a tree decomposition of width k (see section 2.4). Thus, theorem 10.11 can be seen as
maintaining a dynamic tree decomposition of G under rotations. If we could generalize,
e.g., SplayTT to graphs of bounded tree-width, theorem 10.11 would perhaps enable
us to extend our dynamic forest data structure to a data structure that maintains a tree
decomposition of bounded width on a bounded-tree-width graph, under edge insertions
and deletions.

This problem has been first considered by Bodlaender [Bod94], who showed how to main-
tain a tree decomposition of width eleven on graphs of tree-width two withO(log n) time per
operation. Recently, Korhonen, Majewski, Nadara, Pilipczuk, and Soko lowski [KMN+23]
gave a data structure that maintains a (6t + 5)-width tree decomposition on graphs with
tree-width t, with time Ok(2

√
logn log logn) per operation.19

Modifying tree decompositions directly is rather complicated. Using the data structure
of theorem 10.11, this problem is abstracted away to some extent – as long as we keep the
search tree k-cut, we can freely perform rotations, and need not worry about rebuilding
bags correctly, for example. Hence, approaches other than SplayTT may also benefit
from this idea. Still, it seems that the most promising avenue is trying to adapt SplayTT.

Open question 10.1. Is there a generalization of SplayTT that maintains O(k)-cut
search trees on (static) graphs of tree-width k?

19Ok( · ) hides factors depending only on k.
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Part III.

The diameter of graph associahedra
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11. Rotation distance and static search trees

Let G be a connected graph. The search tree rotation graph (or simply rotation graph) rotation graph

R(G) on G is the graph where

• the set of vertices is the set of search trees on G; and

• two vertices T, T ′ are adjacent if T can be obtained from T ′ by a single rotation.

Observe that the shortest path between two search trees T and T ′ in R(G) is precisely
the minimum number of rotations required to transform T into T ′. We call this the
rotation distance between T and T ′ and denote it by dG(T, T ′) (or d(T, T ′), if G is clear

rotation dist.
d(T, T ′)

from context). The diameter diam(R(G)) is thus the maximum rotation distance between
two search trees on G. In this final part of the thesis, we study the quantity diam(R(G)),
mainly in the case where G is a tree. It turns out that there is a connection to polyhedral
combinatorics, which we discuss now.

Graph associahedra. An associahedron is a convex polytope whose graph1 is the rotation associahedron

graph of binary search trees of a given size, as well as the flip graph of various other
combinatorial structures [Tam54, Pou14b]. A generalization of associahedra called graph graph

associahedron
associahedra was introduced by Carr and Devadoss [CD04]. It turns out that the graphs
of these polytopes are the rotation graphs of STGs, though Carr and Devadoss defined
them with different terminology. We briefly define graph associahedra and discuss their
connection to STGs.

Let G be a connected graph. A tube of G is a connected induced subgraph of G. A tubing tubing

is a set of tubes such that every pair of tubes is either nonadjacent or nested. Now consider
the inverse of the partial order induced by set inclusion on all tubings of G. This is the
face lattice of the G-associahedron, denoted by A(G). In other words, each k-dimensional
face of A(G) corresponds to a tubing of size n + 1 − k, and a face F is contained in a
face F ′ if for the corresponding tubings U,U ′ we have U ⊇ U ′. Carr and Devadoss [CD04,
Theorem 2.6] showed that A(G) is realizable, i.e., there is a geometric polytope with this
face lattice, for each graph G. Devadoss [Dev09] gave a simple realization with integer
coordinates.

It is not hard to see that maximal tubings are in bijection with STGs, and that edges
of A(G) correspond to rotations in STGs [MP15, CLPL18]. Hence, the graph of A(G) is
exactly the rotation graph R(G), and the diameter of A(G) is exactly the diameter of
R(G).

If G is a path, then A(G) is the classical associahedron, mentioned above. The study
of BST rotation distances, and thus the diameter of the associahedron goes back to the
1980’s [CW82, Pal87, STT88].

1The graph or 1-skeleton of a polytope is the graph formed by the vertices and edges of the polytope.
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11. Rotation distance and static search trees

If G is a clique, then A(G) is called the permutahedron. Following our observationspermutahe-
dron

in section 2.2.5, the rotation graph R(G) is the flip graph of permutations, where a flip
is an adjacent swap. Similarly, a star-associahedron is called stellohedron [PRW08] andstellohedron

its graph is the flip graph of partial permutations (see section 2.2.5). Another important
special case is the cycle-associahedron, which is also called cyclohedron or Bott-Taubescyclohedron

polytope [PRW08].
Graph associahedra are easily generalized to disconnected graphs, as the definition

of tubings and the face lattice do not require the graph to be connected. Tubings on
disconnected graphs correspond to sets of STGs, one for each connected component.
A rotation in this setting is a rotation in one of the STGs. Clearly, if G is the disjoint
union of two graphs H1, H2, then R(G) is the Cartesian product of R(H1) and R(H2).
Hence, we have diam(R(G)) = diam(R(H1)) + diam(R(H2)), and we can focus on the
case of connected graphs.

We now discuss old and new results on the diameter of graph associahedra. The following
basic properties will be useful for the discussion.

Lemma 11.1 (Manneville and Pilaud [MP15, Theorem 1]). diam(R(G)) is non-decreasing.
That is, if G is a subgraph of G′, then diam(R(G′)) ≤ diam(R(G)).

Lemma 11.2 (Manneville and Pilaud [MP15, Theorem 3]). Let G be a connected graph
on n vertices and m edges. Then

max(m, 2n− 20) ≤ diam(R(G)) ≤
(
n
2

)
.

Diameter of individual graph associahedra. We start with the special case of the classical
associahedron, i.e., the rotation graph of BSTs. Let Pn denote the path on n vertices.
Sleator, Tarjan, and Thurston [STT88] proved that the diameter of R(Pn), is at most 2n−6
for n ≥ 11, and that this bound is tight for large enough n. They used a characterization
of R(Pn) as the flip graph of triangulations. Pournin [Pou14b] showed that the bound is
tight for all n ≥ 11.

Theorem 11.3 ([STT88, Pou14b]). Let Pn be the path with n vertices. We have
diam(R(G)) = 2n− 6 if n ≥ 11, and 2n− 6 ≤ diam(R(G)) ≤ 2n− 2 if 1 ≤ n ≤ 10.

Exact bounds are also known for other simple graphs. In the following, let n denote
the number of vertices in the underlying graph. The diameter of the permutahedron is
easily seen to be

(
n
2

)
(thus, the upper bound in lemma 11.2 follows from lemma 11.1). The

stellohedron can be shown to have diameter precisely 2(n− 1) for n large enough [MP15].
Cardinal, Pournin, and Valencia-Pabon [CPVP22] studied the diameter of graph associa-
hedra of complete split graphs (which interpolate between Stars and Cliques), unbalanced
bicliques and complete multipartite graphs. See the paper for definitions and precise
results. Gargantini, Pastine, and Torres [GPT24] provided additional exact results for
small balanced bicliques.

Pournin [Pou14a] showed that the diameter of the cyclohedron is ⌈52n⌉−O(
√
n), settling

that question up to lower-order terms. The exact diameters of cyclohedra are currently
not known except for small values.

Another approximate result by Cardinal et al. [CPVP22] is for associahedra of trivially
perfect graphs (defined in section 2.3).
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Theorem 11.4 ([CPVP22]). Let G be a connected trivially perfect graph with m edges.
Then m ≤ diam(R(G)) ≤ 2m.

Observe that the lower bound follows directly from lemma 11.2.
We now turn to our new results. First, we present an upper bound in terms of the

unweighted static optimum (see chapter 3). Recall that 1 is the unit weight function, which
assigns weight one to each vertex.

Theorem 11.5. Let G be a connected graph on n vertices. Then

diam(R(G)) ≤ 2(StOPT(G,1)− n).

We prove theorem 11.5 in section 11.1. The proof is based on a very simple algorithm
that transforms a search tree T into another search tree T ′: If r is the root of T ′, bring r
to the root in T . Then, recurse on each subtree. The number of rotations can be shown to
be cost(G, 1)−n. Hence, the distance to the optimal static search tree is StOPT(G, 1)−n,
which yields theorem 11.5.

Theorem 11.5 is typically not tight, but it allows us to re-derive several known results
(and, in some instances, slightly improve them). First, from the existence of centroid
trees, we know that StOPT(G, 1) ∈ O(n log n) for each tree G on n vertices, and hence
diam(R(G)) ∈ O(n log n). This has been known before via a special case of the same
algorithm described above [CLPL18].

The explicit connection to unweighted optimal search trees is new. Another immediate
consequence is the upper bound in theorem 11.4, which follows by combining theorem 11.5
with lemma 7.6. The original proof by Cardinal et al. [CPVP22] is more involved and uses
the concept of universal clique decompositions.

The algorithm can be modified to only move a subset of vertices; this gives us the
following result (proof in section 11.2). See section 2.2.6 for the definition of torsoG( · ).

Theorem 11.6. Let G be a graph, let A ⊆ V (G), and let H = torsoG(A). For each v ∈ A,
let w(v) be the number of vertices connected to v in G− (A \ {v}), including v itself. Then

diam(R(G)) ≤ 2 · (StOPT(H,w)− |A|) +
∑

C∈C(G−H)

diam(R(C)).

An interesting immediate consequence of theorem 11.6 is an upper bound for associahedra
of graph subdivisions.

Theorem 11.7. Let H be a connected graph, and let G be a subdivision of H. Let
se ∈ N0 be the number of times the edge e ∈ E(H) was subdivided to obtain G, and let
w(v) =

∑
e∈Ev

se for each v ∈ V (H), where Ev is the set of edges incident to v. Then

diam(R(G)) ≤ 2 · StOPT(H,w + 1) + 2|V (G)| − 4|V (H)|.

All these new upper bounds are far from tight for certain graphs. In chapter 12, we
provide tight bounds (up to a constant factor) for many trees. The main technique is a
reduction in the style of theorem 11.6, for both upper and lower bounds.

The proofs are quite involved and highlight a strong connection between rotation
distance and the dynamic search tree model. We refer to chapter 12 for more details. In
the following, we discuss some core results.
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11. Rotation distance and static search trees

First, we show that theorem 11.5 is tight not just on trivially perfect graphs, but also
on certain trees.

Theorem 11.8. Let G be a tree with no vertices of degree two. Then

diam(R(G)) ∈ Θ(StOPT(G,1)).

Our main result is an algorithmic characterization of the diameters of all trees of bounded
path-width (see section 2.4).

Theorem 11.9. Given a tree G on n vertices with path-width k, we can approximate
diam(R(G)) up to a factor of four and an additive term of O(kn), in time O(kn2).

The algorithm is very simple and essentially consists of recursive application of a
structural result. The path-width appears due to a connection with the so-called Strahler
number (defined in section 12.5.2). As an example, applying a single step of the algorithm
yields the following result on caterpillars, i.e., graphs with path-width one.

Theorem 11.10. Let G be a caterpillar graph consisting of a path P of n vertices and a
set of m leaves attached directly to P . Let w(v) denote the number of neighbor leaves of
v ∈ V (P ). Then

diam(R(G)) ∈ Θ(StOPT(P,w) + n).

Recall that the cost of the optimal static search tree on a path is asymptotically equal
to the entropy of the weight distribution, times the total weight [Meh75]. Hence, we
characterize the diameter of caterpillar associahedra in terms of the entropy of the leaf
distribution. We can obtain similar tight bounds for other graph classes like spiders, and
lobsters (see chapter 2 for definitions).

Graph classes. Another, less specific problem is to determine the maximum diameter of
graph associahedra within a graph class. Formally, let G be a set of graphs containing at
least one graph for each number of vertices, and let

Diam(G, n) = max
G∈G

|V (G)|=n

diam(R(G)).

We observed above that Diam(G, n) ∈ O(n log n) if G is the set of all trees. This bound
is known to be asymptotically tight.

Theorem 11.11 (Cardinal, Langerman and Pérez-Lantero [CLPL18]). If G is the set of
all trees, then Diam(G, n) ∈ Θ(n log n).

Observe that this also follows from theorem 11.10, by taking the caterpillar with a path
of n

2 vertices, each of which has a leaf attached to it.

Cardinal, Pournin, and Valencia-Pabon [CPVP22] further provided the following results
concerning the graph parameters tree-depth, path-width, and tree-width. We start with
tree-depth.
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Theorem 11.12 ([CPVP22, Theorems 12 and 13]). Fix t ∈ N, and let Gtdt be the class of
graphs with tree-depth at most t. Then, for each n,

Diam(Gtdt , n) ≤ 2tn,

and, for each n such that t− 1 divides n− 1,

Diam(Gtdt , n) ≥ t
2 · (n− 1).

We can easily derive the upper bound from theorem 11.5, even with a small additive im-
provement. We also give a better lower bound that is implicit in the same paper [CPVP22].

Theorem 11.13. Let t ∈ N, and let Gtdt be the class of graphs with tree-depth at most t.
Then, for each n ≥ 5t− 4, we have

2at,n −
(
t−1
2

)
≤ Diam(Gtdt , n) ≤ 2at,n,

where at,n = (t− 1)n−
(
t
2

)
.

Cardinal et al. [CPVP22] further give a lower bound for the class of graphs with fixed
path-width. Using the well-known inequalities tw(G) ≤ pw(G) ≤ td(G) · log n [BGHK95],
they obtain:

Theorem 11.14 ([CPVP22]). Fix t ∈ N, and let Gtwt , Gpwt , Gtdt be the classes of graphs
with tree-width, resp. path-width, resp. tree-depth at most t. Then, for each n,

Ω(t · n) ∋ Diam(Gtwt , n) ≤ Diam(Gpwt , n) ∈ O(t · n log n).

They show that the lower bound is not tight for small t; in particular, associahedra of
graphs with path-width two can have diameter Ω(n log n), hence Diam(Gpw2 , n) ∈ Θ(n log n).
Our theorem 11.10 implies that this is true even for path-width one, since caterpillars
are the graphs with path-width one. Still, the question stays open for non-tree graphs of
unbounded tree- or path-width.

Open question 11.1. What are asymptotically tight bounds for Diam(Gtwt , n) and
Diam(Gpwt , n)?

k-cut rotation graphs. Several of the algorithms presented in parts I and II exclusively
use k-cut search trees, due to them being easier to work with in several ways. An obvious
question is to determine the maximum rotation distance between k-cut search trees. In
chapter 13, we prove:

Theorem 11.15. Let T, T ′ be two k-cut search trees on a tree G. Then there is a sequence
of at most (2k − 1)n rotations that transforms T into T ′, such that each intermediate
search tree is k-cut.

Recall that the diameter of the rotation graph is important for the precise definition of
the dynamic search tree model (see chapter 8).
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11. Rotation distance and static search trees

Related work. Another related problem is computing the rotation distance between two
given search trees. In general, this is known to be NP-hard [IKK+23], though in the
special case of complete split graphs, a polynomial-time algorithm is known [CPVP24]. It
is unknown if the rotation distance of binary search trees can be computed in polynomial
time, but a linear-time 2-approximation algorithm exists [CS10].

Manneville and Pilaud [MP15] also proved that R(G) is Hamiltonian (if |V (G)| ≥ 3).
Cardinal, Merino and Mütze [CMM21] showed that a Hamiltonian path can be generated
efficiently if G is chordal.

Finally, the chromatic number of rotation graphs has so far only been considered for
the classical (path-)associahedron [FMFPH+09, BRSW18]. However, a related problem
of coloring facets has been studied for certain graph associahedra [BIP23].

Organization of part III. In the remainder of this chapter, we prove some simpler results
related to optimal static search trees (including theorems 11.6 and 11.13). Along the way,
we will obtain some tools that are useful later. In chapter 12, we connect the dynamic
search tree model to graph associahedra, and prove theorem 11.9 and related results.
Finally, in chapter 13, we prove and discuss theorem 11.15.

11.1. Unweighted static search tree bound

In this section, we prove

Theorem 11.5. Let G be a connected graph on n vertices. Then

diam(R(G)) ≤ 2(StOPT(G, 1)− n).

We start with bounding the distance between two search trees based on their cost.

Lemma 11.16. Let G be a connected graph on n vertices and let T, T ′ be search trees on
G. Then d(T, T ′) ≤ cost(T ′, 1)− n.

