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Abstract

Universal quantum computing is a coveted goal in the current technological landscape.

Due to the unique laws of quantum mechanics, quantum computers would be able to

run more efficient algorithms than their classical counterparts. Universality simply

implies that said computer is capable of performing any quantum operation. This

thesis presents a theoretical study of qubit arrays, the basic system for processing

quantum information, tackling three important problems using results from Lie groups

and algebras.

Since every real system is subject to decoherence due to interaction with its envi-

ronment, it is crucial to find quantum devices capable of fast dynamics. The quantum

speed limit of a system serves as a measure of the minimum time in which a given

unitary evolution can be performed, depending on its controls and qubit couplings. A

new method for its estimation is introduced in this thesis. Furthermore, the estimator

is extended to determine the quantum speed limit of state-to-state transfers and

quantum gates acting on a logical subspace of the total Hilbert space.

The number and type of controls and qubit couplings in the system also determine

whether all operations in the system are feasible, i.e. whether the system is control-

lable. Controllability is a necessary property for universality. However, determining

a system’s controllability is generally a difficult task. Here, two controllability tests

are presented, particularly tailored to the case of qubit arrays: A classical test based

on notions from graph theory and a hybrid quantum-classical algorithm that employs

parametric quantum circuits. While the complexity of these tests also scales exponen-

tially with the number of qubits, they greatly expand the number of cases that can be

studied.

Finally, a method for designing arbitrarily large controllable qubit arrays is pre-

sented. This is achieved by juxtaposing smaller controllable arrays and connecting

them via tunable couplings. The modular architecture allows the construction of

larger devices that are in principle suitable for universal quantum computing, even

if the controllability of the overall system cannot be directly analysed by any of the

previous tests.

The concepts shown here introduce an arsenal of tools that can provide valuable in-

formation for the study and development of systems with the aim of bringing quantum

technologies closer to universal quantum computing.
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Zusammenfassung

Universelle Quantencomputer sind ein begehrtes Ziel in der aktuellen Technologielandschaft.

Aufgrund der einzigartigen Gesetze der Quantenmechanik wären Quantencomputer in der

Lage, effizientere Algorithmen auszuführen als ihre klassischen Gegenstücke. Universalität

bedeutet einfach, dass der Computer jede beliebige Quantenoperation ausführen kann. In

dieser Arbeit wird eine theoretische Untersuchung von Qubit-Arrays, dem grundlegenden Sys-

tem für die Verarbeitung von Quanteninformationen, vorgestellt. Dabei werden drei wichtige

Probleme unter Verwendung von Ergebnissen aus Lie-Gruppen und Algebren angengangen.

Da jedes reale System aufgrund der Wechselwirkung mit seiner Umgebung der Deko-

härenz unterliegt, ist es von entscheidender Bedeutung, Quantengeräte zu finden, die zu einer

schnellen Dynamik fähig sind. Das Quantengeschwindigkeitslimit eines Systems dient als Maß

für die minimale Zeit, in der eine gegebene einheitliche Entwicklung abhängig von seinen

Kontrollen und Qubit-Kopplungen durchgeführt werden kann. In dieser Arbeit wird eine neue

Methode zu ihrer Schätzung vorgestellt. Darüber hinaus wird dieser Schätzer erweitert, um die

Quantengeschwindigkeitsgrenze von Zustand-zu-Zustand-Überführungen und Quantengattern

zu bestimmen, die auf einen logischen Unterraum des gesamten Hilbert-Raums wirken.

Die Anzahl und Art der Steuerungen und Qubit-Kopplungen im System bestimmen auch,

ob alle Operationen im System durchführbar sind, d. h. ob das System kontrollierbar ist.

Kontrollierbarkeit ist eine notwendige Eigenschaft für Universalität. Die Bestimmung der

Kontrollierbarkeit eines Systems ist jedoch im Allgemeinen eine schwierige Aufgabe. Hier

werden zwei Kontrollierbarkeitstests vorgestellt, die speziell auf den Fall von Qubit-Arrays

zugeschnitten sind: Ein klassischer Test, der auf Befunden aus der Graphentheorie basiert,

und ein hybrider quantenklassischer Algorithmus, der parametrische Quantenschaltungen

einsetzt. Trotz der ebenfalls exponenziell skalierenden Komplexitaet dieser Tests, kann die

Anzahl der untersuchbaren Faelle erheblich erweitert werden.

Schließlich wird eine Methode zum Entwurf beliebig großer kontrollierbarer Qubit-Arrays

vorgestellt. Dies wird durch die Aneinanderreihung kleinerer kontrollierbarer Arrays und

deren Verbindung über abstimmbare Kopplungen erreicht. Die modulare Architektur erlaubt

die Herstellung größerer Geräte, die prinzipiell für universelles Quantencomputing geeignet

sind, ohne die Kontrollierbarkeit des Gesamtsystems durch Anwendung des bisherigen Tests

direkt analysieren zu müssen.

Die bisher erwaehnten Konzepte stellen ein ganzes Arsenal an Werkzeugen dar, die

wertvolle Informationen für die Untersuchung und Entwicklung von Systemen liefern können,

die dem Ziel Quantentechnologien dem universellen Quantencomputing näher zu bringen

unterstuetzen, indem sie wertvolle Informationen fuer dessen Untersuchung und Entwicklung

liefern.
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1Introduction

Since the dawn of history, people have sought to comprehend the laws of the universe.

Mathematics and natural sciences are the very foundations on which we build our

understanding of the reality in which we live. But to develop solid theories and make

accurate predictions we need solid tools and accurate methods to perform increasingly

complex calculations. From the early abacus to the first computers, the power of

computation has always been at the heart of technological progress. Physics can help

revolutionise the technological landscape. It did so in the 1950s with the invention of

integrated circuits, which enabled the creation of personal computers. Today, quantum

physics is once again on the cusp of new horizons.

In 1982 Richard Feynman first proposed to simulate nature using quantum sys-

tems [2]. In principle, the inherently unique laws of quantum mechanics allow its

behaviour to be reproduced much more efficiently using other quantum systems rather

than classical computers. The spark of quantum simulation and quantum computation

had been lit. It ignited the idea of using quantum bits, or qubits, as the basic units

for processing information. Unlike classical bits, qubits had access to two exciting

properties: Superposition of states and quantum entanglement. This opened up a

whole new world of calculations that were not possible in the contemporary machines.

However, their physical implementation and the efficient mapping of the problems to

be solved are still two major obstacles to overcome.

It was a decade later that algorithms were proposed to solve specific problems

using quantum computing [3, 4]. Two important ones are worth mentioning: Grover’s

algorithm[5], which could efficiently search a database, and Shor’s algorithm [6],

whose fast integer factorization was a double-edged sword in the world of cryptogra-
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phy. Suddenly the realisation of these quantum computers became a desirable goal.

Following the equivalent idea of a classical universal Turing machine, in 2000 David

P. DiVincenzo wrote the criteria that a quantum device would need to fulfill in order

to be capable of performing every conceivable quantum algorithm [7]. The quest for

universal quantum computing lingered on the horizon, waiting to be achieved.

There have been many approaches to the physical implementation of qubits. For

starters, photons presented a natural two-level quantum system with their two differ-

ent polarizations. The binary logical subspace could thus be directly encoded on them.

This made them the first system to be turned into a qubit [8]. Since then, a wide vari-

ety of different platforms has been used to encode qubits, including trapped ions [9],

semiconductors [10] and superconducting qubits [11]. The state of the quantum

system contains the information that can be obtained by measuring. The underlying

physics may vary, but all qubit implementations lead to a similar perspective from

the point of view of information theory. A number of qubits are set up with some

interaction between them. These interactions are the so-called qubit couplings that

allow the qubits to become entangled. Since we need to change the dynamics of the

system to perform computations, the system must include some variables that can be

changed over time. These are the controls of the system and they are necessary to

alter its state. Together, qubits, controls and couplings make up the description of a

qubit array, the basic platform for quantum computing. This thesis aims at studying

controlled qubit arrays based on their architecture, gauging whether the systems are a

passing candidate for universal quantum computing.

Finding the right controls to produce certain dynamics on a controlled quantum

system is in general a difficult task, which scales with the dimension of the system.

Quantum optimal control presents solutions to many problems by using optimization

algorithms [12]. But there is a question that is previous to the one that optimal control

answers: Whether this task is possible at all. Indeed, a system may not have enough

controls or the right type of couplings to perform some dynamics. Controllability is

the study of this very question. A system can be deemed either controllable or not

controllable depending on the available resources, i.e. the number and type of controls

and couplings. If it can be proven that there are enough controls and couplings to

produce the target evolutions, then the system is labelled as controllable. Testing

controllability is an important goal to achieve universal quantum computing, as the

latter one requires a controllable quantum system.

Multiple controllability tests have been developed for a generic quantum system in

the past [13, 14, 15, 16]. Nevertheless, it is difficult to make them suitable for large

systems in the general case, as the dimension of the Hilbert space of a qubit array

scales exponentially with the number of qubits. From a theoretical point of view, the
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dynamics of a qubit array can be described using the bilinear Schrödinger equation.

Control theory is then used to analyse the differential equation and understand, using

notions on Lie groups and Lie algebras, which dynamics are possible. The dimensions

of these algebras scale with the Hilbert space dimension, making it a hard endeavor

to tackle numerically using only classical computers. One of the goals of this thesis is

to extend the applicability of previous tests. To this end, two new tests are defined to

analyse the controllability of quantum systems and, more particularly, qubit arrays.

Chapter 4 presents a controllability test based on graph theory. For every quan-

tum system, it generates a graph that contains the relevant information about the

controllability of the system. Unlike previous methods that had to calculate the

whole dynamical Lie algebra of the system, containing all the information about the

possible evolutions of the system, the graph method avoids the complete calculation

of the algebra while maintaining the relevant information of whether the system is

controllable or not. Computing the complete algebra is very demanding, as small

computational errors may add up quickly for higher dimensions and yield a false

result. This effect comes from the so-called curse of dimensionality. This means

than the graph method can study systems that are larger that the ones that can be

studied by computing the entire Lie algebra numerically. The method had already

been suggested for the study of quantum systems [15, 17], but it came with a big

caveat. The method was not applicable if there were any degeneracies in the energy

gaps of the quantum system, i.e. the differences between energy levels. This is a tough

blow for multipartite systems like qubit arrays, as these types of degeneracies are

bound to happen due to the tensor product structure of the Hilbert space. The main

original result that is contributed to the method is the inclusion of some operations

that allow to circumvent these degeneracies to obtain a meaningful result. This is

extremely important for qubit arrays, as now they can also be studied using the

method. Additionally, the related chapter also includes some five-qubit examples

whose controllability has been determined. In particular, it is proven that the system

in question can still be controlled even by removing some of the local controls present

in the system. Reducing the number of local controls in a qubit array ensures that the

architecture uses fewer resources that must be built in and calibrated, which in turn

makes it easier for the system to be scaled up to a larger number of qubits.

All the aforementioned controllability tests rely on a good theoretical model of a

physical system that is studied either analytically or using classical numerical com-

putations. But the question still remained about whether it would be possible to

determine the controllability of a system by measuring directly on the physical system.

Chapter 5 introduces the idea of a hybrid quantum-classical algorithm that does ex-

actly that. It is based on parametric quantum circuits, which constitute the foundation

of variational quantum algorithms, a revolutionary optimization method based on
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quantum systems [18]. These parametric quantum circuits are sequences of quantum

logic gates, some of which depend on certain parameters. Understanding the different

states that a parametric quantum circuit can produce when varying the parameters

is key to determine whether a variational quantum algorithm can be successful. The

dimensional expressivity of a parametric quantum circuit represents the number of

independent parameters that are present on the circuit, which can help to identify

which gates can be removed from the quantum circuit. To measure the expressivity,

the dimensional expressivity analysis can be used as a hybrid algorithm on a real

quantum circuit, combining quantum measurements and classical computations [19,

20]. The controllability test here presented bridges the gap between the controlla-

bility of quantum systems and the expressivity of parametric quantum circuits. For

every quantum system, it is possible to define a parametric quantum circuit whose

expressivity contains the relevant information to claim if a system is controllable or

not controllable. This unique approach allows to obtain controllability information

from a system itself or rather from a qubit array that can simulate the dynamics of the

original system. Chapter 5 contains the description of this dimensional expressivity

controllability test as well as examples of three- and four-qubit arrays that have been

investigated through classical simulations of their respective parametric quantum

circuits.

These two new controllability tests expand the horizons of the previous methods

and can provide more information about qubit arrays. Nonetheless, the methods

will eventually be unsuccessful for a sufficiently large number of qubits, where com-

putations on the graph will be too demanding and the parametric quantum circuit

will have an impossible depth. But there is still hope for the study of controllability

in larger systems. The solution comes in the form of a modular architecture that

uses smaller controllable systems as the basic building blocks. The cement that hold

these pieces together are tunable couplings, i.e. couplings that can be modified over

time and be understood as a control that is entangling between two or more qubits.

Connecting controllable qubit arrays with tunable couplings results in a larger qubit

array that is also controllable. In Chapter 6, this result is mathematically proven.

Furthermore, the chapter studies the controllability of a 127-qubit system of one of

IBM’s systems based on superconducting qubits [21]—a giant leap when compared to

the dimension of the previous examples. With this modular architecture it is possible

to build larger systems ad infinitum by connecting new subsystems in a multipartite

system. This structure may be beneficial when considering the subsystems in the

partition as quantum processing units that can run some code in parallel to and

then recombine all the information by entangling them with the rest of the quantum

processing units.
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But controllability is not the only problem to tackle in the landscape of quantum

technologies. Every real quantum system is surrounded by an environment that can,

to a greater or lesser extent, interact with it. Interaction with the environment may

lead to dephasing or, in simpler terms, to the loss of the quantum properties of the

system [22]. To use a quantum system effectively, one must implement the desired

dynamics and measure before decoherence destroys the information. A quantum

system must therefore not only be controllable, but capable of fast dynamics as well.

The quantum speed limit serves as a measure of how quickly some evolution can be

implemented on a quantum system. It is the minimal time in which one can find

controls on the system such that the targets are achieved. To ensure that a qubit array

is suitable for universal quantum computing it is also important to gauge how fast it

can perform the quantum operations necessary for computing a quantum algorithm.

Some bounds have been found for the quantum speed limit of particular dynamics,

like state-to-state transfers [23, 24]. In Chapter 3, a quantum speed limit estimator

is presented, which can estimate the minimum required time on a given system for

three different targets: Unitary evolutions, simultaneous state transfers and quantum

gates acting on a subspace of the total system. It does so by defining a partition in the

dynamical Lie algebra of the system into fast and slow directions. The quantum speed

limit is calculated depending on how long the system must evolve using only the drift,

the time-independent part of the Hamiltonian. To showcase the estimator, the method

is used on three illustrative two-qubit examples.

The thesis is structured as follows. Chapter 2 contains the theoretical background

that serves as a basis for the following chapters. It formally introduces the dynamical

study of quantum systems, control of qubit arrays, basic definitions of controllability,

necessary results on Lie algebras and Lie groups, important concepts on parametric

quantum circuits and a comprehensive history and definition of the quantum speed

limit. The central body is composed by Chapters 3-6, which present the main research

of the dissertation. They tackle the study of qubit arrays from three different angles:

Quantum speed limit, controllability and scalable design of qubit arrays. They form

a coherent and multifaceted analysis of qubit arrays, providing some answers to the

questions that are relevant for universal quantum computing. Each central chapter

includes a brief introduction and a summary with the most important results. Finally,

Chapter 7 closes with the conclusions of the thesis and the outlook for the next

problems to solve towards the goal of universal quantum computing.
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2Theoretical background

This chapter is an introduction to widely known concepts and some more obscure

results that provide the basis for the rest of the material in this dissertation. As such,

it does not contain any original material, although the physical explanations and

insights have been tailored to serve as foundations for the following chapters.

The first two sections involve the definition and study of controlled quantum

systems and, more specifically, qubit arrays. We then present basic notions of Lie

groups and Lie algebras that are used for the study of controllability of quantum

systems. Controllability is one of the core problems of this thesis, with Chapter 4,

5 and 6 presenting controllability tests for the study of qubit arrays and Chapter 3

heavily using notions of Lie algebras and controllability. Therefore, it is recommended

to read in detail Sections 2.3 and 2.4. On the other hand, the last two sections present

more specialized knowledge that will be relevant only for specific chapters. Section

2.5 introduces basic ideas of parametric quantum circuits, that will be necessary to

understand the mathematical implementation and physical interpretation of Chapter

5. Finally, Section 2.6 explains the quantum speed limit of a quantum system and it is

related to the last central chapter of this thesis, Chapter 6.

2.1 Control of quantum systems

The first postulate of quantum mechanics claims that the state of an isolated

quantum system S can be represented as a vector |Ψ⟩ in a complex Hilbert space

H [25]. We call the space H the state space related to S. The set of all normalized

states of the system lies on the unit sphere of H, SH. In quantum mechanics, however,

not all of these states represent different physical states. Two normalized states |ϕ1⟩
and |ϕ2⟩ are physically equivalent if and only if | ⟨ϕ1| |ϕ2⟩ | = 1. In particular, this

means that two states |ϕ⟩ and eiφ |ϕ⟩ that are identical up to a phase eiφ represent the

same physical state of a quantum system. Indeed, for any observable represented by

a Hermitian operator Â, the expectation values that we obtain from both states are

identical

⟨Â⟩|ϕ⟩ = ⟨ϕ| Â |ϕ⟩ = ⟨ϕ| e−iφÂeiφ |ϕ⟩ = ⟨Â⟩eiφ|ϕ⟩. (2.1)
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As the previous result is true for every observable Â, both states must represent the

same physical states. The phase eiφ is called a global phase. This reasoning proves that,

while the global phase is something that can be identified in theoretical definitions,

it is simply a mathematical construct that cannot be measured in reality. The global

phase will play an important role in some of the tools that will be used in the current

chapter. In particular, it will be used extensively in the definition of different Lie

algebras. For a complex Hilbert space with dimension d, the set of all physical states

can be represented as the sphere SH up to a global phase, i.e. as a real manifold with

dimension 2(d− 1).

Assuming units such that ℏ = 1, a closed quantum device subject to coherent

dynamics can be described following the time-dependent Schrödinger equation [26]

i
d

dt
|Ψ(t)⟩ = Ĥ(t) |Ψ(t)⟩ , |Ψ(0)⟩ = |Ψ0⟩ , (2.2)

where Ĥ is the Hamiltonian of the system, |Ψ(t)⟩ is the state that describes the system

at time t and |Ψ0⟩ is the so called initial state. Solving the differential equation leads

to

|ψ(t)⟩ = Û(t) |ψ(0)⟩ , where Û(t) := T exp
(
−i
∫ t

0
Ĥ(τ) dτ

)
(2.3)

with T being the time-ordering operator. The operator Û(t) is called the time evolution

operator (or simply evolution operator). Û(t) is always unitary for closed systems,

i.e. those described by Hermitian Hamiltonians. For the case of time independent

Hamiltonians, Equation (2.3) can be simplified into Û(t) = exp(−iĤt). This is an

accurate description the dynamics if assuming that the system is perfectly isolated

from the environment surrounding it. Of course, in reality, there will always be some

interaction between the studied system and its environment up to a certain degree.

Nevertheless, if the dynamics are performed much faster than the decoherence rate,

this can be used as a first approximation to describe multiple physical systems. Among

the systems can be described using Equation (2.2) we can find examples like atoms,

molecules, photons in cavities and even superconducting circuits.

It is also possible to represent the case where the system is in a classical superpo-

sition of different possible states |ψj⟩, i.e. a mixed state, through a density matrix

ρ̂ :=
∑
j λj |ψj⟩ ⟨ψj |. The coefficients λj are the probabilities of finding the system on

the state |ψj⟩. As classical probabilities they must obey the general rules
∑
j λj = 1 and

0 ≤ λj ≤ 1 ∀j. The evolution of the system is given by the von Neumann equation

i
d

dt
ρ̂(t) =

[
Ĥ, ρ̂(t)

]
, ρ̂(0) = ρ̂0, (2.4)

where the square brackets represent the commutator. The case where the density

matrix represents a pure state, i.e. ρ̂ = |ψ⟩ ⟨ψ| will be particularly relevant later on.
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In Equation (2.2) we can see the evolution of the initial state |Ψ0⟩. This is relevant

when we want to analyze what states we can generate on the system at different

points in time. However, bluntly speaking, we are unaware of what happens to the

rest of the Hilbert space under the same dynamics. For a system with Hilbert space

dimension dim(H) = d, we can always find an orthonormal basis {|ej⟩}d−1
j=0 such that

⟨ei|ej⟩ = δi,j and |e0⟩ := |Ψ0⟩. Then, Equation (2.2) represents the dynamics of the

first state of the chosen basis. Similarly, we can generate another d − 1 equations

for the rest of the states |ej⟩. To group these equations, we can define the unitary

matrix

V̂0 :=
(
|e0⟩

∣∣∣ |e1⟩
∣∣∣ · · · ∣∣∣ |ed−1⟩

)
. (2.5)

Compacting all previous equations for the elements of the orthonormal basis {|ej⟩}j ,
the dynamics of all states in the Hilbert space are captured in the equation

i
d

dt
V̂ (t) = ĤV̂ (t), V̂ = V̂0 (2.6)

Note that V̂ (t) is always a unitary matrix for every time t. Indeed, V̂0 is unitary by

definition and V̂ (t) = Û(t)V̂0 for some unitary evolution operator Û(t). Without

loss of generality, we can choose {|ej⟩}d−1
j=0 as the basis for our matrix representation,

achieving the more canonical equation

i
d

dt
V̂ (t) = ĤV̂ (t), V̂ (0) = 1d. (2.7)

V̂0 = 1d. In that case, the time-dependent orthonormal basis V̂ (t) represents the

unitary evolution of the system Û(t). This makes Equation (2.7) extremely useful

to study unitary matrices that can be generated in a quantum system at a time t.

Furthermore, since it is a control equation over the set of unitary matrices, we can use

different tools from Lie groups and Lie algebras, as will be shown in Section 2.3.

Whether we want to evolve the system to a certain state or generate a particular

unitary matrix, it is useful to manipulate the Hamiltonian Ĥ(t) over time to achieve

the desired target. A common approach to this goal is the inclusion of external controls

that can be varied over time, such that the Hamiltonian from Equation (2.2) can be

described as

Ĥ(t) = H0 +
m∑
j=1

uj(t)Ĥj . (2.8)

The time-independent operator Ĥ0 is commonly referred to as the drift. The real-

valued functions uj(t) represent the controls of the system, which are defined to be

piece-wise constant. The operators Ĥj are their associated control Hamiltonians. Note

that Equation (2.8) only explores systems where the controls and control Hamiltonians

are linearly coupled in the total time-dependent Hamiltonian Ĥ(t). The controls uj(t)
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can represent different physical magnitudes, from electromagnetic fields [27, 28] to

mechanical vibrations [29].

2.2 Control of qubit arrays

2.2.1 Model of a qubit

The theory of classical information and classical computing is built upon the

concept of bits. A bit is the minimal unit of information and it can take two values:

Either 0 or 1. A quantum bit or qubit acts as a two-level quantum system with two

logic states commonly labeled |0⟩ and |1⟩. This qubit is also subject to the laws of

quantum mechanics and is thus able to be in any superposition α |0⟩ + β |1⟩ with

α, β ∈ C and |α|2 + |β|2 = 1. Qubits are the minimal unit in quantum information and

as such they can be understood as the building blocks of a platform that is capable to

processing quantum information or carrying out quantum computations.

In practice, a qubit can be physically implemented in multiple ways. For example,

photons were one of the first systems to be used theoretically as qubits, due to the

two possible polarizations [8]. Any spin-1
2 particle is also a natural candidate for a

two-level quantum system. In reality, however, it is common to use many-level systems

and then restrict the dynamics to a two-level subspace, the so-called "logical space". In

this manner we can use the quantized modes of electromagnetic fields inside cavities

as harmonic oscillators [30], the electronic state of ions trapped in a lattice [9],

semiconductors [31, 10] or even superconducting circuits that can be modelled as

anharmonic oscillators [11]. In the present work, I will restrict myself to speaking

about theoretical qubits in the form of perfectly isolated two-level systems. With these

assumptions the constant local Hamiltonian of a qubit can be easily described as

Ĥqubit = −ω2 σ̂z (2.9)

where ω is the natural frequency between the two energy levels and σ̂z is the Pauli

z matrix. If we integrate Equation (2.2), the state of the system with initial state

|Ψ0⟩ = α |0⟩+ β |1⟩ at t = 0 under the Hamiltonian (2.9) can be described as

|Ψ(t)⟩ = e−i ω
2 σ̂z t |Ψ0⟩ = e−i ω

2 tα |0⟩+ ei
ω
2 tβ |1⟩ . (2.10)

We can visualize the evolution by plotting the state of the two-dimensional system

onto a Bloch sphere (consult e.g. section 1.2 from [32]). Looking at the curve γ(t) that

|Ψ(t)⟩ traces over the sphere we see that it is a horizontal circumference with constant

polar angle θ = arctan( |β|
|α|). This is to be expected, as it represents the precession

of the initial state |Ψ0⟩ around the Z-axis, the direction established by Ĥqubit. The

evolution curve γ(t) is, however, a closed line that does not cover the whole Bloch
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Figure 2.1: Bloch sphere representation of evolution of the state |ψ⟩ = 2
√

2
3 |0⟩+ 1

3 |1⟩ under
different Hamiltonians Ĥ. (a) Evolution of |ψ⟩ with Ĥ proportional to σz. (b)
Evolution of |ψ⟩ with Ĥ proportional to σx.

sphere. There are many states that the system will never take, no matter the chosen

final time. To achieve states out of this circumference, it is necessary to change the

Hamiltonian of the system, for example by adding an external control that we can

modify over time.

Following Equation (2.8) we may add a control Hamiltonian σ̂x, leading to a total

Hamiltonian

Ĥ(t) = −ω2 σ̂z + u(t)σ̂x (2.11)

that would allow us to modify the polar angle θ. This behaviour can be visualized in

Figure 2.1. The u(t)σ̂x term induces a rotation around the X axis. In the limit where

||u(t)σ̂x|| ≫ ||ωσ̂x|| the Hamiltonian Ĥ(t) is approximately proportional to σ̂x. We

can implement the evolution to a chosen polar angle and then set the control u(t) to

zero to continue with a precession around the Z axis. With this set up, it is trivial to

see that for any state |Ψ⟩ ∈ H there exist a final time tf ≥ 0 and a real control u(t)
such that |ψ(tf )⟩ = |ψ⟩.

2.2.2 Model of a qubit array

We consider a qubit array to be any collection of qubits that can be connected via

some physical interactions or couplings. Similarly as before, a qubit array may also

include controls of the system that allow us to alter the dynamics in the system. A

typical Hamiltonian for an N -qubit array with m controls can be written as

Ĥarray(t) =
N−1∑
j=0

Ĥ
(j)
qubit + Ĥc +

m∑
k=1

uk(t)Ĥk (2.12)

where Ĥ(j)
qubit are the local Hamiltonians of the qubits, Ĥc are the qubit couplings

and uk(t) are the controls coupled to the operators Ĥk. This model includes the

2.2 Control of qubit arrays 11



ω0 ω1 ω2
X̂(1)X̂(2) X̂(2)X̂(3)

X̂(1) X̂(2)

Local control

Control operator

Qubit frequency

Coupling operator

Qubit

Two-qubit coupling

Figure 2.2: Example of a three-qubit array (cf. Equation (2.15) ).

Hamiltonians of the free qubits, which are decoupled from the rest of the operators.

The couplings Ĥc contain any time-independent interaction between the qubits, which

in many cases will be two-qubit couplings. The type of control operators Ĥk determines

how the controls are coupled to the system. Relevant examples include local controls

addressing a single qubit or dynamic couplings, whose amplitude can be varied over

time, that affect multiple qubits. An example of a qubit array can be found in Figure

2.2.

The Hilbert spaceHarray of an N -qubit array has dimension dim(Harray) = 2N and

can be decomposed as the tensor product Harray = H⊗N
2 , with H2 a two-dimensional

Hilbert space. To represent operators that act non-trivially in only one qubit we will

use the following notation

Ân := 12 ⊗ ...⊗ 12⊗ Â︸︷︷︸
n-th position

⊗12 ⊗ ...12. (2.13)

Note that the number of qubits N is not explicitly specified for Ân and should be

determined from the context of the system on which the operator is used. Any

operation acting non-trivially in a single qubit is called a local operation. By definition,

every local operation is non-entangling. In some cases we will be simplifying the Pauli

matrices nomenclature as

X̂ := σ̂x; Ŷ := σ̂y; Ẑ := σ̂z. (2.14)

For example, the system displayed in Figure 2.2 has a related Hamiltonian

Ĥarray(t) =
2∑
j=0
−ωj2 Ẑ

(j) +
∑
k=0,1

X̂(k)X̂(k+1) +
∑
l=1,2

ul(t)X̂(l). (2.15)

The terms in the right-hand side of the equation represent the local Hamiltonians, the

qubit couplings and the controls, respectively.
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2.2.3 Types of couplings and control

So far we have worked with a very general definition of the couplings and the

controls in our system. Theoretically, there are no restrictions to the shape that these

operators might take apart from the ones given by basic quantum mechanics. In

practice, however, there are some configurations that are more common than others,

and thus it makes sense to take them as common examples to study as quantum

systems. In the following, we showcase some of the different types of couplings and

controls that can be included in qubit arrays.

In principle, every qubit could interact with every other qubit in an array, which

would lead to very complex interactions in the coupling operator Ĥc, which are in

reality hard to engineer. In many cases, however, some approximations might be taken

to neglect the lesser contributions, which leads to nearest-neighbour interactions, i.e.

two-qubit couplings that only affect adjacent qubits in a line or lattice. An example

of this case can be seen in the one-dimensional Ising model for an array of spin-1
2

particles

Ĥ = −
∑
j

Jj,j+1Ẑ
(j)Ẑ(j+1) − µ

∑
k

BkẐ
(k), (2.16)

where Jj,j+1 are the qubit interactions, µ is the magnetic moment and Bk is the

magnetic field at the node k. If we neglect any other degree of freedom, each of these

spins can be understood as a qubit that only couples with its neighbours. More distant

interactions are neglected, leaving behind only nearest-neighbor couplings. Two-qubit

couplings are one of the most common types of interaction in most models. Couplings

of higher degree are still possible and even preferred in certain occasions. In fact,

there exist some quantum algorithms that greatly benefit from having direct access to

gates that simultaneously address more qubits, like three-qubit quantum gates [33,

34]. In practice, however, couplings of three qubits or more are more sophisticated

and difficult to implement, and are usually associated with weaker interactions.

So far we have only shown examples where the qubit couplings were time-

independent. It is also possible to include couplings that can be varied over time.

These are the tunable couplings [35, 36, 37], which are useful for multiple reasons.

First, if they can be set to zero and non-zero values, they can essentially be used to

isolate a qubit from the the network or to connect it back to generate entanglement

between it and the rest of the array. Second, if their amplitude can be modified over

time, we can treat them as if they were a non-local control that is able to directly

generate entanglement between two qubits.

Controls can also come in multiple shapes. For example, if we are able to modify

the magnetic fields Bk in Equation (2.16) over time, we could treat every Bk(t) as a

control with µẐ(k) as their related control Hamiltonian. Since they act in only one

2.2 Control of qubit arrays 13



qubit (spin) at a time, they would be classified as local controls. If all the controls are

the same, i.e. Bj(t) = Bk(t) =: B(t) for all k and j, then we can rewrite Equation

(2.16) with B(t) as a control and
∑
k Ẑ

(k) as its associated control Hamiltonian.

Note that, similar to tunable couplings, the control operator
∑
k Ẑ

(k) corresponds

to a control that acts on multiple qubits simultaenously. Unlike tunable couplings,

however, it is not able to generate entanglement between qubits.

In this dissertation we will mainly focus on qubit arrays with time-independent

two-qubit couplings and local controls to showcase our results. However, most of the

tools that have been developed could in principle either work directly or be expanded

to the case of more general qubit couplings and controls.

2.2.4 Universal quantum computing

Quantum computing is the science in charge of studying, designing and imple-

menting computations using some properties that are unique to quantum mechanics.

Already theorized in the early 1980s [38, 39], quantum computing opens up the road

for quantum algorithms that would be able to solve certain problems more efficiently.

These include, among many others, Shor’s factorization algorithm [6, 40] and Grover’s

search algorithm to scan databases [5]. Another noteworthy development is the more

modern variational quantum eigensolver, a hybrid quantum-classical algorithm capa-

ble of simulating molecular electronic structures [41, 42]. Quantum technology has

come a long way since quantum devices were used to perform computations. But it

was only in 2019 when the first time quantum supremacy was claimed [43], i.e., the

first time a problem was allegedly solved using a quantum computer more efficiently

than a classical algorithm. While the validity of this so-called supremacy has been

put under review in the light of recent results [44], other teams have kept showing

possible quantum advantages using different systems [45, 46, 47].

To harness the true power of quantum computing, it is not sufficient to separate

operations on the qubits. State superposition is a useful property to have in our

system, but the effect that makes a real difference in the processing capability of a

quantum computer is actually entanglement. We can classically store the information

of a separable N-qubit state in 27N (using double precision floats with 26 bits per real

number). Indeed, we only need 2 real parameters (the relative amplitude between

the states |0⟩ and |1⟩ and the local phase) to contain the information of the state of a

single qubit. For N qubits, this results in 2N ·26. For a general N-qubit entangled state

we would need to represent each and every state in the Hilbert space of the system,

which is isomorphic to C2N . Therefore to encode a general entangled state we require

an astounding 27+N , a quite significant difference! It is quantum entanglement that
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makes possible many quantum algorithms and that allows us to use qubits as an

effective media for storing information.

Ideally, a quantum computer should be able to implement every possible operation

and algorithm or, in other words, capable of performing universal quantum comput-
ing [39]. This is basically the equivalent of a quantum Turing machine [48], and a

physical implementation would give researchers everywhere the possibility to perform

much more complex simulations and computations. There are some conditions for

universal quantum computing that were already compiled in 2000 by the American

physicist David P. DiVincenzo [7].

Definition 2.2.1 (DiVincenzo’s criteria). The following points are required for the
implementation of quantum computation:

1. A scalable physical system with well-characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state, such as
|000...⟩

3. Long relevant decoherence times, much longer than the gate operation time

4. A "universal" set of quantum gates

5. A qubit-specific measurement capability

Apart from these five requirements, there were two additional properties relevant

only for quantum communication. Since quantum communication and its protocols

are not the main focus of this dissertation, they have been left out from the previous

definition. Here we will focus on three of the five listed bullet points. They are

discussed in more detail in the current section, as they bring up important concepts

that are the very foundation of the motivation of the upcoming chapters.

The first point involves two different aspects. First, the system should be scalable,

i.e. its set-up should be suitable for a larger number of qubits too. If a design requires

a lot of resources for just a few qubits, then it would not be possible to repeat a

similar architecture for a large number of qubits. Second, it is necessary to use well-

characterized qubits, i.e. the dynamics and interactions with every qubit should be

known. This includes the local qubit Hamiltonians, every type of coupling with other

qubits and the environment and the controls that are use to modify the system’s state.

While this is a very demanding task, in this work we will approach always from a
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theoretical point of view, defining the Hamiltonians for every example from scratch

and essentially avoiding this issue. To keep in touch with the applied side of physics,

however, we always try to use models that are close to real devices.

The third criterion revolves around the relation between the system’s decoherence

times and the duration of the operation on the system. We know that, in reality, every

quantum system has some sort of interaction with its environment. The system’s

dynamics can then no longer be defined using unitary operators, as the states will

start to deteriorate due to the decoherence and information loss. However, if these

effects happen at a time scale that is much larger than the operations we want to

perform, it is still possible to treat the system as if it was closed. We can achieve this

in two different ways. The first one is to find devices that are well shielded against

decoherence, such that more operations can be implemented. For example, circular

states of Rydberg atoms are one of the platforms being used as a quantum system

because they are protected against electric field perturbations, allowing them to have

longer decoherence times [49]. The second precaution we can take is to find fast

operations that we can implement in our qubits. It is not useful for a system to have

very long decoherence times if the only operations it can carry out are in the same

time scale. Conversely, a noisy system with short decoherence times may still be used

if the gates it can implement are much faster. The minimum time in which a certain

state is reached or a unitary operation performed is the quantum speed limit that will

be the main focus of Section 2.6. Finding the quantum speed limit of depending on

the different type of couplings and controls is a valuable piece of information that

will have an impact on the kind of algorithms and operations that can be used in the

studied device.

Finally, the fourth point speaks about the gates that the system can run. Similar to

the classical Boolean logic gates, the quantum logic gates or simply quantum gates are

all the different unitary operations we can run on a qubit array. The term "universal"

refers to a set of quantum gates that can approximate any other quantum gate by

performing a finite sequence of the gates in the universal set (cf. Section 1.3 of [32]).

From a more abstract level, this also implies that the qubit array should be able to

perform any unitary gate. As we will see in Section 2.3, the gates generated by an

universal set include all the possible entangling gates that can be thought of. This

question is answered by controllability, a property that is presented in Section 2.4.

2.3 Lie groups and Lie algebras in quantum systems

In this section we present some of the basic algebra notions that are required for

the study of controllability of qubit arrays. In particular, the structure of Lie groups
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and Lie algebras are at the core of the mathematics that are necessary to describe the

dynamics of a system evolving under Schrödinger’s equation. The base mathematical

concepts have been taken from Hall’s textbook [50], while the controllability notions

are presented in d’Alessandro’s book [14].

2.3.1 Lie groups

Here we present the general definition of a Lie group, that will be useful to

understand some of the properties that will be used in future arguments. First, it is

necessary to remember what a manifold is, as it is a notion that will appear multiple

times in different chapters.

Definition 2.3.1 (Manifold). An n-dimensional manifold M is a topological space
where each point has a neighborhood that is homeomorphic to an open set of the vector
space Rn.

A differentiable manifold is a manifold where, for every point p, the local homeomor-
phism fp : M→ Rn is differentiable.

We have already mentioned that the set of normalized states on a Hilbert space

of dimension d, SH, is a 2(d − 1)-dimensional manifold. Other relevant examples

of manifolds include the n-dimensional torus Tn = Rn/Zn and the group of unitary

n × n matrices U(n). We can equip the latter one with a useful stronger structure,

which brings us to the next core concept of this subsection.

Definition 2.3.2 (Lie group). A Lie group G is a smooth manifold (i.e. infinitely
differentiable) equipped with a binary operation f(a, b) 7→ a · b that follows the structure
of a group:

• G is closed under f : a · b ∈ G ∀a, b ∈ G.

• G includes the identity element: ∃e ∈ G | e · a = a · e = a ∀a ∈ G.

• G includes inverse elements: ∀a ∈ G ∃a−1 | a · a−1 = a−1 · a = e.

• f is associative: (a · b) · c = a · (b · c) ∀a, b, c ∈ G.

There are many different Lie groups that are relevant for multiple ares of physics.

For the topic at hand, however, we will restrict ourselves to only two Lie groups: the

unitary group U(n) and the special unitary group SU(n) with matrix multiplication
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as their group operation. Both U(n) and SU(n) are subgroups of general linear group

Gl(n,C), the group of complex invertible n× n matrices [50]. They are described as

follows:

• U(n): the group of all matricesMn×n that are unitary.

• SU(n): the group of all matricesMn×n that are unitary and have determinant

equal to 1.

The dimension of a Lie group can be determined by the number of real parameters

needed to describe any element in the group. Let us take U(n) ⊊ Gl(n,C) as an

example. A unitary matrix Û of dimension n×n needs at most n2 complex parameters,

i.e. 2n2 real ones. To be unitary, it also needs to fulfill Û Û † = Î. From this condition

we can write a total of n2 constraints, which implies that the real dimension of U(n)
must be dim(U(n)) = 2n2 − n2 = n2. For the case of SU(n) one ought to add the

determinant constraint, det(Û) = 1, which leads to dim(SU(n)) = n2 − 1.

Unitary matrices are extremely important in the description of quantum mechanics.

Indeed, the solution of Equation (2.2) can be expressed in terms of a unitary evolution

operator Û(t, t0) such that

|Ψ(t)⟩ = Û(t, t0) |Ψ(t0)⟩ . (2.17)

The operator Û(t, t0) is also by definition the solution to Equation (2.7). By analyzing

all the different possible evolution operators Û(t, t0), we can better understand the

different dynamics that we can induce in the system. To study this set, it is necessary

to introduce the notion of Lie subgroups.

Definition 2.3.3 (Lie subgroup). Given a Lie group G, a Lie subgroup H is an analytic
submanifold of G (i.e. a differentiable manifold with analytic local homeomorphisms)
that is also a subgroup of G with its inherited structure.

For example, U(n) is a Lie subgroup of Gl(n,C), whereas SU(n) is a Lie subgroup

of both U(n) and Gl(n,C). Similarly, the set of all unitary evolutions Û(t, t0) that

can be created for any finite time t on a system form a Lie subgroup G ∈ U(n) [51].

In other words, the set of solutions of Equation (2.7) is a submanifold of U(n) that

contains the identity. To know which evolution operators are possible in our system

(i.e. which Û(t, t0) are contained in the subgroup G) we can study the different

directions within the manifold U(n) in which our system can evolve.
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2.3.2 Lie algebras

Given a Lie group A, we can define the set of infinitesimal transformations under

A, a vector space denoted as A. The set A is a Lie algebra, the properties of which are

as follows.

Definition 2.3.4 (Lie algebra). A Lie algebra g over a field F is a vector space over F
equipped with a binary operation [·, ·] : g × g → g called a Lie bracket such that the
following conditions are satisfied:

• The Lie bracket it is bilinear

[x+ y, z] = [x, z] + [y, z], [x, y + z] = [x, y] + [x, z], (2.18)

[αx, y] = [x, αy] = α[x, y], ∀α ∈ F .

• The Lie bracket is null over the same element

[x, x] = 0, ∀x ∈ g (2.19)

• It satisfies the Jacobi Identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (2.20)

The Lie algebras defined by the Lie groups Gl(n,C), U(n) and SU(n) can be

defined as sets of n× n matrices with commutators as their Lie bracket operations.

It is a fact that for every Lie group there exists a related Lie algebra [50]. For the

case of finite dimension, the converse is also true in virtue of Lie’s third theorem [52].

Since Lie algebras are also vector spaces, their dimension is naturally defined as the

maximum number of linearly independent elements that can be simultaneously found.

The dimension of a Lie algebra corresponds to the dimension of their associated Lie

group.

Similarly to Lie subgroups, one can define Lie subalgebras in the following man-

ner:

Definition 2.3.5 (Lie subalgebra). Given a Lie algebra g, a vector subspace a ⊆ g that
is also closed under Lie brackets is called a Lie subalgebra.
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Name Lie groups Associated Lie algebras dim
- Notation Definition Notation Definition -

General
linear
group

Gl(n,C) n × n complex in-
vertible matrices

gl(n,C) n×n complex ma-
trices

2n2

Unitary
group

U(n) n×n complex uni-
tary matrices

u(n)
n × n skew-
Hermitian matri-
ces

n2

Special
unitary
group

SU(n)

n × n complex
unitary matrices
with determinant
equal to 1

su(n)
n × n traceless
skew-Hermitian
matrices

n2 − 1

Table 2.1: List of relevant Lie groups and their associated Lie algebras with their respective
real dimensions.

Let G be a Lie group and g its associated Lie algebra. Then, for every Lie subgroup

S ⊆ G there exists a Lie subalgebra s ⊆ g such that s is the associated Lie algebra of

S. Section 2.4 explains how to gather information about the subgroup of possible

evolution operators of Equation (2.7) by studying the associated Lie subalgebra.

A different structure that we can define in Lie algebras is an ideal, which is defined

as follows:

Definition 2.3.6 (Ideal). Let g be a Lie algebra. A vector subspace I ⊆ g is called an
ideal if

[x, y] ∈ I, ∀x ∈ I, ∀y ∈ g. (2.21)

A Lie algebra without any proper ideals is called simple.

For example, the Lie algebra of SU(n), su(n), has only two ideals, {0n×n} and

itself [53]. Therefore su(n) is simple for every positive integer n. Conversely, the Lie

algebra of U(n), u(n), can be decomposed as u(n) = span{i1n}⊕ su(n). So su(n) is a

proper ideal of u(n), which implies that u(n) is not simple. These concepts will play a

major role in the proof of the main theorem in Chapter 6.

2.3.3 Relation between Lie algebras and Lie groups

Table 2.1 shows the relations of the groups and algebras that will be the core of

this dissertation.

As the set of infinitesimal transformations, a Lie algebra can also be used to

represent the tangent space of the Lie group at a given point. Figure 2.3 shows this

relation for the tangent space around the identity Î. For the case of Lie groups and
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Figure 2.3: Visual relation between the Lie group SU(n) and its tangent space, the Lie algebra
su(n). The exponentiation and logarithm operations can take one element from
the tangent plane to the group manifold and vice versa, respectively. Figure
adapted from [54].

algebras in a matrix representation the exponential map provides a method to link

the elements in the algebra to the elements in the group.

As an example, if iÂ is a skew-Hermitian operator (i.e. contained in u(n)), then

it is easy to prove that eiÂt is a unitary operator for every t. The Lie algebra u(n)
can therefore be seen as the space tangent to all the curves {eiÂt | t ∈ R}. For t > 0,

we can understand these curves as the time evolution operators Û(t) generated by a

time-independent Hamiltonian −Â. The set of all tangent vectors of these curves eiÂt

form the tangent space of U(n), i.e. the Lie algebra u(n).

Conversely, a Lie group G with a matrix representation can also be generated in

terms of its Lie algebra g as follows:

G = eg = {ea1ea2 · · · eam | ∀aj ∈ g, 0 ≤ j ≤ m, m ∈ Z∗, }. (2.22)

Therefore, the exponential map takes elements from the Lie algebra and converts

them into elements of the Lie group. The set eg defined in Equation (2.22) is defined

as the Lie group generated by the Lie algebra g. This is always well defined for Lie

algebras g of skew-Hermitian matrices, i.e. Lie subalgebras of u(n). The logarithmic

map can also be used to take an element Û in the group manifold to an element
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−iB̂ := log(Û) in the tangent space. Analogously to the logarithm of complex

numbers, the logarithmic map is in principle not uniquely defined, but we can always

find a neighbourhood around any V̂ ∈ U(n) in which the pair of the exponential and

logarithmic maps are bijections. Here −iB̂ represents the direction in the manifold

of unitary operators that a curve e−iB̂t would have to follow to achieve the unitary

evolution Û in exactly t = 1 units of time. Note that this method of reaching a certain

point in the manifold is not unique, as one can write a sequence of finite curves with

different directions, much like the expression found in Equation (2.22). For example,

in the case of a single qubit, a rotation gate R̂Y (π2 ) := exp(−iπ4 σ̂y) can be reached by

following the direction −iσ̂y on the Lie algebra. But we can also decompose the gate

into a product R̂Y (π2 ) = R̂X(−π
2 )R̂Z(π2 )R̂X(π2 ), which means that one can obtain the

same result of the gate R̂Y (π2 ) by following the more convoluted path given by the

directions −iσ̂x, −iσ̂z and iσ̂x in sequence.

2.3.4 Generating a basis for a Lie algebra

As previously mentioned, Lie algebras have the structure of a vector space. It

is therefore useful to find a basis of the algebra A generated by a set of elements

{A1, A2, ...An}, which is denoted as

A = Lie (A1, A2, ...An) . (2.23)

While there is no unique basis, finding an arbitrary basis A is a simple method for

determining the algebra dimension dim(A), as the cardinality of every basis should

be identical. One method to find an orthonormal basis is as follows [14]:

1. Orthonormalise the elements of the initial set {A1, A2, ...An} into a maximal set

of linearly independent orthonormal elements {Ã1, Ã2, ...Ãm} (e.g. by running

the Gram-Schmidt algorithm).

2. Define {Ã1, Ã2, ...Ãm} as the elements of depth 0.

3. Set p = 1.

4. Iterate over the next steps:

a) Compute the Lie brackets Ci,j = [B̃j , Ãi] where Ãi are the elements of

depth 0 and B̃j the elements of depth p− 1. The vectors Ci,j are potential

candidates for elements of depth p.

b) Orthonormalise the set of vectors {Ci,j} with respect to the set of elements

of depth less or equal than p− 1.
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c) The new orthonormal nonzero vectors B̃k obtained in the previous step are

considered the elements of depth p from now on.

d) Stop the algorithm if the set of elements of depth p is empty (i.e. no new

linearly independent vector was found through Lie brackets).

e) Set p← p+ 1

As shown in Table 2.1, u(n) has a finite dimension for any positive integer n. This

implies that any subalgebra A ⊆ u(n) must also be finite and the method described

above must end in a finite number of steps. In particular, for the case of matrices in

u(n) or su(n) the method can be stopped if the dimension (i.e. the number of linearly

independent vectors found) reaches n2 or n2 − 1. These two results imply that the

generated algebras are u(n) or su(n), respectively.

2.4 Controllability of closed quantum systems

Given a quantum system with linearly coupled controls as defined in Equation

(2.8), one may wonder what dynamics can be implemented. For example, is it possible

to drive the population from a certain initial state to any final state? Or perhaps is it

feasible to map an orthonormal basis of the Hilbert space into any other orthonormal

basis of the Hilbert space at any point in time? This is the question that controllability

answers in a dichotomous manner. The material covering types of controllability

and their related tests described in this section has been extracted from chapter 3

in [14].

Depending on the types of dynamics, we can define multiple types of controllability.

For example, if we are interested in the electronic state of an atom or molecule we

might want to ensure that we have controllability over all the different electronic

states that we can generate starting from the ground level. But if we are looking at a

qubit array we might be more interested in studying which quantum logic gates our

system can perform. These different types of controllability and their relevance in

quantum physics are explained in detail in Subsection 2.4.1.

Taking Equation (2.8) as the model of a closed system, if we impose no restriction

on the shapes of the m controls uj(t) all the relevant information is contained in its

Hamiltonian Ĥ(t) (cf. Eq. (2.8)). Since the controls uj(t) are dummy functions in the

general case, this means that the controllability of a system can be determined simply

by the time independent drift Ĥ0 and the control operators Ĥj (with 1 ≤ j ≤ m).
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2.4.1 Types of controllability

This section focuses exclusively on systems with a Hamiltonian defined by Equation

(2.8) composed of a linear combination of a drift and some control operators linearly

coupled to some controls. Previously, we have seen two different versions of the

Schrödinger equation: one in Equation (2.2) which normalized vectors |ψ(t)⟩ of the

system’s Hilbert space H and a second one in Equation (2.7) using the set of unitary

operators V̂ (t) as the domain of possible states.

Before we look into controllability it is an interesting question to ask which elements

(either |ψ(t)⟩ for Equation (2.7) or V̂ (t) for Equation (2.7)) can be reached in the

system before a certain time T ≥ 0. Given a controlled system following Equation

(2.7) starting in an initial state |ψ(t = 0)⟩ = |ϕ0⟩ we define the set of reachable states

at time T , R|ψ⟩(T ), as

R|ψ⟩(T ) =
{
|χ⟩

∣∣∣ ∃u1, ...um ∈ UR, ∃t ≤ T : |ψ(t)⟩ = |χ⟩
}
. (2.24)

Note that the previous definition depends implicitly on the description of our system,

which includes both the Hamiltonian Ĥ(t) with its controls uj(t) and the initial state

of the system |ϕ0⟩. From a physical perspective, the set R|ψ⟩(t) simply represents all

the states that the system can reach at times before or equal to T when it is initialized

in the state |ϕ0⟩. In other words, this is the set of all states Û(t̃) |ϕ0⟩ that can be

generated including all the different unitary evolutions Û(t̃) at a time t̃ ≤ T that can

be realized given the definition of the Hamiltonian Ĥ(t). For this reason, R|ψ⟩(T ) is

known as the manifold of reachable states at a time T . A state |χ⟩ is called reachable

for a time T if it belongs to the manifold R|ψ⟩(T ).

Extending the definition to an arbitrarily large but finite time, we get R|ψ⟩ :=⋃
T≥0R|ψ⟩(T ), the so-called manifold of reachable states. This includes all the states

that can be implemented in the system, without taking into account the required time.

In a closed system, this manifold is evidently a subset of the set of normalized states,

the unit sphere SH.

Alternatively, it is possible to use Equation (2.7) to define an analogous version of

this reachable set for the case of unitary operations, RV̂ (t). This set is defined as

RV̂ (T ) =
{
Ŵ
∣∣∣ ∃u1, ...um ∈ UR, ∃t̃ ≤ T : V̂ (t̃) = Ŵ

}
. (2.25)

RV̂ (T ) is also implicitly dependent on Ĥ(t) and the initial condition V̂0. If we

understand V̂0 as an initial orthonormal basis, the set RV̂ (T ) represents all the

different orthonormal bases into which we can transform the original one at a time

t ≤ T . In the particular case where V̂0 = 1, RV̂ (T ) is called the set of reachable
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evolution operators, because it contains all the different operators Û(t) that our system

can implement for a certain t ≤ T . This manifold RV̂ (T ) is a submanifold of the

Lie group U(d), where d is the Hilbert space dimension of the system. Similarly, an

evolution operator is reachable at a time t ≤ T if it belongs toRV̂ (T ). Taking the limit

towards arbitrarily large time, we can once again reach the manifold of reachable

evolution operators, RV̂ :=
⋃
T≥0R|ψ⟩(T ). Alternatively, the elements of RV̂ will also

be referred to as the feasible or possible (unitary) evolutions of the system in question.

In a closed system these evolutions are always unitary. Thus RV̂ is a subset of the Lie

group U(n), with n the Hilbert space dimension of the system. Furthermore, for every

closed system it can be proven that RV̂ is also a Lie subgroup of U(n) [55, 56].

Now that the notions of reachable spaces have been introduced, we can ask if the

sets R|ψ⟩ and RV̂ are maximal for a given system with Hamiltonian (2.8). Note that

the reachable sets are defined in terms of the dynamics described by Equations (2.8)

and (2.7), respectively, but the system’s Hamiltonian remains the same in both cases.

If R|ψ⟩ = SH, all pure states in the Hilbert space of the system can be reached at

(possibly different) final times. Similarly, if RV̂ = U(n), then all unitary operators can

be implemented as evolution operators on the system at (possibly different) final times.

Based on these two separate cases, there exist two different types of controllability,

defined below.

Definition 2.4.1 (Pure-state controllability). A quantum system with Hamiltonian
(2.8) evolving under Equation (2.2) is pure-state controllable (PSC) if for any initial
state |ϕ0⟩ ∈ H and any final state |ϕf ⟩ ∈ H there exist a series of controls uj(t) and a
final time tf ≤ 0 such that the state of the system |ψ(t)⟩ verifies

|ψ(t = 0)⟩ = |ϕ0⟩ and |ψ(t = tf )⟩ = |ϕf ⟩ .

Pure-state controllability is obviously linked to the aforementioned case of R|ψ⟩ =
SH. Since the possible unitary evolutions in the system (i.e. elements of RV̂ ) form

a group for closed systems, it is sufficient to prove that given a single initial state

|ψa⟩ there exist different controls uj(t) to reach all the different states |ψf ⟩ in the

Hilbert space. Indeed if we have two states |ψf ⟩ and |ψb⟩ connected to the same initial

state |ψa⟩ by some available unitary evolutions in in the system, i.e. |ψf ⟩ = Ûa,f |ψa⟩
and |ψb⟩ = Ûa,b |ψa⟩, then the states |ψf ⟩ and |ψb⟩ are also connected by a unitary

evolution |ψf ⟩ = Ûb,f |ψb⟩ := Ûa,f Û
−1
a,b |ψb⟩. The element Û−1

a,b must belong to the

Lie group RV̂ , and thus the evolution Ûb,f = Ûa,f Û
−1
a,b is one of the possible unitary

evolutions of the system. Therefore, a system is pure-state controllable if and only

if the manifold of reachable states is maximal, R|ψ⟩ = SH, a condition that is not

dependent on the choice of the initial state of the system. Physically, a system with
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pure-state controllability may be useful because, if the initial state is known, there

are always controls that allow us to prepare the system into any chosen state. For

example, we could decide to populate a certain level of the electronic state of an

atom or initialize a qubit array in a certain state before performing some quantum

logic gates. These operations are sometimes referred to as state transfers, since the

population in the initial state is transferred or evolved into the selected final state.

A relevant question to pose is whether it makes a difference if we take into account

global phases for the case of pure-state controllability or not. According to definition

2.4.1 a system is PSC if there exists a unitary evolution connecting any two states

in the Hilbert space. However, one could ask if, for any pair of states |ψ0⟩ and |ψf ⟩,
there exists an evolution Û0,f such that eiϕ0,f |ψf ⟩ = Û0,f |ψ0⟩ for some phase ϕ0,f ,

a condition that has been referred to as equivalent-state controllability. This would

be sufficient in terms of quantum mechanics, as the term eiϕ0,f is a global phase

with no physical meaning. It is evident that pure-state controllability would imply

equivalent-state controllability with trivial phases ϕ0,f = 0. But in fact, it has been

proven that if a system is equivalent-state controllable, it is also pure-state controllable

in general [14]. Thus both definitions are equivalent. Therefore the definition of

pure-state controllability is still useful from a physical point of view, as the conditions

required to reach all normalized vectors |χ⟩ in the Hilbert space are the same as the

ones needed to reach all physical states {eiϕ |χ⟩ |ϕ ∈ [0, 2π)}.

If we have a look at the reachable set of Equation (2.7), we can associate a new

type of controllability to the case where RV̂ (T ) is maximal. In other words, it is useful

to define a label for a system with certain controls that is able to implement every

possible unitary operator. However, as previously discussed, two evolutions Û and

eiθÛ are equivalent for every θ ∈ R. The next definition encompasses this property.

Definition 2.4.2 (Operator controllability). A quantum system with Hamiltonian (2.8)
and Hilbert space dimension n evolving under Equation (2.7) is operator controllable
if for any unitary operator Ûtgt ∈ H there exist a series of controls uj(t), a final time
tf ≤ 0 and a phase angle θ ∈ [0, 2π] such that the state of the system |ψ(t)⟩ verifies

Û(t = 0) = 1n and Û(t = tf ) = eiθ Ûtgt.

Unlike the previous case of state manifolds, we may have systems where we can

reach any unitary evolution up to a global phase yet it may be impossible to implement

certain unitary evolutions when their exact global phase is taken into account. This

may not be as surprising as one may expect at first sight. Indeed, we have already

mentioned that the reachable set RV̂ (T ) is always a Lie subgroup of U(n) (with n the
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Hilbert space dimension). As SU(n) is a proper Lie subgroup of U(n), it may happen

that RV̂ (T ) ∼= SU(n) ⊊ U(n). It is easy to see how SU(n) describes every unitary

evolution up to a global phase. Indeed, for any unitary evolution Û ∈ U(n) the unitary

operator ˆ̃U := exp(−det(Û)
n )Û is equivalent to Û up to a phase. ˆ̃U has determinant

det( ˆ̃U) = 1 and thus ˆ̃U ∈ SU(n).

2.4.2 Dynamical Lie algebra and related controllability tests

Now that the main notions of controllability have been introduced, we still have

to identify which ones apply to a given a quantum system with controls following

Equation (2.8). Assuming that the m controls uj can be taken from any piece-wise

continuous functions, all the information about the possible dynamics that can be

implemented on the system has to be contained in its Hamiltonian drift Ĥ0 and the

control operators Ĥj (with 1 ≤ j ≤ m). Note that no matter whether we are looking at

the set of reachable states R|ψ⟩ using Equation (2.2) or at the set of reachable unitary

operations RV̂ via Equation (2.7), the system Hamiltonian Ĥ(t) remains identical.

Thus, both types of controllability can be analysed by studying the different drift and

control operators.

Definition 2.4.3 (Dynamical Lie algebra). Given a quantum system with a controlled
Hamiltonian as described by Equation (2.8), the Lie algebra L generated by the drift and
the control operators,

L := Lie
(
iĤ0, iĤ1, ..., iĤm

)
, (2.26)

is called the dynamical Lie algebra of the system.

The addition of the imaginary unit in Equation (2.26) turns the Hermitian Hamil-

tonian operators into skew-Hermitian elements that are suitable for generating a Lie

algebra with the usual commutator as Lie bracket. To fully understand the physical

meaning of the dynamical Lie algebra we can go back to the visualization of Figure 2.3.

If the manifold at the bottom of the picture represents the group of unitary evolutions

that can be achieved in the system, the tangent space at the identity is given by the

dynamical Lie algebra. In other words, the dynamical Lie algebra is the collection of

the tangent vectors of all the different curves in which the system can evolve over

time. By using Equation (2.8) to describe the system’s Hamiltonian it is implicitly

assumed that the drift Ĥ0, the control operators Ĥj (with 1 ≤ j ≤ m) and their nested

commutators are always constant (but not the controls uj themselves). Therefore, the

tangent space defined at any point Û1 of the manifold of reachable unitary evolutions

RV̂ is isomorphic to any other tangent space defined at a different point Û2. Following

this logic, by studying the dynamical Lie algebra, i.e. by obtaining information at a

local level in the form of the tangent space, we can make claims about the manifold
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of reachable unitary evolutions RV̂ , i.e. make statements that are globally true. This

leads to the following conditions that help to determine whether a system is operator

controllable [14].

Theorem 2.4.1 (Operator controllability test). Given a quantum system S with Hilbert
space dimension dim(H) = n and dynamical Lie algebra L, the system is operator
controllable if and only if dim(L) = n2 or dim(L) = n2 − 1.

Essentially, the previous test specifies that every unitary can be implemented in the

system (up to a global phase) only in the cases where L ∼= su(n) or L ∼= u(n). The

latter case leads to RV̂ ∼= U(n), where every unitary operation is reachable including

any global phase. The former one represents the case RV̂ ∼= SU(n), where global

phases cannot be adjusted at will, although physically they make no difference. As a

remark, this is the only possibility for operator controllability on systems with traceless

Hamiltonians, e.g. those described in terms of tensor products of Pauli matrices.

As a last addition to this section, it is necessary to add a different test for pure-state

controllability, which may be described in the following form [57, 14]:

Theorem 2.4.2 (Pure-state controllability test). Let L be the dynamical Lie algebra of
a controlled quantum system with Hilbert space dimension dim(H) = n. Let |ϕ⟩ ∈ H be
an arbitrary pure state in the Hilbert space. Then the system is pure-state controllable if
and only if

dim
( [
L, i |ϕ⟩ ⟨ϕ|

] )
= 2(n− 1). (2.27)

To explain the previous result, we first remember that R|ψ⟩ ⊆ SH and dim(SH) =
2(n − 1). On the left hand side of Equation (2.27), the term [L, i |ϕ⟩ ⟨ϕ| ] appears.

Looking back to the von Neumann equation (2.1) we see a similar term in the form of[
Ĥ, ρ̂

]
, which it represents the change of ρ̂ due to the Hamiltonian Ĥ. In other words,

it defines a tangent vector along the curve given by ρ̂(t) ⊂ SH. We can connect both

equations by identifying the initial density matrix ρ̂0 with a pure state ρ̂0 = |ϕ⟩ ⟨ϕ|.
Then, − [L, i |ϕ⟩ ⟨ϕ| ] gives the set of all the possible tangent vectors for the curve

described by a pure state |ψ(t)⟩ at t = 0 with |ψ(t)⟩ = |ψ(t)⟩. The dynamical Lie

algebra L is included in the commutator to take into account all possible effective

Hamiltonians that can be implemented in the system. Calculating the dimension of

this set yields the local dimension of the tangent space of all the possible curves |ψ(t)⟩
at t = 0. To summarize, Equation (2.27) simply states that a system is pure-state

controllable if and only if the dimension of the space tangent to |ψ(t)⟩ at t = 0 is

maximal, i.e. it is exactly 2(n− 1).
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All state transfers
are possible

Pure-state
controllability

dim
(
[L, |ψ⟩ ⟨ψ|]

)
= 2(n− 1)

All quantum gates
are possible

Operator
controllability

dim(L) = n2 or
dim(L) = n2 − 1

Figure 2.4: Relation between pure-state controllability and operator controllability. The
diagram also shows the Lie rank conditions for each type of controllability for a
system with Hilbert space dimension n and dynamical Lie algebra L.

Note that the pure-state controllability test does not depend on the chosen state

|ϕ⟩. We can link this back to the fact that pure-state controllability does not depend

on the initial state of the system for coherent dynamics. Since the dynamical Lie

algebra is not dependent on the initial state, any state can be used for the test, e.g.

|ϕ⟩ = (1, 0, ..., 0) for any given basis. To compute the dimension of [L, i |ϕ⟩ ⟨ϕ| ] it

is sufficient to take into account only a vector basis of L to compute the different

commutators and check the maximal amount of linearly independent elements that

can be found.

Therefore, once the dynamical Lie algebra has been calculated we have access to

two different tests (for both operator and pure-state controllability). These correspond

to the so-called Lie rank method. They can be used to determine whether the system

is capable of performing every state-to-state transfer and whether every quantum

logic gate can be implemented, respectively. A brief overview of the tests’ conditions

and the different relations with the types of controllability is shown in Figure 2.4. The

only piece of information needed for them is the exact system’s Hamiltonian (2.8).

The tests can be computed either algebraically or numerically. However, an impor-

tant aspect to be mentioned is the scalability of the procedure. The dimension of the

Lie algebra scales quadratically with respect to the Hilbert space dimension, which

in turn scales exponentially in the number of qubits in a qubit array. For an array

of Q qubits, the dynamical Lie algebra can have a maximum dimension of 22Q. This

leads to some serious issues in terms of computability. In some cases the dynamical

Lie algebra can be calculated by induction independently of the dimension of the

system [58]. If the Lie algebra has to be calculated numerically, the Lie rank method

starts to be unstable for a low number of qubits. The most straightforward way of

implementing the Lie rank method is to generate a basis of the Lie algebra and then

counting its dimension. To do this, it is necessary to check whether the commutators

of higher depth of the control Hamiltonians and the drift are linearly independent or

not with the previous elements of the basis. In other words, it is necessary to perform
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a matrix rank calculation or an orthonormalization procedure, e.g. Gram-Schmidt.

Both operations incur in the so-called curse of dimensionality, where small errors start

to pile up in very high-dimensional vector spaces. The large dimension makes very

difficult to accurately determine whether a set of vectors is linearly independent or

not, leading to inaccurate results in the dimension of the dynamical Lie algebra and,

possibly, yielding false positive results for the controllability of a system. This is the

reason why alternative tests are needed and can help us expand the size of the arrays

that we can study.

2.4.3 Controllability with connectedness chains

The Lie rank condition is not the only test that can be used to determine control-

lability in a quantum system. Here we present an already known test that does not

require full calculation of the dynamical Lie algebra to give a positive result on the

controllability. The theory behind this subsection can be found in [15], including a

mathematical proof of the result. It has previously been used in other systems, like

rotational states of molecules [17, 59]. This method is the foundation on which the

graph test presented in Chapter 4 is built.

To fully understand the test, we must introduce two new concepts. Let Ĥ0 and

Ĥ1 be the drift and the control operator as described by Equation (2.8) for an n-

dimensional Hilbert space. We represent these two operators in the eigenbasis of

Ĥ0. A subset S of the double set of eigenstates indices I⊗2
H := {0, 1, · · ·n − 1}⊗2 is

said to couple two levels j, k in {0, 1, · · ·n − 1}⊗2, if there exists a finite sequence(
(s1

1, s
1
2), ..., (sp1, s

p
2)
)

in S ⊂ I⊗2
H such that

1. s1
1 = j and sp2 = k (i.e. the sequence starts with one index of the two coupled

levels and ends with the other one);

2. sj2 = sj+1
1 for every 1 ≤ j ≤ p − 1 (i.e. the sequence has the structure

((α, β), (β, γ), (γ, δ), (δ, ϵ), · · · ));

3. ⟨ϕ
sj

2
| Ĥ1 |ϕsj+1

1
⟩ ≠ 0 for 1 ≤ j ≤ p and ϕi the Ĥ0 eigenstates (i.e. the matrix

element Ĥ1, (j,k) in the eigenbasis of Ĥ0 is nonzero).

The set S is called a connectedness chain if S couples every pair of levels in I⊗2
H ,

i.e. if for every pair of levels (j, k) we can define a sequence following the three

aforementioned requirements. From a physical point of view, this ensures that we

can transfer population from the level j to the level k using Ĥ1 as a control. This,

however, is not enough to ensure controllability in the system if there exist symmetries
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or degeneracies in the spectrum. Therefore, it makes sense to include a new definition

for the case where resonances are present.

A connectedness chain S is said to be non-resonant if for every tuple (a, b) ∈ S, the

energy gap ∆Ea,b := |Ea − Eb| is different from any other energy gap ∆Ec,d of any

other pair (c, d) ∈ S and (c, d) ∈ I⊗2
H \ {(a, b), (b, a)}.

The controllability test can be summarized as follows: If there is a non-resonant

connectedness chain for such a system, then it is approximately controllable, i.e. every

unitary gate on the system can be approximated by an arbitrarily small error [15]. For

the intents and purposes of this thesis, this is equivalent to operator controllability. In

other words, if a system has a connectedness chain given by the drift and a control

operator, then the system is operator controllable.

The definitions and results can be better understood through an illustrative example

(obtained from [15]). Let Ĥ0 and Ĥ1 be defined by

Ĥ0 =


1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

 , Ĥ1 =


0 i 3 0
−i 0 0 i

2
3 0 0 0
0 − i

2 0 0

 .

The set of indices is I⊗2
H = {0, 1, 2, 3}⊗2. We can try to define a connectedness chain

by looking at the off-diagonal nonzero matrix elements in Ĥ1. It is easy to prove

that a connectedness chain is given by S = {(0, 1), (1, 0), (0, 2), (2, 0), (1, 3), (3, 1)}.
For example, the chain S connects the pair (0, 3) with the sequence ((0, 1), (1, 3)).
The same idea can be used for any pair (j, k) ∈ I⊗2

H . The energy gaps of tuples

present in the chain are ∆E1,0 = 1, ∆E2,0 = 3 and ∆E3,1 = 2. Therefore, the chain

of connectedness S is non-resonant and the system is operator controllable. Notice

that, even though ∆E3,1 = ∆E2,1 = 2, it does not matter as the elements (1,2) and

(2,1) do not appear in the chain. Similarly, it is irrelevant that the spectrum of Ĥ0 is

degenerate. The non-resonant connectedness chain is sufficient to prove controllability

of the system.

If we take every level j of the system as node, then the tuples (j, k) can be

understood as edges on a graph. This is the reason why this method has sometimes

been described using graph theory. The energy gaps ∆Ej,k can be added as the weight

of the different edges. Finding a non-resonant chain of connectedness equates to

finding a subgraph that where, for every pair of nodes j and k, there is a path that

connects them without using the same weight for two different edges. This connection

will be further developed in the graph controllability test presented in Chapter 4.
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|0⟩ Ĥ R̂X(π2 ) R̂X(π4 )

z

|0⟩ Ĥ R̂X(π2 )

z

|0⟩ Ĥ

z

Figure 2.5: Implementation of the quantum Fourier transform for the case of three qubits
[32]. Rectangular boxes, circles and vertical lines represent quantum logic
gates [61] whereas horizontal lines represent the wires in the logic circuit. States
are measured at the end of the system on the logical basis of each qubit.

2.5 Analysis of parametric quantum circuits

Qubit arrays are the hardware on which we can perform quantum computing and

run quantum algorithms. Quite often, quantum circuits are used to represent the

change of the qubit’s state along the different calculations. Quantum circuits are

models composed of a set of qubits, initialized on a specific state, upon which we

apply a series of operations called quantum gates [32]. At the end of the circuit, it is

necessary to measure the qubits in order to extract information from the final state of

the system. Relative phases between the eigenstates of the measuring operator are

lost at this final step. Therefore, the relevant information of a quantum algorithm has

to be encoded in the population of the different states that can be measured at the

end of the circuit. If we use only coherent dynamics, quantum gates must be unitary

operations. At first glance, it looks like this condition actually leaves out many of the

classical logic gates that could be used as bits operations. However, it is possible to

encode a non-unitary operation of N qubits with the help of an extra auxiliary qubit,

turning them into N + 1-qubit unitary gates [60].

An example of a quantum circuit is shown in Figure 2.5. Following their classical

counterpart, quantum circuits are read left to right, with leftmost gates acting first

on the qubits. They include wires in the form of straight lines that represent the flow

of information and help to determine which qubits are affected by which operations.

Contrary to classical Boolean circuits, each qubit starts with a single wire that will

remain until measured. Multiple quantum wires cannot be merged into a single qubit

using quantum gates. Analogously, operations that would split one input wire into

multiple output wires, e.g. duplicating a qubit, are not allowed according to the rules

of quantum mechanics.
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Quantum circuits will be relevant for the material in Chapter 5 or, more precisely,

the study of parametric quantum circuits. Thus, the current section contains all the

introductory material needed to make this dissertation and a coherent self-contained

reading when it comes to controllability tests based on parametric quantum circuits.

The reader is encouraged to skip this section if this topic is not included among their

interests.

2.5.1 Parametric quantum circuits

A parametric quantum circuit (PQCs) is a type of quantum circuit in which some of

the quantum logic gates depend on one or more parameters ϑj [62]. These parameters

can be modified before the circuit is implemented, leading to different results. Every

PQC is therefore a class of quantum circuits that share the same operation structure

with certain modifications on the circuit output depending on the chosen parameters

ϑ⃗. Other names for this kind of circuits include parameterized quantum circuit,

parametrized quantum circuit or variational circuit. The latter name arises from

their relation with variational quantum algorithms, a type of algorithm that was first

introduced for quantum chemistry [18]. Variational quantum algorithms have become

particularly relevant for systems in the noisy-intermediate quantum computing (NISQ)

era [63], where they are used to leverage the quantum nature of the systems to

solve problems that are classicaly hard to work out [64, 65]. Variational algorithms

link an optimization problem into a cost function that is measured via the state of

the quantum circuit. The iterative process relies on alternating between running

the parametric quantum circuit with a given set of parameters to calculate the cost

function and then updating the parameters for the next run if the minimum has not

been reached.

It is therefore important to know whether a parametric quantum circuit can explore

the whole Hilbert space, i.e., what the set of possible final states is at the end of

the PQC. In the literature, the term expressivity (sometimes also expressibility or

expressiveness) is used to speak about the ability of a PQC to produce states that

are representative of the full Hilbert space of the system [66, 67]. This definition,

far from being a mathematical one, is an umbrella term that encompasses a broad

group of measures that try to quantify the possible output of a given PQC. Not all of

the different types of expressivity are equivalent, a reason why it is necessary to be

rigorous when choosing and discussing a certain expressivity.

Here, we focus on the dimensional expressivity exprdim. This expressivity, as we

will see, contains information about the dimension of the circuit as a real differentiable

manifold [19]. Maximal dimensional expressivity means that the parametric quantum

circuit is able to explore a manifold of reachable states that has the same dimension as
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GHZ state preparation

|0⟩ Ĥ R̂X(ϑ0) R̂Z(ϑ3) R̂X(ϑ6)

|0⟩ R̂X(ϑ1) R̂Z(ϑ4) R̂X(ϑ7)

|0⟩ R̂X(ϑ2) R̂Z(ϑ5) R̂X(ϑ8)

Figure 2.6: Example of a parametric quantum circuit. In this case, the parameters ϑj represent
the angle of the rotation gates R̂Gϑj around the G axis. Note that not all
gates are parametric, like the initial layer that prepares the system into the
Greenberger–Horne–Zeilinger state (|000⟩+ |111⟩)/

√
2 (cf. [68]).

the Hilbert space. To define this concept properly, we need to mathematically define

the map of a parametric quantum circuit.

We can understand a parametric quantum circuit as a protocol implemented on a

set of qubits that are initialized in a state |ψ0⟩. It consists of a sequence of logic gates

Ĝj , some of which depend on real parameters ϑk. We consider a parametric quantum

circuit as the map C(ϑ⃗) that identifies an array of parameters ϑ⃗ in the parameter space

P ∋ ϑ⃗ with

C(ϑ⃗) = Ĝm(ϑ⃗)...Ĝ0(ϑ⃗) |ψ0⟩ . (2.28)

C(ϑ⃗) implicitly depends on the circuit’s initial state |ψ0⟩1. An example of a parametric

quantum circuit is found in Figure 5.1. Note that the amount of parameters on which

each gate Ĝj(ϑ⃗) depends may vary from zero to the total number of parameters, e.g.

Ĝ0(ϑ1, ϑ2) = P̂ (ϑ1) exp
(
−iϑ2

2 X̂
)
ĤP̂ (−ϑ1), (2.29)

with the phase gate P̂ and the Hadamard gate Ĥ.

Since PQCs are the main object of the optimizations in variational quantum al-

gorithms, it is relevant to also speak about over-parametrization. Having more

parameters than strictly necessary can be beneficial for some algorithms, making them

more efficient for optimization [69] or more resilient against noise [70, 71]. However,

adding more parametric gates also increases the depth of the algorithm, which in turn

raises the error produced e.g. by NISQ devices. Finding the sweet spot between both

approaches is required to obtain the best of both worlds. For this reason, quantifying

and identifying the number of independent parameters in a PQC is a crucial goal for

the purposes of variational quantum algorithm.

1This is in contrast to many commonly used definitions of a circuit that only consider the gate sequence
and not the device initialization.
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A parameter ϑj of a PQC is deemed redundant if the changes that can be achieved

in the final state of the circuit by varying ϑj infinitesimally can also be achieved by

keeping ϑj constant and varying other parameters ϑk with k ̸= j. A nonredundant

parameter is called independent. If a parameter ϑj is determined to be redundant with

respect to a set of different parameters {ϑk}k (with k ̸= j), then ϑj can be kept at a

fixed value without impacting the set of reachable states at the end of the circuit.

If we define a PQC as a map C(ϑ⃗) from the parameter space P to the state space H,

C : P → H, then the previous definition can be restated in more mathematical terms.

If we take into account all the possible parameters ϑ⃗ ∈ P, we can understand the set

C(P) as the manifold containing all the reachable states at the end of the circuit. To

include this function in the definition of the redundant parameters, we first define the

real Jacobian JC(ϑ⃗) of the PQC as

JC(ϑ⃗) =



| |
Re
(
∂1C(ϑ⃗)

)
· · · Re

(
∂NC(ϑ⃗)

)
| |

| |
Im

(
∂1C(ϑ⃗)

)
· · · Im

(
∂NC(ϑ⃗)

)
| |


, (2.30)

where ∂kC(ϑ⃗) represents the derivative of the map C(ϑ⃗) with respect to ϑk. Note

that, for a d-dimensional Hilbert space H, both Re
(
∂kC(ϑ⃗)

)
and Re

(
∂kC(ϑ⃗)

)
are

d-dimensional column vectors for every index k. We define the partial real Jacobian

J
(k)
C (ϑ⃗) with respect to the parameter ϑk as the k-th column of JC(ϑ⃗) as defined in

Equation (2.30).

With the previous information, let us assume a set of parameters {ϑk}km
k=k1

and a

different parameter ϑj . Then ϑj is independent with respect to {ϑk}k if and only if

rank
(
J

(k1)
C (ϑ⃗), ..., J (km)

C (ϑ⃗)
)

= rank
(
J

(k1)
C (ϑ⃗), ..., J (km)

C (ϑ⃗), J (j)
C (ϑ⃗)

)
, (2.31)

i.e. if the vector J (j)
C (ϑ⃗) is linearly dependent with respect to the set of vectors

J
(k)
C (ϑ⃗). We can bring this idea back to the manifold of reachable states C(P). The

real partial derivatives J (k)
C (ϑ⃗) represent vectors of the tangent space at the point

C(ϑ⃗) ∈ C(P). A parameter ϑj is redundant with respect to a parameter set {ϑk}km
k=k1

if

the direction generated by ϑj in the tangent space is linearly dependent with respects

to the directions already generated by {ϑk}km
k=k1

.

To quantify the number of states that can be obtained as a final state in a PQC, we

can use the concept of dimensional expressivity [19, 20].
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Definition 2.5.1 (Dimensional expressivity). Given a parametric quantum circuit
C(ϑ⃗) : P → H, the dimensional expressivity of the circuit exprdim is the maximum
number of independent parameters ϑj in the circuit.
Additionally, exprdim also represents the local dimension of the manifold of possible final
states C(P).

The last part of the definition gives further meaning to the mathematical description

of independent parameters shown in Equation (2.31). If we have a maximal set of

independent parameters {ϑkj
}exprdim
j=1 then, by definition, the set {J (kj)

C (ϑ⃗)}exprdim
j=1 is

a maximal linearly independent set of vectors in the tangent space Tϑ. Therefore, the

parameter set {ϑkj
}exprdim
j=1 can be locally used as a full coordinate set of the manifold

of final states C(P). From a physical perspective, all final states in a neighborhood

around C(ϑ) =: |ψ
ϑ⃗
⟩ ∈ H can be navigated by varying {ϑkj

}exprdim
j=1 and leaving all

the other parameters in the PQC fixed. As the set of reachable states is contained in

the unit sphere of the Hilbert space H, the maximal real dimension of this manifold is

2d− 1, with d = dim(). In other words, the dimensional expressivity always has an

integer value with an upper bound of 2d− 1.

Note that the definition of dimensional expressivity speaks about the maximum

number of independent parameters θj . There is, however, an important clarification

to be made. While the maximum number of independent parameters is fixed, there

may not be a unique maximal set of parameters. Indeed, if two parameters ϑ1 and

ϑ2 are redundant with respect to each other, then there is a choice to be made about

whether to label the former or the latter as independent.

In Chapter 5 we will see how the concept of dimensional expressivity of parametric

quantum circuits can be linked to the controllability of qubit arrays. The following

subsection presents one of the possible methods to find a maximal set of independent

parameters. This will also be useful for finding the connection between expressivity

and and controllability.

2.5.2 Dimensional expressivity analysis

Identifying a maximal set of independent parameters in a systematic process is

a valuable tool to use when studying parametric circuits and their capabilities. As

previously mentioned, it is true that adding more parameters can be beneficial in

some cases, reducing the required time for certain algorithms. Nevertheless, verifying

that the initial circuit has maximal dimensional expressivity is crucial to determine

whether the solution can even be reached. Furthermore, labeling a set of independent

parameters may give information about which operations are strictly necessary and

which are effectively duplicating dynamics that can be achieved with others.
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Dimensional expressivity analysis is a method to both determine the dimensional

expressivity of a parametric quantum circuit and identify a maximal set of independent

parameters [19, 20]. It is devised as a hybrid quantum-classical algorithm that obtains

its information through some measurements on a quantum device and some simple

numerical calculations in a classical computer.

The main idea of the dimensional expressivity analysis is to measure the rank of

the real Jacobians JC(ϑ⃗) (cf. Equation (2.30)) for a given set of parameters ϑ⃗ in

order to determine the exact number of independent parameters. To determine which

parameters are independent and which ones are redundant in a systematic manner,

we define the partial matrices

JC,n(ϑ⃗) =



| |
Re∂1C(ϑ⃗) · · · Re∂nC(ϑ⃗)

| |

| |
Im∂1C(ϑ⃗) · · · Im∂nC(ϑ⃗)

| |


, (2.32)

composed of the first n columns of the real Jacobian JC(ϑ⃗). If the first parameter

ϑ1 has a non-negligible effect on the circuit, i.e. JC,1 ̸= 0⃗, then we can interpret

it as an independent parameter. If rank(JC,n−1) < rank(JC,n), then the parameter

ϑn can be labelled as independent. Conversely, if the two ranks are equal then ϑn

is redundant with respect to the previous parameters. This sets the basis for an

iterative test that separates every parameter into one of the two categories. The exact

parameter partition only depends on the order of parameters that have been checked.

Different parameter sortings may result in different partitions, but the total number of

independent parameters remains constant. To make these calculations more efficient,

the method uses instead the matrices

SC,n(ϑ⃗) = JTC,n(ϑ⃗)JC,n(ϑ⃗), (2.33)

which have by construction the same rank as JC,n.

So far we have only talked about classical computations of the ranks of some

matrices. The last piece of the puzzle is obtaining the information of each SC,n matrix.