Proof. We proceed by induction on n. If n = 1, then T = T ′ and we are done. Suppose
now that n ≥ 2. We describe a sequence of rotations transforming T into T ′.

Let r be the root of T ′. We start by rotating r to top of T . This requires at most
n− 1 = |V (T ′

r)| − 1 rotations. Let T 1 be the resulting search tree.
Now consider a child subtree S of r in T 1. Since, by definition, G[V (S)] is a component

of G − r, and r is also the root of T ′, there is a child subtree S′ of r in T ′ such that
V (S) = V (S′). We recursively transform S into S′, and repeat this for every other child
subtree of r in T 1, after which we obtain T ′. If K is the set of children of r in T ′, then, by
induction, the total number of rotations is

|V (T ′)| − 1 +
∑
c∈K

cost(T ′
c,1)− |V (T ′

c)| = cost(T ′,1)− n.

Clearly, by symmetry, we also have d(T, T ′) ≤ cost(T, 1) − n. This can be proved
directly by observing that each node v is rotated upwards at most depthT (v) times; so our
two characterizations of cost(T,w) (observation 3.11) each yield a proof of lemma 11.16.
Proving theorem 11.5 is now easy.
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11.1. Unweighted static search tree bound

Proof of theorem 11.5. Let us write D = StOPT(G, 1). Let T ∗ be an optimal static search
tree on G, i.e., cost(T ∗) = D.

Let T, T ′ be arbitrary search trees on G. We claim that d(T, T ′) ≤ 2(D − n). By
lemma 11.16, we have both d(T, T ∗) ≤ D − n and d(T ′, T ∗) ≤ D − n. Our claim follows
by the triangle inequality.

11.1.1. Tree-depth

For the class of fixed-tree-depth graphs, theorem 11.5 is asymptotically tight, as shown by
Cardinal, Pournin, and Valencia-Pabon [CPVP22]. We re-prove their result with better
constant terms.

Theorem 11.13. Let t ∈ N, and let Gtdt be the class of graphs with tree-depth at most t.
Then, for each n ≥ 5t− 4, we have

2at,n −
(
t−1
2

)
≤ Diam(Gtdt , n) ≤ 2at,n,

where at,n = (t− 1)n−
(
t
2

)
.

Proof. We start with the upper bound. Let G ∈ Gtdt . By assumption, G has a search tree
T ∗ of height t. For i ∈ [t], let mi be the number of vertices of depth at least i. Since at
least i− 1 vertices have depth less than i, we have mi ≤ n− (i− 1). Furthermore, observe
that cost(T ∗) =

∑t
i=1mi. By theorem 11.5, we have

1
2 diam(R(G)) ≤ cost(T ∗)− n ≤

t∑
i=1

(n− (i− 1))− n = (t− 1)n−
(
t
2

)
= at,n.

For the lower bound, consider the rooted tree T on n nodes such that there are n−(t−1)
nodes at depth t and one node each at depths 1 to t− 1. Let G = cl(T ).2 Recall that T is
a search tree on G (lemma 2.24), which implies that the tree-depth of G is at most t.

It is easy to see that cost(T, 1) = tn−
(
t
2

)
, and thus G has (t− 1)n−

(
t
2

)
= at,n edges

by lemma 7.4. This already gives a lower bound for diam(R(G)) with lemma 11.2.

However, we can obtain a better lower bound by observing that G is the complete split
graph SPKt−1,n−t+1, i.e., it consists of a clique of size t− 1 (the vertices of depth < t) and
an independent set of size n− t + 1 (the vertices of depth t), such that each vertex of the
independent set is adjacent to all clique vertices. Cardinal et al. [CPVP22] showed that
diam(R(SPKp,q)) = 2pq +

(
p
2

)
if q ≥ 4p+ 1. Our claim follows by a simple calculation.

We do not expect our upper bound to be tight up to constant additive terms; it seems
more likely that the lower bound is correct.

Conjecture 11.2. For all t and large enough n, we have

Diam(Gtdt , n) = diam(R(SPKt−1,n−t+1)).

2See section 2.3 for a definition of cl(T ).
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11. Rotation distance and static search trees

Sparse graphs. The lower bound in the proof of theorem 11.13 uses very dense graphs with
diam(R(G)) ∈ Θ(|E(G)|). It is natural to ask whether the upper bound of theorem 11.13
is still tight for sparse graphs. It is certainly not tight for paths: for the n-vertex path Pn,
we have td(Pn) = ⌈log(n + 1)⌉, but diam(R(Pn)) ≤ 2n. However, it is tight already for
the very restricted class of caterpillars. This can be shown using theorem 11.10, proved in
chapter 12.

Proposition 11.17. For each n, t with n ≥ 2t, there exists a caterpillar G on n vertices
with tree-depth t such that diam(R(G)) ∈ Ω(tn).

Proof. W.l.o.g., let n be a multiple of m = 2t−1 − 1. Take a path Pm with m vertices and
attach n

m − 1 ≥ 1 leaves to each vertex on the path. By theorem 11.10, we have

diam(R(G)) ∈ Ω((n−m) logm + m) ⊇ Ω(n · t).

On the other hand, we have td(G) = td(Pm) + 1 = t.

11.2. Torso upper bound

In this section, we prove:

Theorem 11.6. Let G be a graph, let A ⊆ V (G), and let H = torsoG(A). For each v ∈ A,
let w(v) be the number of vertices connected to v in G− (A \ {v}), including v itself. Then

diam(R(G)) ≤ 2 · (StOPT(H,w)− |A|) +
∑

C∈C(G−H)

diam(R(C)).

See section 2.2.6 for the definition of torsoG( · ). Observe that with A = V (G), we obtain
theorem 11.5. The proof idea is similar to that of theorem 11.5, and relies on the following
lemma. For convenience, we denote the weight function from theorem 11.6 by wG,A in the
following.

Lemma 11.18. Let G be a graph, let A ⊆ V (G), and let H = torsoG(A). Let T be a
search tree on G and let TH be a search tree on H. Then we can transform T into a search
tree T ′ with prefix TH , using at most cost(TH , wG,A)− |A| rotations.

Central to the proof of lemma 11.18 is the procedure Transform (algorithm 11.17),
which we discuss first.

Lemma 11.19. Let T be a search tree on a graph G, and let π be a permutation of a vertex
set A ⊆ V (G). Let T ′ be the search tree produced by Transform(T, π). Then T ′ has a
topological ordering π′ with prefix π, and Transform(T, π) uses at most

∑
v∈A |V (T ′

v)|−1
rotations.

Proof. The bound on the number of rotations can be derived similarly as in the proof of
theorem 11.5: The rotations that move v ∈ A upwards entirely take place within V (T ′

v),
since v is not touched again afterwards. This means there are no more than |V (T ′

v)| such
rotations.

To show that π is a prefix of some topological ordering of T , take two nodes u, v ∈ A.
Clearly, if u precedes v in π, then v ̸≺T ′ u. Moreover, for each u ∈ A and v ∈ V (G) \A,
we have v ̸≺T ′ u. Thus, there is a topological ordering of T ′ that starts with π.
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11.2. Torso upper bound

Algorithm 11.17 Transform a search tree T according to a
permutation π.

Input: Search tree T , permutation π on a set A ⊆ V (T ).
procedure Transform(T, π)

if |V (T ) ∩A| > 1 then
r ← first element of π that is contained in T .
Rotate r to the root of T
for each child c of r do

Transform(Tc, π)

We need to show one more technical statement to prove lemma 11.18.

Lemma 11.20. Let T be a search tree on a graph G, let P be a prefix of T , and let
A = V (P ). Then |V (Ta)| ≤ wG,A(Pa) for each a ∈ A.

Proof. For each a ∈ A, let Ca be the set of components of G−A that are adjacent to a,
and let Ba = {a} ∪

⋃
C∈Ca V (C). Observe that wG,A(a) = |Ba| by definition.

We claim that V (Ta) ⊆
⋃

a′∈V (Pa)
Ba′ for each a ∈ A. This implies that

|V (Ta)| ≤
∑

a′∈V (Pa)

|Ba′ | =
∑

a′∈V (Pa)

wG,A(a′) = wG,A(Pa),

as desired.
First, observe that trivially a′ ∈ Ba′ for each a′ ∈ A. Second, consider some child

c /∈ A of a node a′ ∈ A. Since A = V (P ) induces a prefix of T , we know that V (Tc)
is disjoint from A. Since further V (Tc) is connected and adjacent to a′ (lemma 2.3
and observation 2.7), we have V (Tc) ⊆ Ba′ .

The two observations a′ ∈ Ba′ and V (Tc) ⊆ Ba′ for each child c /∈ A of a′ imply the
claim and thus the lemma.

Proof of lemma 11.18. Let π be an arbitrary topological ordering of TH . Applying
lemma 11.19 yields a search tree T ′ such that π is a prefix of a topological ordering
of T ′. By lemma 2.15, there is a prefix P of T with V (P ) = V (π) = V (TH), and π is a
topological ordering of P .

Theorem 2.21 implies that P is a search tree on torsoG(V (P )) = H. Since π is a
topological ordering of both TH and P , the two search trees are identical.

It remains to bound the number t of performed rotations. By lemma 11.19, we have

t ≤
∑
v∈A
|V (T ′

v)| − 1.

From lemma 11.20, we get |V (T ′
v)| ≤ wG,A(TH

v ). This implies that
∑

v∈A |V (T ′
v)| ≤

cost(TH , wG,A) by observation 3.11. The required bound thus follows.

To finish the proof of theorem 11.6, we need the following basic observations, which will
continue to be useful in chapter 12.
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11. Rotation distance and static search trees

Lemma 11.21. Let T be a search tree on a graph G, and let A ⊆ V (G) induce a prefix
of T . Then, each component of G−A induces a rooted subtree of T .

Proof. Let C be a component of G−A and let v = LCAT (V (C)). By definition, we have
V (C) ⊆ V (Tv). Since A induces a prefix of T and v ∈ V (C) by lemma 2.4, we have
A ∩ V (Tv) = ∅. Since A separates C from the rest of G and G[Tv] is connected, we have
V (Tv) ⊆ V (C). Overall, we have V (Tv) = V (C), so indeed C induces a rooted subtree
of T .

Lemma 11.22. Let T be a search tree on a graph G. Let S be a rooted subtree of T , let
S′ be a search tree on G[S], and let T ′ be the search tree obtained by replacing S with S′

in T . Then d(T, T ′) = d(S, S′).

Proof. Let X be a minimum-length sequence of rotations transforming S into S′. Clearly
we can apply X to T (by lemma 2.10, no nodes outside V (C) are touched), which
produces T ′.

Lemma 11.23. Let T, T ′ be search trees on a graph G with a common prefix P . Then

d(T, T ′) ≤
∑
C∈C(G−V (P ))

d(T |C , T ′|C).

Proof. Consider a component C of G − V (P ). By lemma 11.21, both S = T |C and
S′ = T ′|C are rooted subtrees of T , resp. T ′. Using lemma 11.22, we can replace S by S′ in
T with d(S, S′) rotations, yielding a search tree T ′′ with prefix P and where T ′′|C = T ′|C .

Repeating this for each component of G− V (P ) produces T ′, using the desired number
of rotations.

Proof of theorem 11.6. Let S and T be arbitrary search trees on G, and let TH be an
optimal search tree on the weighted graph (H,wG,A). We first apply lemma 11.18 to S
and T to obtain search trees S′ and T ′, both of which have TH as a prefix. The rotation
distance between S′ and T ′ can then be bounded using lemma 11.23. The overall number
of rotations is at most

2 · (cost(TH , wG,A)− |A|) +
∑
C∈C(G−A)

d(S′|C , T ′|C)

≤ 2 · (StOPT(H,wG,A)− |A|) +
∑
C∈C(G−A)

diam(R(C)),

as desired.

Observe that if G is a subdivision of H, then torsoG(V (H)) = H, and the components
of G−H are all paths. Hence, we have diam(R(C)) ≤ 2 · |V (C)| for each C ∈ C(G−H
(theorem 11.3), and we obtain theorem 11.7 as a direct consequence of theorem 11.6.

Theorem 11.7. Let H be a connected graph, and let G be a subdivision of H. Let
se ∈ N0 be the number of times the edge e ∈ E(H) was subdivided to obtain G, and let
w(v) =

∑
e∈Ev

se for each v ∈ V (H), where Ev is the set of edges incident to v. Then

diam(R(G)) ≤ 2 · StOPT(H,w + 1) + 2|V (G)| − 4|V (H)|.
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12. Rotation distance and dynamic search
trees

In this chapter, we connect the dynamic search tree model with the diameter of rotation
graphs to prove strong upper and lower bounds on the diameter of tree associahedra. Our
main result is the following.

Theorem 11.9. Given a tree G on n vertices with path-width k, we can approximate
diam(R(G)) up to a factor of four and an additive term of O(kn), in time O(kn2).

Since we always have diam(R(G)) ∈ Ω(n) (lemma 11.2), this yields a constant-factor
approximation for trees of bounded path-width.

The algorithm of theorem 11.9 is exceedingly simple. The interesting part are the
structural observations proving its quality of approximation. We are mainly interested
in finding a “formula” for the diameter of tree associahedra – but since the structure of
trees (even with bounded path-width) is likely too complicated for any sort of closed-form
expression, a simple algorithm is the next best thing.

Note that trees with bounded path-width k are (approximately) characterized by not
containing subdivisions of (unrootings of) binary trees of height ≈ k (see section 12.5.2).
These graphs seem to be the main obstacle towards a full approximate characterization of
the diameter of tree associahedra. The author conjectures that theorem 11.7 is tight for
these graphs, but has been unable to prove any non-trivial lower bound.

Conjecture 12.1. Let H be a binary tree, and let G be a subdivision of H. Let
se ∈ N0 be the number of times the edge e ∈ E(H) was subdivided to obtain G, and let
w(v) =

∑
e∈Ev

se for each v ∈ V (H), where Ev is the set of edges incident to v. Then

diam(R(G)) ∈ Θ(StOPT(H,w + 1) + |V (G)|).

Caterpillar associahedra and dynamic search trees. We illustrate the connection between
rotation distance and the dynamic search tree model with the following example. Consider
a caterpillar G, i.e., a tree consisting of a path P (the spine) and a collection of leaves
attached directly to the spine (the legs). See figure 12.1 for an example.

s1 s2 s3 s4 s5

ℓ1,1 ℓ1,2 ℓ3,1 ℓ4,1 ℓ5,1 ℓ5,2

Figure 12.1.: A caterpillar with five spine vertices and seven leg vertices.
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12. Rotation distance and dynamic search trees

We start by making some simple observations about search trees on G. First, since P is
a path, the projection G|P is a binary search tree, called the spine search tree. Second, let
ℓ be a leg node and let s be the adjacent spine vertex in G. Then ℓ has at most one child
in the search tree (since ℓ is a leaf in G). Further, if ℓ has descendants, then s must be
among them. If it does not have descendants, it must be a child of s.

We can see from these observations that every search tree T on G has roughly the
following form. Start with some binary search tree S on P . Then put each leg node in
one of three places: Either make it the child of its adjacent spine node; or put it on some
edge in S, to form a degenerate subtree with other leg nodes there; or put it above S to
form a degenerate prefix of T with other leg nodes. Figure 12.2 shows three examples.

We study the rotation distance between the following two search trees on G. First, a
search tree T where all legs are above the spine search tree. Second, a search tree T ′ where
all leg nodes are leaves. See figure 12.2 (center, right) for illustrations.

Consider the task of transforming T into T ′, with the following restrictions. First,
rotations between leg nodes are not allowed. Second, there can be at most one leg node
that has both spine ancestors and spine descendants (i.e., that is “on” a spine search tree
edge). All other leg nodes are at the top or bottom.

Let π be the sequence of leg nodes in T , read from bottom to top, and let σ be
the sequence obtained by replacing each leg node in π with its adjacent spine node.
Observe that transforming T into T ′ with the mentioned restrictions is almost exactly
the same as accessing σ in the dynamic search tree model. Indeed, we can alternate
between performing some rotations in the spine search tree and moving the next leg
node to the bottom (i.e., below its adjacent spine node). See figure 12.3. Thus, we have
d(T, T ′) ≤ DynOPT(H,σ) +O(n).1

Unfortunately, this observation alone does not let us bound diam(R(G)). Lower bounds
on DynOPT(H,σ) are not guaranteed to hold for d(T, T ′), and T, T ′ may not be a
maximum-distance pair of search trees.

1The O(n) term comes from the fact that in the dynamic search tree model, we are allowed to choose
the initial search tree and the final search tree is arbitrary, but here, both are given.

s2

s1 s4

s3 s5

ℓ3,1

ℓ1,1
ℓ1,2

ℓ5,1
ℓ4,1

ℓ5,2

s2

s1 s4

s3 s5

ℓ5,1
ℓ3,1
ℓ4,1
ℓ1,2
ℓ5,2
ℓ1,1

s2

s1 s4

s3 s5
ℓ1,1 ℓ1,2

ℓ5,1 ℓ5,2ℓ3,1

ℓ4,1

Figure 12.2.: Three search trees on the caterpillar in figure 12.1.
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s2

s1 s4

s3 s5
ℓ4,1ℓ1,2

ℓ5,2

ℓ1,1

ℓ5,1
ℓ3,1

s2

s1 s4

s3 s5
ℓ4,1ℓ1,2

ℓ5,2

ℓ1,1

ℓ5,1

ℓ3,1
s2

s1 s4

s3 s5
ℓ4,1ℓ1,2

ℓ5,2

ℓ1,1

ℓ5,1

ℓ3,1

s2

s1 s4

s3 s5
ℓ4,1ℓ1,2

ℓ5,2

ℓ1,1

ℓ5,1

ℓ3,1

Figure 12.3.: Rotating a leg node downwards simulates a search. See figure 12.1 for the
underlying caterpillar graph.

However, the general idea of using dynamic search tree theory is still useful. On one
hand, we show that a well-known dynamic BST lower bound due to Wilber [Wil89], the
interleave lower bound, still holds for d(T, T ′), and thus for diam(R(G)). On the other
hand, we show that diam(R(G)) ∈ O(d(T, T ′) + n), for a worst-possible such pair T, T ′.
This gives us bounds that are tight up to a constant factor. Choosing a worst-possible pair
T, T ′ involves choosing π (and thus σ) such that DynOPT(H,σ) ≈ StOPT(H,w), where
the weight w(v) of each spine node is the number of adjacent leaves, i.e., the number of
times v appears in σ.

The author proved these bounds in a recent paper [Ber22] that is the base of this chapter.
We expand the result considerably. Instead of single leg nodes, we allow whole connected
subgraphs that are attached to a single spine vertex. The following theorem captures the
upper and lower bound.

Theorem 12.1. Let G be a connected graph and let H be a path in G such that each
component of G−H is 1-cut and convex in G. For each vertex v ∈ V (H), let Cv ⊆ C(G−H)
be the set of components of G−H that are adjacent to v, and let w(v) =

∑
C∈Cv |V (C)|.

Then

diam(R(G)) ≥ 1
2 StOPT(H,w)− 3

2n +
∑
C∈C(G−H)

diam(R(C)), and

diam(R(G)) ≤ 2 StOPT(H,w) + 10n +
∑
C∈C(G−H)

diam(R(C)).

Repeatedly applying theorem 12.1 gives the algorithm of theorem 11.9. The proof
involves a graph invariant called the Strahler number, and its connection to path-width
(see section 12.5).

A single application of theorem 12.1 yields theorem 11.10, the bound for caterpillar
graphs. Indeed, if H is the spine of a caterpillar G, then each C ∈ C(G−H) consists of a
single vertex, hance diam(R(C)) = 0.

It turns out that the lower bound of theorem 12.1 can be generalized by using more
general subgraphs as spines (see section 12.2 for the precise statement). Most of the
observations above still hold, just that instead of using dynamic BSTs, we need use
dynamic STTs, which makes some proofs more technically difficult. The upper bound
does not work in this setting.
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12. Rotation distance and dynamic search trees

Still, the generalized lower bound can be used in tandem with the simple static optimum
upper bound from the previous chapter (theorem 11.5) to prove the following result
(already mentioned in chapter 11).

Theorem 11.8. Let G be a tree with no vertices of degree two. Then

diam(R(G)) ∈ Θ(StOPT(G,1)).

Organization of this chapter. Section 12.1 introduces definitions and observations
that are useful throughout the chapter. In section 12.2, we prove the lower bound of
theorem 12.1, using a generalization of the interleave bound to STGs. In section 12.3, we
prove theorem 11.8 as a relatively simple application of the lower bound. In section 12.4,
we prove the upper bound of theorem 12.1, and in section 12.5, we prove our main
theorem 11.9, using theorem 12.1.

Finally, in section 12.6, we show that our generalization of the interleave bound also
applies to the dynamic STG model. We then use that lower bound to show that the static
finger bound is unachievable in the general STT setting (see section 8.1).

12.1. Preliminaries

Spines, joints, and limbs. Let G be a connected graph and H be a connected subgraph
of G. We call H a spine of G if every component C ∈ C(G−H) is 1-cut and convex in G.spine

Observe that the spine itself is also convex. We call the components of G−H limbs.
limb

With a fixed spine H, vertices of H are called spine vertices, and all other vertices are
called limb vertices. Similarly, nodes of search trees on G or subgraphs of G are called
spine nodes and limb nodes accordingly. Given a search tree T on G, the search tree T |H
is called the spine search tree of T . For each limb vertex ℓ, the limb C containing ℓ is thespine search

tree
limb of ℓ. The unique vertex v ∈ V (H) that is adjacent to C is called the joint of ℓ (or C).

joint See figure 12.4 for an illustration.

Observation 12.2. Every connected subgraph of a tree G is a spine of G.

Let H be a spine of G and let π ∈ V (G −H)m be a sequence of limb vertices. Then
σG/H(π) denotes the sequence obtained from π by replacing each vertex v with its joint.σG/H(π)

Let wG/H : V (H)→ N0 be the weight function on H that indicates the number of limb
wG/H

vertices in G whose joint is a given vertex. In other words, if Cv is the set of limbs adjacent
to v, then wG/H(v) =

∑
C∈Cv |V (C)|. See again figure 12.4. Note that the weight function

w in theorem 12.1 is precisely wG/H .

Rotations in prefixes and suffixes. Our upper bounds sometimes involve “isolating” a
set of vertices into a prefix or suffix of the search tree to handle them separately (cf.
lemma 11.23). The following lemma will be useful.

Lemma 12.3. Let T be a search tree on G and let U ⊆ V (G) induce a prefix or suffix of
T . After a rotation between two nodes in U , the set U still induces a prefix (resp., suffix)
of T .
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6

5

Figure 12.4.: A graph with spine (red) and three limbs (blue). The small numbers indicate
the values of wG/H .

Proof. By lemma 2.10, no node outside U can gain or lose descendants from the rotation.
If U induces a prefix, then no node outside U is an ancestor of a node in U in T , and the
rotation does not change that.

Now assume U induces a suffix, and the rotated nodes are u, u′. By assumption, we
have V (Tu), V (Tu′) ⊆ U . By lemma 2.10, the same is true after the rotation, and for all
other nodes, the set of descendants does not change.

Projected rotation distance. Let T, T ′ be search trees on a graph G, and let U ⊆ V (G).
Let the U -projected rotation distance dU (T, T ′) between T and T ′ be the minimum number U -projected

rot. distance

dU (T, T ′)

of rotations between two nodes in U in a sequence of rotations transforming T to T ′.

Note that we consider arbitrary sequences of rotations here – we just do not count
rotations that involve nodes outside of U . In particular, we have dU (T, T ′) = 0 if T can
be transformed into T ′ without any rotations between nodes in U .

Observe that always d(T, T ′) ≥ dU (T, T ′) + dV (G)\U (T, T ′), but that may be a weak
lower bound. It turns out that the projected rotation distance is strongly related to the
rotation distance between projections, in the following way.

Lemma 12.4. Let T, T ′ be search trees on a graph G, and let A ⊆ V (G) induce a convex
subgraph. Then dA(T, T ′) ≥ d(T |A, T ′|A).

Proof. Let R be a sequence of rotations transforming T into T ′. Let RA be the restriction
of R to rotations between nodes in A. By lemma 2.20, applying RA to T |A is possible and
yields T ′|A. Thus d(T |A, T ′|A) ≤ dA(T, T ′).

It can be seen that lemma 12.4 holds with equality; we omit the proof. The following is
an easy consequence.

Corollary 12.5. Let T, T ′ be search trees on a graph G, and let A ⊆ V (G) such that each
component of G[A] is a convex subgraph of G. Then

dA(T, T ′) ≥
∑
C∈C(G[A])

d(T |C , T ′|C).

Proof. We clearly have dA(T, T ′) ≥
∑

C∈C(G[A]) dV (C)(T, T
′), and lemma 12.4 implies

dV (C)(T, T
′) ≥ d(T |C , T ′|C).

179



12. Rotation distance and dynamic search trees

12.2. Lower bound

In this section, we show the following lower bound.

Theorem 12.6. Let G be a connected graph with n vertices and H be a spine of G that is
a tree. Then

diam(R(G)) ≥ 1
2 StOPT(H,wG/H)− 3

2n +
∑
C∈C(G−H)

diam(R(C))

Observe that in theorem 12.6, the spine may be an arbitrary tree, not just a path; the
lower bound of theorem 12.1 follows as a special case. As we will see later, the restriction
of H to a tree is necessary.

The proof is based on a technique involving the so-called alternation number, introduced
by Cardinal, Langerman, and Pérez-Lantero [CLPL18] in their Ω(n log n) lower bound for
the class of trees (theorem 11.11). We roughly follow their proof, which corresponds to the
special case where the underlying graph is a perfect binary tree. Extending the proof to
arbitrary graphs with tree spines makes it considerably more complicated. In particular,
it involves the interleave lower bound, one of the two famous dynamic BST lower bounds
due to Wilber [Wil89] (see section 8.1). We use a generalization of the interleave lower
bound for the rotation distance between certain search trees.

We start by formalizing the alternation number technique [CLPL18, CPVP22] in sec-
tion 12.2.1. Based on this technique, we prove the interleave lower bound for rotation
distance in section 12.2.2. This allows us to bound the rotation distance between arbitrary
search trees. In section 12.2.3, we determine search trees that maximize the interleave
lower bound, thus providing a good lower bound for the diameter. Finally, in section 12.2.4,
we put everything together to prove theorem 12.6.

As we have sketched in the beginning of the chapter, we can simulate a dynamic search
tree access as a series of rotations; this allows us to show that the interleave lower bound
also holds in the dynamic STG model in section 12.6 (although it will turn out to be
useless in very dense graphs). The interleave lower bound was previously generalized to
the STT model [BCI+20] with a different proof.

12.2.1. Rotation distance and alternation number

We start with some definitions. Let σ be a sequence over a set A, and let X be a partition
of A. We define alt(σ,X ) to be the number of adjacent pairs (x, y) in σ such that x and yalt(σ,X )

are in different parts of the partition X .

Let T be a search tree on a graph G and let X be a partition of V (G). Define the
alternation number of T as alt(T,X ) = maxv∈V (T ) alt(πT,v,X ), where πT,v is the root

alternation
number
alt(T,X ) path of v in T . The partition X can be seen as a coloring of V (G); see figure 12.5 for an

example. We now relate alternation number and rotation distance.

Lemma 12.7 (Cardinal, Pournin, and Valencia-Pabon [CPVP22]). Let T be search tree on
a graph G and let T ′ be the search tree obtained from T by rotating two nodes u, v. Let X be
a partition of V (G). If u and v belong to the same part of X , then alt(T,X ) = alt(T ′,X ).
Otherwise, |alt(T,X )− alt(T ′,X )| ≤ 2.
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Figure 12.5.: A graph G with a partition X = {X1, X2} (left), and a search tree T on G
(right). The numbers next to the the search tree nodes indicate the alternation
number alt(πT,v,X ) of that node. We have alt(T,X ) = 2.

Proof. Consider a node x. The root path of x before and after the rotation can only differ
if it contains u or v (or both), and only in one of the following ways:

• One of u and v is inserted, such that u, v are neighbors in T ′.

• One u and v is deleted, and u, v are neighbors in T .

• u and v are swapped, and are neighbors (in both search trees).

Our claim easily follows in each case.

Lemma 12.8. Let T , T ′ be search trees on a connected graph G, and let X be a partition
of V (G) such that G[X] is convex for each X ∈ X . Then

d(T, T ′) ≥ 1
2 |alt(T,X )− alt(T ′,X )|+

∑
X∈X

d(T |X , T ′|X).

Proof. Let R be a sequence of rotations that transforms T into T ′. We first consider
rotations between nodes of two different parts of X . By lemma 12.7, there must be at
least 1

2 |alt(T,X )− alt(T ′,X )| such rotations.

Now consider rotations between nodes within some part X ∈ X . There must be at least
dX(T, T ′) such rotations, and we have dX(T, T ′) ≥ d(T |X , T ′|X) by lemma 12.4. Summing
up everything yields the desired lower bound.

Remark. The previous two lemmas can be strengthened by replacing the alternation
number alt(T,X ) by the number of bichromatic edges in T , i.e., the number of edges
between a parent from one part of X and a child from another. This only works if the
underlying graph is a tree; otherwise, a single rotation could create or destroy an arbitrary
number of bichromatic edges. It is not clear if we can prove stronger bounds with counting
bichromatic edges; we use the alternation number here, since it works for general graphs.

12.2.2. The interleave lower bound

In this section, we introduce the interleave lower bound and show how it applies to
rotation distance. Let S be an arbitrary rooted tree and let σ be a sequence of nodes in
V (G) (possibly with repetition). Let v ∈ V (S) and K be the set of children of v in S.
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12. Rotation distance and dynamic search trees

Then we define λ(S, v, σ) = alt(σ|V (Sv),X ), where X = {{v}} ∪ {V (Sc) | c ∈ K}. Letλ(S, v, σ)

Λ(S, σ) =
∑

v∈V (S) λ(S, v, σ). We call Λ(S, σ) the interleave bound. See below for an
Λ(S, σ)

interleave
bound

example calculation.

b

a e

c d

fS

σ = a b c d e a
λ(S, b, σ) = alt(a b c d e a, {{b}, {a}, {c, d, e, f}}) = 3
λ(S, e, σ) = alt(c d e, {{e}, {c}, {d, f}}) = 2
λ(S, d, σ) = alt(d, {{d}, {f}}) = 0
λ(S, a, σ) = λ(S, c, σ) = λ(S, f, σ) = 0
Λ(S, σ) = 3 + 2 = 5

In the remainder of the section, we prove:

Lemma 12.9. Let G be a connected graph on n vertices and let H be a spine of G. Let S
be a search tree on H and let T, T ′ be search trees on G such that S is a suffix of T and a
prefix of T ′. Suppose that T |G−H is a degenerate search tree, and let π be a topological
ordering of T |G−H . Then

d(T, T ′) ≥ 1
2Λ(S, σG/H(π)) +

∑
C∈C(G−H)

d(T |C , T ′|C).

Observe that lemma 12.9 applies to the process discussed in the beginning of the chapter
(pages 175 to 177): The search trees T and T ′ correspond to the “extremal” search trees
in figure 12.2 (center, right).

We prove lemma 12.9 in multiple steps. First, we define a partition X of V (G) so that
we can apply lemma 12.8.

Fix H, G, S, T , T ′, and π as in the lemma. Let r = root(S) and let Xr ⊆ V (G) consist
of r and all limb vertices with joint r, i.e., all vertices in a components C ∈ C(G −H)
such that C is adjacent to r. For each component D of H − r, let XD ⊆ V (G) consist of
V (D) and all limb vertices whose joint is contained in V (D). Observe that XD induces a
connected component of G− r. See figure 12.6 for an illustration.

Let X = {Xr} ∪ {XD | D ∈ C(H − r)}, and observe that X is a partition of V (G).
Further observe that there are no edges between XD and XD′ for D,D′ ∈ C(H − r)}, and
there is precisely one edge between Xr and each XD. Thus, all X ∈ X are convex and we
can apply lemma 12.8 to obtain

d(T, T ′) ≥ 1
2 |alt(T,X )− alt(T ′,X )|+

∑
X∈X

d(T |X , T ′|X). (12.1)

We first consider the quantity |alt(T,X )−alt(T ′,X )|. In the following, let σ = σG/H(π).
Recall that σ is obtained from π by mapping each limb vertex to its joint. Since each limb
vertex belongs to the same part of X as its joint, we have alt(σ,X ) = alt(π,X ).