The (i, j) element of SC,n, S(i,j)
C,n , is given by Re(⟨∂iC (⃗(ϑ)), ∂jC (⃗(ϑ))⟩). Let us denote

the initial state of the circuit C(ϑ⃗) as |ψ0⟩. Assuming we only include rotation gates

R̂Â(φ) := exp(−iφ2 Â) depending on a single parameter φ, the circuit is represented

by

C(ϑ⃗) = R̂Â1
(ϑ1)R̂Â2

(ϑ2) · · · R̂Ân
(ϑn) |ψ0⟩ . (2.34)
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original circuit: |ψ0⟩ D̂C,i(ϑ⃗) D̂C,j(ϑ⃗)

auxiliary qubit: |0⟩ Ĥ X̂ X̂ Ĥ

z

Figure 2.7: Implementation of the circuit required to perform the dimensional expressivity
analysis of a parametric quantum circuit with quantum measurements. The top
quantum wire encompasses the N qubits of the PQC C(ϑ⃗) that is meant to be
studied and is initialized in the state |ψ0⟩ (cf. Equation (2.34)). The circuit is
composed of the Hadamard gate Ĥ (not related to a Hamiltonian), the NOT gate
X̂ and the controlled gates D̂C,k (cf. Equation (2.36)). Initial state of the first
qubits Image adapted from [20].

In this particular case, the partial derivatives ∂kC(ϑ⃗) are simply given by

∂kC(ϑ⃗) = R̂Â1
(ϑ1) · · · R̂Âk−1

(ϑk−1)
(−i

2 Âk

)
R̂Âk

(ϑk) · · · R̂Ân
(ϑn) |ψ0⟩ , (2.35)

which represents a vector in the Hilbert space of the system H. If the operator Âk is

unitary, then ∂kC(ϑ⃗) represents a different parametric quantum circuit identical to

C(ϑ⃗) with the exception that it contains a Âk gate between the rotations R̂Âk−1
(ϑk−1)

and R̂Âk
(ϑk). If it is not unitary, a possibility for non-local operators, then it can be

implemented as a unitary gate by including an additional auxiliary qubit [60]. The

operation related to the derivative of the circuit can be defined as

D̂C,k(ϑ⃗) := R̂Â1
(ϑ1) · · · R̂Âk−1

(ϑk−1)ÂkR̂Âk
(ϑk) · · · R̂Ân

(ϑn). (2.36)

Note that, when comparing Equations (2.35) and (2.36), the latter one has the −i
2

factor removed for the definition of D̂C,k. Using the new notation, the S(i,j)
C,n elements

can be rewritten as 1
4Re(⟨⟨ψ0| D̂†

C,iD̂C,j |ψ0⟩⟩). To compute the different entries of

SC,n on the quantum device we can use the state

|ψi,j⟩ =
|0⟩ ⊗

(
D̂C,i |ψ0⟩+ D̂C,j |ψ0⟩

)
+ |1⟩ ⊗

(
D̂C,i |ψ0⟩ − D̂C,j |ψ0⟩

)
2 . (2.37)

Measuring the auxiliary qubit of the state |ψi,j⟩ in the canonical basis we obtain a

probability for the qubit to be in |0⟩ of

P (aux = |0⟩ | |ψi,j⟩) =
1 + Re(⟨⟨ψ0| D̂†

C,iD̂C,j |ψ0⟩⟩)
2 . (2.38)

Therefore, repeated measurements of the |ψi,j⟩ state can be used to determine the en-

tries S(i,j)
C,n = 2P (aux = |0⟩ | |ψi,j⟩)− 1. To obtain accurate statistics, the measurement

of |ψi,j⟩ has to be performed a sufficiently large number of times. This procedure must

then be repeated for each pair of indices (i, j). Finally, to construct the states |ψi,j⟩
we can simply use the circuit described in Figure 2.7.
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With this hardware implementation we can obtain the required SC,k matrices via

measurements on the quantum device. Their rank can be calculated using a classical

computer, which would determine the amount of independent parameters in the

circuit and their location.

2.6 Quantum speed limit

In previous sections we have talked about controllability in quantum systems, which

answers to the question of whether it is possible to implement certain dynamics on a

device. This is a very interesting subject on a fundamental level. But it lacks insight on

some of the more applied problems that are attached to the actual implementation of

the operation. These practical issues include, for example, computing a set of pulses

to produce some target dynamics, decomposing a desired gate into a sequence of

well-calibrated gates on a qubit array or knowing how fast certain operations can be

performed in the system. The latter is the main focal point of the current section and

of Chapter 3.

In the current landscape of quantum technologies, generating fast evolutions on

quantum devices is key to achieve efficient protocols in quantum simulation and

quantum computing. This is intrinsically related to the quantum speed limit of a

system, the minimum time in which some dynamics can be implemented in a given

quantum system. Finding the quantum speed limit is fundamentally a theoretical

question that still bears important applications at an experimental level. For example,

it defines how fast quantum information can be processed and exchanged between

systems [72, 73]. Whether trying to prepare a system in a certain state [74] or to

implement unitary gates on a quantum device [75], the quantum speed limit provides

valuable information about the feasible dynamics.

The problem of the quantum speed limit has been presented and extensively

discussed in many reviews during the last decades [76, 77, 78, 79, 23]. The concept is

usually understood as a lower bound on the time that it takes to transform a quantum

system in some desired manner. This counterintuitive definition poses the first issue:

The quantum speed limit is actually a measure of time and not of speed. A higher

quantum speed limit means that the system will take longer to produce some target

dynamics (i.e. the evolution will be slower) and vice versa. This section builds upon

some of the historical definitions, from its natural appearance in quantum mechanics

to the different definitions and exact formulas that were derived.
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2.6.1 Heisenberg’s uncertainty principle

Non-commuting observables are one of the defining features of quantum mechanics.

Heisenberg’s uncertainty principle can be derived from this property [80], leading to

the well known inequalities

∆p̂∆x̂ ≥ ℏ
2 and ∆E∆t ≥ ℏ

2 (2.39)

where ∆Â represents the variance of an operator Â for an implicit state |ψ⟩. The

principle showcases the relation between the operators position x̂ and momentum p̂

and the variables energy E and time t. This was also quickly generalized for other

non-commuting operators as [81]

∆Â∆B̂ ≥

∣∣∣⟨[Â, B̂]⟩
∣∣∣

2 . (2.40)

The physical meaning of the position and momentum relation in Equation (2.39)

can easily be put into context for the wavefunction of a particle: The less spread the

probability density is for the position operator x̂, more variance for the momentum

p̂ of the particle. This also leads to the conclusion that no observer can have perfect

knowledge of the position and momentum of a particle. According to Equation (2.40)

this is also true for any two conjugated operators Â, B̂, since they must satisfy the

canonical commutation relation [
Â, B̂

]
= iℏ. (2.41)

The second relation appearing in Equation (2.39), however, is fundamentally

different. Energy E is represented in quantum mechanics by the Hamiltonian operator

Ĥ, which we can substitute by Ĥ = −iℏ∂t according to the Schrödinger equation.

Therefore, ∆E = ∆Ĥ. Unfortunately, an analogous treatment is not possible for

∆t. Time is not a well-defined operator in non-relativistic quantum mechanics [82].

Thus it would seem that there is no immediate physical explanation for the second

inequality of Equation (2.39). In particular, other relations derived from Heisenberg’s

uncertainty principle given by Equation (2.40) show the connection between the

variances of two operators for a given state |ψ(t)⟩ at a fixed given time t. In other

words, they are relations regarding simultaneous effects. Even if an operator for time

existed, its variance would be null for a fixed moment of time.

The solution to this conundrum came decades later, with the idea that ∆E should

not be understood as the variance in a fixed moment in time, but as the change over

time of the system’s energy, i.e. the change in the expectation value of the energy of

the system over time.

40 Chapter 2 Theoretical background



2.6.2 The quantum speed limit: from orthogonal states to more general
definitions

In 1945 Mandelstam and Tamm used the Heisenberg uncertainty principle to

establish a connection between the energy variance in a finite quantum system with

time-independent Hamiltonian Ĥ and the time t̃ required for one state to evolve to an

orthogonal state depending on their energy distribution [83],

t̃ ≥ τQSL = πℏ
2 ∆Ĥ

. (2.42)

Years later, a contending quantum speed limit between orthogonal states was also

derived by Margolus and Levitin as [84]

t̃ ≥ τQSL = πℏ
2 ⟨Ĥ⟩

, (2.43)

where ⟨Ĥ⟩ is the expected value for the energy assuming that the ground level is

E0 = 0. The two different expressions given by the Mandelstam-Tamm bound and the

Margolus-Levitin bound were unified for orthogonal pure states in 2009 as

τQSL = max
{

πℏ
2 ∆Ĥ

,
πℏ

2 ⟨Ĥ⟩

}
, (2.44)

proving that the exact bound is achieved in some cases [24].

The unified bound in Equation (2.44) presented one of the first physical meanings

for the quantum speed limit of a system. As previously stated, it holds information

about the maximum rate at which a system’s state can evolve over time. The definition,

however was restricted to time-independent Hamiltonians and orthogonal states.

With time, different quantum speed limits were derived for states separated by

arbitrary angles [85]. More importantly, other limits were studied for the case of

driven dynamics [86]. These set the foundations to define quantum speed limits

for a given unitary evolution. Naturally, a minimum time in which a quantum logic

gate can be implemented provides a very useful piece of information for quantum

computation. The time estimation of a certain quantum algorithm is upper bounded

by the sum of all the quantum speed limits of the gates that it is composed of. Making

these estimates is essential to knowing which physical platforms are suitable for which

algorithms. The problem is that finding exact bounds for large systems is an arduous

task that not always yields a solution. A close estimation of the quantum speed limit

for some given dynamics is in principle enough to understand the time scale at which

a system operates and the order of magnitude of the number of quantum operations

that can be performed. As a final note, it is worth mentioning that it is not always

guaranteed that the quantum speed limits can be saturated in reality. Physical setups
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usually have restrictions like the maximum amplitude on a control or having a limited

range of frequencies. These limitations may result in a higher minimal control time

than the theoretical quantum speed limit that does not assume such limitations [87].

Nevertheless, the better understanding of the quantum speed limits of a system may

provide valuable information regarding which dynamics are more easily implemented

on the system.

These concepts will be expanded in Chapter 3, which focuses on the estimation of

the quantum speed limit of three different types of dynamics: fixed unitary evolutions

on the whole Hilbert space, simultaneous state transfers in a system (with arbitrary

relative phases between them) and logic gates in a subspace of the total Hilbert space

(with their respective fixed relative phases).
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3Quantum speed limit estimator

Closed quantum systems are the first approach for many numerical simulations of

quantum physics. Nonetheless, it is no secret that there does not exist any perfect

closed system in reality. Every device is subject to some form of decoherence or

relaxation time scale in which the quantum nature of the system can no longer

be described using coherent dynamics [22, 88]. This is the case, for example, in

spontaneous emissions of atoms [89] or the dephasing of superconducting circuits

[90]. Performing operations as fast as possible is crucial to tackle this issue. Therefore,

finding systems where the desired dynamics can be implemented swiftly has become

a relevant task in the last decades [91]. However, in quantum mechanics there is a

fundamental bound to the speed at which certain dynamics can be performed: The

quantum speed limit [92].

The first quantum speed limit arises from Heisenberg’s uncertainty principle and

the connection between energy and time. This relation lead to the idea that there is a

limit at which the energy of a quantum system can change over time depending on

the Hamiltonian of the system. The quantum speed limit was defined as the minimum

possible time in which an initial state in the system can evolve to an orthogonal final

state in the Hilbert space. This notion was first developed in the Mandelstam-Tamm

bound [83] and later through the Levitin-Margolus bound [84]. Both of them were

later combined to create a tight bound [24] to study the evolution of a single state in

a system. With time, the term of "quantum speed limit" became broader, being applied

not only to state-to-state transfers in closed systems but also to unitary operations [93,

94, 95] and even extended to open quantum systems [96, 97, 98]. Given a quantum

system with some controls and a set of desired dynamics, determining the quantum

speed limit may be useful to assess whether the system is suitable to conduct a certain

experiment or protocol.

Over the years, there have been multiple approaches to determining the quantum

speed limit of a system. These include geodesic curves and measurement theory

in differential geometry and Lie groups [99, 100, 101], optimal control theory to

determine the minimal time at which an evolution is feasible [102, 103], classical

numerical estimations dependent on the norm of the Hamiltonian [104] and even
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hybrid quantum-classical algorithms [105]. While analytical results derived from

the underlying geometry of the system provide tight bounds to a small group of

low-dimensional examples, numerical calculations can be used to determine bounds

that are close enough to give relevant information about larger systems.

The goal of this chapter is to present a numerical method to estimate the quantum

speed limit of either a unitary evolution on the total Hilbert space, a quantum gate on

a subspace or a set of simultaneous state transfers. The algorithm takes into account

local and global phases, either fixing them or leaving them as arbitrary parameters

that can be changed to accommodate for the different dynamics. To compute the

estimation we define the concept of the available velocity polytope of a quantum

system. In a nutshell, the available velocity encompasses the information of how

fast the system can evolve in every direction in the Lie algebra, the tangent space

of the Lie group containing all possible unitary operations [14]. This polytope is

computed numerically but it derives from the analytical study of adjoint orbits of

operators acting on a Hilbert space [106]. The available velocity induces a natural

partition of the Lie algebra as a vector space into the subspaces of fast, slow and very

slow directions. Given a unitary evolution, we can associate a direction on the Lie

algebra to it and give an estimation on the minimal time that the system requires to

evolve. For the case of multiple simultaneous state transfers, the algorithm repeats

the procedure for all the different unitaries that satisfy the conditions, finding the

minimal quantum speed limit among them.

The chapter is structured as follows. Section 3.1 introduces the necessary notions

of the quantum speed limit in quantum systems with linearly coupled controls. In

particular, it details the differences between the limits when they are defined for

unitary operations and for a set of simultaneous state transfers. The newly developed

concepts and used tools are explained in Section 3.2, with a special focus on the

available velocity polytope (cf. Section 3.2.2) and the partition that it naturally

produces on the Lie algebra of the system (cf. Section 3.2.1). The section also includes

the exact method for computing the available velocity polytope using the quickhull

algorithm as well as methods that provide possible alternatives through looser, but

less numerically demanding, approximations. The section closes with a detailed

description of the quantum speed limit estimator for any desired target conditions.

Section 3.3 showcases the algorithm applied to different examples and compares the

results to bounds for the global quantum speed limit that were previously known. It

also includes a brief discussion of the problems and complications inherent in the

algorithm. Finally, Section 3.4 concludes.
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3.1 Quantum speed limit of controlled systems

We have previously seen that the Hamiltonians of closed systems with linearly

coupled controls are described by Equation (2.8). For this chapter, however, we

will study the case where there is only one control, such that Equation (2.8) can be

rewritten as
d

dt
|ψ(t)⟩ = −i

(
Ĥ0 + u(t)Ĥ1

)
|ψ(t)⟩ . (3.1)

Here we have a drift Ĥ0, a time-dependent control u(t) and the associated control

operator Ĥ1. The ideas here presented may in principle be extended to the case with

more controls. This extension is briefly covered in the summary of the chapter. For

the case of a single control, the dynamical Lie algebra is given by

L = Lie
(
{Ĥ0, Ĥ1}

)
. (3.2)

To start with a toy model, we assume that L = su(n), which implies that the system is

operator controllable according to Theorem 2.4.1. In other words, we ensure that all

unitary operations (and by extension all state-to-state transfers) are possible for some

final times. This is physically a severe constraint, although a necessary one to ensure

that the system can produce any target gate or target state transfers that we may

want to study. As a mathematical aside, however, this is feasible in a lot of theoretical

examples. Indeed, if we randomly choose two Hermitian operators Ĥ0 and Ĥ1, they

generate the whole su(n) algebra almost always, with probability equal to one [107].

Randomly chosen bounded Hermitian operators will tend to not be degenerate and

to have nonzero entries with different irrational values. This property ensures that

their nested commutators are linearly independent, eventually generating a complete

dynamical Lie algebra.

As usual, we assume no physical bound or maximal frequency on the control u(t).
In that case, we can choose a high amplitude for u(t̃) at a certain time t̃ such that

||Ĥ0 + u(t)Ĥ1|| ≃ ||u(t)Ĥ1|| ≫ 1. The implications of this result can be explained

in two steps. First of all, both iĤ0 and iĤ1 belong to the Lie algebra, i.e. they are

directions in the tangent space alongside which we can evolve. Second, all of the

unitary matrices in the curve

γĤ1
(α) := {eĤ1α |α ∈ R} ⊂ SU(n) (3.3)

can be approximated arbitrarily fast for any error ϵ > 0. That means that for any

gate eĤ1α and any final time tf > 0 there exists a solution uα,tf (t) such that the

evolution operator Û(tf ) given by integrating Equation (3.1) fulfils the condition

||Û(tf ) − eĤ1α||F ≤ ϵ, where || · ||F represents the Frobenius norm [108]. On the

other hand, the converse is not necessarily true for gates outside of the curve. Indeed,
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to generate unitary evolutions not contained in γĤ1
we have to make use of the Ĥ0

contribution, which cannot be sped up. If the drift has to be used to access some

operation, then there is no alternative to letting the system evolve a set amount of

time τ . Out of all the possible procedures and their respective times τ , their minimum

τQSL := min(τ) will be used as an estimator of the quantum speed limit, which is

presented in Section 3.2.

The main goal of this project is to define an algorithm that is capable of numerically

estimating the quantum speed limit τQSL, given a system as defined in Equation (3.1)

and a certain unitary gate or some desired state transfers. Evidently, τQSL implicitly

depends on the system operators Ĥ0, Ĥ1 and the desired gate Û . Additionally, less

restrictive conditions have also been included among the capabilities of this algorithm,

allowing us to also explore single state transfers |ψ0⟩ → |ψf ⟩ and simultaneous state

transfers defined as a set {|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}j .

We must understand the fact that some directions in the tangent space are quasi

instantaneous while other contributions are crucial to the estimation τQSL. Subsection

3.2.1 expands on this notion and categorizes the different types of directions in the

vector space of the Lie algebra based on their effect on the quantum speed limit

τQSL.

To maintain a structured analysis, we still must include the exact definitions for

the quantum speed limit that will be used in the remainder of the chapter.

3.1.1 Quantum speed limit of quantum gates

In Chapter 2 we extended the Schrödinger equation (2.2) from one state to a

complete orthonormal basis of the Hilbert space (cf. Equation (2.7). This lifted the

control equation from normalized vectors in the Hilbert space to dynamical evolutions

of closed systems in the Lie group of unitary operators. Analogously, we can rewrite

Equation (3.1) as

d

dt
Û(t) = −i

(
Ĥ0 + u(t)Ĥ1

)
Û(t), Û(0) = 1d. (3.4)

In the equation above, Û represents the evolution of an orthonormal basis that

coincides with the canonical basis at t = 0. Solving an equation analogous to Equation

(3.1), it is possible to explore all the unitary operations that are achievable in the

system.

From an analytical point of view, we can restrict ourselves to the case of the

special unitary group SU(n). Global phases of unitary evolutions carry no physical

meaning and can therefore be neglected, which reduces the group U(n) to SU(n).
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Therefore we assume that the target unitary matrices Ûtgt whose quantum speed limit

we want to estimate are always included in the special unitary group. Nevertheless,

from a numerical point of view, it is useful to include an equivalence class of unitary

matrices, since any two evolutions Û and eiφÛ (with φ ∈ R) represent physically

the same dynamics on a system. This expands the number of possible solutions that

the algorithm could in principle find to satisfy the target conditions. Given a target

evolution Ûtgt, we want to compute the quantum speed limit for the equivalence

class {eiφÛtgt}φ∈R. If two gates ÛA and ÛB belong to the same equivalence class (i.e.

ÛA = eiφÛB for some real φ), then we say that ÛA and ÛB are phase equivalent.

The quantum speed limit τQSL for a certain target unitary evolution Ûtgt is the

shortest final time tf for which there exists a control ũ such that Ûũ(tf ) and Ûtgt are

phase equivalent. Here we have used Ûũ(tf ) as the unitary evolution generated by a

control ũ(t) at a final time tf .

Since in this work the quantum speed limit is studied using numerical tools, which

always have finite precision, the limit is an approximate estimate. Therefore, all

controls u(t) and final times tf that fulfill ||Û(tf ) − Ûtgt||F ≤ ϵ for a chosen error

tolerance ϵ are taken into account for the quantum speed limit calculation. Note

that for the given question of the speed limit, calculating the exact control ũ that

approximates the quantum speed limit of the desired evolution is not the goal of the

described estimator. Once the final time is known, one can use quantum optimal

control to solve the problem of finding the right control pulse to obtain the target

evolution Ûtgt up to a global variable. Possible choices for the optimization method

include Krotov’s algorithm [109, 110], CRAB [111] and GRAPE [112].

3.1.2 Quantum speed limit of state transfers and gates acting on
subspaces

Instead of choosing a unitary evolution as the necessary condition to calculate the

quantum speed limit, it is possible to select different targets. One of the potential

goals is to focus on state-to-state transfers defined by a set {|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}

ns−1
j=0

containing pairs of initial and final states (|ψ(j)
0 ⟩ and |ψ(j)

f ⟩ respectively. Without loss

of generality we can assume that the states {|ψ(j)
0 ⟩} (respectively {|ψ(j)

f ⟩}) form a set

of orthonormal states.

By choosing ns ≤ dim(H) and fixing the local phases of all the transitions in

the test, one simply goes back to defining a single unitary operator up to a global

phase, i.e. the target from the previous subsection. The more interesting case occurs

when ns < dim(H), as it expands the possibilities that we can explore. Given the
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aforementioned set of state-to-state transfers, we say that a unitary operation Û meets
the target conditions if Û |ψ(j)

0 ⟩ = |ψ(j)
f ⟩ for every j = 0, ..., ns − 1.

It is common in state transfers to overlook the local phases between (eigen)states

and only care about the probability of finding the system in a certain eigenstate. To

make this evident we use the notation {|ψ(j)
0 ⟩ → eiφj |ψ(j)

f ⟩}
ns−1
j=0 for arbitrary phase

angles φj ∈ R for every 0 ≤ j ≤ ns−1. Analogously, we claim that a unitary evolution

meets the target conditions {|ψ(j)
0 ⟩ → eiφj |ψ(j)

f ⟩}
ns−1
j=0 if there exist phase angles φj

such that Û |ψ(j)
0 ⟩ = eiφj |ψ(j)

f ⟩ for every j = 0, ..., ns − 1. On the contrary, to define a

set of ns conditions with fixed phases we will use the notation {|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}

ns−1
j=0 .

This, while not common when talking about state-to-state transfers, essentially defines

a quantum gate on a ns-dimensional logical space. In both cases we will name ns as

the number of given conditions.

Given a specific quantum system, we define the quantum speed limit τQSL for a

number of conditions as the minimum final time tf for which there exists a control ũ

such that the evolution operator Ûũ(tf ) meets the target conditions. For a numerical

approximation of the quantum speed limit with a maximum error of ϵwe must consider

possible evolutions Û(tf ) for arbitrary final times tf such that ||Û(tf ) − Ûtgt||F ≤ ϵ.

Obtaining the minimum quantum speed limit among all feasible unitary operators

that meet the target conditions is the main task of the quantum speed limit estimator

for a set of ns < N target conditions.

3.2 Quantum-speed-limit estimator

The current section focuses on describing the method to find the minimal time

at which the system’s evolution can be implemented for a system with a single

control as described by Equation (3.1). Note that in Section 3.1 the quantum speed

limits were defined in terms of the shortest time for which a control u(t) could be

found such that certain conditions are met. However, the methods here described

avoid the explicit calculation of any control function. Instead, combined efforts from

numerical computation and algebra analysis provide enough data to compute a value

to approximate the quantum speed limit τQSL.

The main idea behind this estimator is at first glance quite simple. Assume there is

a system with a drift Ĥ0 and a unitary evolution Û := exp(−iĤeff t1) whose quantum

speed limit has to be determined. Here t1 represents a unit of time in the chosen

arbitrary units. Let iĤ0 and the implicitly defined effective Hamiltonian iĤeff be

parallel vectors in the vector space of the Lie algebra u(n). Then the evolution Û
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can also be implemented as the rotation exp(−itrĤ0) where tr is defined as the ratio

between the two vector norms

tr := ∥Ĥeff∥
∥Ĥ0∥

t1. (3.5)

The coefficient tr is not only related to the angle of the rotation, but it also represents

the time estimation that the system would have to evolve around its natural drift to

produce the evolution Û . Similar to ℏ, t1 will be omitted and implied henceforth.

Given any unitary matrix, the effective Hamiltonian can be calculated as iĤeff =
− log(Û). The matrix logarithm is always well defined for unitary operators since they

have a bounded, nonzero spectrum [50]. While the logarithm function is in general

not uniquely defined, an injective function can be defined by choosing the principal

branch of the logarithm [113]. This technique is used in different computational

packages, including the scipy Python package [114] that will be used throughout this

chapter.

The main problem, however, is that the hypothesis of having iĤeff parallel to the

vector iĤ0 is not true in the general case. The following subsection explores how

to get a vector from the dynamical Lie algebra that is parallel to the desired matrix

logarithm iĤeff and whose norm carries the physical meaning of the quantum speed

limit.

3.2.1 Partition of the dynamical Lie algebra

In Chapter 2 we have seen how it is sufficient for the dynamical Lie algebra to

span su(n) for the system to be operator controllable. Here, we make a qualitative

categorization of all different dimensions of the vector space of the Lie algebra

depending on how quickly the system can evolve along them. Indeed, in the general

case not all directions in su(n) can be followed with the same speed. It is vastly

different to produce an evolution that is mostly generated by the control of a quantum

system than implementing an operation that requires the system to evolve using the

time-independent drift for a set amount of time. This subsection presents a Lie algebra

partition split into three different vector subspaces: fast directions, slow directions

and very slow directions.

We start with the system described in Equation (3.1) using traceless operators

Ĥ0 and Ĥ1, which is assumed to have Hilbert space dimension dim(H) = n and to

be operator controllable. Without loss of generality one can also assume that Ĥ0 is
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orthogonal to Ĥ1
1. Evidently, evolutions along the −iĤ1 direction in the Lie algebra

can be implemented in arbitrarily short times, as previously discussed. We call this a

fast direction and we denote the corresponding subspace as F .

On the other hand, evolutions exp(−iĤ0t) following the direction given by the

drift −iĤ0 cannot be sped up. They are subject to the natural speed at which the drift

evolves the system. Equation (3.5) has already shown how the norm of the drift ∥Ĥ0∥
can be linked to how fast these directions can be followed. The minimal time that the

system must evolve using the drift imposes the quantum speed limit associated to given

unitary operation. Similarly any evolution that can be decomposed into a sequence

e−iĤ1t1e−iĤ0t2e+iĤ0t1 only has the central evolution e−iĤ0t2 as a real contribution to

the quantum speed limit. This sequence follows e−iĤ1t1(−iĤ0)e+iĤ1t1 as a direction

in the Lie algebra at the same speed. Coincidentally, ∥Ĥ0∥ = ∥e−iĤ1t1(−iĤ0)e+iĤ1t1∥.
From a physical point of view, the sequence implements an arbitrarily fast pulse

using the control, an evolution along the drift for a certain amount of time t2 and

the opposite to the first implemented pulse. This opens up a new set of directions

that evolve with the same speed as Ĥ0. The directions encompassed in the set

{e−iĤ0v(−iĤ0)e+iĤ0v}v∈R are named slow directions with a corresponding spanned

subspace S. Note that the evolutions that are defined by the set of slow directions

are reminiscent of the bang-off-bang pulses that have been used in certain cases

to obtain the quantum speed limit [115]. Indeed the evolutions in the sequence

e−iĤ1t1e−iĤ0t2e+iĤ0t1 represent a first and a final step e±iĤ0t1 where the control

is turned on for a certain amount of time (depending on the maximum available

amplitude) and a middle evolution e−iĤ0 where the control is turned off. This is a

useful piece of information, as it connects evolutions along the slow directions in the

Lie algebra to the exact control pulses that can implement them.

Without loss of generality, we assume any single control operator Ĥ1 in a finite-

dimensional system to be diagonal in virtue of the spectral theorem [116]. As a

second hypothesis, we assume the drift Ĥ0 to be completely off-diagonal, i.e. with

all elements in the main diagonal equal to zero. The use of this convention will be

useful both for visualising the geometric picture presented below and for comparing

results with previous work. The latter assumption is not true in the general case.

Nevertheless, it serves as a starting point for the study that simplifies calculations.

The results here presented could in principle be extended to the case where Ĥ0 is

1Indeed if that was not the case, one can use the decomposition Ĥ0 = Ĥ⊥
0 +Ĥ

∥
0 , where Ĥ⊥

0 (respectively
Ĥ

∥
0 ) is the contribution that is perpendicular (respectively proportional) to Ĥ1. Any dynamical

contribution by the Ĥ
∥
0 term can be effectively countered by the control operator Ĥ1. Thus, if

Ĥ0 ̸⊥ Ĥ1 we can redefine the system as having a Hamiltonian

Ĥ(t) = Ĥ⊥
0 + u′(t)Ĥ1, with u′(t) := u(t) +

T r
(
Ĥ0Ĥ1

)
T r
(
Ĥ2

1
) . (3.6)
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not off-diagonal, accounting for the overlap between Ĥ0 and Ĥ1. The off-diagonal

hypothesis, however, also ensures that the operators iĤ0 and iĤ1 are orthogonal

vectors in the Lie algebra space.

A simple example to showcase the partition of the generated Lie algebra is the

one-qubit system described by the Hamiltonian

Ĥ1q(t) = ω

2 σ̂x + u(t)σ̂z. (3.7)

Note that the control is a diagonal contribution whereas the drift is an off-diagonal

operator. Here the space of fast directions is F1q = span{iσ̂z}. It contains all diagonal

operators of su(2) and gives control over all local phases on the system. The space of

slow directions is given by

S1q = span
({
−iω2 (cos(θ)σ̂x + sin(θ)σ̂y) | θ ∈ [0, 2π]

})
= span (iσ̂x, iσ̂y) . (3.8)

Therefore, in this case su(2) = F1q ⊕ S1q. This implies that we can decompose

the effective Hamiltonian iĤeff of any single-qubit unitary operation into diagonal

contributions (fast directions) and off-diagonal contributions (slow directions) that

dictate the quantum speed limit of the system.

Depending on the system, this decomposition into just fast and slow directions is

not always possible. There are certain scenarios where the system is operator control-

lable, yet F ⊕S ⊊ su(n). What happens to the dimensions that do not belong to either

F or S? Operator controllability ensures that the remaining terms in the algebra will

be generated via commutators (or linear combinations thereof). Physically, there may

be unitary gates that cannot be implemented solely by doing a fast rotation around the

control operator R̂Ĥ1
(θ), letting the system evolve along its natural drift (exp(−iĤ0 t))

and implementing the opposite fast rotation around the control operator R̂Ĥ1
(−θ).

The elements not contained in the slow and fast directions have to be generated with

commutators of depth greater or equal than 2. It is still necessary to understand how

fast the system can follow any direction related to the projection of −iĤeff onto the

subspace V := su(n)
(F ⊕ S). However, implementing a unitary evolution exp(−iV̂ t) with −iV̂ ∈ V for

a time 0 ≤ t ≤ tf is extremely demanding, as it requires alternating infinitesimal

rotations exp(−iĤF
eff, j) and exp(−iĤS

eff, j) around directions −iĤF
eff, j and −iĤS

eff, j

included in the subspaces of fast and slow directions, respectively. This is experimen-

tally very costly to be feasible. For this reason, the directions included in the newly

defined subspace V are called very slow directions.

The total partition of the dynamical Lie algebra of the system is thus defined by

the following subspaces:
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• Subspace of fast directions F : defined by the vector space of directions deter-

mined by the control operator iĤ1.

• Subspace of slow directions S: given by the linear span of elements e−iĤ1t1(−iĤ0)e+iĤ1t1 .

• Subspace of very slow directions V: defined as V := su(n)\(F ⊕ S).

If an effective Hamiltonian cannot be expressed as a linear combination of elements

of the fast and slow directions, then there is no straightforward method to estimate

a quantum speed limit, as the ratio tr from Equation (3.5) no longer provides a

physically meaningful result. It is for this reason that given an evolution exp(−i Ĥ(V))
with Ĥ(V) ∈ V, it is more practical to approximate it as a product

e−i Ĥ(V) ≃
k∏
j=0

e−i Â(S)
j , (3.9)

with i Â(S)
j ∈ S for every 0 ≤ j ≤ k. We call this a decomposition of the gate. Note

that this is a mere approximation which can be arbitrarily precise depending on

the number of gates included in the sequence. Given a decomposition of a unitary

evolution Û = e−iB̂0e−iB̂1 · · · e−iB̂k with −iB̂j ∈ F + S for every 0 ≤ j ≤ k, the sum

of all the quantum speed limits of e−iB̂k serves as an upper bound to the quantum

speed limit of Û . This is the core idea of the study for the cases where V ≠ 0.

3.2.2 The available velocity polytope

In Equation (3.3) we saw the curve γĤ1
(α) of unitary gates that can be approxi-

mated arbitrarily fast. With this in mind, given an arbitrary state |ψ(t)⟩ evolving under

Equation (3.1), we define the state

|ψ̃(t)⟩ := ei
∫ t

0 u(τ)Ĥ1 dτ |ψ(t)⟩ . (3.10)

Note that the states |ψ̃(t)⟩ and |ψ(t)⟩ are connected through a gate in the instantaneous

curve γĤ1
(α), i.e. we can evolve from one to another with the implementation of

a gate that can be achieved arbitrarily fast. Assuming that the state |ψ(t)⟩ evolves

according to Equation (3.1), we can derive the dynamic equation of |ψ̃(t)⟩ as

d

dt
|ψ̃(t)⟩ = ei

∫ t

0 u(τ)Ĥ1 dτ
(
−iĤ0

)
e−i

∫ t

0 u(τ)Ĥ1 dτ |ψ̃(t)⟩ . (3.11)

where u(t) is the control function defined in Equation (3.1). Assuming that the control

operator Ĥ1 is time independent, it can be taken out of the integral of Equation

(3.11). The remaining integral v =
∫ tf

0 u(t) dt can take any value v ∈ R by varying

shape of the control u(t) and the final time tf . Comparing Equation (3.11) with the
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Schrödinger equation, the term preceding the ket on the right-hand side represents an

effective Hamiltonian exp(i vĤ1)Ĥ0 exp(−i vĤ1). From a physical point of view, this

simply represents the state |ψ̃(t)⟩ evolving under the drift Ĥ0 between two (arbitrarily

fast) rotations around the control operator Ĥ1. The effective Hamiltonian Ĥv of the

evolution can be written as

Ĥv := iAd
eivĤ1 (−iĤ0) (3.12)

with the adjoint map [52]

AdÛ : gl(n,C) → gl(n,C)
Â 7→ Û ÂÛ−1,

(3.13)

where Û ∈ U(n). It is immediate to see that if Â is a (skew-)Hermitian operator,

then AdÛ (Â) is also a (skew-)Hermitian operator. If [Ĥ0, exp(i vĤ1)] ̸= 0, the skew-

Hermitian operators −iĤ0 and −iĤv are different vectors in the dynamical Lie algebra

L ⊆ su(n) of the system. By definition, all −iĤv are classified as slow directions in

the Lie algebra partition presented in the previous subsection.

By varying all the different values that the parameter v can take in Equation

(3.12), we can create a set of possible directions in the dynamical Lie algebra. This

expands the number of possible vectors that are used to determine the quantum

speed limit using the estimation shown in Equation (3.5). Given a unitary evolution

Û = exp(−iĤeff ), if the implicitly defined effective Hamiltonian iĤeff is parallel to a

vector in the set {iĤv}v∈R, the quantum speed limit of said evolution has an upper

bound in ∥Ĥeff∥/∥Ĥv∥.

However, the uncountable set {iĤv}v∈R cannot be computed in the general case.

Note that this set is not a vector space and therefore it is not possible to compute a

basis to define it, as it is done for Hilbert spaces or Lie algebras. Its approximation is

given by the inclusion of a sufficiently large set of vectors −iĤv. To atone for this, we

can find an approximation of {iĤv}v∈R by considering linear combinations of these

elements. Indeed, the Trotter product formula (also called the Lie product formula)

states that

lim
l→∞

(
e−i τ

l
P̂ e−i τ

l
Q̂
)l

= e−i τ(P̂+Q̂). (3.14)

for any pair of complex n× n matrices P , Q [117]. In other words, if the operators

iP̂ and iQ̂ belong to the dynamical Lie algebra of the system, then so does iP̂ + iQ̂.

This is not surprising, as the vector space structure of the dynamical Lie algebra math-

ematically ensures the same property. An important question, however, is how fast

the unitary evolutions displayed in the Trotter product formula can be implemented.

Let us assume that P̂ and Q̂ represent two different Ĥv Hamiltonians as defined in

Equation (3.12). An operation exp(−i τl P̂ ) can be performed in an approximated time
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t = τ/l. The total time required to implement the l operations in the left-hand side of

Equation (3.12) is

t = lim
l→∞

l∑
j=1

(
τ

l
+ τ

l

)
= 2τ. (3.15)

Therefore the time required to implement exp(−i τ(P̂ +Q̂)) is also 2τ . For the purpose

of estimating the required time for a quantum gate, it makes sense to rewrite the

Trotter product formula as

lim
l→∞

(
e−i λ1τ1

l
P̂ e−i λ2τ2

l
Q̂
)l

= e−i (λ1τ1P̂+λ2τ2Q̂), ∀λ1, λ2 ≥ 0 and λ1 + λ2 = 1.
(3.16)

Note that λ1P̂ + λ2Q̂ is by definition the convex combination of the algebra elements

P̂ and Q̂. Equation (3.16) shows that, if there are two rotations e−i τ1P̂ and e−i τ2Q̂

that can be implemented in times t = τ1 and t = τ2 respectively, then the rotation

e−i (λ1τ1P̂+λ2τ2Q̂) around the direction given by the operator λ1P̂ + λ2Q̂ can be im-

plemented in time t = λ1τ1 + λ2τ2. If τ1 = τ2 =: τ , then any convex combination

λ1P̂ + λ2Q̂ has the same associated expected time τ . Note that in certain cases it

could be true that the operation e−i (λ1τP̂+λ2τQ̂) may be implemented in a time shorter

than τ . However, τ stills remain as an upper bound for the quantum speed limit of

said unitary evolution, thus being a useful data point for its estimation.

We define the available velocity polytope as the set including all elements of

{Ĥv}v∈R and their convex combinations, i.e.

AvV el
(
Ĥ0, Ĥ1

)
:= conv

{
Adexp(vĤ1)(−iĤ0) | ∀v ∈ R

}
. (3.17)

Note that the conv(A) operation represents the convex hull of a set A. The convex hull

and its computation method will be explained in depth in Section 3.2.3. Since we have

chosen Ĥ0 and Ĥ1 to be orthogonal, every element −iĤv ∈ AvV el(Ĥ0, Ĥ1) is also or-

thogonal to−iĤ1. This can be easily proven using the fact that Tr(evĤ1Ĥ0e
−vĤ1Ĥ1) =

Tr(Ĥ0Ĥ1).

It is still necessary to determine which vector from AvV el(Ĥ0, Ĥ1) is the right one

to compute the quantum speed limit of an effective Hamiltonian Ĥeff . To do so, we

define the geometric ray

rĤeff
:= {−α iĤeff |α ≥ 0} (3.18)
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that contains all operators that are in the same single direction in the vector space of

the associated Lie algebra. Then the right operator to estimate the quantum speed

limit is defined as the intersection

Ĥ∩ := rĤeff
∩ ∂AvV el

(
Ĥ0, Ĥ1

)
(3.19)

where ∂AvV el(Ĥ0, Ĥ1) represents the boundary of the available velocity polytope. If

the intersection Ĥ∩ exists (see more in Section 3.2.1), then it is unique, as rĤeff
is a ray

starting at the coordinate origin, which is contained in the convex set AvV el(Ĥ0, Ĥ1).
Therefore, given a quantum system evolving under a Hamiltonian (3.1) and a unitary

evolution Û with an effective Hamiltonian Ĥeff = i log(Û), the quantum speed limit

of Û in the system can be estimated as

τQSL = ∥Ĥeff∥
∥Ĥ∩∥

, (3.20)

where ∥·∥ represents the norm of the operators in the vector space of the Lie algebra.

Section 3.2.3 explains more in detail how to compute the intersection point Ĥ∩ needed

for this estimation. The exact value of τQSL serves as a (possibly tight) upper bound

to the quantum speed limit that is imposed by Heisenberg’s uncertainty principle.

There are some cases where this estimation can be significantly improved as shown in

Section 3.3.3.

3.2.3 Geometry and computation of convex sets

Previously we have used convex combinations λ1P + λ2Q of two points P and

Q with positive coefficients λ1 + λ2 = 1 for elements in a Lie algebra. Given a set

A of points contained in an affine space, the convex hull conv(A) is the minimal

set that contains A and all its convex combinations. It includes every combination∑Np

i=1 λiPi of any finite number Np of points Pi ∈ A with positive weights λi, such that∑Np

i=1 λi = 1. As a visual example, Figure 3.2 shows the convex hull of an arbitrary set

of points in a plane.

Finding the exact AvV el(Ĥ0, Ĥ1) required for the quantum speed limit estimation

is a difficult task. However, one can find an approximation to the available velocity

polytope by generating a sufficiently large set of points Adexp(vĤ1)(Ĥ0) and then

computing its convex hull. This method essentially creates a polygon mesh of the

exact AvV el(Ĥ0, Ĥ1) whose resolution depends on the number of initial points and

their distribution along the polytope. If the resolution is high enough, the intersection

Ĥ∩ from Equation (3.19) should be close to the original value. In turn, τQSL should

also be a good approximation. Let Ĥapprox
∩ be an intersection point found via an

approximation of the available velocity polytope and Ĥex
∩ the exact intersection point.

The polygon mesh is by definition contained in the exact AvV el(Ĥ0, Ĥ1), which
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O

rĤeff−iĤeff−iĤ∩

−iĤ∩ −iĤ∩

−iĤeff

AvV el(Ĥ0, Ĥ1)

τQSL =
∥Ĥeff∥
∥Ĥ∩∥

= 2

Figure 3.1: Two-dimensional visualization of the quantum speed limit estimation given by
Equation (3.20) for a system with Hamiltonian (3.1) and a unitary operator
Û := exp(−iĤeff ). The geometrical representation shows the affine space
defined by the Lie algebra vector space. The effective Hamiltonian −iĤeff

represents the velocity at which the system has to evolve for t = 1 units of
time (in arbitrary units) in order to achieve the evolution Û . The violet polygon
represents the available velocity AvV el(Ĥ0, Ĥ1) of the system. The points in
the border of AvV el(Ĥ0, Ĥ1) represent the different velocities under which the
system can evolve under the Hamiltonian (3.1). The ray rĤeff

is given by the

vector −iĤeff starting at the origin O. The vector −iĤ∩ is defined as the vector
extending from O to the intersection between the ray rĤeff

and the border of

AvV el(Ĥ0, Ĥ1). In this visual example, −iĤeff is twice as long as −iĤ∩. As the
system can evolve under −iĤ∩, it evolves with half the speed dictated by −iĤeff .
In other words, it takes double the time to produce the evolution Û , i.e. the
quantum speed limit estimation is τQSL = 2.
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x
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Figure 3.2: Visual representation of a convex hull. (a) Set of points A in the two-dimensional
plane. (b) Convex hull of the previous set conv(A), represented by the coloured
area and outline. The border ∂conv(A) is given by the set of outer points and the
hyperplanes (lines for the current two-dimensional case) that define the facets or
simplices of the polytope (i.e. sides of a polygon here).

implies that ∥Ĥex
∩ ∥ ≥ ∥Ĥ

approx
∩ ∥. Thus the associated quantum speed limit estimations

fulfill τ exQSL ≤ τapproxQSL , meaning that the approximated estimation is a valid albeit

perhaps looser upper bound to the exact limit.