Claim 12.10. alt(T,X ) ≥ λ(S, r, σ), and alt(T,X ) ≥ λ(S, r, σ) + 1 if Xr = {r}.

Proof. By definition, we have λ(S, r, σ) = alt(σ,Π), where Π is the partition of V (S) =
V (H) into {r} and the components of H − r. Note that Π is precisely the refinement of
X to V (H) ⊇ V (σ), so we have λ(S, r, σ) = alt(σ,Π) = alt(σ,X ) = alt(π,X ).
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r

Xr

D

XD

H

(a) Underlying graph G

r

D

(b) Spine search tree S

Figure 12.6.: Example of G, H, and S in the proof of lemma 12.9.

Now recall that π is a topological ordering of the degenerate search tree T |G−H . Clearly,
some root path of T contains π as a subsequence, so alt(T,X ) ≥ alt(π,X ).

For the case Xr = {r}, we make the following additional observations. Since S, a search
tree on H, is a suffix of T , we know that T |G−H must be a prefix of T . Moreover, the
child of the lowest node of T |G−H is r, which gives us one additional alternation (since the
lowest node of T |G−H is clearly not in Xr). Thus, we have alt(T,X ) ≥ λ(S, r, σ) + 1.

Claim 12.11. alt(T ′,X ) ≤ 1.

Proof. Since S is a prefix of T ′, we have root(T ′) = r. The child subtrees of r in T ′ are
the components of G− r, consisting of

• G[XD] for each D ∈ C(H − r), and

• the components of G−H that are adjacent to r, all of which are contained in Xr.

Thus, the only alternations in T ′ are between r and some of its children, hence
alt(T ′,X ) ≤ 1.

Claims 12.10 and 12.11 together imply that

|alt(T,X )− alt(T ′,X )| ≥

{
λ(S, r, σ), if Xr = {r},
λ(S, r, σ)− 1, otherwise.

(12.2)

We now move on to the second part of eq. (12.1) and bound d(T |X , T ′|X) for each
X ∈ X . We start with X = Xr.

Claim 12.12. If X := Xr = {r}, then d(T |X , T ′|X) = 0. Otherwise,

d(T |X , T ′|X) ≥ 1 +
∑
C∈G[X]−r

d(T |C , T ′|C).

Proof. If X = {r}, then T |X = T ′|X , so the first part is trivially true. Otherwise, there
must be at least one rotation between r and some other node in X (since r is not the root
of T |X , but is the root of T ′|X). Thus, we have

d(T |X , T ′|X) ≥ 1 + dX\{r}(T |X , T ′|X).
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12. Rotation distance and dynamic search trees

The claim follows by applying corollary 12.5. (Observe that X \ {r} induces a collection
of limbs, which are all convex by definition.)

We now turn to the parts X ∈ X \ {Xr}. Here, we use induction.

Claim 12.13. Let c be a child of r in S, and let D = G[Sc]. Then

d(T |XD
, T ′|XD

) ≥ 1
2Λ(Sc, σ|D) +

∑
C∈C(G[XD]−D)

d(T |C , T ′|C).

Proof. We want to inductively apply lemma 12.9 with G ← G[XD], H ← D, S ← S|D,
T ← T |XD

, T ′ ← T ′|XD
, and π ← π|XD

. First, we need to show that the necessary
conditions hold.

Indeed, observe that S|D is a suffix of T |XD
and a prefix of T ′|XD

, since S is a suffix of
T and a prefix of T ′. Moreover, clearly (T |XD

)|XD\V (D) = T |XD\V (D) is degenerate, since
T |G−H is degenerate and XD \ V (D) ⊆ V (G−H). Similarly, we can show that π|XD

is a
topological ordering of T |XD\V (D). Finally, D is clearly a spine of G[XD].

Applying lemma 12.9 yields the following. We write X = XD for brevity.

d(T |X , T ′|X) ≥ 1
2Λ(S|D, σG[X]/D(π|X)) +

∑
C∈C(G[X]−D)

d(T |C , T ′|C).

Now only some small observations remain. First, observe that Sc = S|D by definition.
Second, observe that σG[X]/D(π|X)) = σG/H(π|X); this is because for each x ∈ X \ V (D),
the joint of x in G[X] w.r.t. spine D is the same as the joint of x in G w.r.t. spine H, hence
σG[X]/D and σG/H map x to the same vertex. Third, we have σG/H(π|X) = σG/H(π)|D
for similar reasons, and recall that σ = σG/H(π). The claimed inequality follows.

We are now ready to finish the proof. First, by combining eq. (12.2) with claim 12.12
and separately treating the cases Xr = {r} and Xr ⊋ {r}, we obtain

1
2 |alt(T,X )− alt(T ′,X )|+ d(T |Xr , T

′|Xr) ≥ 1
2λ(S, r, σ) +

∑
C∈G[Xr]−r

d(T |C , T ′|C). (12.3)

Second, if K is the set of children of r in S, the following holds by definition of Λ.

Λ(S, σ) = λ(S, r, σ) +
∑
c∈K

Λ(Sc, σ|V (Sc)). (12.4)

Overall, we have

d(T, T ′) ≥ 1
2 |alt(T,X )− alt(T ′,X )|+

∑
X∈X

d(T |X , T ′|X).

≥ 1
2λ(S, r, σ) +

∑
C∈G[Xr]−r

d(T |C , T ′|C) +
∑
X∈X\{Xr}

d(T |X , T ′|X) by eq. (12.3)

≥ 1
2Λ(S, σ) +

∑
C∈G[Xr]−r

d(T |C , T ′|C) +
∑
D∈C(H−r)
C∈C(G[XD]−D)

d(T |C , T ′|C) by claim 12.13, eq. (12.4)

= 1
2Λ(S, σ) +

∑
C∈G−H

d(T |C).

This concludes the proof of lemma 12.9.
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12.2. Lower bound

12.2.3. Maximum interleave sequences

In this section, we show how to find search trees S and sequences σ that maximize the
lower bound in lemma 12.9. We start with a way of interleaving sequences such that the
alternation number is maximized.

The maximum interleave sequence of sequences σ1, σ2, . . . , σk is constructed as follows.
maximum
interleave
sequenceStart with an empty sequence. In each step, we pick the longest sequence that we did not

choose in the last step (break ties by picking the sequence with lowest index), remove its
first element, append that element to our result, and continue. At some point, we may
just have one sequence σ′

i left from which we just picked an element. In that case, append
the whole remaining sequence σ′

i.

Lemma 12.14. Let σ1, σ2, . . . , σk be sequences over disjoint sets A1, A2, . . . , Ak, and let
µ be their maximum interleave sequence. Let mi = |σi|, let m = |µ| =

∑k
i=1mi. Then

alt(µ, {A1, A2, . . . , Ak}) ≥ min

(
m− 1, 2 · (m−max

i∈[k]
mi)

)
.

Proof. We write A = {A1, A2, . . . , Ak} for convenience.
Suppose first that each step succeeds in the sense that we can always pick an element

from a sequence that was not used in the previous step. Then any two adjacent elements
come from different sequences, so we have alt(µ,A) = m− 1 and are done.

Now suppose that after some step t < m, only one sequence, say the i-th, has k = m− t
elements left. Since all previous steps where successful, this means that alt(µ,A) = t− 1.

We denote by σs
j the remainder of the j-th sequence σj after step s. We claim that

after every step s ≤ t, we have |σs
i | > |σs

j | for all j ≠ i. Suppose this is true. Then the
construction process picks an element of σi whenever possible; this includes the first step,
each odd-numbered step afterwards, and in particular step t. Thus t is odd and we have

mi = |σi| = k + ⌈ t2⌉ = (m− t) + t+1
2 = m− t−1

2 .

This implies that 2(m−mi) = t− 1 = alt(µ,A), as desired.
We now prove the claim by induction on the step number s. We actually show the

following more specific fact: For all j ̸= i, we have |σs
i | ≥ |σs

j | + 1 if s is odd and
|σs

i | ≥ |σs
j |+ 2 if s is even.

If s = t, then s is odd, and we have |σs
i | = k ≥ 1 and |σs

j | = 0 for all j ̸= s.
Now suppose the claim holds for s. We prove the claim for s− 1. If s is odd, then step

s removes an element from σi, thus |σs−1
i | = |σs

i |+ 1 ≥ |σs
j |+ 2 = |σs−1

j |+ 2 for all j ̸= i.
If s is even, then step s removes an element from some σj with j ̸= i, but we still have
|σs−1

i | = |σs
i | ≥ |σs

j |+ 2 ≥ |σs−1
j |+ 1 for all j ̸= i.

We now apply lemma 12.14 to maximize the alternation bound. Curiously, the centroid
tree (see chapter 4) makes another appearance here.

For convenience, define λ′(S, v, σ) as λ(S, v, σ) plus the number of occurrences of v in σ, λ′(S, v, σ)

and let Λ′(S, σ) =
∑

v∈V (S) λ
′(S, v, σ) = Λ(S, σ) + |σ|.

Λ′(S, σ)

Lemma 12.15. Let (G,w) be a weighted tree with only integer weights and let m =∑
v∈V (G)w(v). Let T be a centroid tree of (G,w). Then there is a sequence σ of length m

where each v ∈ V (G) occurs precisely w(v) times, such that Λ′(T, σ) ≥ cost(T,w)−|V (G)|.
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12. Rotation distance and dynamic search trees

Proof. We recursively construct a sequence σv on V (Tv) for each v ∈ V (T ), and show that
Λ′(Tv, σv) ≥ cost(Tv, w)− |V (Tv)|. In the end, setting σ = σroot(T ) yields our claim.

Let v ∈ V (T ). If v is a leaf in T , then we let σv be the sequence consisting of w(v)
times v. Clearly, we have Λ′(Tv, σv) = λ′(T, v, σv) = |σv| = w(v) = cost(Tv, w).

Otherwise, let K be the set of children of v. Let σ′
v be the sequence consisting of

w(v) times v, and let σv be the maximum interleave sequence of σ′
v and all σc for c ∈ K.

Note that, since T is a centroid tree, we have |σc| = w(Tc) ≤ 1
2w(Tv). We now apply

lemma 12.14 and distinguish two cases. First, if w(v) ≤ 1
2w(Tv), then

λ(T, v, σv) ≥ min(w(Tv)− 1, 2(w(Tv)− 1
2w(Tv))) = w(Tv)− 1.

If instead w(v) > 1
2w(Tv), then

λ(T, v, σv) ≥ min(w(Tv)− 1, 2(w(Tv)− w(v))) ≥ w(Tv)− w(v)− 1.

In both cases, we have λ′(T, v, σv = λ(T, v, σv) + w(v) ≥ w(Tv)− 1.
Note that for each c ∈ K, we have σc = σv|V (Tc), and thus Λ(Tc, σv) = Λ(Tc, σc). By

induction, we have

Λ′(T, v, σv) = λ′(T, v, σv) +
∑
c∈K

Λ′(Tc, σv)

≥ w(Tv)− 1 +
∑
c∈K

cost(Tc, w)− |V (Tc)| = cost(Tv, w)− |V (Tv)|.

This concludes the proof.

12.2.4. Completing the lower bound

In this section, we prove:

Theorem 12.6. Let G be a connected graph with n vertices and H be a spine of G that is
a tree. Then

diam(R(G)) ≥ 1
2 StOPT(H,wG/H)− 3

2n +
∑
C∈C(G−H)

diam(R(C))

Fix a connected graph G with spine H. To prove the lower bound, we construct two
search trees T and T ′ akin to the two “extremal” search trees in figure 12.2 (center, right).
The limb vertices V (G−H) form a degenerate prefix of T and a suffix of T ′. The spine
search tree of both T and T ′ will be the centroid tree of (H,wG/H) and the order of
the vertices in the degenerate prefix of T are chosen with lemma 12.15. We then use
lemma 12.9 to lower bound the distance between T and T ′.

The construction of T in particular is more complicated than in the case where G is
a caterpillar. The main reason is that the degenerate prefix no longer simply consists of
leaves of G.

We now proceed with the construction of the two search trees. Fix G and its spine H for
the remainder of the section, and let n = |V (G)|, k = |V (H)|, and m = n−k = |V (G−H)|.
Figure 12.7 shows an example for both constructions.
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Figure 12.7.: Construction of search trees T and T ′.

The first search tree. Let the following be given:

• A search tree S on H.

• A sequence σ of length m such that each v ∈ V (H) occurs wG/H times in σ.

• For each limb C ∈ C(G − H), a degenerate search tree TC on C, such that the
unique leaf of TC is adjacent to V (H) in G.

For each limb C ∈ C(G−H), let πC be the unique topological ordering of TC , and let vC
be the joint of C. Obtain a permutation π of V (G) as follows. For each limb C and each
i ∈ [|V (C)|], we replace the i-th occurrence of vC in σ with the i-th element in πC . Let
the permutation τ be obtained by concatenating π with an arbitrary topological ordering
of S, and define A(S, σ, (TC)C∈C(G−H)) as the search tree with topological ordering τ . A( · , · , · )

We now show some facts about T in preparation of applying lemma 12.9. Let T =
A(S, σ, (TC)C∈C(G−H)) in the following.

Observation 12.16. S is a suffix of T .

Observation 12.17. For each limb C ∈ C(G−H), we have T |C = TC .

Lemma 12.18. V (G−H) induces a degenerate prefix P of T .

Proof. Since V (G−H) induces a prefix of the topological ordering τ of T by construction,
it also induces a prefix P of T (lemma 2.15). It remains to show that P is degenerate.

Suppose P is not degenerate. Then there must be two nodes u, v ∈ V (P ) that are
incomparable under ≺P (and thus under ≺T ). First suppose that u, v are contained in
the same limb C ∈ C(G−H). Since P ′ = P |C is degenerate, we have u ≺P ′ v or v ≺P ′ u.
But then also u ≺P v or v ≺P u by lemma 2.18, contradicting our assumption.

Now suppose that u ∈ V (Cu) and v ∈ V (Cv) for two distinct limbs Cu, Cv ∈ C(G−H).
Without loss of generality, assume that u is the unique leaf of T |Cu and v is the unique
leaf of T |Cv . This means that u and v are both adjacent to V (H) in G by assumption.

Recall that V (G − H) induces a prefix of the topological ordering τ . Since u, v are
incomparable under ≺T , corollary 2.13 implies that there is a vertex set A that separates
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12. Rotation distance and dynamic search trees

u from v in G and precedes both in τ . However, since u and v are both adjacent to H, we
know that A contains at least one vertex from H. This is a contradiction, since then A
cannot precede u and v in τ .

Lemma 12.19. Let P be the degenerate prefix of T induced by V (G−H), and let π be
the unique topological ordering of T . Then σ = σG/H(π).

Proof. The permutation π in the construction is the topological ordering of P , and it is
easy to see that σ = σG/H(π).

The second search tree. Let the following be given:

• A search tree S on H.

• For each limb C ∈ C(G−H), an arbitrary search tree RC on C.

Intuitively, we construct the second search tree as follows: Take S as a prefix. Then
each component C corresponds to its own rooted subtree, which we set to RC . A formal
construction follows.

For each limb C, let ρC be a topological ordering of RC . Let τ ′ be the concatenation of
some topological ordering of S with all ρC (the permutations ρC can be appended in any
order). Finally, let B(S, (RC)C∈C(G−H)) be the search tree with topological ordering τ ′.

Let T ′ = B(S, (RC)C∈C(G−H)) in the following.

Observation 12.20. S is a prefix of T ′.

Observation 12.21. For each limb C ∈ C(G−H), we have T ′|C = RC .

More about degenerate search trees. The astute reader may have noticed that when
applying lemma 12.9 to T, T ′, the lower bound will contain the distance d(TC , RC) for
each limb C. Hence, we want to maximize this distance. We cannot just take two search
trees, since TC must be degenerate and its leaf cannot be freely chosen. We now show
that this restriction does note strongly limit us.

Lemma 12.22. Let G be a connected graph on n vertices. For each search tree T on G and
each vertex v ∈ V (G), there is a degenerate search tree T ′ on G such that d(T, T ′) ≤ n− 1
and v is the unique leaf of T ′.

Proof. We transform T into T ′ as follows. If |PathT (v)| = n, then we are done. Otherwise,
there are two cases. If v is not a leaf node, rotate some child c of v with v. This increases
|PathT (v)| by one. Repeat until v is a leaf.

If v is a leaf node and |PathT (v)| < n, then there must be a node u with u /∈ PathT (v)
and parentT (u) ∈ PathT (v). In that case, rotate u with its parent and repeat. Note that
this rotation also increases |PathT (v)| by one. Thus, we are done after at most n − 1
steps.
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The proof. We now finally prove:

Theorem 12.6. Let G be a connected graph with n vertices and H be a spine of G that is
a tree. Then

diam(R(G)) ≥ 1
2 StOPT(H,wG/H)− 3

2n +
∑
C∈C(G−H)

diam(R(C))

Proof. Let k = |V (H)| and m = |V (G−H)| = n− k. For each limb C ∈ C(G−H), let
TC be a degenerate search tree on C such that the leaf of TC is adjacent to V (H) in G,
and let RC be an arbitrary search tree on C. Choose TC and RC such that d(TC , RC) is
maximized, subject to the restrictions on TC . By lemma 12.22 and the triangle inequality,
we have

d(TC , RC) ≥ diam(R(C))− |C|+ 1. (12.5)

Let S be a centroid tree on (H,wG/H). Since H is a tree, S exists. Let σ be the sequence
obtained from lemma 12.15. Then V (σ) ⊆ V (H), each vertex v ∈ V (H) occurs precisely
wG/H(v) times in σ, and

Λ′(S, σ) ≥ cost(S,wG/H)− |V (H)| ≥ StOPT(H,wG/H)− k. (12.6)

Now define T = A(S, σ, (TC)C∈C(G−H)) and T ′ = B(S, (RC)C∈C(G−H)). By observa-
tions 12.16 and 12.20 and lemmas 12.18 and 12.19, we can apply lemma 12.9 to T and T ′

and obtain:

d(T, T ′) ≥ 1
2Λ(S, σ) +

∑
C∈C(G−H)

d(T |C , T ′|C)

= 1
2Λ(S, σ) +

∑
C∈C(G−H)

d(TC , RC) by observations 12.17 and 12.21

≥ 1
2Λ(S, σ) +

∑
C∈C(G−H)

diam(R(C))− |C| by eq. (12.5)

= 1
2Λ′(S, σ)− 3

2m +
∑
C∈C(G−H)

diam(R(C)) by def. of Λ′

= 1
2 StOPT(H,wG/H)− 1

2k −
3
2m +

∑
C∈C(G−H)

diam(R(C)) by eq. (12.6)

Since n = m + k, this finishes the proof.

12.3. Trees with no vertices of degree two

Before proving our more complicated lower bounds, we combine the lower bound theo-
rem 12.6 with theorem 11.5 to obtain the following result.

Theorem 11.8. Let G be a tree with no vertices of degree two. Then

diam(R(G)) ∈ Θ(StOPT(G, 1)).
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12. Rotation distance and dynamic search trees

This is one of the cases where theorem 11.5 is tight. We can re-use the following technical
lemma from section 9.3.6.

Lemma 9.32. Let (G,w) be a connected weighted graph with integral weights. If G has no
vertex v with both degG(v) ≤ 2 and w(v) = 0, then StOPT(G,w + 1) ≤ 10 · StOPT(G,w).

Proof of theorem 11.8. The upper bound follows from theorem 11.5. For the lower bound,
let H be the graph obtained by G by removing each leaf, and define w : V (H)→ N such
that w(v) is the number of leaves adjacent to v in G.

Theorem 12.6 implies that diam(R(G)) + 3
2n ≥

1
2 StOPT(H,w). Since diam(R(G)) ≥

2n− 20 by lemma 11.2, this implies diam(R(G)) ∈ Ω(StOPT(H,w)). It remains to show
that StOPT(H,w) ∈ Ω(StOPT(G,1).

Let w′ = w + 1. Observe that every vertex v ∈ V (H) with w(v) = 0 has degree at least
three. Indeed, v ∈ V (H) implies that v is not a leaf in G, and w(v) = 0 implies that it
has no adjacent leaves in G, so degH(v) = degG(v) ≥ 3. Hence, lemma 9.32 implies that
StOPT(H,w) ∈ Ω(StOPT(H,w′)).

Finally, we show that StOPT(H,w′) ≥ StOPT(G, 1). Let T ′ be an optimal search tree
on H, and let T be the search tree on G obtained by attaching each leaf ℓ of G as a child
to the node v ∈ V (H) that is adjacent to ℓ in G. Observe that T is indeed a valid search
tree on G.

It is easy to see that cost(T ′, w′) = cost(T, 1)+ |V (G)\V (H)|. Essentially, for each node
v ∈ V (T ′), we transfer w(v) of its weight to its children. This implies that StOPT(H,w′) >
StOPT(G, 1), and thus concludes the proof.

12.4. Upper bound

In this section, we prove the upper bound part of theorem 12.1.

Theorem 12.23. Let G be a connected graph with n vertices and let H be a spine of G
that is a path. Then

diam(R(G)) ≤ 2 StOPT(H,wG/H) + 10n +
∑
C∈C(G−H)

diam(R(C)).

Observe that theorem 12.23 is almost a special case of the torso bound (theorem 11.6).
Indeed, clearly H = torsoG(V (H)). However, the weight function in theorem 11.6 is
actually wG/H +1. We always have StOPT(H,1) ∈ Ω(|V (H)| log |V (H)|), so theorem 11.6
may be much weaker than theorem 12.23.

We now outline the proof of theorem 12.23, deferring the details of each step to a later
section. Given two search trees T and T ′ on G, we upper bound d(T, T ′). We give a series
of steps that are applied to both search trees in parallel, until the last step transforms one
into the other. See figure 12.8 for an illustration.

First (section 12.4.1), we move the limb nodes “to the top”. Afterwards, the the limb
nodes form a prefix, which implies the spine nodes form a suffix (or, more specifically, a
rooted subtree). This is possible with only O(n) rotations.

Lemma 12.24. Let G be a connected graph with n vertices and let H be a spine of G that
is a path. Let T be a search tree on G. Then, with at most 3n rotations, we can transform
T into a search tree T ′ such that V (G−H) induces a prefix of T ′.
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Figure 12.8.: The transformation process for theorem 12.23.

Note that lemma 12.24 is the only part of our proof that requires H to be a path.

The next step is to transform the (now) suffix of G induced by H into a certain search
tree S, to be determined later. This is easily done with lemma 11.22.

Now (section 12.4.2), we want to move the limb nodes to the “bottom”, i.e., make them
a suffix. This may seem counter-intuitive, since we just moved them up (made them a
prefix), but that was to enable lemma 11.22, which turns out to be a good preparation for
the current step. Intuitively, while the limb nodes are interspersed throughout the tree,
they are hard to move to the bottom of the tree, but easy to move to the top. Once there
are at the top, we can transform the spine search tree in a way that we can efficiently
move the limb nodes to the bottom.

Lemma 12.25. Let G be a connected graph and H be a spine of G. Let S be a search tree
on H and let T be a search tree on G such that S is a suffix of T . Then, we can transform
T into a tree T ′ such that S is a prefix of T ′, with at most cost(S,wG/H) rotations.

To minimize cost(S,wG/H), we choose S to be an optimal static search tree on (H,wG/H).
Finally, since S induces a prefix of both trees, we can use lemma 11.23 to bound their
distance. We now condense the outline above into a formal proof.

Proof of theorem 12.23. Let T, T ′ be search trees on G. Apply lemma 12.24 to both
to obtain trees T1, T

′
1. This requires 6n rotations in total. Now V (G − H) induces a

prefix of both T1 and T ′
1, so V (H) induces a suffix (specifically, a rooted subtree, since

H is connected). Let S be an optimal search tree on the weighted path (H,wG/H).
We now apply lemma 11.22 to make S a suffix of T1 and T ′

1, obtaining T2, T
′
2 with

2 diam(R(H)) ≤ 4n rotations (recall that the diameter of the path associahedron is less
than 2n by theorem 11.3). Now we apply lemma 12.25 to T2, T

′
2 and obtain T3, T

′
3. This

needs at most 2 cost(SwG/H) = 2 StOPT(H,wG/H) rotations in total, and S is a prefix of
both T3 and T ′

3. Finally, the rotation distance between T3 and T ′
3 is at most∑

C∈C(G−H)

diam(R(C))

by lemma 11.23. Adding up all rotation counts yields the desired bound.

It remains to prove lemmas 12.24 and 12.25.
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12. Rotation distance and dynamic search trees

12.4.1. Moving limb nodes to the top

In this section, we show lemma 12.24. The following lemma on BSTs will be useful.

Lemma 12.26. Let T be a binary search tree. There exists a sequence of 3n rotations on
T such that

(i) every rotation involves only nodes at depth at most 3; and

(ii) every node becomes the root of T at some point.

A version of lemma 12.26 with a worse constant can be easily derived from a result
by Cleary [Cle02]. That proof uses algebraic techniques; we provide a simple elementary
proof instead.

Proof of lemma 12.26. We proceed in two phases. In the first phase, we repeatedly rotate
the root of T with its left child, until the root has no left child. This requires at most
n− 1 rotations.

In the second phase, we repeat the following step as long as the root has a right child u.
If u has a left child v, then rotate v with u. Otherwise, rotate u with the root. See
figure 12.9 for an example.

We now bound the number of rotations in the second phase. Let L(T ) be the left path
of T , i.e., the maximal sequence v1, v2, . . . where v1 is the root and vi+1 is the left child of
vi. Let the right path R(T ) be defined similarly. Let f(T ) = 2|L(T )|+ |R(T )|. Observe
that each rotation in the second phase increases f(T ) by one. Since 3 ≤ f(T ) ≤ 2n+ 1 for
every binary search tree T , the total number of rotations is at most 2n− 2. Both phases
together take 3n− 3 ≤ 3n rotations, as desired.

The rotations only involve the root, its children, and its grandchildren, so (i) holds. To
show (ii), suppose a node v never becomes the root. At the start of the second phase, v is
in the right subtree of the root, and at the end, v is in the left subtree of the root. Thus,
v must pass from the right subtree to the left subtree of the root at some point. The only
way this can happen without v becoming the root is that v is in the left subtree of the
right child u of the root, and we rotate at u. But in the second phase we only rotate at u
when u has no left child, a contradiction. Thus, (ii) holds.

In the following, fix a tree G and a spine H in G that is a path. Let T be a search tree
on G and let S = T |H . An edge from child c to parent p in S is called light if p is also alight edge

parent of c in T . (Note that in any case p must be an ancestor of c in T , by lemma 2.18.)
Recall that a search tree on H is called a spine search tree. The following observation is
immediate from the definitions.

Observation 12.27. A rotation in a spine search tree S = T |H can be applied to T if
and only if the rotated edge is light.

The proof of lemma 12.24 is algorithmic. The idea is to apply lemma 12.26 to the
spine search tree T |H . Of course, the rotation sequence from lemma 12.26 cannot be
directly applied to T ; we need to make sure that the relevant edge is light before applying
a rotation. For this, part (i) of lemma 12.26 is useful. Since we only rotate at depth at
most three in the spine search tree, we first do a “cleanup” step that rotates each limb
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Figure 12.9.: The second phase in the proof of lemma 12.26.

node with one or two spine ancestors upwards, until it has no spine ancestors anymore.
This will make the rotated edge light, and, conveniently, brings all limb nodes to the top
of the tree in the end, as desired. With a little care, we can make sure that each limb
node is only rotated twice, ensuring that the number of rotations is linear overall. We now
proceed with the proof, starting with the “cleanup” step.

Let T be a search tree on G. Let cleanup(T ) denote the following sequence of rotations:
As long as there is a limb node v with a spine parent p and at most two spine ancestors in
total, rotate ℓ with p. Arbitrarily resolve conflicts.

We now show a few basic facts about the cleanup procedure.

Lemma 12.28. Let T ′ be the search tree obtained from applying cleanup(T ) to T .

(i) In T ′, each limb node has either zero or at least three spine ancestors.

(ii) Each limb node with at most two spine ancestors in T has no spine ancestors in T ′.

(iii) Each limb node touched by cleanup(T ) has no spine ancestors in T ′.

(iv) Each limb node touched at most twice by cleanup(T ).

Proof. Let ℓ be a limb node.

(i) If ℓ has one or two spine ancestors, then it has a limb ancestor ℓ′ that is the child of
one of these two spine nodes. But then cleanup(T ) would not stop before rotating ℓ′.

(ii) All rotations in cleanup(T ) are of a limb child with a spine parent. No node can
ever gain a spine ancestor with such a rotation. Thus, by (i), the limb node has no
spine ancestors in T ′.

(iii) When first being touched by cleanup(T ), the limb node has at most two spine
ancestors, so (ii) applies.

(iv) Whenever a limb node is rotated, it loses a spine ancestor. Directly before the
rotation, it has at most two spine ancestors, and (as observed above), it cannot ever
gain a spine ancestor. Thus, it cannot be involved in more than two rotations.

We are now ready to prove lemma 12.24.

Lemma 12.24. Let G be a connected graph with n vertices and let H be a spine of G that
is a path. Let T be a search tree on G. Then, with at most 3n rotations, we can transform
T into a search tree T ′ such that V (G−H) induces a prefix of T ′.
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Proof. Let R be the sequence of rotations obtained by applying lemma 12.26 to T |H ,
called the spine rotations. We transform T as follows. Start with a cleanup step, then
apply R with a cleanup step inserted after each spine rotation.

Each rotation in R is between two spine nodes of depth at most three. By lemma 12.28 (i),
the relevant edge must be light after the preceding cleanup step. Thus, the sequence of
rotations can indeed be applied to T .

We next bound the number of rotations. We have |R| ≤ 3|V (H)| spine rotations by
lemma 12.26. All other rotations involve limb nodes. A single cleanup step touches
each limb node at most twice by lemma 12.28 (iv). When a limb node is touched in a
cleanup step, it loses all spine ancestors in that cleanup step by lemma 12.28 (iii). It
cannot gain new spine ancestors in any spine rotation, nor in any later cleanup step (by
lemma 12.28 (ii)). Thus, each limb node is touched at most twice overall, and the number
of rotations is at most 2|V (G) \ V (H)|+ 3|V (H)| ≤ 3n.

Finally, we show that V (G−H) indeed induces a prefix of the final tree T ′. The idea
is that each limb node is transported near the spine root by the spine rotations, and a
cleanup step then moves it to the top. The formal argument follows.

Let ℓ be a limb node, let C ∈ C(G−H) be the limb that contains ℓ, and let s ∈ V (H)
be the joint of C. Recall that at some point, we will rotate s to the root of the spine
search tree. Let T ′′ be the first search tree where s is the root of the spine search tree.
We show that ℓ either has no spine ancestors in T ′′, or it has no spine ancestors after the
following cleanup(T ′′) step.

• Suppose s is an ancestor of ℓ in T ′′. Let Tc be the child subtree of s that contains ℓ.
Since s separates V (C) from the rest of the graph, and G[Tc] is connected, we have
V (Tc) ⊆ V (C), so Tc consists entirely of limb nodes. This means that s is the nearest
spine ancestor of ℓ. Since s itself has no spine ancestors, we know that ℓ has only
one spine ancestor, and the next cleanup step will remove that spine ancestor by
lemma 12.28 (ii).

• Suppose s is a descendant of ℓ in T ′′. Then ℓ has no spine ancestor in T ′′, since s is
the root of the spine search tree T ′′|H .

• Suppose s is neither an ancestor nor a descendant of ℓ in T ′′. We argue that then
ℓ again has no spine ancestors. Suppose ℓ has a spine ancestor s′. Since s has no
spine ancestor, the rooted subtree T ′′

s′ does not contain s. But since s separates ℓ
from s′ by definition, the subgraph G[T ′′

s′ ] must be disconnected, contradicting the
characterization of search trees (lemma 2.3).

We have shown that ℓ has no spine ancestors at some point, and recall it cannot gain
any new ones after that. This concludes the proof.