Computing the convex hull of a set of points in an k-dimensional affine space

requires heavy calculations. Fortunately, there are specialized tools for this purpose.

Quickhull is one of the algorithms written to tackle such problem [118]. It takes a set

of points in an k-dimensional space and returns a list of the different facets that form

the border of the convex hull. Each (k − 1)-dimensional facet is defined by a list of

its k vertices, which are points from the initial set. According to this definition, the

facets are simplices, i.e. the simplest convex (k − 1)-dimensional shape that can be

described using k points. This includes segments in one dimension, triangles for two

dimensions, irregular tetrahedrons for three dimensions, etc.

There exist multiple open-source implementations of this algorithm like the Qhull
implementation on C++ [119] and its Python wrapper pyhull [120]. The latter was

used to perform every calculation requiring a convex hull in this project. The Qhull li-

brary was later included in the scipy.spatial package under the name ConvexHull [114],

making it more accessible to some Python installations.

Calculating the intersection Hamiltonian Ĥ∩ defined in Equation (3.19) is a priori

a simple numerical task that can nevertheless take up some computational time, de-

pending on the resolution of the available velocity polytope (i.e. number of simplices).

Algorithm 3.1 presents, in simple pseudocode, the necessary steps to determine Ĥ∩

when using an available velocity polytope computed via Qhull. Note that this method

becomes increasingly more demanding depending on the dimension of the vector
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Algorithm 3.1: Compute the intersection between the available velocity polytope
and a ray pointing in a given direction.

1 Input:
• AvVel(Ĥ0, Ĥ1): available velocity polytope as a list containing all the simplices
defined by their vertices.
• Ĥ0, Ĥ1: drift and control operators.
• Ĥeff : effective Hamiltonian that generates some unitary evolution.

2 for every simplex_j in AvVel(Ĥ0, Ĥ1) do
3 Get equations that define the hyperplane πj containing simplex_j.
4 if the hyperplane πj has an intersection −iĤ∩ with the ray {−αiĤeff | (α ≥ 0)}

then
5 if −iĤ∩ is contained in simplex_j then
6 Exit outer for loop and return Ĥ∩
7 end if
8 end if
9 end for

10 Output:
• Ĥ∩: operator related to the the intersection point between the direction given
by the effective Hamiltonian and the border of the available velocity polytope.

space (i.e. the group su(n)). In turn, the vector space dimension increases expo-

nentially with the number of qubits, making this process a challenging one for large

systems.

While the goal of this study was to study elements in Lie algebras, the Qhull

algorithm poses a significant challenge: Its original implementation is in principle

only intended for spaces with dimension up to 8. Computations in higher-dimensional

spaces are possible although they are not guaranteed to succeed due to memory

requirements. Data was calculated exceeding this eight-dimensional mark, but it

significantly hindered the capability of the study here presented. As a possible

solution, there exists an alternative that bypasses the use of a convex hull algorithm

by including certain hypotheses over the system. The alternative method is presented

and explained in Section 3.2.4.

3.2.4 Alternative approximations of the available velocity polytope

Section 3.2.3 covered the topic of how to compute the available velocity polytope

using quickhull. This method stops being useful at a very low number of qubits.

Indeed, since the dimension of the Lie algebra scales exponentially with the number

of qubits, this tool already faces problems even with arrays of only three qubits, where

dim(su(23)) = 63. There are alternatives that can be used to provide a slightly worse

albeit more applicable approximation. The core idea is to approximate the available

velocity polytope by an analytical hypersurface contained in AvV el(Ĥ0, Ĥ1) that can
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be used to calculate the intersection −iĤ∩ needed for the estimation of the quantum

speed limit described in Equation (3.20). Ideally, this hypersurface should be as close

as possible to the border of AvV el(Ĥ0, Ĥ1) so that the approximated intersection

−iĤ∩ is as close as possible to the exact one. This can be achieved under certain

assumptions that are presented below.

To this end, we introduce the concept of rationally independent real values. A set

of real values {a1, a2, . . . , aN} is said to be rationally independent if for any rational

coefficients k1, k2, · · · , kN the following condition holds true:

k1a1 + k1a1 + · · ·+ kNaN ⇒ kj = 0, 1 ≤ j ≤ N. (3.21)

This ensures that every ratio aj/ak is an irrational number. Now let {λj}(n−1)
j=0 ⊂ R be

the spectrum of the control operator Ĥ1. Let us assume that every pair of elements

in the set {λj

2π}
(n−1)
j=0 ⊂ R is rationally independent. In this case, the Lie group of all

arbitrarily fast operators eF is

eF =
{

diag
(
e−iλ0 w, e−iλ1 w, · · · , e−iλn1 w

)
|w ∈ R

}
, (3.22)

where diag(v⃗) represents a diagonal matrix with the nonzero coefficients given by

v⃗. Given that the eigenvalues λj modulo 2π are pairwise rationally independent,

the exponentials eiλj w do not have any common period for w. In other words, their

phases only synchronise when w = 0. This irrational vector represents a line along

the compact n-dimensional torus Tn (isomorphic to the space of diagonal unitary

matrices). This line can approximate any point up to arbitrary precision. From a

physical point of view, this means that if the eigenvalues of the control Hamiltonian

modulo 2π are pairwise rationally independent, then we can approximate any diagonal

unitary operator up to arbitrary precision at an arbitrary short time, i.e.

eF ≈ Tn. (3.23)

Note that the symbol ≈ is here used to represent numerical approximation and not a

homeomorphism. For every diagonal unitary operator D̂ and error ϵ > 0 there exists

a coefficient w ∈ R+ such that ∥D̂†e−i Ĥ1 w − 1∥ < ϵ. Furthermore, Equation (3.23)

implies that all local phases of the states in the eigenbasis can be adjusted arbitrarily

fast.
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Since the drift is assumed to be off-diagonal, we can write its matrix representation

as

Ĥ0 =


0 a01 a02 · · ·
a01 0 a12 · · ·
a02 a12 0 · · ·
...

...
...

. . .

 =
n−1∑
j,k=0
j<k

(aj,kêj,k + aj,kêk,j) (3.24)

where êj,k is the null matrix except for a 1 in the entry (j, k). If Equation (3.23) holds,

then for every nonzero entry aj,k, one can prove that eiθ|aj,k|êj,k − e−iθ|aj,k|êk,j ∈
AvV el(Ĥ0, Ĥ1) for every phase θ ∈ [0, 2π). Note that this element of the available

velocity polytope may not belong to the border, but be an inner point instead. In

other words, it is a lower bound for the value that the available velocity can take

in the direction that the vector represents. Using Equation (3.20), this lower bound

of the available velocity can be used as a substitute to Ĥ∩ to find an upper bound

to the quantum speed limit for unitary operators Û whose effective Hamiltonians

−iĤeff = log(Û) are parallel to the direction given by eiθ|aj,k|êj,k − e−iθ|aj,k|êk,j .
Including only these elements, we define a subset of the available velocity,

AvV elapprox
(
Ĥ0, Ĥ1

)
⊂ AvV el

(
Ĥ0, Ĥ1

)
, (3.25)

where

AvV elapprox
(
Ĥ0, Ĥ1

)
:= conv

(
{eiθ|aj,k|êj,k − e−iθ|aj,k|êk,j

∣∣∣ (3.26)

θ ∈ [0, 2π), 0 ≤ j < k ≤ n− 1}) .

The purpose of AvV elapprox
(
Ĥ0, Ĥ1

)
as an approximation is to circumvent the

use of quickhull or any similar algorithm to compute the convex hull of the available

velocity. This approximation holds for any finite dimensional Hilbert space, which

is the main limitation of quickhull. The second limitation is the number of vectors

−iĤv needed to approximate AvV el(Ĥ0, Ĥ1). A large set of vectors −iĤv is needed

to accurately generate the available velocity polytope. But this significantly increases

the number of faces that define the polytope, making Algorithm 3.1 much slower

when computing the intersection −iĤ∩ between the available velocity polytope and

the ray defined by an effective Hamiltonian. The alternative approximation shown in

Equation (3.25) avoids Algorithm 3.1 altogether, as shown below. Indeed, every point

iP̂ belonging to the border of AvV elapprox
(
Ĥ0, Ĥ1

)
can be written as

iP̂ (β⃗, θ⃗) :=
n−1∑
j,k=0
j<k

βj,k
(
eiθj,k∥aj,k∥êj,k + eiθj,k∥aj,k∥êk,j

)
(3.27)
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with the constraints 

∑n−1
j,k=0
j<k

βj,k = 1,

βj,k ≥ 0 0 ≤ j < k ≤ n− 1,

θj,k ∈ [0, 2π) 0 ≤ j < k ≤ n− 1.

(3.28)

Given a ray defined by an effective Hamiltonian −iγĤeff , the intersection iP̂ (β⃗, θ⃗)
between the ray and the outer border of the available speed polytope is given by

−iγHeff, j,kêj,k − iγHeff, j,kêk,j = βj,k
(
eiθj,k∥aj,k∥êj,k + eiθj,k∥aj,k∥êk,j

)
, (3.29)

whose solutions are
γ =

∑n−1
j,k=0
j<k

∥Heff, j,k∥
∥aj,k∥

βj,k = 1
γ

∥Heff, j,k∥
∥aj,k∥ 0 ≤ j < k ≤ n− 1,

θj,k = arg(−iHeff, j,k) 0 ≤ j < k ≤ n− 1.

(3.30)

Following Equation (3.20), an upper bound for the quantum speed limit is given

by τQSL = 1/γ. Note that this estimation was found without any numerical com-

putations for the convex hull, simply using the definition of the approximation

AvV elapprox
(
Ĥ0, Ĥ1

)
. This bound will not be tight in most cases. Overcoming

the numerical complexity of quickhull comes with this additional cost.

On the other hand, the assumption about the rational independence of the spectrum

of the control operator Ĥ1 does not seem to have a physical meaning behind it.

Indeed, mathematically speaking the independence happens with a probability of 1.

Physically, the eigenvalues can very well be related by rational ratios. Furthermore,

in numerical computations, every float number must be approximated by a rational

binary decimal. Therefore there exist physical and computational arguments to not

employ the aforementioned approximation as is. However, an alternative approach

may be used to arrive to the same destination.

Let us assume now that the spectrum σ(Ĥ1)/2π is not pairwise rationally inde-

pendent. Suppose that the ratios λj/λk of every pair of eigenvalues λj , λk ∈ σ(Ĥ1)
are always rational numbers (for every λk ̸= 0). If we further assume nonzero

eigenvalues, for every pair λj , λk there exist two integers n(j,k)
1 , n

(j,k)
2 ∈ Z such that

n
(j,k)
1 λj + n

(j,k)
2 λk = 0. If we choose the two coefficients n(j,k)

1 and n
(j,k)
2 with the

lowest absolute value, they represent the number of periods that the time-dependent
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functions ei λj t and ei λk t have to traverse to be back in phase. Unlike the rationally

independent case given in Equation (3.22), the set

e−iĤ1 ω =
{

diag
(
e−iλ0 w, e−iλ1 w, · · · , e−iλn1 w

)
|w ∈ R

}
(3.31)

represents a closed curve that is not dense in the subspace of diagonal unitary matrices.

In other words, it is technically not possible to approximate every point in u(n) with

arbitrary precision. Nevertheless, the larger the minimal absolute values for the

coefficients n(j,k)
1 and n

(j,k)
2 are for every pair of indices j ̸= k, the more coverage

the closed curve (3.31) will have on the torus Tn. In other words, the more loops

the curve does around the different circumferences in the torus, the better we can

approximate any point in the torus by a point from the curve. If n(j,k)
1 , n

(j,k)
2 ≫ 1 for

every pair j, k, then the approximation of the available velocity polytope displayed in

Equation (3.25) also holds.

The hypothesis of a large number of independent periods n(j,k)
1 , n

(j,k)
2 implicitly

includes the requirement of a non-degenerate spectrum of Ĥ1. This is not a new

condition, as it was also needed for the case of the set of rationally independent

eigenvalues of Ĥ1. It is, however, a strong requirement that should be checked in both

cases. Furthermore, it also implies that all eigenvalues of Ĥ1 are nonzero. This is in

reality a special mathematical case that does not bear any physical meaning. Indeed

this can be achieved by fixing a different origin of energies or by shifting the global

phase of the unitary operators generated by the Hamiltonian.

As a final note on the approximation of the available velocity polytope, both cases

can be combined into a single one: The case where some pairs of eigenvalues are

rationally independent and some are rationally dependent. For the approximation in

Equation (3.31) to be applicable, one simply must ensure that for every pair of ratio-

nally dependent eigenvalues λj and λk, the coefficients n(j,k)
1 and n(j,k)

2 with minimal

absolute value that make n(j,k)
1 λj + n

(j,k)
2 λk = 0 fulfill the condition n(j,k)

1 , n
(j,k)
2 ≫ 1.

If λj and λk are rationally independent, then there is no additional condition to be ful-

filled. This vastly expands the number of physical examples where this approximation

is valid.

3.2.5 Parametrization of unitary operators that meet the target conditions

To estimate the quantum speed limit in the case of one target gate Ûtgt, we only

take into account a single element of SU(n) with n = dim(H). If we have ns < n

state-to-state transfers instead (or a quantum gate in a subspace for the case of fixed

local phases), then the set containing all unitary evolutions that meet the target

conditions increases. Here we describe a way of parameterizing the set of all gates

that meet some target conditions.
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Let us begin with the case of a quantum gate acting on a subspace of the total

Hilbert space. Assume that we have a set of target conditions with fixed local phases

{|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}

ns−1
j=0 . Then we can expand the two sets {|ψ(j)

0 ⟩}
ns−1
j=0 and {|ψ(j)

f ⟩}
ns−1
j=0

into two complete orthonormal bases {|ψ(j)
0 ⟩}

n−1
j=0 and {|ψ(j)

f ⟩}
n−1
j=0 . Since we have n

n-dimensional vectors we can arrange them as the operators

X̂0 :=
(
|ψ(0)

0 ⟩ | |ψ
(1)
0 ⟩ | . . . | |ψ

(n−1)
0 ⟩

)
(3.32)

and

X̂f :=
(
|ψ(0)
f ⟩ | |ψ

(1)
f ⟩ | . . . | |ψ

(n−1)
f ⟩

)
. (3.33)

By definition, it is easy to prove that both operators are unitary. In the case where

ns < n we can assume without loss of generality that the matrix representation

of X̂0 in the canonical basis of the Hilbert space has determinant det(X̂0) = 1, i.e.

X̂0 ∈ SU(n). If not, then det(X̂0) = eiδ ̸= 1. By changing the last column of X̂0 from

the state |ψ(n−1)
0 ⟩ to e−iδ |ψ(n−1)

0 ⟩ we ensure that the determinant of the newly defined

matrix ˆ̃X0 fulfills det( ˆ̃X0) = 1, i.e. ˆ̃X0 ∈ SU(n), which physically represents the same

states. Likewise we can assume X̂f ∈ SU(n). While the first ns columns of X̂0/f are

fixed, the remaining n− ns remain as a free choice.

So, overall, how many different operators can we define that still meet the target

conditions? The unitary operator

ÛX̂0→X̂f
:= X̂f X̂

†
0 =

n−1∑
j=0
|ψ(j)
f ⟩ ⟨ψ

(j)
0 | (3.34)

is included in SU(n) and naturally represents the basis change from X̂0 to X̂f . In

Equation (3.34), the elements |ψ(j)
f ⟩ ⟨ψ

(k)
0 | with indices 0 ≤ j, k ≤ ns − 1 are fixed by

the target conditions. On the other hand, the ones with indices j ≥ ns have been

chosen arbitrarily by extending the sets of states in the target conditions into two

orthonormal bases X̂0 and X̂f . Different choices for the initial and final bases X̂0 and

X̂f lead to different operators ÛX̂0→X̂f
. To encapsulate all possible unitary evolutions

that meet the target conditions we define the parameterized unitary operator

Û(α⃗) := Û(Ŵ ) := eiθ

ns−1∑
p=0
|ψ(p)
f ⟩ ⟨ψ

(p)
0 |+

n−1∑
j,k=ns

Wj−ns,k−ns |ψ
(j)
f ⟩ ⟨ψ

(k)
0 |

 (3.35)

where Ŵ is a complex matrix of size (n− ns)× (n− ns) with entries Wj,k and θ ∈ R.

If we define a parametrization Ŵ (α⃗) of the unitary group U(n − ns), then we can

rewrite the previous equation as

Û(α⃗) := Û
(
Ŵ (α⃗)

)
(3.36)
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This parameterization will be relevant to search the group U(n− ns) and the set of

all possible target evolutions by varying the coordinates α⃗. From the definition in

Equation (3.35) one can immediately see that the operator meets the target conditions

for any choice of Ŵ , up to a physically irrelevant phase eiθ. Nevertheless, we want to

ensure that Û(Ŵ ) ∈ SU(n). First, we check the condition for unitarity, which leads

to

Û(Ŵ )†Û(Ŵ ) =
ns−1∑
p=0
|ψ(p)

0 ⟩ ⟨ψ
(p)
0 |+

n−1∑
j,k=ns

(
ns−1∑
l=0

W ∗
j−ns,lWl,k−ns

)
|ψ(j)

0 ⟩ ⟨ψ
(k)
0 |

!= 1n. (3.37)

Writing the previous condition in the {|ψ(i)
0 ⟩}i basis we come to the equality1ns 0

0 Ŵ †Ŵ

 != 1n, (3.38)

which implies that

Û(Ŵ ) ∈ U(n) ⇐⇒ Ŵ ∈ U(n− ns). (3.39)

Secondly, imposing the required condition on the determinant leads to

1 != det
(
Û(Ŵ )

)
= det

(
X̂0X̂

†
f Û(Ŵ )

)
(3.40)

=ei nθ det

ns−1∑
p=0
|ψ(p)

0 ⟩ ⟨ψ
(p)
0 |+

n−1∑
j,k=ns

Wj−ns,k−ns |ψ
(j)
0 ⟩ ⟨ψ

(k)
0 |


=ei nθ det

(
Ŵ
)
,

where we have used the fact that X̂0, X̂f ∈ SU(n). Therefore, combining both results

we arrive to the conclusion

Û(Ŵ ) ∈ SU(n) ⇐⇒ Ŵ ∈ U(n− ns) and θ = −
arg

(
det(Ŵ )

)
n

. (3.41)

The dependence on θ can be lifted once the matrix Ŵ is defined. This makes α⃗ ∈
R(n−ns)2

the only variable needed to define Ŵ (α⃗) ∈ U(n − ns) and Û(Ŵ (α⃗)). The

set

GTC :=
{
Û | Û ∈ SU(n), Û |ψ(j)

0 ⟩ = eiφ |ψ(j)
f ⟩ , φ ∈ R, j = 0, 1, ..., ns − 1

}
(3.42)

contains all the special unitary matrices that are phase equivalent to unitary operators

that meet the target conditions. Note that GTC can also be given the structure of a

Lie group albeit not with the standard matrix multiplication. In physical terms, GTC
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simply represents all the unitary operators that meet the target conditions up to an

arbitrary global phase2.

To estimate the quantum speed limit τQSL of a quantum gate acting on a subspace

defined as {|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}

ns−1
j=0 we can determine the shortest time at which any gate

Û(Ŵ ) ∈ GTC can be implemented in our system.

For the case of a set of state transfers without fixed local phases {|ψ(j)
0 ⟩ →

eiφj |ψ(j)
f ⟩}

ns−1
j=0 , we can repeat the same argumentation, turning Equation (3.35)

into

Û(α⃗) := Û(Ŵ , φ⃗) =e−i arg(det(Ŵ ))
n e−i

∑ns
l=0 φl

ns−1∑
p=0

eiφp |ψ(p)
f ⟩ ⟨ψ

(p)
0 |

+
n−1∑
j,k=ns

Wj−ns,k−ns |ψ
(j)
f ⟩ ⟨ψ

(k)
0 |

 (3.43)

with φ⃗ ∈ Rns . Here, the vector α⃗ encompasses a parametrization of both the Lie

group U(n− ns) and the phase space Rns , which contains all parameters of both Ŵ

and φ⃗ respectively. The exponential e−i
∑ns

l=0 φl comes from imposing the condition

det(Û(α⃗)) = 1. The new restrictions for the parameters are compiled as

Û(Ŵ , φ⃗) ∈ SU(n) ⇐⇒
{
Ŵ ∈ U(n− ns) ,
(φ0, ..., φns−1) ∈ [0, 2π]ns .

(3.44)

Lifting any restriction on the local phases we get ns more real variables, which

represent the subspace of diagonal operators in U(ns), T (ns). This space represents

diagonal complex matrices, whose diagonal entries have absolute value equal to 1.

I.e., T (ns) ≃ T(ns) 3. The total space of unitaries in the special group that meet the

target conditions GT C
loc ph is defined as GT C

loc ph := GT C ⊗ T (ns).

The quantum speed limit τQSL for a set of simultaneous state transfers has to be

estimated by evaluating the minimal time at which we can perform an operator in

GT C
loc ph.

2The map f : U(n − ns) → GT C defined as Ŵ 7→ Û(Ŵ ) is a well defined group isomorphism, i.e. it
is a bijective homomorphism between U(n − ns) and GT C . Indeed the inverse function f−1 is also
well defined and for every element V̂ ∈ GT C we can define a unitary operator f−1(V̂ ) ∈ U(n − ns).
By exploring all the matrices in U(n − ns) we can account for all the elements in GT C . From the
dimension of the U(n − ns) group, this results in a total of (n − ns)2 real variables needed to define
Û(Ŵ ), i.e. GT C is an (n − ns)2-dimensional manifold.

3This notation is used to represent T(ns) := S1 ⊗(ns), i.e. the (ns)-dimensional torus.
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3.2.6 Algorithm outline

Now that all the required tools have been presented, it is possible to write down an

algorithm that is able to compute the quantum speed limit associated with a unitary

operator, a quantum gate acting on a subspace or a set of simultaneous state transfers.

First, we present a core subroutine that computes the quantum speed limit of any

unitary evolution. This subroutine is presented as Algorithm 3.2. Then, the protocol

is extended to the latter two cases, finding the minimal quantum speed limit among

all the unitary operators that implement the target state-to-state transfers or a gate

in a logical subspace. This global routine is later introduced as Algorithm 3.3, which

contains Algorithm 3.2 in its description.

We start by defining a function τ(·) that, given any unitary operator V̂ , returns the

quantum speed limit estimation of said evolution in the studied system

τ : U(n) −→ R+

V̂ 7−→ τ
(
V̂
)
.

(3.45)

The broad idea is to have the τ(·) function use the available velocity to determine the

quantum speed limit via the estimation show in Equation (3.20) and Figure 3.1. When

the effective Hamiltonian −iĤeff of a gate Û = exp(−iĤeff ) does not belong to S,

i.e. when Equation (3.20) is not directly applicable, then the function τ(·) adapts the

calculation by finding a decomposition of Û into a sequence Û = Û1Û2 · · · of gates

whose quantum speed limit can be directly determined with the previous estimation.

The quantum speed limit τÛ is then be approximated by τÛ =
∑
j τÛj . The main

structure of τ(·) is shown step by step in Algorithm 3.2, which is explained in detail

below.

While τ(·) depends on the desired unitary Û ∈ U(n) as a variable, the function

also implicitly depends on the information of the quantum system, which is passed

as an input in the form of the available velocity polytope AvV el(Ĥ0, Ĥ1) and the

control operator Ĥ1. Therefore, systems with different Hamiltonians lead to different

definitions of the function τ(·), although the same internal structure is maintained. To

avoid repeating calculations, we also include as an input a basis {−iÂ(S)
j }

dim(S)−1
j=0 of

the space of slow directions S, i.e. the space spanned by AvV el(Ĥ0, Ĥ1). Additionally,

there is one last parameter involved, ϵgate, which is the minimum tolerance that we

use to claim that two gates are approximately the same if and only if ∥Û †V̂ (β⃗)−1∥ ≤
ϵgate.

Algorithm 3.2 starts by computing the direction in the Lie algebra of the effective

Hamiltonian −iĤeff via the logarithm of the given unitary evolution. Then, it checks

whether −iĤeff belongs to the subspace of fast and slow directions F + S. If it
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Algorithm 3.2: Quantum speed limit estimation for fixed unitary gate

1 Input:
• Ĥ1: control operator of the studied system.
• AvVel(Ĥ0, Ĥ1): available velocity polytope.
• Û : unitary operator to decompose
• ϵgate: maximum error tolerance for the approximation of unitary matrices.

2 Compute −iĤeff := log
(
Û
)
.

3 if −iĤeff ∈ F + S then
4 Define −iĤ(S)

eff as the projection of −iĤeff onto S.

5 Find the intersection −iĤ∩ between the ray defined by −iĤ(S)
eff and the

polytope AvVel(Ĥ0, Ĥ1) (see Algorithm 3.1 or Equation (3.29) for the
quickhull or the torus approximation cases, respectively).

6 τQSL = ∥Ĥ(S)
eff∥/∥Ĥ∩∥

7 end if
8 else
9 Find a decomposition V̂ (β⃗) :=

∏dim(S)−1
j=0 e−iβjÂj that minimizes the error

∥Û †V̂ (β⃗)− 1∥.
10 if ∥Û †V̂ (β⃗)− 1∥ > ϵgate then
11 Concatenate sequences of gates of slow directions

V̂ (β⃗ite=0, ..., β⃗ite=k) := V̂ (β⃗ite=0)V̂ (β⃗ite=1) · · · V̂ (β⃗ite=k) until
∥Û †V̂ (β⃗ite=0, ..., β⃗ite=k)− 1∥ ≤ ϵgate

12 Define the vector β⃗ = (β⃗ite=0| β⃗ite=1| · · · |β⃗ite=k) of dimension k · dim(S)
as the concatenation of all β⃗ite=j .

13 for dim(S) ≤ l ≤ k · dim(S)− 1 do
14 Define Âl ← Â(l mod dim(S))+1
15 end for
16 end if
17 for 0 ≤ m ≤ size(β⃗) do
18 Find the intersection −iĤ(m)

∩ between the ray defined by −iÂm and the
polytope AvVel(Ĥ0, Ĥ1) (see Algorithm 3.1 or Equation (3.29) for the
quickhull or the torus approximation cases, respectively).

19 τ
(m)
partial = ∥Âm∥/∥Ĥ(m)

∩ ∥
20 end for

21 τ(Û) =
∑
j τ

(j)
partial

22 end if
23 Output:
• τ(Û): quantum speed limit estimation for a fixed unitary operator Û with the
available velocity polytope AvVel(Ĥ0, Ĥ1) and control operator Ĥ1.
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does, then the estimation is quite immediate, as it is a direct application of the

estimation τQSL previously presented in Equation (3.20). First, it takes the projection

of −iĤeff onto the subspace of slow directions S, denoted as −iĤ(S)
eff . Then, it finds

the intersection between the ray defined by the vector −iĤ(S)
eff in the Lie algebra

and the border of AvV el(Ĥ0, Ĥ1). Depending on the method used to compute the

available velocity polytope, this intersection is determined in one of two different

ways. If AvV el(Ĥ0, Ĥ1) was constructed using quickhull then it is a polytope that

can be embedded in an affine space of dimension d̃ := dim(span(AvV el(Ĥ0, Ĥ1))).
It is defined by a set of (d̃ − 1)-dimensional simplices, each defined by d̃ points in

the affine space of the Lie algebra. In this case, the intersection −iĤ∩ is computed

with the aid of Algorithm 3.1. Alternatively, if the torus approximation from the

previous subsection has been used, then the intersection point −iĤ∩ is determined via

Equation (3.29). Once −iĤ∩ has been found, the estimation for the quantum speed

limit is given by τQSL = ∥Ĥ(S)
eff∥/∥Ĥ∩∥.

On the other hand, if −iĤeff /∈ F + S, a direct estimation is not possible. Using

the basis {−iÂ(S)
j }

dim(S)−1
j=0 of S, the goal is then to find a decomposition of the gate

Û in the form of

Û =

dim(S)−1∏
j1=0

exp(−i β(1)
j1
Â

(S)
j1

)

dim(S)−1∏
j2=0

exp(−i β(2)
j2
Â

(S)
j2

)

 ... (3.46)

If we allow for a certain error in the approximation, it is sufficient to take a finite

sequence in Equation (3.46). Algorithm 3.2 initializes this step with only one layer of

gates
∏dim(S)−1
j1=0 exp(−i β(1)

j1
Â

(S)
j1

), trying to minimize the error

ϵ(β⃗(1)) := ∥Û †V̂ (β⃗(1))− 1∥ (3.47)

where V̂ (β⃗(1)) is defined as

V̂ (β⃗(1)) :=

dim(S)−1∏
j1=0

exp(−i β(1)
j1
Â

(S)
j1

)

 . (3.48)

In this instance, the optimization is implemented with the principal axis algorithm [121]

included in the NLopt python package [122]. If ϵ(β⃗) is larger than the error tolerance

ϵgate defined as an input in Algorithm 3.2, then the algorithm increases the number of

layers in the sequence by 1. To do so, we can define the new error

ϵ(β⃗(1), β⃗(2)) := ∥Û †V̂ (β⃗(1))V̂ (β⃗(2))− 1∥ (3.49)
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with the analogously defined V̂ (β⃗(1))

V̂ (β⃗(2)) :=

dim(S)−1∏
j2=0

exp(−i β(2)
j2
Â

(S)
j2

)

 . (3.50)

Note that in iteration i, only the parameters in β⃗(i) will be optimized until there is a

finite sequence at i = Nβ such that ϵ(β⃗(1), β⃗(2), . . . , β⃗(Nβ)) ≤ ϵgate. By definition, the

effective Hamiltonian related to each gate exp(−i β(k)
j Â

(S)
j ) is contained in S, which

means we can compute the quantum speed limit estimation for each of them as shown

before. Thus, the estimation for the quantum speed limit of the original gate is the

sum of all the quantum speed limits, i.e.

τ(Û) ≃
dim(S)−1∑

j=0

Nβ∑
k=1

τ
(
exp(−i β(k)

j Â
(S)
j )

)
. (3.51)

This concludes the algorithm for the estimation of the quantum speed limit of a fixed

unitary gate, which provides the foundation for other cases. Now the method can be

extended to compute the quantum speed limit of state-to-state transfers and gates

acting on subspaces of the Hilbert space.

To implement the extension to other targets we simply need to explore the set of

all the gates that meet the target conditions and find the minimum quantum speed

limit among them. For this search, we define a parameterization

Û : RM −→ U tgt

α⃗ 7−→ Û(α⃗)
(3.52)

where U tgt represents the set of all the unitary operators in SU(n) that meet the target

conditions. The exact parameterization depends on whether the target conditions in-

clude fixed local gates (cf. Equation (3.36)) or can vary any local phases (cf. Equation

(3.43)). In any case, the aforementioned vector α⃗ includes a parameterization of the

previously defined unitary operator Ŵ that shuffles the evolutions of the states not

included in the set of initial and final vectors. The parameterization of Ŵ adds up to

a total of (n− ns)2 parameters. In the case of arbitrary local phases, α⃗ also includes

the parameters of ϕ⃗ described in Equation (3.43), adding possibly ns new parameters.

The exact dimension M of the parameter space thus depends on the chosen case. The

final piece of the puzzle is the inclusion of this parameterization into an algorithm.

The parameterization from Equation (3.52) can be composed with the previous

estimator τ(·) for fixed unitary gates to obtain an estimator for other targets

τ ◦ Û : RM −→ R+

α⃗ 7−→ τ
(
Û(α⃗)

)
.

(3.53)
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Algorithm 3.3: Quantum speed limit estimation for simultaneous state transfers

1 Input:
• [Ĥ0, Ĥ1]: list including the drift Ĥ0 and control operator Ĥ1 of the studied
system.
• state_transfers: target conditions defined as sets of state transfers
{|ψ(j)

0 ⟩ → |ψ
(j)
f ⟩}j or {|ψ(j)

0 ⟩ → eiφj |ψ(j)
f ⟩}

ns−1
j=0 . They may have specific or

arbitrary local phases, respectively. A given unitary evolution Û can be given by
the state transfers of two complete orthonormal bases, i.e. ns = dim(H)

2 Compute AvVel(Ĥ0, Ĥ1) via quickhull (Section 3.2.3) or the torus approximation
(cf. Equation (3.26)).

3 Find a basis {−iÂ(S)
j }

dim(S)−1
j=0 for the subspace of slow directions S.

4 According to state_transfers, parameterize all Û(α⃗) that meet the target conditions
(cf. Equation (3.44))).

5 Define the figure of merit τQSL(Û(α⃗)) according to Algorithm 3.2.
6 Optimize τQSL := minα⃗ τQSL(Û(α⃗)) with αj ≥ 0 for every j.
7 Output:
• τQSL(U(α⃗))): quantum speed limit estimation for the system with Hamiltonian
Ĥ0,+u(t)Ĥ1 and target conditions state_transfers.

The function in Equation (3.53) can be used as the figure of merit in a minimization

problem over the whole parameter space RM . Note that, in doing this, we find

the minimum value for the quantum speed limit among all the different unitary

evolutions that meet the target conditions. The parametrization shown in Equation

(3.52) ensures that the figure of merit can be used in one of the many available

optimization algorithms. In our case, the subplex algorithm was chosen as a non-

linear optimization method that could scout the parameter space efficiently [123,

122]. Once the optimization algorithm has converged, the resulting optimal value

τQSL gives the estimation for the quantum speed limit for a fixed set of simultaneous

state transfers in the chosen quantum system. This value is an approximation that will

be more or less tight depending on the approximations used, but will always be an

upper bound to the actual quantum speed limit.

The main steps of the quantum speed estimator for state-to-state transfers and gates

on subspaces are shown in Algorithm 3.3, which is visually represented in the form of

a flowchart in Figure 3.3. There are two different types of inputs needed for the pro-

cedure. First, the Hamiltonian of an operator controllable system following Equation

(3.1) must be provided, where the drift Ĥ0 is an operator with null diagonal in the

matrix representation that uses the eigenbasis of the control operator Ĥ1. Second, the

data of the target state transfers is passed as a list of tuples {(|ψ(j)
0 ⟩ , |ψ

(j)
f ⟩)}j with the

additional information of whether or not local phases should be maintained or not (i.e.

whether we want a gate {|ψ(j)
0 ⟩ → |ψ

(j)
f ⟩}j or a set of targets {|ψ(j)

0 ⟩ → eiθj |ψ(j)
f ⟩}j

with arbitrary phases θj).
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Parameterize the set of all evolutions that meet the target conditions {Û(α⃗) | α⃗ ∈ RM}

Initialize optimization with a random α⃗.

Trotterize Û(α⃗) into a sequence Û(α⃗) =
∏k

j=0 e
−iβjÂj such that Âj ∈ F + S and βj ≥ 0 ∀j.

For 0 ≤ j ≤ k find the quantum speed limit τ
(j)
partial for the gate e−iβjÂj using AvV el(Ĥ0, Ĥ1).

τ(Û(α⃗)) :=
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j=0 τ
(j)
partial

τ(Û(α⃗))
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Continue optimization
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subplex algorithm
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α⃗

τ(Û(α⃗))
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Figure 3.3: Flowchart showcasing the main subroutines in Algorithm 3.3. More information
on how to calculate AvV el(Ĥ0), Ĥ1) using quickhull or the torus approximation
can be found in Sections 3.2.3 and 3.2.4 respectively. The parametrization of Û(α⃗)
is linked to the parametrization Û(Ŵ , φ⃗) given in Equation (3.44). Algorithm 3.2
provides a figure of merit for the quantum speed limit that can be optimized, e.g.
using subplex algorithm [123, 122].
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The next step is to construct the available speed polytope. This can be achieved

either by generating a sufficiently large number of points in the external hull of the

polytope (see Section 3.2.3) or by assuming that the group of arbitrarily fast unitary

directions generated by the control can be approximated by a torus (see Section 3.2.4).

These two alternatives are shortened as quickhull and the torus approximation in the

description of Algorithm 3.3 and in the flowchart of Figure 3.3. This allows us to

obtain a basis {−iÂ(S)
j }

dim(S)−1
j=0 of the space of slow directions S and similarly for the

space of fast directions F .

Finally, once the available velocity and the spaces S and F have been computed,

we define an optimization problem that allows us to explore the quantum speed

limit estimation of all the different possible unitary evolutions that meet the target

conditions. This follows the parameterization presented in Equation (3.53), using α⃗

as the optimization variables. Note that this optimization includes in its description

Algorithm 3.2 as the τ(·) function. As a possible parameterization of the Lie group

U(n − ns) we use an orthonormal basis {iB̂j}(n−ns)2−1
j=0 of the Lie algebra u(n − ns)

(with B̂j Hermitian for every j) such that

Ŵ (c⃗) = exp

(n−ns)2−1∑
j=0

i cj B̂j

 . (3.54)

At the end of the optimization, the algorithm provides a single value as a minimum

of the figure of merit τ ◦ Û(α⃗). This concludes the description of the quantum speed

limit estimator for state-to-state transfers and gates acting on subspaces presented in

Algorithm 3.3.

3.3 Results

To benchmark the quantum speed limit estimator, the method was used in different

examples based on a theoretical example where the quantum speed limit for any

operator was known to be in a certain interval. This section contains some of the

positive and negative results found during the use of the algorithm. Likewise, it also

includes the relevant insights obtained during the result analysis, with possible fixes

or alternative paths.

To showcase the different types of information we can gather using the quantum

speed limit estimator, we take one single quantum system and change the target

conditions to study different cases. In order to use the quickhull algorithm we also

choose a low-dimensional system. Both conditions make the example presented

in [99] a perfect candidate to study the quantum speed limit estimator in a three-

dimensional Hilbert space. This example does not directly connect to any particularly
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relevant physical case, but it is still an interesting case to test the developed algorithms.

Such a system can be described by the Hamiltonian

Ĥ(a1,a2,a3)(t) := Ĥ
(a1,a2,a3)
0 + Ĥ1(t) :=


0 a1 a3

ā1 0 a2

ā3 ā2 0

+ u(t)


d1 0 0
0 d2 0
0 0 d3

 , (3.55)

where the coefficients aj , i = 1, 2, 3 are nonzero complex numbers and dj , j = 1, 2, 3
are nonzero real numbers. As always, u(t) represents a real control function that

can be varied over time at will. On top of that, we also add the restrictions of

d1 + d2 + d3 = 0 (i.e. choosing the origin of energies for a traceless Ĥ1) and the two

magnitudes d1 − d2 and d2 − d3 being rationally independent. The last conditions

are necessary to obtain some analytical bounds for the quantum speed limit of any

unitary evolution in SU(3), τSU(3)
QSL . A system evolving under Equation (3.55) has a

lower and upper bound to this quantum speed limit

τlb := 2π
3 (|a1|2 + |a2|2 + |a3|2) ≤

max
Û∈SU(3)

(
τQSL(Û)

)
≤ 2

√
6π

3 min |ak|
=: τub. (3.56)

Note that the bounds τlb and τub have been obtained following the results in example

presented in Section 6.3 from [99] and are not an original part of this thesis. This

system can be studied with the quantum speed limit estimator from Section 3.2.

We can then compare the numerical estimations with the analytical predictions of

Equation (3.56). First, we compare the analytical bounds to a set of unitary evolutions

in Section 3.3.1. Second, we analyse the case of a single state-to-state transfer in

Section 3.3.2. Finally, we compare the case of simultaneous state transfers in Section

3.3.3.

In the end, the numerical method proved to be very demanding and it was deemed

inefficient for the purposes of analysing real physical systems. Indeed, the required

use of nested optimizations together with the numerical restrictions of quickhull or

the harsh approximations needed to apply the torus approximation made it impossible

to obtain meaningful positive results in examples based on real physical systems. The

method was eventually deprecated for this very reason. While all of the results are

valid as an upper bound to the real quantum speed limit of the system, the bounds

proved to be not as tight as one would have initially hoped. A deeper discussion on

this matter is included in Section 3.3.4.

3.3.1 Example A: Unitary gates

As a first step, we test the estimator for the case where the target is a fixed unitary

evolution in SU(3). This can be done e.g. by defining an initial and a final orthonormal

basis. In the three-dimensional case with Hamiltonian (3.55), this equates to three
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Figure 3.4: Bar chart including the quantum speed limit estimation for a hundred random
unitary evolutions in SU(3) for the system with Hamiltonian (3.55) with coeffi-
cients a1 = 1, a2 = −1, a3 = 2i. Each bar represents the τQSL estimation for a
different random unitary. Included in the graph are the two analytical bounds
given by Equation (3.56).

target conditions with fixed local phases. We provide a target unitary operator Û and

find the minimum quantum speed limit τ(eiθÛ) from all the possible operators that

just differ on a global phase eiθ with θ ∈ [0, 2π]. In other words, the phase angle θ

is the only parameter to take into account for the optimization. However, since the

Hamiltonian of the system is traceless, the global phase is also fixed and can be chosen

to be equal to 1.

For the case of a unitary evolution Û , the estimator is reduced to Algorithm 3.2.

This case serves as a preliminary test to check the performance of this subroutine, a

core tool that is needed in any other case. After checking the correct behaviour for

some isolated cases, we tested the estimator for multiple random unitary matrices

in SU(3). To generate these matrices we simply take one of the possible coordinate

maps of SU(3), e.g.