Remark. The reason that the proof of lemma 12.24 does not generalize to more general
spines is that lemma 12.26 is specific to paths. Indeed, take the star G on n vertices
and a search tree T on G where the center c of G is the unique leaf. Observe that the
only way to decrease the depth of c in T is to rotate at c – which obviously is a rotation
involving a node at depth n and thus egregiously violates condition (i) of lemma 12.26.
Thus, lemma 12.26 does not even generalize to arbitrary trees.
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12.4.2. Moving limb nodes down again

We now show lemma 12.25, starting with some technical lemmas. Essentially, we need a
generalization of the observations about search trees on caterpillars at the start of this
chapter (pages 175 to 177). Fix a connected graph G and a spine H of G.

Lemma 12.29. Let T be a search tree on G. Let ℓ be a limb vertex and v be the joint
of ℓ. If Tℓ contains a spine node, then it must contain v.

Proof. Suppose Tℓ contains some spine node s, but not v. Since v separates ℓ from s by
definition, we have that G[Tℓ] is not connected, contradicting lemma 2.3.

Let ℓ be a limb node in a search tree T on G. Define the rotation sequence serve(T, ℓ) serve(T, ℓ)

as follows. As long as ℓ has a spine child s, rotate s with ℓ. Observe that serve(T, ℓ)
corresponds to serving an access to v, as described in the beginning of this chapter.

Lemma 12.30. Let ℓ be a limb node in a search tree T on G, and let v be the joint of ℓ.
Then serve(T, ℓ) consists of at most depthT |H (v) rotations.

Proof. By lemma 12.29, as long as ℓ has any spine descendant, its joint v is a descen-
dant. Consider the number of spine nodes that are descendants of ℓ and ancestors of v
(including v). This number is clearly bounded by depthT |H (v), and it is decreased by each
rotation in serve(T, ℓ).

Lemma 12.31. Let T be search tree on G such that each limb node in T has either no
spine ancestors, or no spine descendants. Let ℓ be a limb node with a spine child, and let
T ′ be obtained by applying serve(T, ℓ) to T . Then ℓ has no spine descendants in T ′, and
each other limb node has either no spine ancestors or no spine descendants in T ′.

Proof. Consider a limb node ℓ′ ̸= ℓ. We show that ℓ′ has either no spine ancestors of no
spine descendants in T ′ (see lemma 2.10).

Assume first that ℓ′ has no spine descendants in T . Since ℓ′ is not involved in any
rotation, clearly ℓ′ does not gain spine descendants at any point during the process, so it
has no spine descendants in T ′.

Now assume ℓ′ does have some spine descendant s′, so it does not have any spine
ancestors. We claim that ℓ′ cannot be a descendant of ℓ in T . It is easy to see that then ℓ′

cannot gain any ancestors via serve(T, ℓ), and in particular, it still has no spine ancestors
in T ′.

Towards our claim, let s be a spine child of ℓ in T (which exists by assumption). Suppose
ℓ′ is a descendant of ℓ. Since ℓ′ cannot be a descendant of s, the two rooted subtrees Ts

and Tℓ′ are disjoint and their vertex sets are separated by ℓ in G[Tℓ] by observation 2.5.
Since Tℓ′ contains the spine node s′, in particular s and s′ are separated by ℓ in G[Tℓ].
This means that some path between s and s′ in G goes through ℓ, which is impossible,
since the limb containing ℓ is 1-cut by definition.

Now consider ℓ. After applying the process, its former spine child s must be an ancestor
of ℓ. Moreover, all children of ℓ are limb nodes. Observe that s is also an ancestor of each
of these children, implying that they cannot have spine descendants by the observations
above. Hence ℓ also has no spine descendants.
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We are now ready to show lemma 12.25.

Lemma 12.25. Let G be a connected graph and H be a spine of G. Let S be a search tree
on H and let T be a search tree on G such that S is a suffix of T . Then, we can transform
T into a tree T ′ such that S is a prefix of T ′, with at most cost(S,wG/H) rotations.

Proof. We transform T into T ′ with the following process. As long as there is some limb
node ℓ with a spine child, we apply serve( · , ℓ). By lemma 12.31, after each serve( · , ℓ),
each limb node has no spine ancestors or no spine descendants, and ℓ in particular has no
spine descendants. Moreover observe that no limb node ever gains a spine descendant,
since all rotations only move spine nodes “upwards”. Thus, serve( · , ℓ) is called only once
for each limb node ℓ, and eventually, all limb nodes have no spine descendants.

To bound the number of rotations, observe first that serve( · , ℓ) does not perform
rotations between spine nodes, so we have S = T ′′|H for each intermediate tree T ′′ (by
lemma 2.20).

Further recall that by lemma 12.30, each serve(T ′′, ℓ) needs depthT ′′|H (v) = depthS(v)
rotations, where v is the joint of ℓ. Since we apply serve to each limb node at most once,
this adds up to at most cost(S,wG/H).

Having showed lemmas 12.24 and 12.25, this concludes the proof of theorem 12.23.

12.5. Diameter bounds for trees with bounded path-width

In this section, we show:

Theorem 11.9. Given a tree G on n vertices with path-width k, we can approximate
diam(R(G)) up to a factor of four and an additive term of O(kn), in time O(kn2).

Let G be a tree, and consider the following process. In each round, choose a path in each
remaining component of G, and delete those paths. Suppose we need k rounds to delete
the whole graphs this way. This process mimics the recursive application of theorem 12.1.

Observe that each application introduces two kinds of errors. First, we have a multiplica-
tive error of four, since the constant factor of the term StOPT(. . . ) is 1

2 in the lower bound
and two in the upper bound. On the other hand, we have the additive error of 11.5n.

The additive error accumulates over each of the k rounds. Thus, if k is large, the
additive error may dominate the bounds, rendering them useless. This is in particular the
case if k ∈ Ω(log n), since the diameter of R(G) is always O(n log n). On the other hand,
if k is constant, then we always get a constant-factor approximation of diam(R(G)), since
diam(R(G)) ∈ Ω(n).

It turns out this value k is approximately equal to the path-width of a tree. Trees with
constant path-width include many well-known classes like caterpillars, spiders, and lobsters.
On the other hand, the path-width of a tree can be logarithmic (e.g., for binary trees), so
our technique does not give non-trivial bounds for all trees.

In this section, we formalize this idea to prove theorem 11.9.
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12.5.1. Path-deletion trees

In this section, we define an analog to STGs based on repeated removal of paths instead
of vertices. A path-deletion tree (PDT) on a tree G is constructed as follows. First, choose

path-deletion
tree (PDT)

a path P and assign it to the root node r of the PDT. Then, recursively construct PDTs
on each component of G−H and make them child subtrees of r.

More formally, a path-deletion tree on a tree G is a tuple (T, P ), where T is a rooted
tree (with V (T ) disjoint from V (G)), and P is a function mapping the vertices of T to
paths within G. As usual, we allow the domain of P to be a superset of V (T ) whenever
convenient. For each node v ∈ V (T ), define U(v) =

⋃
u∈V (Tv)

V (P (u)) to be the set of
vertices appearing in paths assigned to some node in Tv. The following conditions must
hold if (T, P ) is a path-deletion tree.

(i) Each vertex of G occurs in some path, i.e., we have U(root(T )) = V (G).

(ii) The root r of T has precisely one child c for each component C of G− P (r), so that
(Tc, P ) is a PDT on C.

Observe that condition (ii) implies that for each pair of distinct nodes u, v ∈ V (T ), the
two paths P (u) and P (v) are vertex-disjoint. Moreover, each U(v) induces a connected
subgraph of G.

Given a PDT on G, we can compute upper and lower bounds on G, using theorem 12.1.

Lemma 12.32. Let G be a tree on n vertices and let (T, P ) be a PDT on G. Then

diam(R(G)) ≥
∑
v∈V (T )

1
2 StOPT

(
P (v), wG[U(v)]/P (v)

)
− 3

2 |U(v)|, and

diam(R(G)) ≤
∑
v∈V (T )

2 StOPT
(
P (v), wG[U(v)]/P (v)

)
+ 10|U(v)|.

Proof. Suppose |V (T )| = 1 and let r be the unique node in T . Recall that 0 ≤
diam(R(P (r))) ≤ 2n. Since wG/P (v) is the all-zero weight function, we further have
StOPT(P (v), wG/P (v)) = 0. Thus 0 and 2n are both within the required bounds.

Now suppose |V (T )| > 1. Let r be the root of T , and let K be the set of its children.
By theorem 12.1 and induction, we have

diam(R(G)) ≤ 2 StOPT
(
P (r), wG/P (r)

)
+ 10n +

∑
C∈C(G−P (r)

diam(R(C))

≤ 2 StOPT
(
P (r), wG/P (r)

)
+ 10n +

∑
c∈K

∑
v∈V (Tc)

2 StOPT
(
P (v), wG[U(v)]/P (v)

)
+ 10|U(v)|,

which equals the desired upper bound. The lower bound is proved in the same way.

We can easily bound the additive error in lemma 12.32 using the height of the PDT,
which yields:

Lemma 12.33. Given a PDT (T, P ) of height k on a tree G with n vertices, in time
O(kn2), we can compute a number d such that d ≤ diam(R(G)) ≤ 4d + 16kn.
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Proof. First, observe that
∑

v∈V (T ) |U(v)| ≤ height(T ) · n = kn. Given a weighted
path (P,w), we can compute StOPT(P,w) in quadratic time [Knu71]. The quantity
d′ =

∑
v∈V (T ) StOPT

(
P (r), wG/P (r)

)
can thus be computed in time O(kn2). Moreover,

by lemma 12.32, we have

1
2d

′ − 3
2kn ≤ diam(R(G)) ≤ 2d′ + 10kn.

Setting d = 1
2d

′ − 3
2kn thus satisfies the required bounds.

What remains to discuss now is the connection to path-width and how to compute
PDTs with low height.

12.5.2. Strahler number

Let S be a rooted tree. The Strahler number sn(S) of S is defined as follows. Let P beStrahler
number

the set of root paths in S. Then sn(S) = 1 if S is degenerate, and otherwise

sn(S) = 1 + min
P∈P(G)

(
max

C∈C(S−P )
sn(C)

)
.

The Strahler number was originally developed to measure complexity of river sys-
tems [Hor45, Str57], but has since been used in many different contexts; we refer to
Esparza, Luttenberger, and Schlund [ELS14] for more information.

The following characterization of the Strahler number is easy to prove.

Observation 12.34. Let S be a rooted tree. Then sn(S) is the maximum k such that S
contains a subdivision of a perfect binary tree of height k.

The Strahler number is related to the path-width (see section 2.4) as follows:2

Lemma 12.35. Let S be a rooting of a tree G. Then

pw(G) ≤ sn(S) ≤ 2 pw(G) + 1.

Proof sketch. The lower bound is easy to show via the equivalence of path-width and the
so-called vertex separation number [Kin92].

For the upper bound, suppose sn(S) ≥ k. Observation 12.34 implies that S contains a
subdivision S′ of a perfect binary tree of height k. Let G′ be the unrooting of S′. It is known
that pw(G′) ≥ ⌈k−1

2 ⌉ [Sch89a, Bod98], implying that 2 pw(G) + 1 ≥ 2 pw(G′) + 1 ≥ k, as
desired.

For us, the main use of the Strahler number is that it implies the existence of PDTs
with low height. Formally, let S be a rooting of a tree G. There always exists a PDT on G
with height sn(S): Simply take the path P ∈ P(G) that minimizes the maximum Strahler
number of the components of S − P .

Further, the Strahler number (and an associated PDT) is easy to compute in linear time.
Given a rooted tree S, compute the Strahler number of each child subtree of the root.
Let k be the maximum Strahler number of child subtrees. If a unique subtree Sc attains

2A slightly weaker version of lemma 12.35 was observed by Esparza et al. [ELS14].
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12.6. The interleave lower bound for dynamic search trees

sn(Sc) = k, then sn(S) = k. Otherwise, we have sn(S) = k + 1. It is easy to compute a
PDT with height sn(S) in a similar recursive way, in linear time.

We can combine these observations with lemmas 12.33 and 12.35: Given a tree G, take
an arbitrary rooting S of G, compute a PDT on G with height sn(G) ≤ 2 pw(G) + 2, and
apply lemma 12.33. This implies:

Theorem 11.9. Given a tree G on n vertices with path-width k, we can approximate
diam(R(G)) up to a factor of four and an additive term of O(kn), in time O(kn2).

Remark. The astute reader may have noticed that while the Strahler number gives us
some PDT, it may not necessarily give us the best PDT. In particular, even when G is
a path, an unlucky rooting of G can have Strahler number two. One could define the
unrooted Strahler number usn(G) like the Strahler number, except that the underlying

unrooted
Strahler
numbergraph G is unrooted and we can select an arbitrary path P to delete from G, instead of

only a root path. Clearly, the minimum height of a PDT on G is precisely usn(G).
However, it is easy to see that usn( · ) and sn( · ) are asymptotically equal. Let S be

a rooting of a tree G. Clearly, we have usn(G) ≤ sn(S). On the other hand, since each
path in G can be covered by at most two root paths in S, we also have sn(S) ≤ 2 usn(G).
Thus, the PDTs used in our approach above are nearly-optimal, and there is no significant
advantage in trying to compute usn(G) and proper minimum-height PDTs.

12.6. The interleave lower bound for dynamic search trees

In this section, we show how our generalization of the interleave lower bound applies to
dynamic STGs. Recall that this was shown before for the special case when the underlying
graph is a tree [BCI+20].

Theorem 12.36. Let G be a connected graph, and let σ ∈ V (G)m be a sequence of nodes
in G. Let S be the set of search trees on G. Then

DynOPT(G, σ) ≥ max
S∈S

1
2Λ(S, σ)− 2 diam(R(G)).

Proof. Consider an optimal serve sequence Q of σ in the dynamic search tree model. Let
S0 be the initial search tree and S∗ be the final search tree. By definition, the cost of the
serve sequence is DynOPT(G, σ).

We make a few changes to the dynamic search tree model to suit our needs. Let each
serve consists of three phases. In the first phase, arbitrary rotations can be executed, at
unit cost per rotation. In the second phase, the served node v is accessed, which simply
adds a cost of depthS(v), where S is the current search tree. In the third phase, again
arbitrary rotations can be executed.

It is easy to see that each serve sequence can be transferred into the new model, with
no increase in cost. Let Q′ be the equivalent of Q in the new model. Formally, we let Q′

be a sequence of triples (R1, x,R2), where R1, R2 are the sequence of rotations in the first,
resp. second phase, and x is the accessed node.

We now define two search trees T and T ′ on a different graph H. We then first lower
bound d(T, T ′) by maxS∈S

1
2Λ(S, σ), and then upper bound d(T, T ′) by DynOPT(G, σ) +

2 diam(R(G)). This implies the theorem.
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12. Rotation distance and dynamic search trees

First of all, we define H. Write σ = s1, s2, . . . , sm and let σR = sm, sm−1, . . . , s1 be the
reverse of σ. Define a graph H as follows. For each element si of σ, attach a leaf ℓi to the
vertex si (vertices may end up with no or multiple leaves). Observe that G is a spine of H.

Recall the definitions of A( · , · , · ) and B( · , · ) from section 12.2.4. Let S be a search tree
on G that maximizes Λ(S, σ), and let T = A(S, σR, (T i)i∈[m]) and T ′ = B(S, (T i)i∈[m]),
where T i is the search tree consisting only of the node ℓi. By lemma 12.9, we have

d(T, T ′) ≥ 1
2Λ(S, σR) = 1

2Λ(S, σ).

We now describe a sequence of DynOPT(G, σ) + 2 diam(R(G)) rotations that transform
T into T ′, thus providing the upper bound on d(T, T ′) and finishing the proof. We start
by transforming the spine search tree S of T into S0, using no more than diam(R(G))
rotations. This is possible since S is a suffix of T .

Now, for the i-th serve (R1, si, R2) in Q′, we do the following. Let T 1 be the current
search tree. First, apply the rotations in R1 to T 1|H , obtaining a search tree T 2. Then, use
the serve(T 2, ℓi) operation defined in section 12.4.2. This requires depthT 2(si) rotations
by lemma 12.30. Let T 3 be the resulting search tree. Then, apply R2 to T 3|H .

Finally, we transform the final spine search tree S∗ into S, using at most diam(R(G))
rotations. Clearly, the total number of rotations is at most 2 diam(R(G)) plus the cost of
Q′, as desired.