SU(3) =
{

exp
( 2∑
j,k=0
j<k

(αj,kêj,k − αj,kêk,j) +
∑
l=0,1

βl i (êl,l − êl+1,l+1)
)∣∣∣∣∣

∣∣∣∣∣α0,1, α0,2, α1,2 ∈ C, β0, β1 ∈ R
}
. (3.57)

As an exact value for the Hamiltonian of the system had to be chosen, we arbitrarily

used a1 = 1, a2 = −1, a3 = 2i.
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The quantum speed limits are shown in Figure 3.4. The bounds from Equation

(3.56) are depicted as horizontal lines. Algorithm 3.2 has been used to compute

the quantum speed limit of every unitary gate. Coincidentally, the values of all the

estimated τQSL lie between both of these bounds.

Note that this would not need to be true, in principle. Indeed, the bounds give the

interval [τlb, τub] ≈ [0.52, 5.13] (in arbitrary time units) for the shortest time in which

every unitary operator in SU(3) can be implemented. In other words, the bounds

[τlb, τub] give a rough interval for the time in which the slowest unitary evolution can

be implemented. It is possible for gates to be faster than this lower bound, i.e. fulfill

τ(Û) < τlb. A simple example to demonstrate this is any gate close to the identity. As

Û → 1, the effective Hamiltonian decreases as Ĥeff = i log(Û) → 0̂, where 0̂ is the

null operator. Following Equation (3.19), this implies that τQSL → 0.

The results from Figure 3.4 are nevertheless significant from a statistical point of

view. The highest estimated quantum speed limit out of all of the randomly chosen

unitary gates should be in the interval [τlb, τub]. This is indeed what can be seen in the

random search, where the maximum result yields max(τ) ≈ 3.5 ∈ [τlb, τub]

3.3.2 Example B: State-to-state transfer

As a second example we keep the same system described by the Hamiltonian in

Equation (3.55) with only one state transfer,

|ψ0⟩ = Û |ψf ⟩ with |ψ0⟩ =


1
0
0

 , |ψf ⟩ =


0
1
0

 , (3.58)

where the states are represented in the same basis as Hamiltonian ((3.55)), with the

control operator Ĥ1 being diagonal. In this example, we are interested in finding

the quantum speed limit of the fastest unitary evolution that can be implemented

on the system that fulfills Equation (3.58), up to a global phase, which is also fixed

as Û ∈ SU(3). As a single transfer, there are no other local relative phases that can

be checked between state transfers. Thus according to the parameterization Û(α⃗)
described in Equation (3.43) all the possible evolutions can be parameterized via a

unitary operator Ŵ ∈ U(2), i.e. with 4 real parameters.

Once again the Hamiltonian coefficients have been chosen such that a2 = −1
and a3 = 2i. To study multiple cases based on the same example, however, the

coefficient a1 has been chosen as a real positive number varying between 3 · 10−4 and

3 · 101. This coefficient was selected in particular, as it links the initial and final state,

a1 = ⟨ψ0| Ĥ(a1,a2,a3)(t) |ψf ⟩. A priori, the quantum speed limit of the transfer defined
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Figure 3.5: Quantum speed limit estimation for the system with Hamiltonian (3.55) with
coefficients a2 = −1, a3 = 2i and the state transfer (1, 0, 0)T → (0, 1, 0)T . The
value of the coefficient a1 is always real and positive. The bounds for the total
quantum speed limit are given by Equation (3.56).

by Equation (3.58) should be dependent on this coefficient. The larger the coefficient,

the shorter the quantum speed limit should be.

The results can be found in Figure 3.58. As we change the coefficient a1 in Equation

(3.55) so does the interval with the analytical bounds for the quantum speed limit

from Equation (3.56). Every time the Hamiltonian changes, the available velocity

polytope has to be calculated once again. The figure displays the bounds as well as

the quantum speed limit of the target state transfer for the different values of a1.

As a remark, the upper bound τub is inversely proportional to a1 (i.e. linear with a

slope of -1 in the log-log graph) until the interval where a1 ≥ min(|a2|, |a3|), where

it remains constant. Conversely, the lower bound τlb starts from an asymptotically

constant behaviour and tends to decrease as a1 increases.

For a1 > 0.17(|a2|+ |a3|), the quantum speed limit of the state transfer decreases:

The coefficient a1 represents indeed the exchange factor between the two states

and makes the evolution possible. As an interesting note, however, the quantum

speed limit τQSL(Û) is not always inversely proportional to a1. Indeed, for the case

where a1 < 0.17(|a2| + |a3|) we find a surprising behaviour, as the quantum speed

limit remains approximately constant. This means that to the left of that value, the

parameter a1 no longer remains relevant for the state to state transition.

What happens here from a physical point of view is that for the cases where a1

is relatively small compared to the other coefficients, the norm of the drift in the

Lie algebra, −iĤ(a1,a2,a3)
0 is mostly given by the a2 and a3 contributions. When we
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mix the remaining states in the initial and the final orthonormal bases, the effective

Hamiltonians resulting from the evolutions, −iĤeff = log(Û), use directions in the

available velocity polytope that are mainly given by the other coefficients, ignoring

any contribution of a1. In other words, after a1 has decreased enough, there are other

directions in the Lie algebra that are more beneficial to trigger the same transition

without caring about the ⟨ψ0| Ĥ(a1,a2,a3)(t) |ψf ⟩ coefficient.

3.3.3 Example C: Simultaneous state transfers

As a last example, we look at the last possible case in our three-dimensional

Hilbert space: Two simultaneous state transfers. Once again we take the system from

Equation (3.55) and search for the quantum speed limit of any evolution such that

|ψ(j)
0 ⟩ = Û |ψ(j)

f ⟩, where

|ψ(0)
0 ⟩ =


1
0
0

 , |ψ(1)
0 ⟩ =


0
1
0

 , |ψ(0)
f ⟩ =


0
1
0

 , |ψ(1)
f ⟩ =


1
0
0

 . (3.59)

As there remains only one free state in the basis, the last state-to-state evolution

would also be fixed up to a local phase, i.e.

|ψ(2)
0 ⟩ =


0
0
1

 and |ψ(2)
f ⟩ = eiθ


0
0
1

 . (3.60)

Thus the gates that meet the target conditions are equivalent to σ̂x ⊕ eiθ11 up to a

global phase. Once again we repeat the procedure followed in the previous example,

where a2 = −1, a3 = 2i and a1 is varied along the positive real axis.

The results are shown in Figure 3.6. At first glance, one could believe that the esti-

mated quantum speed limit indeed represents a close approximation. The estimation

always remains within the analytical bounds and it seems to be inversely proportional

to a1. As the coefficient a1 is the infinitesimal generator of rotation gates between the

two first states in the basis, it makes sense that here we obtain a significantly different

behaviour than in the previous example. Perhaps one extra target condition reduces

the possibilities that we can have in order to generate unitary gates.

This interpretation, however, exposes a flaw in the algorithm. To show this,

we define the states in the canonical basis |e0⟩ = (1, 0, 0)T , |e1⟩ = (0, 1, 0)T and

|e2⟩ = (0, 0, 1)T and we introduce the swap operators

Ûj,k |ej⟩ = |ek⟩ , Ûj,k |ek⟩ = |ej⟩ , Ûj,k |el⟩ = |el⟩ (3.61)
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Figure 3.6: Quantum speed limit estimation for the system with Hamiltonian (3.55) with
coefficients a2 = −1, a3 = 2i and the evolution σ̂x ⊕ eiθ11. The value of the
coefficient a1 is always real and positive. The bounds for the total quantum speed
limit are given by Equation (3.56).

for k, j, l ∈ {0, 1, 2} and j ̸= k ̸= l ̸= j. If we try to analyse the quantum speed limit of

the operators Ûj,k we are left with data similar to Figure 3.6, where τ(Û0,1) ∝ |a1|−1,

τ(Û1,2) ∝ |a2|−1 and τ(Û0,2) ∝ |a3|−1. However, we know that for an exact quantum

speed limit and any two unitary operators V̂ and Ŵ we must abide by the inequality

τ ex
(
V̂ Ŵ

)
≤ τ ex

(
V̂
)

+ τ ex
(
Ŵ
)
, (3.62)

where in this case τ ex(V̂ ) represents the exact quantum speed limit of the operator V̂ .

Nonetheless, for the case at hand we can find a decomposition of the swap operator

such that Û0,1 = Û0,2Û1,2Û0,2. Using the quantum speed limit estimator we see that if

|a1| ≪ |a2|, |a3| then

τQSL
(
Û0,1

)
≫ 2τQSL

(
Û0,2

)
+ τQSL

(
Û1,2

)
. (3.63)

While the value of τ(Û0,1) ∝ |a1|−1 is still valid as an upper bound to the exact

quantum speed limit, we know that it is far from the desired value and thus not really

that useful as an estimator. In particular, these extremely loose bounds will tend to

appear whenever we use coefficients that are orders of magnitude different from one

another.

As a workaround, we can make the method more efficient with a simple fix that

gets rid of the problems that arise when some coefficients aj,k are orders of magnitude

different. Assume a system with a drift Hamiltonian as described in Equation (3.24).

78 Chapter 3 Quantum speed limit estimator



Figure 3.7: Quantum speed limit estimation following the case in Figure 3.6 forcing the
inclusion a1ê0,1 − a1ê1,0 ∈ V (cf. Equation (3.63)).

Suppose that there exist a coefficient aj,k ̸= 0 and a sequence {ac0,c1 , ac1,c2 , ...acM ,cN }
such that j = c0, k = cN and

1
|aj,k|

>
1

|ac0,c1 |
+ 1
|ac1,c2 |

+ · · ·+ 1
|acM ,cN |

. (3.64)

Then we can manually override the use of the coefficient aj,k by declaring that the

directions êj,k−êk,j and iêj,k+iêk,j should be considered as part of the subspace of very

slow directions V. Computationally, this forces the algorithm to find a decomposition

using effective Hamiltonians in the other directions such that any effective Hamiltonian

alongside aj,kêj,k−aj,kêk,j must be decomposed into a sequence of other Hamiltonians

included in the slow and fast directions. This is essentially a different spin on

the concept of the connectedness chain shown in Section 2.4.3 and in previous

works of controllability [15]. Instead of estimating the quantum speed limit of an

evolution that couples two eigenstates |ej⟩ and |ej⟩ via the tuple (j, k) in the chain

of connectedness, we explore the possibility of using an intermediate state |el⟩ by

searching for a connectedness chain that includes the tuples (j, l) and (l, k). This

provides the possibility of doing a sequence of two evolutions Û|el⟩→|ek⟩Û|ej⟩→|el⟩ =
Û|ej⟩→|ek⟩. Under the described conditions, the estimation of the quantum speed limit

for the sequence Û|el⟩→|ek⟩Û|ej⟩→|el⟩ can yield a lower result than the one of the direct

evolution Û|ej⟩→|ek⟩, i.e. τ(Û|el⟩→|ek⟩) + τ(Û|ej⟩→|el⟩) < τ(Û|ej⟩→|ek⟩).

Using this procedure in the current example and manually overriding the use

of a1 when |a1|−1 < |a2|−1 + |a3|−1 we obtain the data plotted in Figure 3.7. In

this case we retrieve a behaviour similar to the example with the state transfer

(1, 0, 0)T → (0, 1, 0)T , exactly as we should expect. While we don’t claim that the
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estimations for the quantum speed limit in Figure 3.7 are exact, they show a clear

improvement over the previous results from Figure 3.6.

3.3.4 Numerical complexity and applicability

The idea of the algorithm as a quantum speed limit estimator works from a

theoretical point of view as an upper bound for all of the described cases. However,

there are a couple of issues that should be discussed, which hinder the applicability of

the method.

The first topic to discuss is the physical assumptions on the system. The diagonal

control operator Ĥ1 might seem strange, but for a single control this is always a

possibility. The first real assumption comes from demanding the drift Ĥ0 to have a

null diagonal. While this requisite has been used many times in theoretical studies

of controllability of systems, it is not a general assumption that can be extended to

every case. It does, however, occur in some real physical systems. One of the most

simple ones would be a single qubit with a X̂ control, whose Hamiltonian reads

−ω
2 σ̂z + u(t)σx. After a basis change, we can write the Hamiltonian as −ω

2 σ̂x + u(t)σz,
following the required condition of null diagonal on the drift. A similar result occurs

for more qubits with off-diagonal controls in the basis where the drift is purely

diagonal. This requisite has been used to simplify some of the calculations and

derivations to obtain the available velocity. In principle the same procedure could be

possible, whether using the numerical convexification or using the approximation via

rationally independent terms.

One of the main obstacles in the numerical implementation is the calculation

of the available velocity polytope. For a sufficiently low dimensional system, it is

not a problem, although creating the available velocity polytope and then finding

the intersection points Ĥ∩ needed for the quantum speed limit estimation take an

increasing amount of time as the Hilbert space dimension increases. However, it is

still feasible for two qubits. For larger spaces quickhull is no longer valid and the

torus approximation must be used. Here is where the assumptions may not extend

to the physically realistic examples; in particular, the rational independence of the

eigenvalues. As previously explained, this independence occurs for a randomly chosen

set of values with a high probability. Nevertheless, it is true that when using classical

simulations, all real values are bound to be represented by a floating-point number, i.e.

a rational with a certain precision. But even then, the analytical approximation eF≈Tn

holds and all computations that make use of it would be still valid. The real question

is whether this condition really happens in physical systems. For the case of qubit

arrays, this is a very harsh condition. It implies that the eigenvalues of the control

that is acting on a multipartite system cannot be degenerate. Therefore, it requires
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the control to be entangling over the qubit partition. Indeed, if Ĥ1 has a full rationally

independent spectrum it implies that it acts on all states of its eigenbasis (up to

perhaps a single one-dimensional subspace) with different eigenvalues. On the other

hand, the spectrum σ(·) of a local operator Â⊗1N follows the rule σ(Â⊗1N ) = σ(Â)
with each value having a multiplicity of N . If N ≥ 2, any local operator Â ⊗ 1N is

degenerate. In other words, local controls are simply excluded from this condition. As

local controls are a staple in qubit arrays, this massively impacts the applicability of

the algorithm for large qubit arrays: Either the quickhull algorithm does not work or

the torus approximation may not be applicable. The method remains valid for other,

more exotic systems however.

As a notable mention, we have included the hypothesis that the system should

be operator controllable. This hypothesis is very useful to ensure that the system

converges towards an answer, as it should. In practice, however, this assumption is

strictly not necessary, as one could explore whether a given evolution or sequence

of operators is possible with the information of the available velocity polytope. This

could be implemented by adding another subspace to the Lie algebra vector space

partition that includes all unavailable directions.

On the computational level, one main step is the decomposition of a quantum gate

Û = Û1Û2 · · · into gates Ûj whose effective Hamiltonian belongs to the subspace of

fast and slow directions. This requirement is also increasingly demanding with respect

to the Hilbert space dimension. Not only that, but the method currently does not

optimize for a sequence that minimizes
∑
j τ(Ûj). Such an optimization would in

principle be possible, but it would be adding a third nested optimization to the method,

the previous two being the minimization of the total quantum speed limit τ(Û (⃗(α)))
when considering all possible gates Û (⃗(α)) that meet the target conditions and the

minimization of the actual decomposition error ∥Û †∏
j Ûj − 1∥. Trials including this

extra optimization have been made. They did not show a real significant improvement

while making the calculation a bit more unstable, sometimes even failing to provide

estimations of τ(Û).

Another point to be tested in future work is the behaviour displayed in the example

of Section 3.3.3. It shows that to obtain a close estimation for the quantum speed

limit (i.e. an upper bound as tight as possible) more work has to be done if the matrix

elements aj,k of the drift Ĥ0 are of significantly different magnitudes. This adds

another layer of complexity to the algorithm, requiring an initial study of the available

velocity polytope. With this information it is possible to redefine the subspaces S and

V, shifting the directions associated with extremely small coefficients aj,k from S to

V. For a low dimensional space (perhaps one where the convexification methods still

3.3 Results 81



work) this is doable and it would give more accurate speed limits, which is in the end

the main goal of this quantum speed limit estimator.

3.4 Summary

This chapter has introduced a new method to give an estimation for the quantum

speed limit of a quantum system using classical computations that obtain information

from the Lie algebra associated to the Hamiltonian of the system. In a way, this is

related to the dynamical Lie algebra of the system, but it uses the information of the

norm of the various operators that can be implemented on the system to obtain a guess

on the speed of said dynamics. This time limit can be computed for either the case of

a given unitary operator or for multiple simultaneous state transfers within the same

Hilbert space. While we only claim the result of the numerical calculation to be an

approximate estimation, the value is always a valid upper bound to the real quantum

speed limit of the system. The accuracy of the estimation depends on multiple factors,

including among others the precision with which the available velocity polytope was

approximated.

The main idea of the method resides in the very definition of the available velocity

polytope. There have been some approaches to the quantum speed limit that also

make use of this concept from a geometrical definition in the form of adjoint orbits of

state evolutions [101]. The concept of the available velocity bypasses the definition of

geodesic curves in the analytical geometrical description and uses instead a numerical

implementation that can decompose a given evolution into a sequence of multiple

ones. The numerical approach was meant to extend the applicability of the method,

as the computation of the geodesic curves becomes exponentially more complex with

the number of qubits. In this work, however, it was shown that the computation of the

available velocity proved to be very challenging as well. The torus approximation was

introduced for systems that meet certain conditions, expanding the range of systems

that can be studied.

The fact that simultaneous state transfers can be studied vastly extends the capacity

of other methods that specialize in single state evolutions due to the Mandelstam-

Tamm and Margolus-Levitin quantum speed limits [23, 124, 125]. Similarly, it also

exceeds the capabilities of tests that estimate the quantum speed limit of unitary

evolutions exclusively [126, 94, 127]. This method provides more flexibility when

describing the target conditions, including fixing or varying local phases. This is a

resourceful tool for exploring the quantum speed limit of operators working on a

subspace of a larger Hilbert space, e.g. the implementation of a quantum logic gate

operating on a smaller logical space. Meanwhile it can also be exploited to study the
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slowest unitary evolutions to understand what the most demanding dynamics in the

system are.

More research is needed to analyse the information that the quantum speed limit

estimator gives about the optimal pulses that could generate the target evolution on a

system with minimal time. As previously mentioned, sequences of gates e−iĤ0t1 and

e−iĤ0te−iĤ1v can be directly related to sequences of bang-bang pulses. Every evolution

with an effective Hamiltonian in the space of slow directions can be decomposed

into a sequence of those gates. In other words, the decomposition that the quantum

speed limit estimator has incorporated in its algorithm can be also used to describe

an optimal pulse to produce the evolution by choosing the right basis of the space of

slow directions. This could be used to study why bang-bang pulses appear naturally

as solutions in the case of many time-optimal dynamics (see e.g. [128]).

In the future, there are some aspects of the algorithm that could be polished.

The most important one is to find alternatives to the numerical computation of the

available velocity polytope. The torus approximation, while valid in its own domain,

presumes some hypotheses that are physically hard to come by and may also provide a

subpar approximation to the exact polytope. Alternatives to this approximation would

be a massive improvement towards the usability of the method and the accuracy of

the obtained results. This also extends to the point of the use of the connectedness

chain shown in Section 3.3.3 to obtain a tighter bound on certain cases. It remains to

be seen whether this behaviour is prominent in multiple examples or an artifice that

is particularly important in cases with very different coefficient values or for sets of

n− 1 target conditions in an n-dimensional Hilbert space.

As an algorithm with multiple nested optmizations, further benchmarking is needed

to test its stability and reliability. First, the optmization algorithms subplex and prin-

cipal axis could be swapped for others to check if there is any improvement in the

overall performance. It could be possible that there are other optimization protocols

more suitable for the problem at hand. Secondly, we have tried to include a third

optimization to find the decomposition of a gate that minimizes the quantum speed

limit while also providing a small enough approximation error. This, however, results

in longer computation times and sometimes the lack of a final result. The optimiza-

tions were prone to get stuck on barren plateaus, a common issue in optimization

problems [129]. This is exacerbated when multiple nested optimizations are involved.

More work is needed in this area to obtain a better understanding of how these

problems are connected.

A straightforward extension to be implemented is the inclusion of multiple controls.

In the current work it was assumed that there was only one control, but it would
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be possible to define an available velocity for two or more controls. The main

caveat would be that the elements in the outer shell of the polytope could be now

preceded and followed by sequences of operators generated by the multiple controls

eiv1Ĥ1eiv2Ĥ2eiv3Ĥ1eiv4Ĥ2 · · · , which could be arbitrarily long. If the operators do not

commute, the range of operators that these controls can generate can be significantly

large. The case where the control operators Ĥ1 and Ĥ2 commute can nevertheless be

easily studied. For commuting operators, we only need to exchange the usual terms

−ieivĤ1Ĥ0e
−ivĤ1 for the slightly more complex −ieiv1Ĥ1eiv2Ĥ2Ĥ0e

−iv1Ĥ1e−iv2Ĥ2 . The

rest of the procedure would essentially remain analogous.

Finally, an interesting potential application for the quantum speed estimator would

be the study of parametric quantum circuits, the foundation of variational quantum

algorithms [64]. Many quantum circuits are defined as a sequence of local and

two-qubit gates. With the current setup it is possible to analyze the quantum speed

limit of the operators that are reduced to said single-qubit and two-qubit subspaces,

even using the convexification algorithm quickhull. If we can write out the control

Hamiltonian available for every pair of qubits, we can compute the quantum speed

limit of the whole quantum circuit as the sum of quantum speed limit estimations

of every layer in the circuit. This is also true if the different controls in the system

are local in separate qubits, as we can implement the extended available velocity

polytope previously described for commuting controls. This result could determine

the coherence times that a system must have to be able to perform a certain quantum

circuit or, conversely, the maximum layer depth that a quantum algorithm may have

to be successfully implemented on a given qubit array with a known Hamiltonian.
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4Graph test for controllability of
qubit arrays

4.1 Introduction

Universal quantum computing requires operator controllability on the quantum

processing units in order to perform every possible quantum logic gate. One way

to achieve this, pursued for example in most superconducting qubit architectures,

is to couple each qubit to at least one other qubit and drive all qubits locally. This

approach becomes impractical for larger qubit arrays due to increasing requirements

on physical space for control lines and on calibration time for control pulses. One may

wonder whether a number of local drives smaller than the number of qubits would

already be sufficient. If so, this would suggest the possibility of more resource-efficient

architectures than currently in use.

Here, we show that controllability analysis provides a systematic approach to

determine the minimum number of local controls for which any desired quantum

logic gate can be implemented. We find that indeed the number of local controls can

be smaller than the number of qubits. The minimum number of local controls, for a

given size of the qubit array, depends on the type of qubit-qubit couplings. To facilitate

analysis of medium-sized qubit arrays, we leverage a graph theory-based approach to

controllability analysis and investigate five-qubit arrays starting from the ibmq_quito
architecture.

Controllability analysis answers the question, in a yes-no fashion, which states

can be reached by time evolution from a set of initial states [12, 130]. The standard

approach consists in determining the rank of the dynamical Lie algebra of the system

and comparing it to the dimension of the algebra that generates the unitary group of all

time evolutions [14]. This approach has been extensively used to prove controllability

for finite-dimensional systems with sufficiently small Hilbert space dimension [13, 131,

132] and can also be employed in subspaces of infinite-dimensional systems, when

combined with Galerkin-type approximations [16, 133, 15, 17]. The focus of these

studies has been on single quantum systems. For multi-partite systems, where the
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Hilbert space dimension scales exponentially in the number of subsystems, evaluating

the Lie rank condition quickly becomes challenging. It has thus mainly been used to

identify controllable subspaces in systems which as a whole are not controllable [134,

135, 136, 137]. Positive controllability results for qubit arrays, as needed for universal

quantum computing, require an alternative approach.

The exponential scaling of Hilbert space dimension with the number of qubits is

evidently inherent to gate-based quantum computing and represents a fundamental

obstacle to controllability analysis that cannot be overcome with classical computers.

But even for qubit arrays which are classically simulable, use of the Lie rank condition

is hampered by numerical instabilities which are common when constructing orthogo-

nal bases in large operator spaces. This latter obstacle can be avoided by resorting to

graph theory-based methods for controllability analysis [138, 15, 139] which have

successfully been applied to quantum walks [140], quantum networks [141], and

quantum rotors [17, 142]. The latter are characterized by a highly degenerate spec-

trum which results in multiple resonant transitions, i.e., transitions with the same

resonance frequency that are driven by the same external control. Controllability

can then not simply be read off from the connectivity of the graph. This problem

is also present for arrays of locally driven coupled qubits but the different spectral

structure requires different graphical methods to prove controllability, as we will

discuss below.

The chapter is organized as follows. The basic concepts of controllability analysis

are briefly reviewed in section 4.2. The methodology we suggest to use for controlla-

bility analysis of coupled qubit arrays is presented in section 4.3 with section 4.3.1

explaining how to deal with resonant transitions, section 4.3.2 presenting the ac-

tual graph test in the form of a flow chart and three algorithms and section 4.3.3

illustrating the use of the algorithms on simple two-qubit examples. Our results on

five-qubit arrays inspired by the ibmq_quito architecture are presented in section 4.4,

and section 4.5 concludes.

4.2 Controllability analysis

We study quantum systems that couple linearly to controls, such that their Hamil-

tonian can be expressed as linear contributions of a time-independent drift Ĥ0 and

some drives uj(t)Ĵj (cf. Equation (2.8)). The controls uj(t) are real-valued functions

and Ĥj are the control operators. A state that evolves under Equation (2.8), is given

by |ψ(t)⟩ = Û(t;u1, ...um) |ψ(0)⟩. We consider coherent evolutions since they are the

relevant foundation for gate-based quantum information.
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For qubit arrays, the drift Ĥ0 is split into Ĥ0 =
∑NQ

l=1 Ĥ0,l + Ĥc, representing the

independent local Hamiltonians Ĥ0,l of the NQ free qubits and the time-independent

couplings Ĥc between them. Typically, local controls Ĥj act on single qubits, for

example in the form of laser pulses in ion arrays [143] or varying microwave fields

for certain superconducting qubits [144]. Regardless of the physical implementation

of the qubits, we would like to answer the question whether a system with a set of

controls is capable of performing any unitary operation.

The answer can be found by analysing the controllability; in particular, the operator

controllability of the system [14]. Here operator controllability follows the definition

given in Section 2.4. As a brief summary, a system is operator controllable if and only

if we can always choose controls and a final time to carry out any unitary operation,

up to a global phase. For simplicity, we refer to this property as ’controllable’. A

widely used method for studying the controllability of a quantum system is to analyze

the dynamical Lie algebra [14, 140, 145]. It is generated by the drift and the m

control operators of the system, L := Lie(iĤ0, iĤ1, ..., iĤm), i.e., it contains the skew-

Hermitian operators iĤ0, iĤ1, ..., iĤm, and their (nested) commutators. A system

with Hilbert space dimension n is controllable if the dimension of the dynamical Lie

algebra is n2 or n2 − 1. In other words, it is controllable if the dimension of the

Lie algebra matches either that of su(n) (which generates the special unitary group

SU(n)) or u(n) (which generates the unitary group U(n)). This is sometimes referred

to as the Lie algebra rank condition [14]. The main difference between generating

U(n) or SU(n) is that the former allows the system to perform any unitary evolution

including all global phases. Conversely, the latter encompasses all unitary evolutions

up to a non-controllable global phase.

Alternatively to constructing the dynamical Lie algebra, a graph test can be used

to analyze controllability [139, 17, 146]. The graph encodes the information of the

Hamiltonian.

Definition 1. Given a quantum system evolving under Equation (2.8), we can construct
an undirected graph according to the rules:

1. For every eigenstate |ek⟩ of Ĥ0, add a vertex to the graph with a corresponding
label.

2. For every control Ĥj and every nonzero element ⟨ei| Ĥj |ek⟩, add an edge between
the vertices labelled |ei⟩ and |ek⟩. Additionally, add a label to every edge stating
which control drives that transition.
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We call this the graph of a quantum system1.

Since the nodes of the graph are labelled by the eigenstates |ek⟩, we use these

labels also to name the edges that represent the transitions generated by the controls.

The edge joining the vertices |ea⟩ and |eb⟩ is denoted by (a, b). For Hermitian controls,

the transitions will necessarily happen in both directions, implying an undirected

graph. This means, in particular, that both (a, b) and (b, a) refer to the same edge.

An important aspect of the graph are the energy gaps related to the graph edges

∆Ea,b :=
∣∣∣E|ea⟩ − E|eb⟩

∣∣∣. If two transitions have the same energy gap ∆Ea,b, they are

called ’resonant’. Resonant transitions may pose a challenge to controllability since,

depending on the local controls, it may be impossible to address them independently.

Definition 2. Let G be the graph of a system. If two edges (a, b), (c, d) ∈ E(G) belong
to the same control Ĥj and have degenerate energy gaps ∆Ea,b = ∆Ec,d, then the two
transitions represented by the edges are coupled to one another. Alternatively, if an edge
(a, b) ∈ E(G) is not coupled to any other transition belonging to its own control Ĥj , the
transition is said to be decoupled.

The graph of a system contains the adjacency information for all the possible chains

of connectedness on the system (see Section 2.4.3) extended to the case of multiple

controls. Decoupled transitions are essentially all the tuples that can be added to any

chain of connectedness and still make it non-resonant. On the other hand, coupled

transitions may make the chain resonant, hence breaking the sufficient condition for

controllability. These combined notions lead to the following theorem, whose proof

can be found in Ref. [16]:

Theorem 4.2.1. Let S be a quantum system following Equation (2.8) and let G be its
associated graph. The system S is controllable if there exists a connected subgraph of
G that contains all vertices of G and only decoupled transitions.

An undirected graph is said to be connected if for every two vertices there exists

a chain of adjacent edges that creates a path between the two selected vertices. A

subgraph of a graph G is a graph defined by a subset of the vertices V (G) and a subset

of the edges E(G) that only link vertices in the subset. This means that a subgraph is

a graph that we obtain by removing any number of the edges and vertices from the

original graph.

1Note that given two vertices there can be more than one edge between the two of them (belonging to
different controls). Technically, this makes the graph of a system a multigraph.
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The main benefit of the graph test in Theorem 4.2.1 is that it allows us to avoid

calculating the full dynamical Lie algebra. The graph of a quantum system with

Hilbert space dimension n has n vertices. To have a connected subgraph we need to

find n− 1 decoupled transitions such that they create a single connected component.

This works quite efficiently if there are no resonant transitions in the system.

In the following, we expand this graph test such that it also works with resonant

transitions. To this end, we adapt graphical methods for controllability analysis in

degenerate systems [142] to systems with degenerate energy gaps driven by multiple

controls. Since resonant transitions are very common in qubit arrays due to the

multi-partite structure of the system, this modification opens the route to efficient

analysis of controllability of qubit arrays.

4.3 Graph test of controllability for coupled subsystems

In this section we outline the algorithm for a graph test for coupled subsystems with

resonant transitions. In section 4.3.1 we present methods to determine the graphical

commutators already used in rotor systems [17] and we introduce the concept of

subalgebras to treat resonant transitions driven by multiple controls. We show in

section 4.3.2 that the graphical commutators can be calculated in a systematic way,

avoiding the construction of the entire dynamical Lie algebra of a system. We illustrate

the use of these methods in section 4.3.3 with simple two-qubit examples.

4.3.1 Resonant transitions and graphical commutators

We first present two concepts to decouple resonant transitions without calculating

the complete Lie algebra of the system. To this end, we introduce the generalized

skew-Hermitian Pauli matrices

Ĝj,k = êj,k − êk,j ,

F̂j,k = iêj,k + iêk,j , (4.1)

D̂j,k = iêj,j − iêk,k ,

where êj,k is the null matrix except for a 1 in the entry (j, k). The commutators of

these matrices with the skew-Hermitian drift are given by [146, 142]

[iĤ0, Ĝj,k] = (Ej − Ek) F̂j,k ,

[iĤ0, F̂j,k] = − (Ej − Ek) Ĝj,k . (4.2)
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Consider a transition (i, k) with transition matrix element

⟨ei|Ĥj |ek⟩ = α− iβ , (4.3)

where |ei⟩, |ek⟩ with i ̸= k are eigenstates of the drift Hamiltonian, Ĥ0, α, β ∈ R and

at least one of them is nonzero. If (i, k) is a decoupled transition, the Lie algebra of

the system contains the element

T̂ = αF̂i,k + βĜi,k , (4.4)

and the generalized skew-Hermitian Pauli matrices Ĝi,k, F̂i,k and D̂i,k are also elements

of the Lie algebra Lie(iĤ0, T̂ ), i.e., dim[Lie(iĤ0, T̂ )] = 4.

If a system contains the two decoupled transitions {(i, k), (i, l)} with T̂1 = α1F̂i,k +
β1Ĝi,k and T̂2 = α2F̂i,l + β2Ĝi,l, respectively, and i ̸= l ̸= k, their commutator is

of the form T̂3 := [T̂1, T̂2] = α3F̂k,l + β3Ĝk,l. The graph of the system thus has an

additional edge (k, l), as depicted in Figure 4.1(a) for i = 0, k = 1 and l = 2. For

testing controllability, it is often sufficient to know that there exists a transition (k, l),
without calculating the coefficients α3, β3. Since the existence of the transition (k, l)
can be deduced from the graph with edges (i, k) and (i, l), we refer to this operation

as graphical commutator and denote it as (k, l) = [(i, k), (i, l)].

Graphical commutators can be used as an efficient tool to decouple resonant

transitions. This is shown in the example depicted in Figure 4.1(b). Consider

transitions T̂1 = α1Ĝ1,2 + β1F̂1,2 (dash-dotted green arrow in Figure 4.1(b)) and

T̂2 = α2F̂0,3 + β2Ĝ0,3 + γ2F̂1,4 + δ2Ĝ1,4 (dashed blue arrows) with T̂1 decoupled (i.e.

the transition (1, 2) is not coupled to any other one) and T̂2 consisting of the pair of

coupled transitions {(0, 3), (1, 4)}, which are not coupled to any other transition. The

graphical commutator between T̂1 and T̂2 has then only contributions corresponding

to the transition (2, 4), depicted by the red arrow. The graph has thus the additional

decoupled transition (2, 4). Furthermore, the graphical commutator between the

decoupled transitions (1, 2) and (2, 4) is the decoupled transition (1, 4). In this exam-

ple, the resonant transitions {(0, 3), (1, 4)} can thus be decoupled by taking graphical

commutators.

In certain instances, the graphical commutators might not give enough information

to decouple resonant transitions and determine the controllability of the system. Ex-

amples are shown in Figure 4.1(c) and (d). In Figure 4.1(c), the graphical commutator

between the coupled transitions {(0, 1), (2, 3)} (dashed blue arrows) and the decou-

pled transition (1, 2) (dash-dotted green arrows) results in the coupled transitions

{(0, 2), (1, 3)} (red arrows). This does not allow for decoupling any of the coupled

transitions. In Figure 4.1(d), two pairs of coupled transitions are considered, namely
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Figure 4.1: Examples for graphical commutators. The circles represent the vertices of the
graph and the edges (transitions) are depicted by the arrows. Same-colour arrows
represent coupled transitions. In all cases, the commutator between the transi-
tions depicted by dashed blue and dash-dotted green arrows result in transitions
depicted by solid red arrows. The four panels present the following cases: (a)
Graphical commutator between two uncoupled transitions [(0, 1), (0, 2)] = (1, 2)
(b) Graphical commutator between the coupled transitions {(0, 3), (1, 4)} and the
uncoupled transition (1, 2) results in the uncoupled transition (2, 4) (c) Graphical
commutator between the coupled transitions {(0, 1), (2, 3)} and the uncoupled
transition (1, 2) results in the coupled transition {(0, 2), (1, 3)}. (d) The commu-
tator between the coupled transitions {(0, 2), (1, 3)} and {(0, 1), (2, 3)} cannot be
determined graphically.
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{(0, 1), (2, 3)} (dashed blue arrows) and {(0, 2), (1, 3)} (dash-dotted green arrows).

The graphical commutators [(0, 1), (0, 2)] and [(1, 3), (2, 3)] both result in the transition

(1, 2). Without further knowledge of the coefficients of the corresponding Lie algebra

elements, it is not possible to determine whether the two terms result in a non-zero

transition (1, 2), or whether they cancel each other.

In such cases, we make use of an alternative procedure to decouple resonant

transitions, which takes into account that in qubit systems, the same (coupled)

transitions are often driven by different controls. Consider a system with drift Ĥ0

and two controls that both drive the two resonant transitions {(1, 2), (3, 4)}. The Lie

algebra of the system thus contains the terms

T̂4 = α4F̂1,2 + β4Ĝ1,2 + γ4Ĝ3,4 + δ4Ĝ3,4 ,

T̂5 = α5F̂1,2 + β5Ĝ1,2 + γ5Ĝ3,4 + δ5Ĝ3,4 . (4.5)

The two transitions (1, 2) and (3, 4) are decoupled if T̂6 := α6F̂1,2+β6Ĝ1,2 is an element

of the Lie algebra Lie(iĤ0, T̂4, T̂5) for any real α6, β6 (at least one of them nonzero).

This is true if and only if dim
[
Lie(iĤ0, T̂4, T̂5)

]
= dim

[
Lie(iĤ0, Ĝ1,2, Ĝ3,4)

]
= 7, i.e.,

when the generated sub-algebra has maximum dimension (for a given number of

transitions). Note that we have deliberately chosen transitions {(1, 2), (3, 4)}, which

have no vertex in common, i.e., they are disjoint. Restricting ourselves to disjoint

transitions, the maximum dimension of the generated sub-algebra is 3nt + 1, where

nt is the number of transitions that are coupled. In order to determine, if a set of

nt transitions driven by nt different controls is decoupled, it is thus sufficient to

calculate the dimension of the sub-algebra with maximal dimension 3nt + 1. This

is typically much smaller than the dimension of the Lie algebra of the complete

system. If the transitions are not disjoint, the dimension of the relevant subalgebra

scales quadratically with the number of transitions nt. This, although feasible for a

small number of transitions, would make the construction of the subalgebras more

demanding

In the following we use both methods, i.e., graphical commutators and the calcula-

tion of the dimension of small sub-algebras, in order to decouple resonant transitions.

This allows us to extend the graph test for controllability to coupled susbystems with

resonant transitions.

4.3.2 Algorithms for graph test of controllability for coupled subsystems
with resonant transitions

Our graph test for controllability of a quantum system with resonant transitions is

divided into several steps, depicted in Figure 4.2. The main output of the complete
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algorithm is a variable conveying whether the system is controllable, not controllable

or whether the test remains inconclusive.

As can be seen in Figure 4.2, the first stage is creating the initial graph of the

quantum system (A1). The step-by-step definition is found in algorithm 4.1. To

compute this graph, we diagonalize the drift Ĥ0, taking its eigenstates as the vertices

of the graph. Then, we determine the nonzero transitions ⟨ea| Ĥj |eb⟩ for all m controls

and take these to be the edges (a, b) of the graph. Numerically, we take into account

all transitions that are larger or equal than a certain tolerance, δH > 0, i.e.,∣∣∣⟨ea| Ĥj |eb⟩
∣∣∣ ≥ δH −→ (a, b) . (4.6)

The next step is to determine which transitions are coupled. As defined in sec-

tion 4.2, two or more transitions are coupled if and only if they have the same energy

gap and are generated by the same control. Any transition not coupled to any other

one is by definition a decoupled transition. Note that two transitions generated by

different controls can never be coupled to one another. To numerically compare the

energy gaps, we define a minimal tolerance δE > 0 such that two transitions driven by

the same control, (a, b) and (c, d), are considered coupled if |∆Ea,b −∆Ec,d| ≤ δE .
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Figure 4.2: Flowchart representing the necessary steps and order in which the three main
subroutines (A1-3) are used. The three possible results for this test are displayed
in the three green round cells.
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Algorithm 4.1: Compute the initial graph of the system

1 Input:
• H_op: list including the drift Ĥ0 and all control operators Ĥj in the logical
basis.
• δH: minimum tolerance for a nonzero transition coefficient.
• δE: minimum tolerance for two energy gaps to be identical.

2 Diagonalize Ĥ0 and represent all control operators Ĥj in the eigenbasis of Ĥ0.
3 Initialize decoupled-graph, representing every eigenstante |ea⟩ of Ĥ0 as a vertex in

the graph.
4 for every control Ĥj in H_op do
5 for 0 ≤ a < b < Hilbert space dimension do
6 if

∣∣∣⟨ea| Ĥj |eb⟩
∣∣∣ > δH then

7 Add (a, b) to transition-list.
8 end if
9 end for

10 Sort transition-list by the energy gaps ∆Ea,b := |Ea − Eb|
11 for every (a, b) in transition-list do
12 Add all transitions (c, d) resonant to (a, b) (i.e. |∆Ea,b −∆Ec,d| < δE) to a

new, separate list resonant-trans-ab (including (a, b)).
13 Add coefficients ⟨ec| Ĥj |ed⟩ of all resonant transitions (c, d) into a new list

resonant-coef-ab (including (a, b)).
14 if resonant-trans-ab has more than one element then
15 Add resonant-trans-ab as a new entry in the list coupled-transitions.
16 Add resonant-coef-ab as a new entry in the list coupled-coefficients.
17 else
18 Add resonant-trans-ab as a decoupled transition in decoupled-graph.
19 end if
20 Remove all resonant transitions (c, d) and (a, b) from transition-list.
21 end for
22 end for
23 Output:
• decoupled-graph: a dictionary containing all vertices of the graph (eigenstates
of Ĥ0) and all decoupled transitions as edges.
• coupled-transitions: a list of lists containing all coupled transitions stored as
dictionaries and sorted by their respective energy gap ∆Ea,b. Resonant
transitions from the same control with the same ∆Ea,b are stored in the same
inner list since they are coupled.
• coupled-coefficients: a list of lists of the transition coefficients, matching the
order of coupled-transitions.
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Algorithm 4.2: Add a single decoupled transition using graphical commutators
1 Input:

• decoupled-graph: from algorithm 4.1.
• graph-components: list containing the sets representing the connected components of
decoupled-graph.
• coupled-transitions: from algorithm 4.1.

2 transition-added = False
3 connecting-transitions-found = False
4 i = 0
5 while (i < length of coupled-transitions) and (transition-added = False) do
6 i = i + 1
7 element_i = coupled-transitions[i]

# element_i is a set of coupled transitions of the form {(a0, a1), (a2, a3), ...}
8 j = 0
9 while (j < length of element_i) and (transition-added = False) do

10 j = j + 1
11 (b0, b1) = element_i[j]
12 if b0 and b1 belong to different components in graph-components then
13 connecting-transitions-found = True
14 component_0 = component in graph-components containing b0
15 component_1 = component in graph-components containing b1
16 k = 0
17 while (k < number of transitions in decoupled-graph) and (transition-added = False) do
18 k = k + 1
19 (c0, c1) = k-th transition in decoupled-graph
20 if ({c0, c1} ⊂ component_0) or ({c0, c1} ⊂ component_1) then
21 graphical-commutator = [element_i, (b0, b1)]
22 if graphical-commutator is a single transition then
23 transition-added = True
24 Add graphical-commutator to decoupled-graph
25 Merge component_0 and component_1 in graph-components
26 end if
27 end if
28 end while
29 end if
30 end while
31 end while
32 Output:

• decoupled-graph: updated after the routine.
• graph-components: updated after the routine.
• transition-added: True if a transition was added during this subroutine to decoupled-graph; False
otherwise.
• connecting-transitions-found: True if at least one transition in coupled-transitions connects
different components; False otherwise.
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Algorithm 4.3: Subroutine to compute subalgebras of repeated resonant transi-
tions

1 Input:
• decoupled-graph: from algorithm 4.2.
• graph-components: from algorithm 4.2.
• coupled-transitions: from algorithm 4.1.
• coupled-coefficients: from algorithm 4.1.

2 for every set of resonant transitions {(a0, a1), (a2, a3), ...} in coupled-transitions do
3 resonant-set = {(a0, a1), (a2, a3), ...}
4 if resonant-set contains only disjoint transitions then
5 if resonant-set connects different components in graph-components then
6 if resonant-set appears multiple times in coupled-transitions then
7 Set m as the number of times resonant-set is generated by different

controls.
8 Set nt as the number of coupled transitions in resonant-set
9 for 0 ≤ j < m do

10 Using the coefficients in coupled-coefficients related to the j-th
instance of resonant-set, generate an array T-array-j to
represent the transition.
#
T̂j = α

(j)
a0,a1F̂a0,a1 +β(j)

a0,a1Ĝa0,a1 +α(j)
a2,a3F̂a2,a3 +β(j)

a2,a3Ĝa2,a3 + ...
# T-array-j =

(
α

(j)
a0,a1 , β

(j)
a0,a1 , 0, α

(j)
a2,a3 , β

(j)
a2,a3 , 0, ...

)
11 end for

12 if dim
(
Lie

{
iĤ0,T-array-0, ...,T-array-m

})
= 3nt + 1 then

13 Add every transition in resonant-set to decoupled-graph
14 end if
15 end if
16 end if
17 end if
18 end for
19 Output:
• decoupled-graph: updated after the routine.
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We sort all the transitions of each control according to the energy gaps ∆Ea,b and

separate them depending on whether they are coupled or not. If a coupled transition

(a, b)(j) is generated by multiple controls Ĥj , we also calculate and store the corre-

sponding transition coefficients ⟨ea| Ĥj |eb⟩ = α
(j)
a,b + β

(j)
a,bi. Note that here, we have

introduced the notation (a, b)(j) to indicate that the transition (a, b) is driven by the

control Ĥj .

The output of algorithm 4.1 encompasses the decoupled-graph, the coupled-transitions
and the coupled-coefficients. The first output, decoupled-graph, is a dictionary that con-

tains all vertices (eigenstates) and all decoupled edges (decoupled transitions) of the

systems graph. These are the elements that we can use directly to test the controllabil-

ity of the system using Theorem 4.2.1. In the second output, coupled-transitions, every

set of coupled transitions is stored as a list of tuples (a, b). Coupled transitions cannot

be immediately used for the test in Theorem 4.2.1, but are necessary for generating

additional decoupled transitions, by using graphical commutators or subalgebras of

resonant transitions. The last output variable coupled-coefficients consists of the entries

⟨ea| Ĥj |eb⟩ = α
(j)
a,b + β

(j)
a,bi for every coupled transition (a, b)(j) which are required for

calculating the dimension of the subalgebras.

Once the initial graph of the system has been computed, we check if the graph

containing only decoupled transitions (decoupled-graph) is connected. To do so, we

determine the number of connected components in the graph. In terms of graph

theory, a component is a connected subgraph that it is not contained in any larger

connected subgraph. In other words, each of the connected parts into which we can

divide a graph is called a component of the graph. Therefore, the graph is connected

if and only if it has exactly one component. One of the many possible ways to count

the number of components is to use the depth-first search (DFS) algorithm2. If the

decoupled-graph is already connected, we can stop the routine and state that the

system is indeed controllable.

If the graph is not connected, then algorithm 4.2 is called. The aim of this algorithm

is to search for an additional edge of the graph by using graphical commutators. As

explained in section 4.2, the graphical commutators of a coupled transition and a

decoupled transition may generate a new decoupled transition. Note that, instead of

identifying and adding every possible combination of commutators between a decou-

pled transition and a set of coupled transitions, we are only interested in commutators

that result in a decoupled transition which connects different components of the graph

and therefore potentially creates a connected graph. That is, in algorithm 4.2 we com-

pute the commutator of a coupled transition that connects two separate components

2The DFS algorithm is a common recursive algorithm to explore systematically all vertices in a graph. It
uses an exhaustive search by traversing down a chain of edges, or by backtracking when not possible.
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of decoupled-graph with a decoupled transition in one of the two components. If the

result of this commutator is a decoupled transition, then this new edge will connect

the two components in decoupled-graph, merging them into a single component. If

a new decoupled transition is added to the decoupled-graph during this step, the

number of connected components is counted again to determine if the graph is now

connected.

If the number of components is still larger than one, i.e. if the decoupled-graph is

not connected after algorithm 4.2, and no new transition was added during its last call,

then we check if there is any transition in coupled-transitions that connects different

components of decoupled-graph. If this is not the case, the routine is stopped. If all

transitions, coupled and decoupled, only connect vertices within the same components,

then all possible commutators result in transitions within the same components. The

number of components will stay constant and the graph will never be connected. This

implies that the system is not controllable.

However, if there exists at least one coupled transition connecting different compo-

nents, then this argument is no longer valid and the controllability of the system is

not yet decided. For these cases, we use the coupled-coefficients that are related to the

coupled-transitions to obtain a more conclusive answer.

This step is carried out by algorithm 4.3. It builds upon the updated decoupled-
graph from algorithm 4.2 and tries to add new decoupled transitions by computing

the low-dimensional subalgebras of resonant transitions driven by different controls.

First, the algorithm selects the transitions from coupled-transitions that connect dif-

ferent components. In particular, we are exclusively interested in sets of disjoint

transitions, such that the dimension of the associated subalgebras remains low. Next,

the algorithm finds out if those transitions have a multiplicity equal to or higher than

2, that is, if the same sets of coupled transitions {(a0, a1), (a2, a3), ...}(j) are generated

multiple times by different controls Ĥj . Following the reasoning presented in sec-

tion 4.3.1, we try to generate the full associated subalgebra of the coupled-transitions,
{(a0, a1), (a2, a3), ...}, by using their respective coupled-coefficients. If a subalgebra

with maximal dimension is generated, we take all transitions {(a0, a1), (a2, a3), ...} as

effectively decoupled. This allows us to add every transition (ak, al) as a decoupled

edge to decoupled-graph. Note that in algorithm 4.3, we compute the Lie subalge-

bras of the resonant transitions including iĤ0, where we deduce the commutators[
iĤ0, {(0, 1), (2, 3)}(j)

]
using Equation (4.2). This makes these calculations simple

and encompassed within a vector space of dimension 3nt, with nt being the number

of transitions in {(a0, a1), (a2, a3), ...}.
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Figure 4.3: (a) Two-qubit system with Hamiltonian (4.7), where ω0 = 5 GHz, ω1 = 5.5 GHz,
J = 150 MHz. (b) Graph of the system. All transitions are decoupled, making the
system controllable by Theorem 4.2.1.

Finally, we compute the new number of components in decoupled-graph using

DFS once again. If the graph is still not connected, we use algorithm 4.2 to add as

many graphical commutators as possible to connect the remaining components. If

the graph ends up with one single component, the system is controllable. If there

are more components and there are no transitions in coupled-transitions that connect

any of them, then the system is proven to be not controllable. If none of these two

hold to be true, then the controllability test remains inconclusive. Indeed, unlike the

dynamical Lie algebra method, the test might yield no definitive answer. If a graph

is not connected, we cannot ensure that the system is not controllable, generally

speaking. It might be that the graph can be connected after computing a large number

of commutators or that it will remain forever not connected. Calculating this quantity

of commutators is tantamount to computing the dynamical Lie algebra and would

therefore be unfeasible for relatively large systems.

4.3.3 Illustrative examples

Here we present two examples constructed to showcase how the algorithms de-

scribed in section 4.3.2 work. We start by considering the two-qubit system shown in

Figure 4.3(a), described by the Hamiltonian

Ĥ2A(t) = Ĥ0 + u1(t)Ĥ1 (4.7)

with the drift

Ĥ0 =
1∑
i=0
−ωi2 Ẑ

(i) + J
(
X̂(0)X̂(1) + Ẑ(0)Ẑ(1)

)
, (4.8)

and a single local control Ĥ1 = X̂(1) acting on qubit 1. Here, ωi are the natural

frequencies of the qubits and J is the coupling strength. For simplicity, we use the
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Figure 4.4: (a) Two-qubit system with Hamiltonian (4.9) where ω0 = 5GHz, ω1 = 5.5 GHz,
J = 150 MHz. Both local controls are necessary for the system to be controllable.
(b) Graph of the system. Theorem 4.2.1 is not directly applicable due to the
coupled transitions. A study of the coefficients reveals that it is possible to
decouple all transitions.

notation X̂(j) = σ̂jx for the Pauli matrices. Algorithm 4.1 results in the graph shown in

Figure 4.3(b) with the circular vertices representing the eigenstates of Ĥ0. The local

control Ĥ1 gives rise to four non-zero transitions, which form the edges of the graph,

denoted by the arrows in Figure 4.3(b). The different lengths of the arrows indicate

that all four transitions have different energy gaps and are thus decoupled. The actual

controllability test for this example consists simply of algorithm 4.1 and the DFS

algorithm, which proves that the graph is connected and the system is controllable.

In other words, from every vertex i = 0, ...3, every other vertex of the graph can

be reached by following the edges belonging to decoupled transition, as seen in

Figure 4.3(b).

A second example is illustrated in Figure 4.4(a). Here, the Hamiltonian is given

by

Ĥ2B(t) = Ĥ0 +
2∑
j=1

uj(t)Ĥj (4.9)

with the drift

Ĥ0 =
1∑
i=0
−ωi2 Ẑ

(i) + JX̂(0)X̂(1) , (4.10)

and two local controls

Ĥ1 = X̂(1) and Ĥ2 = X̂(0) (4.11)

acting on the qubits 1 and 0, respectively. The main difference between Equation

(4.9) and Equation (4.7) is the omission of Ẑ(0)Ẑ(1) in the drift Hamiltonian. This
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Transition parameters

(0, 1) (2, 3) (0, 2) (1, 3)

X̂(0) 0.967 0.967 −0.253 0.253
X̂(1) −0.281 0.281 −0.960 −0.960

Table 4.1: Control coefficients ⟨ea| Ĥj |eb⟩ for the system (4.9). The coupled transitions are
{(0, 1), (2, 3)} and {(0, 2), (1, 3)}. They appear with double multiplicity, once for
each control.

severely impacts the graph, as seen in Figure 4.4. The symmetries that had previously

been broken by including Ẑ(0)Ẑ(1) appear in the energy gap degeneracies, ∆E0,1 =
∆E2,3 and ∆E0,2 = ∆E1,3. There are no decoupled transitions and the number of

components in the initial graph is equal to four. A second difference is the second local

control. The transitions driven by the controls X̂(1) (which is the same local control as

in Equation (4.7)) and X̂(0) consist of two pairs of coupled transitions {(0, 1), (2, 3)}
and {(0, 2), (1, 3)} shown by purple solid and dashed blue arrows respectively in

Figure 4.4(b).

In this example, graphical commutators do not yield any new transition that we

could add to the graph. In fact, we can only take commutators of pairs of coupled

transitions, analogously to the case depicted in Figure 4.1(d). Since there is no

definitive answer, graphical commutators are not useful in this particular instance.

However, since there exist coupled transitions which connect different components

of the graph, algorithm 4.3 can be applied. The coefficients ⟨ea| Ĥj |eb⟩ = α
(j)
a,b + β

(j)
a,bi

of the coupled transitions are shown in Table 4.1. Note that in this example, the

coefficients are real, β(j)
a,b = 0. The Lie algebra thus contains the terms

T̂0 = α
(0)
0,1F̂0,1 + α

(0)
2,3F̂2,3 ,

T̂1 = α
(1)
0,1F̂0,1 + α

(1)
2,3F̂2,3 . (4.12)

It is immediate to see that we can isolate the term F̂2,3 by a linear combination

of T̂0 and T̂1. This means that all operators F̂2,3, Ĝ2,3, D̂2,3 are elements of the

subalgebra. Similarly, the opposite linear combination can isolate the element F̂0,1,

adding F̂0,1, Ĝ0,1, D̂0,1 to the generated subalgebra. This means that the dimension

of Lie
(
iĤ0, T̂0, T̂1

)
= 7 (including the contribution of iĤ0) is maximal and thus

the transitions (0, 1) and (2, 3) can be decoupled. Analogously, (0, 2) and (1, 3) may

be decoupled as well. This means that all the edges are decoupled in the graph of

Figure 4.4. By virtue of Theorem 4.2.1, this implies controllability of the system.
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Coupling strengths (MHz)

J0,1 J1,2 J1,3 J3,4
100 250 170 300

Qubit frequencies (GHz)

ω0 ω1 ω2 ω3 ω4
5.301 5.081 5.322 5.164 5.052

Table 4.2: Parameters for the system (4.13). The qubit frequencies are those of [21]. The
coupling strengths have been chosen to be in the range of hundreds of MHz,
common for this type of qubits.

4.4 Results

In this section, we examine qubit systems which are used for quantum computing.

With the algorithm presented in section 4.3, we can efficiently prove if a given qubit

array is controllable. We present three different examples based on the IBM five-qubit

array ibmq_quito [21]. We do not use the exact parameters of this system, but simply

its configuration and realistic parameters (except for the natural frequencies which

correspond to the real data [21]).

The Hamiltonian of an array similar in structure to ibmq_quito can be expressed

as:

Ĥquito(t) = −
4∑
j=0

ωj
2 Ẑ

(j) + Ĥquito
c +

m∑
k=1

uk(t)Ĥk , (4.13)

where uk(t) represent local controls and the couplings Ĥquito
c are of the form

Ĥquito
c = J0,1Ĥ0,1 + J1,2Ĥ1,2 + J1,3Ĥ1,3 + J3,4Ĥ3,4 (4.14)

with each Ĥj,k representing an entangling (time-independent) coupling between

the qubits j and k. The following three examples are based on Equation (4.13) for

different types of couplings and local controls. We will prove that while the original

IBM design is indeed controllable there exist options that require fewer resources for

controllability.

The set of parameters, including the natural frequencies ωj and the coupling

strengths Ji,j are found in Table 4.2. We use these parameters for all examples

presented in this section.
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ω0

ω1

ω2

ω3 ω4

X̂

X̂

X̂

X̂ X̂ Coupling type:

X̂(i)X̂(j) + Ŷ (i)Ŷ (j)

List of local controls:

X̂(0), X̂(1), X̂(2), X̂(3), X̂(4)

Figure 4.5: Five-qubit system inspired by IBM’s ibmq_quito with Hamiltonian found in Equa-
tion (4.13). The rectangles present the qubits with natural frequencies ωj ,
j = 1− 5, and the lines indicate the couplings between the qubits. Local controls
are to be assumed in every qubit in the form of X̂(j).

4.4.1 Example A: five-qubit system similar to ibmq_quito

This example mimics the qubit arrangement of ibmq_quito. The static couplings in

Equation (4.14) are [147]

Ĥij = Ji,j
(
X̂(i)X̂(j) + Ŷ (i)Ŷ (j)

)
. (4.15)

A local control Ĥj = X̂(j) is added to every qubit. The system diagram is shown in

Figure 4.5.

For a five-qubit system, there is a total of 32 vertices. After running algorithm 4.2

for this example with an energy gap tolerance of δE = 0.01GHz, we obtain an initial

graph with only 7 decoupled edges, resulting in a total of 25 different connected

components. Use of algorithm 4.2 alone is not enough in this case, since the graphical

commutators do not yield any new results. Executing algorithm 4.3, a total of 192 new

edges are added to the graph. These turn out to be more than sufficient to connect all

the components and achieve a connected graph.

We can thus conclude that the system presented in Figure 4.5 is controllable and

therefore suitable to perform any unitary operation. In the following examples we

investigate whether the five-qubit array is also controllable if the number of local

controls is reduced.
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ω0

ω1

ω2

ω3 ω4

X̂

X̂ Coupling type:

X̂(i)X̂(j) + Ŷ (i)Ŷ (j)

List of local controls:

X̂(1), X̂(3)

Figure 4.6: Same as Figure 4.5 with fewer controls, located on qubits 1 and 3 (pink rectan-
gles).

4.4.2 Example B: five-qubit system with reduced number of controls

Next, we investigate the controllability of a five-qubit system with a reduced

number of local controls. For the drift Hamiltonian, we consider the same five-qubit

system as before with all parameters as listed in Table 4.2 but decrease the number of

local controls to two. This is depicted in Figure 4.6, which represents one of the ten

different scenarios with two local controls Ĥj = X̂(j).

Running algorithm 4.1 we obtain identical results to those in section 4.4.1: a graph

with only 7 decoupled transitions and 25 different connected components. Again, it is

crucial to use algorithm 4.3 to make the graph connected. It may come as a surprise

that the number of new edges that we can add is again 192. In other words, the

number of new decoupled edges has not been reduced by removing three of the local

controls. With the new decoupled edges included, the system is indeed controllable.

We could attempt to take this study further to single local control. However, with

a single local control X̂(j), we always obtain an inconclusive result, no matter on

which qubit we apply it. Although this hints to the possibility of the system not being

controllable, the algorithm cannot conclusively determine it, similarly to the case

shown in Figure 4.4. In that two-qubit example we can prove using the Lie algebra

method that a single local control X̂(j) is never sufficient. We therefore conjecture

that the least number of local controls required for the system to be controllable is

two. One may wonder whether independent X̂(j)- and Ŷ (j)-controls acting on the

same qubit change the controllability. Assuming the local, field-free Hamiltonians to

be proportional to Ẑ(j), there is no additional benefit from a second control, since a
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Distance Controllability # cases

1 Controllable 4
2 Inconclusive 4
3 Controllable 2

Table 4.3: Study of controllability for a five-qubit system similar to ibmq_quito but with only
two local controls.

single local control X̂(j) that does not commute with Ĥ0 is sufficient to also generate

a Ŷ (j) contribution and viceversa.

Since two local controls is the minimum number to obtain a controllable system,

we now study how the position of the control affects controllability. We categorize all

possible arrangements of two local controls X̂(j) by their distance. For example, the

local controls for qubits 1 and 3, shown in Figure 4.6, have distance equal to 1 since

they are direct neighbors connected by a single coupling. Analogously, we can set

local controls separated by two couplings (e.g. on qubit 2 and 3) that have distance 2,

or local controls for qubits separated by three couplings (e.g qubits 0 and 4) that have

distance 3. The results of the controllability tests for all these possible arrangements

of two local controls are shown in Table 4.3.

Accordingly, the five-qubit system is controllable with two local controls if they have

either distance one or three, independent of the position of the controls themselves. On

the other hand, if the controls are at distance 2, the algorithm returns an inconclusive

answer. This implies that algorithm 4.3 cannot decouple enough transitions for the

graph to be connected. In fact, it turns out that no new transitions could be added

at all. This is because the coefficients ⟨ea| Ĥj |eb⟩ of the different transitions depend

on the position of the local control that drives them. By shifting a local control to

a neighboring qubit, it is common to see a change in some of the coefficients. The

transition coefficients of same-type controls for a set of coupled transitions tend to

be linearly independent when the controls are shifted by an odd number of qubits

and dependent in the even case. This allows us to generate maximal subalgebras only

for controls that are at an odd qubit-distance, turning the coupled transitions into

decoupled transitions that can eventually make the graph connected.

4.4.3 Example C: five-qubit system with single local control

To conclude the list of examples, we demonstrate that the number of local controls

that is required for the system to be controllable also depends on the type for couplings

connecting the qubits. We showcase a system that is controllable with a minimal

number of local controls, i.e., a single local control. The main difference between this
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ω0

ω1

ω2

ω3 ω4

X̂

Coupling type:

X̂(i)X̂(j) + Ŷ (i)Ŷ (j)

+Ẑ(i)Ẑ(j)

List of local controls:

X̂(1)

Figure 4.7: Diagram introducing a modified version of IBM’s ibmq_quito with ẐẐ contribu-
tions added to every coupling and all local controls removed except for X̂(1).

example (shown in Figure 4.7) and the previous ones (displayed in Figure 4.5 and

4.6) is that the couplings are of the form

Ĥij = Ji,j
(
X̂(i)X̂(j) + Ŷ (i)Ŷ (j) + Ẑ(i)Ẑ(j)

)
, (4.16)

i.e., they have an extra term Ẑ(i)Ẑ(j) compared to the couplings considered in the

examples before. These kinds of couplings can be achieved in systems of supercon-

ducting qubits by harnessing both capacitive and inductive interactions between the

qubits. Executing algorithm 4.1 with δE = 0.1GHz, we obtain a total of 24 initially

decoupled edges and a total of 14 connected components. This is already more

promising than the examples in section 4.4.1 and section 4.4.2. Furthermore, use of

graphical commutators results in the system being controllable, ending up with 37

decoupled edges that are sufficient to make the graph connected. The controllability

analysis thus shows that with the Ẑ(i)Ẑ(j) addition, the system is controllable with

only one local control. In Figure 4.7, we have added a local control on qubit 1, but

additional tests show that the same statement is true for any single local control

X̂(j), independent of its position at qubit 0 to 4. Therefore, this controllable system

has a minimal number of local controls at the cost of using a more complex type of

two-qubit couplings.

The effect of couplings of the form Ẑ(i)Ẑ(j) on the graph of the system had been

shown in [1]. They can be understood by considering the simple two-qubit systems

shown in Figure 4.3 and Figure 4.4. In Figure 4.4, couplings of the form X̂(i)X̂(j)

result in two pairs of resonant (coupled) transitions for each local control. Therefore,

two local controls are required to decouple the transitions and ensure controllability.

In Figure 4.3, a single control X̂ is sufficient due to the Ẑ(0)Ẑ(1) term in its coupling.
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This term is already diagonal in the eigenbasis of the free qubits, which means that it

does not mix the eigenstates of the free qubits. However, it shifts their eigenenergies,

such that all four vertices of the graph correspond to different transition frequencies

and thus a single local control corresponds to four decoupled transitions, making the

system controllable. A similar effect happens in the present five-qubit example, where

the couplings have an off-diagonal contribution X̂(i)X̂(j) + Ŷ (i)Ŷ (j) and a diagonal

part Ẑ(i)Ẑ(j). The former mixes the free-qubit eigenstates and in turn creates more

edges in the graph with the inclusion of a local control like X̂(j). The latter changes

some resonant energy gaps and decouples the transitions associated to them. The

combination of these two effects achieves controllability with a minimal number of

local controls, as seen in Figure 4.7. The special role of this coupling has already been

observed for spin systems, where spin chains have been proven to be controllable with

a number of local controls smaller than the number of spins [134].

4.5 Summary

We have presented a practical way to test for operator controllability in order to

numerically verify the ability of a given qubit array to implement universal quantum

computing. The graph theory-based approach allows for analyzing comparatively large

qubit systems for which the evaluation of the Lie rank condition for controllability

would be difficult or impossible. Indeed, the computationally expensive calculation

of nested commutators of the drift and control Hamiltonians, which is required to

construct the system’s dynamical Lie algebra, is avoided in graphical methods. On

the other hand, in some cases, a graphical controllability test remains inconclusive.

We believe that the disadvantage is small in view of the positive results that can be

obtained for systems not amenable to the Lie rank condition.

The key challenge in controllability tests for systems of coupled qubits using graph

theory-based methods is due to the tensor product structure of Hilbert space. This

leads to graphs that often consist of sets of coupled (resonant) transitions. A similar

problem was encountered in the controllability analysis of driven quantum rotors [17]

which are highly degenerate systems with multiple resonant transitions. In that case,

the specific spectral structure allowed for an inductive evaluation of the graphical

commutators [142]. Here, we have made no assumptions on the spectral structure

of the system. Instead, we have found and implemented numerically efficient ways

to decouple the resonant transitions such as to make them exploitable for the graph

test. In particular, our algorithm only determines those graphical commutators which

are relevant because they add to the connectivity of the graph. Moreover, we have

made use of fact that in qubit arrays, coupled transitions are typically driven by

several controls: These coupled transitions become decoupled if the dimension of the
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subalgebra that they generate when driven by different controls is maximal. Since

the sub-algebras are very small compared to the Hilbert space of the complete system,

their numerical construction does not pose a challenge. The remaining limitation

to the number of qubits NQ, for which a controllability test can be carried out, is

the exponential scaling of the Hilbert space dimension with NQ because the drift

Hamiltonian (including the qubit-qubit couplings) needs to be diagonalized. Typically,

the drift is sparse in the logical basis. For the graph test presented here, only a single

diagonalization of the (sparse) drift Hamiltonian is necessary to obtain the initial

graph.

We have illustrated the utility of our approach by showing how controllability

analysis can be used to determine the minimum number of local controls required

for universal quantum computing in existing quantum processing units. To this end,

we have chosen the five-qubit array ibmq_quito [21] as specific example, treating

the qubit-qubit couplings as fixed. This is justified since, whenever a system with

time-independent couplings is controllable, the corresponding system with tunable

couplings is controllable as well. The actual ibmq_quito system contains a local

control for each of the five qubits. Our analysis has shown that by modifying the

couplings between the qubits, the number of local controls necessary for universal

quantum computing can be reduced to a single local control. For standard qubit-qubit

couplings the minimal number of local controls is two. Analyzing the controllability

for different positions of the two local controls reveals that the distance between the

local controls is essential for the system to be controllable: The two local controls

must be separated by an odd number (one or three) of qubit-qubit couplings in order

to provide controllability and allow for universal quantum computing. These results

showcase the utility of our graph test for improving the design and scalability of qubit

arrays.

In future work, it will be interesting to gather a deeper understanding of the

required control distance, as this might allow for generalizing our findings to larger

qubit arrays. One natural next step will be extending our approach from local to

non-local controls, as obtained when using e.g. tunable couplers. Our graph test

is limited by the exponential scaling of the Hilbert space, a common issue among

algorithms run on a classical computer, which can only be overcome by mapping the

controllability analysis to a quantum device. Another important open question is the

relationship between the minimal number of local controls and the quantum speed

limit for universal quantum computing. The quantum speed limit [92] refers to the

minimum time in which a quantum process, such as a quantum gate, can be executed.

For a complete universal set of gates, the quantum speed limit can be obtained using

quantum optimal control [75]. Given a quantum system and a set of controls, the

time required for any particular operation will always be equal or longer than the
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time required for the same operation in the same system with more controls added.

Conversely, reducing the number of local controls is likely to increase the time needed

to carry out a gate. Thus, reducing the number of local controls has to be balanced

with the requirement of sufficiently fast logical operations. The minimal sets of local

controls from controllability analysis as suggested here offers a good starting point to

find the best balanced set of controls with quantum optimal control. Finally, a further

important perspective for future work is the question of controllability of systems

coupled to the environment. It will be interesting to see whether graph methods can

be utilized in this context.

110 Chapter 4 Graph test for controllability of qubit arrays



5Controllability of qubit arrays using
parametric quantum circuits

5.1 Introduction

Universal quantum computing [32] requires controllability on the quantum pro-

cessing unit, so that every quantum logic gate can be implemented. A common layout

in hardware platforms such as those based on superconducting circuits achieves this

by combining two-qubit couplings with local drives for each qubit of the array [144,

11]. While effective, this approach becomes demanding for larger arrays, due to

both the physical space needed for each control as well as the associated calibration.

Controllability tests can help identify less resource-intensive architectures that are still

capable of performing the same quantum gates [148].

Controllability in general studies the dynamics that can be implemented in a

quantum system driven by a set of controls [14, 130, 12]. In particular, a system

is pure-state controllable if it can reach all final states. Alternatively, an (evolution)

operator controllable system is capable of implementing every unitary gate, a nec-

essary feature for universal quantum computing. Tests for these two different types

of controllability rely on computing the rank of the dynamical Lie algebra of the

Hamiltonian [14] or utilize methods based graph theory [138, 15, 139, 148]. For

small system sizes, the tests can be carried out analytically [13, 131, 132, 142]. For

some high- and infinite-dimensional systems, controllability can be determined using

induction arguments [16, 133, 15, 17]. Beyond these special cases, a numerical

approach is possible in principle [148], but is limited by the exponential scaling of

the Hilbert space dimension with respect to the number of qubits. In other words, the

accuracy and feasibility of controllability tests for increasing system size suffer from

the curse of dimensionality.

Here, we present a hybrid quantum-classical controllability test, for both pure-state

and operator controllability of qubit arrays. The hybrid method we propose evaluates

the controllability of the qubit array by measurements on a quantum device, either the

system to be studied with an extra auxiliary qubit or one that mimics the dynamics
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of the original system. This opens up a new way of designing controllable qubit

arrays with fewer resources, helping to address the issue of scalability. To do so, we

harness the computational power of quantum circuits to extract information directly

from the qubit array under study. While this method relies on the same mathematical

foundations behind the dynamical Lie algebra of the system, its design circumvents the

issues that arise from finding a basis of the Lie algebra and all the orthonormalization

calculations that it entails. Furthermore, mapping these operations to parametric

quantum circuits may imply that some systems can be explored even when the Lie

rank condition can no longer be evaluated analytically or on a classical computer.

Parametric quantum circuits constitute the basis of many algorithms, for example

variational algorithms for solving computationally hard optimization problems [18,

149]. The circuits consist of a set of parametric gates that can be used to measure a

cost function. After a classical optimization, the parameters are updated to give a new

cost value, continuing the feedback loop of the algorithm. It is necessary to include

enough independent optimization parameters to reach the best possible solution.

However, minimizing the number of parametric gates and circuit depth is also key in

the era of noisy quantum devices [63]. In order to reduce the noise of the circuit while

maintaining its optimization capability, every redundant parameter should be identi-

fied and removed from the circuit. This goal is related to the dimensional expressivity

of the circuit and can be achieved with dimensional expressivity analysis [19, 20], a

hybrid quantum-classical algorithm to systematically find redundant parameters.

In order to leverage dimensional expressivity analysis to test for controllability,

we define a parametric quantum circuit based on the architecture of a given qubit

array with local controls and qubit couplings. We then use dimensional expressivity

analysis to quantify the number of independent parameters which is related to the

controllability of the original qubit array. We provide a complete description of how to

carry out the hybrid controllability test on a quantum circuit, opening the possibility

of obtaining information of the controllability of a quantum device before it is built.

The chapter is organized as follows. The basic concepts of controllability analysis

and parametric quantum circuits are briefly reviewed in section 5.2. The pure-state

controllability test is presented in section 5.3, including its derivation, definition and

showcase examples. Section 5.4 extends the test to operator controllability, making

use of the Choi-Jamiołkowski isomorphism. Section 5.5 concludes.
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5.2 Theoretical background

To define controllability tests for qubit arrays, we combine the notions of system

controllability and circuit expressivity. For the sake of a self-contained chapter, we

briefly recap the basic ideas in this section.

5.2.1 Controllability

Previously we have mentioned that pure-state controllability is the relevant type of

controllability when we are interested in are state transfers, i.e., evolving the system

from an initial state to a certain target state. It is equivalent to proving that all

state transfers are possible in a system. This, however, is not the strongest type of

controllability that can be defined. Pure-state controllability is sufficient to guarantee

that there will always be evolution operators Û|ψ0⟩,|ψf ⟩ to connect any two states |ψ0⟩
and |ψf ⟩, yet not enough to ensure that it is possible to generate every operation Û

in the special unitary group SU (d), where d = dim(H). Pure-state controllability

does not guarantee that simultaneous state-to-state transfers are always possible. This

property is instead related to the operator controllability of the system. A system

with linearly coupled controls (cf. Equation (2.8)) and Hilbert space dimension d

is operator controllable if for every unitary evolution Ûtarget ∈ SU(d) there exist a

final time T ≥ 0, a phase angle φ ∈ [0, 2π) and a set of controls {uj}mj=1 such that

Ûtarget = eiφÛ(T ;u1, ...um).

Note that for both types of controllability there are no restrictions on the final time

T ≤ ∞ at which state transfers, respectively unitary operations, are implemented.

Consequently, this time T , while always finite, can be arbitrarily large. The question

of controllability only inquires whether it is possible at all to perform the desired

dynamics. Similarly, it does not impose any restrictions on the maximum amplitude

that the controls uj(t) from (2.8) can take. Finite amplitude is a physical restriction

that impacts the final time required to perform the different operations, but does not

mathematically change the controllability of the system.

If the Hamiltonian of the system is known, there exist algebraic and numerical

tests tailored for both types of controllability [107, 150, 145, 14, 148].

5.2.2 Dimensional expressivity

Parametric quantum circuits have multiple applications, as they constitute the base

for variational quantum algorithms [64]. Their design and study are pivotal factors

in the efficiency of the algorithms. In particular, parameter dependence and the set

of final states that can be produced are two key topics that determine the capability
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R̂3 (ϑk+1)
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· · ·

· · ·

· · ·

Figure 5.1: Three-qubit example of the parametric circuit CP SC(ϑ⃗) (5.7) for testing pure-
state controllability with initial state |000⟩ in the qubits’ logical basis. Each
layer (only two displayed in the diagram) includes an entangling gate R̂0 and a
sequence of local gates R̂j (with j ≥ 1), one for every control present in the qubit
array.

of the algorithms. Lacking some necessary parametric gates leads to unsuccessful

algorithms, whereas including too many dependent parameters is detrimental for the

purpose of optimization. We introduce here notions and definitions related to these

issues that are relevant for the controllability tests. This subsection follows the theory

presented in Section 2.5

Minimizing the number of redundant parameters is therefore a relevant matter in

the design of parametric quantum circuits. Fewer redundant parameters may result

in more resource-efficient circuits that can produce the same manifold of states. We

describe

As a reminder, the dimensional expressivity exprdim of a circuit C(ϑ⃗) with parame-

ters ϑ ∈ P is a measure of the amount of states that can be produced at the end of

the circuit by varying the parameters. The exact value of the dimensional expressivity

represents both , i.e. the dimension of C (P) as a real differentiable manifold [19].

We have previously presented the dimensional expressivity analysis as a sequential

hybrid quantum-classical algorithm. This approach provides an efficient method

to find a maximal set of independent parameters on a quantum circuit [19, 20].

The number of independent parameters serves as a measure for the dimensional

expressivity of the studied circuit.
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5.3 Pure-state controllability test using dimensional
expressivity

This section introduces the novel connection between the dimensional expressivity

of quantum circuits and the pure-state controllability of quantum systems. We present

the design of a circuit associated to a controlled system that allows us to check its

pure-state controllability. We include two examples to showcase its functionality.

5.3.1 Circuit expressivity and pure-state controllability

We consider a qubit array with Hamiltonian (2.8). We identify the drift Ĥ0 as

the time-independent part, which includes the local free-qubit Hamiltonians and

some time-independent couplings between them. Similarly, the operators Ĥj with

1 ≤ j ≤ m are coupled to the m different external controls acting on the system.

In order to use dimensional expressivity analysis to determine controllability of a

qubit array, it is necessary to define a parametric quantum circuit that can be run

on the system, according to the different controls at disposal. If we can show that

all normalized states in the Hilbert space are reachable from a certain initial state

using only gates generated by the system’s controls, we have proven pure-state

controllability.

A straightforward choice for the possible parametric gates in the circuit is

R̂j(α) := exp
(
−i α2 Ĥj

)
, 0 ≤ j ≤ m, (5.1)

i.e. rotations around either the drift Ĥ0 or the control operators Ĥj (2.8). The gates

R̂0(α) can be implemented by letting the system evolve under its time-independent

drift Hamiltonian Ĥ0 for a certain time t = α
2 . For the other gates, R̂j(α) with

j ≥ 1, we make use of the local controls. In these gates the Ĥ0 contribution can be

neglected by assuming that the controls can be chosen such that ∥uj(t)Ĥj∥ ≫ ∥Ĥ0∥.
A realistic approach to the R̂j(α) implementation is to consider short rotations with

intense controls uj(t), so that the Ĥ0 contribution is insignificant in comparison. The

amplitude of uj(t) is usually adjusted externally and it has no imposed restriction.

We want to design a parametric quantum circuit CPSC(ϑ⃗), starting with an arbitrary

initial state |ψ0⟩ ∈ H and exclusively composed of the rotation gates R̂j(ϑk). We then

use dimensional expressivity analysis to measure the dimensional expressivity of the

system. If it is maximal, i.e. exprdim = 2d− 1 for dim(H) = d, we have a manifold of

reachable states with local real dimension 2d− 1. This manifold is a subset of H. We

now prove that it is in fact the whole unit sphere of H. If we assume that the gates

R̂j(α) are cyclic and that every parameter ϑk is used in a single rotation gate in the
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circuit, we can treat each ϑk as if it had periodic boundaries, i.e. ϑk ∈ S1. For an array

of n parameters ϑ⃗ the parameter space verifies

P ∼= S1 × · · · × S1︸ ︷︷ ︸
n

∼= Tn. (5.2)

This implies that P is a connected, compact set without boundary. Assume a circuit

CPSC(ϑ⃗) that has maximal dimensional expressivity. Then, the manifold of reachable

states CPSC(P) ⊆ H is a connected, compact manifold without boundary and with

maximal local real dimension. Consequently CPSC(P) = SH ⊂ H. Thus, the system

is pure-state controllable.

So far, we have found a sufficient condition for pure-state controllability. We now

want to identify a condition for non-controllable systems. To this end, we need to

prove that there are some states that are not reachable by any of the possible dynamics

that we can implement with the different operators Ĥj and their nested commutators.

Hypothetically, we could do a sequence of the rotation gates (5.1) around the drift,

the control operators and their nested commutators and test if all of them are linearly

independent. However, generating the exponential of the commutator of two control

operators (or one control operator and the drift) exp i β[Ĥj , Ĥk] is no trivial task.

It may require optimal control to generate a specific rotation for the exact angle β

and the chosen commutator [Ĥj , Ĥk]. Instead, we access the different commutators

by concatenating a series of multiplications, as in the Baker-Campbell-Hausdorff

formula:

exp
(
i αÂ

)
exp

(
i βB̂

)
= exp

(
iαÂ+ iβB̂ − 1

2αβ[Â, B̂]

− i α2β

12 [Â, [Â, B̂]] (5.3)

+ i αβ2

12 [B̂, [Â, B̂]] · · ·
)
.

Assume that we have a parametric quantum circuit consisting of a sequence of n

rotations,

Cnseq(ϑ⃗) := exp
(
−i ϑnÂn

)
· · · exp

(
−i ϑ1Â1

)
|ψ0⟩ (5.4)

with Âj ∈ {Ĥk}mk=0 ∀1 ≤ j ≤ n. We can use Eq. (5.3) multiple times on the exponen-

tial sequence on the right-hand side of Eq. (5.4) to express it as a single exponential

dependent on ϑ⃗, the different operators Aj and their nested commutators. Assume

as well that the dimensional expressivity in the circuit exprdim(Cnseq(ϑ⃗)) = dn is less

than the maximum possible. We define a new parametric circuit by adding one more

rotation to the chain of operations,

Cn+1
seq (ϑ⃗, ϑn+1) := exp

(
−i ϑn+1Ân+1

)
Cnseq(ϑ⃗). (5.5)
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If the dimensional expressivity of Cn+1
seq and Cnseq are the same for every ϑn+1 ∈ R and

every Ân+1 ∈ {Ĥk}mk=0, then the number of linearly independent ∂jC(ϑ⃗) remains the

same. In other words, we are not able to find more linearly independent operators

and thus, the dimensional expressivity of the system cannot be increased. This means

that the manifold of reachable states does not have a maximal local dimension and

hence there will be some states to which our initial state cannot evolve. Therefore the

system is not pure-state controllable.

There may be cases where, for given Cnseq(ϑ⃗) and Ân+1, there exist two different

parameters ϑn+1 and ϑ̃n+1 such that

exprdim
(
Cn+1
seq (ϑ⃗, ϑn+1)

)
> exprdim

(
Cn+1
seq (ϑ⃗, ϑ̃n+1)

)
. (5.6)

This is common in cases where ϑ̃j = 0 for every 1 ≤ j ≤ n+ 1. Looking at Eq. (5.3),

note that using repeated parameters (e.g. α = β) will make the coefficients preceding

the commutators have the same absolute value (e.g. α2β = αβ2). This is evidently

unfavorable to generate more linearly independent ∂jC(ϑ⃗) due to the symmetries

created.

In principle, it would be necessary to prove that the expressivity of Cn+1
seq does not

increase for any ϑn+1 ∈ R. However, as long as there exists one ϑn+1 that increases

the dimensional expressivity for an operator Ân, the set of {ϑ̃n+1} ⊂ R that would not

raise the expressivity will have measure zero. This can be justified as follows. Assume

that the first n parameters are independent (i.e. det (Sn) ̸= 0), with n less than the

maximal dimensional expressivity, and that there exist some parameters that can

increase the expressivity. This implies that the analytic function f(ϑ⃗) := det (Sn+1) is

not constant 0. The set of parameters that would not increase the expressivity belong

to f−1(0). With the regular level set theorem [151], f−1(0) is an n-dimensional

manifold in the (n+ 1)-dimensional parameter space P. Thus, the set of parameters

that would not increase the expressivity has Lebesgue measure zero in P. In other

words, by choosing ϑn+1 randomly we increase the dimensional expressivity with

probability 1.

The next section uses these ideas to systematically design quantum circuits that

can be used to determine for a controlled quantum system whether it is pure-state

controllable or not.
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Figure 5.2: Flowchart for the pure-state controllability algorithm. The yellow rhomboids
show the initial inputs necessary to define the circuit CP SC(ϑ⃗).

5.3.2 Controllability test

Given a system with operators Ĥj with 0 ≤ j ≤ m (cf. Eq. (2.8)), we define the

parametric quantum circuit

CPSC(ϑ⃗) =
(
nl−1∏
j=0

R̂m(ϑj(m+1)+m)...