We now argue that the sequence of rotation is valid. Observe that for every intermediate
search tree T ′′ between two calls of serve, each edge of the spine search tree is light in
the sense defined in section 12.4.1. Thus, all non-serve rotations are valid.

For the rotations in serve, recall that the i-th call to serve is serve(T ′′, ℓi), for some
current search tree T ′′. This means that the limb nodes at the top of the tree are
transported to the bottom one-by-one, as outlined in section 12.4.2. (Recall that the order
of the limb nodes at the top of T , directed away from the root of the spine search tree,
is ℓ1, ℓ2, . . . , ℓm.) Thus, we indeed transform T into T ′ with at most DynOPT(G, σ) +
2 diam(R(G)) rotations.

Observe that this bound may be very weak, in particular on dense graphs. For example,
if G is a clique, then Λ(S, σ) is always zero, but DynOPT(G, σ) can be in Ω(|σ| · |V (G)|)
(see section 8.3).

Open question 12.2. Is there a dynamic search tree lower bound that is non-trivial even
for dense graphs?

Back in the tree case, recall that Wilber [Wil89] also found a different lower bound,
usually called the funnel bound, which is known to be stronger than the interleave
bound [LW20].

Open question 12.3. Does some generalization of the funnel lower bound hold for STTs?

12.6.1. The static finger bound for general STTs

Lemma 12.15, together with theorem 12.36, has the following interesting consequence for
the relation between the static and dynamic search tree models.
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Proposition 12.37. Let (G,w) be a weighted tree on n vertices. Then there exists a
sequence σ ∈ V (G)m where each v ∈ V (G) occurs precisely w(v) times, such that

DynOPT(G, σ) ≥ 1
2 StOPT(G,w)− 1

2n− 2 diam(R(G)).

In, particular, we can show the following, which implies that the static finger bound (see
section 8.1) cannot be achieved for STTs.

Proposition 12.38. Let G be the unrooting of a complete binary tree on n ≥ 10 vertices.
Then, for each m ≥ 9n, there exists a sequence σ ∈ V (G)m such that DynOPT(G, σ) ∈
Ω(m log n).

Proof. We first bound StOPT(G,1). Since the maximum degree of G is three, every node
in a search tree T on G has degree at most three. Hence, the number of nodes at depth at
most k is at most

∑k
i=1 3k ≤ 3k+1. If k = ⌊log3(n)− 2⌋, at least n− 3k+1 ≥ 2

3n vertices
have depth at least k + 1. This implies that StOPT(G, 1) ≥ 2

3n(log3(n)− 2).
Now let ℓ = ⌊m/n⌋, and let σ the sequence obtained with proposition 12.37 for the

weight function ℓ · 1. Observe that m − n < |σ| ≤ m. Using theorem 11.5 to bound
diam(R(G)), we have

DynOPT(G, σ) ≥ 1
2 StOPT(G, ℓ · 1)− 1

2n− 2 diam(R(G))

≥ 1
2(ℓ− 8) · StOPT(G, 1)

≥ 1
3(ℓ− 8) · n(log3(n)− 2).

By assumption, we have ℓ ≥ 9 and log3(n) > 2, so the required bound holds. With
padding, we can easily extend σ to have length exactly m.

As we discussed in section 8.1, proposition 12.38 shows that the static finger bound cannot
be achieved for general trees. Indeed, in a binary tree with n vertices, the distance between
any two vertices is O(log n). This means that the static finger bound is O(m log log n) for
sequences of length m, which is obviously incompatible with the Ω(m log n) lower bound
we just proved.
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13. Rotation distance between k-cut STTs

In this chapter, we show that the rotation distance between k-cut search trees on trees is
always linear. Recall that, in contrast, the rotation distance between general search trees
on an n-vertex tree can be Ω(n log n), by theorem 11.11.

We proceed with the formal statement of the result. For a connected graph G and
k ≥ 1, let Rk(G) be the subgraph of R(G) induced by k-cut trees. Observe that Rk(G) is Rk(G)

non-empty if tw(G) ≥ k, and empty otherwise. Our main result is the following, which
immediately implies theorem 11.15 in chapter 11.

Theorem 13.1. For each tree G with n vertices and each k ≥ 1, we have

diam(Rk(G)) ≤ (2k − 1)n− (k + 1)k + 1 ≤ (2k − 1)n.

Theorem 13.1 in particular implies that the graph Rk(G) is connected if G is a tree.
Observe, however, that Rk(G) is not necessarily the graph of a convex polytope. For
example, R1(G) is isomorphic to G itself, since the vertices of R1(G) are rootings of G,
and two rootings are adjacent in R1(G) if and only if their roots are adjacent in G. A tree
is clearly not the graph of any convex polytope, if the tree has more than two vertices.

Tightness. Theorem 13.1 is not asymptotically tight for all k and n; already for k ∈
ω(log n), the bound is strictly above the general O(n log n) bound for STT rotation
distance [CLPL18]. It is possible that the true bound is O(n log k). Or, perhaps, our
bound is correct for k ∈ O(log n). This would mean that there are O(log n)-cut search
trees on trees with maximal rotation distance, which would be interesting in itself.

Open question 13.1. For every n, is there a tree G on n vertices that admits two
O(log n)-cut search trees with rotation distance Ω(n log n)?

We remark that the Ω(n log n) lower bound of Cardinal, Langerman, and Pérez-
Lantero [CLPL18] for the maximum diameter of tree associahedra heavily relies on using
Ω(n)-cut search trees, and the same is true for our caterpillar lower bound (theorem 11.10).

Another open question is whether the leading constant (2k − 1) in theorem 13.1 is tight
for small k. Observe that if G is a path, then R2(G) = R(G) (every binary search tree
is 2-cut), so diam(R2(G)) ≤ 2n, which is stronger than the 3n − 3 bound we get from
theorem 13.1.

Open question 13.2. Is diam(R2(G)) ≤ 2n for every tree G?

While we cannot rule out that diam(R2(G)) ≤ 2n holds for all trees, we can show that
a certain strategy to prove it cannot work. The 2n bound for paths is easily proved by
showing that there exists a “canonical” 1-cut search tree S (a rooting of the path at one of
its endpoints), such that d(S, T ) ≤ n for all search trees S′. We show that such a search
tree S cannot exist in general.
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13. Rotation distance between k-cut STTs

Proposition 13.2. For each k ∈ N+, there is a tree G on n = 3k+1 vertices such that for
each 1-cut search tree S on G, there is a 2-cut search tree T on G with d(S, T ) ≥ 4

3n− 6.

Of course, proposition 13.2 does not rule out a proof of diam(R2(G)) ≤ 8
3n with this

strategy.

Finally, whether theorem 13.1 can be generalized to bounded-tree-width graphs is
another interesting open question.

Open question 13.3. Is diam(Rk(G)) ∈ O(kn) for each connected graph G with
tw(G) ≤ k?

Notation. For two k-cut search trees T, T ′ on a graph G, let dk(T, T ′) denote the rotationdk(T, T
′)

distance of T and T ′ in Rk(G).

13.1. Upper bound

We prove theorem 13.1 by induction. For k = 1, we directly transform T into T ′. For
k > 1, we reduce k by transforming both T and T ′ into (k− 1)-cut trees, and then proceed
by induction.

The following lemma concerns the case k = 1. Recall that 1-cut trees are precisely
rootings of G.

Lemma 13.3. Let G be a tree on n vertices, let T be a rooting of G at some node x, and
let T ′ be a rooting of G at some node x′. Then d1(T, T

′) ≤ depthT (x′)− 1 ≤ n− 1.

Proof. Let c be the child of x in T such that x′ ∈ V (Tc), and let T ′′ be the tree obtained
by rotating c with x in T . We claim that T ′′ is precisely the tree rooted at c, and thus
depthT ′′(x′) = depthT (x′) − 1. By induction, after depthT (x′) − 1 such rotations, we
obtain T ′.

Indeed, by lemma 2.10, the only nodes whose set of descendants is changed by the
rotation are x and c. Since both have depth at most one in T ′′, both x and c are 1-cut
in T ′′ (by observation 2.7). For all other nodes y ∈ V (G) \ {x, c}, we have V (T ′′

y ) = V (Ty),
so y is 1-cut in T ′′. Clearly, the root of T ′′ is c, so T ′′ is a rooting of G at c, as desired.

We continue with the transformation of k-cut STTs into (k−1)-cut STTs. The following
lemma shows that certain rotations strictly “improve” the tree, by reducing the boundary
size of some rooted subtree and not affecting the boundary sizes of other rooted subtrees.

Lemma 13.4. Let T be a k-cut search tree on a tree S, where k ≥ 2. Let v be a node of T
with parent p such that |∂(Tv)| = k and |∂(Tp)| = k − 1. Then, rotating v with p produces
a k-cut search tree T ′, where |∂(T ′

v)| = k − 1 and for each node x ∈ V (T ) \ {v}, we have
|∂(T ′

x)| ≤ |∂(Tx)|.

Proof. By lemma 2.10, we have V (T ′
x) = V (Tx) for all x ∈ V (G) \ {v, p}, which implies

|∂(T ′
x)| = |∂(Tx)| ≤ k. Further, we have V (T ′

v) = V (Tp), so |∂(T ′
v)| = |∂(Tp)| = k − 1. It

remains to show |∂(T ′
p)| ≤ k − 1.
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Assume on the contrary that |∂(T ′
p)| ≥ k. Let B = ∂(Tp). By observation 2.7, and since

|∂(Tv)| = k and |∂(Tp)| = |∂(T ′
v)| = k − 1, we have

∂(Tv) = ∂(Tp) ∪ {p} = B ∪ {p}, and

∂(T ′
p) = ∂(T ′

v) ∪ {v} = B ∪ {v}

Let Uv, U
′, Up be the (v, p)-partition of G, as defined in chapter 9. By the above

observations, we know that each b ∈ B is adjacent to V (Tv) = Uv ∪ U ′, but also to
V (T ′

p) = U ′∪Up, and thus specifically to U ′. Hence, we have |∂(U ′)| ≥ |B∪{v, p}| = k+ 1.
But there is a child subtree Tc of v in T such that V (Tc) = U ′, which contradicts that T
is k-cut.

It is easy to see that in a k-cut search tree that is not a (k−1)-cut search tree, we always
have a node v that satisfies the requirements of lemma 13.4. Thus, we can repeatedly
apply lemma 13.4 and finish after at most n steps. In fact, we can do slightly better:

Lemma 13.5. Let T be a k-cut search tree on a tree G, with k ≥ 2. Then T can be
transformed into a (k − 1)-cut search tree with at most n − k rotations, so that each
intermediate tree is a k-cut tree.

Proof. Suppose T is not a (k − 1)-cut search tree. Since |∂(T )| = 0, there is a node
v with parent p such that |∂(Tv)| = k and |∂(Tp)| < k. Since ∂(Tv) ⊆ ∂(Tp) ∪ {p} by
observation 2.7, we have |∂(Tp)| = k − 1. We can thus apply lemma 13.4, increasing the
number of nodes x with |∂(Tx)| ≤ k − 1 by at least one. Repeat this step until we have a
(k − 1)-cut search tree. In the original tree T , every node x of depth at most k already
satisfies |∂(Tx)| ≤ depth(x)− 1 ≤ k − 1. As such, we can ignore these nodes and need at
most n− k steps.

It is easy to see that lemma 13.5 can be implemented in the pointer model (see chapter 8)
with a linear number of operations. We omit the formal proof. Theorem 13.1 now follows
by induction as outlined above:

Theorem 13.1. For each tree G with n vertices and each k ≥ 1, we have

diam(Rk(G)) ≤ (2k − 1)n− (k + 1)k + 1 ≤ (2k − 1)n.

Proof. Let T and T ′ be k-cut search trees on G. We show that dk(T, T ′) ≤ (2k−1)n− (k+
1)k+1. If k = 1, we need n−1 rotations by lemma 13.3, as desired. Otherwise, we transform
the two k-cut search trees T, T ′ into (k− 1)-cut search trees S, S′, using 2(n− k) rotations,
by lemma 13.5. By induction, we have dk(S, S′) ≤ dk−1(S, S′) ≤ (2(k−1)−1)n−k(k−1)+1.
Therefore, we have

dk(T, T ′) ≤ 2(n− k) + (2(k − 1)− 1)n− k(k − 1) + 1

= (2k − 1)n− 2k − k(k − 1) + 1

= (2k − 1)n− (k + 1)k + 1.
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13.2. Lower bound

We now prove proposition 13.2, starting with the following fact about search trees on
paths.

Lemma 13.6. Let G be the path on n = 2k + 1 vertices, and let S be the rooting of G at
the centroid. Then there exists a search tree T on G such that d(S, T ) ≥ 3

2n− 4.

Proof. We name the vertices as follows, in the order they appear on the path:

x1, x2, . . . , xk−1, xk, c, yk, yk−1, . . . , y2, y1.

Observe that c is the centroid. Let T be the degenerate search tree with topological
ordering x1, y1, x2, y2, . . . , xk, yk, c.

We use the alternation number, as defined in section 12.2. Let X = {xi | i ∈ [k]} and
Y = {yi | i ∈ [k]}. Let X = {X,Y, {c}}. Clearly, the subgraphs G[X], G[Y ], G[{c}] are
connected and thus convex, so we can apply lemma 12.8:

d(S, T ) ≥ 1
2 |alt(S,X )− alt(T,X )|+ d(S|X , T |X) + d(S|Y , T |Y ).

Clearly alt(S,X ) = 1; the only alternation is between c and its children xk, yk. On the
other hand, we have alt(T,X ) = n− 1, since every edge is an alternation.

The two search trees S|X and T |X are both rootings of the path G[X], but their roots
are different ends of the path. It is easy to see that their distance is precisely k − 1. The
same is true for S|Y and T |Y . Overall, we have

d(S, T ) ≥ 1
2(n− 2) + 2(k − 1) = 3

2n− 4.

Observe that lemma 13.6 is tight up to an additive constant. Indeed, if T ∗ is the rooting
of G at one of its ends (sometimes called the left or right spine1 in the BST setting), then
clearly d(S, T ∗) ≤ k, and it is not hard to see that d(T, T ∗) ≤ n− 1 for all search trees T
on G. Hence, d(S, T ) ≤ 3

2n−
3
2 .

We are now ready to prove proposition 13.2.

Proposition 13.2. For each k ∈ N+, there is a tree G on n = 3k+1 vertices such that for
each 1-cut search tree S on G, there is a 2-cut search tree T on G with d(S, T ) ≥ 4

3n− 6.

Proof. Let G be the spider graph with three legs of length k. Recall that G consists of
one vertex c, the central vertex, and three paths of length k, the legs. One leaf of each leg
is adjacent to c. Let X,Y, Z be sets of the vertices on the three legs, respectively.

Take an arbitrary rooting (i.e., 1-cut tree) S of G. Without loss of generality, root(S) ∈
X ∪ {c} (see figure 13.1). Write R = V (G) \X = Y ∪ {c} ∪ Z. We construct T as follows.
Let TX be a search tree on G[X] with maximum distance to S|X , and let TR be a search
tree on G[R] with maximum distance to S|R. Let T be a search tree with prefix TR and
suffix TX .

First observe that T indeed exists; just concatenate topological orderings of TR and TX

to obtain a topological ordering of T . Moreover, observe that S|R is a rooting of G[R] at

1No relation to our definition of spines in chapter 12.
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Figure 13.1.: The spider graph G (left) and its rooting S (left) in proposition 13.2.

its centroid c, so d(S|R, TR) ≥ 3
2 |R| − 4 by lemma 13.6 and choice of TR. Further observe

that d(S|X , TX) ≥ 1
2 diam(R(G[X])) = 1

2(2k − 6) by choice of TX , since G[X] is a path
(theorem 11.3).

Since R and X are disjoint and induced convex subgraphs of G, the following holds by
lemma 2.20.

d(S, T ) ≥ d(S|R, T |R) + d(S|X , T |X)

= d(S|R, TR) + d(S|X , TX)

≥ 3
2(2k + 1)− 4 + k − 3 = 4k − 11

2 = 4
3n−

41
6 .