R̂1(ϑj(m+1)+1)R̂0(ϑj(m+1))
)
|ψ0⟩ ,

(5.7)

where |ψ0⟩ is the initial state of the circuit, m the total number of controls in the

system and nl the number of layers in the circuit. A diagram of this circuit is shown in

Figure 5.1 for a three-qubit example. The initial state |ψ0⟩, chosen and fixed at the

start of the circuit, can be any pure state. The number of layers nl should be decided

at the start of the algorithm. All gates in CPSC(ϑ⃗) are parametric with different

parameters ϑk, ranging from ϑ0 to ϑnlm−1. Each of the nl layers in the circuit has a

similar architecture: It starts with the rotation R̂0 around the drift Hamiltonian, an

entangling gate if it includes time-independent qubit couplings, and then a sequence

of local gates, from R̂1 to R̂m, that use all the different controls sorted by a chosen

order.
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The pure-state controllability test for a system evolving under the Hamiltonian (2.8)

is then defined as follows: If the circuit (5.7) reaches maximal expressivity, the system

is controllable. A schematic flowchart of the pure-state controllability test is shown in

Figure 5.2. If the maximum expressivity of 2d− 1 for a Hilbert space with dim(H) = d

has not been met with nl layers, another layer can be added (encompassing a full set

of rotation gates with their respective new parameters) and the test can be repeated

for the new circuit with nl + 1 layers. By definition, the dimensional expressivity can

only augment at the rate of one per parameter ϑj at maximum. For a system with m

controls, there are a total of m + 1 parameters per layer. Therefore, the minimum

number of layers needed to reach maximum expressivity for m controls is

nl,min =
⌈2d− 1
m+ 1

⌉
. (5.8)

Since layers may have some redundant parameters, the dimensional expressivity may

not necessarily rise at the maximum rate and more layers may have to be included.

Consequently, the algorithm is best started with the minimum number of layers

required to achieve maximum expressivity and additional layers shall be concatenated

as needed.

It may as well happen that the dimensional expressivity remains the same even with

the inclusion of a new layer. In this case the test stops, as the dimensional expressivity

will not further increase. In instances where the dimensional expressivity reaches a

plateau, it is necessary to double-check using a different array of random parameters

ϑ⃗ and repeat this comparison with the nl- and nl + 1-layered circuits, following the

reasoning explained in section 5.3.1. Using a random set of parameters will yield an

answer on whether the expressivity can be increased or not with probability 1. If the

dimensional expressivity remains at a value less than 2d− 1 for a sufficiently large set

of different random parameters, then the system is labelled not pure-state controllable

and the test concludes.

The algorithm will always end with an affirmative or negative result regarding

pure-state controllability. The loop in Figure 5.2 will be exited under one of the

following conditions: Either maximal dimensional expressivity is reached or a last

layer exclusively composed of redundant parameters is found. In other words, the

method ends when the finite upper bound of the dimensional expressivity has been

reached or when the expressivity before and after the addition of a new layer remains

the same. Since the dimensional expressivity is always an integer, the loop must

conclude in a finite number of iterations.

Parameters with repeated values in the same rotation gates (e.g. ϑp = ϑq on

gates R̂j(ϑp) and R̂j(ϑq) for a certain j) are usually detrimental to reach maximum
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Coupling strengths (MHz)

J0,1 J1,2 J2,3
170 220 150

Qubit frequencies (GHz)

ω0 ω1 ω2 ω3
. . 5.40 5.30 5.42 5.37

Table 5.1: Parameters for the Hamiltonian (5.9). The frequencies and the coupling strengths
have been chosen in a range that is common for superconducting circuits.

expressivity. A trivial example is the case of ϑ⃗ = 0⃗, where the maximum possible

dimensional expressivity of CPSC (⃗0) is always m + 1, with m the number of local

controls.

A more detailed description of the algorithm can be found in Section 5.4.3. This

includes step-by-step pseudo code and the exact parts of the method that can be

performed classically and with quantum computations.

5.3.3 Examples

To illustrate the described algorithm, we consider a four-qubit array with the

following Hamiltonian:

Ĥ4q(t) =
3∑
j=0
−ωj2 σ̂

(j)
z +

2∑
k=0

Jk,k+1σ̂
(k)
x σ̂(k+1)

x + Ĥctrl(t) (5.9)

The first term encompasses the free-qubit Hamiltonians and the second one contains

the time-independent couplings. The qubit frequencies ωj and the coupling strengths

Jk,k+1 have been chosen to fit the ones normally used in superconducting circuits [152]

and their exact value can be found in Table 5.1. The last operator, Ĥctrl(t), contains

all the relevant information about the controls, including their number and type. We

choose two configurations of controls to study two separate systems with Hamiltonian

(5.9), one that is pure-state controllable and one that is not.

First, we assume the controls from Eq. (5.9) to be

Ĥctrl(t) = u1(t)σ̂(1)
x + u2(t)σ̂(2)

x . (5.10)

This system is operator controllable, as proven by the Lie algebra rank condition [14]

and the graph method [148]. This in particular implies that it is also pure-state

controllable. A diagram of the system may be found in Figure 5.3.
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ω0 ω1 ω2 ω3

X̂X̂ X̂X̂ X̂X̂

X̂ X̂

Figure 5.3: Four-qubit system that is pure-state controllable, cf. Eqs. (5.9) and (5.10).

Since the system only has two controls, each layer of the circuit will have exactly 3

gates—the entangling gate involving the drift and the two related to the local controls

coupling to σ̂1
x and σ̂2

x, respectively. We have chosen |ψ0⟩ = |0000⟩ (in the logical basis

of the free qubits) as the initial state of the circuit and nl = 11, matching the minimal

number of layers to obtain maximum dimensional expressivity (cf. Eq. (5.8)). For a

circuit acting on a four-qubit array, it has a value of exprdim = 31. We have generated

a random set of parameters ϑ⃗ ∈ [0, 2π]33 (since in this case (m+1) ·nl = 33). We have

classically simulated the parametric quantum circuit and calculated the SCP SC ,n(ϑ⃗)
matrices from Eq. (2.33). We have both determined the redundant parameters in the

circuit and estimated the dimensional expressivity.

In these simulations, the maximum dimensional expressivity is steadily reached,

with every layer raising it by 3. The maximum value of exprdim = 31 is achieved with

the first parameter of the last layer, proving that the system is pure-state controllable.

In this example the minimum number of layers that we had chosen was enough

to reach maximum expressivity. The same behaviour has been observed for all the

different random sets of parameters ϑ⃗ tested. The same configuration of gates was

further tested using different random initial states |ψ0⟩, yielding similar results.

Second, we present a system that is not pure-state controllable, whose control

operators are

Ĥctrl(t) = u1(t)σ̂(0)
x + u2(t)σ̂(2)

y + u3(t)σ̂(3)
z , (5.11)

cf. Figure 5.4.

The exact dimension of the Lie algebra L of the system described by Equations (5.9)

and (5.11) can be found following the method the method described in [14]. To do

this, we must generate a basis of L, whose cardinality will be equal to the dimension

of the dimension of the Lie algebra. Given a system following Equation (2.8), we can

compute a basis by starting with a linearly independent set of the elements of zeroth

order: The drift Ĥ0 and the control operators Ĥj (for 1 ≤ j ≤ m). We complete the

basis by including the nested commutators of the elements of zeroth order that are
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ω0 ω1 ω2 ω3

X̂X̂ X̂X̂ X̂X̂

X̂ X̂ Ẑ

Figure 5.4: Four-qubit system that is not pure-state controllable, cf. equations (5.9) and
(5.11).

linearly independent, i.e. [Ĥj1 , [Ĥj2 , ...[Ĥjk , Ĥjk+1 ]...]]. Since the dimension has an

upper bound, this method must converge in a finite number of iterations.

In the case of Equations (5.9) and (5.11), we reach a dimension of dim(L) = 120 <
dim(su(16)) = 255, which only proves that the system is not operator controllable.

The system would be pure-state controllable if and only if

dim (Lie ([ρ0,L])) = 2 dim(H)− 2 (5.12)

with ρ0 = |0000⟩ ⟨0000| [14]. We confirm that the system is not pure-state controllable

since dim (Lie ([ρ0,L])) = 28 < 30 for the current system. Even though there are

more local controls than in the first example, the system is not controllable due to

their positions. Similarly as before, we create a circuit with four gates (related to

the drift and the three local controls) per layer. We choose a minimum number of

layers nl = 8 (different to the one before due to the different number of controls),

|ψ0⟩ = |0000⟩ and a set of random parameters ϑ⃗ ∈ [0, 2π]32.

At the end of the last layer the dimensional expressivity yields a total of 29 out of

the 31 that would imply pure-state controllability. Following the flowchart depicted in

Figure 5.2 we have added a new layer (nl = 9) with a new set of random parameters

and repeated the dimensional expressivity analysis. According to our simulation, the

new layer contains only redundant parameters (i.e. the expressivity remains at 29),

which stops the algorithm and means that the system is not pure-state controllable.

To verify the validity of this outcome, we have repeated the test for multiple different

random sets of parameters. In every instance the same result is reached, which leads

to the conclusion that the system is indeed not pure-state controllable, as discussed in

section 5.3.1.
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5.4 Operator controllability test using dimensional expressivity
analysis

Operator controllability is the relevant type of controllability for a qubit array

in order to perform all quantum logic gates. Its connection to the dimensional

expressivity of a circuit is less evident, since dimensional expressivity is related to

the different states that can be reached. The Choi-Jamiołkowski isomorphism [153,

154] allows to bridge the gap with a map between operators on a Hilbert space H and

states in H⊗H. It is used, for example, in quantum process tomography, allowing to

employ techniques from state tomography to operators [155]. Similarly, by doubling

the number of qubits, we can exploit the channel-state duality between operators

in the original system and states in the bipartite extended system for controllability

analysis.

5.4.1 Lifting pure-state to operator controllability via the Choi-Jamiołkowski
isomorphism

Let us assume a qubit array with Hamiltonian (2.8) for which we seek to determine

operator controllability. This system with Hilbert space H and dimension dim(H) = d

will henceforth be referred to as the original system. We then define a bipartite

extended system in H ⊗H composed of the original system and the same number

of auxiliary qubits. To simplify the argument, we first assume no dynamics over the

auxiliary qubits. Later we extend our discussion to include some local Hamiltonians

on the auxiliary qubits. Given any operator Ô ∈ L(H⊗H), we write ÔA to indicate

that the operator only acts non-trivially on the partition of the original system (A),

i.e.

ÔA = Q̂⊗ 1d (5.13)

for some operator Q̂. Analogously, we write ÔAB for operators that act non-trivially

on both partitions (the original system and the auxiliary qubits). Neglecting the local

contributions of the auxiliary qubits, the Hamiltonian of the extended system is given

by

ĤA(t) = Ĥ(t;u1, ...um)⊗ 1⊗q
2 (5.14)

where q is the number of qubits in the original system.

We assume that the extended system can be prepared in a maximally entangled

state,

|ψME⟩ =
d−1∑
i=0

1√
d
|ei⟩ ⊗ |ei⟩ , (5.15)

where {|ei⟩}d−1
0 is an orthonormal basis of H.
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We define the circuit on the extended system

CAOC(ϑ⃗) :=
k∏
j=0

(
R̂Am(ϑj(m+1)+m)...

R̂A1 (ϑj(m+1)+1)R̂A0 (ϑj(m+1))
)
|ψME⟩ .

(5.16)

The rotations R̂Ak (α) are given by the drift (k = 0) and the control operators

(1 ≤ k ≤ m) of the original subsystem:

R̂Ak (α) := exp
(
−i α2 Ĥk ⊗ 1⊗q

2

)
, 0 ≤ k ≤ m, (5.17)

with Ĥk given in Eq. (2.8).

A visual representation of the circuit is found in Figure 5.5. The parameter space

P ∋ ϑ⃗ is assumed to be connected and compact without boundary (e.g. with every

coordinate ϑi being cyclic). The final state of the circuit will always be of the form

CAOC(ϑ⃗) = 1√
d

d−1∑
i=0
|ei⟩ ⊗

(
Û(ϑ⃗) |ei⟩

)
, (5.18)

with Û(ϑ⃗) a unitary operator depending on the circuit’s parameters.

Our goal is to prove that dimensional expressivity of the extended system is enough

to determine operator controllability of the original system. To this end, we make

use of the Choi-Jamiołkowski isomorphism [153, 154, 156]. The map it describes is

written as
Λ(Â) :=

(
1LH ⊗ Â

)
(|ϕ⟩ ⟨ϕ|)

=
∑
i,j

|ψi⟩ ⟨ψj | ⊗ Â
(
|ψi⟩ ⟨ψj |

) (5.19)

for any operator Â in the Hilbert space of linear operators on the Liouville space and

the unnormalized state |ϕ⟩ =
∑
i |ψi⟩ ⊗ |ψi⟩, with {|ψi⟩}d−1

i=0 an orthonormal basis of

H.

Identifying Â in Eq. (5.19) with Û(ϑ⃗) in Eq. (5.18), we know that

Û(P) ∼= Λ(Â)

=
d−1∑
i,j=0
|ei⟩ ⟨ej | ⊗

(
Û(P) |ei⟩ ⟨ei| Û(P)†

)
.

(5.20)
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|ψME⟩

q0

q1

q2

q3
q4
q5

· · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑ0)

R̂∗
3 (ϑ3)

R̂∗
2 (ϑ2)

R̂∗
1 (ϑ1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

R̂A
0 (ϑk)

R̂∗
3 (ϑk+3)

R̂∗
2 (ϑk+2)

R̂∗
1 (ϑk+1) · · ·

· · ·

· · ·

· · ·
· · ·
· · ·

Figure 5.5: Parametric circuit for the extended system required to perform the operator
controllability test (5.16) for a three-qubit system. The qubits qi with i = 0, 1, 2
constitute the original system, whereas qj with j = 3, 4, 5 are the auxiliary qubits.

The operators Û(ϑ⃗) are unitary for every ϑ⃗ ∈ P , hence purity-preserving. We transform

the density matrix representation from Eq. (5.20) into a pure-state representation,

resulting in

Û(P) ∼=
d−1∑
i=0
|ei⟩ ⊗ Û(P) |ei⟩ ∼= CAOC(P). (5.21)

Therefore, there exists an embedding between the evolutions Û(P) that are generated

using a combination of rotations given by the controls and the final states of the

circuit CAOC(P). A system with traceless operators as in Eq. (2.8) and dim(H) = d is

operator-controllable if and only if the manifold of the unitary evolutions that can

be generated ÛĤ is isomorphic to SU(d). Evidently, Û(P) ⊆ ÛĤ ⊆ SU(d). Since the

parameter space P is connected and compact without boundary, Û(P) = SU(d) if and

only if dim(Û(P)) = dim(SU(d)). Thus, using Eq. (5.21), the system will be operator-

controllable if dim(CAOC(P)) = dim(SU(d)), i.e., if the dimensional expressivity of the

circuit CAOC(ϑ⃗) is d2 − 1.

From here we proceed analogously as the pure-state controllability test from

section 5.3.1. We present the outline of the operator controllability test in Figure 5.7.

If the dimensional expressivity is less than d2 − 1, we inspect the parameters in the

last circuit layer. If they all are redundant, the test ends and the system is deemed

not controllable. Indeed, if all parameters in the last layer are redundant, we are

unable to find more linearly independent operators in the dynamical Lie algebra of the

system. If the number of linearly independent elements of the algebra (i.e. number of

independent parameters) is less than dim(SU(d)), there exist some unitary operations

that cannot be implemented. Therefore, the system is not operator controllable. This
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step must be checked with multiple arrays of random parameters ϑ⃗, as there may be a

set of arrays of parameters with measure zero over P that yield a lower value for the

dimensional expressivity. The same arguments we used in section 5.3.1 apply here, as

CAOC(P) is a manifold of states in H⊗H.

If at least one parameter in the last circuit layer is independent, the test continues.

We iterate by adding a new layer and calculating the circuit’s expressivity. The algo-

rithm will eventually come to an end, either with maximal value for the dimensional

expressivity or with a layer of redundant parameters at the end of the circuit.

We now move to a more realistic setting that incorporates dynamics in the auxiliary

qubits. We undertake this by including the drift of the auxiliary partition. The new

Hamiltonian of the bipartite system is then

ĤAB(t) = Ĥ(t;u1, ...um)⊗ 1⊗q
2 +

q−1∑
j=0
−ωj2 σ̂

(j+q)
z , (5.22)

with

σ̂kz := 1⊗ ...⊗ 1⊗ σ̂z︸︷︷︸
k position

⊗1⊗ ...1. (5.23)

It results in the following circuit to test operator controllability

CABOC (ϑ⃗) :=
k∏
j=0

(
R̂Am(ϑj(m+1)+m)...R̂A1 (ϑj(m+1)+1)

R̂B0 (ϑj(m+1))R̂A0 (ϑj(m+1))
)
|ψME⟩ ,

(5.24)

where

R̂B0 (α) := exp

i α2
q−1∑
j=0

ωj
2 σ̂

(j+q)
z

 . (5.25)

Note that the parameters ϑj(m+1) of the gates R̂A0 and R̂B0 in the same layer j are

always the same because there is no active control over these operators—they are

due to the time-independent part of the Hamiltonian. In other words, these gates are

implemented by letting the system evolve a certain amount of time t = ϑj(m+1)/2.

The number of parameters per layer for a system with m controls remains equal to

m+ 1, despite having an extra rotation gate per layer. A diagram of the new circuit is

found in Figure 5.6.

If we choose an orthonormal basis for the B partition consisting of the eigenstates

of the auxiliary qubits, then

CABOC (P) ∼=
d−1∑
i=0

(
Û(P)eφi(ϑ⃗) |ei⟩

)
⊗ |ei⟩ .. (5.26)
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Figure 5.6: Circuit on the extended system required to perform the operator controllability
test (5.24) for a three-qubit system. The qubits qi with i = 0, 1, 2 constitute the
original system, whereas qj with j = 3, 4, 5 are the auxiliary qubits. The rotations
R̂B

0 (cf. Eq. (5.25)) include the free-qubit dynamics of the auxiliary qubits.

The only difference between equations (5.21) and (5.26) is the local phases φi(ϑ⃗),
which are uniquely determined for any array of parameters ϑ⃗. These do not change the

value of the dimensional expressivity since for any array ϑ⃗ there exists a neighborhood

in which

CAOC(ϑ⃗) ∼= CABOC (ϑ⃗). (5.27)

This implies the local dimension of the manifold of reachable states to be identical,

i.e., the dimensional expressivity to be the same. Therefore, we can include the local

Hamiltonians of the auxiliary qubits in our calculations to describe a more realistic

model and still use the Choi-Jamiołkovski isomorphism to design the parametric

quantum circuit (5.24).

5.4.2 Controllability test

Once again we consider a qubit array with traceless Hamiltonian (2.8) and the

corresponding extended system, composed of the original q-qubit array and q more

auxiliary qubits. We assume the extra qubits to have arbitrary natural frequencies

ωj , such that the Hamiltonian of the extended system is given by Eq. (5.22) and the

parametric quantum circuit by Eq. (5.24). As shown in Figure 5.6 for a three-qubit

example, for a system with m controls the circuit has exactly m+ 1 parameters per

layer. As for pure-state controllability, it is encouraged to choose a number of layers

nl that would a priori be sufficient to reach the maximum dimensional expressivity. In
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Start

System with
m controls

and dim(H) = d

Add ancilla qubits

Layer number nl;
ϑ̃ and |ψ0⟩.

Define CAB
OC(ϑ̃)

Run DEA

exprdim = d2 − 1 ?

Yes

OC

No Last m+ 1
parameters
redundant?

Yes

Not OC

No

nl = nl + 1

Figure 5.7: Flowchart for the algorithm testing operator controllability. The yellow rhom-
boids show the initial inputs necessary to define the circuit CAB

OC (ϑ⃗).

the case of operator controllability, it is dim(su(d)) = d2 − 1, with d the Hilbert space

dimension of the original system, d = 2q 1. Thus, the condition for the minimum

number of layers to obtain the maximal dimensional expressivity is

nl,min =
⌈
d2 − 1
m+ 1

⌉
. (5.28)

With the dimensional expressivity we find the maximum number of linearly inde-

pendent states in H⊗H that can be generated in a neighborhood of CABOC (ϑ⃗). This in

turn yields information about the maximum number of linearly independent operators

on H that can be generated by the original system around the identity. Since we know

that these operators belong to the Lie algebra su(d) we simply want to determine if we

can span all the d2 − 1 dimensions in the algebra, i.e. having operator controllability,

or not.

The operator controllability of a system evolving under the Hamiltonian (2.8) is

determined as follows: If the circuit (5.24) has dimensional expressivity equal to d2−1,

then the system is operator controllable. Analogously to the pure-state controllability

test, if this value for the dimensional expressivity is not reached, another layer should

1We only claim that the value for the maximal dimensional expressivity is d2 − 1 (with d = 2q) for the
circuits CAB

OC (5.24). Other parametric quantum circuits acting on H ⊗ H could in principle reach
higher values of expressivity, up to 22q+1 − 1
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be concatenated at the end of the circuit. If all the new parameters in the last layer are

redundant, then the system is not operator controllable (with a probability of measure

1); otherwise, the process of concatenating layers shall be repeated. The main steps

of the algorithm is displayed in Figure 5.7. Similarly to section 5.3.1, it is important

to to ensure the validity of a result of "not operator controllable" by repeating the test

for different arrays of random parameters.

Similarly as before, the pseudo code of the algorithm can be found in Section

5.4.3.

5.4.3 Algorithm outline

Here we present an outline for the methods described in Figures 5.2 and 5.7

in the form of pseudo code. Algorithm 5.1 displays the main steps for applying

the dimensional expressivity analysis to a circuit for the pure-state controllability

test as defined in Equation (5.7) and operator controllability test given in Equation

(5.24). There are two main differences between the two cases: The circuit definition

(including the rotation gates R̂j(α) and the initial state |ψ0⟩) and the maximum

dimensional expressivity exprdim that the circuit has to reach to determine whether

the system is controllable or not.

For a pure-state controllability test, one must set test_type = ′PSC ′. The circuit

description is passed in terms of a list of parameters para (ϑ⃗ from Equation (2.28)),

a list of operators for the rotation gates Ĝlist (given by the drift and the control

operators, cf. Equation (5.1)), the initial state |ψ0⟩ (which can be chosen freely)

and the parameter index last_lay at which the last circuit layer starts. A numerical

tolerance tol is also required for computing the rank of the matrices SC,n (cf. Equation

(2.33).

For the operator controllability test, test_type should be ′OC ′. The circuit should

be defined including the auxiliary qubits, as depicted in Figure 5.6. This encompasses

the definition of the generators of rotations which are passed as Ĝlist. In this case,

the initial state |ψ0⟩ must be the maximally entangled state |ψME⟩ shown in Equation

(5.15). The rest of the inputs are treated analogously to the previous case.

Finally, for either type of controllability, the computation of the SC,n matrices can

be done with classical numerical calculations (as shown in Algorithm 5.2) or it may

be achieved using real quantum circuits, as seen in [19]. This chapter showcases

examples using the former one, although the latter is the intended version for the

devised hybrid quantum-classical controllability test.
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Algorithm 5.1: Controllability test using dimensional expressivity analysis

1 \\This method is defined for a circuit C(ϑ⃗) only containing parametric rotation
gates R̂j(ϑj)
\\R̂j(ϑj) := exp

(
−i ϑj

2 Ĝj
)

\\C(ϑ⃗) := R̂
len(ϑ⃗)(ϑlen(ϑ⃗)) · · · R̂0(ϑ0) |ψ0⟩

Input:
• test_type: it can be ’PSC’ or ’OC’ depending on which controllability test should
be run.
• para: array ϑ⃗ with all parameters ϑj .
• Ĝlist: list including all the operators Ĝj in matrix form.
• |ψ0⟩: initial state of the circuit.
• last_lay: parameter index at which the last layer starts
\\I.e. the last layer starts with R̂last_lay(ϑlast_lay)
• tol: tolerance for computing the matrix rank function.

2 hildim← len(|ψ0⟩)
3 \\Expressivity right before the last layer

expr_bll← Algorithm_5.2(para, Ĝlist, |ψ0⟩, last_lay -1, tol
4 \\Expressivity of the total circuit C

expr_tot← Algorithm_5.2(para, Ĝlist, |ψ0⟩, len(para), tol
5 if test_type is ’PSC’ then
6 max_exp← 2hildim− 1
7 else
8 max_exp← hildim2 − 1
9 end if

10 if expr_tot ≥ max_exp then
11 test_result← 1

\\System is controllable
12 else
13 if expr_tot > expr_bll then
14 test_result← 2

\\Test is inconclusive. Repeat test for a circuit containing an additional
layer

15 else
16 test_result← 0

\\System is not controllable
17 end if
18 end if
19 Output:
• expr_tot: circuit dimensional expressivity
• test_result: 0, 1 or 2 depending on whether the system is not controllable,
controllable or the test is inconclusive. For inconclusive tests, one can repeat the
algorithm adding a new layer to the circuit.
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Algorithm 5.2: Classical calculation of rank(SC,n) (cf. Eq. (2.33)).
This classical algorithm can be replaced by measurements on a quantum device as
defined in [19].

1 \\This method is defined for a circuit C(ϑ⃗) only containing parametric rotation
gates R̂j(ϑj)
\\R̂j(ϑj) := exp

(
−i ϑj

2 Ĝj
)

\\C(ϑ⃗) := R̂
len(ϑ⃗)(ϑlen(ϑ⃗)) · · · R̂0(ϑ0) |ψ0⟩

Input:
• para: array ϑ⃗ with all parameters ϑj .
• Ĝlist: list including all the operators Ĝj in matrix form.
• |ψ0⟩: initial state of the circuit.
• n: Dimension of the square matrix Sn to be calculated (cf. Eq. (2.33)).
• tol: tolerance used for computing matrix rank function.

2 hildim← len(|ψ0⟩)
3 Jn ← zero_array[2hildim,n]
4 for j in 1, ..., n do
5 ∂Cj ← ∂C

∂ϑj
(ϑ⃗)

6 Jn[0 : hildim, j − 1]← Re (∂Cj)
7 Jn[hildim : 2hildim, j − 1]← Im (∂Cj)
8 end for
9 Sn← JTn Jn

10 rank_Sn← rank(Sn, tol) \\compute rank of matrix Sn with tolerance tol
11 Output:
• rank_Sn: rank of the matrix SC,n
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Coupling strengths (MHz)

J0,1 J1,2
170 220

Qubit frequencies (GHz)

Original Auxiliary

ω0 ω1 ω2 ω3 ω4 ω5
5.40 5.30 5.42 5.37 5.29 5.34

Table 5.2: Parameters for the Hamiltonian (5.29) and the auxiliary qubits necessary for the
circuit (5.24).

ω0 ω1 ω2

ẐẐ ẐẐ

X̂ Ŷ X̂

Figure 5.8: Example of a three-qubit system that is operator-controllable, cf. Eq. (5.30)

5.4.4 Examples

In the following we consider a three-qubit array with Hamiltonian

Ĥ3q(t) =
2∑
j=0
−ωj2 σ̂

(j)
z +

1∑
k=0

Jk,k+1σ̂
(k)
z σ̂(k+1)

z + Ĥctrl(t). (5.29)

The second term, containing the time-independent two-qubit couplings, has been

modified to σ̂kz σ̂
k+1
z simply to showcase a qubit interaction different from the one in

the previous examples. The qubit frequencies ωj and the coupling strengths Jk,k+1 are

listed in Table 5.2. We take two different Ĥctrl(t) to study an example that is operator

controllable and one that is not.

The first one is given by

Ĥctrl(t) = u1(t)σ̂(0)
x + u2(t)σ̂(1)

y + u3(t)σ̂(2)
x , (5.30)

see Figure 5.8. It is operator controllable as can easily be proven by the Lie algebra

rank condition [14] and the graph method [148].

Since we have 3 controls in the original three-qubit system, the minimum number of

layers needed to reach the maximum value of dimensional expressivity for the bipartite

system, exprdim = 63, is nl = 16 according to Eq. (5.28). The orthonormal basis used

to define the maximally entangled state |ψME⟩ is the logical basis of the free qubits.
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ω0 ω1 ω2

ẐẐ ẐẐ

X̂ Ŷ Ẑ

Figure 5.9: Example of a three-qubit system that is not operator-controllable, cf. Eq. (5.31).

Last, we generate a random set of parameters ϑ⃗ ∈ [0, 2π]64. Maximum dimensional

expressivity of 63 is found for the last parameter of the last layer, confirming that the

system is operator controllable.

For the second example, we choose a different set of controls,

Ĥctrl(t) = u1(t)σ̂(0)
x + u2(t)σ̂(1)

y + u3(t)σ̂(2)
z , (5.31)

see Figure 5.9, making the system not controllable. We repeat the same procedure

as before, since the number of controls is again m = 3. At the end of 16 layers the

circuit only reaches exprdim = 31, which is less than the 63 needed for operator

controllability. We could add another layer to verify that every new rotation gate

will have a redundant parameter. However, in this case it is sufficient to inspect

the rank of the matrices Sn from Eq. (2.33) in the last layers. We find that the last

independent parameter appears at the end of the tenth layer, with all the remaining

ones being exclusively formed by redundant parameters. This is a sufficient condition

to determine that the system is not operator controllable (as long as it is verified with

multiple sets of random parameters).

We emphasize that it is important to corroborate every “not controllable” result

with different arrays ϑ⃗ chosen at random. Selecting ϑ⃗ in a non-randomized fashion

may lead to cases where the dimensional expressivity is lower than the maximum

value reached with other different parameters. This would yield wrong results in terms

of controllability. It is easily rationalized in terms of symmetries of the commutators

[Ĥi, R̂
A
k (ϑj)]. These are linked to the partial derivatives of the circuit ∂iCABOC (ϑ⃗)

and to the dimensional expressivity of the circuit. Performing further numerical

tests on the previously discussed examples, we have experimented with selecting

parameters instead of choosing them at random. Wrong results with lower dimensional

expressivity arose when all the parameters were chosen to be the same, e.g. ϑj = 1
for every j. In every instance, these problems vanished as soon as we generated a new

set of random parameters.

Another important issue concerns the minimum tolerance τ used to determine

the rank of the Sn matrices. More precisely, τ represents the threshold at which the
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values of the singular value decomposition of Sn are considered zero. τ is crucial to

determine the different redundant parameters and the expressivity of the circuit. If

τ is too high, then some linearly independent vectors might be deemed dependent

by mistake, which would revert on a wrong lower value of the circuit expressivity,

potentially turning a controllable system into a fake non-controllable one. Conversely,

if τ is too small some errors might start to add up to make linearly dependent vectors

look as if they were independent, falsely showing some parameters as independent.

This would in turn raise the dimensional expressivity, usually above the d2−1 threshold

that we know to be valid for the case of the operator controllability test. To avoid

these cases, it is advisable to use operators with similar orders of magnitude and try

different ranges for τ depending on the order of magnitude of the operators Ĥj from

Eq. (2.8). If the dimensional expressivity analysis is performed on quantum hardware,

the tolerance τ will also depend on the device noise. Indeed, the accuracy of the

measurements and the circuit dynamics will take a toll on the accuracy of the rank of

the matrices Sn. Inevitably, noisier devices will require higher tolerances to determine

whether there are redundant parameters (i.e. whether det(Sn) = 0) or not.

5.5 Summary

We have introduced two hybrid quantum-classical algorithms to test pure-state

and operator controllability of qubit arrays. As opposed to usual Lie rank and graph

methods, the presented algorithms are run directly on a quantum circuit designed to

mimic the dynamics of the quantum system to be studied. The method is also devised

as an alternative to the cases where the dynamical Lie algebra can no longer be

evaluated analytically or numerically on a classical computer. We have showcased the

capabilities of the procedure with four paradigmatic examples that cover all scenarios

for pure-state and operator controllability.

A useful application of these tests is the resource-efficient design of quantum chips.

Our algorithm provides a systematic way to deduce the minimal number of local

controls and qubit couplings required to maintain controllability, as a prerequisite of

universal quantum computation. In other words, it allows one to identify redundant

controls and thus to ease scaling up the quantum chip size. Importantly, the tests

allow to obtain this information before the devices are built, as long as the associated

quantum circuit can be implemented on a different device. Note that while the

rank analysis of the Sn matrices scales with the size of the system Hilbert space,

this does not pose a fundamental limitation. It can be overcome by mapping the

rank computation to a quantum device. More precisely, the quantum device would

then be used to find the lowest eigenvalue of Sn in order to determine whether a

parameter is redundant or not. This permits the efficient identification of redundant
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parameters and the removal of their parametric gates in the circuit. Noise in the

device running our hybrid algorithm will limit the accuracy of the lowest eigenvalue

and thus determine the minimum threshold for an eigenvalue to be considered zero.

In addition to its practical aspects, at the conceptual level, our work has revealed the

close connection between the controllability of quantum systems and the dimensional

expressivity of quantum circuits. In particular, this insight arises from the relation

between the states that can be reached in a controllable system and the final states

that can be produced in a parametric quantum circuit. The dimensional expressivity

analysis allowed us to efficiently quantify the circuit expressivity. Its search for

redundant parameters was essential in determining which controls contributed to

reach more states in the Hilbert space. The link between the pure-state and operator

controllability test is the inclusion of the Choi-Jamiołkovski isomorphism that creates

a map between operators in a Hilbert space and the states of the extended bipartite

space.

Variational quantum algorithms have previously been used to improve the design

of optimal pulses in quantum systems [157]. Quantum optimal control theory in

general [12, 130] encompassses both the design of the pulse shapes, i.e., control

synthesis, and controllability analysis. The controllability tests described here thus

extend the use of parametric quantum circuits to the second pillar of quantum optimal

control. Quantum optimal control is also closely related to system characteriza-

tion where controls can be interleaved with free evolutions [158, 159] or applied

continuously [160].

In future work, it will be interesting to study systems with non-local controls, e.g.

tunable two-qubit couplings. Moreover, it may be possible to expand our approach to

systems other than qubit arrays. To this end, the key task will be to find a mapping

from the non-qubit system to the associated quantum circuit that runs on a qubit

array. The problem of mapping certain dynamics to a quantum circuit has already

been a subject of extensive research, for example, when using parametric variational

algorithms for calculating the electronic structure of molecules [161, 41] or their

quantum dynamics [162]. An interesting future perspective is to explore the extension

of our approach to the controllability of subgroups. This is sometimes referred to as

G-controllability, where G is a subgroup of the unitary group U(n). This would be

relevant both to open quantum system control and machine learning. While this is

not a trivial task for the general case, the method here presented could be extended

to analyse certain cases of G-controllability. More work in this direction is needed

to give a more definitive answer. Finally, an intriguing question is how the removal

of redundant controls affects the minimum time at which certain dynamics can be

implemented, i.e., the quantum speed limit of the system. A controllable system with a
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new control added can have the same or a lower minimum time for a state transfer or

unitary gate. Conversely, removing redundant controls might incur a higher minimum

time. Most likely, quantum device design will have to balance the requirements for

controllability and operation speed.
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6Controllability condition for
modular qubit arrays

6.1 Introduction

One of the main goals of quantum computing is to design an efficient configuration

of qubits on which we can apply any arbitrary quantum gate. One of the goals

of the previously introduced controllability tests [14, 148, 163] is to determine

whether a given qubit array is suitable for universal quantum computing regarding the

different unitary operations that can be implemented on the system[7]. To achieve

this, it is necessary to find a trade-off between universality and the complexity of the

system’s architecture. This complexity is in great part determined by the resources

that are added to connect and alter the qubits, i.e. the qubit couplings that allow for

entanglement in the system and the controls that can be modified over time. Reducing

the amount of built-in resources while maintaining the computational capability of the

quantum device is a critical point in the successful design of quantum processors.

Previously, we have discussed some of the limitations of every mentioned control-

lability test. For a numerical calculation of the Lie rank condition, a relatively small

number of qubits might start to add up numerical errors due to the curse of dimension-

ality. The proposed graph method (see Chapter 4) circumvents the calculation of the

full algebra, vastly expanding the number of cases that can be studied. Nevertheless,

the method will eventually fail for similar reasons, as the dimension of the graph

(i.e. the Hilbert space dimension) also scales exponentially with the number of qubit.

Similarly, the dimensional expressivity test (see Chapter 5) depends on the noise of

the quantum processor on which the parametric quantum circuit is supposed to run.

Larger systems will require the addition of more layers in the circuit, which in turn

might reach the maximal depth at which circuits can be accurately implemented in

the device. Thus, both classical and hybrid tests that rely on numerical computations

are inevitably doomed to fail for a certain number of qubits. These are hard facts

to face in a technological landscape where the ultimate goal is a quantum computer

consisting of thousands of qubits.
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There is, however, a way to salvage the previous controllability analysis without

a limitation of an upper bound in the qubit array size. The current chapter sheds

some light on further applications of the controllability studies. It constructs possible

configurations of operator controllable qubit arrays for an arbitrarily large number

of qubits. We present an algebraic result that allows allows for the design of larger

devices by using smaller quantum processing units that are linked via entangling

controls.

The current landscape for quantum computing focuses on a gate-based approach

[164], but the topic of controllability needs a well defined Hamiltonian to perform

the necessary calculations. Understanding the full Hamiltonian of a qubit array

is a crucial point to obtain trustworthy controllability results that may lead to the

design of quantum processors that allow for a modular architecture. But for quantum

systems that are open to the public for performing quantum circuits, the information

required for controllability might not be directly available. However, if two-qubit gate

connections are listed for a quantum processor, we can make an educated guess about

the two-qubit entangling term of the system Hamiltonian. For example, diagonal two-

qubit gates may be engineered via a Ẑi ⊗ Ẑj interaction and other local phase gates.

Following the current design of some quantum systems based on superconducting

qubits like IBM [21], Google [43] or Rigetti [165], we have focused on two-qubit

couplings. To determine the coupling strength Ji,j , i.e. the coefficient that precedes the

entangling term, one can use the gate’s duration as if it was a half Rabi oscillation. The

coupling strength Ji,j is therefore inversely proportional to the listed duration. Finally,

it is customary to add local controls in every qubit that allow for fast single-qubit

operations.

In the preceding examples we have used static couplings. This meant that no

control was coupled to these interactions and, as such, they belonged to the time-

independent drift of the system Hamiltonian. However it is possible to treat couplings

as controls in the form of tunable couplings whose intensity can be changed over

time [35, 36, 37]. Evidently, tunable couplings are preferable for controllability

purposes: They allow for entanglement generation and count as an additional control

in the Hamiltonian, which may lead to more linearly independent commutators and

a larger dimension of the dynamical Lie algebra. Treating one coupling as static,

however, lifts the necessity to calibrate the associated control or to include it among

the variables that have to be optimized to perform a certain unitary evolution. In the

following, we will count the number of couplings in a qubit array, making a distinction

between time-independent couplings and tunable couplings. These tunable couplings

will be the perfect tool to generate entangling controls between controllable quantum

processing units.
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The structure of this chapter is as follows. Section 6.2 spells out the main result of

controllability, that extends the usability of previous controllability tests to larger qubit

arrays. Section 6.3 contains all the necessary tools to derive the proof of the given

theorem. Section 6.4 contains some possible designs for arbitrarily large arrays that

are in theory capable of universal quantum computing. Finally, Section 6.5 presents a

summary and the outlook.

6.2 Controllability of bipartite systems with an entangling
control

Looking at the broader picture, the idea that we pose in this section is very simple.

Assume we have two (possibly different) qubit arrays with some configurations of qubit

couplings and controls that are proven to be operator controllable. This verification

can be achieved by means of any of the available tests. If we connect both arrays

with a control that is capable of generating some entanglement between them, the

resulting multipartite system (composed of both original arrays and the new tunable

coupling) is also operator controllable. If we label each of the arrays as a module, we

can keep connecting modules to the original system with one entangling operation

per new module and design an arbitrarily large system that is operator controllable.

This allows us to rephrase the concept as follows:

If A and B are two separate qubit arrays that are operator controllable, then the
system composed by

• The subsystem A

• The subsystem B

• An additional controlwent(t)Ĥent that is entangling between theA and B partitions

is also operator controllable.

The generality of the statement might be surprising at first glance. It does not take

into account any of the properties of the original qubit arrays other than operator

controllability. As will be proven in Section 6.3, this result is independent of the

number of qubits on each subsystem, the type and placement of qubit couplings or

even the position and kind of controls. But, in fact, this shares similarities to some

well-known properties in the area of quantum computing.
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If we have a look at the most trivial example from a gate-oriented perspective, we

get to a more familiar statement. In the case of two qubits, the set of local operations

plus any entangling two-qubit gate forms a universal set. In other words, by applying

a series of single-qubit gates and the chosen entangling gate we can approximate

any two-qubit quantum gate. Here, having access to all local gates implies that the

original systems, two separate qubits, are operator controllable. The entangling gate

has the same effect as the entangling control that we use to connect both systems. To

link this example back to the original statement, one simply has to include a minor

modification: Substitute the qubits for qudits (perhaps of different dimensions d1 and

d2). Indeed, by definition, any system can be viewed as a qudit with its dimension d

equal to the Hilbert space dimension of the system. The set of local unitary operators

in two qubits SU(2) ⊗ SU(2) is substituted by SU(d1) ⊗ SU(d2). Every local gate

in SU(d1) ⊗ SU(d2) can be implemented given the assumption of controllability

on the separate partitions. In these terms, we can say that given two qudits with

dimensions d1 and d2 and an entangling Hermitian operator Ĝ the set composed of

local operations on the two qudits and the entangling rotation gates R̂Ĝ(ϕ) forms a

universal set1. Once two controllable systems are connected by an entangling control

(e.g. a tunable coupler), they can be understood as a controllable system in itself.

Which implies that we can connect it to a different controllable system using a new

entangling control to make a controllable system. Note that the type of entangling

operation between partitions is not relevant to prove controllability, as we will see in

Section 6.3. In particular, the result is also true for any two-qubit tunable coupling as

long as each of the qubits belongs to a different partition.

Naturally, having only one entangling operation between two partitions may hinder

the speed at which information (and in particular entanglement) can travel through

the system. Nevertheless, one possible goal is to use partitions that are large enough

to run a certain kind of quantum algorithm or operation. In said case, this type of

architecture is ideal to use each partition as a quantum processing unit capable of

parallelising a more complex quantum algorithm. After performing simultaneous

calculations the information of each processing unit can be merged to make use of

the full computational power. While this is the most efficient use for such design,

the universality of the system would still allows us to use it for any kind of quantum

circuit.