Since d(S, T ) is an integer, this implies the required bound.
It remains to show that T is a 2-cut search tree. Its prefix TR clearly is, since it is a

search tree on a path. Thus, all nodes v ∈ R are 2-cut in T . On the other hand, observe
that TX must be a child subtree of c in T , since ∂(TX) = {c} and G[X] is connected.
This means that ∂(Tx) ⊆ X ∪ {c} for all x ∈ X. Since X ∪ {c} induces a path of G, we
have |∂(Tx)| ≤ 2, as desired.
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14. Conclusion

In this thesis, we studied search trees on graphs from multiple different angles. We identified
(and partially overcame) some significant challenges in our attempts to generalize results
from the theory of binary search trees.

The static search tree model generalizes from BSTs in a straight-forward way. We
gave several approximation algorithms and hardness results (part I), but left one central
question open: Is there a polynomial-time algorithm that computes an optimal static
search tree on a given weighted tree?

The dynamic search tree model and questions related to it turned out to be more subtle
to generalize (part II). For example, some adaptivity bounds for BSTs do not have an
obvious and sensible generalization to STGs (chapter 8). Still, we were able to generalize
the Splay BST algorithm to the tree case and showed two non-trivial adaptivity properties
(chapter 9). Generalizing other algorithms (like Greedy [Luc88, Mun00]), and further
generalizing Splay to graphs with bounded tree-width are interesting topics for future
research.

We also gave a practical application of our dynamic search tree algorithms: A data
structure for dynamic forests. We sketched a generalization to graphs with bounded
tree-width, which requires a generalization of Splay to such graphs.

One particular tool that was useful throughout the first two parts of the thesis is the
restricted class of k-cut search trees, which retain some useful properties of BSTs and
have a strong connection to tree-width. Our framework of k-cut search trees has been used
already in a different setting [LK23].

Finally, we studied the diameter of search tree rotation graphs (part III). While this is a
seemingly purely combinatorial question, we were able to utilize results from the theories
of both static and dynamic search trees. Conversely, we were able to prove a dynamic
search tree lower bound using tools developed for bounding rotation distance. Studying
these connections further could lead to new discoveries in any of the three settings.
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List of conjectures and open questions

Open question 3.1. Is there an algorithm for StOPT(G,w) with approximation factor
less than 2 that runs in time O(n polylog n)?

Open question 3.2. Can StOPT(G,w) be computed exactly in polynomial time when
G is a tree?

Conjecture 3.3. Theorem 3.8 can be generalized to graphs with bounded tree-width.

Open question 3.4. Are there other natural graph classes that admit constant-factor
approximations for the optimal static search tree problem?

Open question 3.5. Can StOPT(G, 1), i.e., the minimal trivially perfect completion, be
computed in linear time if G is a tree?

Open question 4.1. What is the complexity of computing a centroid tree on a tree with

n vertices, when all weights are in [1,W ] for W ∈ ω(1) and W ≤ 2log
o(1) n?

Open question 5.1. Can theorem 5.8 be improved or extended to cases t ≤ k ≤ 3t?

Open question 8.1. Are the pointer model and the prefix model equivalent when
restricted to k-cut search trees on trees?

Conjecture 8.2. The offline optimum achieves the torso-tree-depth working-set bound.

Conjecture 8.3. For each graph G, input sequence X, and finger vertex v, there exists a
static search tree T on G that achieves the tree-depth fixed-finger bound w.r.t. v.

Open question 8.4. Is there a generalization of Greedy or GreedyFuture to the
STT or STG setting? Which bounds can be achieved by such a generalization?

Open question 9.1. Let G be a tree, and let X ∈ V (G)m be a sequence of m ≥
|V (G)| searches that are sampled independently from a distribution p on V (G). Does
MoveToRootTT serve X in expected running time O(StOPT(G, p) + f(G)), for some
function f?

Open question 9.2. Does SplayTT achieve the working-set bound with additive error
O(StOPT(G, 1)?

Open question 10.1. Is there a generalization of SplayTT that maintains O(k)-cut
search trees on (static) graphs of tree-width k?

Open question 11.1. What are asymptotically tight bounds for Diam(Gtwt , n) and
Diam(Gpwt , n)?
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List of conjectures and open questions

Conjecture 11.2. For all t and large enough n, we have

Diam(Gtdt , n) = diam(R(SPKt−1,n−t+1)).

Conjecture 12.1. Let H be a binary tree, and let G be a subdivision of H. Let
se ∈ N0 be the number of times the edge e ∈ E(H) was subdivided to obtain G, and let
w(v) =

∑
e∈Ev

se for each v ∈ V (H), where Ev is the set of edges incident to v. Then

diam(R(G)) ∈ Θ(StOPT(H,w + 1) + |V (G)|).

Open question 12.2. Is there a dynamic search tree lower bound that is non-trivial even
for dense graphs?

Open question 12.3. Does some generalization of the funnel lower bound hold for STTs?

Open question 13.1. For every n, is there a tree G on n vertices that admits two
O(log n)-cut search trees with rotation distance Ω(n log n)?

Open question 13.2. Is diam(R2(G)) ≤ 2n for every tree G?

Open question 13.3. Is diam(Rk(G)) ∈ O(kn) for each connected graph G with
tw(G) ≤ k?
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Index

access, 99
additive, 120
k-admissible root, 74
k-admissible subgraph, 73
alternation number alt(T,X ), 180
amortized number of rotations, 121
ancestor, 15
associahedron, 165

binary search tree, 17
binary tree, 16
bound, see STG bound
boundary

inner, 62
outer, 17

boundary centroid, 79
t-boundary centroid set, 83
boundary closure, 29
branching node for v, 117

canonical representation, 75
caterpillar, 14
centroid, 47

weighted, 47
centroid tree, 47

weighted, 47
α-centroid tree, 51
α-centroid, 51
child, 15
child subtree, 16
chordal completion, 30
chordal graph, 30
closure, 27
complete split graph, 14
contraction, 13
convex, 23
convex hull, 13
cost, 37

GSTT, 88

serve sequence, 99
k-cut search tree, 18
k-cut subgraph, 17
cyclohedron, 166

decision tree, 50
degenerate, 16
descendant, 15
direct separator node, 110
distance, 144

entropy, 57

grandparent, 15
graph associahedron, 165

indirect separator node, 110
inner node, 16
interleave bound, 182

joint, 178

LCA, 15
leaf, 16
lifting, 42
light edge, 192
limb, 178
line graph, 93
lobster, 14
lowest common ancestor, 15

maximum interleave sequence, 185
monotone, 120

node potential, 120

offline dynamic search tree algorithm, 99
online dynamic search tree algorithm,

100
optimal search tree, 37

parent, 15
partial permutation, 14
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(x, y)-partition, 109
path-deletion tree, 197
path-width, 32
PDT, 197
permutahedron, 166
perfect binary tree, 16
perfect elimination ordering, 30
permutation, 14
prefix, 15
prefix model, 101
projected rotation distance, 179
projection, 22

reference tree, 120
representation, 75
root path, 16
rooted forest, 15
rooted subtree, 16
rooted tree, 15
rooting, 15
rotation, 18
rotation distance, 165
rotation graph, 165

search tree, 16
semi-weighted centroid tree, 58
separate, 14
α-separator, 79
separator node, 109
serve sequence, 99
Shannon entropy, 57
spider, 14
spine, 178
spine search tree, 178
stable, 144
star, 14

static optimum, 37
stellohedron, 166
STG bound, 102

dynamic finger, 104
entropy, 103
linear static finger, 104
linear working set, 103
static finger, 104
static optimality, 103
torso-tree-depth working set, 103
tree-depth static finger, 104
working set, 103

Strahler number, 198
strictly pseudo-concave, 120
subdivision, 13
subforest, 15
subtree, 15
suffix, 15

topological ordering, 20
torso, 26
tree decomposition, 32
tree-depth, 28
tree-width, 31
trivially perfect, 28

unit weight function, 41
unrooted dynamic forest, 137
unrooted Strahler number, 199
unrooting, 15
unweighted static optimum, 41

weight function, 37
weighted centroid, 47
weighted centroid tree, 47
weighted graph, 37
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Symbol reference

dynamic search trees
apply(S, T ), 99: apply a serve

sequence
DynOPT(G,X), 99: dynamic

optimum cost
Λ(S, σ), 182: interleave bound
λ(S, v, σ), 182
ΦR, 120: reference tree potential
ΦST, 120: Sleator-Tarjan potential

functions
1, 41: unit weight function
α · w, 42
f |X , 13: restriction
w + w′, 42

graphs
−, 13
C(G), 13: connected components
CC(G), 31: chordal completion

number
chG(U), 13: convex hull
χ(G), 14: chromatic number
degG(v), 13: degree
E(G), 13: edge set
G[U ], 13: induced subgraph
pw(G), 32: path-width
SPKm,n, 14: complete split graph
TPC(G), 28: trivially perfect

completion number
V (G), 13: vertex set
wG/H(v), 178: limb size for joint
ω(G), 14: clique number

rooted trees
−, 15
⪯T , 15: ancestor
depthT (v), 16
height(T ), 16
LCAT (U), 15
root(T ), 15

rotation distance
alt(T,X ), 180: alternation number
d(T, T ′), 165: rotation distance
dk(T, T ′), 204: k-cut rot. distance
dU (T, T ′), 179: projected rot. dist.
Λ(S, σ), 182: interleave bound
λ(S, v, σ), 182
Λ′(S, σ), 185
λ′(S, v, σ), 185

search trees
Rk(G), 203: k-cut rotation graph
Cent(G,w), 48: maximum centroid

tree cost
rot(T, v, p), 18: rotation
StOPT(G,w), 37: optimal static

search tree cost
T |H , 22: projection

sequences
V (σ), 14: element set
σ|X , 14: restriction
<π, 14: precede
alt(σ,X ), 180: alternation number
σG/H(π), 178: map limbs to joints
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Tree Associahedra. The Electronic Journal of Combinatorics, 2018.
doi:10.37236/7762. 18, 22, 101, 165, 167, 168, 180, 203

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to algorithms. MIT Press, Cambridge, Mass., 2nd ed edition, 2001. 6,
15, 20, 100

[CMM21] Jean Cardinal, Arturo Merino, and Torsten Mütze. Combinatorial generation via
permutation languages. IV. Elimination trees, 2021, 2106.16204v5. 170

[CMSS00] Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the Dynamic
Finger Conjecture for Splay Trees. Part I: Splay Sorting log n-Block Sequences.
SIAM J. Comput., 30(1):1–43, 2000. doi:10.1137/S0097539797326988. 105

[Col00] Richard Cole. On the Dynamic Finger Conjecture for Splay Trees. Part II: The
Proof. SIAM J. Comput., 30(1):44–85, 2000. doi:10.1137/S009753979732699X. 105

[CPVP22] Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Diameter Estimates for
Graph Associahedra. Annals of Combinatorics, August 2022.
doi:10.1007/s00026-022-00598-z. 22, 24, 166, 167, 168, 169, 171, 180

[CPVP24] Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. The rotation distance of
brooms. European Journal of Combinatorics, 118:103877, 2024.
doi:10.1016/j.ejc.2023.103877. 9, 170

219

http://arxiv.org/abs/1603.04892v1
http://dx.doi.org/10.1007/978-3-642-17514-5_18
http://dx.doi.org/10.1016/j.tcs.2011.08.042
http://dx.doi.org/10.1007/s00453-012-9715-6
http://dx.doi.org/10.1016/j.tcs.2012.06.023
http://dx.doi.org/10.1016/j.tcs.2016.07.019
http://dx.doi.org/10.1016/S0020-0190(02)00315-0
http://dx.doi.org/10.37236/7762
http://arxiv.org/abs/2106.16204v5
http://dx.doi.org/10.1137/S0097539797326988
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1007/s00026-022-00598-z
http://dx.doi.org/10.1016/j.ejc.2023.103877


Bibliography

[CS10] Sean Cleary and Katherine St. John. A Linear-Time Approximation Algorithm for
Rotation Distance. Journal of Graph Algorithms and Applications, 14(2):385–390,
2010. doi:10.7155/jgaa.00212. 170

[CSZ15] Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-equivalent
realizations of the associahedron. Comb., 35(5):513–551, 2015.
doi:10.1007/S00493-014-2959-9. 8
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Séminaire Lotharingien de Combinatoire, 73, 2015. URL
https://www.mat.univie.ac.at/~slc/wpapers/s73mannpil.html. 18, 165, 166,
170

[Mun00] J. Ian Munro. On the Competitiveness of Linear Search. In Mike S. Paterson,
editor, Algorithms - ESA 2000, pages 338–345, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg. doi:10.1007/3-540-45253-2 31. 102, 209
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[RP89] Arnon Rosenthal and José A. Pino. A generalized algorithm for centrality problems
on trees. J. ACM, 36(2):349–361, 1989. doi:10.1145/62044.62051. 47

[RRVS14] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar.
A Faster Parameterized Algorithm for Treedepth. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming, pages 931–942, Berlin, Heidelberg, 2014. Springer.
doi:10.1007/978-3-662-43948-7 77. 5

[RS83] Neil Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983.
doi:10.1016/0095-8956(83)90079-5. 32

[RS86] Neil Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.
32

[Rus] Rust team. std::collections – Rust. URL
https://doc.rust-lang.org/std/collections/. Accessed 2024/09/02. 1

[Sch89a] Petra Scheffler. Die Baumweite von Graphen als ein Maß für die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR,
Karl-Weierstrass-Institut für Mathematik, 1989. 198
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Zusammenfassung

Suchbäume auf Graphen (SBGs) sind eine weitreichende Verallgemeinerung binärer
Suchbäume. Bei SBGs ist der Suchraum ein Graph statt einer totalen Ordnung. Die
Idee ist, Knoten statt Schlüssel zu “vergleichen”, was uns Informationen über die relative
Position der Knoten im Graphen gibt.

SBGs können einerseits als Datenstruktur für Knotensuche in bestimmten Graphen
gesehen werden, wobei der Graph Knoten-“Vergleiche” erlauben muss (dies ist z.B. bei
sogenannten Quaternärbäumen der Fall). Andererseits sind SBGs eine hierarchische Zerle-
gung dieser Graphen. Suchbäume sind im letzteren Sinne unter verschiedenen Namen in
der Literatur zu finden (z.B. als Eliminationsbäume), und haben enge Verbindungen zu
den bekannten Konzepten Baumtiefe und Baumweite.

Viele algorithmische und kombinatorische Probleme zu binären Suchbäumen erlauben
eine natürliche Verallgemeinerung zu SBGs. In dieser Arbeit konzentrieren wir uns auf die
folgenden drei.

• Nimm an, uns ist eine Eingabeverteilung bekannt und wir möchten einen SBG
berechnen, der die erwartete Suchzeit minimiert. Solche SBGs heißen optimale
statische Suchbäume. Optimale binäre Suchbäume können in quadratischer Zeit
berechnet werden. Für SBGs ist nicht einmal ein Polynomialzeitalgorithmus bekannt,
selbst wenn der zugrundeliegende Graph ein Baum ist.

Wir besprechen mehrere Approximationsalgorithmen für Bäume und Graphen mit
beschränkter Baumweite, sowie die NP-Schwere des Problems im Allgemeinen.

• Dynamische Suchbäume dürfen während der Benutzung mit sogenannten Rotationen
verändert werden (anders als statische Suchbäume). In dieser Arbeit verallgemeinern
wir die sogenannten Spreizbäume (engl. splay trees) von binären Suchbäumen zu
Suchbäumen auf Bäumen. Weiterhin benutzen wir diesen Algorithmus, um eine
Datenstruktur für dynamische Wälder zu implementieren, die wir experimentell
auswerten.

• Der Rotationsabstand zwischen zwei SBGs ist die minimale Anzahl an Rotatio-
nen, die benötigt werden, um einen der SBGs in den anderen umzuformen. Uns
interessiert der maximale Rotationsabstand zwischen Suchbäumen auf einem ge-
gebenen Graphen, was der Durchmesser des sogenannten Graphenassoziaeder ist.
Überraschenderweise ist dieses kombinatorische Problem eng mit den statischen und
dynamischen Suchbaumproblemen verbunden. Wir besprechen mehrere neue Ergeb-
nisse, unter anderem einen einfachen Algorithmus zur Berechnung des Durchmessers
des Graphenassoziaeder falls der zugrundeliegende Graph ein Baum mit beschränkter
Wegbreite ist.
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