As an example, we can use one of the T-shaped five-qubit systems presented in

Chapter 4, inspired by the former ibmq_quito quantum processor [21]. We had already

proven its controllability using the adapted graph method for qubit arrays and saw

1Note that here we have extended the term "rotation gates" to any gate in the form of R̂Ĝ(ϕ) :=
exp(−i ϕ

2 Ĝ), following the notation already introduced in Chapter 5.
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that, when properly placed, the 5-qubit system is operator controllable with only two

X̂ local controls and the displayed two-qubit couplings in the form of X̂X̂ + Ŷ Ŷ .

The two five-qubit arrays have been connected by a tunable coupling. The control

operator of this entangling control is assumed to be in the form of X̂(4)X̂(7), acting

on the fourth and seventh qubit. Evidently, the two qubits belong to the first and

second partition respectively. Note that this choice is fully arbitrary, and that any other

entangling control between both subsystems would have done the trick.

The Hamiltonian of the system is defined as

Ĥ(t)2T5 = Ĥquito, A(t)⊗ 1+ 1⊗ Ĥquito,B(t) + went(t)X̂(4)X̂(7) (6.1)

where the partial Hamiltonians Ĥquito, (A/B)(t) are given by Equation (4.13) with the

sole difference that the qubit frequencies ωj and coupling strengths Ji,j may differ.

The controls for both partitions are also meant to be taken as independent.

Once we have a system that is operator controllable, like the one displayed on

Figure 6.1, we can add more controls without affecting controllability. On the contrary,

this can have beneficial consequences on the system, like allowing faster unitary gates

or generating the same Lie algebra using commutators of lower depth. For example,

imagine that we wanted to implement some entangling two-qubit operation on the

zeroth and ninth qubit displayed in Figure 6.1. Then, intuitively we would have faster

options if we also had a tunable coupling between those two qubits. With the current

setup, these two qubits are at a distance of seven couplings (six static plus the tunable

coupling following the chain 0-1-3-4-7-6-8-9). While we have continuously spoken

about minimizing resources, we have to be realistic: The quantum speed limit for

large qubit arrays with minimal number of controls and couplings may grossly surpass

the decoherence limit of the system.

These concepts will be developed in Section 6.4. There we will venture to sketch

some possible designs for large arrays that use fewer resources than those available

on the market, knowing that the question of quantum speed limit will still be relevant

and open.
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X̂

X̂
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X̂

X̂

X̂X̂

Static couplings:

X̂(i)X̂(j) + Ŷ (i)Ŷ (j)

Figure 6.1: Example of an operator controllable system based on the connection of two five-
qubit systems. The local controls and static qubit couplings follow the descriptions
of Figure 4.6. The blue zigzag line between the fourth and seventh qubit represent
a tunable coupling in the shape of X̂(4)X̂(7).

6.3 Mathematical derivation

To obtain the aforementioned result, we use an analytical approach to prove

controllability of the multipartite system using the Lie rank condition. This section

proves that by adding any two-qubit tunable coupling between the subsystems A and

B we can make the whole system A⊗ B controllable.

6.3.1 Notation and problem statement

Let A ∼= su(2M ) and B ∼= su(2N ) be the dynamical Lie algebras of two separate

controllable qubit arrays A and B, with M and N qubits respectively. The elements

of the algebra A of the first subsystem can be represented as linear combinations of

tensor products of Pauli matrices σ̂α (with α ∈ {0, 1, 2, 3}). Following the notation

introduced in Equation (2.13), we represent single Pauli matrices in A by

σ̂(µ)
α := 12 ⊗ ...⊗ 12⊗ σ̂α︸︷︷︸

µ-th position

⊗12 ⊗ ...12, (6.2)

with α ∈ [0, 1, 2, 3]. Similarly, we represent the elements of B following the same

notation

σ̂
(n)
j := 12 ⊗ ...⊗ 12⊗ σ̂j︸︷︷︸

n-th position

⊗12 ⊗ ...12, (6.3)

with j ∈ [0, 1, 2, 3]. To avoid confusion we use Greek letters for the indices of elements

belonging to A and Latin ones for those in B.
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Let us assume that the system A is described by the traceless Hamiltonian:

ĤA(t) = Â0 +
CA∑
ρ=1

uρ(t)Âρ, (6.4)

where Â0 is the time-independent drift, uρ(t) are the real-valued controls, Âρ the

operators to which the controls are coupled and CA the number of controls in the

system. The dynamical Lie algebra of the system is given by

A := Lie
[
{iÂρ}CA

ρ=0

]
≃ su(2M ). (6.5)

Analogously, we assume the system B to be described by

ĤB(t) = B̂0 +
CB∑
j=1

vj(t)B̂j , (6.6)

with a dynamical Lie algebra

B := Lie
[
{iB̂j}CB

j=0

]
≃ su(2N ). (6.7)

Ignoring local contributions, a two-qubit coupling between the µ-th qubit in A and

the n-th qubit in B can be in general written as

Ĥµ,n
c =

3∑
α,j=1

cα,j σ̂
(µ)
α ⊗ σ̂

(n)
j , (6.8)

where the coefficients cα,j are real-valued, with at least one of them nonzero. Thus, if

we connect two qubits from A and B by an entangling two-qubit coupling w(t)Ĥµ,n
c

that we can treat as an independent control, then the Hamiltonian of the A⊗B system

is

ĤAB(t) =ĤA(t)⊗ 12N + 12M ⊗ ĤB(t) + w(t) Ĥµ,n
c

=Â0 ⊗ 12N + 12M ⊗ B̂0+ (6.9)

+
CA∑
ρ=1

uρ(t)Âρ ⊗ 12N +
CB∑
j=1

vj(t)12M ⊗ B̂j + w(t)Ĥµ,n
c . (6.10)

Note that the drift of ĤAB is given by

ĤAB
0 = Â0 ⊗ 12N + 12M ⊗ B̂0, (6.11)
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which encompasses the contributions of the drifts of A and B. The dynamical Lie

algebra of the bipartite system is given by

LA⊗B := Lie
[
iĤAB

0 , {iÂρ ⊗ 12N }CA
ρ=1, {i12M ⊗ B̂j}CB

j=1, iĤ
µ,n
c

]
, (6.12)

which is contained in LA⊗B ⊆ su(2M+N ). The different operators in the previous

equation include, in order of appearance, the drift of the total system, the local controls

on the partition A, the local controls on the partition B and the entangling control.

In the following, we will prove that for two operator controllable systems A and B
following Equation (6.4) and Equation (6.6) respectively, the bipartite system A⊗ B
with the two-qubit control w(t)Ĥµ,n

c (t) is also operator controllable. Mathematically,

this is equivalent to A = su(2M )

B = su(2N )
⇒ LA⊗B = su(2M+N ) (6.13)

for every Ĥµ,n
c following Equation (6.8).

6.3.2 Operations with tensor products of Pauli matrices

Most of the needed calculations to generate the dynamical Lie algebra of the total

system from Equation (6.12), involve commutators of the entangling control Ĥµ,n
c

with local operators of either subsystem. It is therefore important to understand what

elements can be generated using only linear combinations of commutators of local

operators. To obtain controllability in the complete system means to obtain every

element in the total Lie algebra. To ensure this it is enough to show that a basis of the

Lie algebra is achievable. For the case of the maximal algebra of A⊗ B, su(2N+M ), a

possible basis is

su(2N+M ) = span {i σ̂α1 ⊗ σ̂α2 ⊗ · · · ⊗ σ̂αM ⊗ σ̂j1 ⊗ σ̂j2 ⊗ · · · ⊗ σ̂jN }
3
jk,αβ=0 (6.14)

with at least one nonzero subindex jk or αβ in every element. All of the elements

from the basis shown in Equation (6.14) present the same structure with different

subindices. If we start from an element in the basis and define operations to change

the Pauli indices to other possible values, we can generate a basis of su(2N+M ) and

prove controllability. There are three qualitatively different possible index changes:

Changing a nonzero index to a nonzero index, turning a nonzero index to zero or

setting a zero index to a nonzero index. Here we introduce the associated three

operations using local commutators on the B subsystem. From here on, all subscripts

b of the Pauli operators σ̂ab are assumed to be nonzero unless explicitly stated otherwise.

For simplicity, we also use a cyclic notation in the Pauli indices {1, 2, 3}, e.g. σ̂3+1 =
σ̂4 := σ̂1.
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We start with an operation that allows us to change an index j ∈ {1, 2, 3} of a Pauli

matrix σ̂(n)
j to j + 1 for tensor products of Pauli matrices in the subsystem B:

f (n)
cyc

(
iσ̂

(n)
j

)
:= −1

2[iσ̂(n)
j+2, iσ̂

(n)
j ] = iσ̂

(n)
j+1. (6.15)

Note that f (n)
cyc (·) is defined using only commutators of elements in the Lie algebra

B. Analogous operations can be defined for other values of 1 ≤ n ≤ N . Since B is

assumed to be controllable, iσ̂(n)
j+2 ∈ B for every 1 ≤ n ≤ N . With the function f (n)

cyc (·)
we can cycle through all the nonzero indices of a Pauli matrix. This operation has some

interesting properties. First, if we have a skew-Hermitian operator iσ̂(n)
j σ̂

(m)
j with m ̸=

n, then f (n)
cyc (iσ̂(n)

j σ̂
(m)
k ) := f

(n)
cyc (iσ̂(n)

j )σ̂(m)
k . In other words, if we have a tensor product

of Pauli matrices, f (n)
cyc does not change the indices of Pauli matrices in a position

m ̸= n. Second, for Hermitian operators Â acting on the first system A, the definition

can be naturally extended to f (n)
cyc (iÂ⊗ σ̂(n)

j ) := Â⊗ f (n)
cyc (iσ̂(n)

j ). This operation will be

relevant to compute the Lie algebra of the multipartite system. If iÂ⊗ σ̂(n)
j ∈ LA⊗B

and for the local operator i12M ⊗ σ̂(n)
j+2 ∈ LA⊗B, then Â ⊗ f (n)

cyc (iσ̂(n)
j ) ∈ LA⊗B. The

second hypothesis is trivially fulfilled if 12M ⊗ su(N) ∈ LA⊗B, which is something that

still has to be formally proven.

For the second operation we define a function using commutators of operators in B
to turn a Pauli index from zero to j > 0 at a position n. To achieve this it is imperative

to have at least another Pauli matrix σ̂(m)
k at a position m ̸= n. The operation is given

by

f
(n,m)
gen k

(
iσ̂

(n)
0 σ̂

(m)
k

)
:= −1

4
[
iσ̂

(n)
0 σ̂

(m)
k+1,

[
iσ̂

(n)
j σ̂

(m)
k+1, iσ̂

(n)
0 σ̂

(m)
k

]]
= iσ̂

(n)
j σ̂

(m)
k . (6.16)

Analogous operations can be defined for other values of 1 ≤ n,m ≤ N and j ∈
{1, 2, 3}. Similarly as before, the function f (n,m)

gen k can be extended to other operators

iA ⊗ σ̂(n)
0 σ̂

(m)
k acting on the total Hilbert space. By definition, this operation is not

affected by any other Pauli matrices at any position other than m and n.

Finally, the third operation removes a Pauli matrix from the tensor product, i.e. it

takes an element σ̂(n)
j and sets it to σ̂(n)

0 . To do so it is necessary to have another Pauli

matrix σ̂(m)
k in the tensor product. The operation is defined as

f (n,m)
rem

(
iσ̂

(n)
j σ̂

(m)
k

)
:= −1

4
[
iσ̂

(n)
0 σ̂

(m)
k+1,

[
iσ̂

(n)
j σ̂

(m)
k+1, iσ̂

(n)
j σ̂

(m)
k

]]
= σ̂

(n)
0 σ̂

(m)
k , (6.17)

where similar functions can be defined for other positions n,m and indices j, k. The

same properties described for the operations f (n)
cyc and f (n,m)

gen k apply to f (n,m)
rem .

We can define operations f (ρ)
cyc, f

(ρ,τ)
gen k and f (ρ,τ)

rem analogous to Equations (6.15-6.17)

acting on the subsystem A instead of the subsystem B. With this set of operations
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we can transform any Pauli matrix tensor product (cf. Equation (6.14)) with at least

one Pauli matrix acting on A and one acting on B and transform it into any other

tensor product of Pauli matrices that is entangling between A and B. In other words,

if we have access to all the different local operations then we can transform any

non-local tensor product of Pauli matrices into any other non-local tensor product of

Pauli matrices. This will be a core idea in turning the entangling tunable coupling into

other elements in the total Lie algebra by only using local operations, i.e. extending

local controllability of the subsystems to the total system A⊗ B.

6.3.3 Preliminary lemmas

In this subsection we present and prove a collection of lemmas that are necessary

for the final theorem. Together, they focus on proving that the dynamical Lie algebras

A ≃ su(2M ), su(2M ) ≃ B of the initial subsystems belong to the dynamical Lie algebra

LA⊗B of the total system, i.e. that A⊗ 12N ⊆ LA⊗B, and 12M ⊗B ⊆ LA⊗B.

Bear in mind that this result is not immediate. Equation (6.5) (respectively Eq.

(6.7)) shows that all elements in {iÂρ}CA
ρ=0 (resp. {iB̂ρ}CB

j=0) are necessary to generate

the Lie algebra A (resp. B) in the general case. Looking at the elements that generate

LA⊗B in Equation (6.12), one can see that neither iÂ0 nor iB̂0 appear directly

among the elements. They appear, however, in the form of ĤAB
0 . Indeed they are

both time independent elements, which means that a priori we cannot control them

independently. Therefore it is necessary to prove that, by using commutators with

other elements and their linear combinations, it is possible to generate the algebras

A⊗ 12N and 12M ⊗B.

First, we present two lemmas that combined show that A⊗ 12N can be generated

using the elements in Equation (6.12). Intuitively it should be possible to separate

them, as they act on different subspaces. Here that suspicion is formally proven.

Lemma 6.3.1. Let {vi}mi=0 be a set of vectors in a vector space VA. Let w ∈ VB be
another vector on a vector space VB such that VA ∩ VB = {0}. If the set {vi}mi=1 is
linearly independent, then the set {v0 + w} ∪ {vi}mi=1 is also linearly independent.

Proof. To prove that the second set is linearly independent we simply must show that

for the following equality to hold,

c0 (v0 + w) +
m∑
i=1

civi = 0,

146 Chapter 6 Controllability condition for modular qubit arrays



all the coefficients cj (with 0 ≤ j ≤ m) must be zero. Since w ⊥ vi ∀j ∈ {1, 2, ...,m}
it is evident that c0 = 0. This leaves us with the equation

m∑
i=1

civi = 0.

If the set {vi}mi=1 is linearly independent, then ci = 0 ∀j ∈ {1, 2, ...,m}, which means

that the elements in the set {v0 + w} ∪ {vi}mi=1 are also linearly independent.

Lemma 6.3.2. Let {iÂρ}CA
ρ=0 ⊂ su(2M ) be a set of linearly independent traceless skew-

Hermitian operators that generate the algebra A := Lie
[
{iÂρ}CA

ρ=0

]
. Let iB̂0 ∈ su(2N )

be a nonzero operator such that [iÂρ ⊗ 12N i12M ⊗ B̂0] = 0 for every 0 ≤ ρ ≤ CA. Then
the following implication holds true:

If A ∼= su(2M ) and A′ := Lie
[
iÂ0 ⊗ 12N + i12M ⊗ B̂0, {iÂρ ⊗ 12N }CA

ρ=1

]
then A′ ∼= su(2M )⊗ 12N

⊕
i12M ⊗ B̂0.

(6.18)

Proof. Assume that the hypothesis A ∼= su(2M ) is true. Let {Ĝρ}2
2M −2
ρ=0 be the basis

of A spanned by {iÂρ}CA
ρ=0 generated by the procedure described in Section 2.3.4.

We are going to show that Ĝ′
ρ := Ĝρ ⊗ 12N ∈ A′ for every 1 ≤ ρ ≤ 22M − 2. Since

[iÂρ⊗12N , i12M⊗B̂0] = 0 for every ρ, for every Ĝρ ∈ A of depth p ≥ 1 we can generate

the associated Ĝ′
ρ ∈ A′. Additionally, for every element Ĝρ of depth p = 0 and index

ρ > 1, Ĝ′
ρ = Âρ ⊗ 12N ∈ A′ by definition. By virtue of Lemma 6.3.1, since {Ĝ′

ρ}2
2M −2
ρ=0

is a linearly independent set, the set {iÂ0⊗12N + i12M ⊗ B̂0}∪{Ĝρ}2
2M −2
ρ=1 ⊂ A′ must

be linearly independent as well.

We have found a (22M − 1)-dimensional set of linearly independent terms in A′.

Given that A′ ⊆ su(2M )⊗ 12N

⊕
i12M ⊗ B̂0, then 22M − 1 ≤ dim (A′) ≤ 22M .

Let us assume that dim (A′) = 22M − 1 to see that we reach a contradiction. The

algebra

G := Lie
[
{Ĝρ}2

2M −2
ρ=1

]
(6.19)

has dimension dim(G) = 22M − 2. By definition of Ĝρ, the set {iÂ0, Ĝ1, ...Ĝ22M −2} is

a basis of A ∼= su(2M ). If dim (A′) = 22M − 1 then

[iÂ0 ⊗ 12N + i12M ⊗ B̂0,G⊗ 12N ] = [iÂ0 ⊗ 12N ,G⊗ 12N ] ⊆ G⊗ 12N , (6.20)
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which makes G an ideal2 of su(2M ) of dimension 22M−2. But this is not possible, since

the special unitary algebras su(n) are simple (i.e. they do not contain any non-trivial

ideal). Thus dim(G) = 22M − 1 and dim (A′) = 22M , proving the implication of this

lemma.

The last needed lemma shows how to generate the total algebra LA⊗B using the

entangling control Ĥµ,n
c and the two local dynamical Lie algebras. In other words,

this lemma presents a method to obtain all the remaining entangling elements in the

total algebra using only linear combinations of commutators.

Lemma 6.3.3. Let A ∼= su(2M ) and B ∼= su(2N ). Let

Ĥµ,n
c :=

∑
α,j∈[1,2,3]

cα,j σ̂
(µ)
α ⊗ σ̂

(n)
j ∈ A⊗B (6.21)

be a nonzero Hermitian operator with 1 ≤ µ ≤M , 1 ≤ n ≤ N , cα,j ∈ R, iσ̂(µ)
α ∈ A and

iσ̂
(n)
j ∈ B. Then

L := Lie
[
A⊗ 12N , 12M ⊗B, iĤµ,n

c

]
∼= su(2M+N ) (6.22)

Proof. We use tensor products of Pauli matrices for the bases of the algebras su(2M ),
su(2M ) and su(2M+N ).

Without loss of generality, we can assume the two qubit coupling to be of the

form Ĥµ,n
c = cα,j σ̂

(µ)
α ⊗ σ̂(n)

j , with only one nonzero coefficient cα,j for some fixed

α, j ∈ [1, 2, 3]. Indeed, assume that Ĥµ,n
c has a nonzero contribution σ̂(µ)

3 ⊗ σ̂(n)
3 , i.e.,

c3,3 ̸= 0. We can prove that iσ̂(µ)
3 ⊗ σ̂(n)

3 belongs to the dynamical Lie algebra of the

total system by using commutators of iĤµ,n
c with elements of A⊗ 12N and 12M ⊗B.

Starting from any general iĤµ,n
c as depicted in Equation (6.21), we can isolate a single

tensor product of Pauli matrices iσ̂(µ)
3 ⊗ σ̂(n)

3 (again, assuming c3,3 ̸= 0). Let us see

explicitly how to obtain this term. Given the usual commutation relations we compute

the following element:[
iσ̂

(µ)
3 ⊗ 12N ,

[
iσ̂

(µ)
1 ⊗ 12N , i

3∑
α,j=1

cα,j σ̂
(µ)
α ⊗ σ̂

(n)
j

]]
=

=

iσ̂(µ)
3 ⊗ 12N , 2i

3∑
j=1

c3,j σ̂
(µ)
2 ⊗ σ̂(n)

j − 2i
3∑

k=1
c2,kσ̂

(µ)
3 ⊗ σ̂(n)

k


= 4i

3∑
j=1

c3,j σ̂
(µ)
1 ⊗ σ̂(n)

j ∈ L, (6.23)

2An ideal in a Lie algebra L is a vector subspace I so that [L, I] ⊆ I.
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where we have eliminated all coefficients with α ̸= 3. Similarly,iσ̂(µ)
3 ⊗ 12N ,

iσ̂(µ)
1 ⊗ 12N , 4i

3∑
j=1

c3,jc3,j σ̂
(µ)
1 σ̂

(n)
j

 = 16i c3,3 σ̂
(µ)
1 σ̂

(n)
1 ∈ L.

(6.24)

Therefore, using commutators we were able to obtain a single tensor product of Pauli

matrices between algebras, σ̂(µ)
α ⊗ σ̂(n)

j (with α = j = 1 in the previous example).

For any two-qubit operator we can isolate one term and assume it to be in the form

σ̂
(µ)
α ⊗ σ̂(n)

j . If

Lie
[
A⊗ 12N , 12M ⊗B, iσ̂(µ)

α ⊗ σ̂
(n)
j

]
∼= su(2M+N ) (6.25)

then Equation (6.22) is true, since

Lie
[
A⊗ 12N , 12M ⊗B, iσ̂(µ)

α ⊗ σ̂
(n)
j

]
⊆ Lie

[
A⊗ 12N , 12M ⊗B, iĤµ,n

c

]
. (6.26)

To prove Equation (6.25), we show that we can obtain every element

i
(
σ̂(1)
α1 ...σ̂

(M)
αM

)
⊗
(
σ̂

(1)
j ...σ̂

(N)
jN

)
∀αβ, jk ∈ [0, 1, 2, 3], (6.27)

with at least one αβ or jk nonzero. These elements form a basis of su(2M+N ). Note

that the elements where αβ = 0 with 1 ≤ β ≤M already belong to 12M ⊗B, whereas

the terms with jk = 0 for every 0 ≤ k ≤ N belong to A ⊗ 12N . Therefore, we only

have to prove it for the cases where at least one αβ and at least one jk are nonzero.

Starting with the two qubit coupling Ĥµ,n
c = cα,j σ̂

(µ)
α ⊗ σ̂(n)

j and using the operations

f
(n)
cyc , f (n,m)

gen k , f (n,m)
rem , f (ρ)

cyc, f
(ρ,τ)
gen k and f (ρ,τ)

rem (for every possible value of n, m, ρ and τ)

defined in Section 6.3.2 we can obtain any non-local tensor product of Pauli matrices

using only commutators of Ĥµ,n
c and local operators. Therefore, we can generate a

basis of su(2M+N ) and the proof concludes.

With these three lemmas we have all the necessary intermediate results to prove

the main idea of this chapter, which is properly shown and discussed in the following

subsection.

6.3.4 Controllability of two controllable qubit arrays coupled via a two-qubit
control

We finally can prove that the system formed by two controllable qubit arrays and a

two-qubit tunable coupling that connects both is also operator controllable and hence
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a suitable candidate for universal quantum computing. The condition that must be

satisfied had already been summarized in Equation (6.13).

The whole proof is compacted in the following theorem:

Theorem 6.3.4. Let A and B be two operator controllable qubit arrays with M and
N qubits and Hamiltonians (6.4) and (6.6). Let Ĥµ,n

c be a two-qubit operator given by
Equation (6.8). Then, the extended bipartite system with a tunable two-qubit coupling
described in Equation (6.9) is operator controllable.

Proof. A simple calculation of the dynamical Lie algebra from Equation (6.12) yields

LA⊗B = Lie
[
1, {iÂρ ⊗ 12N }CA

ρ=1, {i12M ⊗ B̂j}CB
j=1, iĤ

µ,n
c

]
=

= Lie
[
Lie

[
iĤAB

0 , {iÂρ ⊗ 12N }CA
ρ=1

]
, {i12M ⊗ B̂j}CB

j=1, iĤ
µ,n
c

]
Lemma 6.3.2=

= Lie
[
A⊗ 12N

⊕
i12M ⊗ B̂0, {i12M ⊗ B̂j}CB

j=1, iĤ
µ,n
c

]
=

= Lie
[
A⊗ 12N , i12M ⊗ B̂0, {i12M ⊗ B̂j}CB

j=1, iĤ
µ,n
c

]
= (6.28)

= Lie
[
A⊗ 12N , Lie

[
i12M ⊗ B̂0, {i12M ⊗ B̂j}CB

j=1

]
, iĤµ,n

c

]
=

= Lie
[
A⊗ 12N , 12M ⊗B, iĤµ,n

c

] A,B operator controllable=

= Lie
[
su(2M )⊗ 12N , 12M ⊗ su(2N ), iĤµ,n

c

]
Lemma 6.3.3=

= su
(
2M+N

)
.

Therefore the bipartite system is operator controllable for any entangling two-qubit

coupling.

As a final note and without an explicit proof, this result can also be extended to

any type of control that is entangling between the partitions A and B. The main

idea behind it is that the same process by which iĤAB
0 was reduced to a single

product cα,j σ̂
(µ)
α ⊗ σ̂(n)

j can be analogously defined for any type of entangling coupling,

independently of the number of qubits on which it acts.

At first, this may seem like an unnecessary remark, as two-qubit couplings are

often more easily implemented than interactions between three or more qubits. But

it opens up a range of possibilities that are not constricted by this hypothesis. For

example, it includes global controls that operate simultaneously on every qubit, like

electromagnetic fields acting on trapped ions or on NV centers. Furthermore, using

entangling controls that affect more than two qubits may increase the ratio at which

information is shared between the two subsystems, depending on the architecture of
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Figure 6.2: Qubit array based on available devices from IBM [21]. The blue zigzag lines
represent two-qubit tunable couplings that connect the neighbouring qubits in
the two-dimensional configuration.

the remaining couplings and controls. This generality offers a great freedom when

using controllable subsystems as building blocks of a larger, controllable system.

6.4 Design of large qubit arrays

To showcase a possible application of this idea, we take as inspiration one of the

quantum processors from IBM [21] that is available to the public. We will then design

a similar architecture using smaller quantum processing units that have already been

demonstrated to be controllable. This will show how many local controls and couplings

can be removed from the system while maintaining operator controllability.

We start with the 127-qubit system shown in Figure 6.2. This two-dimensional array

is particularly well suited to this method, as it already has a regular pattern consisting
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mainly of three-by-five rectangles. All qubits are equipped with local controls and two-

qubit tunable couplings between nearest neighbours. In total it comprises 144 tunable

couplings and 127 local controls. Note that proving controllability on this device

using the graph test or the dimensional expressivity test is extremely demanding due

to the considerably large number of qubits. Finding a decomposition into quantum

processing units that form an operator controllable system also implies that the

original system is operator controllable. In other words, combining this method with

the previous controllability tests also extends the dimension of the systems whose

controllability can be determined.

The first building block that we are going to use is a T-shaped five-qubit system. This

configuration is based on the ibmq_quito system previously discussed. Its Hamiltonian

can be written as

Ĥ5T (t) =
4∑
j=0

Ĥ
(j)
1qubit+Ĥ

(1)
control(t) + Ĥ

(3)
control(t) (6.29)

+Ĥ(0,1)
coup+Ĥ(1,2)

coup + Ĥ(1,3)
coup + Ĥ(3,4)

coup

where the single-qubit Hamiltonian Ĥ(j)
1qubit, the

Ĥ
(j)
1qubit = −ωj2 σ̂

(j)
z ; Ĥ

(j)
control(t) = uj(t)σ̂(j)

x ;

Ĥ(j,k)
coup = Jj,k

(
σ̂(j)
x σ̂(k)

x + σ̂(j)
y σ̂(k)

y

)
; (6.30)

for any qubit frequencies ωj , coupling strengths Jj,k and controls uj(t). In Chapter

4 we had proven that this system is controllable with two single local controls and

time-independent or static couplings. The coupling type is inspired on the interactions

that can be found in superconducting qubits.

To provide a cover for the qubit array in Figure 6.2 we need to include two more

systems. The second one is arbitrarily chosen to be a five-qubit system arranged in a

line with Hamiltonian

Ĥ5L(t) =
4∑
j=0

Ĥ
(j)
qubit+Ĥ

(1)
control(t) + Ĥ

(2)
control(t) (6.31)

+Ĥ(0,1)
coup+Ĥ(1,2)

coup + Ĥ(2,3)
coup + Ĥ(3,4)

coup ,

with four static couplings and two local controls.
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local control

A Qubit without
local control
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tunable
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Redundant
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Figure 6.3: Controllable qubit array proposed as an alternative to the one in Figure 6.2.
The shaded qubits are equipped with local controls, while the blank ones are
not. The blue zigzag lines are tunable couplings needed for the system to be
controllable. The coiled lines represent tunable couplings that were present in
the original system but can be removed without hampering controllability on
the system. Each five- or four-qubit coloured area represents one of the three
controllable modules defined in Equations (6.29)-(6.32). Each colour represents
one of the different configurations. The couplings contained in every module are
static couplings as opposed to the other time-dependent ones.

Last, we remove one qubit from the previous system to define a four-qubit line

with similare features

Ĥ4L(t) =
4∑
j=0

Ĥ
(j)
qubit+Ĥ

(1)
control(t) + Ĥ

(2)
control(t) (6.32)

+Ĥ(0,1)
coup+Ĥ(1,2)

coup + Ĥ(2,3)
coup + Ĥ(3,4)

coup .

6.4 Design of large qubit arrays 153



Using copies of the systems defined by Ĥ5L(t), Ĥ5L(t) and Ĥ5L(t) we can build a

similar architecture to the 127-qubit system. To make the whole system controllable

we simply must connect each subsytem to another one using a tunable coupling. The

result is shown in Figure 6.3. This newly defined system downgrades some of the

tunable couplings from the previous system to static couplings, effectively reducing

the numbers of controls in the system. Similarly, we can remove some of the extra

tunable couplings in the system (the ones depicted with coiled orange lines) without

losing controllability in the system. Alternatively, the couplings can remain in the

design to maintain the connectivity between qubits. The main achievement, however,

is the reduction in the number of local controls to roughly two fifths of the original

amount. This is obtained simply by reducing the number of controls in each module

by finding controllable qubits arrays with any desired controllability test. Comparing

exact numbers, IBM’s system is composed of 127 local controls and 144 tunable

couplings; the alternative system has only 52 local controls, 101 static couplings and

25 tunable couplings. There are a total of 18 tunable couplings, which can be removed

to lower the number of resources or left in place to improve quantum information

transfer. The modified system is a simplified version of the original one with fewer

resources, which may be beneficial for scaling up the architecture, which can easily be

done by connecting new modules to the current system.

As a last note, we can also obtain information about the original system thanks to

the modified one. In particular, we can prove that the original system is controllable.

To do so, we simply need to recall two properties of controlled systems. The first one is

that if a quantum system is controllable, the same system with more controls must be

controllable too. We know that the system in Figure 6.3 with only the static couplings

and the necessary tunable couplings (indicated by blue zigzag lines) is controllable. If

we add the removed local controls back on every qubit and the redundant tunable

couplings, then the system must be controllable too. The second property is that if a

qubit array with static couplings is controllable, then the same system but with tunable

couplings is also controllable. This can be proven since the dynamical Lie algebra of

the first system must be contained in the algebra of the second one. Therefore the

modified system from Figure 6.3 with tunable couplings instead of static couplings

is also controllable. So the system with local controls in every qubit and tunable

couplings between any neighbouring qubits must be controllable as well. In other

words, we have proven that the original system from Figure 6.2 is operator controllable

too and thus potentially capable of universal quantum computing. This also shows

another possible application of the method to determine controllability on large qubit

arrays: If the modified modular system is controllable—perhaps using fewer controls

and some static instead of tunable couplings—then the original system on which it is

based is operator controllable as well.
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6.5 Summary

This chapter has presented a method to design arbitrarily large controllable qubit

arrays by using smaller controllable systems. It has been mathematically proven

that this is a generally valid result for any pair of controllable qubit arrays and any

entangling control. This serves as a versatile tool that can be applied to most cases.

Furthermore, it can be done inductively, concatenating the subsystem after subsystem

to generate larger systems. It serves as a modular design based on subsystems acting

as quantum processing units while still maintaining controllability, a requirement for

universal quantum computing. An example based on IBM’s systems has been studied,

where controllability could be guaranteed using far fewer couplings and controls.

This modular approach still requires using subsystems that are proven to be opera-

tor controllable. In other words, it makes controllability tests still relevant for larger

systems, even when the total dimension of the Hilbert space exceeds the capabilities

of the controllability test. In particular, the results from the graph test and the di-

mensional expressivity test have been key in showing operator controllability in IBM’s

system. In particular, developing more efficient controllability tests ensures that the

subsystems in the partition can be of a considerable size, reducing the total number of

tunable couplings that have to be included in the total system.

In future work, it would be interesting to study the quantum speed limit of the

total system compared to the one of the two previous subsystems. The rate at which

information can be exchanged in the multipartite system may depend on different

factors like the maximum amplitude of the entangling control or the coupling distance

between two qubits in the total array. To mitigate a possibly higher quantum speed

limit, more than one tunable coupling can be added to speed up the implementation

of entangling unitary operations.

In any case, even if information transfer between subsystems is slow, the system

and its architecture can be tailored to run quantum algorithms that can be parallelized.

Using each subsystem as a quantum processing unit, quantum circuits could be

designed such that calculations are run in parallel on each subsystem and, at the

end, all the information is merged before measuring. The parallelization of quantum

algorithms is a discussed topic in the development of quantum computation. It has

been hypothesized to bring some benefits like reducing circuit depth for certain cases

[166] or helping with the implementation of decision diagrams [167].

A future goal is the extension of the proof to systems that are not based on qubits.

Throughout all lemmas, we have assumed that our systems where built on two-

dimensional qubits, allowing us to use tensor products of Pauli matrices as the basis
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for the dynamical Lie algebras. In the general case, it may not be possible to assume

such a basis, which makes the derivations in the lemmas inapplicable. A possible

approach would be using a general basis for su(n) with well known symmetries and

commutator properties. If the same arguments can be made using e.g. the generalized

skew-Hermitian Pauli matrices as a basis, then the result of controllability can also be

extended to any other type of quantum system. Note that this is a mere hypothesis

and not certain valid result. Intuitively it makes sense that Lie algebras of qubit arrays,

i.e. su(2N ), do not show any merit over other systems with different Hilbert space

dimension. Nevertheless, more work is necessary to ensure this statement.

Finally, an interesting problem to be solved is the analysis of two connected

subsystems that have operator controllability on some subspace. In particular, it is

relevant to know whether the total system with an entangling control shows operator

controllability on a larger subspace. The purpose of this study is twofold. First, it

serves as an analysis for quantum systems with a smaller logical subspace in which the

quantum operations can be performed. For example, this is a typical case in quantum

error correction, where some qubits are used for measuring and are not active part of

the logical calculations [168]. Secondly, it paves the way for obtaining information

about an important physical model: Quantum systems embedded in a larger not

controllable space, a typical model for open quantum systems.
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7Conclusions and outlook

In this thesis we have covered a wide range of topics related to the analysis of scalable

qubit arrays that are capable of universal quantum computing. As it has been proven

that certain quantum algorithms require a great number of qubits to be efficient [169],

finding architectures of large qubit arrays with fast dynamics that use a low number

of controls and couplings is a much sought-after goal in the landscape of quantum

technologies. This work has tackled some of the relevant problems that stand in the

way of this ambitious objective.

In Chapter 3 we have introduced a new method to estimate the quantum speed

limit of a quantum system. It is based on the hypothesis that the time-independent

drift of a system’s Hamiltonian is the main contribution to the quantum speed limit.

The newly defined available velocity polytope contains the associated information

needed to quantify the time that a quantum system requires to implement some target

dynamics. This produces a natural decomposition of the Lie algebra into fast, slow

and very slow directions, depending on their contribution to the quantum speed limit.

The method offers a large versatility, as these dynamics can be chosen to be either

a given unitary evolution, a set of simultaneous state transfers or a quantum gate

acting on a proper subspace of the Hilbert space. The main idea relies on finding the

intersection given by the direction of a unitary evolution in the Lie algebra vector

space and the available velocity. For the case of state transfers and gates on subspaces,

the algorithm is able to find the minimum quantum speed limit among all the different

unitary evolutions that implement the target dynamics. While the estimator works

for low-dimensional systems, more work is needed to extend it to larger devices. In

its current state, the algorithm may not always provide accurate estimations, as seen

in the case where the coefficients in the Hamiltonian differ by orders of magnitude.

Nevertheless, with the right adjustments, the method could potentially lend itself to

some very promising applications in the world of quantum technologies. First, it could

be used to study the quantum speed limit of noncontrollable systems, which provide

an open door to the analysis of open quantum systems. There have been attempts to

define the concept of quantum speed limit for certain open systems [96, 124, 170],

but further study is advised to extend the notions to a more general case. Second, the

estimator could be directly used to obtain an upper bound to the time required for
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a quantum algorithm. As the method can find the speed limit for single-qubit and

two-qubit operations, the very base foundations of most quantum algorithms, it can

also provide an estimated minimal running time for the quantum algorithm. It would

also be interesting to compare this result with other estimations of the quantum speed

limits, like those associated with adiabatic quantum algorithms [171].

The various controllability tests are another core topic of the thesis. The con-

trol of quantum systems is a thriving field of study in quantum physics [12], and

understanding the feasible dynamics in a quantum system is key to unlocking its

full potential. Controllability tests are therefore a useful tool to understand what

a quantum system is capable of. In Chapter 2 we have presented the fundamental

difference between pure-state controllability and operator controllability in a system.

The former one ensures that all state transfers are possible, while the latter one — and

strictly stronger one — implies that all unitary operations are achievable. Operator

controllability is a requirement for a universal computer that can implement every

quantum gate. The aim of Chapters 4 and 5is the design of efficient controllability

tests. In principle, these tests are suitable for general quantum systems, although

they are specifically tailored for qubit arrays. More precisely, the examples used are

based on superconducting qubits [152], one of the most predominant platforms for

real qubit implementations. Previous controllability tests heavily rely on an analytical

calculation of the dynamical Lie algebra of the system [132, 51, 14]. The ones here

proposed use numerical computation that avoid a full calculation of the algebra while

obtaining the same necessary information.

The graph test from Chapter 4 checks whether a quantum system has a maximal

dynamical Lie algebra while avoiding the computation of a complete basis. For

every controlled quantum system, it is possible to define a graph that represents the

eigenstates and the transitions that the controls generate between them. By analysing

the connectivity of the graph, one can determine if the system is operator controllable.

This method is based on a pre-existing controllability test [16]. However, the original

test fails on systems with degenerate energy gaps. The main original contribution

is the extension of the method to surpass these degeneracies, making it suitable for

multipartite systems and, in particular, qubit arrays. An important note is that the

method may give inconclusive results in some cases, particularly in the case of not

controllable systems. To test the algorithm itself, we have studied a five-qubit example

based on a previously available IBM quantum device. We conclude that it is possible

to obtain controllability of the system with fewer controls and even reduce it to the

extreme case of a single local control. A natural next step is to examine the effect

of this reduction the number of controls on the quantum speed limit of the system.

Finding a suitable balance between the controls and couplings in a system and its

quantum speed limit is also left as a future goal.
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Chapter 5 presents a completely original controllability test in the form of a

quantum-hybrid algorithm. It introduces the novel approach of measuring control-

lability directly on a quantum device using parametric quantum circuits. Gauging

expressivity of parametric quantum circuits is a useful tool for their use in optimization

problems, like variational quantum algorithms. Here we have mapped the problem

of controllability to the expressivity of a circuit. To estimate the expressivity we

use the dimensional expressivity analysis [20, 19], a hybrid algorithm that mixes

quantum measurements on a circuit with classical computations. For every quantum

system, it is possible to define a parametric quantum circuit whose dimensional ex-

pressivity reflects the dimension of the reachable set of the system. This can be done

for pure-state and for operator controllability, giving a definitive answer for both a

positive and a negative result. The test has been used to study some qubit arrays using

classical simulations of the quantum circuits. The next logical step would be to try the

method on a real quantum device. It would also be relevant to see if the test can be

linked to other works that analyse the Lie algebra associated to a parametric quantum

circuit [172].

In future work, it would be interesting to use both controllability tests to study

controllability of subspaces, necessary for the case of a higher-dimensional Hilbert

space that contains logical space contained in a smaller subspace. This happens in

many qubit platforms, where there are more than two energy levels in the Hilbert

space. Similarly, the field of open quantum systems could benefit from efficient

controllability tests, as they more accurately represent a real controlled quantum

system [173]. Furthermore, it may be possible to link the tests to the quantum speed

limit of a system. The number of graphical commutators needed on the graph to make

it connected may be an indicator on the complexity of the dynamics, thus increasing

with the quantum speed limit. Similarly, the quantum circuit used in the expressivity

test may be used to determine the number of times the drift must be used in a gate

decomposition, serving as an estimation to the quantum speed limit. A last question

to answer in this area is knowing when pure-state controllability implies operator

controllability on a qubit array. This question arose when failing at finding systems

with two-qubit couplings and local controls with more than two qubits that were

pure-state controllable but not operator controllable. This may hint to the fact that

pure-state controllable systems with these kind of architectures are in general also

operator controllable. If this conjecture was correct, it would be very useful in order

to use the simpler tests to prove the stronger property.

The latest featured project is the design of large controllable qubit arrays using the

modular architecture presented in Chapter 6. We presented mathematical evidence

that connecting controllable qubit arrays via tunable couplings results in a larger

controllable system, independent of the number, type and location of previous local
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controls and couplings. It paves a path toward scalable designs suitable for universal

quantum computing. It is still necessary to check controllability on every module that

is added as a building block, making the controllability tests a useful tool. We have

used this approach to prove controllability on a quantum system whose dimension

exceeds the maximum one on which we can check controllability. Once again we

have used one of IBM’s systems as inspiration for the studied example, significantly

reducing the resulting number of controls and couplings. An important piece of

information would be the rate at which the modular multipartite system can exchange

information between the different subsystems. This may reveal which algorithms can

be implemented on the system and which would take too long. To mitigate this, it is

always possible to add more tunable couplings that improve the connectivity on the

array, which may lead to faster dynamics. The use of controllable subsystems is still

useful when considering quantum algorithms that can be parallelized into different

quantum processing units. More in-depth research is needed to understand how this

architecture compares to other configurations that have been proposed for quantum

computing [174, 175].

In essence, this work has brought together a combination of numerical tools and

new insights for the theoretical study and design of qubit arrays, in the hope that this

modest contribution will bring us a small step closer to the long-held wish of universal

quantum computing.
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